
Dark matter streams from tidally stripped axion minihalos

Author: Carla Salas Molar.
Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Prof. Jordi Miralda Escudé

Abstract: In this report, the motion of a dark matter minihalo around the Milky Way is studied,
focusing on an encounter with a star that modifies the orbits of the axions inside the minihalo. The
number of axions escaping from the minihalo due to the tidal acceleration caused by the star is
simulated, analyzing their distribution around the minihalo and their evolution.

I. INTRODUCTION

Dark matter (DM) is a hypothetical form of matter
with gravitational effects similar to those of ordinary
baryonic matter. The difference is that DM does not
interact with electromagnetic radiation, so there is
no absorption, reflection or emission, which makes it
unobservable by means other than gravity, unless there
is some other weak interaction of dark matter yet to be
discovered. As it can not be seen, its effects are studied.
There are three possible types of DM: hot (HDM), warm
(WDM) and cold (CDM), the latter used in this report.
The Cold Dark Matter candidates include Weakly
Interacting Massive Particles (WIMPs), axions and
primordial black holes. Here, the case of QCD axions
predicted by the Peccei-Quinn model is considered to
solve the strong Charge-Parity (CP) problem in particle
physics [1].

Axion minihalos (MH) are gravitationally bound
substructures of axions. Tidal streams form due to the
disruption of these structures [2]. These minihalos start
forming at a minimum mass of order 10−12 times the
solar mass and are formed by a standard gravitational
inestability, among other structures on all scales. During
the Milky Way’s (MW) timelife, minihalos can traverse
the MW disk multiple times, opening the possibility to
form tidal streams caused by interactions with stars.
Minihalos can also go through without interacting, if they
are not close enough to stars. Tidal streams expand over
a large volume compared to the minihalo they arise from.

A dark matter minihalo orbits around the Milky Way
under the influence of tidal forces inflicted by both the
disk and the halo of the galaxy. When it reaches the disk
and is close enough to a star to notice its gravitational
field, an encounter happens. Then, the minihalo follows
an hyperbolic trajectory in the star’s reference system,
while the orbits of the axions inside are perturbated by
a difference in accelerations between the center of mass
of the minihalo and the axions (tide generated by the
star). The interaction with the star can make some ax-
ions escape, allowing them to gain a kinetic energy that
exceeds the potential of the minihalo that was previously
keeping them inside. At this point, some axions are still
bound, orbiting inside the minihalo, while others escape,

orbiting around the galaxy on their own. Even though
they are no longer bound, they form a stream close to the
minihalo orbit. Studying the energy changes before and
after the interaction, the number of escaping axions and
the evolution in time of their distribution is calculated.

II. PREVIOUS CONSIDERATIONS

Axions are treated as classical particles, because the de
Broglie wavelength (λdB) is negligible compared to the
minihalo half mass radius (aMH),

λdB =
h

p
≪ aMH , (1)

where h is Planck’s constant and p is the particle’s
momentum (p = mv). Considering an axion with m =
1 eV/c2 and v = 300 km/s, and a minihalo with aMH =
1au = 4.848 · 10−9 kpc,

λdB ≈ 4 · 10−17 kpc ≪ aMH . (2)

The encounter rate used in this report is one during
a time range of 1010 years. The mass of the star is the
same as the sun’s, Ms = 1M⊙ = 1.988 · 1030 kg [3], and

the minihalo’s is MMH = 10−12M⊙. Less bound axions
are considered, increasing the number of escaping axions,
namely, the minihalo disruption (more axions in the tidal
stream). The minihalo mass loss due to the perturbation
is so small that its potential is considered constant.

III. FORMULATION

For a system of N particles, the lagrangian formulation
is used. Thus, the three-dimensional Hamiltonian in the
phase space is written in terms of generalized coordinates
qj , generalized momenta pj and time t:

H(qj , pj , t) =
∑
k

q̇kpk − L(qj , q̇j , t) , (3)

where j,k = 1, ..., 3N and pj = ∂L/∂q̇j .
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The Hamilton’s equations used to calculate orbits are

∂H

∂xi
= −dpi

dt
,

∂H

∂pi
=

dxi

dt
,

∂H

∂t
= −∂L

∂t
, (4)

with xi = (x, y, z) and pi = (px, py, pz), having a total
of 6N coordinates. All calculations have been done per
mass unit, so pi = vi. Introducing kinetic and potential
energies, the non time dependent Hamiltonian is

H(x⃗, p⃗) =
1

2
(p2x + p2y + p2z) + Φ(x, y, z) . (5)

IV. MODELS

Three important parts of the Milky Way are its disk
(d), bulge (b) and dark halo (h). Neglecting the bulge
potential for being so small compared to the others, the
MW potential is ΦMW ≃ Φd +Φh. Based on established
observational properties of the MW disk and halo, the
models used [3] are described in the following subsections.

A. Miyamoto-Nagai model

The potential for a thin and thick disk is

Φ(R, z) = − GM√
R2 + (a+

√
z2 + b2 )2

, (6)

being G the gravitational constant, M = 6 · 1010M⊙
the disk total mass, and a and b model parameters with
values 5 kpc and 0.3 kpc, respectively. Cylindrical coor-
dinates are used.

B. Navarro-Frenk-White model

Simulations of the distribution of dark matter particles
suggest that the density of the dark matter halo can be
approximated as a radius power law such as

ρ(r) = ρ0

( r
a

)−α (
1 +

r

a

)α−β

, (7)

where spherical coordinates are used. The value of the
model parameter a is 15 kpc. The NFW model for a
spherical system considers (α, β) = (1, 3), leading to a
potential for the dark matter halo of the form

Φ(r) = −4πGρ0a
3 ln(1 +

r
a )

r
. (8)

The speed of a star in the disk is affected by the speeds
of the dark halo and the disk.

Thus,

v2s = v2d + v2h , (9)

where speeds are calculated with the relationship be-
tween the potential derivative and the centrifugal accel-
eration

v2h
r

=
dΦNFW (r)

dr
,

v2d
r

=
dΦMN (r)

dr
. (10)

Using the equations (9) and (10), and taking into con-
sideration that the thickness of the disk is so small com-
pared to the radius so r ≈ R, ρ0 is found

ρ0 =
v2h

4πGa3NFW

[
ln(1 + r

aNFW
)

r
− 1

(aNFW + r)

]−1

.

(11)
Besides these models, there is also the one for the ax-

ions orbiting in the minihalo.

C. Plummer model

This model describes the potential of a spherical sys-
tem with constant density at the center (∝ r2+constant),
going to zero at greater radii (∝ r−1). Its form is

Φ = − GM√
r2 + a2

= −GM

a

(
1 +

r2

a2

)− 1
2

, (12)

where spherical coordinates are used, beingG the grav-
itational constant, M = MMH = 10−12M⊙ the minihalo

total mass, and a = aMH = 4.848 · 10−9 kpc the Plum-
mer scale length, in other words, it is the radius at which
the mass profile projected on a two-dimensional plane is
half the total mass. Using (12) and Poisson’s equation,
Plummer density is obtained

∇2Φ = 4πGρ , (13)

ρ =
3M

4πa3

(
1 +

r2

a2

)− 5
2

. (14)

V. INITIAL CONDITIONS

A. Axions

The initial conditions are calculated in the minihalo
reference system, using the acceptance-rejection method
and a distribution function f [4], shown on the next page.
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f = fxfp =
ρ(x, y, z)

M
fp(x⃗, p⃗) , (15)

where ρ(x, y, z) is the Plummer density.

The interesting speeds are the ones that make density
constant. In addition, f does not depend on time explic-
itly. Thus,

df

dt
=

∂f

∂t
+ [f,H] = 0 → [f,H] = 0 . (16)

Considering f = f(H), the Hamiltonian in spherical
coordinates is

H =
1

2
(v2r + v2θ + v2ϕ)− |Φ(r)| , (17)

with vr = pr, vθ = pθ

r and vϕ =
pϕ

rsinθ , change made
in order to mantain the module of tangent vectors. Note
that the potential is negative. If the particle is bound,
then

|Φ(r)| ≥ 1

2
(v2r + v2θ + v2ϕ) → H ∈ [−|Φ|, 0] . (18)

Integrating fx in spherical coordinates, the function
obtained is: F (r, θ, ϕ) = F1(r)F2(θ)F3(ϕ). Defining each
Fi as a uniform variable ui,

r = a
(
u
− 2

3
1 − 1

)− 1
2

, θ = arccos(u2) , ϕ = 2πu3 ,

(19)
with u1 = u3 = U(0, 1) and u2 = U(−1, 1). For less

bound particles, u1 → 1. Knowing (r, θ, ϕ), one can cal-
culate (x, y, z). The escaping speed of particles is

1

2
mv2e = |Φ| → ve =

√
2GM

m

(
a2 + r2

)− 1
4 . (20)

Definig new θ and ϕ values, the cartesian momenta
(px, py, pz) are obtained. The speed is smaller than
vc, close for less bound particles → v = uvc, with
u = U(0, 1). Making some changes in (15), fq(q) is ob-
tained

fq(q) =
512

7π
q2(1− q2)

7
2 , (21)

q =
|p|
|pe|

=

√
v2r + v2θ + v2ϕ√

2|Φ|
∈ [0, 1] , (22)

v = q
√
2GM

(
a2 + r2

)− 1
4 . (23)

The values of q accepted by the acceptance-rejection
method lead to v (23). This has been done for ten thou-
sand axions.

B. Minihalo

The initial speed module is

vMH,0 = 240
km

s
= 2.5 · 10−7 kpc

yr
. (24)

The components are calculated with spherical coordi-
nates, using random angles. The position coordinates
considered are x = y = z = 8kpc.

VI. DEVELOPMENT AND RESULTS

As explained in the introduction, a dark matter mini-
halo orbiting around the Milky Way is studied, consid-
ering the tidal forces exerted by both the disk and the
dark halo of the galaxy. The Hamilton’s equations (4) are
solved, using (5) with the MW’s potential, ΦMW . Thus,

ẋi = pi , ṗi = −∂H

∂xi
= −

(
∂Φd

∂xi
+

∂Φh

∂xi

)
. (25)

Integrating these equations for 106 values of time, with
initial time −108 yr and final time 108 yr, a phase space
point is obtained for each value. All points describe the
orbit of the minihalo around the galaxy in this period
of time. The initial time is not essential. Substituing
the data for each point in the Hamiltonian, the energy
is found. These many steps of time are needed in order
to calculate, through interpolation, the time when the
minihalo reaches the galaxy disk (z = 0). If the MH is
close enough to a star to notice its gravitational effects,
then there is an encounter between them. Assuming it
happens, the time found is tint = −4.379 · 107 yr. Now,
using tint as final time, an integration of the equations
shown before is done, where the last point obtained is
the phase space point of the interaction. This point de-
termines the position of the star. When the encounter
happens, the minihalo position is the same as the star’s
→ rint = rMH = rs. It also determines its polar an-
gle and the minihalo speed, both at the galaxy reference
system. The values found are

rint = 17.687 kpc , αint = 59.883◦ , (26)

vMH,int = 175.316
km

s
= 1.791 · 10−7 kpc

yr
. (27)

Having the radius, the equation (11) is solved

ρ0 = 2.143 · 107M⊙/kpc3 . (28)

The speed of the star at rint is calculated with the
equations (9) and (10). The result is presented on the
next page.
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vs = 255.618
km

s
= 2.612 · 10−7 kpc

yr
. (29)

The gravitational field of the star introduces tidal
forces, modifying the orbits of the axions inside the mini-
halo. These tidal forces are a perturbation that comes
from a difference in accelerations between the center of
mass of the minihalo (CM) and each axion. It can be
seen in the following equation

a⃗axion,CM = a⃗axion,star − a⃗CM,star , (30)

where a⃗ = ˙⃗v = ¨⃗r. Same expressions as (30) are
obtained for v⃗ and r⃗. Having r⃗, a⃗ = −GM/r3 r⃗.

The distance at which the minihalo starts noticing the
tidal effects of the star is called impact parameter, and
it is related with the rate of interaction between the MH
and stars, R(b), the density of stars per volume unit, n,

and the total speed vT =
√
v2s + v2MH as

R(b) =
1

1010 yr
, n =

ρ

M⊙ = 107 kpc−3 , (31)

b =

√
R(b)

nvTπ
= 1.306 · 10−5 kpc . (32)

Aproximating the orbits of the axions inside the mini-
halo as circular, equating the gravitational and centrifu-
gal forces, and using Earth data (E) [3], the rotational
speed and the period are obtained

m
v2

r
=

GMm

r2
→ vax = vE

√
MMH

M⊙ rE,
⊙

aMH
, (33)

vax ≈ 3
cm

s
, T = 2π

aMH

vax
. (34)

The perturbation can be considered punctual because
it lasts b/vMH ≈ 70 yr, negligible compared to the axion
period around the minihalo, T . Then, the axions will
only suffer the tidal forces caused by the star, but not
the ones caused by the galaxy. The more closer the mini-
halo is to the star, the more it notices the tidal forces.
Polar coordinates (r,Ψ) are used. At the interaction
time, r = b and Ψ = Ψ0 (Ψ0 is a constant angle). The
MH approaches the star in a 1D plane, with polar an-
gle Ψ → 0. When the perturbation happens, then the
trajectory becomes hyperbolic (two-dimensional). The
polar angle Ψ(t) is obtained from the equations of hyper-
bolic anomalies [5]. Proceding similarly as in Galactic
Dynamics for Kepler’s potential [3], the equations of the
hyperbolic orbit are the ones in (35) and (36).

r(Ψ) =
a(1− ϵ2)

1 + ϵcos[Ψ(t)−Ψ0]
, a =

b2v20
GMs(1− ϵ2)

,

(35)

tanΨ0 = − bv20
G(Ms +MMH)

, ϵ =

√
1 +

(
bv20
GMs

)2

,

(36)
with (r,Ψ), the cartesian coordinates for the minihalo

in the star reference system can be found. Now, integrat-
ing Hamilton’s equations (4) with Plummer potential,
the phase space coordinates for axions in the minihalo
reference system are calculated, taking into account the
tidal forces from the star (30). Thus,

ṗi = − GMMH

(r2 + a2MH)
3
2

xi + (⃗aaxion,star − a⃗CM,star) . (37)

The integration has been done for a total of 2 · 105 yr,
from 105 yr before the closest approach to 105 yr after.

As seen in equation (18), the energy is negative if the
potential, Plummer potential in this case, is greater than
the kinetic energy, meaning that the axion speed is not
enough to escape. On the contrary, if it is positive then
the speed is greater or equal as the one in equation (20),
enough to overcome the potential and escape from the
minihalo. Studying the energy of each axion after the
interaction, 10% of the total number of axions escape,
while the other 90% are still bound. As approximated,
the minihalo mass loss is small, so its potential is ap-
proximately constant. The escaping axions form a dark
matter stream that moves around the galaxy, near the
minihalo, subjected to the tidal forces from the disk and
the dark halo of the MW. Thus, the motion equations
they follow are those shown in (25). The equation (37)
represents the axion acceleration in the minihalo system.
To obtain their orbit around the galaxy, a change of ref-
erence system must be done, taking into account that
some escaping axions are still slowed down by the mini-
halo potential. The real speed of the axions pr in the MH
reference system is

p2r = p2 − 2GMMH

raxion,CM
→ p⃗r = p⃗

pr
p

, (38)

where p is the integrated value of equation (37). Inte-
grating the equations in (25), using the moment of the en-
counter as the initial time, the time range is [0, 108+|tint|]
yr. The final time is the one used previously on the MH’s
total trajectory. The orbits of axions are obtained and
plotted next to the MH’s. The speed used for axions is

p⃗axion,MW = p⃗CM,MW + p⃗r . (39)
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The following representations show all discussed above.
Although they are two-dimensional figures, the final dis-
tribution and the orbits are three-dimensional.

FIG. 1: Two-dimensional representation of the final distribu-
tion of escaping axions after suffering the tidal forces inflicted
by the star and the MW. MH’s final point is also shown in
red. Projection on the plane z(x). Units are indicated on the
axes.

FIG. 2: Two-dimensional representation of the minihalo and
stripped axion’s orbits around the Milky Way. Projection on
the plane z(y). Units are indicated on the figure’s axes.

The color code for points in figure (1) is: red (MH’s
last point) and black (last point of all axions).

In figure (2), the color code for points is: purple (ini-
tial point, where the minihalo starts its orbit around the
Milky Way), black (final point, where both the minihalo
and the stripped axions’s trajectories finish), dark blue
(interaction point, where the minihalo reaches the disk
and interacts with a star) and light blue (galactic center).

VII. CONCLUSIONS

• After the interaction between the minihalo and the
star, 10% of the total number of axions that were
originally inside the MH escape, causing a dark
matter stream. As approximated, the minihalo
mass loss is small.

• Figure (1) shows the final distribution of the
stripped axions around the minihalo, for two dif-
ferent projections in space. The stream is longer
on the orbit direction. This can be seen in the fig-
ure, where the stream is longer on the z-axis. The
axions that have escaped are near the minihalo.

• In figure (2), the MH begins its trajectory and goes
orbiting until it reaches the disk and an encounter
happens. After, the stripped axions go round the
Milky Way near the minihalo. The thick black line
represents both orbits, so close to each other that
at a great scale they seem to be exactly the same,
but there is a distribution similar to figure (1) in
each point.

• The evolution in time of the MH energy has been
calculated and found to be approximately constant.
In the interaction, a change in energy allows some
axions to escape with v ≥ vc (20).

VIII. APPENDIX

Some Python functions used for the calculations.
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Initial conditions (Plummer) for less bound axions

In [1]:

In [2]:

In [3]:

In [4]:

In [5]:

# first of all the libraries needed are imported
from numpy import * # specialized in numerical calculation
from matplotlib.pyplot import * # useful for graphical representations

# physical variables for the minihalo
# a = 0.1 # in au -> only 3 axions scape out of 10k
a = 1.0 # in au
M = 1.0E-12 # mass in solar masses
G = 39.479 # Universal Gravitational constant in au^3/(yr^2*Msol)

# command random.uniform(a,b,n) -> generates an n-dim vector with random floats between a and b
# function that goes from spherical coordinates to cartesian coordinates
 
def spherical_to_cartesian(r,theta,phi):
    x=r*sin(theta)*cos(phi)
    y=r*sin(theta)*sin(phi)
    z=r*cos(theta)
    return x,y,z
 
# distribution function fq(q), where q=|p|/|pe|ϵ[0,1]
def fq(q):
    return 512.0/(7.0*pi)*q**2.0*(1.0-q**2.0)**(7.0/2.0)
     

# function that calculates the initial conditions following Plummer model
# F=integral(fx)=integral(ρ(r)/M) -> spherical integration -> r^2 sinθ drdθdΦ
# dividing the main integral in three parts dependening on r,θ i Φ, respectively, the variable as a function of a 
# random float between 0 i 1 ( u ϵ U(0,1) ) is obtained
# initial conditions of some axions bound but with big orbits -> grater orbital period -> less energy 
# -> less bounded, so a greater u0 is needed (almost 1.0)
 
def initial_conditions(seed,n):
    random.seed(seed) # the seed is for random numbers
    
    # Initial conditions of position
    u0=random.uniform(0.95,1.0,n) # n-dim vector with random floats between 0.999 i 1. As u0 is a vector, r is too
    u1=random.uniform(-1.0,1.0,n) # n-dim vector with random floats between -1 i 1. As u1 is a vector, theta is too
    r=a*(u0**(-2.0/3.0)-1.0)**(-1.0/2.0)
    theta=arccos(u1)
    phi=random.uniform(0.0,2.0*pi,n)
    
    x,y,z=spherical_to_cartesian(r,theta,phi)
    
    # method of rejection for the initial conditions of velocity
    fqmax=50176.0*sqrt(7.0)/(19683.0*pi) # maximum of fq(q)
    v=zeros(n) # n-dim vector with zeros -> inital condition of velocity
    
    j=0 # inicialization of the the counter for v
    
    for i in range(3*n): 
        q=random.uniform(0.0,1.0)
        fm=fqmax*random.uniform(0.0,1.0) # fraction of fqmax
        
        if fm <= fq(q): 
            v[j] = q*sqrt(2.0*M*G)*(a**2.0 + r[j]**2.0)**(-1.0/4.0)   # q multiplied to the escaping speed 
            j=j+1
        
        if j==n: # when v[j] is full, the loop stops
            break
        
    u0=random.uniform(0.0,1.0,n)
    u1=random.uniform(-1.0,1.0,n)
    theta=arccos(u1) # different angles from the ones used for position
    phi=random.uniform(0.0,2.0*pi,n)
    px,py,pz=spherical_to_cartesian(v,theta,phi) # n-dim vectors because v,theta and phi are n-dim vectors
 
    return x,y,z,px,py,pz

seed=20158401
n=10000
x0,y0,z0,px0,py0,pz0=initial_conditions(seed,n)
CI=array([x0,y0,z0,px0,py0,pz0]) # initial conditions (x,y,z in au and px,py,pz in au/Myr)
save("initial_conditions_less_bound_axions.npy", CI)
 



Hamilton's equations - interaction (Plummer + tidal forces)

In [1]: def Hamilton_equations_interaction(f, t):
    x, y, z, px, py, pz = f # variables needed in order to calculate dpx,... (coordinates of the axion in the minihalo RS)
        
    dx = px # dx means dx/dt, and px means px/m=vx (speed)
    dy = py
    dz = pz
    
    # coordinates of the hyperbolic orbit of the minihalo around the star
    # anomalies
    psi_m = t*(v_0**3.0)/(G*M_star)
    psi_h = arcsinh(psi_m/exc)
    psi_v = 2.0*arctan(sqrt((exc+1.0)/(exc-1.0))*tanh(psi_h/2.0))
    psi = psi_v + psi_0
    #position
    r_cm_s = (a*(1.0-exc**2.0))/(1.0+exc*cos(psi_v))
    r_cm_s_3 = r_cm_s*r_cm_s*r_cm_s
    x_cm_s = r_cm_s*cos(psi)
    y_cm_s = r_cm_s*sin(psi)
    
    # acceleration of the star with respect to the minihalo CM (vector) (there's a change of perspective -> sign change)
    a_cm_s_x = -G*M_star*x_cm_s/r_cm_s_3
    a_cm_s_y = -G*M_star*y_cm_s/r_cm_s_3
    a_cm_s_z = 0.0 # z_cm_s = 0.0
    
    x_ax_s = x + x_cm_s
    y_ax_s = y + y_cm_s
    z_ax_s = z
    r_ax_s_2 = x_ax_s*x_ax_s + y_ax_s*y_ax_s + z_ax_s*z_ax_s 
    r_ax_s_3 = sqrt(r_ax_s_2)*r_ax_s_2
    
    a_ax_s_x = -G*M_star*x_ax_s/r_ax_s_3 
    a_ax_s_y = -G*M_star*y_ax_s/r_ax_s_3 
    a_ax_s_z = -G*M_star*z_ax_s/r_ax_s_3 
        
    r_2 = x*x + y*y + z*z
    
    # In addition to Plummer acceleration of the axion with respect the minihalo CM, the tidal forces are added,
    # so there is the total acceleration experienced by the axion 
    dpx = -G*M_dm*x/a_dm_3/(r_2/a_dm_2+1.0)**(3.0/2.0) + (a_ax_s_x - a_cm_s_x)
    dpy = -G*M_dm*y/a_dm_3/(r_2/a_dm_2+1.0)**(3.0/2.0) + (a_ax_s_y - a_cm_s_y)
    dpz = -G*M_dm*z/a_dm_3/(r_2/a_dm_2+1.0)**(3.0/2.0) + (a_ax_s_z - a_cm_s_z)
 
    return dx, dy, dz, dpx, dpy, dpz # it is, in fact, dx, dy, dz, ddx, ddy, ddz (magnitudes of the axion)
 
    # with this function the phase coordinates of the axion in the minihalo system is obtained


