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Stochastic resonance in a dipole

J. M. G. Vilar, A. Peez-Madrid, and J. M. Rubi
Departament de Bica Fonamental, Facultat de’§ica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Spain
(Received 30 May 1996

We show that the dipole, a system usually proposed to model relaxation phenomena, exhibits a maximum in
the signal-to-noise ratio at a nonzero noise level, thus indicating the appearance of stochastic resonance. The
phenomenon occurs in two different situations, i.e., when the minimum of the potential of the dipole remains
fixed in time and when it switches periodically between two equilibrium points. We have also found that the
signal-to-noise ratio has a maximum for a certain value of the amplitude of the oscillating field.
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PACS numbsg(s): 05.40:+j, 41.90+e, 82.70.Dd

The phenomenon of stochastic resonafg® [1-10] pole[16,17 in an external field, which may be described by
may be characterized by the appearance of a maximum in thae Langevin equation governing the dynamics of the unit
output signal-to-noise ratio (SNR) at an optimized nonzerq
noise level. Although early studies of SR were restricted to’
bistable systems, later developments have shown that this
phenomenon is also present in a wider class of situations,
including threshold devices and fire and reset models. In all
these cases, a combination of the periodic input signal and
the presence of an optimized noise may give rise to SR when
the system crosses a barrier or a threshold in a coherentere the total fleldh(t) k[1+ asm(wot)]z W|th Z a unit
fashion. This phenomenon has been found in many particularector, consists of a constant plus an oscillating field and it is
realizations such as a Schmitt triggéd], laserd 2], neurons characterized by the parametétsand «. The noise term

[12,13, and magnetic particleis4]. £(t) may originate from the presence of an external random
In spite of the efforts devoted to show the ubiquity of thefie|d or from thermal fluctuations. It is assumed to be Gauss-

phenomenon in many branches of physics, chemistry, anghn white noise with zero mean and second moment

biology, there is an aspect that has not been considered up te; (1) ¢;(t+7))=D&;;8(7), defining the noise leveD.

now. It refers to the possibility of the appearance of a maxi- The potential energy of the dipole \&(6) = — h(t)cos,

mum in the SNR[15] during the relaxation process of a whereg is the angle between its direction and the direction
system towards a single minimum, due to the combined ac-

tion of the noise and the periodic signal. In this paper weof the external field cos@)=2z- R] Two qualitatively differ-
address this possibility precisely, which leads to differentent situations may occur, one for smadi<{ 1) and the other
applications of SR in the domain of the relaxation phenomfor high (e>1) oscillating fields. In the first case, the po-
ena. To be more specific, consider a system in an equilibriuriential has a minimum which remains fixed in timeét 0
state, stable or unstable, where no motion is observed. TH&Ig. 1(a@)]. In the absence of noise, once the dipole relaxes
addition of noise removes the system from this situation in
such a way that a force field acts on it. If this force varies

VectorR along the direction of the dipole moment

ol

—[h(t)xR+g( ]XR. 1)

Q.|Q-

20

periodically in time, then SR may occur. As a physical real-
ization of the phenomenon we have shown that SR may take
place in a single dipole under a periodic external field.
Let us consider the relaxational dynamics of a single di- 18 |
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FIG. 1. PotentiaV(6) = —h(t)cos() for the maximum ofh(t)

(continuous ling and for the minimumdashed ling with k=1 and

(@) =0.5, and(b) a=1.5.
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FIG. 2. SNR as a function of the noise le®] obtained through
simulations(symbolg and computed from Ed6) (lines). The val-
ues of the parameters used here #&rel, wy=0.01, a=0.5
(squares a=0.7 (open circleg anda=0.9 (filled circles.
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Time

FIG. 4. Time evolution of co#) for =3, k=1, wy/27=0.1,
and the noise level® =3.3x 10 2 (top), D=23.3x 108 (middle),
and D = 3.3 (bottom).

mum in the signal, i.e., in the susceptibility, as a function of
the noise levelD. However, the SNR is a monotonically
decreasing function dD. One finds

| snr=L(p)ka?, ()

obtained from the fluctuation-dissipation theor¢h8] and
the expression for the complex susceptibi[ifyg]

TL ()

1+tior(u)’ @

x(w)=

FIG. 3. Contour plot of the SNR as a function of both the noise
level D and the amplitude of the oscillating field, for k=1 and
the frequencies(a) wy/2m=0.01, (b) wy/27=0.1, and (c)

wol2m=1.

where 7(u) = u’L' (1)/2kL(w) is the relaxation time and
L(u)=coth(u)—1/u is the Langevin function, with
u=2h(t)/D.
toward this minimum no motion is observed, whereas when Beyond the domain of applicability of LRT, we have
noise is added, the motion is modulated by the oscillatindound a range of values of the parameters for which the SNR
field. In the second cag€ig. 1(b)], the position of the mini- €xhibits a maximum for a nonzero noise level. Our result is
mum switches periodically in time between the equilibrium obtained from numerical simulations by integrating the cor-
points =0 and. In the absence of noise, starting from any "esponding Langevin equation by means of a standard
arbitrary initial condition @,# ), the dipole relaxes to- second-order Runge-Kutta method for stochastic differential
wards #=0, in spite of this point becoming stable or un- €quationg20,21]. The SNR, computed numerically through
stable periodically. When a small amount of noise acts on théhe averaged power spectrum, is defined as
dipole, it may leave the unstable equilibrium point and move A
toward the stable one. We could easily infer that the output - (wo)

; . . L I snr=10 logio , 5)
signal has a maximum as a function Bf, but it is not a N(wo)
trivial matter to elucidate the behavior of the SNR, because ) )

both signal and noise go to zero Bsdecreases. where A(wg) is the area of the peak above the noise floor

Since we are concerned with the magnitude @psghich ~ @ndN(wo) is the noise background at the frequenay. In

for a magnetic dipole corresponds to the component of th&19. 2 we have depicted the SNR for finite amplitudes of the

magnetization along the field, the averaged power spectruf@scillating field. We have observed that for small the
is given by SNR is a monotonically decreasing function of the noise, as

predicted by LRT. Nevertheless, for higher valuesacthe
(" (s [27@0 SNR has a maximum & # 0 (Fig. 2). When the amplitude
P(w)= f_wdSé fo (cod fr5)cog6))dt. (2)  Ggecreases, this maximum becomes less sharp and disappears
at lower « in a continuous fashion.
Analytical studies of the system, using linear-response This behavior could also be obtained analytically in the
theory (LRT), which is valid for small fields, show a maxi- limit of small frequencies, i.e., when the system relaxes
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FIG. 5. SNR fora=3, k=1, andwy/27=0.1. FIG. 6. SNR as a function of amplitude of the oscillating field

a, for k=1, wy=0.01, andD =0.01. Obtained through simulations

faster than the period of the external field. The power spectsymbols and computed from Ed.7) (solid line).

trum may then be computed from the approximated expres- . : .
sion for the correlation function noise then increases the SNR up to 15 dB over its value at

the limit of D going to zero. For the optimal value bBf the
behavior of the dipole looks surprisingly similar to that for
the bistable potential.
1_22) eMt’ Turning our attention to Fig. (&), we note another even
Mt ' more interesting feature. For lo@ the SNR is not a mono-
(6)  tonically increasing function of the amplitude. This kind of
behavior implies that in some range of values of the param-
) _ eters, a small signal is more easily detected than a greater
where L=L(u(t)), Mp=—[i 7(u(s))7"ds, and p  gneThe output signal, however, is always an increasing

= p(t). Additionally, to obtain Eq.(6) we have used the nction of the amplitude. The maximum of the SNRig.
previous analytical expression of the relaxation time, WhIChG)' as a function ofw, is due to the noise at the frequency

differs from the exact value only by a few perc¢d®]. The  "increasing faster than the signal whenapproaches to
results obtained by using E¢6) in Eq. (2) are depicted in 1 =0 5 =001 andw,=0.01 the SNR has a maximum at
Fig. 2. It is interesting to notice that the SNR defined from ,_ 57 | such a case. the SNR may be evaluated by ap-

Eqg. (2), which has dimensions of the inverse of time, has roximating the dynamics around the minimum by a two-

begn.(\j/vntter) r']n r(]jlmder}.spnlessfumts n EUCh a I\I/vg}:(fthat Himensional Ornstein-Uhlenbeck proc¢28]. When this ap-
coincides with the definition o Eq(5). T € smal difier- roximation holds the correlation function reads
ences between the analytical and simulation results occur at

intermediate values dD and come from the approximation
in the relaxation time.

In the previous results we have shown a dependence of  (cog 6, ,)cog 6,))~D? 2h(Oh(t+ 1)
the appearance of SR on the amplitude of the input signal. T
This dependence contrasts with the results obtained for thehe SNR has been computed as in ). The correspond-
bistable quartic potential, in which the maximum of the SNRing result is represented in Fig. 6. In spite of the approxima-
disappears for sufficiently large amplitudes of the oscillatingtion made to obtain Eq7), this result is in excellent agree-
field. Additionally, numerical simulations show a qualitative ment with the one obtained through simulations for the range
change of the SNR upon varying the frequency of the signalvhere this approximation makes sense. It must be pointed
wo. The results obtained indicate that when increasing  out that the SNR, for low amplitudes, follows the quadratic
for a fixed a, the maximum of the SNR disappears, as illus-law, | gyg* @?. Note that the result given by E@7) corre-
trated in Fig. 3. sponds to the one for a linear system, that shows that non-

Although in Fig. 3 we have depicted the SNR for somelinearities do not play any role in the appearance of this
values of a>1, this behavior is similar to that for<1  phenomenon. What is remarkable is the great deal of gener-
because when the dipole is able to leave the neighborhood afity of this result, since it may hold for any system around a
0=0 the noise is so high that it destroys its coherent motionminimum.

However, fixedw, for large enouglw, the amount of noise In summary, we have shown the existence of SR in a
necessary in order for the dipole to leave the unstable equdipole, a system which has been widely analyzed due to its
librium point, does not destroy its coherent motion. This beimportance as a simple relaxation model. It is well known
havior is illustrated in Fig. 4 fom=3, k=1, andwy=0.1  that the susceptibility of the dipole exhibits a maximum at a
and is similar to the one found if22]. It shows the time certain value of the temperatustrength of the noigq 24].
evolution of cosg) for the optimal, lower, and greater noise In this paper we have also shown that a maximum also ap-
levels. For the previous values of the parameters, the SNRears in the SNR. The mechanism responsible for the ap-
(Fig. 5 exhibits a maximum ab =0.033. The addition of pearance of SR in this monostable system lies on the role

(cog 6)cog f;))~LLy (1—eM)+

1+exp( J'Hfh(s)ds)
t

Y
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played by noise in the relaxational dynamics itself towardsextended to the situation in which the system is around an
the stable equilibrium state. As an important feature we havequilibrium state in a force field whose intensity varies peri-
also found that the SNR depends on the amplitude of thedically in time.

oscillating field and reaches a maximum at a certain value of

this parameter. This result reveals the existence of an optimal This work was supported by DGICYT of the Spanish
amplitude of the signal in order to be detected. Although the€Government under Grant No. PB92-0859. J.M.G.V. wishes
dipole is of interest in its own right, our results could also beto thank the Generalitat de Catalunya for financial support.
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