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We show that the dipole, a system usually proposed to model relaxation phenomena, exhibits a maximum in
the signal-to-noise ratio at a nonzero noise level, thus indicating the appearance of stochastic resonance. The
phenomenon occurs in two different situations, i.e., when the minimum of the potential of the dipole remains
fixed in time and when it switches periodically between two equilibrium points. We have also found that the
signal-to-noise ratio has a maximum for a certain value of the amplitude of the oscillating field.
@S1063-651X~96!07411-9#

PACS number~s!: 05.40.1j, 41.90.1e, 82.70.Dd

The phenomenon of stochastic resonance~SR! @1–10#
may be characterized by the appearance of a maximum in the
output signal-to-noise ratio (SNR) at an optimized nonzero
noise level. Although early studies of SR were restricted to
bistable systems, later developments have shown that this
phenomenon is also present in a wider class of situations,
including threshold devices and fire and reset models. In all
these cases, a combination of the periodic input signal and
the presence of an optimized noise may give rise to SR when
the system crosses a barrier or a threshold in a coherent
fashion. This phenomenon has been found in many particular
realizations such as a Schmitt trigger@11#, lasers@2#, neurons
@12,13#, and magnetic particles@14#.

In spite of the efforts devoted to show the ubiquity of the
phenomenon in many branches of physics, chemistry, and
biology, there is an aspect that has not been considered up to
now. It refers to the possibility of the appearance of a maxi-
mum in the SNR@15# during the relaxation process of a
system towards a single minimum, due to the combined ac-
tion of the noise and the periodic signal. In this paper we
address this possibility precisely, which leads to different
applications of SR in the domain of the relaxation phenom-
ena. To be more specific, consider a system in an equilibrium
state, stable or unstable, where no motion is observed. The
addition of noise removes the system from this situation in
such a way that a force field acts on it. If this force varies
periodically in time, then SR may occur. As a physical real-
ization of the phenomenon we have shown that SR may take
place in a single dipole under a periodic external field.

Let us consider the relaxational dynamics of a single di-

pole @16,17# in an external field, which may be described by
the Langevin equation governing the dynamics of the unit

vectorRŴ along the direction of the dipole moment

dRŴ

dt
5@hW ~ t !3RŴ 1jW~ t !#3RŴ . ~1!

Here the total fieldhW (t)5k@11asin(v0t)#zŴ, with zŴ a unit
vector, consists of a constant plus an oscillating field and it is
characterized by the parametersk and a. The noise term
jW (t) may originate from the presence of an external random
field or from thermal fluctuations. It is assumed to be Gauss-
ian white noise with zero mean and second moment
^j i(t)j j (t1t)&5Dd i jd(t), defining the noise levelD.

The potential energy of the dipole isV(u)52h(t)cosu,
whereu is the angle between its direction and the direction

of the external field@cos(u)5zŴ•RŴ #. Two qualitatively differ-
ent situations may occur, one for small (a,1) and the other
for high (a.1) oscillating fields. In the first case, the po-
tential has a minimum which remains fixed in time atu50
@Fig. 1~a!#. In the absence of noise, once the dipole relaxes

FIG. 1. PotentialV(u)52h(t)cos(u) for the maximum ofh(t)
~continuous line! and for the minimum~dashed line!, with k51 and
~a! a50.5, and~b! a51.5.

FIG. 2. SNR as a function of the noise levelD, obtained through
simulations~symbols! and computed from Eq.~6! ~lines!. The val-
ues of the parameters used here arek51, v050.01, a50.5
~squares!, a50.7 ~open circles!, anda50.9 ~filled circles!.
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toward this minimum no motion is observed, whereas when
noise is added, the motion is modulated by the oscillating
field. In the second case@Fig. 1~b!#, the position of the mini-
mum switches periodically in time between the equilibrium
pointsu50 andp. In the absence of noise, starting from any
arbitrary initial condition (u0Þp), the dipole relaxes to-
wards u50, in spite of this point becoming stable or un-
stable periodically. When a small amount of noise acts on the
dipole, it may leave the unstable equilibrium point and move
toward the stable one. We could easily infer that the output
signal has a maximum as a function ofD, but it is not a
trivial matter to elucidate the behavior of the SNR, because
both signal and noise go to zero asD decreases.

Since we are concerned with the magnitude cos(u), which
for a magnetic dipole corresponds to the component of the
magnetization along the field, the averaged power spectrum
is given by

P~v![E
2`

`

dseivsE
0

2p/v0

^cos~u t1s!cos~u t!&dt. ~2!

Analytical studies of the system, using linear-response
theory ~LRT!, which is valid for small fields, show a maxi-

mum in the signal, i.e., in the susceptibility, as a function of
the noise levelD. However, the SNR is a monotonically
decreasing function ofD. One finds

I SNR5L~m!ka2, ~3!

obtained from the fluctuation-dissipation theorem@18# and
the expression for the complex susceptibility@19#

x~v!5

m

k
L8~m!

11 ivt~m!
, ~4!

where t(m)5m2L8(m)/2kL(m) is the relaxation time and
L(m)5coth(m)21/m is the Langevin function, with
m[2h(t)/D.

Beyond the domain of applicability of LRT, we have
found a range of values of the parameters for which the SNR
exhibits a maximum for a nonzero noise level. Our result is
obtained from numerical simulations by integrating the cor-
responding Langevin equation by means of a standard
second-order Runge-Kutta method for stochastic differential
equations@20,21#. The SNR, computed numerically through
the averaged power spectrum, is defined as

ISNR510 log10
A~v0!

N~v0!
, ~5!

whereA(v0) is the area of the peak above the noise floor
andN(v0) is the noise background at the frequencyv0. In
Fig. 2 we have depicted the SNR for finite amplitudes of the
oscillating field. We have observed that for smalla the
SNR is a monotonically decreasing function of the noise, as
predicted by LRT. Nevertheless, for higher values ofa the
SNR has a maximum atDÞ0 ~Fig. 2!. When the amplitude
decreases, this maximum becomes less sharp and disappears
at lowera in a continuous fashion.

This behavior could also be obtained analytically in the
limit of small frequencies, i.e., when the system relaxes

FIG. 3. Contour plot of the SNR as a function of both the noise
level D and the amplitude of the oscillating fielda, for k51 and
the frequencies ~a! v0/2p50.01, ~b! v0/2p50.1, and ~c!
v0/2p51.

FIG. 4. Time evolution of cos(u) for a53, k51, v0/2p50.1,
and the noise levels:D53.331022 ~top!, D53.331026 ~middle!,
andD53.3 ~bottom!.
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faster than the period of the external field. The power spec-
trum may then be computed from the approximated expres-
sion for the correlation function

^cos~u t!cos~u t8!&'LtLt8~12el t,t8!1S 122
Lt
m t

Del t,t8,

~6!

where Lt[L„m(t)…, l t,t8[2* t
t8t„m(s)…21ds, and m t

[m(t). Additionally, to obtain Eq.~6! we have used the
previous analytical expression of the relaxation time, which
differs from the exact value only by a few percent@19#. The
results obtained by using Eq.~6! in Eq. ~2! are depicted in
Fig. 2. It is interesting to notice that the SNR defined from
Eq. ~2!, which has dimensions of the inverse of time, has
been written in dimensionless units in such a way that it
coincides with the definition of Eq.~5!. The small differ-
ences between the analytical and simulation results occur at
intermediate values ofD and come from the approximation
in the relaxation time.

In the previous results we have shown a dependence of
the appearance of SR on the amplitude of the input signal.
This dependence contrasts with the results obtained for the
bistable quartic potential, in which the maximum of the SNR
disappears for sufficiently large amplitudes of the oscillating
field. Additionally, numerical simulations show a qualitative
change of the SNR upon varying the frequency of the signal
v0. The results obtained indicate that when increasingv0,
for a fixeda, the maximum of the SNR disappears, as illus-
trated in Fig. 3.

Although in Fig. 3 we have depicted the SNR for some
values ofa.1, this behavior is similar to that fora,1
because when the dipole is able to leave the neighborhood of
u50 the noise is so high that it destroys its coherent motion.
However, fixedv0, for large enougha, the amount of noise
necessary in order for the dipole to leave the unstable equi-
librium point, does not destroy its coherent motion. This be-
havior is illustrated in Fig. 4 fora53, k51, andv050.1
and is similar to the one found in@22#. It shows the time
evolution of cos(u) for the optimal, lower, and greater noise
levels. For the previous values of the parameters, the SNR
~Fig. 5! exhibits a maximum atD50.033. The addition of

noise then increases the SNR up to 15 dB over its value at
the limit of D going to zero. For the optimal value ofD the
behavior of the dipole looks surprisingly similar to that for
the bistable potential.

Turning our attention to Fig. 3~a!, we note another even
more interesting feature. For lowD the SNR is not a mono-
tonically increasing function of the amplitude. This kind of
behavior implies that in some range of values of the param-
eters, a small signal is more easily detected than a greater
one. The output signal, however, is always an increasing
function of the amplitude. The maximum of the SNR~Fig.
6!, as a function ofa, is due to the noise at the frequency
v0 increasing faster than the signal whena approaches to
1. ForD50.01 andv050.01 the SNR has a maximum at
a'0.7. In such a case, the SNR may be evaluated by ap-
proximating the dynamics around the minimum by a two-
dimensional Ornstein-Uhlenbeck process@23#. When this ap-
proximation holds the correlation function reads

^cos~u t1t!cos~u t!&'D2

11expS E
t

t1t

h~s!dsD
2h~ t !h~ t1t!

. ~7!

The SNR has been computed as in Eq.~6!. The correspond-
ing result is represented in Fig. 6. In spite of the approxima-
tion made to obtain Eq.~7!, this result is in excellent agree-
ment with the one obtained through simulations for the range
where this approximation makes sense. It must be pointed
out that the SNR, for low amplitudes, follows the quadratic
law, ISNR}a2. Note that the result given by Eq.~7! corre-
sponds to the one for a linear system, that shows that non-
linearities do not play any role in the appearance of this
phenomenon. What is remarkable is the great deal of gener-
ality of this result, since it may hold for any system around a
minimum.

In summary, we have shown the existence of SR in a
dipole, a system which has been widely analyzed due to its
importance as a simple relaxation model. It is well known
that the susceptibility of the dipole exhibits a maximum at a
certain value of the temperature~strength of the noise! @24#.
In this paper we have also shown that a maximum also ap-
pears in the SNR. The mechanism responsible for the ap-
pearance of SR in this monostable system lies on the role

FIG. 5. SNR fora53, k51, andv0/2p50.1. FIG. 6. SNR as a function of amplitude of the oscillating field
a, for k51, v050.01, andD50.01. Obtained through simulations
~symbols! and computed from Eq.~7! ~solid line!.
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played by noise in the relaxational dynamics itself towards
the stable equilibrium state. As an important feature we have
also found that the SNR depends on the amplitude of the
oscillating field and reaches a maximum at a certain value of
this parameter. This result reveals the existence of an optimal
amplitude of the signal in order to be detected. Although the
dipole is of interest in its own right, our results could also be

extended to the situation in which the system is around an
equilibrium state in a force field whose intensity varies peri-
odically in time.
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