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Abstract: In this work, we study the tunneling of a quantum particle using the instanton method.
As a starting point, we consider the double well potential, then we extend the results to a periodic
potential and compare them to a particle constrained to a circle. Lastly, we test the non-perturbative
approach of the method, and we discuss the coupling through a specific, parameter-dependent,
periodic potential.

I. INTRODUCTION

Quantum physics has allowed us to tackle previously
unsolvable problems and has given us an explanation
for behaviors considered impossible through classical
physics. One of these is Quantum Tunneling [1]. This
phenomenon is what allows a particle to surpass a po-
tential barrier when its energy is lower than that of the
barrier. We will focus on one of the strongest methods for
computing such transitions. It is known as the instanton
method, based on Feynman path integrals [2].

This technique is unique because of its non-
perturbative approach and because it is easy to general-
ize for arbitrary dimensions and to retrieve the classical
limit [3]. We make use of instantons, finite action so-
lutions that join our tunneling points and, in Euclidean
space, are classical solutions to our set of equations.

The double well potential will serve as an introduc-
tion to this methodology and, using its results, we will
focus on the periodic potential. This potential is one
with many applications and present in interesting phe-
nomenons. A particle inside a crystal lattice is described
by such potential [4]. It is the one used to constrain a
particle to a circle [3, 5] and it is also responsible for the
Yang-Mills vacuum [6].

We will analyze the ground state of a particle in such
potential and the energy splitting that occurs. We will
also discuss the case of a particle in a circle and compare
it to the regular periodic potential. Finally, a detailed
study for a specific periodic potential with a parame-
ter dependence that represents the coupling will also be
done, manifesting the non-perturbative advantage of the
instanton method.

II. PATH INTEGRALS

Our goal is to study the propagator operator, also
known as transition amplitude, that joins the initial state
at time ti with the final state at time tf using the path
integral method. We will use this to evaluate how likely
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it is for a particle to tunnel through a potential barrier.
This propagator takes the form [2]:

Û = A

∫
Dxe

i
ℏS[x], (1)

where A is a constant independent of the dynamics of
the system and Dx is an integral over all intermediate
coordinates while maintaining fixed the beginning and
end points. Therefore, Dx represents the sum over all
paths. S[x] is the action, namely:

S[x] =

∫ tf

ti

(
1

2
mẋ2 − V (x)

)
dt, (2)

where as usual ẋ = dx/dt and V (x) is the potential.
The exponential in Eq. (1) represent the weight of

the contribution of a path. The paths that contribute
the most are the ones surrounding the classical path [7],

for which δS[x]
δx(t) = 0. Thus, we will use the saddle point

approximation around such path. Hence, the first step
will be to find this classical path that joins our beginning
and end points.

III. DOUBLE WELL POTENTIAL

A. One Instanton

Now let us apply this method to the double well po-
tential,

V (x) =
mω2

8a2
(x2 − a2)2, (3)

where m is the mass of the particle, ω is the frequency
of an harmonic oscillator and a is a constant. We are
assuming that our particle has an energy E < Vb, where
Vb = mω2a2/8 is the maximum value of the barrier.
But, as we can see in Fig. 1, the potential V (x) does

not have any classical paths that join the wells. In order
to surpass this inconvenience, we will perform a change of
variables so that t → −iτ . This is what is known as the
Wick Rotation and consists of going from the Minkowski
space to the Euclidean space [8]. With this change, our
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FIG. 1: Double well potential.

Euclidean action can be written as:

SE [x] =

∫ T/2

−T/2

(
1

2
mẋ2 + V (x)

)
dτ, (4)

ÛE = ⟨xf |e−
1
ℏHT |xf ⟩ = A

∫
Dx e−

1
ℏSE [x]. (5)

Notice that now ẋ = dx/dτ and the initial and final time
are −T/2 and T/2 respectively.
We can see that in the transition amplitude instead of

an oscillating function we have a decaying exponential.
Also, the action has the same expression as in Eq. (2)
but with V (x) → −V (x). This way, as seen in Fig. 1, we
now have a classically allowed trajectory that joins −a
and a and can be calculated using:

δSE [x]

δx(τ)
= 0 −→ mẍ− V ′(x) = 0, (6)

where V ′(x) = dV (x)/dx. Here we obtain three types of
solutions, the two stationary xcl(τ) = ±a, which are of
no interest to us, and the non trivial:

xcl(τ) = ±a tanh ω(τ − τc)

2
. (7)

The arbitrary constant τc is related to a translation sym-
metry [9]. Let us calculate the action of our classical
solution (7):

S0 ≡ SE [xcl] =

∫ ±a

∓a

dx
(
∓
√
2mV (x)

)
=

2

3
mωa2. (8)

The solutions (7), represented by arrows in Fig. 1,
which we have shown to have finite action, are known as
the instanton (from −a to a) or anti-instanton (from a
to −a) solutions. They also have a short temporal exten-
sion, ∆τ ∼ 1/ω [7], that’s why they are called instantons,
because the solution is localized in time.

As we have stated before, this solution represents the
maximum contribution to the transition amplitude, fol-
lowed by the ones close to it. So let us describe the sur-
rounding trajectories with x(τ) ≈ xcl(τ) + η(τ), and cal-
culate the contribution to the transition amplitude from
one instanton [7, 9, 10].

⟨a|e− 1
ℏHT |−a⟩ = A√

det
(
1
ℏ
(
−m d2

dτ2 + V ′′(xcl)
))e− 1

ℏS0

= Λe−
ωT
2
1

2
ωs

∫ T/2

−T/2

dτc. (9)

Here we have defined:

Λ =
(mω
πℏ

) 1
2

(10)

ωs = 2ω

√
6

π

√
S0

ℏ
e−

1
ℏS0 , (11)

both constants depend only on the potential. Λ has units
of m−1 and ωs has the same units as ω, thus s−1. The
expression for the anti-instanton is exactly the same.

B. Multi-instantons contributions

A succession of instantons and anti-instantons can con-
tribute to the transition amplitude as well. We can take
advantage of the usually used dilute gas approximation
where, considering the short temporal extension of an
instanton, we can say that they don’t overlap and, thus,
there aren’t too many instantons in a finite time [9].
If we consider n (anti)instantons, the integration of

dτc of Eq. (9) becomes Tn/n! and the factor 1
2ωs is also

elevated to the nth power, thus [7, 10]:

⟨a|e− 1
ℏHT | − a⟩ = Λ

n!

(
ωsT

2

)n

e−
ωT
2 . (12)

Let us note that only an even number of
(anti)instantons contribute to the transition form a
to a or from −a to −a. Whereas we need and odd
number for the transition from a to −a or vice versa.
Taking the total transition amplitude as a sum over all

n > 0 and using the appropriate Taylor expressions we
get:

⟨a|e− 1
ℏHT |a⟩ = Λe−

ωT
2 cosh

(
ωsT

2

)
, (13)

⟨a|e− 1
ℏHT | − a⟩ = Λe−

ωT
2 sinh

(
ωsT

2

)
. (14)

C. Energy splitting

The instanton method allows us to retrieve the energy
of the system. Let us discuss what we expect the situa-
tion to be.
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If we neglect tunneling, we would obtain a degenerate
ground state with energy E0 = 1

2ℏω. This is the lowest
energy for a wave function in the bottom of one well and,
since we have two, it is two times degenerate. This is the
same as if we had the two wells very far apart, with the
wave function for the right and left well being ψR and
ψL respectively.

When we start taking tunneling into account, the en-
ergy level E0 will split into two. Following the tight bind-
ing approximation, the resulting wave functions are the
two linear combinations of the left and right ones, the
symmetric and antisymmetric, ψS = 1√

2
(ψR + ψL) and

ψA = 1√
2
(ψR − ψL). As ψS has no nodes, so we can

expect it to have the lowest energy E− and be the true
ground state. Therefore, ψA will be the first excited state
with energy E+ [9].
To calculate this splitting, we will rewrite the tran-

sition amplitude with the corresponding eigenstates ψS

and ψA, and we will identify the two energy levels:

⟨a|e− 1
ℏHT | − a⟩

= ⟨a|ψS⟩⟨ψS | − a⟩e− 1
ℏE−T + ⟨a|ψA⟩⟨ψA| − a⟩e− 1

ℏE+T .
(15)

We can rewrite Eq. (13) and Eq. (14) as

⟨a|e− 1
ℏHT |a⟩ = Λ

2

(
e−

1
2 (ω−ωs)T + e−

1
2 (ω+ωs)T

)
, (16)

⟨a|e− 1
ℏHT | − a⟩ = Λ

2

(
e−

1
2 (ω−ωs)T − e−

1
2 (ω+ωs)T

)
, (17)

respectively.
Now, from our instanton results, we can clearly see

that E± = 1
2ℏ(ω ± ωs). We can also compute the energy

splitting ∆E = E+ − E− = ℏωs = 2ω
√
6/π

√
S0ℏ e−

1
ℏS0 .

IV. PERIODIC POTENTIAL

In this section we will apply the previous results to a
particle with energy E in a periodic potential where we
consider E < Vb. It can be thought of as a number of
double wells joined, thus the discussions and results from
section 3 will come in handy.

For now, we will not focus on the exact expression of
the potential. We will present our results for a general
periodic potential with a period of a, as seen in Fig. 2,
V (x) = V (x + na) ∀n. Note that in previous sections
the distance between wells was 2a, now it will be a, this
will only affect ωs that now will always be divided by 2.
All the results have been expressed with these constants
calculated with:

mω2 = V ′′(na) ∀n, (18)

S0 =

∫ (n+1)a

na

dx
√
2mV (x) ∀n. (19)

A. Particle in a periodic potential

In contrast to the double well, in this potential any
number of instantons and anti-instantons contribute to
the transition amplitude as long as they start and end
in the fixed points, let it be xi = na and xf = ma. We
can quantify this by saying that for q instantons and q′

anti-instantons they must satisfy q − q′ = m− n. Using
Eq. (12) and remembering Eqs. (10) and (11), we get
[9]:

ÛE(ma, na;T )

= Λ

∞∑
q=0

∞∑
q′=0

δq−q′,m−n

q!q′!

(
ωsT

4

)q+q′

e−
ωT
2 . (20)

By using δj,k =
∫ 2π

0
dθei(j−k)θ/2π, it gives [9]:

ÛE(ma, na;T ) = Λe−
ωT
2

∫ 2π

0

dθ

2π
e−i(n−m)θe

ωsT
2 cos θ.

(21)

B. Energy bands

In the case of the double well we have seen how with-
out tunneling our ground state is two times degenerate.
For the infinite number of wells of the periodic potential,
it makes sense for it to be infinitely degenerate with the
same energy E0 = 1

2ℏω. Furthermore, when we consider
tunneling effects, we can expect not two but an infinite
number of energy levels, namely, a continuous energy
band [11]. So with tunneling, our infinitely degenerate
ground state will split into an energy band.
Then, similarly to the double well, the corresponding

eigenstates will also be a linear combination of the indi-
vidual wave packets u0(x):

ψθ(x) =
∞∑

N=−∞
eiNθu0(x−Na), (22)

−a 0 a 2a

V (x)

−V (x)

FIG. 2: Periodic potential.
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where it is chosen so ψθ(x+ a) = eiθψθ(x).
Also as Bloch’s theorem [11] states, the wave function

in a periodic potential must fulfil:

ψk(x) = eikxvk(x), (23)

where k = p/ℏ and vk(x) is periodic under a displacement
of x = a. So for our case ψk(x + a) = eiakψk(x). If we
compare this to the expression below Eq. (22), we can
identify ka = θ [3].

If we analyze Eq. (21), we can identify this energy
band. So the energy eigenvalues for the lowest band are:

E0(θ) =
1

2
ℏ (ω − ωs cos θ) . (24)

Let us discuss now how we know this band is the lowest
energy one. When we express the transition amplitude
as exponentials, similarly to what we did in Eq. (15), we
now get:

⟨ma|e− 1
ℏHT |na⟩ =

∑
i

⟨ma|ϕi⟩⟨ϕi|na⟩e−
1
ℏEiT

=
∑
k

|vk(0)|2eik(n−m)ae−
1
ℏEpT . (25)

In the large T limit, the sum of the first result in Eq.
(25) will be dominated by the terms with the lowest Ei,
namely, the lowest energy band. For this reason, when we
made specific calculations beginning Eq. (8), we already
had this in mind. It was in order to study the ground
state of a particle in this potential or in any other.

If we take a look at the final expression (25), where we
have used the Bloch states (23), and we compare it to Eq.
(21) we can identify, since k is symmetric, θ = ka, the
same as before. Thus, we have given a physical meaning
to θ, it is the quasi momentum times the period of the
potential [9].

C. Particle constrained to a circle

Let us analyze more carefully this case and compare it
to the periodic potential. The only free coordinate is φ(t)
where 0 < φ < 2π and 0 and 2π are identified. Still, the
Lagrangian remains L = 1

2mφ̇
2 − V (φ) and the classical

solution will also be the same. The only difference will be
in the energy levels because we have reduced considerably
the coordinate space, changing the boundary conditions.

We realize that, since φi = 0 and φf = 2π are the same
point, they must have the same wave function ψ(2π) =
ψ(0) and if we look at the expression below Eq. (22), we
can see that now θ = 0. Hence, we can use the energy
band in Eq. (24) with this in mind, and we get [3]:

E0 =
1

2
ℏ(ω − ωs), (26)

We can also more simply express the transition ampli-
tude using Eq. (21) and we get [3]:

⟨2π|e−HT
ℏ |0⟩ = Λe−

1
2ωT+ωs

2 T . (27)

It can be counter-intuitive to talk about instantons
and tunneling from the same physical space to itself, but
when a particle does one or multiple rotations, it is over-
coming potential barriers and those contributions can be
viewed as tunneling effects.
If we change the Lagrangian to L = 1

2mφ̇
2 − V (φ) −

θ0
2π

dφ
dt the physics doesn’t change, but the action will have

an imaginary part that will become a cosine, and we will
eventually recover the same expression (24) of the peri-
odic potential for a particle in a circle with the change
θ → θ0 [3]. The difference is that θ0 is a fixed constant,
whereas θ was a continuum of numbers. Thus, we will
have one energy level that we can alter with θ0 instead
of the whole band, this is consistent with the reduction
of the configuration space.

V. DISCUSSION OF A PARTICULAR CASE

Now let us apply all these results to a specific periodic
potential. We will construct this potential with a depen-
dence of two parameters V0, that represents the height of
the barrier the particle has to overcome, and β, that is
related to the spacing between wells.

V (x) =
1

2
V0(1− cosβx). (28)

We will express both parameters using only one, g, that
will represent the coupling of the wells. We choose 1

2V0 =
m2ω4

g and β =
√

g
mω2 so that (18) is satisfied and Λ

doesn’t change:

V (x) =
m2ω4

g

(
1− cos

(√
g

mω2
x

))
, (29)

with a period of 2π
√
mω2/g.

If we expand this potential for g small, we get: V (x) ≈
1
2mω

2x2 − 1
4!gx

4. But we will use the instanton method
to calculate the splitting and transition amplitude for any
value of g, not just the small ones. We can foresee that
for g small we will have completely unconnected wells
with tall barriers and large separation. For g → ∞, V (x)
will be constant, and therefore no tunneling is expected.
Let’s prove this.
Using Eq. (19) we get S0 = 8m2ω3/g. Substituting

this into the expression for ωs:

ωs = 2ω

√
6

π

√
8m2ω3

gℏ
e−

8m2ω3

gℏ . (30)

If we make g → ∞ in this expression, the exponential
goes to one, but the square root makes it go to zero. For
the limit going to zero, the exponential is the one that
dominates, making ωs go to zero.
If we look at the transition amplitude in Eq. (21) we

have seen that in the limit g → ∞, ωs goes to zero,
making the exponential containing it go to one and the
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θ integral go to zero for m ̸= n. So the whole expres-
sion is zero for a constant potential, as expected. In the
limit g → 0, ωs goes to zero too, making the transition
amplitude zero, as we expected. For the energy band:

E0(θ) =
1

2
ℏω

(
1− 2

√
6

π

√
g0
g
e−

g0
g cos θ

)
, (31)

where g0 = 8m2ω3/ℏ. The factor multiplying the cosine
is ωs/ω, and it gives us an idea of the splitting that our
potential has. Thus, when g is too small or too big, ωs(g)
should be zero. Let us plot this factor to see the that our
method works for any g. For simplicity, we will plot ωs/ω
against g/g0, both dimensionless.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

100 101 102 103 104 105

ω
s
/ω

g/g0

FIG. 3: Factor ωs/ω as a function of g/g0.

If we look at Fig. 3 we can see how we have obtained
the expected result. For g small we get no splitting, as
our wells are just infinite harmonic potentials, and for
g → ∞ our coupling parameter vanishes too. We can
see how the instanton method allows us to discuss this
situation without imposing any restriction in g. We can
also see that the maximum value of ωs/ω ≈ 1, 19 for
g/g0 = 2.

VI. CONCLUSIONS

We have seen how useful the instanton method can be
to compute the transition amplitude and the energy split-
ting in a system where tunneling is relevant. To compute
the path integral, we started performing a Wick Rotation
in order to find a classical path to which to make the sad-
dle point approximation from. We used this method for
the double well, obtaining expressions for the transition
amplitude and energy splitting.

Then, we proceeded with the periodic potential. We
used our previous results for the computation of the tran-
sition amplitude and the energy splitting of the ground
state. We extended the results to a particle in a circle. In
the periodic potential, we found that the lowest energy
level splits into a continuous energy band dependent on
θ. Whereas with a particle in a circle, the energy band
takes only one value, θ = 0, due to the reduction of avail-
able coordinates. We also saw that we can modify the
Lagrangian and obtain a different, but still fixed, value
of θ.

Finally, we applied all the above for a specific,
parameter-dependent, periodic potential. We parame-
terized this potential in a way that allowed us to study
the coupling, and we proved that the instanton method is
suitable for problems where a non-perturbative approach
is required. We computed the energy splitting without
imposing our parameter to be small, and we obtained the
expected results.
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