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Abstract: In this work we present the well known BB84 quantum key distribution protocol
and we study how could Eve intercept the shared key, assuming that Alice and Bob are able to
communicate over the quantum channel with the use of single qubits. Our approach takes advantage
of the state of PT -symmetric quantum theory to enhance eavesdropping success.

I. INTRODUCTION

Daily secure communications work with complexity-
based key distribution protocols, such as RSA (see [1]).
In other words, when two people (whom we call Alice
and Bob) share a key using a public channel, the secu-
rity against an eavesdropper (whom we call Eve) relies
on the complexity of the problem that the eavesdropper
needs to solve to find the key. However, given the present
development of quantum computation, these ”complex
problems” are likely to become solvable in little time,
which may let two options: increasing the lengths of the
exchanged keys, that is not always practical, or moving
to quantum key distribution (QKD), which puts a phys-
ical bound to eavesdroppers’ information gain. That is,
a bound not only based on Eve’s computing capacities,
but also based on the laws of quantum mechanics. In this
work, we present the most known example of the latter,
the BB84 protocol ([2, 3]).

Ever since the protocol was introduced, different eaves-
dropping attacks have been developed, being photon
number splitting attacks the most efficient. These are
based on a technical issue when performing BB84: single
photon pulses are difficult to control. Instead, multiple
coherent photons are sent (weak laser pulses), some of
which can be kept by the eavesdropper. However, in
here we think of attacking the protocol assuming that it
is performed by sending a product state of single qubits,
using results from PT -symmetric quantum theory.
This work is structured as follows: in Section II we give

a detailed explanation of the BB84 protocol. In Section
III we present a rather simple method of eavesdropping,
then we make an introduction to PT -symmetric quan-
tum mechanics (IIIA) and, finally, we show how it could
-theoretically- be used to outperform the first method
(III B). Some conclusions are given in Section IV.

II. THE BB84 PROTOCOL

The goal of this protocol is that Alice and Bob securely
perform key exchange through a public channel. First,
let us mention the two results it is based on:

Proposition 1 ([3]). In any attempt to distinguish be-
tween two non-orthogonal quantum states, information
gain (in the sense of von Neumann entropy) is only pos-
sible at expense of introducing noise to the signal.

Theorem 1 (No-cloning, [3]). Let |φ⟩ be an unknown
state from a set of states S. If the states in S are non-
orthogonal, it is not possible to build a device that makes
a copy of |φ⟩.

And the protocol is the following:

1. Alice randomly generates two strings of classical
bits, a and b, of length (4 + δ)n, where n is the
length of the final shared key and δ is a parameter
that controls the chances of success.

2. Alice encodes these strings into a product state
made of (4+δ)n qubits. For every qubit, she works
with one of the following orthonormal basis Z,X:

Z

{
|ψ00⟩ = |0⟩
|ψ10⟩ = |1⟩

, X

{
|ψ01⟩ = (|0⟩+ |1⟩)/

√
2

|ψ11⟩ = (|0⟩ − |1⟩)/
√
2

.

She reads a = (ai) and b = (bi) in parallel and does
the following at each step:

• If bi = 0, she encodes ai creating the state |ψai0⟩.
• If bi = 1, she encodes ai creating the state |ψai1⟩.
This results into the product state

|ψ⟩ =
(4+δ)n⊗
i=1

|ψaibi⟩ .

Notice that the states in Z are not orthogonal to
those in X. Also, this can be replaced by (4 + δ)n
rounds of a single state from Z ∪ X. To ease the
notation, we write |aibi⟩ for |ψaibi⟩.

3. Alice sends |ψ⟩ to Bob through the public channel.
He receives ε(|ψ⟩ ⟨ψ|), where |ψ⟩ ⟨ψ| is the density
matrix of the state and ε refers both to the noise of
the public channel and the noise caused by Eve (we
do not work on any further considerations about
noise). Bob publicly announces the reception of
the state.
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4. Bob creates an arbitrary bit string b′ of length (4+
δ)n and performs a measurement on each qubit,
using Z or X as determined by b′. He stores his
measurements in a bit string a′ and destroys the
post-measurement product state.

5. Alice and Bob meet on the public channel and com-
pare b and b′. When bi = b′i, they expect to be hold-
ing the same bit: ai = a′i. Because, ideally, a pure
state was created and then it was measured with
respect to the basis it belonged.

They choose 2n indexes where the key exchange
was successful. If there are less, they abort the pro-
tocol. δ is chosen big enough so that there is high
probability of finding 2n matches (see Subsection
IIA). This step is called basis reconciliation.

6. Finally, Alice and Bob must check security, since
channel noise and eavesdropping may have inter-
fered. Pure states may have turned into non-pure,
thus giving the chance for Bob to get a flipped mea-
surement. To do so, they both publish a subset of
n bits from the 2n selected (from a and a′) and
compare. If the coincidence ratio is not sufficiently
high for them, they abort the protocol. Otherwise,
Alice and Bob have successfully shared a key of n
bits.

Now we take Eve’s perspective, who wants to eaves-
drop the key. For every qubit |aibi⟩ she would like to
know bi before the state is destroyed, that is, the basis in
which it was encoded. This would allow her to measure
the qubit using the appropriate basis, take all its infor-
mation and then send a copy to Bob in order to remain
hidden. The first way to do this, would be to discrimi-
nate if the qubit belongs to X or Z, but Proposition 1
and non-orthogonality between X and Z ensure that she
will make herself (statistically) visible in any attempt of
it. The other way would be to store a copy of the qubit
and wait until Alice and Bob do basis reconciliation in
order to know b. But Theorem 1 guarantees this is not
an option.

A. Chances of success

There are two steps where the protocol can be aborted.
One happens when Alice and Bob exchange n bits from
a and a′ respectively and check security. Statistics are
easy: a coincidence ratio is previously fixed according to
the desired security, under which the protocol is aborted.

The other step is basis reconciliation. For the protocol
to move on, there must be not less than 2n coincidences
among the (4+ δ)n pairs of bits that are compared. But
what are the chances?
b and b′ are randomly generated. Considering the i-th

bit, there is probability 1/2 of coincidence, since there
are 4 cases with equal probability, two of success and
two of non-success. Hence, the process of comparing all

(4 + δ)n pairs of bits can be regarded as flipping a fair
coin (4 + δ)n times. The probability of having m ≥ 2n
matches is given by a binomial distribution:

P (m ≥ 2n) =
1

2(4+δ)n

(4+δ)n∑
i=2n

(
(4 + δ)n

i

)
. (1)

Table I shows some computations for the chances of basis
reconciliation.

n = 2

δ (4 + δ)n P (m ≥ 2n)

0 8 0.63672

1 10 0.82812

2 12 0.92700

3 14 0.97131

n = 4

δ (4 + δ)n P (m ≥ 2n)

0 16 0.59819

1 20 0.86841

2 24 0.96804

3 28 0.99373

n = 6

δ (4 + δ)n P (m ≥ 2n)

0 24 0.58059

1 30 0.89976

2 36 0.98559

3 42 0.99856

n = 8

δ (4 + δ)n P (m ≥ 2n)

0 32 0.56997

1 40 0.92307

2 48 0.99336

3 56 0.99966

TABLE I: Chances of basis reconciliation for different values
of δ and n, see equation (1). Computations are done using
the binom.cdf( , , ) function from scipy python library.

III. EAVESDROPPING

Just as a framework, we present a naive approach for
eavesdropping, not making big efforts in hiding from Al-
ice and Bob and also neglecting channel noise.
Let Eve perform a measurement with respect to one of

the basis X and Z on an intercepted key qubit |ψaibi⟩.
There are two equally possible scenarios at this point:
(i), if she takes the right basis (the one indicated by bi),
she gets the bit that was actually encoded. Ideally, she
is then able reproduce the same state |ψaibi⟩ and send
it to Bob, so he won’t notice the eavesdropping. And
(ii), if Eve takes the wrong basis to perform her mea-
surements, what she gets is 0 or 1 with probability 1/2.
Furthermore, when she tries to rebuild the state |ψaibi⟩,
she encodes this random bit in a state from the wrong ba-
sis she chose. Then she sends this new product state |ψ′⟩
to Bob. Because this is one of the key bits, Bob measures
|ψaibi⟩ with the basis it does not belong to, thus having
1/2 of chances of error (ai ̸= a′i), which may be noticed
at the security check.
Now, consider the n bits which constitute the key (after

basis reconciliation and security check). On each of these,
Eve has probability 1/2 of using the right basis and, when
using the wrong one, she has again probability 1/2 to get
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the right bit. All in all, she expects a 75% of success:

P✓ = P (✓/ i)
1

2
+ P (✓/ ii)

1

2
= 1× 1

2
+

1

2
× 1

2
= 75%.

In the following, we -theoretically- improve this ratio
with the use of PT -symmetric quantum mechanics. We
show a way in which Eve may be able to discriminate
between one of the states and the other three without
destroying them.

A. PT -symmetry

We somehow extend the standard margins of quan-
tum mechanics, allowing non hermitian hamiltonians.
We move to another class of operators, the so called
PT -symmetric operators. This class does not con-
tain all hermitian operators. What actually holds
is that {PT − symmetric op.} ∩ {hermitian op.} =
{real and symmetric op.}.

To present PT -symmetric quantum mechanics, we
must first introduce P, the parity operator, and T , the
time reversal operator. They are defined by the following
properties:

{
Px̂P = −x̂
P p̂P = −p̂


T x̂T = x̂

T p̂T = −p̂
T iT = −i

.

For the latter, antilinearity is a consequence of the first
two requested properties and the fact that [x, p] = iℏ 1.
Also, we recall that given any physical quantum theory,

(i) it must possess a Hilbert space of state vectors with an
inner product, (ii) its time evolution must be unitary, that
is, norms given by the inner product must be preserved
in time, and (iii) hamiltonians must have real spectrum.

In [7] it is proved that hamiltonians satisfying
[H,PT ] = 0 have real spectrum. The commuting con-
dition is denoted H = HPT and it is said that H has
unbroken PT -symmetry. Also in [7], with the use of a
special operator C, a new inner product is defined over the
Hilbert Space spanned by the hamiltonians’ eigenstates,
and it is shown that time evolution is still unitary. As
for the eigenstates of these hamiltonians, orthogonality
with respect to the usual inner product is lost in general.
For our concern, we restrict ourselves to the following
two dimensional PT -symmetric hamiltonians (see [8] for
a more general two dimensional form):

H =

(
reiθ s

s re−iθ

)
,

where r, s, θ are real parameters. The PT -symmetry
of this hamiltonian remains unbroken only when s2 ≥
r2 sin2 θ. Hence, when this inequality holds, a parameter
α may be defined such that sin(α) = r

s sin(θ). For any

two states λ, µ, the inner product is defined as

⟨λ|µ⟩CPT := (CPT λ)T · µ = λT (CPT )T · µ , where

C =
1

cos(α)

(
i sin(α) 1

1 −i sin(α)

)
.

In [7] it is shown that for any state |µ⟩ the product
⟨µ|µ⟩CPT is real, non-negative and vanishes if, and only
if, |µ⟩ = 0. Also, the norm of a state is defined as al-

ways: || |µ⟩ ||CPT :=
√
⟨µ|µ⟩CPT . We will omit the CPT

subscript from now on.

B. Attacking protocol

Eve intercepts one of the four states involved in the
BB84 protocol, |aibi⟩ ∈ {|00⟩ , |10⟩ , |01⟩ , |11⟩}. First, she
applies the following gate:

R =

(
1 0

0 i

)
,

so one of the following transformations occurs:

|00⟩ = |0⟩ 7−→ |0⟩ =: |00∗⟩
|10⟩ = |1⟩ 7−→ i |1⟩ =: |10∗⟩

|01⟩ = |0⟩+ |1⟩√
2

7−→ |0⟩+ i |1⟩√
2

=: |01∗⟩

|11⟩ = |0⟩ − |1⟩√
2

7−→ |0⟩ − i |1⟩√
2

=: |11∗⟩ .

According to the new inner product, we have

⟨01∗| = (CPT |01∗⟩)T

=

[
1

cos(α)

(
i sin(α) 1

1 −i sin(α)

)(
0 1

1 0

)
T 1√

2

(
1

i

)]T

=
1

cos(α)

[(
i sin(α) 1

1 −i sin(α)

)(
0 1

1 0

)
1√
2

(
1

−i

)]T

=
1√

2 cos(α)

[(
1 i sin(α)

−i sin(α) 1

)(
1

−i

)]T

=
1 + sin(α)√
2 cos(α)

(
1

−i

)T
. (2)

Treball de Fi de Grau 3 Barcelona, June 2022



Eavesdropping on BB84 using PT -symmetry Nicolas Werner

In the same way, we get

⟨11∗| = 1− sin(α)√
2 cos(α)

(
1

i

)T
, (3)

⟨00∗| = 1

cos(α)

(
1

−i sin(α)

)T
, (4)

⟨10∗| = 1

cos(α)

(
sin(α)

−i

)T
. (5)

And it follows that

⟨01∗|11∗⟩ = 1 + sin(α)√
2 cos(α)

(
1

−i

)T (
1

−i

)
= 0. (6)

This PT -orthogonality allows us to build the following
PT -projectors:

P1 =
|01∗⟩ ⟨01∗|
⟨01∗|01∗⟩

=
1

2

(
1 −i
i 1

)
, (7)

P2 =
|11∗⟩ ⟨11∗|
⟨11∗|11∗⟩

=
1

2

(
1 i

−i 1

)
. (8)

We define a measuring operator as M := P1 − P2.
From [7], we know that M is a PT -observable (has real
spectrum) because it fulfills MT = CPT MCPT . Recall
that M’s eigenstates are |01∗⟩, with eigenvalue 1, and
|11∗⟩, with eigenvalue -1, that are orthogonal with re-
spect to our new inner product but not with respect the
usual one.

This non-orthogonality in the usual Hermitian sense,
puts us in a frame where the measuring devices we are
used to no longer work. CPT measuring devices are still
under development (see [11]). Let’s see, however, the
possible benefits. From (2), (3), (4) and (5) we compute
the following CPT -products:

⟨01∗|00∗⟩ = ⟨01∗|10∗⟩ = 1 + sin(α)√
2 cos(α)

,

⟨11∗|00∗⟩ = −⟨11∗|10∗⟩ = 1− sin(α)√
2 cos(α)

,

⟨01∗|01∗⟩ = 1 + sin(α)

cos(α)
,

⟨11∗|11∗⟩ = 1− sin(α)

cos(α)
,

⟨00∗|00∗⟩ = ⟨10∗|10∗⟩ = 1

cos(α)
. (9)

From here we compute the cosines between states:

cos(|01∗⟩ , |00∗⟩) = ⟨01∗|00∗⟩√
⟨01∗|01∗⟩

√
⟨00∗|00∗⟩

=

√
1 + sin(α)

2
, (10)

cos(|01∗⟩ , |10∗⟩) =
√

1 + sin(α)

2
, (11)

cos(|11∗⟩ , |00∗⟩) =
√

1− sin(α)

2
, (12)

cos(|11∗⟩ , |10∗⟩) = −
√

1− sin(α)

2
. (13)

So, when α→ π
2 , (10) and (11) tend to 1, and (12) and

(13) vanish. Recall that α = ±π
2 are the ”break-points”

of the PT -symmetry of the hamiltonian. Getting close to
these might not be feasible on an experiment. However,
we assume that we have a PT -symmetric device that is
able to perform measurements according to M, and that
it allows us to take values of α so that we can assume
α ≃ π

2 . Also, recall that for any two normalized states
|φ⟩ , |ϕ⟩:

|φ⟩ = |ϕ⟩ ⇔ 0 = || |φ⟩ − |ϕ⟩ ||2 = 2− ⟨φ|ϕ⟩ − ⟨φ|ϕ⟩.

In our case, using (10) and (11), we have∣∣∣∣∣
∣∣∣∣∣ |01∗⟩√

⟨01∗|01∗⟩
− |00∗⟩√

⟨00∗|00∗⟩

∣∣∣∣∣
∣∣∣∣∣
2

= 2

(
1−

√
1 + sin(α)

2

)
, (14)∣∣∣∣∣

∣∣∣∣∣ |01∗⟩√
⟨01∗|01∗⟩

− |10∗⟩√
⟨10∗|10∗⟩

∣∣∣∣∣
∣∣∣∣∣
2

= 2

(
1−

√
1 + sin(α)

2

)
. (15)

Both expressions vanish as α → π
2 . That is, by tak-

ing the states normalized and by adjusting the CPT -
product, the state |01∗⟩ becomes almost equal to the
states |00∗⟩ , |10∗⟩. Also, from equations (12) and (13),
the state |11∗⟩ becomes almost orthogonal to them. With
this in hand, we go back to the attacking protocol itself.
After applying the R gate, Eve measures according to
M, so there are four equally probable scenarios:

(i) R |aibi⟩ = |00∗⟩ .When measuring according to M,
the measure leads to the same result as if we were
measuring |11∗⟩, with probability p ≃ 1. That is,
the measure has outcome 1 with probability p ≃ 1.

(ii) R |aibi⟩ = |10∗⟩ . Similarly, the outcome for M is 1
with probability p ≃ 1.

(iii) R |aibi⟩ = |01∗⟩ . In this case, because of the defini-
tion of M the outcome is 1 with probability p = 1.
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(iv) R |aibi⟩ = |11∗⟩ . Finally, this is the only case in
which, by definition, the outcome is −1 with prob-
ability p = 1.

So, if she gets a −1, she already knows that she had
the |11∗⟩ state in hands, so she knows that the encoded
bit was 1 in the X basis. She has the right bit and she
is able to send Bob a copy of the state.

If the outcome is 1, she knows that the state belongs
to {|00∗⟩ , |10∗⟩ , |01∗⟩} (with equally distributed proba-
bility). Notice that, with probability close to one, the
state is not destroyed. In this case, she first applies R−1

in order to go back to the set {|00⟩ , |10⟩ , |01⟩}. Now, be-
cause there are two possible states from Z and only one
fromX, Eve performs an hermitian measurement accord-
ing to the Z basis. The conditioned chances of success
are

P (✓/M = 1) =
2

3
×1 +

1

3
× 1

2
=

5

6
.

So, all in all, the chances of success are

P✓ =
1

4
P (✓/M=−1) +

3

4
P (✓/M=1)

=
1

4
+

3

4
×5

6
= 87.5%.

IV. CONCLUSIONS

We have shown in detail how the BB84 works and also
two ways of eavesdropping on it. While the naive 75%-

approach is feasible, the second one may take some more
time of experimental research before it can be performed
(see [11]). It could happen that measuring with such a
PT -symmetric device involves transformations that have
non-zero probability of destroying the state before any in-
formation is taken. Also, bringing α close to the break-
points ±π

2 is likely to be difficult to implement on an
experiment, because we are getting close to the hamilto-
nian not having real spectrum.
Recent works are discussing possible solutions for these

issues. In [9] it is shown that, considering our hamilto-
nian, there is a point in time evolution in which non
orthogonal states become orthogonal (in the hermitian
sense). At this time, these two states could be discrimi-
nated with the use of current devices. Moreover, in [12]
they show how to simulate such a time evolution on a
single qubit with the use on ancillary states. It must be
studied, nevertheless, how all four states evolve in time
and see what are the chances of eavesdropping.
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