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Abstract 

 

Chemical exposure to emerging contaminants (ECs) is a major concern nowadays. These ECs 

have recently become a global environmental threat, and an in-depth characterization of their 

occurrence and toxic impact is needed. In this context, omic sciences have arisen as powerful 

tools to shed some light on the biological mechanisms affected by exposure to these 

chemicals. Particularly, metabolomics and lipidomics can provide a snapshot of what is 

actually happening at the molecular level, pointing to metabolic pathways affected by the 

contaminants. New analytical methodologies are required to extract the sought information 

in more complex biological matrices (from single cells to whole organisms). Hence, a major 

emphasis has been put on developing multidimensional separations and multiplatform 

approaches to increase the metabolome coverage. However, these novel approaches bring 

about massive datasets, and the complexity of the data analysis augments considerably. 

Therefore, chemometric strategies are a perfect match to get through this bottleneck and 

provide useful tools to obtain the most from the data collected. 

In this PhD Thesis, the focus was set on developing analytical protocols, especially using 

two-dimensional liquid chromatography coupled to mass spectrometry (LC×LC-MS), as well 

as chemometric data analysis strategies applicable to environmental metabolomic studies. 

On the one hand, LC×LC-MS methods have been developed for both untargeted and targeted 

analyses. Active modulation strategies have been also successfully implemented in the 

multidimensional chromatographic separation of lipids. On the other hand, the Regions Of 

Interest (ROI) approach for compression and filtering has been validated for LC×LC-MS 

analyses. Regarding chemometric resolution methods (i.e., which allow obtaining quantitative 

and qualitative information from the sample constituents), and due to deviations from an ideal 

trilinear behavior presented by LC×LC datasets, the use of the Multivariate Curve Resolution 

Alternating Least Squares (MCR-ALS) method has been preferred. Different quantification 

strategies have been tested based on the Regions Of Interest Multivariate Curve Resolution 

(ROIMCR) approach. In addition, several multivariate statistical methods based on the 

analysis of variance (ANOVA) have been compared for metabolomic studies. As a result, a 

combination of ANOVA-simultaneous component analysis (ASCA) and partial least squares 

discriminant analysis (PLS-DA) has been selected for statistical analysis and variable 

(metabolite) selection, respectively.  All in all, different metabolomic workflows have been 

validated for the assessment of emerging contaminants in model biosystems.  
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Resumen 

 

Actualmente, una de las principales amenazas medioambientales globales reside en la 

exposición química a contaminantes emergentes, lo que hace necesaria una caracterización 

tanto de su presencia como de su toxicidad. En este contexto, las ciencias ómicas han 

aparecido como herramientas muy útiles para arrojar luz sobre los mecanismos biológicos y 

rutas metabólicas que se ven afectados debido a las exposiciones a estos compuestos. En 

concreto, la metabolómica y la lipidómica proporcionan información de lo que está ocurriendo 

a nivel molecular. Por tanto, se requieren nuevas metodologías que sean capaces de extraer 

dicha información en matrices cada vez más complejas (desde una única célula a un 

organismo entero). Por ello, estrategias como las separaciones multidimensionales o la 

combinación de diferentes plataformas se presentan como alternativas muy atractivas para 

ampliar la cobertura de los estudios actuales sobre el metaboloma. Sin embargo, estas 

nuevas metodologías llevan consigo un aumento en la complejidad y el tamaño de los datos 

a analizar, con lo que se necesita el uso de herramientas de análisis más potentes, como las 

basadas en la quimiometría. 

Esta Tesis doctoral se centra principalmente en el desarrollo de protocolos analíticos 

basados en el uso de la cromatografía líquida bidimensional acoplada a espectrometría de 

masas (LC×LC-MS), así como en el desarrollo de estrategias quimiométricas que permitan 

su uso en aplicaciones medioambientales. Por un lado, se han optimizado métodos LC×LC-

MS para análisis dirigidos y no dirigidos, implementando con éxito estrategias de modulación 

activa (en el caso de análisis de lípidos). Por otro lado, se ha validado la estrategia de regiones 

de interés (ROI) para comprimir y filtrar los datos obtenidos con LC×LC-MS. Asimismo, se 

ha preferido el uso de métodos de resolución multivariante de curvas mediante mínimos 

cuadrados alternados (MCR-ALS) para la resolución cualitativa y cuantitativa de muestras 

complejas en el caso de datos de LC×LC, debido a las deviaciones de la trilinealidad 

encontradas en dichos datos. Por otra parte, se han comparado diferentes estrategias 

cuantitativas aplicables a datos en LC×LC-MS, todas ellas basadas en el uso del método 

combinado de regiones de interés y resolución multivariante de curvas (ROIMCR). También 

se han comparado diversos métodos estadísticos multivariante basados en el análisis de 

varianza (ANOVA) y su aplicabilidad en estudios metabolómicos. Finalmente, se ha elegido 

una combinación de análisis estadístico efectuado con ANOVA-análisis de componentes 

simultáneos (ASCA) y un método de clasificación, análisis discriminante mínimos cuadrados 

parciales (PLS-DA) para seleccionar las variables (metabolitos) más relevantes. En resumen, 

se han validado diferentes flujos de trabajo para el estudio metabolómico del efecto de 

contaminantes emergentes en organismos modelo ambientales.   
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1.1 Context 

Chemical exposure to emerging contaminants (ECs) and assessment of their 

effects on biological organisms are major concerns nowadays. ECs are a global 

environmental threat which require their in-depth characterization and evaluation 

of their occurrence and impact. There is an urgent need to unravel their effects and 

mode of action to evaluate their potential risk for both, the health of the different 

ecosystems and the human health. In this context, omic sciences have arisen as 

powerful tools to shed some light on the biological mechanisms affected by 

exposure to these chemicals. Particularly, metabolomics and lipidomics can provide 

a snapshot of what is actually happening at the molecular level, such as the 

understanding of what metabolic pathways are affected by the contaminants. New 

approach methodologies (NAMs), designed to protect humans and the 

environment, are being used to extract the sought information in complex biological 

matrices (from single cells to whole organisms). In this PhD Thesis different 

multidimensional separation methods have been proposed and developed to 

increase the metabolome coverage, such as the online comprehensive two-

dimensional liquid chromatography coupled to mass spectrometry (LC×LC-MS) 

methodology. These novel approaches bring associated huge datasets, whose 

complexity challenges their analysis considerably. It is in this aspect that 

chemometric strategies are useful to get through this data processing bottleneck 

providing powerful tools to obtain the most from the data collected. 

Hence, this PhD Thesis agrees with this environmental context briefly 

described above and with two of the research lines of the Chemometrics for 

Environmental Omics research group (Ch4EO) from the Environmental Assessment 

and Water Research Institute (IDAEA). These research lines are: 

1) The development of chemometric strategies to analyze datasets from 

multiple analytical platforms,  

2) The application of these chemometric methods to assess the effects of 

chemical pollutants on model organisms at molecular level (omics). 

This PhD Thesis has beneficiated from the previous work of the research group 

which was awarded with the CHEMAGEB (CHEMometric and High-throughput 
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Omics Analytical Methods for Assessment of Global Change Effects on 

Environmental and Biological Systems) ERC Advanced Grant. The main goal of this 

project was the development of new analytical and chemometric methods to assess 

the effects of pollution and climate change in model organisms, representative of 

ecosystems. Several omic levels were studied, including genomics, transcriptomics 

and metabolomics (and lipidomics), in different model biosystems such as yeast, 

Saccharomyces cerevisiae [1,2]), zebrafish, Danio rerio  [3,4], water flea, Daphnia 

magna [5,6], rice, Oryza sativa L. [7–9], and human cell lines [10,11]. The effect of 

environmental stressors such as chemicals (heavy metals [12,13], endocrine 

disrupting chemicals [4,14], pesticides [15,16] or pharmaceutical compounds 

[17,18]) and physical impacts (temperature [19,20], hydric stress [9] or UV light 

[10,21]) on the previously mentioned biosystems were investigated. The 

bioanalytical techniques employed throughout this project were genomic DNA-

microarray chips, RNA-sequencing, nuclear magnetic resonance and liquid and gas 

chromatography in one and two dimensions coupled to high-resolution mass 

spectrometry. Several chemometric and multivariate data analysis tools were 

developed and tested in different omic studies and toxicological assessments.  

Considering this previously acquired environmental omics experience, as well 

as the historical precedents and research lines of the group, the goals of this PhD 

Thesis are listed below.  

 

1.2 Goals 

Metabolomics is the analytical approach selected in this PhD Thesis for 

studying the effects of different pollutants in model biosystems. The major 

emphasis has been put on developing analytical protocols based on mass 

spectrometry, especially related to two-dimensional liquid chromatography mass 

spectrometry, and to data analysis strategies applicable to environmental 

metabolomic studies.  

Consequently, the main goal of this PhD Thesis has been to develop and 

optimize new analytical methodologies employing liquid chromatography and 
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mass spectrometry, as well as new chemometric strategies to extract relevant 

environmental and metabolic information about the exposure of emerging 

pollutants in model biosystems.  

This main goal can be divided into specific objectives classified according to 

their field of study: 

Analytical goals 

• Development of two-dimensional liquid chromatography coupled to high-

resolution mass spectrometry (LC×LC-HRMS) methodology for untargeted 

lipidomics analysis.  

• Development of LC×LC-MS methods for the analysis of small and polar 

metabolites.  

• Assessment of new active modulation strategies for their use in LC×LC-MS 

metabolomics (and lipidomics) studies.  

• Validation of different metabolomic workflows for assessing the impact of 

environmental stressors (i.e., emerging contaminants) in model biosystems.  

 

Chemometric goals 

• Assessment of the multiway data structure and multilinear behavior of LC×

LC-UV-MS datasets and development of new data fusion strategies to 

combine the information provided by both detectors.  

• Comparison of ANOVA-based multivariate approaches and their suitability in 

untargeted metabolomic studies.  

• Validation of the spectral compression strategy based on the regions of 

interest (ROI) approach for LC×LC-MS datasets.  

• Comparison of different quantification strategies based on the regions of 

interest and multivariate curve resolution (ROIMCR) for targeted LC×LC-

MS analyses. 
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1.3 Structure 

This PhD Thesis is divided into six Chapters, distributed in three main sections. 

The first section (Chapters one and two) is an introductory section related with the 

structure and general description of the different PhD Thesis topics. The second 

section (Chapters three to five) presents the main work of this PhD Thesis, 

classified according to pursued goals: chemometric evaluations and results 

(Chapter three), analytical developments and applications (Chapter four), and 

evaluation of metabolomic workflows (Chapter five). Finally, the third section 

(Chapter six) ends with a general conclusions section and final remarks. 

Additionally, there is one final Chapter (Chapter seven) that includes the Annexes 

of the PhD Thesis. The content of each of the main six Chapters is detailed below.  

The first Chapter (current Chapter) summarizes the context and the previous 

work of the research group, the goals and structure of the PhD Thesis and the list 

of scientific publications that have resulted from that work.  

The second Chapter is an introduction to the omics research field. This 

Chapter introduces the proposed environmental metabolomics workflow, including 

the studied model organisms and environmental stressors, and the analytical 

techniques and data analysis strategies applied throughout this PhD Thesis. There 

is an especial emphasis on the description of the development of the LC×LC-MS 

analytical methodology using active modulation strategies, and data processing 

workflows employing the regions of interest multivariate curve resolution (ROIMCR) 

method.  

The third Chapter proposes different chemometric tools for specific 

bottlenecks commonly encountered in metabolomics data analysis and offers some 

examples of applications. The multiway structure and multilinear behavior of the LC

×LC-MS datasets are studied, to propose the optimal approach for the proper 

resolution of this type of data sets.  Information provided by two detectors, mass 

spectrometry (MS) and ultraviolet-visible spectroscopy (UV) is simultaneously 

analyzed using a new data fusion strategy. Three multivariate ANOVA-based 

strategies are evaluated and compared for the statistical analysis of metabolomic 

datasets. The most appropriate chemometric pipelines among the tested 

approaches are selected for the studies presented in the following Chapters.  
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The fourth Chapter focuses on the development and application of LC×LC-

MS analytical methodology combined with a spectral compression based on the 

regions of interest (ROI). The optimization of the proposed LC×LC-MS method for 

the analysis of lipids and metabolites is presented. In addition, the untargeted LC×

LC-HRMS method using active solvent modulation strategy (ASM) is developed and 

optimized for lipidomic studies. This untargeted approach is validated via a 

previously developed targeted approach performed on the analysis of the same 

samples. The proposed analytical methods and data processing approaches are 

applied in the assessment of the effects of two endocrine disrupting chemicals 

(EDCs): bisphenol A (BPA) and estradiol (E2) on the lipidome of zebrafish (Danio 

rerio) embryos. Finally, another proposed LC×LC-MS method has been also 

optimized for the targeted analysis of amino acids and the results were used to 

compare different quantification strategies using the ROIMCR approach.  

The fifth Chapter describes different metabolomic workflows employed for the 

evaluation of emerging pollutants in model biosystems. Experimental studies in this 

Chapter were performed using metabolomic and lipidomic platforms that employed 

liquid chromatography coupled to mass spectrometry (LC-MS). The first study 

evaluates the arsenic uptake in rice (Oryza sativa L.) by comparing two different 

exposure routes (watering and soil) by means of untargeted metabolomic and 

lipidomic approaches. The second application is focused on the consequences of 

the exposure of pharmaceutical compounds on human hepatic cells (HepG2 cell 

line) at low doses, mimicking environmental concentration levels. A combination of 

targeted and pseudo-targeted methods has been used. The main advantages and 

limitations of the data analysis workflows employed in both studies are compared. 

Finally, the advantages and disadvantages of using targeted versus untargeted 

approaches are also briefly discussed. 

The sixth Chapter gathers the most relevant conclusions of this PhD Thesis. 
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1.4 List of scientific publications of this PhD Thesis 

The research carried out in this PhD Thesis has brought forth the following 

scientific publications: 

I. SCIENTIFIC PUBLICATION I 

Title: Two-Dimensional Liquid Chromatography in Metabolomics and Lipidomics 

Authors: Miriam Pérez-Cova, Romà Tauler, Joaquim Jaumot 

Citation reference: Wood P.L. (eds) Metabolomics. Neuromethods, vol 159.  

DOI: 10.1007/978-1-0716-0864-7_3 

II. SCIENTIFIC PUBLICATION II 

Title: Untangling comprehensive two-dimensional liquid chromatography data sets using 

regions of interest and multivariate curve resolution approaches 

Authors: Miriam Pérez-Cova, Joaquim Jaumot, Romà Tauler 

Citation reference: Trends in Analytical Chemistry 137 (2021) 1162072 

DOI: 10.1016/j.trac.2021.116207 

III. SCIENTIFIC PUBLICATION III 

Title: Chemometrics in comprehensive two-dimensional liquid chromatography: A study of 

the data structure and its multilinear behavior 

Authors: Miriam Pérez-Cova, Romà Tauler, Joaquim Jaumot 

Citation reference: Chemometrics and Intelligent Laboratory Systems 201 (2020) 104009 

DOI: 10.1016/j.chemolab.2020.104009 

IV. SCIENTIFIC PUBLICATION IV 

Title: Comparison of multivariate ANOVA-based approaches for the determination of 

relevant variables in experimentally designed metabolomic studies 

Authors: Miriam Pérez-Cova, Stefan Platikanov, Dwight R. Stoll, Romà Tauler, Joaquim 

Jaumot 

Citation reference: Molecules 27 (2022), 3304 

DOI: 10.3390/molecules27103304 

 

https://doi.org/10.1007/978-1-0716-0864-7_3
https://doi.org/10.1016/j.trac.2021.116207
https://doi.org/10.1016/j.chemolab.2020.104009
https://www.mdpi.com/1420-3049/27/10/3304
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V. SCIENTIFIC PUBLICATION V 

Title: Untargeted lipidomics of zebrafish (Danio rerio) eleutheroembryos exposed to 

endocrine disrupting chemicals using comprehensive two-dimensional liquid 

chromatography and advanced chemometrics 

Authors: Miriam Pérez-Cova, Laia Navarro-Martin, Gabriel Leme, Romà Tauler, Benjamin 

Piña, Joaquim Jaumot, Dwight R. Stoll 

In preparation 

VI. SCIENTIFIC PUBLICATION VI 

Title: Quantification strategies for two-dimensional liquid chromatography datasets using 

regions of interest and multivariate curve resolution approaches 

Authors: Miriam Pérez-Cova, Stefan Platikanov, Romà Tauler, Joaquim Jaumot 

Citation reference: Talanta 247 (2022) 123586. 

DOI: 10.1016/j.talanta.2022.123586 

VII. SCIENTIFIC PUBLICATION VII 

Title: Adverse Effects of Arsenic Uptake in Rice Metabolome and Lipidome Revealed by 

Untargeted Liquid Chromatography Coupled to Mass Spectrometry (LC-MS) and Regions of 

Interest Multivariate Curve Resolution 

Authors: Miriam Pérez-Cova, Romà Tauler and Joaquim Jaumot 

Citation reference: Separations 9 (2022) 79.  

DOI: 10.3390/separations9030079 

VIII. SCIENTIFIC PUBLICATION VIII 

Title: Metabolomics and sphingolipidomics study of human hepatoma cells exposed to 

environmental concentrations of pharmaceutical compounds 

Authors: Miriam Pérez-Cova, Carmen Bedia, Antonio Checa, Isabel Meister, Romà Tauler, 

Craig E Wheelock, Joaquim Jaumot 

To be submitted - June 2022 
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2.1 Metabolomics and environmental assessments  

Omic sciences have attracted the attention of the scientific community in recent 

years, with many applications yet to explore. These applications vary from 

personalized medicine and new treatments for non-curable diseases to 

improvements in food quality or evaluation of ecological risks. This PhD Thesis aims 

to expand the horizons in the environmental field, especially in assessing the effects 

caused by emerging contaminants (ECs). Among omics, metabolomics has 

experienced an important growth from the point of view of cutting-edge methodology 

development and implementation. However, its full potential has not been reached 

yet; there is still a long way ahead. In this section, metabolomics is introduced in the 

omic context. Then, the usefulness of metabolomics in environmental assessments, 

as well as the environmental metabolomic workflow, are discussed. Finally, the 

model biosystems and emerging contaminants employed in this PhD Thesis are 

presented as study cases in environmental metabolomics.  

 

2.1.1 Metabolomics at the heart of omics technologies 

‘Metabolite’ is a broad term applied to a small molecule considered intermediate 

or end product of cellular regulatory processes. When referring to metabolites, it 

comprehends a heterogeneous group of compounds with diverse physicochemical 

properties and biological roles. These low molecular weight biochemicals (< 2000 

Da) include peptides/aminoacids, lipids, carbohydrates, and 

nucleotides/nucleosides. The molecules from these main four classes are also 

known as primary metabolites. Moreover, metabolic intermediates, signaling 

molecules, (e.g., hormones), and secondary metabolites (e.g., flavonoids and 

alkaloids) can also be considered metabolites. The exact number of existing 

metabolites is still unknown. Estimations in humans can range from 2000 to 3000 or 

more, depending on the biofluid and/or part of the body selected for the analysis [1]. 

In contrast, more than 20000 are expected to be present in other organisms, such as 

plants, where many specific secondary metabolites are involved [2]. 

Metabolomics is the field that aims for the comprehensive detection and 

quantification of as many metabolites as possible in a biological system, i.e., the 

complete metabolomic profile or metabolome. It is an analogous term to genomics, 

transcriptomics, and proteomics, these focused on genes, transcripts, and proteins, 

respectively. All four are considered the main omics technologies and constitute the 
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so-called ‘omic cascade’. As shown in Figure 2.1, metabolomics lies downstream 

and ultimately links genotype with phenotype.  

According to the type of metabolites studied, there are different subclassifications 

among metabolomics, (e.g., lipidomics for lipids or glycomics for carbohydrates).  

 

 

Figure 2.1. Scheme of the ‘omic cascade’, from genomics to metabolomics. 

 

Compared to the other principal omics, metabolomics is the newest and presents 

its own characteristics. On the one hand, it is a dynamic approach that allows a 

snapshot of what is happening at cellular level. Therefore, it represents a blueprint 

of the molecular phenotype [3]. Much of the cellular activity occurs at the metabolic 

level, including energy storage and transfer, signaling, and cell to cell communication. 

Thus, it can be directly affected by nutrition, environment, and many more exogenous 

factors [1]. 

On the other hand, the metabolome is highly conserved across biology. Hence, if 

other organisms are used for the studies, the information about metabolic alterations 

can be translated to humans. Analytical methods can also be easily adapted from 

different biological systems, simplifying the experiment by reducing costs and 

optimization time [4]. In addition, metabolomics in clinical applications can be non-

invasive (i.e., a sample volume of biofluids can be relatively low), and periodically 

sampling can be performed over time.    
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Since metabolomics is a rapid indicator of metabolic perturbations, its 

applications are broad and continuously augmenting nowadays. There is an 

important branch of metabolomics focused on health and pharmacology. Some 

examples are the discovery of biomarkers of diseased conditions for therapeutic 

purposes [5], personalized medicine [6], indicators of drug abuse or intoxication [7], 

or drug effectiveness, useful in drug discovery and toxicological assessments [8]. 

There is a whole new omic science called exposomics that considers all sources of 

exposure (especially both endogenous and exogenous chemicals) with the aim of 

linking them to adverse health outcomes. With the aid of metabolomics, it is possible 

to discover biomarkers related to environmental exposure and the apparition of 

certain diseases or medical conditions [9].  

Metabolomics is the most sensitive omic to external stressors; therefore, also the 

quickest to show changes due to exposure. Thus, metabolomics is used to study the 

effects of environmental stressors on wildlife. Likewise, mimicking natural conditions 

in a laboratory instead (as in this case) can also provide valuable information of their 

mode of action [10]. Environmental metabolomics comprises all studies assessing 

organism-environment interactions to characterize molecular processes involved, in 

the context of evaluating environmental health [11]. From a global perspective, it 

includes the discovery of markers of natural or anthropogenic stressors in the 

environment [12]. More specifically, potential markers of emerging contaminants 

exposure can be discovered, and the mode of action of these compounds can be 

elucidated [9]. This PhD Thesis is framed in this last group.  

 

2.1.2 Environmental metabolomic workflow 

An appropriate experimental design is critical prior to any environmental 

metabolomic study. It includes four key aspects: model organism, type of external 

stressor, mode or route of exposure, and tissue/organ/biofluid of analysis [10]. 

Figure 2.2 summarizes the usual metabolomic workflow, emphasizing the 

experimental design steps.  

The first step of the metabolomic workflow is whether the hypothesis answers a 

specific question or obtains a general overview of what is happening at molecular 

level. The whole analytical approach employed will be conditioned by this decision. 

There are two main ways of action: pre-selecting the metabolites of interest in 

advance (targeted approach) or performing a screening of different families of 

metabolites at once without a priori assumptions (untargeted approach). The 
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differences between these approaches can be found in Section 2.2.1 Targeted 

versus untargeted analysis.  

Steps one to three of the workflow, i.e., the initial hypothesis, the choice of 

biosystem and external stressor, are highly correlated. For instance, if the aim is to 

study the effect of hepatotoxic compounds on signaling molecules, the assessment 

can be performed by analyzing sphingolipids on hepatic cell lines or the whole liver. 

More complex models (e.g., whole organisms) will provide more biological 

information, but also will require more resources and time, and biological 

interpretation is more complex.  

 

Figure 2.2. Common steps of the metabolomic workflow, highlighting the most important decisions 

when designing the metabolomic experiment. LC: Liquid Chromatography; MS: Mass Spectrometry; 

NMR: Nuclear Magnetic Resonance. Adapted from [10]. 

 

In metabolomic studies, there is usually a comparison between a minimum of two 

groups: control (or healthy) and exposed (or diseased). Then, the design can include 

different routes and modes of exposure, multiple doses (several concentration 

levels of exposure for the same compound), or time-course experiments 

(measurements of the same individual to evaluate effects over time).  

After exposure, several steps are directly related to the analysis itself, starting 

with sample collection. The protocol will depend on the specific type of tissue, 

organism or biofluid (e.g., urine, blood, saliva). In this step, metabolic quenching is 
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critical. The goal is to suddenly stop metabolism and ensure fast and reliable 

metabolic inactivation. A standard procedure is introducing the sample in liquid 

nitrogen and, subsequently, store at -80 ˚C [13]. 

The extraction step will also be dependent on the type of metabolites, and liquid-

liquid extraction (LLE) is widely employed. For polar analytes, a mixture of polar 

organic solvents (e.g., methanol) with water can be applied, whereas for more 

hydrophobic compounds, other organic solvents are recommended (e.g., chloroform, 

methyl tert-butyl ether) [10]. Internal standards are commonly added as surrogates, 

to correct from possible extraction losses, matrix effects and/or ionization 

suppression.  These compounds are similar to the metabolites of interest but must 

be not present in the samples or interact with the analytes. For instance, isotopically 

labelled standards are an appropriate choice.  

Most employed detectors for sample acquisition in metabolomic studies are 

nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR) 

and mass spectrometry (MS)[14–16]. In NMR, the sample is dissolved in a 

deuterated solvent and analyzed directly. Direct infusion can also be performed into 

the MS, but often ion suppression occurs due to complex sample matrices. Therefore, 

prior separation of the compounds of interest is highly recommended. 

Standard separation techniques in metabolomics are gas or liquid 

chromatography (GC or LC, respectively), supercritical fluid chromatography (SFC), 

capillary electrophoresis (CE) or ion mobility (IM) [4,17,18]. Imaging techniques can 

also be applied, mainly mass-spectrometry based (e.g., matrix-assisted laser 

desorption ionization (MALDI), nanostructure-imaging mass spectrometry (NIMS), 

desorption electrospray ionization mass spectrometry (DESI) or secondary ion mass 

spectrometry (SIMS)) [19–21]. However, the main analytical techniques in 

metabolomics include the combination of gas or liquid chromatography mass 

spectrometry (MS) [10,22,23]. These two powerful couplings offer high sensitivity, 

selectivity, reproducibility, and versatility. Chromatography improves selectivity by 

separating the sample constituents before entering the detector and avoiding its 

saturation. Besides, the chromatographic dimension facilitates compound 

identification by providing information on the retention times for each compound in 

addition to mass spectra. This PhD Thesis focuses on the development of analytical 

methodologies employing one- or two-dimensional liquid chromatography coupled to 

mass spectrometry, as will be further explained in Section 2.2.  

It is essential in metabolomics to reduce sources of variability not related to the 

biological process itself, mainly due to the analytical procedure. Different actions 
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pursue to reduce this variability. First, samples can be analyzed randomly to increase 

their repeatability and correct possible batch drifts. Second, a minimum of three 

biological replicates is highly recommended from a statistical point of view, although 

five replicates (or more) are desirable when possible. Third, quality controls (QCs) 

are commonly employed in metabolomic studies to correct possible batch effects, 

and to condition the system before injecting the real samples [24].  QCs are 

representative mixtures of aliquots composed by a pool of all types of samples which 

are run repeatedly along the sequence; hence, they can be used for inter- and intra-

batch correction when required. More information about the use of QCs is detailed 

in Section 2.3.3 normalization and data scaling.  

Blank correction can also be carried out to ensure the compounds detected are 

not coming from the extraction process or the analysis itself. Instrumental blanks are 

often run at the beginning of the analysis sequence, to check that no peaks are 

detected prior to the injection of real samples. Extraction blanks are commonly 

included too. Their purpose is to check possible contamination from the extraction 

process and proceed to correct it when needed.  

The last step of the environmental metabolomic workflow is data processing, 

which is actually the main bottleneck. Recent developments in online bioinformatic 

tools have facilitated the implementation of metabolomics. These resources can be 

used to pre-process the metabolomic data (e.g., XCMS [25], 

Workflow4Metabolomics (w4m) [26], MZmine2 [27]  or MS-DIAL [28,29]). Some of 

them also perform statistical/multivariate analysis, and pathway associations (e.g., 

MetaboAnalyst [30,31]). Nevertheless, there are still challenges. On the one hand, 

related to data pre-processing, such as compression, filtering, chromatographic 

alignment, or feature detection. On the other hand, linked to the annotation of 

unknown compounds, e.g., mass fragmentation interpretation or structure 

elucidation [32]. In this PhD Thesis, the stress is on the development of data pre-

processing tools for metabolomic studies. Data analysis strategies developed during 

this PhD Thesis are included in Section 2.3 Data analysis strategies in 

metabolomics.  

Once the metabolites of interest are identified (and quantified), a biological 

interpretation is pursued. The aim is to relate the individual metabolites with affected 

metabolic pathways, to assess the effects and mechanisms of action of 

environmental pollutants at biochemical levels of in vitro and in vivo models. 



 

 

 Introduction 

21 

Thus, metabolomics (and lipidomics) arises as an emerging powerful tool in 

environmental toxicology and chemical risk analyses. It allows hazard identification 

and characterization, as well as exposure assessments [9]. 

 

2.1.3 Model biosystems for metabolomic studies 

One of the decisive choices in the experimental design of environmental 

metabolomic studies is the appropriate choice of the model biosystem, as already 

stated when introducing the whole workflow. In the Directive 2010/63/EU, European 

legislation has promoted the use of non-animal models to replace traditional 

experimental testing [33]. This PhD Thesis employs three model organisms 

(Saccharomyces cerevisiae, Danio rerio, Oryza sativa) and a human hepatic cell line 

(HepG2). Since zebrafish embryos in their early stage of growth are not considered 

animals under the mentioned directive [34], the chosen biosystems are in total 

agreement with the legislation.  

Model organisms have many advantages, i.e., easy reproduction, growth, and 

maintenance, similarities with other targeted organisms, availability, and 

accessibility. They have also been widely studied. Therefore, previous knowledge of 

the organism facilitates data processing and biological interpretation of the results. 

Thus, the more information at all omic levels, the better. Model organisms can be 

diverse (including bacteria, yeast, insects, worms, fish, rodents, and plants). 

Nevertheless, a broad part of the biochemical operating principles is preserved 

between kingdoms. It means that even non-mammalian can contribute to expand 

information on human biological processes. Besides, an in-depth characterization of 

other omic levels (e.g., genome and proteome) has also been conducted for these 

specific organisms [35]. 

Achieving a comprehensive metabolomic insight is, however, a major challenge. 

The reason is the vast amount and diversity of existing metabolites, especially 

secondary metabolites from plants, fungi, and microbes. With the aim of unifying the 

effort of the scientific metabolomic community, the Metabolomics Society created a 

task group focused on Model Organism Metabolomes (MOM) [36]. This group aims 

to identify and quantify all metabolites from several model organisms, assign 

compounds to the metabolic pathways where they are involved and compare the 

metabolic networks throughout evolution. In this context, a list of prioritized model 

organisms was presented, as shown in Figure 2.3. A more detailed description of 

each biosystem employed in this PhD Thesis is included below. 
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Yeast (Saccharomyces cerevisiae) 

Yeast (S. cerevisiae) is one of the simplest eukaryotic organisms and belongs to 

the fungi kingdom. It is widely used in biochemical research mainly because it is 

cheap, grows quickly, and has the best-known genome among eukaryotes as its 

genome has already been completely sequenced. Yeast also shares many biological 

properties with more complex pluricellular organisms. This fact allows the 

understanding of metabolic regulation and gene expression in a simpler manner [37]. 

Hence, yeast presents one of the most well-characterized metabolisms. All current 

metabolic information of this versatile organism can be found in the Yeast 

Metabolome Database (YMDB) [38].  

 

Figure 2.3. A scheme of the recommended model organism for in depth metabolome studies, selected 

by the model Organism Metabolome task group from the Metabolomic Society [36]. The organisms 

employed in this PhD Thesis are marked in blue.  

 

S. cerevisiae is also often employed when aiming to validate analytical 

methodologies, mainly due to the reduced costs and simpler experimental designs 

[39,40].  

Zebrafish (Danio rerio) 

Zebrafish (D. rerio) is a small tropical fish native to Asia. Nowadays, it is commonly 

found in aquariums. In laboratories, normal living conditions are neutral pH and 

temperature of about 25 ˚C. Adults are usually between 3 and 5 cm long, and 1 cm 
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wide. They present several characteristic blue stripes along both sides of the body. 

Males are often slender with golden reflexes, whereas females are fatter and present 

silver reflexes. The life regeneration cycle from egg to egg can last around four 

months.  

D. rerio has been widely selected as a model organism in research for several 

reasons. Firstly, it adapts easily to different environmental conditions and usually 

gets along well with other species. Second, its rearing is easy and cheap, fertilization 

is performed externally, and large offspring can be obtained (usually around 200 eggs 

per female). In addition, both eggs and larvae are transparent. Therefore, the whole 

embryonic process and the formation of the organs at early stages of growth can be 

followed [41]. Besides, zebrafish is a suitable alternative to mammal models for 

toxicology evaluations because it shares 70% of its genes with humans [42]. This fact 

promotes an extrapolation of results to humans.  

Zebrafish embryos and larvae are widely employed for in vivo essays in 

pharmacology, toxicology, and ecotoxicology. They are used for testing new 

pharmaceutical compounds, rapid chemical toxicity screening and assessing 

sublethal effects of emerging contaminants [43–46]. In particular, there is an 

increasing interest in using zebrafish for studying lipid-related diseases. Lipids are 

involved in energy storage, signaling and embryonic development at the early stages 

in these animals [47]. Therefore, D. rerio is a promising choice for studying the 

effects of endocrine-disrupting chemicals (EDCs) [48,49], known for causing obesity, 

cardiovascular diseases, and diabetes, among others [50–52].   

In this PhD Thesis, zebrafish eleutheroembryos up to six days have been employed 

to assess the effect of EDCs, the study shown in scientific publication V. The 

workflow followed (see Figure 2.4) starts with the eggs fertilization, which are kept 

separated from the adults with a mesh to avoid being eaten by their progenitors. 

Embryos remain in the chorion up to 48 hours post-fertilization (hpf). When hatching 

occurs, from 2 days post-fertilization (dpf), embryos are exposed to the pollutants of 

interest. Swim bladders begin to inflate around the 4 or 5th dpf. This period is called 

the eleutheroembryo stage, and the regulatory frameworks for animal experiments 

do not apply. This is because they do not need to be fed until the 6 or 7th dpf as 

nutrients come from the yolk sac, which is mainly a lipid reservoir [43]. Once the yolk 

sac is completely reabsorbed, an exogenous feeding starts, and they are considered 

as larvae [53].  
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Figure 2.4. Growth and exposure workflow employed in the experiments with D. rerio in this PhD 

Thesis, from fertilization to eleutheroembryo collection. Dpf= days post-fertilization. 

Information about zebrafish genetic, genomic, phenotypic and development data 

can be found in the Zebrafish Information Network (ZFIN) [54]. 

Rice (Oryza sativa L.) 

Rice (Oryza sativa L.) is one of the most important crops worldwide, being the 

main staple food in Asia, Africa and South America. This cereal belongs to the 

Poaceae family, such as wheat (Triticum aestivum L.), maize (Zea mays L.) or barley 

(Hordeum vulgare). Among cereals, rice is the most suitable candidate for DNA 

sequencing due to its small and well-mapped genome. It is also the easiest to be 

genetically transformed.  

Thus, O. sativa L. has arisen as the second-best plant model, after Arabidopsis 

thaliana. The main advantage faced to A. thaliana is that rice is a monocotyledonous 

plant (it has just one embryonic leaf in the seed instead of two). Therefore, rice has 

some important taxonomical, structural and phenotypical differences, and it is 

involved in specific processes only present in crop production (e.g., mycorrhization) 

[55].  

In this context, the International Rice Genome Sequencing Project [56] was set. 

Several of its biotechnological applications for feeding purposes include improving 

rice production or enriching rice micronutrients content (e.g., golden rice to combat 

vitamin A deficiency) [57]. Other omics can also complement genomic information. 

An extensive list of current databases in rice genomics, transcriptomics, proteomics, 

and metabolomics can be found in a review by Hong et al. [58].  

Metabolomics can clarify the function of unknown genes and improve the breeding 

of crops [59]. It is possible to identify metabolites related to rice quality, yield, and 
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nutrient content  [60,61], or plant-pathogens interactions and defense mechanisms 

[62,63]. Environmental applications assess the effects of temperature or hydric 

stress [64,65], salt tolerance [66], microplastics [67], pesticides [68], heavy metals 

[69,70] or other inorganic pollutants [71]. This PhD Thesis is focused on the last of 

the cited applications, more specifically, arsenic exposure from the 11th day after 

germination until the 22nd day.   

There are two main subspecies employed in rice cultivars: japonica and indica, 

both with broad genetic and metabolic diversity [72]. Oryza sativa ssp. japonica has 

been selected as the plant model in scientific publication VII in this PhD Thesis.  

Human cell lines 

Human cells and tissues are useful in metabolomics due to their stable phenotype 

and high availability. In vitro studies are easier to control, maintain and interpret, plus 

there is no specie extrapolation required. There are also fewer ethical considerations, 

and population factors (e.g., age, gender) are not applicable. Although in vitro studies 

lack the whole-organism integration, three-dimensional (3D) cell cultures are a very 

realistic and physiologically relevant approach. They simulate in vivo 

microenvironment, allowing cell-to-cell interaction in all directions and with the 

extracellular matrix [73,74]. 

More specifically, derived cell lines from the liver and kidney are often employed 

in toxicity tests. The aim is to unravel the toxic effects and mode of action of certain 

compounds directly on humans [75,76]. Human hepatocellular carcinoma (HepG2) 

cell line is the immortal and nontumorigenic cell line employed in this case. It is the 

immortalized cell line derived from the liver tissue of a Caucasian male of 15-year-

old due to well-differentiated hepatocellular carcinoma. This cell line is commonly 

used in drug metabolism and hepatotoxicity studies because its phenotype and 

molecular expression have been deeply characterized, and it can express many 

specific functions of the liver [77]. HepG2 cells present high proliferation rates and 

express many liver-specific metabolic functions [78]. 3D liver spheroids present a 

hepatic cellular phenotype and are a robust liver model. They are used for in vitro 

liver toxicity screening assays due to their adaptability and viability for up to a month 

[79].  

This PhD Thesis studies the effects produced in 3D liver spheroids from HepG2 

cells by certain pharmaceutical compounds, known for their hepatotoxicity in 

scientific publication VIII. 
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2.1.4 Emerging contaminants  

This PhD Thesis is focused on assessing the effects of different emerging 

contaminants (ECs). These compounds are considered chemical compounds 

released into the environment due to anthropogenic sources.  They are a 

heterogeneous group of compounds that can be mainly clustered in six main classes: 

endocrine-disrupting chemicals; heavy metals and metalloids; agrochemicals, 

pesticides, and fertilizers; organo-halogen compounds; pharmaceuticals and 

personal care products; and micro or nano plastics [80]. These pollutants threaten 

human health and aquatic life, even at low concentrations. Their effects are diverse, 

but can include high toxicity, carcinogenicity, 

neurological/developmental/immune/memory/reproductive disruptions, 

cardiovascular and obesity disorders, apoptosis, or hypertension, among others [81]. 

Therefore, the characterization of their consequences at metabolic levels becomes 

crucial to regulate or forbidden their use.  

The ECs employed in this PhD Thesis are listed below.  

Metalloids  

Heavy metals and metalloids are released into the biosphere during mining and 

manufacturing in industrial areas. Chemical and biological conditions of farmlands 

and aquatic reservoirs nearby are seriously affected, altering surrounding 

ecosystems [82,83]. As a result, deposits of metals and metalloids can be found even 

at 40 km from old mines in freshwaters and sediments [84]. Thus, these 

contaminants become a threat due to their high bioavailability, bioaccumulation, and 

persistence in nature [85]. 

In this PhD Thesis, a study has been conducted to unravel the effects of 

metalloids, more specifically, arsenic contamination.  

Arsenic is a metalloid included in the top 10 chemicals of major public health 

concern by the World Health Organization or WHO [86]. Contamination by this 

metalloid has been related to natural sources like volcanism and geothermal activity, 

copper production, mining, burning of fossil fuels, thermal power plants and use of 

arsenical fungicides, herbicides, and insecticides in agriculture [87,88]. Chronic 

arsenic exposure can cause skin cancer, severe skin and liver disorders, asthmatic 

bronchitis, anemia, diabetes, increased blood pressure, and reproductive disorders 

[89,90]. 

High arsenic levels have been reported across the globe, mainly North and South 

America and southeast Asia [87,91]. Contaminated groundwaters are an important 



 

 

 Introduction 

27 

source of arsenic [91], in which this metalloid has been reported up to 10 ppm [87]; 

its content in soils can be up to 40 ppm [92]. Nevertheless, an arsenic content higher 

than 20 ppb in drinking waters poses considerable risk of health hazards [93]. A safe 

standard of 10 ppb in drinking water has been established by World Health 

Organization (WHO) [86]. Besides, some countries, such as Denmark or The 

Netherlands have hardened the legislation tending to standards below this level 

between 5 and 1 ppb [94]. 

Inorganic forms of arsenic are more toxic than the organic compounds, and 

arsenate is more toxic than arsenite [92]. Inorganic arsenic is highly bioavailable 

because it uses the same transport system as other essential elements, such as 

silicon or phosphorous.  Both arsenate and arsenite can be captured by plants 

through the roots and accumulate in the edible parts [95]. 

Rice is the most consumed food with high arsenic content, due to its presence in 

many daily products, according to the Food and Drug Administration (FDA) from the 

United States [92]. Oryza sativa L. planted in arsenic-contaminated soil is the main 

source of arsenic intake in a non-seafood diet [96]. Compared to other cereals, rice 

is more susceptible to arsenic because it grows under flooded conditions, and its 

content decreases from roots to leaves to grains [97]. Safe levels of this metalloid in 

polished rice grains have been set to 200 μg·kg-1 for adults and 100 μg·kg−1 for 

inorganic arsenic in rice-based products for children [98]. However, arsenic levels in 

polished rice have been reported to be up to 0.629 mg·kg−1 and 0.055 mg·kg−1 in the 

cases of total and inorganic arsenic content, respectively [99]. Strategies such as 

polishing or washing rice with abundant water have been suggested to reduce its 

arsenic content [98]. 

This PhD Thesis aims to unravel arsenic uptake mechanisms in rice and its 

metabolomic (and lipidomic) effects in scientific publication VI.  

Endocrine-disrupting Chemicals 

Endocrine disruptors englobe a group of compounds capable of disturbing the 

endocrine system and hormone regulation, causing reproduction and development 

alterations [100]. Sources can be natural or anthropogenic, but there is a special 

concern in Endocrine-disrupting Chemicals (EDCs). Diseases related to these 

chemicals are metabolic syndrome, obesity, type 2 diabetes, cardiovascular and 

pulmonary complications, miscarriages, endometriosis, liver lipid disorders or cancer, 

among others [101–103]. In this PhD Thesis, the emphasis is on understanding the 

obesogenic and estrogenic effect of bisphenol A (BPA) and 17-β-estradiol (E2).  
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Bisphenol A (BPA) is a monomer used in plastic and plastic derivatives, such as 

polycarbonates and epoxy resins. BPA can be found in food contact products, toys, 

medical devices, components for electronics, flame retardants, water pipes etc. 

Some of the unbonded monomers can be released into food and beverage containers 

or being in contact with the skin or eyes, becoming a threat to human health 

[100,104,105]. This EDC is also released into the environment. It can be found at 

non-negligible concentrations in effluent and surface waters, soils, sediments, and 

air, as summarized in Table 1 [106].  

The European Chemical Agency (ECHA) has forbidden and/or regulated its use in 

certain products (e.g., baby bottles: prohibited, food packing: <0.05 mg·kg-1, toys: 

<0.04 mg·kg-1, thermal paper <0.02%); the tolerable daily intake (TDI) for BPA has 

been set to 4 µg·kg-1 body weight per day and the specific migration limit (SML) to 

0.05 mg of BPA per kg of food [107]. The median lethal dose (LD50) in rats via oral 

has been established as up to 3000 mg·kg-1 body weight [108], whereas 

malformations in zebrafish embryos have been reported from 25 μM of BPA [109].  

  

 

 

 

 

 

 

Hence, understanding the mode of action of this disrupting agent is crucial to 

continue legislating its applications. It is also important to compare its effect with 

other new substituents like Bisphenol S or F, to ensure a safe replacement, and 

current trends in toxicological studies are focused on comparisons between the new 

bisphenols [110]. 

17-β-estradiol (E2) is an estrogen steroid hormone. This endogenous estrogen 

is mainly involved in reproduction but also metabolism regulation, bodyfat 

distribution, energy consumption, lipogenesis and lipolysis [102]. Other EDCs usually 

mimic the way of action of gonadal hormones like E2, producing hormonal responses, 

blocking the receptor sites and substituting natural hormones, or modifying 

endocrine responses [103,111]. 

Source BPA concentration range 

Wastewater treatment plants (WWTP) 0-370 μg·L-1 

Surface water 0-56 μg·L-1 

Sea water 39-193 μg·L-1 

Sewage sludge 10-10000 μg·kg-1 

Soil 0.01-1000 μg·kg-1 

Sediments 10-100 μg·kg-1 

Air 100-50000 ng·m3 

Table 2.1. Summary of BPA concentration ranges in the environment, extracted from [106]. 



 

 

 Introduction 

29 

This steroid hormone is released into the environment, becoming a threat to 

aquatic life, soil, plants, water resources and humans [112]. Sources include sewage 

and wastewater treatment plants from hospitals, industries and domestic wastes, 

animal manure or effluent from livestock feedlots, and hospitals [113]. Thus, 

estrogen pollution is rising an international concern [114]. 

A comparison between the effects of BPA and E2 has been performed in this PhD 

Thesis, to shed a light on the changes these EDCs cause in the lipidome in scientific 

publication V. In this study, E2 has been used as an estrogenic control to 

characterize the non-estrogenic effect of BPA.  

Pharmaceutical compounds 

The increasing consumption of pharmaceutical compounds worldwide has led to 

consider these compounds as emerging contaminants. These drugs and their 

metabolites are released into wastewaters, not only from urban areas but also from 

farming and agriculture [115]. Then, an accumulation in sewage sludge, sediments 

and surface waters occurs because wastewater treatment plants cannot completely 

remove these compounds [116]. Other sources include hospital effluents or senior 

residences, which should be treated differently from domestic wastewaters 

[117,118]. The consequences are severe in the environment (e.g., producing 

addiction, bioaccumulation, and antibiotics resistance) and also pose a threat to 

human health [119]. 

In this PhD Thesis, the effects of commonly released hepatotoxic drugs are 

studied: an antiepileptic (carbamazepine), an antibiotic (amoxicillin) and an 

antidepressant (trazodone). They are present in relevant environmental 

concentrations in wastewaters, typically ranging from μg·L-1 to ng·L-1 [120–124]. 

Table 2.2 exemplifies concentration ranges found for these drugs at wastewaters of 

different senior residences in Catalonia, according to the study by Gómez-Canela et 

al. [125]. 

 

Table 2.2. Concentration ranges of carbamazepine, amoxicillin and trazodone found in the wastewaters 

of senior residences in Catalonia. 

 

Drug Concentration range in senior residences (μg ·L
-1

)  

Carbamazepine 0-5.4 

Amoxcillin 0-0.5 

Trazodone 0-314 
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Carbamazepine (CBZ) is an anticonvulsive drug used to treat epileptic crisis, 

neuropathic pain, schizophrenia, and bipolar disorder. CBZ bioaccumulates, 

biotransforms, and biomagnifies through the trophic chain [120,126]. This drug also 

produces Endocrine-disrupting effects [127] and changes in the lipidome, especially 

in glycerophospholipids, triacylglycerides, cholesterol esthers, sphingolipids and 

oxylipins [128–130].  

Amoxicillin (AMOX) is a generic β-Lactam antibiotic used to treat bacterial 

infections. AMOX is one of the most consumed pharmaceuticals [131]. Its presence 

in the environment poses a direct threat to human health by developing multi-

resistant strains of bacteria and producing changes in the microbial community 

structure [132]. Thus, the removal of this penicillin-like drug from wastewaters 

becomes crucial [133]. 

Trazodone (TRA) is an antidepressant drug used for the treatment of depression, 

anxiety disorders or insomnia. It acts as a serotonin uptake inhibitor, and it is heavily 

metabolized and activated in the liver by the CYP3A4 enzyme [134] to the two 

precedent drugs. Therefore, TRA may cause drug-induced liver injury [135].  

These three drugs are eliminated by urine, and their half-lives are varied (i.e., up 

to 36h for carbamazepine versus 7h for trazodone or 1h for amoxicillin) [124]. 

Carbamazepine is highly excreted unchanged (around 70%), whereas this percentage 

is lower in trazodone (around 20%) [134,136]. Amoxicillin and carbamazepine can 

form up to 7-9 metabolites, whereas trazodone forms less metabolites, only 4 [124]. 

All three are related to hepatic metabolism. Carbamazepine presents the highest 

hepatotoxicity, followed by amoxicillin and trazodone [137]. 

The toxicity of these drugs and the effects on the lipidome and metabolome have 

been studied through the exposure to HegG2 3D liver spheroids for a 24h period, in 

scientific publication VIII.   

 

2.2 Analytical approaches for metabolomics 

This PhD Thesis aims to develop an analytical methodology based on one- and two-

dimensional liquid chromatography coupled to mass spectrometry (LC-MS or LC×

LC-MS, respectively) for metabolomic applications. In the following sections, the 

analytical part of the metabolomic workflow is discussed, with especial emphasis in 

the techniques and approaches employed in this PhD Thesis. 
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2.2.1 Targeted versus untargeted analysis 

From the analytical perspective, the first decision in the metabolomic workflow is 

whether the stress is on performing a general exploration of the pathways affected 

or rather quantifying a reduced number of metabolites from specific pathways. A 

more qualitative and global approach presents mainly identification purposes and 

relative abundances of a priori known and not known compounds. A more 

quantitative approach means absolute quantitation of a list of metabolites of interest, 

all known a priori  [4]. These two analytical strategies are summarized in Figure 2.5.  

A targeted approach is preferred to answer a precise and particular biochemical 

question, that is generally related to specific metabolic pathways. Hence, the main 

objective is to provide absolute concentrations of a reduced number of a priori known 

metabolites (usually less than fifty). Both extraction and chromatographic analyses 

are usually optimized for these compounds. Tandem mass spectrometry (MS/MS) 

concatenating two quadrupoles as analyzers (QqQ) is frequently employed.  In this 

technique, one precursor ion is selected, isolated, and fragmented into one or several 

product ions, according to selected reaction monitoring (SRM) or multiple reaction 

monitoring (MRM) modes, respectively. Each precursor/product ion pair is 

compound-specific, called transition. 

 

Figure 2.5. Comparison of targeted versus untargeted approaches in metabolomic workflows. 

 

In targeted approaches, external standards are employed for building calibration 

curves comprising a wide range of concentration levels. Internal standards are used 
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to correct for ion suppression and/or matrix effects. Peak areas of the analytes are 

integrated and corrected with the areas of the internal standards.  The amount of 

data generated is reduced. Therefore, statistical analysis is often straightforward and 

can be univariate. At the end of the data processing and interpretation, the 

hypothesis is validated or refused.  

On the contrary, untargeted approaches aim to detect and identify the maximum 

number of metabolites possible, especially unknown compounds (commonly up to 

several hundreds). Relative abundances of the identified metabolites are determined 

instead. This strategy is suitable for obtaining a global overview of unexpected 

changes in the metabolic pathways and covering a broader extension of the 

metabolome. More general extraction and chromatographic separation procedures 

are preferred, in order to include multiple families of metabolites at once. High-

resolution mass spectrometry (HRMS), which provides high mass accuracy in the 

measurements, is highly recommended for identifying the metabolites. MS/MS is 

also useful, but fragmentation is performed differently. There are two main MS/MS 

modes in untargeted analysis. If MS/MS data is acquired from all the detected 

precursors in specific, narrow, and pre-selected mass windows, then it is referred to 

as data independent acquisition (DIA). However, if only the most intense precursors 

are selected for further fragmentation in a second step, it is called data dependent 

acquisition (DDA). In this PhD Thesis, both modes have been employed. A more in-

depth discussion of these two modes can be found in the Tandem mass 

spectrometry subsection from Section 2.2.7 Mass spectrometry and 

metabolomics. 

There are some important differences between the two analytical approaches. On 

the one hand, in untargeted studies, it is not possible to have such a large number of 

internal standards to cover all possible compounds that can be analyzed. Thus, 

usually one representative internal standard per family of metabolites is added.  In 

this case, relative abundances are obtained after integration and normalization, 

which allows for the calculating ‘fold-changes’ (FCs). FCs are a measure to describe 

how much a value has changed compared to an original (control) situation. In 

environmental metabolomics, the default situation is the control sample (not 

exposed), and the final value is obtained after exposure (exposed or treated). Indeed, 

instead of absolute concentrations as in targeted approaches, FC ratios commonly 

express the relative abundances in untargeted analyses.  

On the other hand, the combination of HRMS with MS/MS in untargeted 

approaches produces a higher amount of data than targeted approaches. This 
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drawback challenges the data processing steps and appears as one important 

bottleneck. Pre-processing in untargeted analysis requires several steps (e.g., 

filtering and alignment) prior to integration, and multivariate analysis is usually 

necessary. That is why the development of data analysis strategies becomes crucial 

in untargeted approaches, and therefore, it is one of the main axes of this PhD Thesis 

(see Section 2.3 Data analysis strategies in metabolomics for more details). 

Although a few of the works in this PhD Thesis included also targeted studies 

(scientific publications III, VI, VIII), the major emphasis has been on developing 

analytical and data analysis strategies for untargeted approaches (scientific 

publications I, II, IV, V, VII). 

In untargeted approaches, there is the additional necessary step of compound 

identification, which is frequently time-consuming and complex. Databases (DBs) 

are required for this purpose. Unfortunately, spectral DBs with fragmentation 

patterns depend on the instrument employed and the MS/MS parameters selected 

(e.g., collision energies). However, in general, spectral DBs are usually reproducible 

between different laboratories. Thus, recent efforts have been focused on creating 

free and user-friendly spectral libraries (e.g., Human Metabolome Database (HMDB) 

[138,139], METLIN [140], Massbank [141,142], LIPID MAPS [143,144], National 

Institute of Standards and Technology (NIST) [145]. On the other side, peak retention 

times can be used as an orthogonal and complementary property that can add more 

confidence to the identification. Nevertheless, these DBs depend on the 

chromatographic separations and usually change within different analytical 

strategies (e.g., different column stationary phase composition and/or batch, mobile 

phase mixture, gradient, dead volumes).  Software programs are being developed at 

present that can predict peak retention times in these variable experimental 

conditions [146–148]. These predictions could reduce both time and costs in method 

development and identification steps in untargeted metabolomics.  

At the end of the untargeted analysis, rather than confirming a previous 

hypothesis, usually a new one is generated. A subsequent targeted study of specific 

pathways affected should be performed to double-check the findings and quantify. 

Consequently, the untargeted approach provides a holistic view of the changes 

produced due to a certain exposure, and it is a very suitable starting point for 

collecting information about, for instance, new emerging contaminants.  

There is an intermediate option, the pseudo-targeted approach. The goal is to 

provide approximate metabolite concentrations of a reduced number of compounds, 

but a considerably larger number than in the standard targeted approach. One single 
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calibration curve and a single internal standard are used for multiple metabolites 

with similar chemical structures. On the one hand, the amount of data produced is 

still easily manageable (unlike the data analysis strategies needed in untargeted 

approaches) and causes less time and economic costs than the standard targeted 

one (fewer calibration curves and fewer external and internal standards are needed). 

On the other hand, this strategy does not guarantee an accurate absolute 

quantitation, and it presents a bias towards certain metabolites, instead of exploring 

‘the big picture’. Besides, there is an important assumption that extraction, 

chromatographic separation and ionization conditions will be preserved among 

different metabolites from the same group, which may not be entirely true.  

Sometimes, the term pseudo-targeted is employed in metabolomics when an 

untargeted method has been employed (extraction plus chromatography plus mass 

spectrometry conditions), but a reduced list of masses from metabolites of interest 

is selected for further integration and processing.  

2.2.2 Sample preparation prior to metabolomic analysis 

Extraction is a critical step in every analysis. A good recovery of the aimed analytes 

is a key step to obtain representative results of the sample. Besides, the choice of 

solvents in the case of liquid-liquid extraction (LLE), which is the most common 

extraction procedure in metabolomics, will determine the whole analysis. This 

mixture is analyte-dependent and will differ whether the study is a metabolomic (i.e., 

polar metabolite-based) or a lipidomic (i.e., lipid-based) approach.  

 

Figure 2.6. Summary of eight lipids categories according to LIPIDMAPS classification [143], with 

especial emphasis in the main lipid subclasses studied in this PhD Thesis (marked in blue).  
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Lipids are hydrophobic biomolecules, not soluble in water but soluble in organic 

solvents (e.g., chloroform (CHCl3), isopropanol (IPA), methanol (MeOH)).  These 

compounds have a crucial role in cell metabolism, mainly involved in energy storage 

and transfer, signaling and structural functions. The LIPID MAPS classification [143] 

includes eight lipid categories, as shown in Figure 2.6.  

Different lipid extraction procedures are presented throughout this PhD Thesis. 

The extractions proposed by Folch et al. [149] and Bligh et al. (BD) [150] are the 

oldest and most typical extractions. These protocols mix methanol (MeOH) and 

chloroform (CHCl3) in different ratios. A two-layer system is formed, the aqueous 

phase up and the organic phase at the bottom. The goal is to generically extract 

lipids, especially glycerolipids (GL), glycerophospholipids (GP) and sphingolipids 

(SP). Although these protocols were designed for animal tissues, they have been 

used in many other applications [151]. In the case of this PhD Thesis, the solvent 

proportion employed was CHCl3:MeOH (2:1), and butylated hydroxytoluene (BHT) 

was added in the first step to prevent lipid oxidation [152].  

A variant of this procedure was also selected in this PhD Thesis to study 

sphingolipids. The proportion of the solvents is inversed, CHCl3:MeOH (1:2), and a 

saponification step is added [153]. Briefly, samples are incubated overnight, then 

potassium hydroxide (KOH) is added, and there is a further incubation step in an 

oven for 2 hours at 37 ºC. Alkaline hydrolysis occurs, where all ester bonds are 

hydrolyzed (i.e., from GP and GL) but not the amide bonds (i.e., from SP). Then, the 

excess base is neutralized with acid (e.g., acetic acid). Hence, the only lipids that 

remain belong to the sphingolipid family. As these compounds are usually present at 

lower concentrations compared to other lipid species (e.g., phosphatidylcholines 

(PC) or triacylglycerols (TG)), this extra step enhances their detectability.  

Another generic and widespread lipid extraction that was used in this PhD Thesis 

involves methyl tert-butyl ether (MTBE) instead of CHCl3 [154]. The main two 

advantages are that MTBE is less harmful, and that the organic layer is the upper 

one, which facilitates its recovery. This protocol has been proved to better extract 

unsaturated fatty acids, glycerophospholipids and ceramides [155].  

If a simultaneous extraction of polar lipids and metabolites is desired, a protein 

precipitation protocol with methanol is recommended. This protocol is much simpler 

and shorter than the previously mentioned, as no layers are formed. Another benefit 

is that this precipitation also enhances the detectability of sphingolipids if a targeted 

chromatographic method is selected [156]. This procedure was applied to both, 

targeted lipidomics and untargeted metabolomic analysis.  
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Lastly, for generically extracting polar metabolites, a protocol combining 

methanol, water and chloroform (MeOH:H2O:CHCl3) was preferred in this PhD Thesis 

[157,158]. In this case, the layer kept for the analysis is the upper phase, as it will 

retain water-soluble compounds.  

All extraction protocols employed throughout this PhD Thesis can be found in 

Table 2.3 with reference to the study in which they were used.  

Once the approach (targeted/untargeted/pseudo-targeted) and the extraction 

procedure for the metabolites of interest are decided, the next step is to select the 

analytical technique for the analysis conditions according to physicochemical 

properties of the compounds of interest.  In the following sections, LC in one and two 

dimensions coupled to MS will be proposed as the separation technique and 

detector, respectively. The principles of LC-MS and LC×LC-MS are described and 

exemplified with applications in the metabolomic field.  

Table 2.3. Summary of extraction protocols employed in this PhD Thesis. BD: Bligh and Dyer; EDCs: 

Endocrine-disrupting chemicals; MeOH: methanol; MTBE: Methyl tert-butyl ether. 

Extraction type Analytes Study 
Scientific 

publication 

MTBE Lipids Arsenic in rice VII 

Folch-BD Lipids 
Yeast  VI 

EDCs in zebrafish V 

Folch-BD plus 

saponification step 
Sphingolipids 

Yeast  VI 

EDCs in zebrafish V 

Protein precipitation 

with MeOH 

Sphingolipids Pharmaceutical 

compounds in cells 
VIII 

Metabolites 

MeOH:H2O:CHCl3 Metabolites 
Arsenic in rice VII 

EDCs in zebrafish VI 

 

2.2.3 Liquid chromatography conditions in metabolomics 

Liquid chromatography (LC) is a suitable choice for the analysis of non-volatile 

and thermolabile compounds. LC is a versatile and selective analytical technique due 

to its many adjustable parameters: the variety of separation modes and stationary 

phases, column length, inner diameter, and particle size; mobile phases solvent 

mixtures and modifiers; gradient program; temperature and pH etc.   

Although direct infusion could be also performed in the mass spectrometer, adding 

a previous chromatographic dimension presents some major advantages: 1) separate 
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isobaric compounds, 2) reduce ion suppression when reaching the ionization source, 

and 3) decrease complexity of the measured mass spectra. Thus, LC-MS offers the 

broadest metabolites coverage of, and can be applied to both, targeted and 

untargeted studies.  

There are many separation modes applicable to metabolomics. Some examples 

are reversed phase (RP), hydrophilic interaction (HILIC), ion exchange (IEX), ion 

pairing (IP), hydrophobic interaction (HIC), normal phase (NP), argentation (Ag), 

mixed mode (MM) or chiral. However, the most employed are RP and HILIC for non-

polar and polar compounds, respectively. This PhD Thesis focuses on these two 

separation modes, separately and in combination (in the case of LC×LC) and will be 

further explained. A comparison between the two can be found in Figure 2.7.  

  

Figure 2.7. Comparison of the two main separation modes employed in metabolomics: reversed phase 

(RP) and hydrophilic interaction chromatography (HILIC). 

 

Reversed phase chromatography (RP) 

RP is the most classical retention mechanism due to its robustness and 

repeatability. Stationary phases are commonly composed of hydrophobic functional 

groups attached to silica particles. Typical stationary phases in this mode are C18, 

C8, C4, cyano, phenyl, amino, polyhydroxymethacrylate and graphic carbon. The first 

three refer to linear alkylsilane phases (e.g., C18 refers to 18 carbons bound to the 

silica). The longer the chain of the alkyl groups (e.g., C18), the higher the 

hydrophobicity and, consequently, the higher the retention of non-polar compounds. 

This means the analytes will interact more with the stationary phase, and the whole 
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separation will be wider and slower. Contrarily, shorter chains (e.g., C8) will result in 

shorter separations and sharper peaks. However, complex molecules and long-chain 

fatty acid chains may not be enough retained and can be eluted during the dead 

volume.  

 Some practical considerations when working with RP mode are: 

• Less water-soluble compounds will be more retained than more 

water-soluble ones. 

• Longer carbonated chains will present longer retention times 

compared to shorter chains. The same trend is found for non-

branched isomers versus branch-chained, and saturated versus 

unsaturated compounds.  

• Very polar and ionic compounds elute in the dead volume of the 

column. 

• The elution order of different organic functional groups (from less 

retained to more retained) are carboxylic acids < alcohols, phenols 

< amines < esters, aldehydes, ketones < aliphatic chains. 

• The weakest solvent is the aqueous phase, whereas the strongest 

solvent is the organic one. Gradients normally end at 100% organic 

solvent. This way, the most retained compounds are eluted, by 

increasing affinity with the mobile phase instead of with the 

stationary phase (i.e., partition mechanism).  

RP is the preferred separation mode when analyzing lipids [151,159]. In this PhD 

Thesis, C18 or C8 have been employed in most studies (scientific publications III, 

IV, V, VI, VII, VIII). Lipids often present two well-differentiated parts: a hydrophobic 

one, composed of one to three fatty acyl chains; and a hydrophilic one, which allows 

discrimination between families (see Figure 2.8). Thus, reversed phase is not the 

only separation mode suitable for lipids. RP separates lipids according to the length 

of the fatty acyl changes and the number and positions of the unsaturations. On the 

other side, HILIC or NP can be employed to separate these compounds by the polar 

head groups [160]. This duality is very useful for achieving orthogonal separations in 

LC×LC, as will be further explained in Section 2.2.4 2DLC applications in 

metabolomics, especially in the scientific publication I.  
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Figure 2.8. Duality of lipid molecules: hydrophobic and hydrophilic. Representation of a 

phosphatidylcholine. Image adapted from LIPID MAPS [143].  

 

Hydrophilic interaction chromatography (HILIC) 

HILIC has recently arisen as an alternative to RP because it is especially designed 

for polar and hydrophilic compounds, usually barely retained in RP conditions 

[161,162]. Contrary to NP, its major competitor, HILIC can employ semi-aqueous 

mobile phases (i.e., very similar to RP), increasing analyte solubility and MS 

compatibility [163]. The stationary phase in HILIC mode can be underivatized silica 

particles or bonded to hydrophilic functional groups. Typical HILIC stationary phases 

can be neutral (e.g., diol, cyano, amide), charged (e.g., amine, pure silica), or 

zwitterionic (e.g., sulfobetaine). A fixed water-enriched layer is also formed next to 

the stationary phase as a result of its high polarity, creating a hydrophilic 

environment that favors its affinity with the analytes. Retention mechanisms are 

more complex than in RP, because partition between this hydrophilic environment 

around stationary phases and mobile phases is not the only interaction. For instance, 

adsorption of the analytes onto the surface of the stationary phases occurs due to 

electrostatic (e.g., Van der Waals, hydrogen bonds, dipole-dipole) and 

physicochemical interactions.   

Retention order is usually inversed compared to RP. Highly polar compounds are 

highly retained, whereas hydrophobic are eluted in the dead volume. In HILIC, the 

strongest solvent is water, whose content normally increases along the separation. 

However, a minimum water percentage is required from the beginning to form the 

water-enriched layer in the vicinity of the stationary phases.  

Some practical considerations when working with HILIC mode are: 
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• Stationary phases are generally pH and ionic strength dependent. 

Therefore, mobile phases often require salts and/or buffers, especially 

when charged stationary phases are employed. However, a too high salt 

content will decrease MS sensitivity.  

• Water content in the samples needs to be minimized, as it will lead to peak 

distortion and broadening.  

• A longer re-equilibration time (compared to RP) is often necessary to reset 

conditions between chromatograms.  

• As water is the strongest solvent and increases with the run. Therefore,  

column pressure will increase accordingly. It is recommended to check that 

pressure at the maximum water content during gradient is lower than 

column backpressure.  

HILIC applications are varied, and its use has widely increased in recent years, 

especially in metabolomics [159,164]. Some examples of suitable compounds for this 

separation mode are amino acids, nucleosides, nucleotides, organic acids, lipids, 

vitamins, flavonoids, pharmaceutical compounds, and their metabolites 

[163,165,166].  

In this PhD Thesis, HILIC mode has been employed for untargeted metabolomic 

analysis using LC-MS (scientific publication IV, VII, VIII). Besides, combinations 

with RP in LC×LC have also been selected for untargeted lipidomics (scientific 

publication V) and also targeted approaches, i.e., the analysis of pharmaceutical 

compounds (scientific publication III) and amino acids (scientific publication VI).  

 

2.2.4 2DLC applications in metabolomics 

One of the main limitations in untargeted metabolomics is the coverage that can 

handle available instrumentation [167]. Many metabolites are measured 

simultaneously from very different origins, i.e., endogenous, exogenous, 

environmental, plant, microbial or pharmaceutical sources, among others [168]. 

Besides, there are still many compounds to discover that may be related to specific 

exposures or diseases. In complex samples as is the case of biological matrices, 

overlapping, coeluting and non-resolved peaks are frequently encountered  [169]. 

This problem often leads to unidentified peaks or difficulties in quantitation. To solve 

these drawbacks, current methodological trends are moving towards increasing peak 

capacity, while reducing ion suppression and diminishing interferences between 
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analytes [170,171]. Thus, there is an increasing tendency to combine different 

separation platforms or modes, with the aim of increasing resolution power [168].  

Scientific publication I introduces two-dimensional liquid chromatography (2DLC) 

as a powerful option to cope with the previously described difficulties. Different 2DLC 

set-ups are discussed, especially the comprehensive mode (LC×LC), commonly 

employed in the untargeted analysis. Some common terms in the 2DLC world are 

also introduced (e.g., orthogonality, modulation, breakthrough). In addition, examples 

of applications in the metabolomics and lipidomics fields are listed, as well as some 

of the most recurrent combinations of the separation modes in both dimensions, with 

their pros and cons.  
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2.2.5 Recent advances in 2DLC applied to metabolomics 

This section aims to update current knowledge about online comprehensive two-

dimensional liquid chromatography (LC×LC) after scientific publication I, 

specifically those published in the last years (from 2019 until present).  

The use of multidimensional liquid chromatography in metabolomics and 

lipidomics is increasing vertiginously in recent years, as shown in the reviews from 

2019 by Lv et al. [170] and Brandao et al. [172]. Nevertheless, it is worth noticing 

that many 2021 publications in the metabolomic field are still focused on GC×GC 

[173–177]. Some efforts have also been directed to the combination of different 

multidimensional chromatographic separations (e.g., liquid and gas chromatography) 

[178,179], and the use of multiple detectors (e.g., mass spectrometry and nuclear 

magnetic resonance) [179,180]. The reason why 2DLC seems to be less implemented 

still in laboratories compared to GC×GC may be due to the complexity that still 

represents in terms of its set-up (e.g., the mismatch between two dimensions; need 

for active modulation interface) and to data processing. For instance, peak alignment 

is not often required in GC×GC, whereas it can be critical in 2DLC, as it will be 

explained in Section 2.3 Data analysis strategies in metabolomics. However, 2DLC 

applications are enormous and will continue increasing in the next decade, 

incorporating the new technological advances.  

One major 2DLC aspect subject to new improvements is the modulation interface. 

The term modulation is referred to each of the fractions in which the first dimension 

(1D) effluent is divided after going through the 1D column. These fractions pass 

through the modulator and are stored in loops, until further separated in the second 

dimension (2D) column. The modulator is the interface between the two dimensions, 

and it is usually composed of a high-pressure valve (6, 8 or 10 ports) with a minimum 

of two positions. When fractions are collected and transferred from the 1D to the 2D 

without modifications, it is called passive modulation. On the contrary, if the 1D 

effluent is diluted before reaching the 2D column, loop traps or an evaporative system 

are employed in between dimensions, then the term active modulation is preferred.  

Apart from the generic review from 2019 by Pirok et al. [181] mentioned in 

scientific publication I, a review by Chen et al. specifically focused on modulation 

in 2DLC has been recently published [182]. This review details all possible 

modulations, with single or multiple valves, and with and without assistant 

technology. A summary of the challenges in modulation for 2DLC applications, 

classifying retention mechanisms according to their compatibility, can also be found. 
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More information on separation combinations for 2DLC can be found in a previous 

review from 2017 by Pirok et al. [183].  

A novel modulation system has also been recently proposed by Chen et al.  [184]. 

It is known as at-column dilution (ACD) and the main difference with previous 

strategies is an adjustable and optimized dilution factor which does not require 

splitting the 1D effluent. Thus, solvent compatibility between dimensions, 

orthogonality and sensitivity are improved. This modulator was tested for the analysis 

of butterfly bush, using RP×HILIC [185]. 

Among recent applications of 2DLC in metabolomics, there is an RP×RP 

approach for the analysis of modified nucleosides in different biological matrices 

[186]. Another RP×RP configuration coupled to a photodiode array (PDA) and a 

mass spectrometer was employed for the analysis of metabolites in brown mustard 

[187]. 2D presented a segmented-in-fraction gradient composed of three different 

full-in-fraction steps. The advantage of this system is that it adequates 2D mobile 

phase composition to metabolites retention along with the separation, i.e., lower 

slope in co-eluting areas and steeper gradient for more retained compounds. A third 

RP×RP method was set up employing a pentafluorophenyl (PFP) column coupled to 

a C18 for the analysis of cannabinoids and phenolic compounds [188]. The 2D 

separation employed a shifted gradient, and it was coupled to a double detection 

system, first diode array detection (DAD), and second, an HRMS detector.  

New applications of 2DLC, specifically in lipidomics, include the set-up of an RP

×HILIC method for analyzing the lipidome of zebrafish embryos [189]. In this 

publication, a comparison between 1D and different 2DLC approaches (C18×HILIC, 

HILIC×C18, HILIC×PFP) is performed. The authors concluded that the most 

suitable method is the C18×HILIC combination, due to the higher lipid separation. 

The 1D separation can separate by the hydrophobic part of the molecules, 

differentiating the lipids by the length of the chains and the number of the double 

bonds, whereas the 2D separation provides a quick screening between the lipid 

classes. Similar results were obtained in a previous comparison of Holčapek et al. 

[190], and a similar set-up was proposed in scientific publication V. In addition, a 

Chiral×RP set-up was also developed for the analysis of conjugated polyunsaturated 

fatty acid isomers and structurally related compounds [191]. The 1D column 

separated lipid isomers, whereas the 2D column separated according to the number 

of double bonds and degree of oxidation. A combined DAD-HRMS detection with the 

possibility of obtaining additional MS/MS information, allowed a thorough 

characterization of the compounds and the structural annotation of unknowns.  
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Parallel analysis of metabolome and lipidome is also frequent. It is the case of the 

study of potential biomarkers of esophageal squamous cell carcinoma [192]. A 

column C8 was employed in the 1D to pre-separate metabolome from lipidome. 

Fractions were transferred online, and 2D were analyzed in parallel (C18 for the 

metabolome and C8 again for the lipidome). Another parallel column-based 2DLC 

pseudo-targeted method from the same research group was also developed for the 

analysis of a mixture of different biofluids and tissues [193]. The combinations were 

the same as the previously mentioned publication: C8×C18 for metabolomics, and 

C8×C8 for lipidomics. Parallel 2DLC was also used in untargeted metabolomics of 

rat livers [194]. A HILIC×RP dual system was employed, with two RP columns, for 

measuring positive and negative ionization modes in parallel. 

The combination of GC×GC and LC×LC also seems promising, as shown in the 

untargeted study of polar metabolites involved in colorectal cancer [168]. Again, a 

dual column system that allowed parallel analysis of positive and negative ionization 

modes was employed in the 2DLC-MS set-up. RP and HILIC columns were selected 

as retention mechanisms.  

2.2.6 Practical considerations about LC×LC 

2DLC is an analytical technique that holds a great potential for growth in many 

different applications. From the different existing set-ups, online and comprehensive 

two-dimensional liquid chromatography (LC×LC) presents some important 

advantages, as shown in Figure 2.9.  First, higher peak capacity, and peak-

production rates compared to, for instance, heart-cutting approaches. This means 

that separation power is considerably higher. Second, the selectivity is increased due 

to the combination of two complementary retention mechanisms (i.e., orthogonal). 

Thus, analytes can be grouped by classes thanks to one of the separations, and 

further differentiated within the class thanks to the other. Third, most of the LC×LC 

combinations are MS compatible. In addition, the use of MS/MS can improve analyte 

identification, especially relevant in untargeted approaches, as previously mentioned. 

LC×LC is also useful in targeted separations of structurally similar compounds.  

Unfortunately, the use of LC×LC is not exempt from some big challenges (see 

Figure 2.9). The intrinsic and primary difficulty is related to the conceptual and 

instrumental complexity. Manual method optimization is time-consuming, rather 

expensive and requires expert personnel. In the review by Bos et. al [195], different 

in silico strategies to reduce costs and simplify process optimization are summarized. 
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A recent more recent publication, not included in the review, about computer-

assisted modelling from Makey et al. [196] is also remarkable.  

One of the main goals of this PhD Thesis is to propose solutions and 

improvements for LC×LC metabolomics analysis. The three principal faced 

challenges are: 1) to increase solvent compatibility between mobile phases from 1D 

and 2D, 2) to enhance the analytical sensitivity, and 3) to develop data analysis and 

visualization strategies to cope with the huge and complex datasets produced by this 

technique. All in all, the ultimate goal of this PhD Thesis is to facilitate and encourage 

the implementation of LC×LC in routine work in the analytical laboratories.  

Figure 2.9. Compilation of current strengths and weaknesses of LC×LC, and proposed solutions. The 

main developments of this PhD Thesis are marked in blue. Adapted from [181]. 

How to increase solvent compatibility while enhancing sensitivity 

In this PhD Thesis, online and comprehensive two-dimensional liquid 

chromatography methods have been developed for different applications, as will be 

further discussed in the following Chapters. For untargeted lipidomics (scientific 

publication V) and targeted analysis of pharmaceutical compounds (scientific 

publication III), RP×HILIC has been selected. For targeted analysis of amino acids 

(scientific publication VI), the inverse combination, HILIC×RP, has been preferred. 

However, in both set-ups, there is a mismatch challenge when joining 1D and 2D 

effluents, as exemplified in Figure 2.10.  
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When two different peaks are observed for the same compound, one in the dead 

volume and one at its usual retention time, this phenomenon is known as 

breakthrough or solvent-plug peak [197]. The cause is the presence of too much 

strong solvent at the beginning, which hinders proper retention of the analyte, and 

only a fraction of it will be able to stick to the stationary phase. The rest will be eluted 

in the solvent front, unretained. This excess of strong solvent can come, for example, 

from the initial mobile phase composition. Another source can be the sample. For 

instance, if a too big sample volume is employed or the sample is too concentrated. 

The immediate consequence is that quantification will be compromised, because the 

retained peak area will not represent the analyte content in the sample.  

Breakthrough is a critical issue to consider when dealing with LC×LC 

[181,183,198,199]. Figure 2.10.A shows the possible case of breakthrough 

RP×HILIC. Firstly, it is necessary to consider that although RP and HILIC are usually 

almost orthogonal mechanisms (not directly correlated), the strongest solvent is the 

opposite. In RP, gradients increase organic percentage along separation, whereas, in 

HILIC, the aqueous phase content is augmented accordingly. This means that at the 

beginning of the RP×HILIC separation (if no modification is performed between the 

separations, e.g., no active modulation strategies are used), a non-negligible amount 

of water (and other polar solvents, e.g., isopropanol in the case of lipid separations) 

will access the 2D column. The result may lead to polar compounds not completely 

retained, and a fraction of them eluting with the front. Contrarily, in the case of 

HILIC×RP, as summarized in Figure 2.10.B, the initial organic solvent coming from 

the 1D mobile phase composition poses a threat to the 2D separation. This is because 

hydrophobic compounds may not be well attached to the stationary phase and 

important losses of these analytes may occur due to peak splitting.  

Besides breakthrough, other phenomena can lead to a poor chromatographic 

separation due to incompatibilities between the two mobile phases. For instance, 

peaks can be severely distorted, plus both resolution and sensitivity can be put at 

risk in the 2D separation. 

The solvent mismatch between 1D and 2D can be approached from different 

perspectives, as stated in the work by Chapel et al. [200]. Here only a few solutions 

will be detailed, mainly related to this PhD Thesis work.   
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A common attempt is to add an extra third pump to dilute the 1D before reaching 

the 2D column. It is the solution employed in the work by Navarro-Reig et al. [201] 

for the untargeted analysis of rice metabolome employing a HILIC×RP method. A 

10-port two-position valve was the interface of both dimensions. The breakthrough

was avoided by adding water at a constant flow rate to the sample solvent. A 

stainless-steel piece with a T form joined the water flow and the 2D pump flow before 

the 2D column. 

Figure 2.10. Exemplification of potential breakthrough for the combinations A) RP×HILIC and B) 

HILIC×RP. 

Another alternative to deal with solvent strength mismatch is related to sample 

loops. Sample fractions from the 1D are normally collected and stored in two sample 

loops until further analysis in the 2D column. Interface valves used to join both 

columns usually present two positions. In each turn, one of the loops is fulfilled with 

a fraction from the 1D column, containing the 1D mobile phase plus the correspondent 

sample fraction. Meanwhile, the content of the other sample loop is discharged into 

the 2D column, carried by the 2D mobile phase from the 2D pump. Then, valve 

switches and positions and roles are inversed. A clearer visualization of both loop 

functions is depicted in Figure 2.11.  
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Figure 2.11. Scheme of a LC×LC separation with two 6-port valves with 2 positions each, acting as 

interface. Adapted from scientific publication I. 

Loop sizes can vary depending on the method, normally ranging from 20 to 100 

μL. One solution to increase solvent compatibility will be selecting smaller loops. 

Therefore, a lower amount of the strongest solvent will reach the 2D column, and 

separation will be less jeopardized. This strategy was employed in scientific 

publication VI of this PhD Thesis. However, the main disadvantage of this solution 

is that the total analysis time will considerably increase. The reason is the direct 

proportion between the size loop and the 1D flow, according to Equation 1. 

Consequently, loop size will condition the whole duration of the 1D separation, i.e., 

lower flows mean a slower gradient and, therefore, a longer 1D run. 

Equation 1  𝐷 1 𝐹𝑙𝑜𝑤 =
𝐿𝑜𝑜𝑝 𝑠𝑖𝑧𝑒

𝐷 2 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒

It is important to notice that if loop size dimensions are in μL, resulting flow will 

be expressed as μL·min-1, instead of mL·min-1 as usual.   

The last approach considered in this PhD Thesis to solve solvent incompatibilities 

is the use of active modulation. Current trends involve these strategies since many 

new modulation systems have been implemented in the last decade [182]. In this 

PhD Thesis, Active Solvent Modulation (ASM) was employed in scientific 

publication V. ASM is a valve-based approach recently developed by Stoll et al. [202] 

that uses an 8-port interface with a 4-position design, modified with a bypass 

capillary. When the bypass path is isolated (Positions A and C of Figure 2.12), the 

valve acts as a normal 8- or 10-port valve with 2 positions. This means that one loop 

is refilled with 1D effluent, while the other loop is discharged into the 2D column with 
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2D mobile phase. However, when the bypass is on (Positions B and D of Figure 

2.12), the 1D effluent from the loop is displaced and diluted with 2D initial mobile 

phase composition.  

This dilution step (also called the ASM step) depends on the flow rate and loop 

size and takes place at the beginning of each modulation. The dilution is performed 

according to split ratios (i.e., ¼ means 1 part through the loop and 4 parts through 

bypass). 

In recent years, the number of ASM applications has increased. For instance, 

monoclonal antibodies were separated in a HILIC×RP-HRMS system [203]. This 

study contributed to enlightening the benefits of ASM, e.g., the is avoided and 

sensitivity is enhanced. An RP×RP system for separating complex peptide mixtures 

(e.g., characterization of therapeutic antibodies) was also set [203]. Peak capacities 

were considerably increased thanks to this modulation strategy. In addition, ASM 

allowed the use of longer and more efficient 1D columns and longer injection volumes 

in the 2D column, reducing the total analysis time.  

Figure 2.12. Scheme of Active Solvent Modulation (ASM). Positions A and C represent the ten-port 

valve when the bypass is off. Positions D and D show how dilution is performed when bypass is on.  
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The advantages of ASM also in the targeted analysis were proven with a size 

exclusion chromatography (SEC) combined with RP method applied to assess 

polymer blends and determine impurities in polymeric matrices [204]. Both heart-

cutting and comprehensive modes were tested. Complementary, a pseudo-

comprehensive SEC/RP method was also employed in polymer characterization 

[205]. The main achievement is that this type of separation will be no longer limited 

to water-soluble polymers, but a wider range of them because the solvent mismatch 

issue was resolved.   

Other 2DLC set-ups (e.g., selective comprehensive or multiple heart-cutting) 

have also benefited from ASM. A selective comprehensive HILIC×RPLC method was 

developed for the simultaneous analysis of water- and fat-soluble vitamins [206]. In 

this case, ASM helped to prevent peak distortion and broadening. Hence, an optimal 

resolution was achieved. On the other side, a multiple heart-cutting method using a 

mixed-mode reversed phase/weak anion-exchange (RP/WAX) as 1D and pure RP in 

the 2D was developed for the analysis of synthetic oligonucleotides [207]. The main 

reason for employing ASM was to reduce the incompatibility with the mass 

spectrometer caused by the high non-volatile buffer components and ion-pair 

agent’s content from the 1D. 

The last applications of ASM include its use in the simulation of elution profiles 

[208]. As previously stated, in silico optimization is a key issue in LC×LC to save 

both time and money. Moreover, due to the increasing parameters needed to be 

considered related to the ASM step (e.g., dilution factor, loop size conditions), this 

modulation strategy complicates method optimization. Thus, great efforts have been 

performed to predict elution profiles in LC×LC employing ASM, with the aim of 

increasing simulation capabilities for in silico optimization.  

How to visualize two-dimensional liquid chromatograms 

LC×LC acquisition is composed of multiple 2D chromatograms (i.e., modulations) 

in which 1D separation is split at equal time intervals. Usually, shorter sampling times 

lead to a better resolution, although the whole run becomes longer because the 1D 

separation needs to be cut into smaller fractions. Hence, a single peak can be 

fractured into different subsequent modulations for further analysis in the 2D column, 

as shown in Figure 2.13. Visualizing the LC×LC data requires that the single 1D 

chromatogram is transformed into several stack 2D chromatograms with multiple 

peaks [209]. Then, the data could be rearranged into a contour plot (see Figure 2.13). 

Each area where there is a compound is expressed as a spot, and the color scale 
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represents the peak intensity. A 10-20 contour amplitude value is commonly selected 

from minimum to maximum [210]. 3D plots can also be used, although these 

representations are often harder to interpret.   

Figure 2.13. Transformation of 2D chromatograms to provide a LC×LC visualization based on contour 

plots. Adapted from [209].  

2.2.7 Mass spectrometry and metabolomics 

Mass spectrometry (MS) allows for identifying and quantifying metabolites 

through their mass-to-charge ratios (m/z). Besides, high-resolution mass 

spectrometry can provide information about the metabolites chemical structure (e.g., 

accurate mass, isotope distribution patterns, and fragmentation patterns for 

structural elucidation). Thus, MS capabilities in biomarker discovery and in 

unraveling metabolic pathways are vast and unceasingly growing nowadays 

[211,212].  

A mass spectrometer is composed of three main sections: ion source, analyzer, 

and ion detector. The first ionizes the molecules, the second separates the ions 

according to their m/z and may also fragment them, and the third counts the ions 

from every m/z. Once the sample accesses the ion source, the whole process 

undergoes in extreme vacuum conditions.  
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The choice of the ion source is directly dependent on the targeted molecules. 

For instance, volatile compounds analyzed after a gas chromatographic separation 

will employ more energetic ion sources (e.g., electron or chemical ionizations) to 

fragment molecules into smaller pieces. In the case of mass spectrometry imaging, 

a source able to desorb analytes from a solid matrix is preferred (e.g., Matrix-

Assisted Laser Desorption Ionization (MALDI)). However, in LC-MS coupling, softer 

ionization sources are employed, commonly preserving the molecular ion, M+ (i.e., 

the molecule with an electron less and though positively charged). Frequent ion 

sources include electrospray (ESI), atmospheric pressure ionization (API), 

Atmospheric Pressure Chemical Ionization (APCI), or atmospheric pressure 

photoionization ionization (APPI).  

The selection of the mass analyzer is more related to the type of analytical 

approach. Hence, full scan mode is applied for untargeted studies, which means that 

all molecules are separated according to their m/z. On the contrary, if a targeted 

analysis is pursued, then the mass analyzer can act as a filter and deflect only 

specific ions to the detector. Examples of analyzers are electric sector (E), magnetic 

sector (B), quadrupole (Q), ion trap (IT), time of flight (TOF), Fourier transform ion 

cyclotron resonance (FTICR), and Fourier transform Orbitrap (FT-OT). Current 

instruments are usually hybrids, including more than a single analyzer (e.g., 

Quadrupole-time of flight (QTOF) or Quadrupole-Orbitrap, known as QExactive). In 

tandem mass spectrometry (MS/MS) mode, ions can be separated and then 

fragmented in a second mass analyzer, which can be the same type of analyzer (e.g., 

triple quadrupole (QqQ)) or a different type (e.g., hybrid mass analyzers). If ions are 

subsequently separated and fragment in an iterative process, it is called MSn.  

Once the ions hit the detector, a cascade of electrons is produced, and then 

amplified to increase sensitivity. Recurrent detectors are electron multipliers or 

microchannel plates, but other examples are the faraday cup or the photomultiplier.  

Integrated software on the computers analyzes the data coming from the 

detector (e.g., relations between m/z values and their relative abundances). In 

combination with the information provided by the previous separation (e.g., the 

retention time for each m/z value), it is possible to compare with existing databases 

and identify the compounds detected.  

In this PhD Thesis, all works presented employed ESI as the ion source, although 

different analyzers were selected according to each application. A brief explanation 

and comparison of the mass spectrometer components used during this PhD Thesis 

is now presented.  
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Ionization sources: Electrospray 

In electrospray ionization (ESI), a strong electric field is applied under 

atmospheric pressure to the tip of a capillary tube from which a combination of 

sample and mobile phase is passing through at a slow flow. First, charged droplets 

are formed. Then the rest of solvent is removed when the droplets traverse a heated 

inert gas curtain (e.g., nitrogen) [213]. ESI allows positive and negative ionization 

modes, where adducts are formed accordingly (e.g., molecular ion plus a proton 

[M+H]+, molecular ion plus ammonium [M+NH4]
+ or molecular ion minus a proton 

[M-H]-, etc). This ionization source is highly sensitive, and its coupling to LC is 

straightforward. One of the main advantages is that thermally labile compounds can 

be ionized with ESI. In addition, the mass range of the analytes can range from small 

metabolites to proteins or other multiple charged molecules (e.g., polymers). Some 

limitations are potential ion suppression if too complex matrix or concentrated 

samples are analyzed, and its high sensitivity to salts and detergents. In conclusion, 

ESI is the most widely employed ionization source in both metabolomics and 

lipidomics [151,214,215]. 

Mass analyzers 

The used mass analyzers of this PhD Thesis are time of flight (TOF), triple 

quadrupole (QqQ), quadrupole – time of flight (QTOF) and Q – Orbitrap, commonly 

known by the commercial brand QExactive. Table 2.4 summarizes the main 

characteristics, advantages, and limitations of each of them.  

Time of flight is the fastest mass analyzer and presents the highest practical 

mass range [213]. The TOF principle of separation is velocity or flight time. Ions are 

separated according to their m/z ratio based on their flight time, which is the time 

they take to travel to a tube of known length until they reach the detector. Smaller 

molecules (lower m/z values) will travel fast and arrive firstly at the detector, 

whereas bigger molecules (higher m/z values) will be slower and arrive later. The 

separation of m/z values occurs in the space, which means that a very wide range of 

m/z values can be acquired in parallel and that is the reason why scan speed is very 

fast.  

The main limitation of TOF alone is the inability to fragment unless it is coupled 

to a second TOF. The first TOF will provide the ions with the energy they require to 

fragment, and the second TOF will separate the fragments according to their m/z 

values. If MS/MS is not acquired, then false positives in compound identification can 

be obtained due to isobaric interferences [213]. TOF has been employed in this PhD 



Chapter two 

78 

Thesis for the untargeted analysis of rice lipidome after arsenic exposure (scientific 

publication VII).  

The triple quadrupole is the most used mass analyzer in targeted analysis 

because it presents a wide dynamic range, high sensitivity, and good scan speed. 

Besides, sample preparation is often minimal as selected or multiple reaction 

monitoring are employed, which increases selectivity. QqQ is a good choice for 

quantitation due to its high throughput, but it cannot be employed in qualitative 

analysis or compound discovery due to its low resolution.  

This analyzer is composed of a quadrupole, followed by a collision cell, and lastly, 

another quadrupole [213]. This configuration allows MS/MS. In the first quadrupole, 

there is a first m/z selection of specific m/z values of interest. Thus, the principle of 

separation is the m/z, based on its trajectory stability. The collision cell is where the 

reaction takes place and, therefore, fragments are formed by colliding with an inert 

gas (e.g., Ar, He, or N2). In the third quadrupole, another selection is performed, but 

this time only of the targeted fragments. Several precursor/product ion pairs can be 

measured simultaneously.  

In this PhD Thesis, QqQ has been employed in the targeted analysis of 

sphingolipids in an LC-MS platform (scientific publication VIII), in the analysis of 

pharmaceutical compounds in an LC×LC-DAD-MS coupling, where DAD is a diode 

array detector (scientific publication III), and also in the analysis of pharmaceutical 

compounds and amino acids in LC×LC-MS (scientific publications III and VII). 

Apart from TOF-TOF, the most common set-up for TOF in MS/MS is a 

quadrupole – time of flight, in the so-called QTOF. This hybrid instrument combines 

the high efficiency of the quadrupole in compound fragmentation, i.e., two 

quadrupoles, the first for separating m/z and the second as collision cell, plus a time-

of-flight analyzer for separating the fragments afterwards. The advantage of the TOF 

compared to a third quadrupole is the high scan speed and high mass resolution. 

Contrarily to a single TOF, false positives in compound identification are avoided 

thanks to fragmentation. QTOF presents good sensitivity and high mass accuracy in 

both precursor and product ions, which allows compound discovery, structure 

elucidation and, therefore, simultaneous qualitative and quantitative analysis. The 

main limitations are the lower dynamic range compared to QqQ and the impossibility 

of performing MSn. Another important drawback is that switching polarity is not 

straightforward, and the whole sequence needs to be acquired twice, in positive and 

negative modes separately.  
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Table 2.4. Main characteristics of the mass analyzers employed in this PhD Thesis. 

Name TOF QqQ QTOF QExactive 

Analyzers Time of flight 

Quadrupole -

Colission cell - 

Quadrupole 

Quadrupole - Time 

of flight 
Quadrupole - Orbitrap 

Tandem 

MS 
-------- In space In space In time 

Mass 

acuracy 
< 20 ppm 0.05 Da < 5 ppm < 5 ppm 

Cost Medium Cheapest High Most expensive 

Advantages 

-High resolution

mass 

spectrometry at a 

reduced price 

-Minimal sample

preparation

-Qualitative and

quantitative analysis 

-Qualtitative and

quantitative analysis 

-High throughput

for quantitation

-Structural

elucidation 
-Structural

elucidation  

-High sensitivity
-Wider mass range

than QExactive

-Higher resolution

than QTOF 

-Wide dynamic

range 

-Accurate mass

measurements both 

precursors and 

product ions 

-Possible to perform

multiple 

fragmentation steps, 

MSn 

-Good scan speed
-Fast polarity

switching

Limitations 

-MS2 required to

obtain 

complementary 

information and 

avoid false 

positives and 

isobaric 

interferences 

-Not suitable for

qualitative analysis 

or compound 

discovery 

-Lower sensitivity

than QExactive

-Higher costs and

lower analysis speed 

than QTOF (currently 

being improved) 

-Low resolution
-Lower dynamic

range than QqQ 

-Lower dynamic

range than QqQ  

-Only accurate mass

measurements for

precursor ions 
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The applications of QTOF in metabolomics, but also in toxicology or 

environmental screening of emerging contaminants, have continuously increased in 

recent years [216–220]. Here, QTOF has been chosen for the untargeted lipidomic 

study of zebrafish embryos exposed to endocrine disruptor chemicals (scientific 

publication V), and for the untargeted metabolomic analysis of cells exposed to 

pharmaceutical compounds (scientific publication VIII).  

The last analyzer used in this PhD Thesis is Quadrupole – Orbitrap, commonly 

known as QExactive. The principle of separation in this instrument is the resonance 

frequency of the m/z. Ions are trapped and stored in a potential dwell and turn around 

the central electrode. The m/z value is related to the ion oscillation frequency, which 

is measured. Fourier transforms are required to measure the frequency of the time-

domain signal [213]. 

This hybrid instrument presents the highest sensitivity and resolution among the 

previously explained ones. Both qualitative and quantitative analyses can be 

performed. MSn is allowed because m/z separation is performed in time (not in 

space) which allows subsequent fragmentations of the ions. Therefore, the outputs 

are both accurate mass and fragmentation patterns. Thus, structure elucidation is 

also possible. Besides, both polarity modes (i.e., positive and negative) can be 

measured simultaneously, because polarity switch is easy. QExactive used to be 

considerably more expensive than a QTOF, but recently, prices are becoming more 

competitive.  

The untargeted metabolomic analysis of rice metabolome after arsenic exposure 

was performed on a QExactive (scientific publication VII). 

Both QTOF and Orbitrap are widely employed, especially in untargeted analysis. 

Nevertheless, an important concern about the results provided with both instruments 

has arisen, as a recent interlaboratory experiment has proven [222]. Due to the 

adducts, fragments, charge states, and clusters generated by different mass 

spectrometers, the detected features are not the same. This issue can lead to errors 

in the annotation, because not all compounds found in spectral libraries are often 

acquired with both instruments. Hence, MS/MS fragmentation patterns at certain 

conditions may not be available for comparison with experimental data. Further 

research is required to ensure measurements with several instruments are 

comparable, like the study of Szabó et al. about collision energies in proteomics 

[223], and to increase information from spectral libraries in all possible conditions.  
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Tandem mass spectrometry 

Metabolomic studies, especially untargeted approaches, usually employ one of 

these three acquisition modes: full scan, data dependent acquisition or DDA, and 

data independent acquisition or DIA. All three modes were employed throughout this 

PhD Thesis. Therefore, a brief comparison of them is presented below, and Figure 

2.14 summarizes the main advantages and limitations of each of the modes.  

Figure 2.14. Summary of advantages and limitations of the three acquisition modes selected in this 

PhD Thesis: full scan, data dependent acquisition and data independent acquisition. Based on the 

publication by Guo et al.  [224].  

The choice of the acquisition mode is of great importance because it is directly 

related to the quality of the metabolomic results. A comparison of these three modes 

in metabolomic studies was recently published by Guo et al. [224]. Several 

parameters were evaluated, including metabolic coverage (i.e., number of features 

detected), quantitative precision, MS2 spectral quality and spectral coverage, and 

convenience (e.g., practicality in untargeted analysis).  

Unsurprisingly, the largest number of detected features was obtained with full 

scan mode. All the ions are captured in a single run and the best sensitivity detection 

and quantitative precision is achieved, because the instrument focuses only on the 

MS1 level. However, only accurate mass is obtained, and structure elucidation or 

discrimination between isobaric compounds is impossible. To ensure maximum 

sensitivity, some examples in the literature propose the acquisition of all samples in 

full scan mode and then, only fragment the QCs, which will be representative pools 

of all the samples [225].  
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In DDA, the instrument selects a list of precursor ions above an intensity 

threshold and follows user-guided criteria for further fragmentation at the MS2 level. 

Clean MS/MS spectra for each of the precursors are collected sequentially. Hence, 

DDA provides the highest quality of MS2 spectra, and the association between the 

precursors and their fragments is straightforward. Therefore, metabolite annotation 

is significantly improved [226]. The main drawback of DDA is that low abundant 

features may not be selected due to the prior selection of the instrument and, 

consequently, ignored leading to reduced coverage of the metabolome due to 

instrumental factors. DDA method was used in this PhD Thesis for the untargeted 

lipidomic analysis of zebrafish embryos exposed to Endocrine-disrupting chemicals 

(scientific publication V).   

Table 2.5. Summary of all studies that appear in this PhD Thesis. 

In contrast, DIA can also detect and quantify low abundant ions because it 

generates MS2 spectra for all precursors without any discrimination, increasesing 

reproducibility between experiments. Thus, the MS2 metabolic spectral coverage is 

the highest of the three modes. Besides, no undersampling can occur due to fast 

acquisition rates [226]. All ion fragmentation (AIF) and sequential window acquisition 

of all theoretical fragment-ion spectra (SWATH) are common DIA modes. The main 

downside of DIA is that spectral deconvolution is required to match precursor ions 

with their fragments because of the complexity of MS2 spectra. However, a 

Model 

biosystem 
Yeast 

Zebrafish 

eleutheroembryos 
Rice HegG2 cells 

Emerging 

pollutant 

exposure 

Not 

applicable; 

method 

development 

Endocrine disruptor 

chemicals (bipshenol A and 

estradiol) 

Metalloids (arsenic) 

Pharmaceutical compounds 

(carbamazepine, amoxicillin, 

trazodone) 

Omic study Lipidomics Lipidomics Metabolomics Lipidomics Metabolomics Lipidomics Metabolomics 

Approach Untargeted Untargeted Untargeted Untargeted Untargeted Targeted Untargeted 

Analytical 

technique 
LC-HRMS 

 LC×LC-

HRMS 
LC-HRMS LC-HRMS LC-HRMS LC-MS LC-HRMS 

MS 

acquisition 

mode 

Full scan 

Full scan + 

MS/MS 

(DDA) 

Full scan + 

MS/MS (DDA) 
Full scan 

Full scan + 

MS/MS (DIA) 
SRM 

Full scan + 

MS/MS (DIA) 

MS 

analyzer 
TOF QTOF QTOF TOF Orbitrap QqQ QTOF 
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retrospective analysis of DIA data can be performed if, for instance, a new 

deconvolution algorithm is available.  

For instance, in this PhD Thesis, CorrDec deconvolution algorithm [227] and the 

original MSDIAL deconvolution method (MS2Dec) [28] were employed in the 

untargeted metabolomic analysis of culture cells exposed to pharmaceutical 

compounds (scientific publication VIII). The principle of CorrDec is that the 

intensities of the precursors and fragments correlate across samples. In this case, 

MS/MS spectra from different sample types are required for deconvoluting, which 

means that fragmentation should not be held only on the quality control samples.   

To sum up, Table 2.5 summarizes all studies included in this PhD Thesis, 

emphasizing the analytical techniques and the addressed environmental issue. MS 

acquisition mode and MS analyzer are also specified.  

2.2.8 Metabolite annotation 

Once m/z values and MS/MS fragmentation patterns are obtained for the 

compounds of interest, they need to be associated with the name of a metabolite or 

lipid. The metabolite annotation step is one of the main bottlenecks often found in 

untargeted metabolomics, because of the huge number of metabolites detected and 

the presence of isobar compounds with similar fragmentation patterns. Besides, 

identifying potential markers of environmental exposure is crucial, and a prior step 

to identify the pathways affected and draw biological conclusions of the effects of 

certain pollutants.  

Metabolite identification can be organized in four levels of confidence [228], as 

schematized in Figure 2.15. Level 1 refers to fully identified metabolites. Usually, 

information on two orthogonal properties of a tentative metabolite is confirmed with 

its commercial standard under the same experimental conditions (e.g., same RT and 

m/z). In levels 2 and 3, putative identification is achieved. The most common scenario 

is that the metabolite is annotated based on RT, m/z and MS/MS fragmentation 

patterns (Level 2). If no MS/MS information was obtained, the metabolite family or 

class could be indicated based on RT and m/z (Level 3). The last level, number 4, 

refers to metabolites whose identity remains unknown. 
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Figure 2.15. Confidence levels in metabolites identification for untargeted metabolomics studies. 

In this PhD Thesis, most of the metabolites have been annotated in confidence 

levels 2 and 3, except for scientific publication VIII, in which sphingolipids were fully 

identified (level 1) thanks to the match with their internal standards. In putative 

identification, the m/z value obtained is compared to the theoretical values of 

different adducts for the exact mass of the potential metabolite. MS/MS 

fragmentation patterns are also verified with the theoretical ones. Databases provide 

both exact mass and MS/MS information with spectral libraries. The databases 

employed during this PhD Thesis are: HMDB [138,139], YMDB [38], METLIN [140], 

Massbank [141,142], LIPID MAPS [143,144], NIST [145] and PlantCyc [229]. On the 

other hand, the Kyoto Encyclopedia of Genes and Genomes (KEGG) [230] has been 

employed specifically to identify the affected metabolic pathways.  

2.3 Data analysis strategies in metabolomics 

Metabolomic datasets are usually complex and overwhelming in size, especially 

in untargeted studies where high-resolution mass spectrometry has been employed. 

Hence, obtaining the biological information sought is not always straightforward. 

There are many aspects to consider, such as peak alignment, data compression, 

feature detection, chromatogram resolution, isotope recognition, exclusion of false-
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positive peaks, and which type of multivariate analysis is more suitable in every case 

[32].  

Every year, new online tools, databases and resources appear with the aim of 

facilitating this difficult task and automate the whole process. A recent review from 

Misra [231] summarizes latter tools and resources currently available for 

metabolomic data analysis, a field of great expansion nowadays.  

Chemometrics is the science that aims to extract information from chemical 

systems. This discipline relies on mathematical and statistical methods to 

exhaustively analyze and ease the interpretation of complex datasets. From 

experimental design and optimization steps to the biological interpretation of the 

metabolites affected by the exposure, chemometrics is a powerful bridge that 

provides the tools needed. Therefore, cutting-edge chemometric methods seem to 

be the perfect match to deal with current limitations due to the huge size of 

metabolomic datasets [232].  

In this section, the chemometric tools selected for the analysis throughout the 

PhD Thesis will be described. An especial emphasis has been dedicated to the steps 

of data compression and resolution, in a combined strategy known as ROIMCR, 

coupling the regions of interest (ROI) and the multivariate curve resolution (MCR) 

approaches.  

2.3.1 Data analysis workflow for metabolomic datasets 

The standard metabolomics data analysis workflow contains three main steps: 

pre-processing, resolution and post-processing, shown in Figure 2.16.A. In the first 

step, raw chromatograms are submitted to spectral or time compression (e.g., 

binning or time-windowing, respectively), background correction (e.g., denoising and 

smoothing or baseline corrections), and/or retention time alignment. This group of 

strategies aims to improve reproducibility between all chromatograms before peak 

detection, as well as filter and convert the datasets into more manageable matrices. 

Besides, overlapping signals are commonly encountered in metabolomic datasets 

due to the high complexity of the biological matrices. Thus, the second step aims to 

enhance resolution and ease peak detection. Other peak-tracking strategies are also 

of great utility, above all when LC×LC is employed [233]. The third step is related to 

all statistical procedures that can be applied to the data matrix containing the areas 

of the most relevant features. The choice of the analysis type will depend on the goal 

of the metabolomic study. For instance, exploratory analysis is a useful 

approximation for an overview of the dataset in untargeted analysis. On the other 
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hand, univariate analysis such as ANOVAs or t-tests can be a good option for 

targeted analysis with a reduced number of features.  

A recent review by Bos et al. collects chemometric strategies that can be applied 

to one and two-dimensional liquid chromatography data for each of these main steps, 

plus a section dedicated to chromatographic optimization [195]. More specifically 

into the metabolomic field, the review from Paul et al. includes chemometric tools 

commonly applied in metabolomic studies [234].   

Figure 2.16.B exemplifies how these three steps previously mentioned are 

applied to an LC-MS metabolomic dataset throughout this PhD Thesis. In LC-MS, 

experimental data are arranged into a matrix with the m/z values in the columns and 

the retention times in the rows. A single LC-MS run is considered two-way data (i.e., 

a two-dimensional matrix), whereas a whole LC-MS dataset with multiple samples 

may be considered three-way data (i.e., a three-dimensional data set or data cube), 

formed by the set of LC-MS individual matrices from the different samples when they 

are arranged together and analyzed simultaneously.  

In this PhD Thesis, the regions of interest or ROI strategy is proposed [235,236] 

for the mass spectral data noise filtering and compression, together with the 

multivariate curve resolution alternating least squares or MCR-ALS [237–239], for 

the full resolution of the chromatograms and mass spectra of the constituents 

(metabolites, lipids) of the analyzed samples. These two data analysis strategies 

have been combined in the ROIMCR method [236,240,241]. The output of the ROI 

step is a column-wise augmented data matrix where the different samples are 

concatenated vertically, one below the other. This step is crucial in noise filtering and 

data size reduction. The output data matrix will only contain the most important m/z 

values, i.e., the ones above a certain intensity threshold established a priori while 

still conserving the full instrumental mass accuracy. Results of MCR-ALS are on one 

side the elution profiles, and on the other side the spectra profiles. Thus, quantitative 

and qualitative information can be obtained from MCR-ALS resolved elution profiles 

of all the components in the different samples and their peak areas are readily 

available. These peak areas matrix is used afterwards for performing all multivariate 

analyses (e.g., exploratory or classification studies). In the following sections, both 

ROIMCR and the different multivariate analysis methods for metabolomics data 

analysis studies are discussed in more detail.  
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Figure 2.16. A) Generic workflow for metabolomics data analysis. B) Example of the pipeline employed 

in this PhD Thesis for the analysis of untargeted LC-MS metabolomics data. TIC: total ion 

chromatogram; ROI: regions of interest; ATLD: alternating trilinear decomposition; COShift: correlation-

optimized shifting; COW: 2D correlation optimized warping; MCR: multivariate curve resolution; 

PARAFAC: parallel factor analysis; PCA: principal component analysis; ASCA: anova-simultaneous 

component analysis; PLS-DA: partial least squares discriminant analysis.  
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2.3.2 ROIMCR 

The ROIMCR method is composed of the coupling of the Regions of Interest (ROI) 

and the Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) 

methods. It has proven to be a powerful strategy for data analysis, especially in 

metabolomics studies using MS data [236]. This approach has been used in 

untargeted metabolomic and lipidomic studies with several analytical techniques and 

many different applications, e.g., LC-MS [157,240,242–246], LC×LC-MS [154], or 

MSI [247]. Apart from metabolomics, ROIMCR has also been employed in other 

applications, such as the analysis of proteins [241], contaminants of emerging 

concern [248] both in samples from wastewater treatment plants, as well as in 

environmental studies [248–251]. 

Compared to other compression approaches, like binning [252], ROI filters the 

data by searching only for the relevant features without any loss of spectral accuracy. 

Besides, one of the major advantages of applying MCR-ALS is that it does not require 

any prior peak alignment nor modelling step. This simplifies the whole data treatment 

workflow, especially in 2DLC, where large chromatographic shifts are commonly 

encountered. The combination of ROI and MCR-ALS strategies allow the resolution 

of the chemical constituents of the analyzed samples, their concentration (elution) 

and spectra profiles from which relative quantitative information and qualitative 

information associated with metabolite identification can be acquired.  

Regions of interest 

The ROI method was initially described by Stolt et al. [253,254], and afterwards 

introduced into the centWave algorithm of the XCMS platform for analyzing 

metabolomic data [25,255]. ROI was later adapted to the MATLAB environment 

[236]. A user-friendly interface has been recently released for its use in the analysis 

of LC-MS GC-MS, LC×LC-MS, GC-GC-MS and MSI data [235], and also capillary 

electrophoresis mass spectrometry (CE-MS) [256] or ion mobility mass spectrometry 

(IM-MS) datasets.  

The ROI strategy is based on spectral data filtering and compression by 

determining the so-called regions of interest. These are m/z data regions where the 

MS signals are considerably more intense than the a priori set signal-to-noise ratio 

threshold. Therefore, these are the data spots where the most relevant analytes are 

located and will be preserved for further analysis. In contrast, the rest of very low 

intensity values (below the noise threshold) are discarded. The ROI selection 

produces a filtered compressed ROI data matrix in the spectral dimension, as already 

shown in Figure 2.16.  
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There are three main parameters to consider in the ROI selection approach, 

which are visualized in Figure 2.17. The first is the signal-to-noise ratio (S/N) 

threshold, basically an intensity filter placed just above the noise baseline level. The 

aim is to clean the mass spectra by keeping the relevant features and discarding the 

low intensity signals that are noise-related. The second parameter is the m/z error 

interval or mass accuracy that can be considered acceptable and will depend on the 

mass spectrometer spectral resolution. Mass accuracy provided by low-resolution 

instruments will be lower than high-resolution ones, and consequently, the 

acceptable m/z error will be higher. The third parameter is the minimum number of 

occurrences, or the minimum number of consecutive points in the time dimension 

needed to properly define the peak. This will depend on the number of readings 

needed to determine a chromatographic peak and on the chromatographic flow and 

mass detector speed.   

ROIs are searched at every mass spectrum and retention time, and the MS 

signals at the m/z values in common within the m/z error established are jointed. For 

each ROI, the final m/z value assigned is the mean (or the median) of all points 

grouped in that specific ROI. This spectral compression can be applied 

simultaneously to multiple samples. If a certain peak is not present in some samples 

(or its intensity value is below the S/N threshold), a zero value (or better, a very low 

random value) is automatically dispensed. A matrix with the areas of the most 

relevant features can also be obtained from the ROI procedure. 

A more detailed description of the ROI methodology can be found in scientific 

publication II (included below in this Section). 

Figure 2.17. Three main parameters need to be optimized in the ROI procedure: A) signal-to-noise ratio 

(S/N) threshold; B) m/z error interval; and C) minimum occurrences to define a peak. Adapted from 

[236]. 
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Multivariate curve resolution alternating least squares 

MCR-ALS is a well-known chemometric tool employed in the past thirty years to 

resolve complex chemical mixtures.  Applications are wide and include datasets from 

many different analytical techniques (e.g., chromatography coupled to mass 

spectrometry, hyperspectral imaging, NMR, spectroscopic or electrochemical 

analysis), as recently reviewed by de Juan et al.  [237].  

MCR-ALS is based on a bilinear decomposition model that corresponds with 

Equation 2: 

Equation 2   𝐃 = 𝐂𝐒𝐓 + 𝐄 

D refers to the measured experimental data matrix. The two main outputs of the 

MCR-ALS procedure are the column factor matrix, C, which is the concentration 

matrix that contains the elution profiles, and the row factor matrix, ST, which is the 

spectra matrix or response matrix including the measured variables. E is the residuals 

matrix which includes the variance not explained by the MCR model. The number of 

rows of D and C is the same, whereas the number of columns of D and ST matches 

as well. C and ST contain the information of elution or spectra profiles, respectively, 

for each of the resolved components. Ideally, each component should represent a 

relevant chemical compound. For instance, when applying MCR-ALS to an LC-MS 

dataset, each component refers to the different MS signals at the m/z values 

associated with the same elution profile. This means that the MS signals at the m/z 

values for the different adducts of the same chemical compound appear in the same 

MCR-ALS component.  

The decomposition of matrix D follows three main steps, summarized in Figure 

2.18. First, the number of components required for explaining the chemical variance 

(not the experimental noise) should be determined. Singular value decomposition 

(SVD)  [257] is a common method employed for this purpose. If too many 

components are chosen, then it is possible that noise is being introduced in the 

model (overfitting), which should be avoided., Some chemical constituents may not 

be resolved if too few components are chosen. When complex datasets are analyzed, 

as in MS metabolomics, the choice of the exact number of components may be not 

straightforward. In these cases, several models can be compared and the one that 

best describes the data variance with the minimum number of components and with 

chemical meaningful elution and spectra profiles, will be selected.  

An initial estimation, either of spectra (ST) or elution profiles (C), is needed to 

start the ALS optimization. A widely employed method for detecting pure variables in 
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any of the two data directions or modes (elution or spectra) is an adaptation of the 

Simple-to-use Iterative Self-modeling Mixture Analysis (SIMPLISMA) algorithm 

[258].  

During the alternating least squares (ALS) optimization, matrices C and ST are 

re-estimated iteratively under constraints to be chemically meaningful, not only from 

the mathematical perspective. Constraints help to reduce the ambiguity associated 

with the bilinear MCR model [259,260]. Frequently used constraints are non-

negativity (both elution and spectra profiles can only be positive), unimodality (there 

is only one chromatographic peak for each elution profile), and peak areas 

(concentrations) correlation (used to build calibration curves).  

The optimization process finishes when convergence is achieved, meaning that 

the relative difference of standard deviations from residuals between experimental 

values and the adjusted with ALS in consecutive iterations are below an a priori 

established value (typically 0.1%) [261].  

Figure 2.18. MCR-ALS implementation to a LC-MS dataset step by step. SVD: Singular value 

decomposition; ALS: alternating least squares.  
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From the peak areas (or the maximum intensity of the peaks) from the MCR-ALS 

resolved elution profiles in the C matrix, it is possible to know the relative 

abundances of each metabolite from which quantitative information can be derived. 

Likewise, from the spectral profiles in the ST matrix, it is possible to extract 

qualitative information and annotate the metabolites present in the samples.  

The MCR methodology used in this PhD Thesis is explained more in-depth in 

scientific publication II (included below in this section), especially describing how 

matrices multiple samples can be simultaneously analyzed in column-wise matrix 

augmented (1DLC) and superaugmented (2DLC) data matrices.  

ROIMCR for 2DLC datasets 

When dealing with 2DLC datasets, a compression step becomes even more 

urgent due to their huge data size, up to 13 Gb in the analysis of a single sample (a 

single data file) is coupled to high-resolution mass spectrometry [235]. Previous 

works in our group attempted different combinations of spectral compression plus 

data segmentation in different time-windows in order to reduce data dimensionality 

and speed up further calculations [201,262]. Nevertheless, in fully comprehensive 

and untargeted studies, fractioning the chromatograms in different windows or 

regions makes the analysis more complicated and slows down the whole analysis.  

In scientific publication II, the strategy ROIMCR is proposed for dealing with 

2DLC datasets. First, the LC×LC data structure is discussed (i.e., multiway 

datasets), and different possible bilinear and multilinear models are discussed for 

their analysis. Then, an extensive description of the whole ROIMCR procedure is 

presented, as well as other suitable strategies for pre-processing 2DLC data. A list 

of post-processing approaches that can be used to analyze 2DLC datasets is 

additionally given, which can also be applied to most LC-MS datasets indistinctly. 

Finally, different examples of applications of the ROIMCR strategy to 2DLC datasets 

are included.  
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Title: Untangling comprehensive two-dimensional liquid chromatography data sets 
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Obtaining quantitative information in 2DLC by ROIMCR 

Quantifying analytes in 2DLC is more complex than in one-dimension liquid 

chromatography (1DLC). The same chemical compound is commonly fractioned into 

different peaks in the subsequent modulations. Therefore, obtaining the global peak 

area for each analyte is more difficult.  

Several strategies can be performed, such as the summation of the 2D 

chromatographic peaks, the determination of the area in the 2D plot or estimating the 

peak height or volume [263]. Most 2DLC quantifications have been carried out 

through vendor software or by specific data processing software designed for 2DLC 

data (e.g., GC Image LC×LC Edition Software from GC Image™, AnalyzerPro® XD 

from SpectralWorks, and ChromSquare from Shimadzu). These tools present two 

main disadvantages. The first is that they are usually costly, especially for the 

laboratories that start using 2DLC and have not implemented routine methods yet. 

The second disadvantage is the limitation of the proposed pre- and post-processing 

approaches. Although an important effort has been put into implementing user-

friendly software to fully analyze 2DLC data, the reality is that more than one 

software is usually required.  

In this PhD Thesis, three different strategies have been used for 2DLC 

quantification. All of them present the main benefit that can be run in the MATLAB 

environment through specific toolboxes. The comparison between the three 

strategies is shown in scientific publication VII (Chapter 4). The first strategy uses 

the ROI procedure to obtain the peak areas, summing the individual areas of each 2D 

peak corresponding to the same compound and associated with a specific region of 

interest (i.e., m/z value). This process can be performed automatically by the MSroi 

app [235], or manually, in the case that isobaric compounds with different retention 

times in the 1D have been associated with the same ROI. In the latter case, a specific 

retention time range can be selected in the software application to obtain the peak 

area of that region only. Once the areas are obtained for each analyte, a calibration 

curve can be built.  

The second and third strategies consider the peaks of the elution profiles 

resolved by MCR-ALS focusing on the quantitative analysis [264]. In the specific case 

of 2DLC data, several studies proved its usefulness when a diode array detector 

(DAD) was used as detector [263,265–267]. In this PhD Thesis, the emphasis is 
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placed on applying MCR-ALS for quantification of LC×LC-MS datasets, considering 

the advantages of this flexible bilinear model (e.g., no peak alignment requirements 

and the ability to handle overlapping peaks). Both peak areas and peak heights can 

be used to build calibration curves with the MCR-ALS resolved peak areas [268]. In 

this work, LC×LC-MS quantitation is performed using the peak areas of the elution 

profiles resolved by MCR-ALS. 

Recently, the area correlation constraint has been proposed for cases like those 

analyzed in this PhD Thesis using the MCR-ALS method in its bilinear model variant 

[269,270]. Two approaches have been compared to assess whether the area 

correlation constraint would improve quantification results in the case of LC×LC-

MS datasets. Thus, in the first strategy, calibration curves are built from the areas of 

the elution profiles finally obtained in the results of the application of the MCR-ALS 

method with only applying non-negativity constraint. Since the concentration profiles 

obtained are in arbitrary units and only have relative quantitation information, they 

should be calibrated using the known concentrations of the analytes in some of the 

simultaneously analyzed samples, for instance, by linear regression (see more details 

in [240]). The other strategy tested in this PhD Thesis, applies bot, non-negativity 

and the area correlation constraint during the ALS optimization of the bilinear MCR 

model. This last strategy performs the calibration (linear regression) of the peak 

areas of the elution profiles at every ALS step until convergence, which allows the 

application of the quantification of the analytes of interest in the presence of 

unknown interferences, even if these interferences are not present in the calibration 

samples [259,269,270]. 

When the area correlation constraint is applied (during the ALS optimization), 

the area of an elution profile from the calibration samples can be correlated to a 

concentration value known a priori. Then, a local correlation model is created. The 

intensity of the elution profile from the calibration samples is adjusted with this 

known value. Then, predictions and adjustments on the elution profiles of the 

component concerned from unknown samples can be performed. The concentration 

profiles from the calibration samples are updated with the ones from the unknown 

samples and the optimization process continues until the convergence is achieved. 

This iterative process is summarized in Figure 2.19. The peak areas (concentration 

values) are rescaled to the real concentration units during the iterative optimization, 

by the application of this constraint [271].  
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Figure 2.19. Graphical representation of the implementation of the area correlation constraint in 

MCR-ALS.  

 

2.3.3 Normalization and data scaling 

As stated in the previous section, the areas of the compounds can be obtained 

directly from the ROI procedure or after applying MCR-ALS. In both cases, the output 

is a data table or matrix with the samples in the rows and the features or compounds 

in the columns, as already shown when describing the ROIMCR workflow in Figure 

2.16.B. Then, post-processing steps, such as multivariate analysis, are performed on 

this matrix. However, depending on the purpose of the study, a preliminary step of 

normalization and data scaling is required.  

Metabolomic analysis needs a minimum of reporting standards to ensure data 

quality, as proposed by Goodacre et al. [272]. The discovery of biomarkers will 

directly depend on data quality. Therefore, different metrics were proposed to 

guarantee data quality, repeatability, and reproducibility of results (e.g., coefficient 

of variation, missing values, retention time shifts) [273].  

A major issue that can cause a lack of reproducibility in metabolomic studies is 

the systematic variation between samples (e.g., instrumental drifts along the 

sequence, extraction efficiency), which should be reduced. There are different 
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strategies to minimize this systematic variation, but they can be classified into two 

main groups. On the one side, normalization is performed in the rows because the 

aim is to correct by sample (e.g., normalize by the quantity of tissue or protein). On 

the other side, data scaling approaches are performed in the columns because they 

affect the variables (e.g., centering or autoscaling).  

Normalization 

Normalization can be performed chemically and/or mathematically. In this PhD 

Thesis, the first step carried out PhD Thesis was a correction considering the amount 

of biological material of each biological replicate. For instance, in the analysis of rice, 

zebrafish embryos, or cell cultures, normalization can be applied according to the 

weight of tissue (root or leave), the exact number of embryos, the amount of protein 

or by the number of cells per replicate, respectively.  

In a second step, surrogates and internal standards have been used in this PhD 

Thesis for chemical normalization. The purpose of the surrogates (added just at the 

beginning of the extraction) is to correct possible extraction losses. In contrast, the 

aim of the internal standards (added just before starting the analysis) is to correct 

instrumental drifts along the analysis itself or by ion suppression. In the case that no 

internal standards have been added, another possibility is to correct according to 

signals present in the background or associated with known metabolites (scientific 

publication VI).  

There are two main quality management procedures in metabolomics: quality 

assurance (QA) and quality control (QC) [274]. QA ensures that quality requirements 

are fulfilled before sample collection. QC guarantees that data quality meets specific 

requirements after data acquisition. In this PhD Thesis, QC is referred to as a type 

of sample composed of a pool of all kinds of different sample types, which is 

measured repeatedly along the whole analytical sequence each 5-10 samples, 

depending on the whole length of the batch. QC samples have been measured in all 

the metabolomic/lipidomic analyses presented in this PhD Thesis.  

In the first step, the variance in the control samples is calculated and should be 

lower than 20%. Moreover, all QCs should cluster together when samples are plotted 

(e.g., in a principal component analysis scores plot [275]). Quality controls are a good 

indicator of batch effects [276,277]. They provide a good overview of the possible 

baseline and signal intensity variations throughout the whole analytical sequence. 

QCs can prove intra and inter batch repeatability and reproducibility, or help to 

correct batch effects when they occur, which unfortunately happens frequently 

[24,277]. QC recommendations have been followed in this PhD Thesis to guarantee 
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the quality of the analyzed metabolomics datasets, as well as for correcting batch 

effects when necessary (scientific publication VIII).  

Among mathematical normalizations, the Probabilistic Quotient Normalization 

(PQN) [278] has been selected in this PhD Thesis in the untargeted analysis of rice 

exposed to arsenic (scientific publication VII), due to its better performance 

compared to other normalization methods for untargeted metabolomic analysis 

[279]. PQN states that changes throughout the concentration of a sample influence 

the whole spectrum, but changes in the concentration of a single analyte will only 

affect a specific part of the spectra. Hence, a normalization factor is calculated using 

the signals of a reference spectrum. The reference spectrum can be the average 

metabolite abundance of all samples (blanks not included). 

Data scaling 

Data scaling allows the comparison among variables in different samples. The 

concentration range of metabolites may significantly change, and their simultaneous 

analysis may be biased towards those variables showing larger variances. There are 

different data scaling pre-treatments that reduce this variation in the scale to 

enhance biological differences, independently of the actual concentration value of 

the metabolites. A list of methods for this purpose can be found elsewhere [272]. 

The most commonly employed are mean-centering, scaling and autoscaling (which 

includes mean-centering). Mean-centering removes the differences in scale 

magnitude because the mean value of every variable is subtracted from each 

individual value.  Consequently, the mean value is zero. However, differences in scale 

amplitude (e.g., derived from standard deviation) are still present. In this PhD Thesis, 

autoscaling has been employed because it eliminates both scale amplitude and scale 

magnitude. The mean value is subtracted from each individual value and divided by 

the variable standard deviation. Therefore, the mean value is zero and the standard 

deviation of each variable equals one.  

 

2.3.4 Other multivariate resolution methods 

The simultaneous resolution of datasets forming three-way data structures can 

be performed with methods based on the trilinear model like parallel factor analysis 

(PARAFAC) or PARAFAC2. Most of the applications of these approaches in 

metabolomics have been related to GC×GC-MS datasets [280–285], but there are 

also some applications in LC×LC-MS [286]. PARAFAC has also been applied to LC-

DAD datasets for metabolomic fingerprinting [287,288], and LC-Fluorescence 

studies of plant roots exudes [289] or colorectal cancer [290]. In this PhD Thesis, 
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trilinear methods have been compared to trilinear and bilinear ones obtained by 

MCR-ALS in the analysis of LC×LC-MS.  

PARAFAC is a factor decomposition method of a data cube according to the 

trilinear model [291] of Equation 3 and exemplified for LC×LC-MS in Figure 2.20: 

Equation 3                                       B = ∑ 𝒇𝒊 ⊗𝑵
𝒊=𝟏 𝒈𝒊 ⊗  𝒉𝒊 + E 

In the case of LC×LC-MS data of a single samples (file), B refers to the three-

way data (data cube), which is decomposed into the product of three contribution 

factors with N as the number of components; fi describes the elution profiles of the 

1D; gi represents 2D elution profiles and hi the pure spectra profiles. Analogously to 

MCR-ALS, E refers to non-explained variance. The different factors are linked 

through an external product, represented by the symbol ⊗. F, G and H from Figure 

2.20 are the joint fi, gi, and hi profiles.  

 

Figure 2.20. Graphical representation of PARAFAC resolution for a data cube.  

 

PARAFAC reduces the dimensionality of a dataset. This method assumes three-

way data of dimensions I × J × K. Thus, the instrumental response combines pure 

responses in each dimension [292]. In the case of multidimensional chromatographic 
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separations coupled to mass spectrometry, the three dimensions are the 

chromatographic profiles in the two dimensions, and the mass spectra of each 

compound.  

The main advantage of PARAFAC and trilinear MCR compared to bilinear MCR 

is that rotational ambiguities are avoided. The application of the trilinear model 

provides unique solutions and theresolution is often more robust and easier to 

interpret if the trilinear model is fullfilled [291]. However, PARAFAC does not allow 

small deviations from the trilinear behavior [293].  

Therefore, the first question to consider is whether three-way LC×LC-MS data 

are trilinear or not. This issue has been addressed in scientific publication II 

(included in Section 2.3.2. ROIMCR, previously in this introductory Chapter), but also 

is discussed in further detail in scientific publication III in Chapter 3. Briefly, in 

multidimensional chromatographic separations, deviations from trilinearity are 

commonly encountered (e.g., retention time shifts or peak shape changes) [294–

296]. Hence, the two options are a) trying to restore trilinearity before applying 

PARAFAC (e.g., with Tchebichef moments' approach [297], or b) using more flexible 

algorithms.  

PARAFAC2 arises as an alternative to PARAFAC thanks to the fewer restrictions, 

which allow the handling of small time shifts. In the PARAFAC2 model, elution 

profiles are no longer considered parallel and proportional, but only the inner-product 

structure is preserved across different samples. The result is that the cross-products 

of the matrix that contains the elution profiles in its columns are constant [293]. 

Consequently, in the case of LC×LC-MS data, elution profiles can present some 

differences between modulations but still be considered the same compound. 

Nevertheless, although PARAFAC2 is able to cope with small swings in retention 

times, there are still deviations of trilinearity caused by changes in the peak shapes 

due to, for instance, coelution of multiple compounds. When these deviations are 

encountered, PARAFAC2 model also fails. 

The MCR-ALS method can also be applied to three- and higher-order data sets 

and adapted to the implementation of constraints to fulfill trilinear and multilinear 

models [298,299]. In fact, the application of such constraints in MCR-ALS is very 

flexible and allows the simultaneous implementation of mixed bilinear and multilinear 

models for the same dataset. These constraints also can deal with deviations of the 

trilinear model caused by peak shifting. The comparison with these variants of the 

MCR-ALS method is not shown in this PhD Thesis, where the main point was to 

check whether LC×LC-MS data are trilinear and could be analyzed by PARAFAC and 
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PARAFAC2 methods, which are the two more currently used trilinear model-based 

methods in this field. On the other hand, MCR-ALS bilinear does not require the 

fulfillment of the trilinear model nor prior chromatographic alignment or peak 

modelling steps, which simplifies the analysis of multi-way datasets.  

Previous comparisons between PARAFAC, PARAFAC2 and MCR-ALS bilinear 

and trilinear from the literature have been reported on both GC×GC-MS [300] and 

LC×LC-MS [301]. However, stronger deviations from trilinear behavior are very 

common and serious in 2DLC data. Therefore, in these cases, especially in 2DLC 

untargeted analysis, bilinear MCR-ALS is highly recommended [292,296]. That is why 

MCR-ALS, based only in the fulfillment of the bilinear model (without trilinearity 

constraints), has been preferred in the LC×LC-MS studies in this PhD Thesis. 

Lastly, a novel tool for supervised discovery-based experimentation has been 

recently proposed [302]. The study compares the purified mass spectrum obtained 

with more classic chemometric approaches (e.g., MCR-ALS, PARAFAC, PARAFAC2). 

More information about the comparison between MCR-ALS and PARAFAC 

methods for the analysis of 2DLC data, and the fulfillment of the trilinear model 

requirements by er 2DLC datasets can be found in scientific publication II (at the 

end of Section 2.3.2. ROIMCR of this introduction Chapter) and in scientific 

publication III (Chapter 3).  

 

2.3.5 Post-processing strategies 

Once the data table or matrix with the areas of the metabolites analyzed is 

obtained by, for instance, the application of the MCR-ALS method, different post-

processing strategies can be applied to establish the existing relations between the 

samples and the experimental factors. There are five main groups of post-processing 

methods, summarized in Figure 2.21: statistical tests, exploratory analysis, 

classification or discrimination analysis, machine learning and clustering. Strategies 

from all groups, except machine learning, were used throughout this PhD Thesis to 

extract the sought information and will be briefly introduced below.  

More information on other methods for metabolomics and lipidomics analysis is 

included in scientific publication II (at the end of Section 2.3.2 ROIMCR of this 

introduction Chapter), and also in the review by Paul et al. [234], Feizi et al. [303], 

Yi et al. [304], and Checa et al. [305].  
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Figure 2.21. The five groups of post-processing methods that can be applied to the data matrix with 

the metabolite areas.  

 

Exploratory analysis 

Principal component analysis (PCA) is the most popular non-supervised 

exploratory data analysis method used in this PhD Thesis. The main advantage of 

PCA is that allows visualizing the data in a space of reduced dimensions. New axes 

are defined, called principal components, which keep the most relevant information 

about differences and similarities between the samples and eliminate experimental 

noise-related information. Classes or sample types are not established a priori, and 

in general, no information about the samples is provided to the model. That is why it 

is considered a non-supervised method.  The new PCA axes are orthogonal, and they 

are built up by the linear combinations of the original variables that more efficiently 

describe the data variation. A reduced number of principal components is usually 

needed (typically two or three), to explain a large amount of the data variance. 

Principal components are ordered according to their relative importance, i.e., the first 

principal component explains the maximum amount of data variance, etc.  

PCA is based on a bilinear decomposition model, as MCR, that follows Equation 

4: 

Equation 4                                  𝑿 = 𝑻𝑷𝑻 + 𝑬  
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The original data matrix is X; the orthogonal scores matrix is T and describes the 

samples in the principal components space. PT is the orthonormal loadings matrix, 

which accounts for the linear combination of the original variables in the new 

principal components space.  

Some practical applications of the scores plot provided by PCA include the 

detection of outliers and the visualization of possible clusters and trends in the data 

(e.g., similar samples coming from the same class are together, samples from 

different classes cluster separately, etc). PCA also provides a quick data quality 

check. For instance, if all QCs are clustered together in the PCA space, this means 

that batch effects are negligible. On the contrary, if there is an instrumental drift 

along the sequence or significant differences among different extraction batches, 

these differences will be probably pointed out in the scores plot. Figure 2.22 shows 

an example of a scores plot where different sample classes (one control, four 

different treatments and QCs) are clustered separately.  

 

Figure 2.22. Example of score plot of PCA with multiple sample types clustered together, including QCs.  

 

On the other side, from the loadings plot, it is possible to identify the most 

relevant variables (m/z values in MS analysis) that cause differences between the 

samples. Correlations between experimental variables can also be established. In the 

case of metabolomic studies, where direct analysis of MS data is performed, the 
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number of variables (m/z values) measured is much higher than the number of 

samples, normally from hundreds to thousands of m/z values. Hence, extracting 

information from loadings plot is much more complex than if a reduced number of 

variables was analyzed. However, after the application of the ROI approach (or even 

better after application of the combination of ROI and MCR-ALS), PCA analysis of 

peak areas can produce also useful information in the loadings plot. 

Classification or discrimination analysis 

Metabolomics is frequently based on comparing a minimum of two groups of 

samples, i.e., control versus treated or exposed. These groups of samples are already 

established from the experimental design and may differentiate the tested effects on 

the investigated samples (e.g., according to the treatment, or the time of exposure, 

etc). Supervised methods incorporate this information on different sample classes 

into the model and classify or discriminate between classes.  

Partial Least Squares Discriminant Analysis (PLS-DA) [306] is the 

discriminant method used in this PhD Thesis.  In PLS-DA, two inputs are required. 

The first, X, is the original data matrix (e.g., peak areas data matrix from MCR). The 

other, Y, is a vector or a matrix containing the information about the groups or sample 

types in the experiment. Although multiple class comparison can be performed 

simultaneously, in this PhD Thesis, all comparisons were by pairs (0 or 1 assigned, 

accordingly), incorporating only two classes by model (e.g., control and treated).  

The PLS regression model correlates both inputs, X and Y, with a bilinear model 

using as fewer components or relevant factors as possible (i.e., latent variables or 

LV). Figure 2.23 presents an example of the scores plot on the LVs, and the 

predictions of a PLS-DA model with two groups (control/treated) of three samples 

each.  

The PLS-DA latent variables are calculated in order to include the maximum 

covariance between the two inputs, and the weight matrix (W) is generated during 

regression. The weight vectors (wk) reveal which are the most relevant variables in 

the prediction or projection model, which can derive in the variables important in 

projection or VIP scores [307]. Hence, the most relevant variables have a higher VIP 

value. In this PhD Thesis, significant variables are associated with VIP values higher 

than 1. In PLS-DA, these variables with higher VIP values are the ones responsible 

for the differences between the groups and, therefore, provide potential exposure 

markers. Consequently, the identification of the metabolites that correspond to the 
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m/z values associated with the highest VIP values will be important to understanding 

the impacts produced by experimental factors.   

 

 

 

 

 

 

 

 

 

Figure 2.23. Example of the scores plot and predictions on a PLS-DA model. 

 

The validation of the results is crucial when building the PLS-DA model and 

choosing the number of LVs needed. The ideal case is to have a large number of 

samples to have two well-populated datasets: one for the calibration and other for 

validation. In the case of a fewer number of samples, cross-validation strategies 

should be employed. Among cross validation strategies, this PhD Thesis includes two 

cross validation strategies: leave-one-out (datasets with less than 20 samples) and 

random subsets (for more than 20 samples). During leave-one-out, data are 

separated in a way that one sample per each iteration acts as a test dataset, while 

the rest becomes the training set. In contrast, when using random subsets, the 

training set is divided randomly, and test dataset size varies with the total number of 

samples.  

There are two main parameters to assess the PLS-DA model quality related to 

the correct assignment of samples to their belonging groups, which are provided in 

the so-called ‘confusion’ matrix of the model [308]: sensibility and selectivity. 

Sensibility is related to the probability of correctly classifying one sample to the class 

it belongs to, whereas selectivity is the probability of correctly assigning that a 

sample does not belong to the class. There are four possible scenarios: true positives 

(TP), true negatives (TN), false positives (FP) and false negatives (FN), as 

summarized in Table 2.6. Treated or exposed classes are labelled positive (P) and 
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control class, negative (N). Hence, VP and TP refer to the correct predictions, 

whereas TN and FN refer to wrong predictions.  

Table 2.6. Matrix confusion for PLS-DA diagnostic.  

  
Calculated class 

Treated/Exposed Control 

Experimental class 
Treated/Exposed VP FN 

Control FP VN 

 

Both sensitivity and selectivity can be estimated from the confusion matrix 

parameters, as shown in Equations 5 and 6, respectively, and in both cases, the 

optimal scenario is that values are equal to 1.  

Equation 5    𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑽𝑷

𝑽𝑷+𝑭𝑵
 

 

Equation 6    𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝑽𝑵

𝑽𝑵+𝑭𝑷
 

A third parameter, called Matthews Correlation Coefficient (MCC), estimates the 

quality of the binary classification, and whose value should be in the range -1 and 1 

[309]. A coefficient of 1 represents a perfect prediction model, 0 is associated with a 

random prediction and -1 is assigned to a totally wrong prediction according to the 

observation. Equation 7 shows how MCC is calculated.  

Equations 7   𝑴𝑪𝑪 =  
𝑻𝑷×𝑻𝑵−𝑭𝑷×𝑭𝑵

√(𝑻𝑷+𝑭𝑷)(𝑻𝑷+𝑭𝑵)(𝑻𝑵+𝑭𝑷)(𝑻𝑵+𝑭𝑷)(𝑻𝑵+𝑭𝑵)
 

 

Clustering methods 

Apart from PCA, other clustering methods are designed to organize and 

characterize samples into groups by sets of variables. These methods aim to display 

the possible similarities and differences between groups of samples and variables 

and arrange them accordingly. Clustering methods can be grouped into hierarchical 

or non-hierarchical [305]. In this PhD Thesis, only hierarchical clustering methods 

have been employed.  

Hierarchical clustering analysis (HCA) methods are characterized by tree 

structures in which samples are nested according to their similarities at different 

levels. The main advantage is that prior information on the data is not required (i.e., 

they are unsupervised methods). The sample relationship arrangement can be 

performed bottom-up or top-down, depending on whether the trend is to join or 
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separate the samples. The usual output of these methods is a dendrogram, which is 

a tree-structured graph that groups samples according to their similarities. The 

distance between the objects is measured, and the groups are established from more 

to less similar, ending in a global and unique group. Heatmaps are also helpful tools 

to provide complementary information about the variables. For instance, peak areas 

values or fold changes (ratios exposed/control) with colors assigned by magnitude. 

Figure 2.24 shows an example of a combination of dendrogram and heatmap 

(clustergram), with a color scale based on the fold changes values of the features.  

 

Figure 2.24. Example of dendrogram plus heatmap, where the variables are clustered according to their 

similarities while the samples remained ordered by experiment. The color bar indicates the intensity of 

the fold changes (in red when the concentration of the variables higher in the treated samples than in 

the controls, and in blue, the opposite scenario).  

 

Statistical tests 

There are two main categories of statistical tests: univariate and multivariate. 

The first group is applied when only one variable is considered at a time, whereas 

the second group allows for the determination of contribution from multiple variables 

simultaneously.  

The two most common univariate methods are the T-test and analysis of 

variance or ANOVA. If data follow a normal distribution, then these two parametric 
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tests can be applied to evaluate differences between two or more groups of samples. 

Both determine if the mean of a variable (e.g., the concentration of a certain 

metabolite) is significantly different between sample groups or populations.  

T-test [310] compares the mean values of a variable between two groups of 

samples or two populations. On the other side, ANOVA [311] can be applied to more 

than two sample groups. The importance of the factors and their interactions are 

evaluated from a unique or univariate response (i.e., for each variable individually) 

rather than providing the significance of the factor for the whole set of variables 

simultaneously (see Table 2.7).  

Univariate tests are recommended when a reduced number of variables are 

studied, for instance, in targeted analysis. The interpretation of these tests is usually 

straightforward. However, when the number of hypotheses increases, the probability 

of making false positives (i.e., the mistaken rejection of a null hypoPhD Thesis, also 

called type I error) also augments.  In multiple hypoPhD Thesis testing, different 

corrections can be applied to avoid both overestimating (false positives) and 

underestimating (false negatives) significant variables. For instance, Bonferroni 

correction [312] reduces type I errors when several comparisons are performed in a 

single dataset. The new p-value is calculated by dividing the original p-value by the 

number of simultaneous comparisons performed. The main disadvantage is that this 

correction is too strict, and true positives can also be considered false positives. 

Another correction is the false discovery rate or FDR [313], which in a softer manner 

evaluates multiple hypotheses, and minimizes the number of false discoveries by 

reducing the number of false positives.  

Consequently, when hundreds or thousands of variables are evaluated 

simultaneously (a common situation in untargeted analysis), multivariate methods 

are preferred. Otherwise, univariate methods should be corrected to avoid the 

multiple hypothesis testing problem. 

Multivariate analysis of variance or MANOVA is a form of ANOVA applied in 

multivariate analysis [314]. This method allows the comparison of means from 

different samples when there are two or more dependent variables. However, the 

main drawback of MANOVA is that it cannot be applied in datasets where the number 

of variables is higher than the number of samples, which becomes impractical for 

metabolomic studies. Among the different approaches that have arisen in the recent 

years to overcome this limitation, the most successful ones are based on PCA 

analysis or similar techniques (e.g., Simultaneous Component Analysis, SCA), as is 

the case of the three multivariate statistical tests evaluated in this PhD Thesis: 
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ANOVA-simultaneous component analysis (ASCA) [315,316], Regularized 

Multivariate ANOVA (rMANOVA) [317], and Group-wise ASCA (GASCA) [318]. The 

comparison and evaluation of metabolomic results are included in scientific 

publication IV (Chapter 3). These three multivariate methods also allow detecting 

the relevant metabolites (or the m/z values of importance) associated with the 

factors from the design of the experiment (DOE), as summarized in Table 2.7. A brief 

explanation of each of these methods is given below.  

ANOVA-simultaneous component analysis or ASCA [315] is a powerful 

method when dealing with complex experimental designs (e.g., multiple experimental 

factors and variables). Therefore, it has been frequently used in metabolomic studies. 

ASCA combines the advantages of ANOVA with SCA. In ASCA, individual factors and 

their multiple interactions are analyzed to establish whether they are significant or 

not. If every factor level has the same number of replicates, the experimental design 

is known as balanced. The opposite case is called unbalanced and requires an 

alternative manner of calculating the sum of squares because factors can be 

correlated (i.e., are not orthogonal) [315].  

In the case that 3 factors are employed, the ANOVA model can be described with 

Equation 8: 

Equation 8            𝐗 =  �̅� + 𝐗𝐀 + 𝐗𝐁 + 𝐗𝐂 + 𝐗𝐀𝐁 + 𝐗𝐀𝐂 + 𝐗𝐁𝐂 + 𝐗𝐀𝐁𝐂 + 𝐄 

𝐗 refers to the original experimental matrix, and �̅� is the mean matrix of the original.  

𝐗𝐀, 𝐗𝐁 and 𝐗𝐂 are the matrices having the observed data variations due to the 

individual effects of the different factors, whereas the other matrices 

(𝐗𝐀𝐁, 𝐗𝐁𝐂 and 𝐗𝐀𝐁𝐂) are the matrices having the variations caused by the interactions 

of the factors involved. E is the residual matrix that contains the data variation not 

explained by the model.  

Equation 9 describes how SCA is applied in every factor and interaction, as follows: 

Equation 9 𝐗 =  𝐗 + 𝐓𝐀𝑷𝑨
𝑻 + 𝐓𝐁𝑷𝑩

𝑻 + 𝐓𝐂𝑷𝑪
𝑻 + 𝐓𝐀𝐁𝑷𝑨𝑩

𝑻 + 𝐓𝐀𝐂𝑷𝑨𝑪
𝑻 + 𝐓𝐁𝐂𝑷𝑩𝑪

𝑻 + +𝐓𝐀𝐁𝐂𝑷𝑨𝑩𝑪
𝑻 + 𝐄 

Each T and P factor matrices gives the scores and loadings of the different factors 

and interactions. Thus, the significance of the effects of every single factor and their 

interactions can be assessed, and the statistical relevance can be estimated with a 

p-value calculated with a permutation test (normally between 1000 and 10000 

permutations). The null hypothesis of the permutation test is that the factor does not 

produce any effect, and the alternative hypothesis is that the factor does have a 

significant experimental effect [305]. However, the main limitation of ASCA is that it 
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considers no correlation between the variables, which is not true in metabolomic 

studies, where the different variables are metabolites that can be associated with 

the same metabolic pathways. 

Regularized MANOVA or rMANOVA [317] is described as the weighted average 

between ASCA and MANOVA. rMANOVA establishes an optimal regulation factor 

(ranged between 0 and 1). If this factor is equal to 0, then the model is the same as 

a MANOVA model, but if it is equal to 1, the result is an ASCA model. rMANOVA 

models are placed in an intermediate situation (between o and 1), which is the most 

commonly encountered scenario. In practice, if compared to ASCA, rMANOVA 

assumes that variables can correlate (which provides a more realistic scenario). 

Compared to MANOVA, rMANOVA models are applicable when there are less 

samples than variables (the common case in metabolomics). The rMANOVA factors 

and interactions significance is also calculated with a permutation test, similarly to 

ASCA.  

Group-wise ASCA or GASCA [318] is a sparse implementation of ASCA, which 

means that can be applied in the presence of a large number of variables that do not 

present a response for some of samples (e.g., metabolites found in controls but not 

in treated samples, or viceversa) and, in the case, when variables are correlated. In 

addition, GASCA only considers the significant variables to be included in the final 

model, instead of considering all variables, like ASCA. GASCA replaces the PCA step 

of ASCA by group-wise PCA (GPCA), which simplifies the interpretation. Finally, 

significance of the factors and interactions is also evaluated by means of permutation 

tests.  

 

Table 2.7. Comparison of univariate, multivariate and classification methods regarding their ability to 

determine the statistical significance of factors from DOE considering all variables at the same time, 

and the significant variables associated with these factors from DOE.  

Statistical methods 

Statistical significance 

of factors from DOE for 

all variables 

simultaneously 

Identification of 

significant variables 

associated with factors 

from DOE 

Univariate methods 
ANOVAs ----- X 

T test ----- X 

Multivariate methods 

ASCA X X 

rMANOVA X X 

GASCA X X 

Classification methods PLS-DA - VIPs ----- X 
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3.1 Introduction 

As already mentioned, data analysis is still a major bottleneck in metabolomics. 

Hence, there is a need for tools that allow in-depth characterization of the 

increasingly bigger and more complex datasets.  This requirement is even more 

evident when LC×LC-MS is applied, in comparison, for instance, with LC-MS data. 

All in all, a considerable effort has been made in recent years to implement different 

chemometric strategies to deal with chromatography-mass-spectrometry datasets 

from different perspectives, such as method development and optimization, data pre-

processing and resolution, or compound discovery and annotation, among others [1].  

The metabolomic data analysis workflow usually presents three main steps [2–

4], as shown in Figure 3.1:  

1) Pre-processing methods that aim to reduce the dimensions of the datasets 

and enhance their quality. 

2) Resolution methods that obtain the spectra and elution profiles of the 

chemical constituents of a mixture.  

3) Post-processing methods, including several univariate and multivariate 

statistical, exploratory, feature detection or classification methods, that allow pattern 

recognition and their statistical inference.  

Although the second step is not as frequently emphasized as the other two steps 

in metabolomic studies, it is highly recommended in the case of overlapping signals 

in the analysis of complex mixtures. Besides, it provides qualitative and quantitative 

information about the analytes. This Chapter focuses on the contributions of this 

PhD Thesis to the metabolomic data analysis workflow, although the strategies 

proposed can be applied to any other field of study.  

The pre-processing step aims to compress huge datasets by applying filters on 

spectral and retention time modes, in addition to improve data quality by eliminating 

noise and baseline contributions and by aligning, modelling and smoothing 

chromatographic peaks. The regions of interest (ROI) strategy is proposed in this 

PhD Thesis as a pre-processing step. The main advantage of this procedure is the 

ability of compressing the large MS datasets in the spectral mode without losing 

spectral accuracy, on contraposition to other compression strategies such as binning 

[3], as discussed later in this Chapter.  



 

 
150 

 Chapter three 

 

Figure 3.1. Data analysis workflow proposed for metabolomic studies.  

 

Recently, or research group has launched the MSroi MATLAB GUI application 

that implements this ROI approach to mass spectrometry-based datasets [5]. The 

MSroi GUI has been employed in this PhD Thesis for filtering and compressing one 

and two-dimensional liquid chromatography coupled to mass spectrometry datasets 

(LC-MS and LC×LC-MS). More specifically, this software has been successfully 

applied in scientific publications III, IV, V, VI, VII. Its main functionalities are 

summarized in Figure 3.2. Firstly, this GUI allows the visualization of total ion 

chromatograms (TIC), as well as the generation of 2D contour plots in the case of LC

×LC-MS data. The elution profiles for each ROI can be examined in 1D or 2D 

formats. The preselected ROI should be further considered if it has an approximately 

Gaussian peak shape or discarded if not. Secondly, the data compression step can 

be performed both in the spectral or chromatographic(s) modes. In the case of this 

PhD Thesis, its main use has been the compression in the mass-to-charge (m/z) 

direction. The dimensionality of the datasets is reduced significantly by eliminating 

the m/z associated with instrumental noise, while keeping those signals above an 

intensity threshold. Discrete averaged m/z values for each ROI are obtained. Thirdly, 

each peak of each ROI can be integrated for all samples. Thus, quantitative 
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information is also provided by this software, as will be discussed in the following 

Chapter (in scientific publication VI).  

 

Figure 3.2. Functionalities of the MSroi GUI.  

 

The second resolution step aims to discover and quantify the different 

constituents present in the analyzed mixtures using a multivariate approach. This 

means that this resolution step involves multivariate signals, i.e., full scan mass 

spectrometry, where the whole MS spectra are acquired within a specific mass range. 

When univariate overlapped signals (i.e., signal intensities at individual m/z values 

or wavelengths in the case of ultraviolet-visible spectroscopy, UV) are resolved, then 

the deconvolution term is preferred. In the chemometrics field, two resolution 

methods are commonly proposed for the analysis of hyphenated chromatographic 

multivariate data, as shown in Figure 3.3: the multivariate curve resolution 

alternating least squares (MCR-ALS) method [6] and the parallel factor analysis 

(PARAFAC) method [7]. There is also a variant of this last method known as 

PARAFAC2 whose purpose is the processing of chromatographic-spectral data in the 

presence of retention time shifts of chromatographic peaks among samples [8]. The 

choice of the resolution method relies on the fulfillment of the trilinear model of the 

data analyzed [9]. For instance, PARAFAC will only produce satisfactory results from 

a chemical point of view if trilinear model requirements are totally fulfilled. This 

constraint implies that each resolved component is described by a single dyad of 

profiles in each mode. Instead, PARAFAC2 allows for the relaxation of the trilinear 

model requirements. Therefore, peaks of the elution profiles can be time-shifted in 

the different analyzed samples (chromatographic runs) [7,10,11]. In contrast, MCR-
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ALS is proposed for the analysis of data fulfilling a bilinear model, which can be easily 

adapted to datasets fulfilling a trilinear model, for all or only some of the components. 

MCR-ALS also allows the possibility of time-shifting and changes in shape of the 

resolved elution profiles. The MCR model can impose the fulfilment of the trilinear 

model in a much more flexible way than PARAFAC and even PARAFAC2 [12,13]. In 

scientific publication III, the application of the trilinear model to LC×LC-MS and 

LC×LC-UV data is assessed, and different resolution methods are compared, 

including PARAFAC, MCR-ALS with trilinearity constraint (trilinear approach) and 

bilinear MCR-ALS.  

 

Figure 3.3. Visualization of the decomposition of a LC×LC-MS sample according to PARAFAC or 

MCR-ALS methods.  

 

A wide variety of post-processing methods is currently available for metabolomic 

data, including unsupervised methods (e.g., principal component analysis, clustering 

methods or self-organizing maps), supervised methods (e.g., PLS regression-based 

methods, support vector machines), or pathway analysis methods (e.g., over-

representation analysis, functional class scoring, Gaussian graphical models) as 

reviewed in [14–16]. In this PhD Thesis, these post-processing methods were applied 

to the peak area data matrices obtained from the MSroi GUI, in the case of scientific 

publications IV, V and VI or to peak area data matrices after MCR-ALS resolution, 
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in the case of scientific publications VI and VII. Alternatively, in scientific 

publication VIII, the post-processing step was performed on the peak area data 

matrices provided by vendor software or other metabolomic software such as MS-

DIAL (see Chapter 5 for more details).  

The novelty of this PhD Thesis regarding post-processing analysis relies on the 

comparison of different ANOVA-based multivariate statistical methods in the 

framework of metabolomic studies. Statistical analysis is a critical step in 

metabolomics to assess the statistical differences between control samples and 

treated (or exposed) ones, according to the different factors included in the design 

of the experiment (DOE). In some cases, the simultaneous evaluation of multiple 

classes of treated samples is also pursued (e.g., several concentration levels). 

However, using the traditional approach for multivariate analysis of variance 

(MANOVA) presents serious limitations. The main problem is that this method cannot 

be applied if the number of variables exceeds the number of samples, which is the 

most common scenario in metabolomic studies [17]. For this reason, different 

approaches have arisen for overcoming this difficulty, such as ANOVA-simultaneous 

component analysis (ASCA) [18], regularized multivariate ANOVA (rMANOVA) [19] 

and group‑wise ANOVA simultaneous component analysis (GASCA) [20]. Besides, in 

metabolomic studies, it is also crucial to identify the significant variables related to 

the factors from DOE, which can be considered potential markers of the specific 

treatment or experimental condition. Therefore, the ability of these methods to select 

these variables was also investigated in scientific publication IV.  

Hence, an additional goal of this Chapter is to evaluate statistical methods for 

selecting the more significant variables (markers) in metabolomic studies.  
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3.2 Scientific publications 

This section includes scientific publications III and IV, with a brief 

introduction and discussion of each of them: 

SCIENTIFIC PUBLICATION III 

This publication focuses on the chemometric evaluation of high-dimensional data, 

i.e., LC×LC-MS, LC×LC-UV and LC×LC-UV-MS (fused data). The multilinear

behavior of the multidimensional chromatography data is assessed by considering: 

1) The comparison of the singular value decomposition (SVD) of the different

augmentation strategies.

2) The assessment of the core consistency diagnostic of the PARAFAC

decomposition.

3) The evaluation of the data fitting using MCR bilinear and trilinear approaches.

The resolving ability of the MCR-ALS method in the case of highly overlapping

signals is also tested for this type of data.

Lastly, due to the rather strong deviations of the trilinear model by LC×LC datasets, 

bilinear MCR-ALS is proposed as the most suitable resolution method for this type 

of data. The quality of the results obtained when (UV and MS) are simultaneously 

analyzed (data fusion) is also discussed.  

SCIENTIFIC PUBLICATION IV 

This publication aims to assess the performance of three statistical methods based 

on ANOVA for metabolomics studies: 1) ASCA, 2) rMANOVA, and 3) GASCA). The 

evaluation is performed according to their ability to determine whether a factor from 

the experimental design is statistically significant, and which are the most relevant 

variables associated with these factors. These variables are potential markers of the 

experimental factors (i.e., control vs treated), which can be a key aspect of 

metabolomic studies. These potential markers were compared with those obtained 

using the PLS-DA method, which is considered the reference method in metabolomic 

studies for selecting significant variables.  
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Figure S1. Scheme of the LC × LC–DAD–MS system, showing how valves change in 

subsequent modulations, from Position 1 to 2, and then 1 again, consecutively. 
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Figure S2. Gradients of the first (a) and second (b) dimensions (1D and 2D), 

increasing the percentage of the organic phase with time, AcN + 0.1% Formic acid, 

and AcN, respectively.  

Figure S3. SVD analysis of the different LC×LC datasets. (circle) MS data, (star) 

UV-vis data, (asterisk) fused MS and UV-Vis data. 
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Figure S4. 2D-LC chromatograms obtained for selected m/z values after the ROI 

compression. These chromatograms can be tentatively assigned to: a) Thiobarbituric 

acid; b) L-ascorbic acid; c) Estrone; and d) Amoxicillin. 
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MS-DIAL parameters 

Start up a project HILIC-HRMS method 

Ionization type Soft ionization 

Separation type Chromatography (LC) 

Method type Data dependent MS/MS 

Data type (MS1) Profile 

Data type (MS/MS) Profile 

Ion mode Negative ion mode 

Target omics Metabolomics 

Data collection 

MS1 tolerance 0.01 

MS2 tolerance 0.01 

Retention time begin 0 

Retention time end 20 

Mass range begin 50 

Mass range end 1700 

Maximum charged number 2 

Consider Cl and Br elements Unchecked 

Number of threads 20 

Execute retention time corrections Unchecked 

Peak detection 

Minimum peak height 500 

Mass slice width 0.1 

Smoothing method Linear weighted moving average 

Smoothing level 3 

Minimum peak width 5 

Exclusion mass list (tolerance: 0.01Da) 922.0098 

MS2Dec 

Sigma window value 0.5 

MS2Dec amplitude cut off 100 

Exclude after precursor Checked 

Keep isotope until 0.5 

Keep the isotopic ion w/o MS2Dec Unchecked 

Identification 

Retention time tolerance 0.5 

Accurate mass tolerance (MS1) 0.01 

Accurate mass tolerance (MS2) 0.015 

Identification score cut off 70 

Use retention time for scoring Unchecked 

Use retention time for filtering Unchecked 

Postidentification Not used 

Adduct 

Molecular species [M-H]-, [M+CH3OH-H]-, [M-H-H2O]- 

Alignment 

Retention time tolerance 0.05 
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MS1 tolerance 0.015 

Retention time factor 0 

MS1 factor 1 

Peak count filter 0 

N% detected in at least one group 0 

Remove feature based on blank information Unchecked 

Sample average / blank average 5 

Keep "reference matched" metabolite features Checked 

Keep "suggested (w/o MS2)" metabolite features Unchecked 

Keep removable features and assign the tag Checked 

Gap filling by compulsion Checked 

Isotope tracking 

Not used 

Metabolite Identification and significance 

Average 
Rt(min) 

Average 
Mz 

Metabolite name Adduct HMDB KEGG Chemical 
formula 

delta 
(ppm) 

13.99 104.036 Serine [M-H]- HMDB0062263 C00716 C3H7NO3 15.21 

13.69 118.052 Threonine [M-H]- HMDB0000167 C00188 C4H9NO3 13.57 

3.57 121.029 Benzoic acid [M-H]- HMDB0001870 C00539 C7H6O2 0.61 

10.93 124.009 Taurine [M-H]- HMDB0000251 C00245 C2H7NO3S 14.85 

11.04 128.036 Pyroglutamic acid [M-H]- HMDB0000267 C01879 C5H7NO3 12.12 

13.51 130.060 Creatine [M-H]- HMDB0000064 C00300 C4H9N3O2 9.08 

9.14 130.088 L-Leucine [M-H]- HMDB0000687 C00123 C6H13NO2 11.20 

6.91 135.031 Hypoxanthine [M-H]- HMDB0000157 C00262 C5H4N4O 3.81 

7.62 140.010 O-
Phosphoethanolamine 

[M-H]- HMDB0000224 C00346 C2H8NO4P 8.35 

10.96 146.047 L-Glutamic acid [M-H]- HMDB0000148 C00025 C5H9NO4 10.59 

10.94 152.083 N-omega-
Acetylhistamine 

[M-H]- HMDB0013253 C05135 C7H11N3O 6.00 

16.10 154.061 Histidine [M-H]- HMDB0000177 C00135 C6H9N3O2 5.79 

8.89 166.973 Phospho(enol)pyruvic 
acid 

[M-H]- HMDB0000263 C00074 C3H5O6P 11.97 

3.10 171.138 Decanoic acid [M-H]- HMDB0000511 C01571 C10H20O2 2.31 

12.56 174.038 N-Acetylaspartic acid [M-H]- HMDB0000812 C01042 C6H9NO5 11.13 

8.20 178.036 Isoxanthopterin [M-H]- HMDB0000704 C03975 C6H5N5O2 2.13 

10.39 180.064 Tyrosine [M-H]- HMDB0000158 C00082 C9H11NO3 8.82 

13.93 191.021 Citric acid [M-H]- HMDB0000094 C00158 C6H8O7 9.70 

10.96 196.070 N-Acetylhistidine [M-H]- HMDB0032055 C02997 C8H11N3O3 9.62 

4.88 218.100 Pantothenate 
(vitamine B5) 

[M-H]- HMDB0000210 C00864 C9H17NO5 13.29 

15.25 221.058 Cystathionine [M-H]- HMDB0000099 C02291 C7H14N2O4S 5.80 
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10.60 229.010 D-Arabinose-5-
phosphate

[M-H]- HMDB0011734 C01112 C5H11O8P 7.11 

12.77 259.019 D-Fructose-6-
phosphate

[M-H]- HMDB0000124 C00085 C6H13O9P 10.90 

3.91 261.134 9-(2,3-
dihydroxypropoxy)-9-

oxononanoic acid 

[M-H]- NA NA C12H22O6 0.59 

8.01 267.072 Inosine [M-H]- HMDB0000195 C00294 C10H12N4O5 4.81 

2.93 269.248 Heptadecanoic acid [M-H]- HMDB0002259 NA C17H34O2 0.95 

2.92 281.249 Oleic acid [M-H]- HMDB0000207 C00712 C18H34O2 5.07 

9.18 282.086 Guanosine [M-H]- HMDB0000133 C00387 C10H13N5O5 6.65 

8.20 303.080 N-
Acetylaspartylglutamic 

acid 

[M-H]- HMDB0001067 C12270 C11H16N2O8 10.03 

2.90 303.231 Arachidonic acid [M-H]- HMDB0001043 C00219 C20H32O2 3.68 

2.55 311.169 Triptophenolide [M-H]- NA NA C20H24O3 15.04 

9.18 323.029 Uridine-5-
monophosphate 

[M-H]- HMDB0000288 C00105 C9H13N2O9P 3.62 

2.55 325.185 Hydroquinidine [M-H]- NA C10696 C20H26N2O2 21.45 

8.74 346.055 Adenosine 
Monophosphate 

[M-H]- HMDB0000045 C00020 C10H14N5O7P 0.54 

9.63 347.041 Inosine 5'-phosphate [M-H]- HMDB0000175 C00130 C10H13N4O8P 4.47 

2.62 349.113 Estrone-3-sulfate [M-H]- HMDB0001425 C02538 C18H22O5S 5.47 

11.30 362.051 Guanosine 5'-
monophosphate 

[M-H]- HMDB0001397 C00144 C10H14N5O8P 1.26 

13.95 383.113 S-Adenosyl-
homocysteine

[M-H]- HMDB0000939 C00021 C14H20N6O5S 1.58 

11.11 426.023 Adenosine 5'-
diphosphate 

[M-H]- HMDB0001341 C00008 C10H15N5O10P2 2.32 

3.30 445.187 Estrone-3-(beta-D-
glucuronide) 

[M-H]- HMDB0004483 C11133 C24H30O8 2.13 

3.91 452.275 LPE(16:0) [M-H]- HMDB0011473 C05973 C21H44NO7P 5.40 

7.90 455.098 Riboflavin-5'-
monophosphate 

[M-H]- NA NA C17H21N4O9P 1.84 

11.63 579.025 UDP-D-Glucuronic 
acid 

[M-H]- HMDB0000935 C00167 C15H22N2O18P2 3.00 

10.04 606.076 Uridine 5'-diphospho-
N-acetylgalactosamine

[M-H]- HMDB0000304 C00203 C17H27N3O17P2 3.90 

13.50 611.146 Oxidized glutathione [M-H]- HMDB0003337 C00127 C20H32N6O12S2 3.05 

12.85 662.100 beta-Nicotinamide 
adenine dinucleotide 

[M-H]- HMDB0000902 C00003 C21H27N7O14P2 1.90 
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Control vs High - BPA exposure 

Metabolite name gasca asca rmanova vips selrat 

Serine 0.055 0.014 0.016 1.116 1.115 

Threonine 0.042 0.014 0.012 0.782 0.421 

Benzoic acid 0.066 0.003 0.093 1.577 2.583 

Taurine 0.062 0.004 0.022 1.389 2.079 

Pyroglutamic acid 0.015 0.006 0.015 0.308 0.058 

Creatine 0.067 0.050 0.037 1.609 4.084 

L-Leucine 0.040 0.058 0.013 0.791 0.384 

Hypoxanthine 0.058 0.077 0.007 1.255 1.527 

O-Phosphoethanolamine 0.069 0.004 0.049 1.714 5.543 

L-Glutamic acid 0.059 0.090 0.012 1.261 1.574 

N-omega-Acetylhistamine 0.062 0.007 0.018 1.398 2.091 

Histidine 0.051 0.214 0.058 0.930 0.682 

Phospho(enol)pyruvic acid 0.047 0.013 0.012 0.921 0.618 

Decanoic acid 0.037 0.001 0.034 0.732 0.367 

N-Acetylaspartic acid 0.055 0.191 0.003 1.130 1.129 

Isoxanthopterin 0.065 0.014 0.021 1.498 2.811 

Tyrosine 0.000 0.000 0.044 0.482 0.000 

Citric acid 0.008 0.003 0.021 0.216 0.007 

N-Acetylhistidine 0.000 0.000 0.000 0.000 0.000 

Pantothenate (vitamine B5) 0.052 0.007 0.032 0.989 0.786 

Cystathionine 0.051 0.004 0.023 1.004 0.916 

D-Arabinose-5-phosphate 0.054 0.004 0.042 1.074 1.002 

D-Fructose-6-phosphate 0.054 0.004 0.030 1.052 1.123 

9-(2,3-dihydroxypropoxy)-9-oxononanoic acid 0.066 0.002 0.020 1.570 3.902 

Inosine 0.061 0.077 0.067 1.343 2.034 

Heptadecanoic acid 0.003 0.000 0.013 0.077 0.000 

Oleic acid 0.033 0.023 0.035 0.668 0.259 

Guanosine 0.019 0.002 0.039 0.142 0.041 

N-Acetylaspartylglutamic acid 0.057 0.002 0.001 1.189 1.371 

Arachidonic acid 0.041 0.010 0.028 0.791 0.451 

Triptophenolide 0.072 0.022 0.082 1.896 11.294 

Uridine-5-monophosphate 0.054 0.010 0.003 1.066 0.986 

Hydroquinidine 0.071 0.022 0.056 1.807 7.589 

Adenosine Monophosphate 0.050 0.026 0.012 0.941 0.727 

Inosine 5'-phosphate 0.050 0.002 0.035 1.025 0.958 

Estrone-3-sulfate 0.000 0.000 0.000 0.000 0.000 

Guanosine 5'-monophosphate 0.059 0.012 0.009 1.277 1.751 

S-Adenosyl-homocysteine 0.040 0.001 0.042 0.769 0.431 

Adenosine 5'-diphosphate 0.061 0.004 0.006 1.311 2.139 

Estrone-3-(beta-D-glucuronide) 0.000 0.000 0.000 0.000 0.000 

LPE(16:0) 0.062 0.007 0.027 1.380 2.282 

Riboflavin-5'-monophosphate 0.046 0.001 0.037 1.164 0.653 

UDP-D-Glucuronic acid 0.000 0.000 0.000 0.000 0.000 
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Uridine 5'-diphospho-N-acetylgalactosamine 0.000 0.000 0.000 0.000 0.000 

Oxidized glutathione 0.026 0.001 0.005 0.447 0.111 

beta-Nicotinamide adenine dinucleotide 0.061 0.002 0.020 1.321 1.979 

Control vs High - E2 exposure 

Metabolite name gasca asca rmanova vips selrat 

Serine 0.016 0.003 0.003 0.192 0.024 

Threonine 0.013 0.003 0.021 0.214 0.018 

Benzoic acid 0.028 0.001 0.012 0.303 0.058 

Taurine 0.001 0.000 0.011 0.124 0.000 

Pyroglutamic acid 0.083 0.057 0.086 2.714 3.048 

Creatine 0.037 0.015 0.030 0.596 0.148 

L-Leucine 0.046 0.086 0.053 1.007 0.260 

Hypoxanthine 0.013 0.012 0.003 0.172 0.026 

O-Phosphoethanolamine 0.035 0.001 0.027 0.537 0.130 

L-Glutamic acid 0.014 0.012 0.016 0.213 0.027 

N-omega-Acetylhistamine 0.046 0.003 0.041 0.843 0.246 

Histidine 0.016 0.067 0.010 0.212 0.026 

Phospho(enol)pyruvic acid 0.059 0.009 0.062 1.409 0.550 

Decanoic acid 0.028 0.001 0.077 0.309 0.060 

N-Acetylaspartic acid 0.046 0.085 0.054 0.863 0.240 

Isoxanthopterin 0.031 0.004 0.022 0.449 0.098 

Tyrosine 0.028 0.008 0.020 0.457 0.093 

Citric acid 0.049 0.025 0.030 1.035 0.407 

N-Acetylhistidine 0.000 0.000 0.000 0.000 0.000 

Pantothenate (vitamine B5) 0.007 0.001 0.014 0.124 0.010 

Cystathionine 0.017 0.001 0.000 0.203 0.026 

D-Arabinose-5-phosphate 0.017 0.001 0.056 0.290 0.019 

D-Fructose-6-phosphate 0.061 0.004 0.059 1.479 0.568 

9-(2,3-dihydroxypropoxy)-9-oxononanoic 
acid 

0.032 0.001 0.020 0.454 0.101 

Inosine 0.058 0.043 0.099 1.503 0.499 

Heptadecanoic acid 0.063 0.002 0.059 1.571 0.793 

Oleic acid 0.051 0.032 0.028 1.031 0.435 

Guanosine 0.075 0.006 0.094 2.295 1.163 

N-Acetylaspartylglutamic acid 0.012 0.001 0.023 0.153 0.021 

Arachidonic acid 0.045 0.017 0.032 0.839 0.308 

Triptophenolide 0.015 0.001 0.007 0.207 0.025 

Uridine-5-monophosphate 0.075 0.015 0.133 2.199 1.096 

Hydroquinidine 0.015 0.001 0.004 0.204 0.025 

Adenosine Monophosphate 0.072 0.041 0.136 2.042 0.921 

Inosine 5'-phosphate 0.054 0.003 0.007 1.197 0.490 

Estrone-3-sulfate 0.096 0.133 0.304 3.703 12.059 

Guanosine 5'-monophosphate 0.041 0.006 0.044 0.706 0.185 

S-Adenosyl-homocysteine 0.001 0.000 0.012 0.141 0.000 

Adenosine 5'-diphosphate 0.055 0.002 0.053 1.212 0.418 
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Estrone-3-(beta-D-glucuronide) 0.090 0.027 0.165 3.242 4.013 

LPE(16:0) 0.078 0.004 0.115 2.384 1.304 

Riboflavin-5'-monophosphate 0.000 0.000 0.000 0.000 0.000 

UDP-D-Glucuronic acid 0.000 0.000 0.000 0.000 0.000 

Uridine 5'-diphospho-N-
acetylgalactosamine 

0.000 0.000 0.000 0.000 0.000 

Oxidized glutathione 0.037 0.002 0.040 0.543 0.166 

beta-Nicotinamide adenine dinucleotide 0.062 0.001 0.090 1.511 0.571 

Metabolite name MS/MS spectrum 

Serine 74.02399:561 

Threonine 74.0238:359 

Benzoic acid 77.03995:189 91.0181:190 92.02766:442 120.02243:191 121.02903:1640 

Taurine 124.00857:389 

Pyroglutamic acid 128.03227:187 

Creatine 88.03874:2153 

L-Leucine 130.08809:210 

Hypoxanthine 65.01337:739 66.01033:112 75.00942:237 92.02406:3123 133.01642:233 
135.0312:672 

O-
Phosphoethanolamine 

140.00606:104 

L-Glutamic acid 102.05522:1244 128.03622:227 

N-omega-
Acetylhistamine

58.03081:248 80.0386:370 81.04467:348 110.07127:2522 

Histidine 72.00764:115 80.03858:416 81.04465:173 93.04604:2083 102.13209:251 
108.055:127 110.07124:303 137.03307:116 154.06078:152 

Phospho(enol)pyruvic 
acid 

78.95869:5935 

Decanoic acid 171.13811:263 

N-Acetylaspartic acid 58.03087:857 70.03085:105 71.01293:147 78.95894:265 88.03902:903 
115.00421:117 130.04869:109 

Isoxanthopterin 65.0136:959 65.99932:158 90.01084:147 92.02438:112 108.0192:172 
135.03169:227 136.0145:1489 161.00896:385 178.03676:460 

Tyrosine 72.00779:120 106.0398:116 119.05033:1010 163.03937:358 

Citric acid 57.0336:493 67.01793:507 85.02973:821 87.00967:2033 111.00991:1083 

N-Acetylhistidine 59.01285:146 80.03868:257 81.04475:614 93.04615:919 108.05514:144 
110.07138:10294 134.07243:240 137.03728:305 154.06096:1416 

Pantothenate 
(vitamine B5) 

71.05093:312 80.96388:215 88.03913:1080 99.044:116 146.08057:568 

Cystathionine 120.01102:234 134.02832:410 

D-Arabinose-5-
phosphate

78.95895:1865 96.96817:856 138.98021:296 210.99992:143 

D-Fructose-6-
phosphate

78.95869:992 96.96785:2647 

9-(2,3-
dihydroxypropoxy)-9-
oxononanoic acid 

61.01776:109 125.09753:162 187.09627:282 

Inosine 92.02406:205 135.0312:6010 149.043:134 
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Heptadecanoic acid 57.03363:131 62.96278:130 102.9451:105 225.21893:123 269.24753:1423 

Oleic acid 136.09113:104 281.1395:112 281.24973:3310 

Guanosine 108.01913:275 133.0168:520 150.04198:5342 282.08002:258 

N-
Acetylaspartylglutamic 
acid 

58.02821:273 96.0097:860 102.05527:197 111.02082:185 128.03629:1366 
135.0316:265 146.04688:278 267.07159:332 

Arachidonic acid 59.01283:117 80.96375:122 259.24191:202 303.23126:561 

Triptophenolide 80.96382:104 130.76787:102 183.01089:337 274.88031:402 292.89182:100 
311.16962:9053 

Uridine-5-
monophosphate 

78.95889:2732 96.96809:2364 111.02078:456 138.9801:172 150.98003:271 
192.98659:159 210.99976:413 280.02075:156 323.02924:394 

Hydroquinidine 183.01089:245 243.10075:102 325.18484:8669 

Adenosine 
Monophosphate 

78.95895:4548 96.96818:1732 134.04842:605 150.98015:276 210.99994:308 

Inosine 5'-phosphate 78.95889:4734 96.96809:2148 135.03156:752 150.98003:358 210.99976:306 
347.04065:632 

Estrone-3-sulfate 80.96374:267 269.15643:866 349.11282:7065 

Guanosine 5'-
monophosphate 

78.95894:4997 96.96816:278 150.04202:260 319.04324:111 362.05048:840 

S-Adenosyl-
homocysteine

74.99174:231 86.99358:135 105.00195:121 134.04446:3510 188.03932:255 
248.05653:216 383.11285:576 

Adenosine 5'-
diphosphate 

78.95888:1511 134.04428:1015 158.92577:2074 272.95587:357 
328.04205:1452 408.00635:796 

Estrone-3-(beta-D-
glucuronide) 

59.01266:366 75.00942:180 85.02946:457 89.0219:155 99.00912:234 
103.00441:188 113.02363:2662 175.02048:729 269.15002:603 
445.18591:1197 

LPE(16:0) 140.00998:196 192.03139:124 196.03644:571 214.04646:124 255.22987:5888 
452.27475:1590 

Riboflavin-5'-
monophosphate 

78.95898:183 96.96822:1067 135.03171:125 198.99791:350 213.01517:185 
241.0712:107 255.08632:181 455.09024:245 

UDP-D-Glucuronic 
acid 

78.95869:212 158.92537:193 254.98592:499 305.01041:117 323.02841:1186 
384.98285:292 402.98886:3172 579.02325:2606 

Uridine 5'-diphospho-
N-acetylgalactosamine

158.92154:174 272.95612:108 282.03366:318 300.04654:228 362.00443:168 
384.98413:732 402.99023:295 606.07623:5290 

Oxidized glutathione 82.02901:103 128.03258:324 143.04376:127 177.03192:174 197.85272:119 
203.05011:175 254.07626:402 272.08826:1255 304.05777:672 
306.07623:6179 338.04431:682 482.10379:149 593.13129:134 
611.14722:4465 

beta-Nicotinamide 
adenine dinucleotide 

272.9559:191 328.04208:182 408.01337:243 426.02264:314 540.05621:6973 
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Range of signficance for each method and study: 

BPA C vs H analysis Max Min 

Vips 2.290 1.888 

Selectivity ratio (selrat) 224.512 6.061 

asca 0.589 0.026 

rmanova 0.908 0.100 

gasca 0.075 0.070 

E2 C vs H analysis Max Min 

Vips 3.7563 2.3191 

Selectivity ratio (selrat) 23.1375 1.4347 

asca 0.7836 0.0174 

rmanova 0.3672 0.1182 

gasca 0.0974 0.0759 
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3.3 Discussion 

This section discusses the results obtained in scientific publications III and IV. 

The different chemometric approaches for each of the steps of the data analysis 

workflow are assessed, and the most suitable ones are proposed for further use in 

future studies. At the end of this section, a brief discussion and prospects of the 

proposed workflow are included.   

3.3.1 Regions of interest for spectral compression 

Untargeted metabolomic datasets usually require a preliminary step of data pre-

processing, including filtering and compression prior to the analysis, due to their big 

size. This is especially crucial when high-resolution mass spectrometry (HRMS) is 

employed, as data reduction is mandatory before their analysis with desktop 

computers.  

Binning was the traditional data compression approach [21]. In this strategy, the 

m/z axis from the raw mass spectra is split according to specific bin sizes, i.e., a 

multiple of the mass accuracy of the mass spectrometer used is selected as bin size. 

The data is compressed and transformed into a data matrix. However, this binning 

approach has clear disadvantages. Mass spectral accuracy is usually significantly 

reduced when establishing the bins.  If bin sizes are too small, i.e., 0.001 m/z units, 

computation storage needs will be too big, and processing time will be very slow. On 

the other side if bin sizes are bigger, like 0.1 m/z units, computation times will be 

faster, but m/z resolution is lost. In addition, if the bin size is not selected properly, 

then several peaks can be merged into the same bin, increasing the noise level as 

well as the chances of neglecting small peaks. The opposite scenario should also be 

avoided. If the same peak is divided into different bins, the usual peak shape is lost, 

and the peak cannot be correctly determined. Thus, if data were acquired in HRMS 

mode, but bins are too large, the spectral accuracy is lost during the bin compression, 

and then the pre-processing step is counterproductive. Besides, it is often 

encountered that only binning does not allow a sufficient reduction in data 

dimensionality (especially if small bin sizes are used), and compression in the 

chromatographic time mode is also required (e.g., time-windowing [22] or wavelets 

[23]). On the one hand, time-windowing splits the chromatogram according to the 

retention time direction and the different fractions are analyzed separately, which 

increases the total analysis time. On the other hand, wavelets are another possibility 
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[23], which reduce the chromatographic mode into a new time scale without any loss 

of significant information, such as the intensities and shapes of the chromatographic 

peaks and their temporal location. Although useful for compressing and denoising, 

the wavelets approach adds an extra step to the binning process, which, again 

lengthens the whole data analysis workflow.  

As a general conclusion, binning is not recommended for the analysis of mass 

spectrometry data. In contrast, in the case of UV data, as the scan speed is high, the 

application of binning can be easily performed without any dramatic decreases in 

spectral resolution. As proved in scientific publication III, this can be an effective 

way to synchronize MS and UV datasets when performing data fusion.  

Other more suitable compression strategies have been considered for MS data, 

such as the regions of interest or ROI strategy. Compared to binning, the main benefit 

of the ROI strategy is that there is no loss of mass spectral accuracy [3]. In addition, 

no longer compression in the chromatographic mode is usually required afterwards, 

as the resultant ROI data matrices are enough compressed even in LC×LC-HRMS, 

where very large datasets are produced. A single LC×LC-HRMS file can be reduced 

from GB to MB with the ROI procedure. Besides. the ROI approach is also faster than 

binning if the intensity threshold is placed above the noise level.  

In recent years, the regions of interest approach has replaced the binning 

strategy for spectral compression in mass spectrometry-based metabolomics. It was 

initially proposed and included in the centWave algorithm of the XCMS software, 

probably the most popular algorithm nowadays for metabolomic pre-processing [24]. 

Thus, there is a need for software development to perform spectral compression for 

any MS data, including LC×LC-MS data. For the analysis of metabolomic data, pre-

processing can be performed directly on an LC×LC generic vendor software such as 

LC×LC Edition Software from GC Image™, or AnalyzerPro® XD from SpectralWorks. 

However, specific metabolomics software able to manage LC×LC data is, however, 

not very common. An exception would be MS-DIAL [25], although peak integration is 

performed only in a one-dimensional chromatographic basis, not recognizing multiple 

peaks (from the subsequent modulations) as the same compound. Moreover, an 

additional step of peak alignment is required in all this type of software. As stated in 

scientific publication III, LC×LC-MS does not usually fulfill trilinear model 

requirements. The practical implications of this model deviation are that peak shifts 

in both retention dimensions are commonly encountered. In the case of targeted 
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analysis, where all analytes are known a priori, it is relatively easy to check if the 

alignment has worked properly for all the compounds of interest. On the contrary, in 

the case of untargeted analysis, this checking is not straightforward. The advantage 

of the ROI strategy is that it does not need this previous chromatographic peak 

alignment of the data, and, therefore, this step can be avoided. Hence, the MSroi GUI 

proposes an alternative way for the analysis of MS data, including LC×LC datasets 

[5]. This application of the ROI procedure to untargeted LC×LC-MS metabolomic 

data has been successfully applied in previous studies from the research group 

where this PhD Thesis has been carried out [22,26]. In scientific publication III, the 

MSroi GUI is applied to LC×LC-MS, LC×LC-UV (only for importing into MATLAB 

purposes) and LC×LC-UV-MS (fused data). Analogously to binning, ROI also 

transforms the dataset (a data cube in the case of LC×LC-MS or LC×LC-UV data) 

into a column-wise augmented data matrix. The ROI strategy is adequate also for the 

data unfolding steps employed in the trilinearity assessment, which will be further 

described in the following section of this Discussion. 

3.3.2 Multivariate curve resolution alternating least squares as a 

resolution method 

The application of resolution methods required a preliminary investigation of 

whether the data follows an ideal trilinear behavior or not. Rutan and coworkers 

raised this question in their work on LC×LC-UV datasets, and deviations from 

trilinearity behavior were encountered  [27–29]. In these cases, retention time shifts 

between the different modulations (i.e., 2D chromatograms) within each sample and 

between samples were observed. The latter were observed when analyzing multiple 

chromatograms simultaneously. Hence, the use of PARAFAC is discouraged unless 

a peak alignment is performed before the analysis and trilinearity is tested 

beforehand. A semi-automated method was proposed by Allen et al. for peak 

alignment without a reference injection [27]. However, in the presence of strong 

coelutions, changes in the peak shape are commonly found, which are not solved 

with a mere alignment step. Consequently, approaches such as PARAFAC2 could 

also fail due to these changes in peak shape [30]. MCR-ALS was then proposed as 

a bilinear approach. The main advantage of this method compared to PARAFAC and 

PARAFAC2 is that it can deal with both intra-run and inter-run retention time shifts 

and peak shape distortions without any prior alignment or peak modelling, and only 
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spectra alignment and reproducibility are required (which is the general situation). 

Although MCR-ALS allows the application of a trilinearity constraint (trilinear model 

approach), a shift correction and modelling [12] could be implemented in the trilinear 

model approach. However, in the case of LC×LC, all the modulations corresponding 

to the same peak should be modelled, and this correction may fail.  

Despite the fact that the MCR-ALS bilinear model was preferred for LC×LC-UV 

datasets, the question of whether LC×LC-MS presented deviations from trilinearity 

was still an open question in the literature. A previous study evaluated the trilinearity 

behavior in the case of a specific region of a LC×LC-MS chromatogram. Results 

obtained with MCR (bilinear model), MCR (trilinear model), PARAFAC and PARAFAC 

2 were compared [9]. The quality of the model was evaluated, among other 

parameters, using the lack of fit (LOF) parameter, which asseses the fitting of the 

model, and the core consistency of the derived trilinear models (i.e., PARAFAC). 

Regarding the LOF, the lowest LOF values, and consequently the best models, were 

obtained for MCR-ALS as a bilinear model and PARAFAC2 (3% for both). The other 

models, i.e., MCR-ALS trilinear and PARAFAC, presented worse LOF values from 14% 

up to 21%. PARAFAC2 assumed a trilinear behavior allowing for peak shifting, but 

even using this approach the method did not properly model the LC×LC-MS 

chromatographic regions data. Significant deviations from trilinearity were found, as 

the core consistency diagnostic of PARAFAC was not 100% as expected for trilinear 

data, but significantly lower below (80%). These deviations were caused not only by 

retention time shifts but also by changes in the peak shapes. Although the core 

consistency of PARAFAC2 was 99%, this method presents serious disadvantages. 

One important difference between bilinear MCR-ALS approach and PARAFAC2 is 

that, until very recently, the second did not allow the applications of non-negativity 

constraints in the elution profile of the 2D separation, which led to profiles that were 

not easy to interpret compared to those resolved by the other methods. This fact had 

already been pointed out by different authors [31] in the analysis of liquid 

chromatographic data when coupled to UV and fluorescence detectors. In their work, 

Bortolato et al. describe PARAFAC2 limitations, such as that it cannot deal with peak 

distortions nor peak time shifts for coeluting compounds. Also, in the work of 

Navarro-Reig et al. [9], PARAFAC2 was not recommended for LC×LC, especially in 

the presence of interferences and coelutions. However, a recently published study 

showed a new implementation of PARAFAC2 in which non-negativity constraint can 

be imposed in the three modes [32], which was tested for fluorescence spectroscopic 
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data. The potential applications of this new version of PARAFAC2 for LC×LC data 

as well as of MCR-ALS trilinear allowing peak shifting are being explored at present. 

To confirm these results [9,27–29], the fulfillment of the trilinear model was 

assessed for LC×LC-MS and LC×LC-UV datasets (both detectors individually and 

fused) in scientific publication III. Figure 3.4 summarizes the three strategies 

employed:  

A) The comparison of the singular value decomposition, SVD, to the unfolded

three-way data in the three modes [33].

B) The evaluation of PARAFAC core consistency [34].

C) The assessment of data fitting and explained variance of bilinear and trilinear

MCR-ALS approaches [35].

Firstly, the results of the singular value decomposition (SVD) on the unfolded 

three-way data were evaluated. An LC×LC sample, regardless of which of the 

detectors is employed (MS or UV), can be unfolded in three different manners, 

according to the three modes of the three-way data cube, i.e., along with the 1D and 

2D chromatographic dimensions and the spectral mode (composed by m/z values or 

wavelengths). For instance, in the ROI strategy, the data is first arranged in a column-

wise data matrix with the common m/z values in the columns and the retention times 

at which MS spectra are acquired in the rows. All subsequent data modulations are 

concatenated vertically. In the ideal case that trilinearity was achieved, the SVD 

analysis of the three augmented data matrices would give the same number of 

significant singular values (chemical rank or mathematical rank in the absence of 

noise) [36]. The analysis of the SVD decomposition showed that in the case of LC×

LC-UV data, strong deviations from trilinear behavior were encountered because 

large differences were found for the three unfolding strategies tested. In contrast, 

only small deviations were appreciated in the case of LC×LC-MS. From the three 

unfolding strategies, the column-wise data matrix (i.e., the unfolding strategy 

employed in the ROI evaluation) was the option that led to a lower number of 

significant compounds for explaining the same percentage of variance. This behavior 

was found for both UV and MS datasets, although it was more accentuated for the 

first case (see blue graphs in Figure 3.4.A). These results agree well with previous 

results by Navarro-Reig, using this SVD approach to evaluate this type of data [9] 

and justify the unfolding strategy employed in the ROI procedure.  
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Secondly, the PARAFAC core consistency was evaluated. The trilinear behavior 

was only determined for small models (<3 components, see Figure 3.4.B), but the 

analyzed mixture was composed of 31 compounds. Therefore, a larger number of 

components was expected. A remarkable decrease in the core consistency when 

increasing the number of components was also reported in the previous work by 

Navarro-Reig et al. [9], which is explained by the fact that the trilinear model cannot 

describe well the evaluated data [34].  

Thirdly, bilinear and trilinear MCR-ALS approaches were compared. When the 

trilinearity constraint was applied, the explained variances decreased from 100% in 

a pure bilinear model to 60% and 40% for MS and UV, respectively (see Figure 3.4.C). 

This is a very large difference which cannot be only justified by overfitting in the case 

of using the bilinear model. In the case that a trilinear constraint is relaxed, allowing 

elution profiles to be shifted among modulations and samples (runs), the explained 

variance still diminished from 100% (bilinear) to 80% (trilinear), in agreement with 

the results reported by Navarro-Reig [9]. Since, in all cases, data fitting was 

worsening significantly from bilinear to trilinear modelling approaches for both 

datasets (i.e., LC×LC-MS and LC×LC-UV), it was finally decided that bilinear 

modelling performed better due to the lack of fulfillment of the trilinear model by the 

LC×LC data.  

Hence, the results agreed with those from Rutan and coworkers and our research 

group previous work. The lack of trilinearity is more tangible in the case of UV 

detection, but it is also present in LC×LC-MS data. Thus, bilinear MCR-ALS is 

recommended as a resolution method for LC×LC data.  
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Figure 3.4. Strategies for the evaluation of trilinearity of LC×LC-MS and LC×LC-UV and the outputs 

provided: A) comparison of the single value decomposition when different unfolding strategies are used; 

B) evaluation of PARAFAC core consistency; C) assessment of the data fitting and explained variances

of bilinear or trilinear MCR-ALS. Figure extracted from scientific publication III.  

MCR-ALS was therefore successfully applied to the resolution of LC×LC-MS, 

LC×LC-UV and fused LC×LC-UV-MS data, using a bilinear model for factor 

decomposition with a sufficient number of components to explain a significative 

amount of data variance. In all cases, non-negativity constraints were applied in both 

chromatographic and spectral modes, as well as spectral normalization. Unimodality 

constraint has also been used sometimes in the analysis of LC-UV data [28,37–39], 

but not needed in the case of LC-MS as unimodal elution profiles were usually 

already obtained directly, with little rotation ambiguity associated [6,40]. 

LC×LC-UV results resulted in fewer components due to the lack of selectivity 

compared to MS. In contrast, the fused UV and MS information required an increase 

in the number of components and, consequently, of identified compounds. The 

reason was that UV spectra of additional components could be finally resolved using 

the data fusion approach, thanks to the additional information provided by MS. The 

UV and MS fused data analysis also improved the quality of the MS profiles which 

were poorly resolved in the individual analysis of MS data. Hence, UV and MS data 

fusion provided more reliable qualitative and quantitative results due to improved 
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resolution of the component spectra. More information for the annotation of the 

resolved compounds was also available with this approach. Although this is a simple 

case example with a reduced number of known a priori compounds, the MCR-ALS as 

bilinear approach (i.e., no multilinearity constraint applied) was validated for the 

analysis of LC×LC-MS, LC×LC-UV and fused of LC×LC-UV-MS datasets in the 

study of more complex cases in untargeted metabolomic analysis of biological 

samples. Examples of applications of this bilinear method to LC×LC-MS data will 

be further described in the following Chapter, in scientific publications V and VI.  

3.3.3 Statistical assessment and variables selection for metabolomic 

datasets 

PLS-DA is the most employed method in metabolomic studies for discriminant 

analysis of different classes of samples (e.g., control versus treated) and to identify 

the variables that present significant changes between these classes (i.e., potential 

markers of the treatments). Other alternative methods include principal component-

discriminant function analysis (PC-DFA), support vector machines (SVM) and 

random forests (RF). A comparison among the four (including PLS-DA) has already 

been performed by Gromski et al. [41]. In scientific publication IV, the ability of 

three multivariate ANOVA-based methods to select these potential markers is 

evaluated. The goal of this study was to look for a statistical method that provided 

the significance of experimental factors and what were the significant variables 

associated with these factors, simultaneously. Figure 3.6 summarizes the main 

findings in scientific publication IV with an example of one of the evaluated datasets 

(metabolomic analysis of zebrafish embryos exposed to estradiol (E2)). On the one 

hand, the significance of “dose” factor is assessed (Figure 3.6.A). The PCA scores 

plot of these three sample classes (Control, High and Low) shows a clear 

differentiation between controls and the high dose, although controls and the lower 

dose cluster are very close. Consequently, Control vs High comparison was expected 

to be significant regarding “dose” factor (p-value lower than 0.05), which agreed with 

ASCA and rMANOVA but not with GASCA results. Differentiation between Control 

and Low samples is less evident, but as both sample classes cluster together, “dose 

factor” is less likely to be significant at this low level. ASCA results were the most 

reliable according to the observed PCA samples separation. On the other hand, the 

list of significant features that can be obtained with the different methods was also 
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evaluated (Figure 3.6.B). In this case, GASCA furnished the highest number of 

significant variables, in agreement with the first 50 VIP values from PLS-DA, with 

only two of these variables being not coincident. Eight and thirty-four variables were 

not matching for rMANOVA and ASCA, respectively. Thus, GASCA identified 

practically the same features as the PLS-DA method. These coincident results 

between GASCA and PLS-DA could be explained due to the ability of GASCA models 

to cope with the sparsity of the datasets.  

Figure 3.5. Comparison of the three multivariate ANOVA-based methods from two perspectives: A) the 

significance of the experimental factors and, B) the selection of the most significant variables 

associated with these factors.  

Figure 3.6 shows the main pros, caveats, and opportunities of these three 

multivariate ANOVA methods, according to the results obtained in scientific 

publication IV. Overall, ASCA is the most frequently used method in metabolomic 

studies, and it seems to be the most suitable for statistical assessment, but the less 

reliable for variable selection. GASCA is too strict in the evaluation of the statistical 

significance of the experimental factors, but it gives more reliable results in the 
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selection of the more important variables in agreement with the VIPs from PLS-DA 

model. Lastly, rMANOVA is an intermediate option that could profit from a 

compromise between the significance of the factors and the choice of the relevant 

features. A deeper study of these initial results with larger and more complex 

datasets should be performed to confirm them.  

Figure 3.6. Summary of the strengths, weaknesses, and opportunities of the three multivariate 

statistical methods tested on scientific publication IV:  ASCA, rMANOVA and GASCA. Figure extracted 

from scientific publication IV.  

The final workflow used in this PhD Thesis consisted of the combination of ASCA 

and the VIPs from PLS-DA for statistical assessment and variable selection, 

respectively. Both are reference methods for the mentioned purposes in metabolomic 

studies and due to the advantage of their ease of use, especially for instance when 

they are used in the PLS Toolbox (MATLAB) or online platforms specific for 

metabolomic studies such as Metaboanalyst [42,43], where these two methods are 

currently integrated. However, further work is still needed to implement rMANOVA 

or GASCA for routine metabolomic studies.  
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3.3.4 Future prospects in the data analysis workflow proposed for 

metabolomic 

The chemometric workflow described in this Chapter for metabolomic studies 

includes the following methods:  

1) The application of the ROI strategy for pre-processing mass spectrometry

data. 

2) The application of MCR-ALS for the resolution of one and two-dimensional

chromatographic datasets.

3) The combination of ASCA and PLS-DA for statistical assessment and

selection of potential markers.

Future improvements in the ROI step through the MSroi GUI would be related to 

the integration strategy for LC×LC datasets. Until now, peak areas have been 

calculated with MSroi GUI by summing the individual peaks from subsequent 

modulations corresponding to the same compound (i.e., associated with the same 

ROI). However, an integration of the pixels from the 2D plot associated with each ROI 

could be implemented, analogously to the integration performed by similar software 

for mass spectrometry imaging datasets [5]. Besides, until now, the targeted search 

with the MSroi GUI has been based only on looking for a list of the m/z values of 

interest (already created by the user before importing it to the MSroi GUI). Another 

useful functionality to incorporate into this GUI (for targeted analysis) would be the 

ability to search the most common adduct forms. The MSroi GUI could, for instance, 

calculate the m/z values of the adducts of interest (which could be selected by 

clicking in the MSroi main menu for each analysis, according to the mobile phase 

composition and ionization modes) by introducing the list of exact mass values of the 

compounds of interest. Therefore, a more automatic and straightforward workflow 

for targeted analysis could be implemented.  

Regarding the trilinearity of LC×LC datasets, deviations from an ideal trilinear 

behavior have been reported with the most common detectors, MS and UV. 

Consequently, the use of PARAFAC seems not recommended. However, the new 

possibilities of PARAFAC2 imposing a non-negativity constraint in the three modes 

proposed by Van Benthem et al. [32] are especially interesting for LC×LC. Current 

work is being pursued to evaluate the potential applications of this new version of 
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PARAFAC2 as well as of trilinear MCR-ALS (with a shift correction constraint) for the 

analysis of chromatographic data.  

In addition, data fusion of LC×LC-UV-MS datasets was validated for a simple 

case of one sample with a mixture of already known compounds. This fusion strategy 

could also be useful for more complex studies involving unknown compounds (i.e., 

untargeted analysis), as the complementary information from both spectral modes 

would significantly solve potential ambiguities in the compound annotation.  

Lastly, concerning the statistical evaluation of metabolomic datasets, further 

work is required to establish only one method able to provide significance of the 

experimental factors and associated the variables. On one side, it would be very 

interesting to look into the conditions of GASCA when determining whether a certain 

experimental factor is significant or not. On the other side, the reliability of rMANOVA 

for selecting potential markers needs to be further validated.  

3.4 Conclusions 

This section includes only the specific conclusions that are drawn throughout 

this Chapter about the chemometric strategies evaluated: 

Concerning pre-processing methods for filtering and compression: 

• The ROI approach allows the compression and filtering of any MS data,

without any loss of spectral accuracy and without the need for any prior profile

alignment.

• ROI unfolds the LC×LC-MS three-way data cube in a column-wise

augmented data matrix, keeping the m/z axis in the columns shared among

all simultaneously analyzed samples (one data matrix for each of them). In

contrast, retention times are set in the rows with the subsequent modulations

concatenated vertically.

• Binning can be only recommended when a UV detector is employed (e.g., LC

×LC-UV datasets). However, this binning step is usually not needed (UV data

are not as big as, for instance, high-resolution mass spectrometry data).



218 

Chapter three 

Concerning the resolution methods for LC×LC data: 

• LC×LC-MS and LC×LC-UV data showed deviations from the trilinear model.

• This unfolding strategy using the ROIMCR approach (see above) leads to a

better estimation of the chemical rank (mathematical rank in the absence of

noise) of the analyzed system and, therefore, to the correct number of

components related to different chemical constituents in the analyzed

samples.

• In general, bilinear MCR-ALS is adequate for the analysis of LC×LC data.

• MCR-ALS is able to analyze independently or simultaneously LC×LC-MS, LC

×LC-UV and LC×LC-UV-MS (fused) datasets without needing any prior

chromatographic peak alignment or peak shape modelling steps, even in the

presence of strong coelutions.

• Data fusion of multiple detectors can provide a more powerful resolution of

the sample constituents and an easier identification of the compounds

associated with each MCR-ALS component.

Concerning the multivariate statistical methods for metabolomic data: 

• Considering the three evaluated multivariate ANOVA-based methods, ASCA

results agreed the most with the expected outcomes, whereas GASCA was

too strict, and only some of the factors with lower p-values in ASCA were

considered significant.

• However, the identification of potential makers by GASCA was the most

congruent with the VIPs from PLS-DA.

• rMANOVA provided intermediate results between the good statistical

assessment of ASCA and the appropriate number of significant variables

identified by GASCA.

• The best standard workflow for the simultaneous statistical evaluation of the

factors and the appropriate variable selection is proposed to be the

combination of ASCA and PLS-DA results, which is also convenient due to

their widespread and ease of use.
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4.1 Introduction 

Liquid chromatography coupled to mass spectrometry (LC-MS) arises as the 

leading analytical technique in metabolomics thanks to its versatility and sensitivity. 

Nevertheless, in untargeted metabolomics, the number of analytes is significantly 

high, and many similar compounds are found (e.g., enantiomers or structural 

isomers) when biological matrices are involved. In these cases, the chromatographic 

separation provided by LC, even in ultra-high performance (UHPLC) mode, may not 

be enough. Hence, multidimensional analytical platforms have emerged in recent 

years as a potential solution to expand metabolome coverage thanks to the increased 

resolving power and selectivity  [1,2]. Besides, the peak capacity considerably 

augments when coupled to another orthogonal separation, which is especially useful 

in the case of complex samples, as exemplified in Figure 4.1. For instance, LC has 

been commonly combined in metabolomic studies with supercritical fluid 

chromatography (SFC) [3], ion mobility (IM) [4,5] or another LC separation with 

different chromatographic conditions or retention mechanisms, i.e., two-dimensional 

liquid chromatography (2DLC) [6].  

 

Figure 4.1. Visual exemplification of how multidimensional separations can increase metabolome 

coverage. 2DLC: two-dimensional liquid chromatography; IM: ion mobility; LC: liquid chromatography; 

SFC: supercritical fluid chromatography.  
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2DLC offers many possible combinations (see Figure 4.2) due to the wide 

variety of instrumental set-ups, retention mechanisms available, and parameters that 

can be optimized (e.g., stationary phases, the composition of mobile phases, salts 

and organic modifiers content, temperature, pH) [7]. This Chapter discussion aims 

to shed some light on the main challenges of the development and application of 

2DLC methodology in metabolomics studies. More specifically, this Chapter focuses 

on the online comprehensive mode (LC×LC) because it is especially appealing for 

untargeted analysis, where global metabolome profiling is pursued, and unknown 

compounds can be discovered. Reversed phase (RP) and hydrophilic interaction 

chromatography (HILIC) have been combined for the analysis of lipids and 

metabolites using RP×HILIC and HILIC×RP modes, respectively (see Figure 4.2). 

The suitability of each order depends on the analytes, as discussed later in this 

Chapter, together with the main analytical and instrumental difficulties encountered 

(e.g., solvent incompatibility between the two dimensions, reduced sensitivity due to 

the dilution in the 2D or long analysis time). In addition, active solvent modulation 

(ASM) [8] is suggested as a modulation interface for minimizing the cited problems 

and enhancing the separation.  

 

Figure 4.2. Summary of the instrumental set-ups available in 2DLC and retention mechanisms (the 

selected in this PhD Thesis are marked in green). LC-LC: heart-cutting; mLC-LC: multiple heart-cutting; 

sLC×LC: selective comprehensive, LC×LC: comprehensive; RP: reversed phase; HILIC: hydrophilic 

interaction; SEC: size exclusion; HIC: hydrophobic interaction; MM: mixed mode; IEX: ion exchange; IP: 

ion paring; AgLC: argentation.  
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Chemometric strategies that enhance the data analysis steps in a flexible and 

user-friendly manner are also discussed. The pre-processing of LC×LC datasets is 

performed by the regions of interest (ROI) approach implemented through a GUI 

interface [9] (see discussion section in the previous Chapter for more details). The 

main advantage of the ROI procedure for untargeted studies is that it allows a 

considerable reduction in the size of the datasets (e.g., in the case of LC×LC-HRMS 

data from tens of GB to only hundreds of MB). In the case of targeted analysis, the 

ROI approach (implemented via the MSROI GUI) allows selecting specific m/z values 

above the intensity evaluation. Besides, a strategy is suggested in this Chapter for 

the quantification in the presence of strong coelutions and unknown interferences, 

with and without the application of an area correlation constraint in the multivariate 

curve resolution alternating least squares (MCR-ALS) procedure. Some benefits of 

using this constraint are that they may help reducing rotation ambiguities in the case 

of the presence of unresolved strong chromatographic coelutions and that real 

concentration units can be derived directly from the iterative optimization results 

[10]. Besides, quantification can also be performed in the presence of unknown 

interferences in the samples (which were not present in the calibration mixtures), 

taking benefit from the second-order advantage [11]. 
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4.2 Scientific publications 

This section includes scientific publications V and VI, with a brief summary of 

each of them: 

SCIENTIFIC PUBLICATION V 

Global production of the endocrine disruptor bisphenol A (BPA) is still increasing 

nowadays, albeit this compound has been banned or strictly regulated in Europe. 

Consequently, unravelling its mode of action becomes a major issue. BPA is well-

known for its estrogenic effect, but there is a need to characterize the obesogenic 

effect of this endocrine disruptor chemical. Hence, lipidomics is a powerful approach 

to evaluate the changes in the lipidome produced by this compound. In this study, 

BPA exposure is assessed on zebrafish eleutheroembryos by using an optimized LC

×LC method for the untargeted analysis of their lipidome. The final method allowed 

the detection of changes in the lipidome caused by bisphenol A (BPA) and their 

comparison with the changes produced by an estrogenic control, the natural hormone 

17-ß-estradiol (E2)). The design of the experiment included: 

a) Two sampling days at critical stages of lipid absorption in eleutheroembryos, 

b) Three doses of exposure plus Control samples for BPA and E2,  

c) Two extraction protocols. 

The estrogenic and obesogenic effects of BPA in the lipidome are studied. 

SCIENTIFIC PUBLICATION VI 

Nowadays, there is a need for standardized quantification protocols for LC×LC-MS 

datasets that do not require specific vendor software. This work aims to compare 

different quantification strategies for LC×LC-MS datasets. Three approaches based 

on the ROIMCR method are considered:  

1) A calibration curve based on the areas for each m/z value from the ROI approach. 

2) A classic calibration curve from areas of the resolved MCR-ALS elution profiles.  

3) A calibration curve using the area correlation constraint during the iterative ALS 

optimization. 

Prior to approaches 2 and 3, the ROI intensity matrix is analyzed by MCR-ALS. The 

results from the three strategies were evaluated as an alternative workflow for the 

quantification of LC×LC-MS datasets. 
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0. Abstract 

Global production of the endocrine disruptor bisphenol A (BPA) is still increasing nowadays, 

albeit this compound has been banned or strictly regulated in Europe. Consequently, unravelling 

its mode of action becomes a major issue. BPA is well-known for its estrogenic effect, but there 

is a need for the characterization of the obesogenic effect of this endocrine disruptor chemical. 

Hence, lipidomics is a powerful approach to evaluating the changes in the lipidome produced by 

this compound. In this study, BPA exposure is assessed on zebrafish eleutheroembryos using an 

optimized two-dimensional liquid chromatography coupled to high resolution mass spectrometry 

(LC×LC-HRMS) method for untargeted analysis of their lipidome. The use of LC×LC provided 

a greater separation power than one-dimensional liquid chromatography, which allowed a better 

characterization of the zebrafish lipidome. In addition, the use of active solvent modulation 

(ASM) as interface between the two chromatographic dimensions enhanced the sensitivity of the 

LC×LC method as well as solvent compatibility between both chromatographic dimensions. The 

final method allowed the detection of changes in the lipidome caused by bisphenol A (BPA) and 

their comparison with the changes produced by an estrogenic control, the natural hormone 17-ß-

estradiol (E2)). The altered lipids for both EDCs seemed to be linked to the estrogenic effect of 

BPA. However, an obesogenic effect was also found for E2 exposure, which difficulted the 

characterization of the non-estrogenic effect caused by BPA.  

Keywords: LC × LC-HRMS, zebrafish, lipidomics, endocrine disrupting chemicals, 
chemometrics, bisphenol A 

 

Graphical Abstract 

 

1. Introduction 

Bisphenol A (BPA) is a synthetic chemical compound used mainly in the manufacturing of 

polycarbonates (65%), epoxy resins (28%), and flame retardants (7%) (Abraham and 

Chakraborty, 2019). Its environmental releases usually come from industrial effluents or plastic 
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wastes that end up in rivers when BPA is not fully removed in wastewater plants (Chakraborty et 

al., 2021; Sun et al., 2017; Wang et al., 2019). BPA is also present in daily life products such as 

thermal paper, or metal and plastic drinking bottles Banaderakhshan et al., 2022; Farooq et al., 

2021; Kovačič et al., 2020) and in indoor dust and air from daily frequented places (e.g., houses, 

offices, laboratories) (Caban and Stepnowski, 2020; Lee et al., 2021; Vasiljevic and Harner, 

2021). Although its use has been restricted in Europe and even banned, for example for its use in 

materials for baby bottles, sippy cups, and infant formula packaging (“COMMISSION REGULATION 

(EU) 2018/213”), global BPA production is expected to increase in the next ten years a 4.6% 

regarding the 2013-2019 period (“Bisphenol A (BPA) Market Size, Share, Industry Report 2030 

| ChemAnalyst,”). Besides, the Environmental Protection Agency (EPA) (“EPA - Risk 

Management for Bisphenol A (BPA),” states that BPA releases into the environment can exceed 

one million pounds per year. Therefore, BPA has been found in a variety of samples with 

concentrations up to 30 μg g-1 dry weight in fish tissues (Tao et al., 2021). In children, BPA levels 

have been reported with concentrations up to 2 μg L-1 in urine (Tkalec et al., 2021).  

BPA is a well-known endocrine disruptor chemical (EDC) (“EPA - Risk Management for 

Bisphenol A (BPA)”). This plastic additive can bioaccumulate and biomagnify through the food 

chain, causing severe damage to aquatic ecosystems and human populations (Pop et al., 2021; 

Wang et al., 2020). BPA produces an estrogenic effect (Ben-Jonathan and Steinmetz, 1998; Chen 

et al., 2002; Eramo et al., 2010; Heindel and Blumberg, 2019; Moon, 2019; Paris et al., 2002) 

because it mainly acts as agonist of estrogen receptors (Heindel and Blumberg, 2019; Mu et al., 

2018) but is also known for interacting with other receptors such as retinoid (Martínez et al., 

2018), estrogen-related gamma (Tohmé et al., 2014) and peroxisome proliferatoractivated gamma 

(Martínez et al., 2018). Apart from its well-known estrogenic properties, BPA has been shown to 

act as an endocrine disruptor chemical (EDC) by interfering with other signaling pathways of the 

endocrine system. For example, this compound is also classified as obesogenic (Santangeli et al., 

2018) since can be linked to obesity, adipogenesis, diabetes and cardiovascular diseases (Longo 

et al., 2020; Pérez-Bermejo et al., 2021; Silva et al., 2021). In addition, BPA also impacts on the 

immune system (Gear and Belcher, 2017; Sawai et al., 2003; Tkalec et al., 2021; Ishido et al., 

2004; Yamaguchi et al., 2006). Besides, other studies demonstrated that most of the effects caused 

by BPA exposure in development are not mimicked by an estrogenic control (Gould et al., 1998; 

Martínez et al., 2020c). Hence, BPA has multiple targets and effects, apart from its estrogenicity, 

capable of influencing multiple endocrine-related pathways. Altogether, despite the fact that the 

estrogenic activity of BPA has been widely studied (Cano-Nicolau et al., 2016; Chen et al., 2002; 

Eramo et al., 2010) more research is needed to characterize the non-estrogenic effect of this 

compound.   
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Lipidomics is a useful tool to study the changes in the lipidome caused by certain stressors 

and is especially appealing to characterize the obesogenic effect produced by BPA. The 

alterations in the lipidome due to BPA exposure have been previously assessed in liver cells 

(Marqueño et al., 2021), aquatic invertebrates (Fuertes et al., 2018), or rodents (Nguyen et al., 

2021). In this work, aquatic vertebrate zebrafish eleutheroembryos (Danio rerio) have been 

selected to unravel BPA exposure. Other omic studies have been carried out in zebrafish for this 

EDC before, such as metabolomics and transcriptomics (Huang et al., 2020; Martínez et al., 

2020c; Ortiz-Villanueva et al., 2018, 2017; Tian et al., 2021; Nguyen et al., 2021). In this work, 

aquatic vertebrate zebrafish eleutheroembryos (Danio rerio) have been selected to unravel BPA 

exposure. Other omic studies have been carried out in zebrafish for this EDC before, such as 

metabolomics and transcriptomics (Huang et al., 2020; Martínez et al., 2020c; Ortiz-Villanueva 

et al., 2018, 2017; Tian et al., 2021). A previous lipidomic study focused on the BPA exposure in 

zebrafish eleutheroembryos at the same concentration level for several days post-fertilization 

(Martínez et al., 2020a). The study presented here characterizes the BPA effects with a 

simultaneous comparison with an estrogenic control on early development stages of zebrafish and 

at various concentration levels of exposure. The aim is to untangle the mode of action of this 

EDC, from both the obesogenic and estrogenic points of view.  

In this work, a cutting-edge analytical methodology has been employed to increase the 

lipidome coverage (i.e., separate and identify isobaric lipids as well as increase the resolving 

power of current methods). A comprehensive two-dimensional liquid chromatography coupled to 

high-resolution mass spectrometry (LC×LC-HRMS) set-up has been optimized for untargeted 

lipid analysis, employing RP in the first dimension (1D) and HILIC in the second dimension (2D). 

The main advantage over previous LC×LC methods is the use of Active Solvent Modulation 

(ASM) as a valve-based interface between both dimensions (Stoll et al., 2017), applied for the 

first time for lipid analysis, which enhances analytical sensitivity and solvent compatibility 

between both dimensions, while reducing the total analysis time. Besides, a data analysis strategy 

for LC×LC datasets, usually the bottleneck of this type of analysis, is also proposed. The approach 

joins a first step of spectral compression by the regions of interest (ROI) approach for reducing 

the dimensionality of the data, and a second step of combined univariate and multivariate analyses 

approaches.  

The goal of this study is to characterize the effect of BPA exposure by comparing the changes 

in the lipidome caused by this EDC with an estrogenic control, the natural hormone 17-ß-estradiol 

(E2). To do so, our study exposed zebrafish eleutheroembryos from 2 to 6 days post-fertilization 

(dpf) to BPA and E2 in a dose-response manner and collected samples at 4 and 6 dpf for further 

lipidomic analysis. Two extraction protocols were employed for a broader lipid coverage (a 
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general lipid extraction and a sphingolipid-based extraction). Finally, the optimized RP×HILIC 

method with ASM as modulation interface, and the data analysis strategy for multidimensional 

datasets were used to determine changes in the lipidomic profiles of exposed animals and to shed 

some light on the mechanisms of action of BPA. 

 

2. Materials and methods 

2.1 Chemicals and reagents 

Bisphenol A (BPA, ≥99.0%), 17β-estradiol (E2, ≥98.0%, dimethyl sulfoxide (DMSO, for 

molecular biology, ≥99.9%), ammonium acetate (NH4Ac, ≥99.0%), acetic acid (HAc, ≥95.0%), 

calcium sulfate dihydrate (CaSO4·2H2O) and dibutylhydroxytoluene (BHT) were purchased from 

Sigma-Aldrich (St. Louis, USA). Chloroform (CHCl3 ≥99.0%) was provided by Carlo-Erba 

reagents, and formic acid (FAc, 50%) was purchased from Honeywell Fluka. HPLC grade water, 

HPLC grade methanol (MeOH) and HPLC grade acetonitrile (AcN) were supplied by Merck 

KGaA (Darmstadt, Germany). HPLC grade water used in HPLC analysis was obtained from a 

Merck-Millipore Milli-Q® system (Burlington, United States) ultra-filtration system. 

 Seven lipid standards from different families were used in this study, grouped into two mixes 

for extraction purposes. Phospholipids mix was composed by 17:0-17:1-17:0 D5 triglyceride, 

16:0 D31-18:1 phosphatidylethanolamine, 17:1 lysophosphatidylethanolamine, 17:1 

lysophosphatidylglycerol, Sphingolipids mix included 18:1-12:0 N-lauroyl-D-erythro-

sphingosine, 18:1-12:0 D-glucosyl-ß-1,1'-N-lauroyl-D-erythro-sphingosine, 17:1 D-erythro-

sphingosine. All these lipid standards were purchased from Avanti Polar Lipids (Alabaster, AL, 

US). For identification purposes, all seven lipids were jointed in a lipid standard mix and 

measured in the same conditions as the samples.  

2.2 Animal maintenance and rearing conditions  

Adult wild-type zebrafish (Danio rerio) were maintained under standard conditions: 28 ± 1 

°C, with 12 Light:12 Dark photoperiods, fed twice a day with dried flakes (TetraMin, Tetra, 

Germany). They were kept in fish water, composed of reverse-osmosis purified water, which 

contained 90 μg·mL−1 of Instant Ocean (Aquarium Systems, Sarrebourg, France) and 

CaSO4·2H2O (100 μg·mL−1). Eleutheroembryos from zebrafish were obtained by natural mating 

by placing five females and three males on 4-L breeding tanks, kept separated from adults through 

a bottom mesh. Eggs were collected and rinsed at 2 hours post-fertilization (hpf). At 24 hpf, the 

fertilized eggs were distributed randomly in 6-well multi-plates at a density of 3.3 embryos per 
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mL (10 individuals per well, in 3.0 mL) in clean fish water until the start of the exposures. All 

experiments were conducted in accordance with the institutional guidelines under a license from 

the local government (DAMM 7669, 7964) and approved by the Institutional Animal Care and 

Use Committees at the Research and Development Centre of the Spanish National Research 

Council (CID-CSIC). 

2.3 Zebrafish eleutheroembryos exposures and sample collection 

 A concentrated stock solution for each compound and intermediate diluted solutions for each 

concentration level were prepared at the beginning of the experiment in DMSO and kept at 4 ˚C. 

All working solutions were prepared by diluting the intermediate stocks and changed every day 

to ensure continuous exposure to the chemicals until embryo collection. In these solutions, DMSO 

was used as a vehicle at a final concentration of 0.2% in fish water (the percentage of DMSO that 

was also added to the control groups). Exposures started at 2 dpf (days post-fertilization) and were 

carried out until 6 dpf. Although the chemical stability of the working solutions for the two 

compounds was found stable for at least 48 h in the absence of any degradation agent (Jordão et 

al., 2016; Jürgens et al., 2002), water renewal was performed every day to ensure proper exposure. 

 The present study aimed to use concentrations under sub-lethal and low phenotypic effects at 

the morphological level. Based on previous studies (Martínez et al., 2020a, 2019; Ortiz-

Villanueva et al., 2017), a preliminary range-finding test was performed in which tested 

concentrations ranged from 26 to 43.8 μM for BPA and 8 to 12 μM for E2. A stereomicroscope 

was used to oversee eleutheroembryos development during exposure. Different parameters were 

controlled daily until its collection at 6 days post-fertilization (144 hpf), with an especial interest 

in the following rates: mortality/survival (from 24 hpf), hatching (from 72 hpf) and swim bladder 

inflation (from 96 hpf).  

 Based on these results and to perform the lipidomic study at concentrations that avoided 

possible molecular events related to cellular/organisms death processes, the highest levels of 

exposure were set to 26 μM for BPA and 8 μM and E2, and the rest selected to be comparable to 

previous lipidomic (Martínez et al., 2020a) and metabolomic (Ortiz-Villanueva et al., 2018) 

studies. Hence, the nominal concentrations were: 4, 18 and 26 μM for BPA, and 1, 4 and 8 μM 

for E2. Real concentrations (summarized in Table 1) were determined by triplicate preparing 

mock solutions and measured using liquid chromatography coupled to tandem mass spectrometry 

(LC-MS/MS), as explained in Supplementary Material A Section 2. Table 1 also expresses the 

% that represents the real concentrations regarding the nominal ones. Collection days were se 4 

and 6 dpf because they are critical stages of yolk sac reabsorption (Martínez et al., 2020a). Pools 
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of 10 eleuteroembryos per replicate were gathered for each biological replicate (n= 4), and 

samples were frozen at -80 ˚C until extraction.  

Table 1. Real concentrations of exposure determined by LC-MS/MS.  

Concentrations BPA E2 

Nominal (µM) 4 18 26 1 4 8 

Real (µM) 3.50 ± 0.07 22.3 ± 0.1 30.2 ± 0.1 0.83 ± 0.07 4.8 ± 0.1 7.4 ± 0.1 

% 87.5 123.9 116.2 83.0 120.0 92.5 

 

2.4 Lipid extraction 

2.4.1General lipid extraction 

The detailed protocol of the general lipid extraction can be found elsewhere (Martínez et 

al., 2020a). Briefly, it consists of a CHCl3:MeOH (2:1) extraction using BHT to avoid lipid 

oxidation. The procedure starts with the addition of 750 µL of a CHCl3:MeOH (2:1) solution with 

1% BHT to the frozen sample. Phospholipids extraction standards mix (10 μL at 20 μM, per 

sample) and 2 stainless steel beads (7 mm diameter) were also added. Samples were homogenized 

in the tissuelyzer LT Qiagen (Hilden, Germany) at 50Hz for 4 min. Other 75 µL of a 

CHCl3:MeOH (2:1) solution (without BHT) were added, and vortexed. The extract was 

transferred to a new Eppendorf with a glass pipette. Afterwards, the addition of 375 µL of saline 

solution (0.88% KCl) allowed a two-phases separation (organic phase at the bottom, and aqueous 

phase at the top), which were vortexed and centrifuged for 4 min at 14500 rpm and 4˚C. The 

organic phase was evaporated until dryness under nitrogen steam, resuspended in another 

Eppendorf in 800 µL of CHCl3:MeOH (2:1), centrifuged under the same conditions, and re-

evaporated. Finally, extracts were resuspended in 200 μL of CHCl3:MeOH (2:1), centrifuged and 

transferred to glass chromatographic vials. They were evaporated again until dryness and kept in 

an argon atmosphere at -80 ˚C until analysis. Prior to analysis, samples were resuspended in 100 

μL of AcN and the sphingolipids instrumental standards mix (5 μL at 20 μM, per sample) was 

added. Quality control (QC) samples were generated by pooling 50 μL of the fourth replicate of 

the extracted samples for each experimental condition. 

2.4.2Sphingolipids-based extraction 

The sphingolipid extraction was based on a combination of previously published protocols 

(Dalmau et al., 2015; Martínez et al., 2020a) with minor modifications. Briefly, frozen samples 

were homogenized in the tissuelyzer LT Qiagen (Hilden, Germany) for 4 min at 50Hz, after 

adding 60 µL of a CHCl3:MeOH (1:2) solution containing 1% BHT, the sphingolipids standards 
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mix (10 μL at 20 μM, per sample) and 2 stainless steel beads (7 mm diameter). Then, 60 µL of a 

CHCl3:MeOH (1:2) solution (without BHT) were added. After vortexing, the mixture was 

transferred to a glass vial using a glass pipette. The saponification step started with the addition 

of 50 μL of KOH 1M. Samples were sonicated for 15 min and then put in the oven at 37 ˚C for 2 

hours. Afterwards, 150 µL of CH3COOH 1 M were added to stop the saponification. Then, 200 

µL of CHCl3 and 375 µL of 0.88% KCl were added. Two layers were formed: the organic phase 

at the bottom, and the aqueous phase at the top. Samples were vortexed and centrifuged for 4 min 

at 14500 rpm and 4˚C. The organic phase was evaporated until dryness under nitrogen steam and 

resuspended in 8 µL of CHCl3:MeOH (1:2) in another Eppendorf. The new tubes were centrifuged 

under the same conditions, and re-evaporated. Another resuspension was performed in 200 μL of 

CHCl3:MeOH (1:2), followed by a centrifugation and transfer to glass chromatographic vials. 

Finally, extracts were evaporated again until dryness and kept in an argon atmosphere at -80 ˚C 

until analysis. Prior to analysis, samples were resuspended in 50 μL and the phospholipid 

instrumental standards mix (10 μL at 20 μM, per sample) was added. Quality control (QC) 

samples were generated by pooling 25 μL of the fourth replicate of the extracted samples for each 

experimental condition. 

2.5 LC×LC-HRMS analysis 

 Three biological replicates for each dose (Control, Low, Medium and High concentrations of 

exposure), day (4 or 6 dpf), treatment (BPA or E2 treatments) and extraction type (general or 

sphingolipid-based) were analyzed by LC×LC-HRMS. In addition, QC samples and blanks were 

incorporated along the sequence.  

 An RP×HILIC setting was employed for the LC×LC analyses. An Agilent Poroshell HPH C18 

(150 mm x 2.1 mm i.d., 1.9 m) was selected for the first-dimension separation, at a temperature 

of 50 ºC. Mobile phases of 1D were: A) 30 mM ammonium formate (pH 4.5), and B) ACN/IPA 

33.3:66.6 (v/v). Gradient composition and flow rate were established as follows (%B, flow rate 

mL/min): 0 min (70, 0.04), 60 min (90, 0.04), 75 min (100, 0.04), 110 min (100, 0.04), 111 min 

(70, 0.12), 118 min (70, 0.12), 119 min (70, 0.04), 120 min (70, 0.04) (110-120 min re-

equilibration step). The total chromatographic run was 120 min per sample.  

 A HILIC column was prepared in-house for the second-dimension separation, by slurry 

packing unmodified bare Zorbax silica (3.5 μm, 80 Å pore size) into a small column (20 mm x 

2.1 mm i.d.). 2D column was held at 40˚C. A flow rate of 2 mL min-1 was employed, and a passive 

flow splitting using a simple T-piece before detection with a split ratio of 1:2 (1 part to MS, 2 

parts to waste). Mobile phases of 2D were: A) 30 mM ammonium formate (pH 4.5), and B) pure 

AcN. Gradient composition expressed as % B was: 0 min (100), 0.22 min (100), 0.8 min (65), 
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1.00 min (100). Modulation time was set to 1 min, and the first 0.22 min corresponded to the 

ASM step (Stoll et al., 2017); the actual gradient time was 0.8 min. ASM dilution factor was 5.  

 A 6545XT AdvanceBio LC/Q-TOF (Agilent Technologies, Santa Clara, CA) mass 

spectrometer with an Agilent JetStream (AJS) electrospray ionization source in positive mode 

was employed. Full scan spectra were acquired from 100 to 1500 Da. The acquisition frequency 

was 125 ms/spectrum. Auto MS/MS was set for obtaining iterative fragmentations MS/MS of the 

QCs. The collision energy was 25 eV, the acquisition rate was 8 spectra/s. Precursors were sorted 

by abundancy only, and the scan speed varied with the precursor abundance (target 25000 

counts/spectrum).  

2.6 Data analysis 

A first compression step was applied to LC×LC-HRMS datasets, followed by multivariate 

analysis aiming to unravel the most significant effects of BPA and E2 in the lipidome of the 

zebrafish eleutheroembryos.  

2.6.1 Survival, hatching and swim bladder inflation rates 

Survival, hatching and swim bladder inflation rates were determined in 6 and 16 replicates 

per condition (ranging test and exposures for lipidomics, respectively) with a total of 10 

eleutheroembryos per replicate. Kruskal-Wallis followed by pairwise comparisons using the 

Wilcoxon rank sum test were performed to assess statistically significant differences (considering 

p-values < 0.05). Both statistical analysis and associated graphs were performed by tidyr (Hadley 

Wickham, Maximilian Girlich, 2016), stats (R Foundation for Statistical Computing, Vienna, 

2020), ggplot2 (Wickham, 2017), ggpubr (Kassambara, 2020) and grid (R Foundation for 

Statistical Computing, Vienna, 2020) packages in the R environment v.4.0.3 (R Foundation for 

Statistical Computing, Vienna, 2021), using RStudio (RStudio, Inc. and MA, 2018). 

 

2.6.2 Lipidomic analysis 

Data compression, filtering and normalization 

 Raw vendor LC×LC-HRMS data were converted to (.mzXML) format with the MS Convert 

GUI (Palo Alto, CA, USA) from the Proteowizard open-source software (Chambers et al., 2012). 

First, a signal threshold prefilter of absolute intensity higher than 100 was applied during this 

conversion, to reduce the number of low intensity m/z values associated with each retention time 

allowing a size reduction from 13 GB to approximately 1 GB per file. The MSroi procedure was 

selected for further data compression and filtering, implemented through the Msroi app (Pérez-

Cova et al., 2021). The regions of interest approach (ROI) applied to mass spectrometry data 

allows a spectral compression without any loss of spectral accuracy (Gorrochategui et al., 2019). 
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This strategy selects the most intense m/z values above an intensity threshold set by the user. The 

signals above this threshold are kept for further analysis, whereas the others are considered noise 

and, therefore, omitted. Other parameters are also required, for instance, related to the maximum 

spectral resolution of the mass spectrometer (i.e., mass error tolerance) or the minimum points 

needed to define a chromatographic peak within all samples (i.e., minimum occurrences). More 

information about the MSroi procedure and parameters is included in Supplementary Material 

A Section 3. Briefly, an m/z range of 400-1500 was selected, with a signal threshold of 6000, a 

signal factor of 4, a mass error tolerance of 0.1 Da, a minimum of 5 occurrences and the final m/z 

values for each ROI was calculated by the median of all values detected for this ROI. MSroi 

approach also provided the areas of each m/z (feature) as output. A total of eight datasets were 

compressed separately, according to EDC (BPA or E2), extraction (general or sphingolipid-

based) and exposure time (4 and 6 days post-fertilization).  

 Approximately 450 features (300 for the general extraction and 150 for the sphingolipid) were 

obtained for each day and EDC type. Days, EDC and extraction sets were then grouped into a 

single matrix with up to 567 unique features. This matrix was imported into R studio for the post-

processing analysis first steps, including outliers removal (in both dimensions, samples and 

features), replacing zeros with the minimum value of the corresponding feature and 

normalization. Areas were normalized according to the number of the zebrafish eleutheroembryos 

per sample and the measured surrogates and internal standards area values, with the aim of 

correcting possible instrumental drifts or extraction losses. Finally, the PQN mathematical 

normalization was applied. 

Statistical assessment, exploratory analysis, and discovery of potential markers of the exposure 

Once the normalized area matrix was obtained, post-processing strategies were applied 

to obtain an exploratory overview of the data and to identify features (lipids) affected by the 

exposures, being either common for both compounds or specific to each one. Univariate statistical 

assessment was performed with SPSS 27.0.1.0 (©Copyright IBM Corporation), and further 

multivariate analysis was carried out in MATLAB environment (Release 2020b, The Mathworks 

Inc, Natick, MA, US), using the PLS Toolbox 8.9.1 (Eigenvector Research Inc, Wenatchee, WA, 

US). First, a principal component analysis (PCA) was used for unsupervised exploratory analysis 

(Vidal et al., 2016). In the PCA scores plot, clusters of the biological replicates were expected 

and control samples should cluster separately from the higher doses of exposure. In addition, 

differences between collection days and even between control samples are also expected, due to 

natural biological changes in the lipidome at those stages of growth (i.e., more lipids from the 

yolk sac are absorbed at 6 dpf than 4 dpf). PCA was applied after a PQN and autoscaling 

normalization.  
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Next, ANOVA-simultaneous component analysis (ASCA) was employed for an initial 

multivariate statistical assessment. ASCA combines the multivariate analysis of variance method 

(for multiple variables) and the simultaneous component analysis (SCA) with the aim of 

modelling the effect of different factors defined in the design of the experiment (DoE). More 

details on ASCA principles and applications can be found elsewhere (Bertinetto et al., 2020; 

Smilde et al., 2005). ASCA was applied in this study, after a PQN and mean-centered 

normalization, to evaluate the significance of the concentration levels, days of exposure (4 and 6 

dpf) and EDC (BPA and E2). The statistical assessment was carried out via a permutation test in 

which 10,000 replicates were considered.  

The selection of the relevant variables was performed through ANOVA tests, considering 

four sets of samples: BPA-4dpf, BPA-6dpf, E2-4dpf, E2-6pdf. Each data set was composed of 

the three exposure doses for each EDC and control samples. A second filtering step was 

performed on the normalized matrix, keeping only the significant values from at least one of the 

four sets (p-values < 0.05).   

Hierarchical clustering analysis (HCA) combined with dendrograms and partition around 

medoids (PAM) clustering analyses were carried out on the matrix containing the relevant 

features, with the aim of identifying clusters of lipids presenting a similar behavior according to 

the different EDC exposure conditions. PAM and clustering analyses were both performed using 

the packages gplots (Gregory R. Warnes, Ben Bolker, Lodewijk Bonebakker, Robert Gentleman 

et al., 2020), fpc (Hennig, 2020) and cluster (Maechler, M., Rousseeuw, P., Struyf, A., Hubert, 

M., 2021) packages in the R environment v.4.0.3 (R Foundation for Statistical Computing, 

Vienna, 2021) using RStudio (RStudio, Inc. and MA, 2018). 

Lipid identification  

Lipid identification was focused on the m/z values associated with significant changes 

between treated and control samples, according to the ANOVA results.  

First, QCs with MS/MS information were loaded into the MS-DIAL software (Tsugawa et 

al., 2020). More information on the MS-DIAL parameters can be found in Supplementary 

Material A Section 4. Lipids were annotated based on MS/MS matches with MS-DIAL MS/MS 

spectral libraries (Tsugawa et al., 2020). Besides, retention time windows were determined for 

both dimensions according to the relative position of the lipid standard mix measured in the same 

conditions. Next, the proposed annotation was validated by comparison with available lipid 

libraries from the literature on zebrafish eleutheroembryos (Fraher et al., 2016; Martínez et al., 

2020a; Zhao et al., 2019) and LIPIDMAPS database (Fahy et al., 2009, 2007).  
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3. Results and discussion 

3.1 Zebrafish eleutheroembryos exposures 

Dose-ranging tests were carried out to set the highest concentration of the exposure ensuring 

working at sublethal doses with low morphological effects. The results from the different doses 

impact (see Supplementary Material Section A Figure 1) showed statistical differences in 

survival and hatching rates only for the highest BPA dose (44 μM) when compared to controls 

(Wilcoxon, p-values<0.05). Moreover, swim bladder inflation (SBI) rates were decreased at all 

tested doses for both BPA and E2 at 4 dpf, and only individuals exposed to 26 μM and 8 μM 

recovered to control rates at 6 dpf. Therefore, the lowest observed effect concentrations (LOEC) 

were set to 26 μM and 8 μM for BPA and E2, respectively. These results are in agreement with 

the previously reported by Martínez et al. (Martínez et al., 2020a, 2019, 2018). Hence, these 

LOECs were established as the highest doses selected for the lipidomic study.  

In the final exposure study, no statistical differences in survival and hatching rates were 

detected between controls and any exposed groups to BPA or E2. Conversely, a significant 

decrease in the swim bladder inflation rates was observed in all tested doses for both BPA and E2 

at 4 dpf, that was only recovered at 6 dpf in the individuals exposed to 4 and 18 μM of BPA and 

1 μM of E2 (see Figure 1). 

 

 

 

 

 

 

 

 

 

Figure 1. Effects of increasing concentrations of (A) BPA (4-26 μM) and (B) E2 (1-8 μM) on survival, 

hatching and swim bladder inflation (SBI) rates at 3, 4, 5 and 6 dpf. The mean value ± SD (standard 

deviation) is shown for each group (n=16 groups of 10 individuals each). A non-parametric test (Kruskal-

Wallis with Wilcoxon rank sum test for multiple comparisons, p-values < 0.05) was performed. Capital 

letters denote significant differences between days of development regardless of the treatment. Italic letters 

denote differences between concentrations within each developmental day. 
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3.2 Development of the RP×HILIC-HRMS method for lipid analysis 

The main advantage of an LC×LC method for lipid analysis in comparison with one-

dimensional liquid chromatography is that isobaric compounds can be separated according to 

different retention mechanisms. For instance, in RP, lipids are separated by their hydrophobicity 

(i.e., by the length of their chains and the number and positions of the double bonds), whereas 

HILIC separates by their hydrophilicity (i.e., polar head groups, characteristic of each lipid 

family) (Cífková et al., 2016; Holčapek et al., 2015a).  Hence, lipid resolution is considerably 

increased in an LC×LC set-up.  Previous works have pointed out the use of an RP×HILIC set-up 

(with RP in the 1D and HILIC in the 2D), which has been preferred due to its higher efficiency in 

the separation (Holčapek et al., 2015a; Xu et al., 2020). This is because, in RP×HILIC, the stress 

of the separation is on the hydrophobic part of the lipids, provided by the RP dimension, whereas 

HILIC provides a quick screening discriminating by lipid families. In the opposite set-up, a short 

RP separation as 2D may not be powerful enough to differentiate between similar compounds, at 

least in a comprehensive LC×LC mode. Hence, the configuration RP×HILIC has been selected 

in this work.  

One of the major improvements of the LC×LC method developed for this study regarding the 

already existing literature for lipid analysis is the use of ASM. ASM is a valve-based approach 

designed for improving solvent compatibility between both dimensions while enhancing global 

sensitivity (Stoll et al., 2017). More information on the followed ASM strategy can be found in 

Section 5 of Supplementary Material A. Thus, ASM allowed higher fractions of the 2D effluent 

to access the MS, with a split ratio of 1:2 (1 part to MS, 2 parts to waste) and the use of a bigger 

loop size (40 μL loops) to store 1D fractions before entering in the 2D column. Besides, the effluent 

from the 1D was diluted with 2D mobile phase composition before reaching the 2D column, which 

enhanced the retention in the 2D separation (the water content at the beginning of the 2D separation 

was drastically reduced, improving the retention of the most polar compounds in the HILIC 

column). Consequently, the total sensitivity was considerably increased, and the total analysis 

time was reduced, in comparison with other RP×HILIC approaches from the literature (Baglai et 

al., 2017; Holčapek et al., 2015b; Navarro-Reig et al., 2018; Xu et al., 2020).  

Another benefit of the proposed method developed regarding lipid identification compared to 

the previous study on BPA exposure in zebrafish embryos (Martínez et al., 2020a) is the use of 

MS/MS which allows more confidence in the identification step. Most lipids were annotated at 

level 2 (MS/MS information, exact mass and retention time from both dimensions) according to 

the confidence level of compound annotation re-defined in the Compound Identification 

workgroup of the Metabolomics Society in 2017 (Blaženović et al., 2018). 
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Figure 2 shows two LC×LC chromatograms represented by 2D plots obtained with the 

optimized method. Figure 2.A displays an example of a mixture of nine lipid standards. As it is 

shown, the main lipid families are well distributed in the 2D space. Three regions of compounds 

are appreciated in the HILIC separation, corresponding to three main groups of lipids according 

to their polarity. The first group can be associated with barely retained compounds in HILIC 2D, 

including ceramides, glucosylceramides, triacylglycerides, and diacylglycerides. The second 

group comprises phosphatidylethanolamines, and the third group is composed of 

phosphatidylcholines, sphingomyelins and lyso forms of the main glycerophospholipids (e.g., 

lysophosphatidylcholines, lysophosphatidylethanolamines, lysophosphoglycerols). Figure 2.B 

shows a 2D plot of a chromatogram measured for a control sample at 6 dpf. In the sample, there 

are very intense signals related to less retained compounds in HILIC (e.g., ceramides and 

triacylglycerides), but also from the third group according to Figure 2.A (e.g., 

phosphatidylcholines and sphingomyelins). Other less intense signals can be associated to the 

second group (e.g., phosphatidylethanolamines), or with lyso forms, at the very beginning of the 
1D separation (e.g., lysophosphatidylcholines).  

 

 

Figure 2. Examples of LC×LC chromatograms obtained for A) a lipid mixture of standards, and B) for a 

control sample at 6 dpf as collection day. The mixture of lipid standards (A) contained: 17:0 

monoacylglycerol (MG), 17:0 lysophosphatidic acid (LPA), 17:1 phosphatidylethanolamine (LPE), 17:1 

lysophosphoglycerol (LPG), 17:1 lysophosphatidylserine (LPS), 17:0 lysophosphatidylcholine (LPC), 1,3-

17:0 D5 diacylglycerides (DG), 17:0 cholesteryl ester (CE), 16:0 D31-18:1 phosphatidylethanolamine (PE), 

16:0 D31-18:1 phosphoglycerol (PG), 16:0 D31-18:1 phosphatidylcholine (PC), 16:0 D31-18:1 

phosphatidylserine (PS) and 1,2,3-17:0 triacylglyceride (TG).  
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3.3 Multivariate statistical assessment and exploratory analysis 

A first multivariate assessment of the different DOE factors was performed with an ASCA 

analysis. Three factors were evaluated: concentration of exposure (Control, 4, 18 and 26 μM for 

BPA; Control, 1, 4 and 8 μM for E2)), collection day (4 or 6 dpf) and EDC (BPA or E2). Both 

collection day and EDC factors were significant individually. Although the concentration was not 

significant considering the different doses of both EDC simultaneously, when analyzed 

separately, most of the combinations against control samples resulted significant (except 1 and 8 

μM, and the interaction between all doses for E2). These results are summarized in Table 2. 

Regarding multiple factors at a time, no interaction was considered significant.  

Table 2. ASCA results of statistical factors from the experimental design: concentration of exposure 

(Control, 4, 18 and 26 μM for BPA; Control, 1, 4 and 8 μM for E2)), collection day (4 or 6 dpf) and EDC 

(BPA or E2). 

Comparison by Conc BPA 4 dpf BPA 6 dpf By factor 

C - 26 0.0001 0.0001 Day 0.0001 

C - 18 0.0001 0.0001 EDC 0.0001 

C - 4 0.0001 0.0001 Conc 0.1554 

C - 4 - 18 - 26 0.0007 0.0015 By pairs of factors 

Comparison by Conc E2 4 dpf E2 6 dpf (Day) x (EDC) 1 

C - 8 0.5981 0.0001 (Day) x (Conc) 1 

C - 4 0.0001 0.0001 (EDC) x (Conc) 1 

C - 1 0.306 0.0001  

C - 1 - 4 - 8 0.0934 0.0001   

 

An initial exploratory analysis of all sets and all features (no filtering applied based on 

their univariate statistical significance) was performed using PCA. When the four sets were 

plotted simultaneously (see Figure 3.I), the separation of the samples provided by the first 

principal component (23% of variance) was performed regarding the EDC (BPA samples on one 

side, and E2 samples on the opposite side), whereas the second principal component separated 

the samples according to the collection day (19% of variance). Therefore, the four sets clustered 

separately. However, a closer look at each set individually gave more information on the 

distribution by exposure concentration level for each EDC. Figure 3.II shows the PCA scores 

plot for each of the sets: A) BPA-4dpf, B) BPA-6dpf, C) E2-4dpf, D) E2-6dpf.  
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Figure 3. PCA score plots for I.) the four sets analyzed together, and II.) all sets separately, corresponding 

to A) BPA-4pdf, B) BPA-6dpf, C) E2-4 dpf, D) E2-6dpf. 

In all cases, the explained variance of the first two principal components exceeded 50%. For BPA 

on both days, the second component separated the concentration levels in increasing order (C – 4 

– 18 – 26 μM). A similar trend was also found for the E2-6 dpf set (C – 1 – 4 – 8 μM), but from 

the first component. However, in the case of E2-4 dpf the best separation was found for C vs 4 

μM, instead of 8 μM. Therefore, the highest effect of E2 at 4 dpf was assigned to the medium 
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concentration, instead of the high dose, as could be expected. These results agreed with the 

previously obtained with ASCA. The previous trend was only observed for C – 1 – 4 μM, as the 

8 μM clustered very close to control samples.  

3.4 Selection of relevant features, lipid annotation and clustering analysis 

ANOVA analysis resulted in 143 unique relevant features from the four datasets (BPA-4dpf, 

BPA-6dpf, E2-4dpf, E2-6pdf). These compounds were then annotated (using MS-DIAL spectral 

lipid library) with a confidence level 2 regarding annotation guidelines from the Metabolomics 

Society from 2017 (Blaženović et al., 2018), as information about MS/MS spectra, RT and 

accurate mass were included. Some exceptions were only annotated with RT and accurate mass 

due to a lack of MS/MS reference spectra (level 3 annotation). Information on lipid annotation 

and fold-changes can be found in Supplementary Material.  

PAM analysis was performed on the relevant feature matrix. PAM provided five main clusters 

of lipids, as displayed in Figure 4. The first cluster (28 lipids) showed clear differences associated 

with the collection day regardless of the EDC. Lipids from this cluster were generally present at 

higher abundances at 4 dpf than at 6dpf. It is important to notice that natural differences between 

zebrafish eleutheroembryos occur at the two stages of growth studied. At 4 dpf lipids from yolk 

sac were not completely absorbed yet in non-exposed individuals, whereas this absorption was 

completed at 6 dpf (Martínez et al., 2020b). In addition to this tendency, this group also contained 

lipids for which the EDC exposure accelerated or slowed down the natural absorption, regarding 

control samples. The second, third, fourth and fifth clusters (44, 15, 33, 23 lipids, respectively) 

included lipids whose abundances were higher due to the following exposures respectively: BPA-

6pdf, E2-6dpf, E2-4dpf and BPA-4dpf. Hence, lipids from clusters 3 and 4 were related to 

estrogenic alterations, whereas lipids from 2 and 5 could be associated with specific effects from 

BPA exposure at different stages of growth. Table 3 shows the fold-changes values of the 

identified lipids at level 2 (with MS/MS matches), organized by cluster and by lipid family. Table 

3 shows that both EDC altered energy-related lipids (e.g., triacylglicerides (TG), 

lysophosphatidylcholines (LPC) and phosphatidylcholines (PC)), as previously reported 

(Martínez et al., 2020b). In addition, from this table it can also be observed that there are some 

lipids affected similarly for both EDCs. For instance, for both BPA and E2 exposures, some of 

the TGs from cluster 1 were more present in controls than in treated samples, with especial 

emphasis in the highest doses of exposure (i.e., these lipids were more consumed because of the 

treatment). This shared trend suggest that E2 may share some of the obesogenic effect of BPA, 

which difficults the characterization of the obesogenic effects of BPA.  
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Figure 4. PAM analysis including five main cluster of lipids. A root-mean-scale transformation and an 

autoscaling normalization was performed. B4: BPA-4dpf, E4: E2-4dpf, B6: BPA-6dpf, E6: E2-6dpf. 

Table 3. Fold-changes values of the significant lipids identified at level 2. Color bar: blue indicates higher 

values in control samples than in treated, whereas red is associated with lipids more present in treated 

samples than in controls. B4: BPA-4dpf, E4: E2-4dpf, B6: BPA-6dpf, E6: E2-6dpf, LPC: 

lysophosphatidylethanolamine, PC: phosphatidylcholine, PE: phosphatidylethanolamine, Cer: ceramide, 

TG: triacylglicerides, B4: BPA-4dpf, E4: E2-4dpf, B6: BPA-6dpf, E6: E2-6dpf, L: Low dose, M: Medium 

dose, H:High dose. 

Cluster Family Lipid B4_L B4_M B4_H E4_L E4_M E4_H B6_L B6_M B6_H E6_L E6_M E6_H 

1 

Cer Cer(34:1) 0.93 1.11 1.08 4.40 3.64 3.56 1.08 1.12 0.87 1.23 2.90 1.78 

PC 

LPC(16:0) 0.52 0.53 0.72 0.79 0.67 1.17 0.83 0.85 0.85 0.99 0.93 0.92 
PC(36:6) 1.00 1.05 1.11 0.79 0.87 0.88 1.52 3.72 5.60 2.53 9.11 13.18 
PC(41:6) 1.28 1.35 1.87 2.08 3.82 0.96 1.00 1.00 1.00 0.99 0.93 0.92 
PC(42:6) 1.14 1.10 1.10 0.71 0.84 0.83 1.08 1.81 3.99 1.01 1.49 1.58 

TG 

TG(53:2) 0.78 0.66 0.60 0.90 0.97 0.96 1.00 1.81 1.00 0.99 0.93 0.92 
TG(58:12) 0.86 0.73 0.70 0.77 0.75 0.75 1.00 1.00 1.00 0.99 0.93 0.92 
TG(58:6)  0.87 0.61 0.57 0.99 0.93 0.84 1.12 0.49 0.55 0.99 0.93 0.92 
TG(60:10) 0.88 0.74 0.67 0.93 0.90 0.75 1.20 0.64 0.75 0.45 0.35 0.00 
TG(62:12)  0.86 0.74 0.66 0.97 0.95 0.81 1.18 0.75 0.85 0.90 0.74 0.32 

2 

Cer Cer(42:2) 1.05 0.96 1.03 0.91 0.84 0.75 0.71 0.54 0.65 0.99 0.93 0.92 

PC 
LPC(18:2) 1.09 1.12 1.14 1.57 0.93 0.96 0.44 0.73 0.83 0.99 0.93 0.92 
LPC(18:0) 1.05 0.96 1.03 0.97 0.93 0.96 2.10 8.66 24.07 0.99 0.93 0.92 

TG TG(62:13) 0.87 0.74 0.65 0.97 0.93 0.96 1.13 0.73 0.82 0.35 0.15 0.33 

3 

PE PE(O-40:8) 1.05 0.96 1.03 4.78 3.69 0.96 1.00 1.00 1.00 0.94 0.86 1.14 

PC 

PC(35:1) 1.05 0.96 1.03 6.53 6.49 2.26 1.00 1.00 1.00 1.08 1.30 1.36 
PC(36:3) 1.05 0.96 1.03 0.97 0.93 0.96 1.00 1.00 1.00 2.83 4.18 2.37 
PC(38:2) 1.05 0.96 1.03 0.97 2.16 0.96 1.00 1.00 1.00 2.23 2.90 2.83 
PC(42:8) 1.05 0.96 1.03 0.97 0.93 0.96 1.00 1.00 1.00 1.21 2.68 3.08 

TG TG(57:7) 0.73 0.47 0.44 0.98 0.93 0.83 1.00 1.00 1.00 0.64 0.76 0.78 

4 PC 
PC(36:2) 1.05 0.96 1.03 2.86 5.02 2.62 1.00 1.00 1.00 0.99 0.93 0.92 
PC(32:1) 1.72 3.17 1.03 2.28 2.43 0.96 1.00 1.00 1.00 0.99 0.93 0.92 

5 
PC PC(38:5) 4.50 4.35 4.17 0.97 0.93 0.96 1.00 1.00 1.00 0.99 0.93 0.92 
TG TG(50:2) 0.99 0.94 1.04 1.27 2.09 0.96 1.00 1.00 1.00 0.99 0.93 0.92 
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4. Conclusions 

The BPA impact was characterized from a lipidomic point of view by comparing the caused 

alterations with an estrogenic control, E2. An RP×HILIC-HRMS method was developed for the 

analysis of the zebrafish eleutheroembyros lipidome at early growth stages. The use of ASM 

enhanced sensitivity and solvent compatibility between mobile phases while reducing the total 

analysis time. Besides, the MS/MS information obtained contributed to a more confident lipid 

annotation.  

Regarding the EDC exposure, the lowest observed effect concentrations (LOEC) were 26 

μM and 8 μM for BPA and E2, respectively, because no statistical significance was found for 

survival and hatching during the whole stage of growth (up to 6 dpf). The statistical assessment 

of the different factors from the experimental design (dose of exposure, collection day and EDC) 

showed that all tested doses were significant for both EDC at 6 dpf, but only for BPA at 4 dpf. 

These results were in agreement with exploratory analyses, where a clear differentiation of control 

and treated samples was observed for BPA at both days, and for E2 at 6dpf, but not at 4 dpf.  

The significant lipids obtained from a multiple dose comparisons (for each day and EDC) 

were selected for further analysis and biological interpretation. These lipids were clustered, each 

of them associated with the exposure of an EDC on a certain day, plus an extra cluster that collects 

the differences between both collection days. The altered lipids for both EDCs seemed to be 

linked to the estrogenic effect of BPA. However, an obesogenic effect was also found for E2 

exposure, which difficulted the characterization of the non-estrogenic effect caused by BPA.  
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1. Zebrafish eleutheroembryos ranging tests for BPA and E2 exposure  
 
 

 

Figure S1. Effects of increasing concentrations of (A) BPA (26-44 μM) and (B) E2 (8-12 μM) on survival, 

hatching and swim bladder inflation (SBI) rates at 3, 4, 5 and 6 dpf. The mean value ± SD (standard 

deviation) is shown for each group (n=6 groups of 10 individuals each). Non-parametric test (Kruskal-

Wallis with Wilcoxon rank sum test for multiple comparisons, p-value < 0.05) was performed. Lower cap 

letters denote significant differences between all possible comparisons (within day and dose). Capital letters 

denote significant differences between days of development regardless of the treatment. Italic letters denote 

differences between concentrations within each developmental day.  

 

2. Determination of real concentrations of exposure 

 

BPA and E2 real concentrations of exposure were determined by a LC-MS/MS method  

(Silcock et al., 2013) with minor modifications. A calibration curve for each endocrine disrupting 

chemical was prepared with the proper dilutions of the concentrated stocks (BPA: 0.44-70 μM; 

E2: 0.1-22 μM).  

Chromatographic separations were carried on an Acquity UHPLC system (Waters, Milford, MA, 

US), using an Acquity BEH C18 (2.1 x 50 mm; 1.7 μM) from Waters (Milford, MA, US), at 40 

˚C. Mobile phases employed were: A) MeOH, B) 0.05% NH4OH (aqueous). Elution gradient 

started at 35% of A, increased until 65% A in 2.5 min, reached 70% at 3.5 min, returned to initial 



 

 

 Development and applications of LC×LC methodology for metabolomic studies  

257 

conditions at 3.6 min, and held until 5 min. Flow rate was set at 0.4 mL/min, Injection volume 

was 10 μL, and the temperature of the autosampler was 10 ˚C. 

A Xevo TQS, Acquity Waters (Mildford, USA) was employed as detector for LC-MS/MS 

analysis, in ESI negative mode. MS conditions were capillary voltage 2 kV, desolvation 

temperature 500 ˚C, desolvation gas flow 1000 L/hour, cone gas flow 150 L/ hour. Full scan mass 

range was set from 50 to 300 Da, with a scan time of 0.3. MS/MS analysis was performed in 

MRM mode, with the following parameters: 

 

Compound Nominal mass Precursor ion Product ion Cone (V) 
Collision energy 

(eV) 

BPA 
228 227.1 133 31 25 

228 227.1 212 31 17 

E2 
272 271.2 183.1 51 35 

272 271.2 145.1 51 40 

 

3. Regions of interest (ROI) strategy for spectral compression 

 

ROI is a spectral compression strategy based on the selection of m/z values with intensities 

higher than a certain signal-to-noise ratio (SN threshold) among the different chromatograms of 

each dataset. ROI also considers a mass error tolerance, related to the mass accuracy of the mass 

spectrometer, and a minimum number of occurrences, required for defining a chromatographic 

peak. A factor can also be set to establish an intensity threshold low, but only considering the 

features whose intensities are a multiple of this factor (e.g. min max 2, means features kept have 

intensities at least twice the SN threshold). ROI m/z values are searched for each retention time, 

and the final value will be the mean (or the median) of all the values corresponding to the same 

chromatographic peak. If an m/z value is detected for some samples but others no, then non-

present ROIs will be set to a low random intensity value at the noise level. With this strategy, the 

original m/z vector is reduced for all samples simultaneously; the new vector is composed of 

discrete m/z values. In this work, ROI strategy was applied through the MSroi app (Pérez-Cova 

et al., 2021a).  ROI parameters were set to 400-1500 (m/z range), 6000 (threshold), 0.1 Da/e (mass 

accuracy), 5 (minimum occurrences) and m/z final values calculated by the median of the values 

for each chromatographic peak. 

The main outputs of the ROI procedure are: A) a column-wise data matrix containing the 

intensities of the m/z values selected for each of the retention times from both dimensions, and B) 

a vector with the actual m/z values of relevance. The ROI augmented data matrices dimensions 

were, in the rows, the total number of elution times considered in the whole set of samples and 
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for both dimensions, and in the columns, the total number of relevant m/z values of each ROI. 

Due to the huge size of the LC×LC datasets (1Gb per sample), ROI analysis was performed 

separately to eight different datasets, as shown in the following table: 

 

Dataset EDC Day post-fertilization Extraction Concentration levels 

1 BPA 4 General C-L-M-H 

2 BPA 4 Sphingolipids C-L-M-H 

3 BPA 6 General C-L-M-H 

4 BPA 6 Sphingolipids C-L-M-H 

5 E2 4 General C-L-M-H 

6 E2 4 Sphingolipids C-L-M-H 

7 E2 6 General C-L-M-H 

8 E2 6 Sphingolipids C-L-M-H 
 

For more information about ROI strategy, see (Gorrochategui et al., 2019; Pérez-Cova et al., 

2021a), and more specifically about 2DLC data on the review (Pérez-Cova et al., 2021b). 

 

4. MS-DIAL parameters for lipid identification 

 

In the following table all parameters employed in MS-DIAL are listed:  

Start up a project RP×HILIC-HRMS method 

Ionization type Soft ionization 

Separation type Chromatography (LC) 

Method type Data dependent MS/MS 

Data type (MS1) Centroid (centroided in Proteowizard) 

Data type (MS/MS) Centroid (centroided in Proteowizard) 

Ion mode Positive ion mode 

Target omics Lipidomics 

Data collection   

MS1 tolerance 0.01 

MS2 tolerance 0.01 

Retention time begin 0 

Retention time end 120 

Mass range begin 100 

Mass range end 1500 

Maximum charged number 2 

Consider Cl and Br elements Unchecked 

Number of threads 20 

Execute retention time corrections Unchecked 

Peak detection   
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Minimum peak height 10000 

Mass slice width 0.1 

Smoothing method Linear weighted moving average 

Smoothing level 3 

Minimum peak width 5 

Exclusion mass list (tolerance: 0.01Da) 922.0098 

MS2Dec   

Sigma window value 0.5 

MS2Dec amplitude cut off 100 

Exclude after precursor Checked 

Keep isotope until 0.5 

Keep the isotopic ion w/o MS2Dec Unchecked 

Identification   

Retention time tolerance 100 

Accurate mass tolerance (MS1) 0.01 

Accurate mass tolerance (MS2) 0.01 

Identification score cut off 80 

Use retention time for scoring Unchecked 

Use retention time for filtering Unchecked 

Postidentification Not used 

Adduct   

Molecular species 
[M+H]+, [M+NH4]+, [M+Na]+, 
[M+CH3OH+H]+, [M+H-H2O]+, [M+2Na-H]+, 
[2M+H]+ 

Alignment   

Retention time tolerance 0.5 

MS1 tolerance 0.015 

Retention time factor 0.2 

MS1 factor 0.8 

Peak count filter 5 

N% detected in at least one group 5 

Remove feature based on blank information Unchecked 

Sample average / blank average 5 

Keep "reference matched" metabolite features Checked 

Keep "suggested (w/o MS2)" metabolite features Unchecked 

Keep removable features and assign the tag Checked 

Gap filling by compulsion Checked 

Isotope tracking   

  Not used 

 

5. Active Solvent Modulation  

ASM is a valve-based approach recently developed by Stoll et al. (Stoll et al., 2017) that uses 

an 8-port interface with a 4-position design, modified with a bypass capillary. When the bypass 
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path is isolated, the valve acts as a normal 8- or 10-port valve with 2 positions. This means that 

one of the loops is being refilled with 1D effluent, while the other loop is being discharged into 

the 2D column with 2D mobile phase. However, when the bypass is on, the 1D effluent from the 

loop is being displaced and diluted with 2D initial mobile phase composition. This dilution step 

(also called ASM step) depends on the flow rate and loop size and takes place at the very 

beginning of each modulation. The dilution is performed according to split ratios (i.e., in this 

work, a 1 5⁄  dilution was employed, meaning that 1 part goes through loop and 5 parts go through 

bypass). Hence, ASM uses a bypass capillary that dilute the fractions coming out from the 1D 

column before reaching the 2D column, which improves solvent compatibility between the two 

separations, while enhancing sensitivity and decreasing the total analysis time. 
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1 Regions of interest algorithm – augmentation step 

Figure S1. Scheme of the augmentation step from ROI procedure, where both standards 
and samples are concatenated in a column-wise manner.  
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2 MCR-ALS analysis of Daug matrices merging amino acids 

standards mixtures and drug samples 

Figure S2. MCR-ALS analysis of concatenated Daug matrix with chromatographic data 

of the amino acids standards mixtures at five concentrations and the three replicates of 

Sample B: a) elution profiles (C); b) mass spectral ROIs resolved components, (ST); c) 

elution profile (c) and pure mass spectral ROI resolved component (st) corresponding to 

L-threonine standard (119.9507 m/z).
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3 MSROI and MCR-ALS based quantification strategies  
 

 

 

Figure S3.  Peak areas of L-threonine standard (119.9507 m/z) for: a.I) MSROI 

analysis of the five amino acids standards mixtures LC×LC-MS data, a.II) the three 

replicates of Sample A LC×LC-MS data, and a.III) the three replicates of Sample B; b) 

MCR-ALS (nn) area analysis of concatenated five amino acids standards mixtures 

(chromatograms 1 to 5) and the three replicates of Sample A (chromatograms 6 to 8) 

LC×LC-MS data; c) MCR-ALS (nn) area analysis of concatenated five amino acids 

standards mixtures (chromatograms 1 to 5) and the three replicates of Sample B 

(chromatograms 6 to 8) LC×LC-MS data. 
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Figure S4. a) Plot of the MSROI area predicted L-threonine (119.9507 m/z) amino acid   

versus its measured (nominal) concentration for the Sample A; b) Plot of the MSROI area 

predicted L-threonine (119.9507 m/z) amino acid versus  its measured (nominal)  

concentration for the Sample B; c) Plot of the MCR-ALS (nn) area predicted L-threonine 

(119.9507 m/z)  amino acid versus  its measured (nominal)  concentration for the Sample 

A; d) Plot of the MCR-ALS (nn)  area predicted L-threonine (119.9507 m/z)  amino acid 

versus its measured (nominal) concentration for the Sample B; e) Plot of the MCR-ALS 

(nn + acc) area predicted L-threonine (119.9507 m/z)  amino acid   versus   its measured 

(nominal)  concentration for the Sample A; f) Plot of the MCR-ALS (nn + acc) area 

predicted L-threonine (119.9507 m/z)  amino acid versus its measured (nominal) 

concentration for the Sample B. 



Development and applications of LC×LC methodology for metabolomic studies 

279 

Figure S5. Two-dimensional Extracted Ion Chromatograms (EICs) obtained with the 

LC×LC Edition Software from GCImage, LLC (Lincoln, Nebraska), and resolved MCR-

ALS elution and spectral profiles (after application of the area correlation constraint) for 

a) L-leucine, and b) L-methionine.
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4.3 Discussion 

This section discusses the results obtained in scientific publications V and VI. 

On the one hand, the discussion focuses on the analytical challenges faced in 

developing an LC×LC method for the untargeted analysis of different metabolites 

(including lipids). On the other hand, the challenges associated with the 

quantification of LC×LC datasets are also discussed.  

4.3.1 LC×LC method development 

LC×LC challenges have been extensively reported in recent reviews [7,8,12–14]. 

Firstly, samples suffer an extra dilution when a fraction from the 1D separation 

accesses the 2D column and is mixed with the 2D mobile phase. Sensitivity is reduced 

compared with 1DLC, (where the fractions from the only separation process enter 

into the detector straightforwardly). Nevertheless, if the number of fractions is 

decreased in LC×LC (i.e., to reduce sensitivity loss), the 2D column can be 

overloaded (e.g., fraction volumes higher than the 2D column dead volume), and poor 

peak shapes can be obtained.  

Secondly, the solvent compatibility between both dimensions should be 

considered. If too much of a strong solvent coming from the 1D separation is 

introduced in the 2D column (i.e., the strongest eluent from the mobile phase, in this 

case, regarding the 2D separation), the less retentive analytes may not be enough 

retained, producing breakthrough and peak distortion.  

Thirdly, the frequency of the collection of 1D fractions needs to be sufficient 

because peaks already separated in the 1D column cannot be joined again (i.e., 

undersampling). However, increasing the collection frequency implies that the total 

analysis time also augments, consequently. One important drawback associated with 

LC×LC separations is the acquisition of long chromatograms (that could be up to two 

hours in the case of complex samples, depending on the analytes and conditions 

tested). Therefore, a compromise in the collection frequency and total analysis time 

needs to be achieved.  

Different analytical chromatographic strategies have been developed for 

overcoming these issues, mainly based on improvements in how fractions are 

transferred from the 1D column to the 2D column [7,8,15]. Among them, Active Solvent 

Modulation (ASM) has been tested in this PhD Thesis for metabolomic studies. The 
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ASM procedure is based on a single valve-based approach that aims to deal with the 

effect that the 1D effluent has on the 2D separation [8]. The flow from the 2D pump 

is split into a pre-established ratio at the beginning of each modulation (i.e., ASM 

step), in accordance with the dilution needed to enhance solvent compatibility 

between both dimensions. While a part of the flow goes to the 2D column, the other 

part goes through a bypass capillary, accesses the loop and mixes with the 1D 

effluent. Consequently, each 1D fraction is diluted with the 2D mobile phase before 

entering the 2D column, reducing solvent mismatch and improving retention and peak 

shapes. For instance, for the RP×HILIC set-up, the polar fraction in the 1D (e.g., 

water content) is reduced before reaching the 2D separation, whose strong eluent is 

the polar fraction (in this example, water). Furthermore, as the mismatch between 

mobile phases is reduced with ASM, larger sampling volumes can be injected into 

the 2D without risking peak shapes (i.e., bigger loops can be employed), enhancing 

the sensitivity of the analysis and decreasing run time. Besides, after the ASM step, 

the 2D flow enters fully into the 2D column, avoiding baseline disturbances (compared 

to previous approaches such as in the Fixed Solvent Modulation) [8]. In this PhD 

Thesis, ASM was tested to analyse lipids and metabolites, in RP×HILIC and HILIC

×RP approaches, respectively. Its usefulness in method development and 

improvements in peak separation are discussed below. 

The choice of RP×HILIC for lipidomic studies 

In this PhD Thesis, two possible set-ups were employed to analyse of lipids, RP

×HILIC and HILIC×RP, using ASM as modulation interface between both 

dimensions. This study was carried out during a three-month research stay in 2019 

at the Gustavus Adolphus College (St. Peter, Minnesota, USA), under the supervision 

of Prof. Dwight R. Stoll, who is one of the leaders worldwide in two-dimensional liquid 

chromatography.  

RP and HILIC are the most common stationary mechanisms selected for 

lipidomic studies [16–18]. On the one hand, RP has been the classic stationary phase 

for the analysis of lipids due to its high separation efficiency for non-polar 

compounds, reproducibility and robustness. In RP, lipids are separated by the 

hydrophobicity of their fatty acyl chains, and their different number and positions of 

the double bonds. On the other hand, HILIC is a relatively new approach to normal 

phase chromatography which benefits from using water-miscible solvents, usually 
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the same employed in RP, but in the opposite proportions. HILIC separates lipids by 

families, according to the hydrophilic part of their molecules (i.e., the polar head 

groups). In RP×HILIC, the stress in the separation is on the hydrophobic part of the 

lipids, provided by the RP dimension, whereas HILIC provides a quick screening by 

lipid families. In the opposite scenario, HILIC×RP, lipids are thoroughly grouped by 

families, which facilitates their identification.  

Several examples from the literature have selected both set-ups for lipid analysis 

in different matrices. RP×HILIC has been chosen for the study of lipids extracts from 

human plasma [19,20], porcine brain [20], rice [21] and zebrafish embryos samples 

[22]. In contrast, HILIC×RP has been used for studying lipid profiling in mussels 

[23], zebrafish embryos [22], and mouse brain [24]. An HILIC×RP set-up followed 

by an ozonolysis step was employed for characterizing egg yolk [25] and rat liver 

phospholipid extracts [26]. Both set-ups present advantages and disadvantages, as 

it will be discussed.  

In LC×LC, the 1D separation is normally the longest but the slowest. It usually 

operates at very low flow rates (in the µL mL-1 range instead of mL min-1) determined 

by the whole duration of the 2D separation and the loop size. In contrast, the 2D 

separation is very short, usually about 1-2 minutes long. The capability of the 2D 

separation to fully analyze each fraction from the 1D separation (before the 

subsequent fraction reaches the 2D column) limits the whole duration of the LC×LC 

method. Therefore, high flow rates are highly desirable in the 2D separation. However, 

in the case of MS detection, a flow split after the column and prior to the detector 

may be required to enhance ionization. IOn the other side, a short RP separation may 

not be powerful enough to discriminate between similar compounds. Hence, for lipid 

analysis, the combination of a first HILIC and then RP fits better than with other 

approaches like heart-cutting or stop-flow, where the length of the 2D separation is 

not as critical as in comprehensive mode [20]. An exhaustive comparison between 

C18×HILIC, HILIC×C18 and HILIC×PFP (where PFP is a pentafluorophenyl 

column, a specific type of RP stationary phase) demonstrated the superiority of the 

C18×HILIC set-up for the analysis of the zebrafish embryos lipidome [22]. In the 

mentioned study, the C18×HILIC configuration provided a higher effective 

separation power, although the total analysis time was considerably higher (170 min 

in C18×HILIC versus only 100 min for the other two combinations).  
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Figure 4.3. A) Comparison between TICs obtained with a bare silica column (top) and a C18 column 

(bottom) separations of zebrafish embryos phospholipid extract, performed in 1DLC conditions. 

Preliminary tests indicate that the resolving power of C18 is higher in the analysis of the studied lipids. 

B) Extracted ion chromatograms (EICs) obtained for Cer and GlucCer standards injected in the 1DLC

methods corresponding to the TICs in the left. RP separation is better than HILIC for these compounds. 

C) Lipid separation by families provided by HILIC as the second dimension. The results are EICs for PG,

PE, PC and TG standards. Data not published. More details about the experimental conditions in which 

these chromatograms are in Annex 1. TIC: total ion chromatogram; EIC: extracted ion chromatograms; 

RP: reversed phase; HILIC: hydrophilic interaction; Cer: ceramide; GlucCer: glucosylceramide; PG: 

phosphatidylglycerol; PE: phosphatidylethanolamine; PC: phosphatidylcholine; TG: triacylglycerol.  

The results we obtained in the preliminary tests carried out during the 2019 

research stay agree with the results obtained by Xu et al. [22], as well as by Holčapek 

et al. [20]. Figure 4.3.A shows the total ion chromatograms (TICs) collected with a 

commercial C18 column versus a bare silica column (packed manually in-house) for 

a similar analysis time and the same sample (zebrafish embryos phospholipid 

extract). Under the conditions tested (see Annex 1 for more details), C18 separation 

presents a higher resolution power. Similar results were found in the analysis of 

sphingolipid extracts (data not shown). Besides, a detailed comparison between 

different lipid families in both conditions was performed. As a general conclusion, 

lipid peak shapes were narrower and intensities were higher in the RP mode, except 

in the case of lyso families. These lyso forms of the main phospholipids were globally 
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more intense in HILIC and showed better retention than in RP. The reason is a 

diminution of their hydrophobicity compared to phospholipids (i.e., lyso forms contain 

only one fatty acid chain instead of two).  

Another problem with the tested HILIC conditions was that some sphingolipids 

were barely retained. Figure 4.3.B exemplifies this issue for the extracted ion 

chromatograms (EICs) of ceramides (Cer) and glucosylceramide (GlucCer) 

standards, injected in the same conditions as TICs in Figure 4.3.A. Only 

sphingomyelins (SM) presented an acceptable retention behavior in these HILIC 

conditions. Other studied lipids, such as triacylglycerides (TAG) and diacylglycerides 

(DAG), exhibited the same behavior as the shown sphingolipids. In contrast, RP 

separation of these compounds was generally more appropriate as 1D mechanism, in 

terms of higher retention and better peak shapes and widths. On the other side, HILIC 

seems to be a good alternative as the 2D, due to the extra selectivity provided by the 

differentiation of isomers by their polar head groups. Figure 4.3.C shows how HILIC 

is capable of separating different lipids according to their families in a very short 

period of time. The EICs presented in this PhD Thesis (an example of a 

phosphatidylglycerol (PG), a phosphatidylethanolamine (PE); a phosphatidylcholine 

(PC); a triacylglycerol (TG)) were obtained by injecting the standards directly through 

the ASM valve and in the solvent proportions of the 1D effluent, simulating 2D 

conditions (see Annex 1 for more details in the employed chromatographic 

conditions).  

The improvements due to the use of ASM in RP×HILIC for lipidomic studies 

One of the major improvements due to the use of ASM in the developed 

RP×HILIC method is the increased sensitivity, compared to previous methods from 

the literature. An indicator of this enhancement is the amount of 2D effluent that 

finally accesses the detector, in this case, the MS. In this work, the split ratio was of 

one effluent part to MS, and two effluent parts to waste (1:2). Consequently, a much 

higher fraction of the 2D effluent accesses the MS than in previous examples using 

the same RP×HILIC configuration (e.g., 2:8  [22], 8:100 [27], 1:3 [19].  Another 

advantage of the method proposed in the scientific publication V is the considerable 

reduction in the total analysis time achieved, with only 120 min per sample (other 

examples studies required 170 min  [22], 150 min [20], 190 [19], 130 min [21]. This 

diminution in the total run time was possible due to the use of 40 μL loops, identical 
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to the work by Xu [22]. However, bigger sampling volumes were collected and 

injected into the 2D compared to the works by Holčapek [28], and Baglai., where 20 

μL loops were preferred [19]. In the case of the work by Navarro-Reig et al. [21], the 

loop size was set to 70 μL. Nevertheless, higher fraction volumes than those safely 

established by the optimization with the ASM, produce undersampling risks, and may 

lead to mixing again the peaks already separated in the 1D separation. In addition, 

further tests are required to fully validate the developed RP×HILIC method and 

provide a quantitative comparison of the different methods in terms of resolving 

power.  

The final separation achieved with the RP×HILIC method using ASM at a 

dilution factor of 5 and 40 μL loops is depicted in Figure 4.4, which includes a TIC 

showing the spatial distribution of lipid standards from different families in the 2D 

space. The experimental conditions in which this chromatogram was acquired are 

included in Pérez-Cova et al. [9], Annex 2, and the scientific publication V where 

this RP×HILIC method was used with minor modifications in the re-equilibration 

step.  

Figure 4.4. 2D representation of the final separation conditions selected for the RP×HILIC method for 

the untargeted analysis of zebrafish embryos lipidome. Experimental conditions of acquisition in Annex 

2. RP: reversed phase; HILIC: hydrophilic interaction; Cer: ceramide; LPG: lysophosphatidylglycerol; PG:

phosphatidylglycerol; LPE: lysophosphatidylethanolamine; PE: phosphatidylethanolamine; LPC: 

lysophosphatidylcholine; PC: phosphatidylcholine; TG: triacylglycerol. 
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A HILIC×RP separation for metabolomic studies 

Both HILIC and RP have been widely employed to analyse polar and 

medium/non-polar metabolites, respectively [17,29,30]. Exhaustive comparisons 

have been performed between different analytical platforms (e.g., 1DLC employing 

HILIC, RP and other stationary phases). However, only one retention mechanism 

does not provide full coverage of the metabolome. Hence, a possible solution would 

be a multi-platform approach for the analysis of a broader number of compounds 

with different properties [31–34]. The proposed LC×LC method in this PhD Thesis 

seems an appealing alternative to this multi-platform strategy, because the 

information obtained with the multiple conditions would be ideally acquired 

simultaneously in the same analytical run.  

The RP×RP configuration using complementary separations is commonly 

selected for the metabolite profiling of medium and non-polar metabolites [35–37] 

or the analysis of specific non-polar metabolites such as anabolic-steroids [38]. 

Nevertheless, polar metabolites may not be retained and can be lost during these 

separations. Hence, the combination of HILIC and RP could provide a broader 

metabolome coverage. Analogously to lipids, the retention order will depend on the 

target compounds. If the stress is in separating first by polarity rather than 

hydrophobicity, HILIC is recommended as the 1D. In this case, the set-up HILIC×RP 

was preferred.  

Some examples of applications of HILIC×RP to metabolomics include the 

untargeted analysis of rice [39] and licorice extracts [40], and the specific analysis 

of polyphenols [41], phlorotannins [42] and anthocyanins [43]. The major challenge 

in using this set-up for the analysis of metabolites is solvent compatibility. HILIC 

separation often starts with a high percentage of organic solvent (i.e., nearly 100%), 

that is the strongest solvent in RP. Thus, this solvent mismatch is usually more 

critical than in the reverse set-up configuration (at least for lipid analysis). One of 

the goals of the 2019 research stay was to test ASM in a HILIC×RP configuration 

and determine whether it could help to improve solvent compatibility. From some 

preliminary trials and under the tested conditions, it was found that the maximum 

dilution ratio provided by ASM (ASM factor 5) may not be enough to ensure good 

retention in RP (as 2D) for the analytes tested (i.e., polar metabolites). Figure 4.5.A 

presents a TIC of zebrafish embryos metabolome extract using a HILIC×RP method 

(using a carbon column in the 2D and with 40 μL loops; see Annex 3 for more 
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details). As seen in the Figure, most metabolites eluted during ASM step (before 

starting the actual gradient). Figure 4.5.B compares the retention between a carbon 

column and a C18 column under similar conditions. EICs were acquired by direct 

injection into the 2D through the ASM valve. For the tested conditions (see Annex 3), 

the carbon column provided a better separation (e.g., peaks more retained, sharper 

and narrower) than C18. This is the reason why a carbon column was selected for 

the 2D tests (e.g., Figure 4.5.A).  However, more studies are required to evaluate the 

suitability of ASM and the best RP retention mechanism in metabolomic studies.  

Figure 4.5. A) Preliminary test of a HILIC×RP method applied to the analysis of zebrafish embryos 

metabolome extracts. Most of metabolites present in the samples were not sufficiently retained in the 

2D and eluted during the ASM step. B) Comparison of the retention obtained with a carbon column (left) 

and a C18 column (right) for the same metabolites (numbers in the middle of the EICs correspond to 

the m/z values of the compounds shown). Sharper and more retained peaks were achieved with the 

carbon column.   

Other options for improving solvent compatibility would be different active 

modulation strategies such as “at-column dilution” [44] or “trapping columns”  [38]. 

Alternatively, it is possible to add water with an extra third pump at a constant flow 

rate for diluting the organic content from the 1D before accessing the 2D column [39]. 

In the methodology employed in scientific publication VI, a reduced loop size (30 μ

L) was adopted to reduce the fractioning of the sample from the 1D column when it

is introduced into the 2D column. Consequently, the total analysis time increased 

considerably (160 min per run, including a re-equilibration step of half an hour). 

Nevertheless, it is important to remark that the objective of the mentioned 

publication was not the development of a novel LC×LC methodology with increased 

solvent compatibility, but rather to explore a new chemometric strategy that allowed 
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the quantification of multiple analytes in the presence of interferences and 

overlapping signals. This approach will be discussed in the following section.  

4.3.2 Chemometric developments for LC×LC 

This section focuses on pre-processing and quantification steps of LC×LC data. First, 

the regions of interest (ROI) approach is suggested for spectral compression and 

signal filtering. This strategy can be employed for both untargeted and targeted 

analysis, as it has been demonstrated in scientific publications V and VI, 

respectively. Second, a combination of regions of interest with multivariate curve 

resolution least squares (with and without an area correlation constraint) is proposed 

for quantification purposes, taking the analysis of amino acids samples as a case of 

study.  

Pre-processing strategy for LC×LC-HRMS datasets based on the regions of 

interest approach 

ROI approach, discussed in detail in Chapter 3, was applied to the datasets 

obtained by analyzing zebrafish embryos lipidome extracts with the RP×HILIC-

HRMS optimized method. The entire experimental design is detailed in scientific 

publication V. Briefly, zebrafish embryos were exposed to two EDCs (BPA and E2), 

at three concentration levels of exposure each (Low, Medium and High doses, plus 

Control samples, without EDC), collected at two days (4 and 6 days post-fertilization) 

and extracted following two protocols (general extraction and sphingolipid-based 

extraction).  

As already described in scientific publication V, the ROI strategy could not be 

directly applied on .mzXML transformed files due to their big size (12-13 GB per each 

raw file; higher than 20 GB when converted directly to .mzXML format using peak 

picking). Thus, a filtering step was performed during their transformation with the 

MSconvertGUI tool of the Proteowizard suite, to reduce noise (prefilter of absolute 

intensity signals higher than 100). Then, these filtered .mzXML files (0.7-1 GB each) 

were imported into MATLAB and compressed simultaneously with the MSroi GUI app 

[9] by sets of samples (example of one set: general extraction batch of bisphenol A

exposure all concentrations levels at day 6; 18 samples per set, including QCs; 8 sets 

in total). For each set (15-20 GB per set), the importing time was less than 2 hours.  
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In a previous study from our research group [39], LC×LC-HRMS datasets were 

first compressed in the spectral dimension with the ROI approach and further 

reduced in the time dimension using wavelets, followed by a time-windowing step 

that divided the chromatograms into three regions that were analyzed separately 

(with some overlapping between the regions to avoid any loss of information derived 

from the cutting). Then, MCR-ALS was applied by triplicate, according to each 

‘superaugmented’ data matrix for each of the three selected time windows. This 

MCR-ALS step aims to resolve the chromatographic and spectral profiles, to get the 

qualitative (i.e., through mass spectra for identification purposes) and quantitative 

(i.e., through an area matrix) information about the samples. Several components are 

resolved, corresponding to the potential sample constituents. Ideally, all the MS 

adducts and isotopic forms from the same molecule are joined into the same MCR 

component. This resolution process can be called, at present as, ‘componentization’ 

[45]. A number of potential features can be lost between the ROI step (the ROI 

intensity matrix is the input for MCR-ALS) and the output of MCR-ALS (a matrix 

containing the areas of each component, plus their elution and spectra profiles). 

These discarded features are considered noisy signals or minor instrumental 

contributions (e.g., from background or solvent) [39], and they are moved to 

residuals. This may happen, for instance [21,39], when the intensity cut off is very 

low, obtaining up to 1000 features per set, but only 50-100 components are 

considered in the MCR-ALS calculations. Careful examination of the original ROI data 

and MCR-ALS residuals is therefore recommended. 

The detailed selection of the relevant variables (i.e., potential markers) for the 

specific study is performed based on MCR-ALS components from. The aim of 

scientific publication V was to assess the reliability of this ROI strategy, without 

including the MCR-ALS resolution step afterwards, looking for the number of 

potential markers of the studied exposure.  

In scientific publication V, optimization of the ROI parameters was investigated, 

trying to select a manageable number of features and a reasonable analysis time for 

the compression of the data. Different conditions are tested at the beginning of the 

ROI procedure each time new datasets are analyzed. Although some of the 

parameters can be used routinely when the same type of data acquisition is 

employed (i.e., mass error), others are data dependent (i.e., intensity threshold). 

Lipids standards added to the samples (for ensuring data quality in terms of 
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extraction and instrumental response) can help to optimize ROI parameters. The final 

ROI conditions need to include the m/z values corresponding to the standards, and 

the intensity thresholds are adjusted consequentially in the first trials. These 

standards are also useful for testing mass error factor if a new instrument is used. It 

is important to notice that selecting an appropriate signal-to-noise (S/N) ratio 

(established by intensity threshold and other factor parameters in the ROI step), 

especially in untargeted analysis. S/N will limit the whole pre-processing step 

duration and the number of potential features. Lower threshold values require longer 

analysis times (e.g., more than one day for large LC×LC-HRMS datasets), whereas 

too high threshold values can lose relevant features.  When optimizing ROI 

parameters, a compromise between an adequate S/N ratio (including as many 

relevant features as possible but avoiding noisy contributions) and an acceptable 

pre-processing time should be achieved. For this purpose, a minmax signal factor 

parameter can be very handy. It is a multiplication factor that allows locating the 

intensity threshold very low, but only considering those ROIs (i.e., potential features) 

whose intensities are above the product of the threshold and this factor (e.g., 

intensity threshold x 5). The parameters selected in scientific publication V, 

(untargeted analysis) produced more than 500 features in the simultaneous analysis 

of all the data sets (i.e., potential features) with an ROI step shorter than two hours 

per set. Hence, in scientific publication V, only the ROI step was used to achieve an 

acceptable reduction in size for each dataset. In this case, peak areas were obtained 

directly from the ROI features, instead of from the MCR-ALS resolved components, 

with the aim of investigating and validating the use of ROI for providing relative 

quantitative information directly.  

A preliminary study of the datasets obtained with zebrafish embryos was 

performed using a pseudo-targeted strategy. A list of the m/z values of the lipids 

already detected in positive ionization mode in zebrafish embryos in a previous work 

by Martínez et al. [46] were selected and introduced using the targeted mode of the 

MSroi GUI for their analysis. Only the batches corresponding to ‘general extraction’ 

were considered because the extraction procedure employed was the same as in the 

work by Martínez. In this way, their comparison was possible. The proposed pseudo-

targeted analysis validated the ROI procedure for LC×LC-HRMS using those lipids 

already annotated in the LC-HRMS analysis of the same samples [46]. It was also 

ensured the adequate data normalization during the untargeted analysis, as the 

trends in pseudo-targeted sets should match the untargeted ones (i.e., both are the 
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same data). Besides, this preliminary approach facilitated the compound annotation 

in the final stage of the analysis (i.e., untargeted mode) of the lipids obtained in the 

‘general extraction batches’.  

A comparison of the pseudo-targeted and the fully untargeted results is 

summarized in Figure 4.6. Principal component analysis (PCA) score plots show the 

same trends considering both approaches. When all samples are analyzed together, 

the separation is based on the collection day and the considered EDC (PCA 1). Four 

clusters are distinguished (BPA-4dpf, BPA-6dpf, E2-4dpf, E2-6dpf). Regarding the 

exposure concentration, the samples are ordered from Control to High in both 

approaches (an example is shown on BPA exposure at 4dpf; PCA 2). ANOVA 

Simultaneous Component Analysis (ASCA) results were also coincident. For 

instance, at 6 dpf, both EDC presented p-values lower than 0.05 regarding the pairs 

Control vs High dose or Control vs Medium dose. An overlook of the relevant variables 

(VIPs > 1) obtained through partial least square discriminant analysis (PLS-DA) 

models indicated an increase in the specific lipids related to the exposure, which 

could allow better differentiation between treatments. An example is also shown for 

Control vs High dose at 4dpf for BPA exposure, expressing the matching lipids 

through Venn diagrams [47] (https://bioinformatics.psb.ugent.be/webtools/Venn/). 

Lipid annotation in the untargeted analysis was performed in two steps: 1) using the 

information about the pseudo-annotated compounds in the targeted approach, and 

2) based on matches between experimental MS/MS spectra and the theoretical

MS/MS spectra from the MS-DIAL library [48]. Some examples of the lipids with an 

important role in BPA exposure detected by both data analysis strategies (pseudo-

targeted and fully untargeted) were LPC(18:0), PC(32:0), PC(34:4), PC(34:2), 

PC(36:6) and TG(56:3). The use of the fully untargeted strategy also allowed the 

identification of the relevant lipids from other lipid classes, such as ceramides (e.g., 

Cer(34:1), Cer(42:2), Cer(34:0)), or from the same classes as those considered in the 

pseudo-targeted analysis but not included in the targeted list (e.g., PC(42:8), 

TG(58:6), SM(32:2), PC(33:4)).  

https://bioinformatics.psb.ugent.be/webtools/Venn/)
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Figure 4.6. Comparison of results obtained with the pseudo-targeted and the fully untargeted data 

analysis approaches. Both used ROI as compression step, but in the first case, there was a prior 

selection of m/z values associated with lipids already reported in zebrafish embryos, whereas in the 

second case, the selection of the variables was performed based mainly on their intensity, without any 

a priori assumptions. PCA 1: BPA and E2 exposure separated by EDC and by day. PCA 2: BPA exposure 

day 4 separated by concentration level from Control to High. ASCA: Both doses High and Medium are 

significant for both EDC at 6 dpf. PLS-DA: An increase in the number of specific lipids for each 

treatment with the untargeted approach.  

In conclusion, the use of the ROI strategy was validated for both pseudo-targeted 

and untargeted analysis of LC×LC-HRMS datasets, allowing both filtering and 

compression without requiring any signal or peak alignment. Post-processing (e.g., 

exploratory, classification or statistical analysis) was performed directly on the areas 

obtained from ROI, as no resolution step was applied in this case. Special attention 

is needed in order to discard different adducts or isotopic forms for the same 

compound, since a large number of potential features can be obtained from each of 

them. Lipid annotation is still a major challenge, but combining the information of 

retention times from both dimensions and the accurate mass and MS/MS spectra, 

the annotation step (see Figure 4.7) becomes more reliable, especially for isobaric 

compounds discrimination. MS-DIAL software [48] is a useful tool to match 

theoretical spectra with deconvoluted experimental MS/MS spectra thanks to its 
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incorporated large MS/MS library. However, it is important to keep in mind that when 

analyzing data from LC×LC analysis, the same compound can result in several hits 

between experimental and theoretical spectra due to different retention times 

associated with the subsequent modulations, which are perceived as different 

compounds by the software. Besides, when using MS-DIAL software to get the 

quantitative information from the peak areas, peak integration is performed on a 

basis of one-dimensional chromatography. Therefore, each 1D fraction is considered 

as an individual peak. Thus, peak integration is more reliable with the ROI strategy, 

in which the subsequent modulations of the same compound are simultaneously 

considered in the same peak ROI. However, a novel strategy based on demodulating 

the list of features obtained using MS-DIAL on the LC×LC chromatograms has 

recently been developed [49]. This approach provides the sum of the areas of the 

different modulated points for a certain feature at the retention time where the 

maximum intensity was found for each m/z value, overcoming the current limitations 

of MS-DIAL for LC×LC analysis.  

Figure 4.7. Information provided by the LC×LC-HRMS pipeline including MS/MS analysis, which 

contributes to an easier annotation step.  

Quantification approaches for LC×LC targeted analysis based on ROIMCR 

Three quantification strategies were evaluated in scientific publication VI. 

All three strategies present the particularity that no vendor software is required and 

the advantage that no prior chromatographic alignment nor peak shape modelling 

steps are needed (contrary to most multidimensional chromatography data analysis 

strategies). The areas used for building the calibration curves were obtained at three 

different stages of the ROIMCR pipeline, and derived quantification results were 
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compared. The complexity of the quantification procedures proposed increases with 

each step added, but the reliability and accuracy of the results are also improved 

(see Figure 4.8). The first approach is based only on the direct application of the ROI 

approach.  In scientific publication V, the ROI approach was evaluated for the first 

time for relative quantification purposes in untargeted analysis). In contrast, in 

scientific publication VI, the capabilities of the ROI procedure for absolute 

quantification in targeted analysis without the use of MCR were assessed for the 

first time. Thus, the areas of each ROI feature were obtained in a straightforward 

manner from the simultaneous integration of all the chromatographic peaks from the 

modulations subsequently associated with the same compound (i.e., related to the 

same ROI). Regression correlation coefficients of the calibration curves ranged from 

0.974 to 0.999 for the amino acids in the test mixture. Relative errors (RE) were lower 

than 10% in the calibration mixture and lower than 25% in tested samples. Therefore, 

the quantitative information recovered using this direct ROI strategy was considered 

acceptable.  

 

Figure 4.8. Summary of quantification strategies based on ROIMCR pipeline.  

 

In chromatographic scenarios where strong coelutions between two or more 

sample compounds exist with even identical or very close m/z values, these 

compounds may be integrated into the same ROI, and their independent analysis 

may not be feasible. Although 2DLC resolution power is considerably increased in 

comparison with 1DLC, all compounds may not be completely resolved, especially 
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when very complex samples are analyzed. One of the main advantages of MCR-ALS 

quantification strategies is that compounds with strongly overlapping elution profiles 

and very similar mass spectra can be unambiguously resolved [50]. The ROIMCR 

quantitative applications to LC-MS datasets have already been demonstrated and 

validated in the previous work by Dalmau et al. [50] and to gas chromatography 

coupled to mass spectrometry (GC-MS) datasets by Pourasil et al [51]. In Dalmau’s 

work, the strategy was first evaluated in a mixture of lipid standards with a targeted 

analysis, from both identification and quantification points of view. The calibration 

curves were built using the peak areas of the elution profiles of the lipids resolved by 

MCR-ALS and the known concentrations of the standards as reference values.  This 

calibration curve was then applied to the quantification of lipids in biological samples, 

also resolved by the ROIMCR method. RE values were lower than 20% in all cases, 

and regression coefficients ranged from 0.9908 to 0.9997 for lipid standard mixtures, 

and from 0.9723 to 0.9978 for cell samples. The quantification strategy employed by 

Dalmau was also used in scientific publication VI, referred to as “classical MCR-

ALS quantification”. LC×LC results were similar to those previously achieved for LC-

MS datasets (i.e., regression coefficients from 0.978 to 0.998, and RE again lower 

than 10% in the calibration mixture, and lower than 25% in both samples tested).  

During the iterative ALS optimization step in MCR, the use of mathematical 

constraints provides chemical significance to the pure numerical solutions, while the 

rotational ambiguities inherent to bilinear models are reduced [52]. For instance, 

non-negativity constraints are used in both LC-MS and LC×LC-MS because elution 

and spectra profiles have only positive values. Another possible constraint (i.e., area 

correlation constraint) has been suggested for the analysis of second-order 

multivariate calibration data [53,54]. This constraint presents some advantages 

compared to classical MCR-ALS calibration. It improves the quantification in the 

presence of strong unknown interferences (not found in the calibration sets) in the 

real samples, which is especially interesting in the analysis of samples with complex 

matrices [11,55]. Besides, the application of this constraint may reduce rotation 

ambiguities and may improve the accuracy of the quantification [53]. An exhaustive 

comparison of results obtained only with non-negativity constraint and with area 

correlation constraint was performed by Bayat [53]. Higher regression coefficient 

values and lower RE values were reported for all analyzed compounds when area 

correlation constraint was applied (only non-negativity: 0.938-0.990 and 4.5-20.8%; 

area correlation constraint: 0.975-0.999 and 4.5-10.9, for regression coefficients and 
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RE % ranges, respectively). Although the improvement was not so high in scientific 

publication VI in the compound-by-compound comparison, the general trend was in 

agreement, with better regression coefficients and lower RE values as well (area 

correlation constraint regression values ranging from 0.973 to 0.998, and RE values 

than 10% in the calibration mixture and lower than 25% in both samples tested). All 

in all, a more accurate quantification was achieved with the area correlation 

constraint, especially for the prediction of amino acids in unknown samples. These 

improvements would be higher in cases where overlapping elution profiles are 

present as in lower performance fast chromatographic approaches. 

As a general conclusion, it is worth noticing that the three tested strategies 

provided acceptable quantitative results and can be all used for quantification 

purposes in LC×LC targeted analysis. Whenever a good calibration model is achieved, 

then the combination of MCR-ALS with the area correlation constraint seems to be 

the more suitable strategy because the accuracy in the quantification is improved, 

and stronger coelutions can be resolved. A further step in the validation of the 

proposed approaches for LC×LC datasets would be their application in more complex 

scenarios, such as for datasets acquired in metabolomic studies in the presence of 

strong biological interferences. In these cases, a significant improvement in the 

accuracy of the quantitative determinations may be expected when applying the area 

correlation constraint.  

 

4.3.3 Future perspectives on the use of LC×LC for metabolomic 

studies 

This section aims to discuss briefly the present of multidimensional liquid 

chromatography applied to metabolomic studies, what improvements are needed, 

which challenges are we still facing, and to shed light on possible solutions that could 

lead the way in the future of this field. This discussion is organized into three main 

topics: LC×LC for lipids, LC×LC for small polar metabolites, and LC×LC data analysis 

software.  

 

LC×LC analysis of lipids: what is next? 

The usefulness of RP×HILIC in lipidomic studies has been widely demonstrated, 

not only in scientific publication V, but also in previous works from the literature 
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[19–22]. Besides, the set-up proposed here benefits active solvent modulation 

strategies, especially ASM, which allow increasing sensitivity and solvent 

compatibility while diminishing run times. Although minor improvements are still 

needed, such as for instance, the reduction of the total analysis time (still two hours 

long), and the optimization of the 2D separations to increase retention on less polar 

lipids (e.g., ceramides or triacylglycerides), current ASM methods are already very 

powerful strategies for untargeted analysis. 

In fact, the choice of different versions of the already employed as stationary 

phases for RP and HILIC may not be very powerful yet. For instance, some lipids are 

not enough retained with shorter linear alkylsilane phases (e.g., C4), leading to 

important losses in lipid variety, which was the goal of establishing untargeted 

methods for their analysis. These results were obtained from preliminary tests during 

the 2019 research stay, when four types of RP stationary phases were tested: C4, C8, 

C18 and carbon columns (data not published). For the last column type, no peaks 

were obtained (lipids may be too much retained). Separations provided by C18 were 

superior by far, and other options were not worthy even for reducing the isopropanol 

content in the 1D mobile phases (which increases the polar solvent percentage that 

enters the 2D column, potentially worsening the 2D separation). In addition, most of 

the HILIC separations (in RP×HILIC set-ups) are based on unbonded silica columns. 

In contrast to C18-based columns, multiple options could be tested in HILIC 

approaches, using different bondings to hydrophilic functional groups (e.g., cyano, 

amide, amine, zwitterionic). Unfortunately, only the bare silica type of C18 could be 

tested in this preliminary study, although no significant improvements in column 

behavior with other variants of stationary phases are expected, at least for the 

current technologies.  

On the contrary, new combinations of stationary phases are yet to be explored. 

Particularly, the use of recent advances in active modulation and combinations that 

have been discarded until now could be employed due to the enhanced solvent 

compatibility. An example would be mixed mode (MM) chromatography, which is 

characterized by combining more than one retention mechanism in the same column 

(i.e., ion exchange and reversed phase, or reversed phase and HILIC). A system with 

only one column (i.e., a mixed-mode C18-Diol) has already been developed for both 

polar and non-polar compounds [56]. Alternatively, a 2DLC system with only one of 

the dimensions replaced by MM, could also be set-up. For instance, if 2D separation 
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is replaced by a MM, where RP and HILIC are mixed, separation of compounds that 

were not retained under HILIC conditions (e.g., ceramides or triacylglycerides) may 

be then improved. Nevertheless, special attention would be required when using MM 

to ensure orthogonality, which could be jeopardized due to the use of similar 

retention mechanisms. In addition to MM, chiral columns also present great potential 

in 2DLC lipid separations. They have been widely employed for the separation of 

diverse lipid isomers by LC-MS/MS [57–59]. Besides, the combination of RP and 

chiral columns for the analysis of triacylglyceride isomers are also found in the 

literature [60,61]. Although isomers from different lipid classes are separated in 

HILIC (as 2D), identifying isomers from the same lipid class with the same chain 

length is still a major challenge with RP×HILIC, even with the extra information 

provided by MS/MS. Thus, as chiral columns are a useful tool in isomer 

discrimination, the RP×Chiral set-up could be a powerful alternative for isomer 

separation.  

Indeed, the combination of RP and chiral columns in a comprehensive mode is 

appealing, but instead of LC in both dimensions, one of them is replaced by 

supercritical fluid chromatography. Some advantages of SFC for lipid analysis are 

reported [62,63], with the following advantages:  

• Reduced consumption of solvent (i.e., greener separations) 

• A larger diversity of both stationary phases and mobile phase mixtures 

• Broader lipid coverage (i.e., different polarities can be analyzed 

simultaneously)  

• Potentially more confidence in annotation 

• An increased global orthogonality when coupled to LC in contrast with 

LC×LC 

Nevertheless, there are some important drawbacks as well. For instance, some 

of the main disadvantages of the coupling with SFC are the undesired injection 

effects leading to peak distortion and broadening in the 2D (in LC×SFC mode), the 

complexity of the interfaces and the lack of commercial instrumentation [63]. 

SFC×SFC configurations are still to be tested [3]. Some pioneer examples in the 

recent literature about lipid analysis combine SFC as 1D with RP as 2D in online  

[64,65] and offline formats [66]. 

Alternatively, another powerful tool that, combined with LC, allows the 

discrimination between lipid isomers (i.e., both structural and stereoisomers) is ion 
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mobility spectrometry (IMS) [66]. The collision cross-section (CCS) ion mobility is an 

orthogonal parameter that facilitates compound identification (in addition to 

retention time, m/z value and fragmentation patterns, if MS/MS is employed 

afterwards), and helps to increase confidence in their annotation. Besides, ion 

mobility capabilities have been improved considerably in recent years [67] and CCS 

libraries are continuously growing [68]. For instance, the use of trapped ion mobility 

spectrometry coupled to time-of-flight mass spectrometry (TIMS-TOF-MS) in 

combination with liquid chromatography has risen recently in metabolomic (and 

lipidomics) applications [68–71]. Indeed, LC×LC×IM-MS has already been 

suggested for the analysis of very complex samples [72]. In the future, this strategy 

could also be employed in lipid analysis, merging all benefits from LC×LC with an 

extra dimension able to differentiate isomers.  

LC×LC for the analysis of small and polar molecules: what are the challenges? 

As mentioned before in this Chapter, some modulation improvements are still 

required for HILIC×RP configurations for the analysis of polar metabolites. In contrast 

to the analysis of large molecules (lipids, polymers or peptides), where active 

modulation (e.g., ASM) has led to significant advances in dealing with solvent 

mismatches [73–75], there are still big challenges remaining for the most polar 

compounds of the metabolome spectrum. Until now, the best solutions have been 

the dilution of the 1D effluent with water from a third external pump [39], actively 

removing it completely before it reaches the 2D column, using cartridges instead of 

loops [38] or an evaporative system at the interface [76]. Alternatively, it would be 

interesting to test the at-column dilution [77] procedure for this type of applications, 

as it has been proved when RP×HILIC columns are combined for the analysis of the 

chemical composition of medicinal herbs [44].  

In addition, other possible retention mechanism combinations may give a greater 

benefit when the ASM approach is used. For instance, when MM is used in the 2D, 

as suggested for lipid analysis. Another example would be the HILIC×HILIC method. 

Historically, this retention mechanism has been associated with long re-equilibration 

times caused by slow desorption and reformation of the aqueous layer [78]. 

Nevertheless, a recent study by Seidl et al. demonstrated that acceptable 

repeatability can be achieved even in the absence of a full re-equilibration [79]. 

These results validated the use of HILIC not only as 1D but also as 2D. In an 
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HILIC×HILIC set-up, a major threat would be to accomplish a sufficient degree of 

orthogonality. However, the work from Wang et al. shows not only an orthogonal 

method, but also the ability to separate isomeric species [80]. Despite the success 

of these isolated examples and in contrast to RP×RP separations, HILIC×HILIC are 

less popular by far. Current advances in modulation interfaces combined with a 

HILIC×HILIC configuration using complementary stationary phases may contribute to 

relevant advances in metabolomic separations. Besides, improved orthogonality and 

solvent compatibility strategies in RP×RP set-ups can be implemented as well in 

HILIC×HILIC. For instance, the use of segment gradients [37], or the more recent 

proposal of parallel gradients [81], may be useful in the cases where separation 

mechanisms employed in both dimensions are correlated.  

Analogously to lipid analysis, SFC and IMS also provide an extra dimension with 

great potential in untargeted metabolomics, for instance, in the separation and 

identification of known and unknown isomeric compounds [5]. Thus, the 

combinations of these techniques with LC (e.g., an LC×LC×IMS-MS method) seem 

appealing in this case. 

2DLC data analysis software: what is needed? 

The multidimensional chromatography community agrees that one of the more 

urgent needs is the development of alternative software packages complementary to 

the vendor options available nowadays (e.g., freeware) and more flexible workflows 

for data analysis. The validation of these new software tools is also a key aspect to 

consider, and the use of benchmark datasets seems appealing for this purpose. In 

this last section of this Chapter, the currently available software and community 

needs regarding data analysis are reported based on the feedback from the 

discussions in the Multidimensional Chromatography Workshops carried out in 2021 

and 2022 (http://www.multidimensionalchromatography.com/) 

One of the main interests throughout this PhD Thesis has been the development 

of new approaches for data pre-processing, resolution and post-processing of 2DLC 

datasets. An important effort has been put into adapting previously developed tools 

for the analysis of LC-MS metabolomic studies (i.e., based on ROI, MCR-ALS and 

other multivariate analysis methods) to LC×LC-MS datasets. The strategies used in 

this PhD Thesis encompass 2DLC plot visualization, data compression and filtering, 

http://www.multidimensionalchromatography.com/
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compound resolution and annotation, and both absolute and relative quantification 

(i.e., for targeted and untargeted analysis, respectively). Apart from the work in this 

direction of our research group, it is worth highlighting the work by Molenaar et al 

[82,83]. Two types of software have recently been released by the Chemometrics and 

Advanced Separations Team (CAST, https://cast-amsterdam.org/). First is the 

MOREPEAKS or Multivariate Optimization and Refinement Program for Efficient 

Analysis of Key Separations [84], which allows the easy visualization of both LC×LC 

or GC×GC raw data, as well as the calculation of quality descriptors such as 

orthogonality or peak capacity. Besides, MOREPEAKS facilitates the optimization of 

chromatographic separations due to its ability to model and simulate analyte 

retention in different conditions. This software also has peak-tracking tools to extract 

information in an easy way. Quantification is one of the future goals that this software 

will have. Second, the MOREDISTRIBUTIONS or Multivariate and Otherwise Rapid 

and Efficient Determination and Identification Software for Thorough Representation 

and Interpretation By Unveiling Traits Informing On Novel Synthetics, [85], is a data 

analysis software specifically designed for synthetic polymers, which does not 

require computational skills for the application of a bunch of chemometric tools. In 

addition to their wide accessibility, both the approaches in this PhD Thesis and the 

work from Molenaar et al. also have in common the choice of the MATLAB 

environment for software development. Some of the main advantages of the use of 

MATLAB for data analysis are: the extensive documentation available (including 

official resources and technical support), the facility to develop user-friendly 

interfaces, and the large amount of built-in algorithms, toolboxes, and diverse 

functions accessible (e.g., PLS Toolbox 8.9.1 from Eigenvector Research Inc). 

Although MATLAB is proprietary software (meaning that a commercial license is 

needed to use it) when the MATLAB runtime compiler is used, users without a 

MATLAB license can also access the software tools developed for this computer 

environment, as it is the case for instance of the work from Molenaar.In this PhD 

Thesis the MSroi and MCR-ALS GUIs have been used, released in MATLAB for free 

(http://mcrals.info/), although they are planned to be implemented in other common 

programming languages (e.g., Python and R software).  

Although MATLAB has historically led the chemometrics field, other open-source 

languages are increasing their popularity for the analysis of multidimensional 

chromatographic data. For instance, some R packages have been directly developed 

for the processing of GC×GC data [86–88], which could be potentially used for LC × 

https://cast-amsterdam.org/
http://mcrals.info/
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LC datasets as well. Other programming languages, such as Python or Java, are less 

frequently employed in multidimensional chromatography, but some examples can 

also be found for GC×GC data analysis [89]. A hybrid option would be interfacing 

open source and commercial software, as already proposed by Wilde et al. [90]. The 

major advantage of this proposal would be a customize and more automatized 

workflow for data processing. Thus, this combined pipeline will benefit from the main 

pros of commercial software (standardized workflows, use of GUIs) but at the same 

time overcome their main limitations. For instance, the user will gain more control 

over the results and more flexibility upon the methods applied in the different data 

analysis steps. This intermediate option is especially interesting in the case of large-

scale studies with multiple users (e.g., metabolomic cohorts).  

Lastly, a query that arises when developing new software or new data analysis 

strategies is how to validate them. It is crucial to evaluate these new algorithms to 

ensure reproducible and reliable results compared with the existing tools. Besides, 

findings should be the same regardless of the approach employed (e.g., in 

metabolomic studies, the same biomarkers should be obtained). This issue has 

already been addressed for GC×GC data [91,92]. In these works, benchmark 

datasets that enable comparison between multiple software is also suggested. 

Following this initiative, the chromatogram shown in Figure 4.4 earlier in this 

Chapter, obtained with the optimized method achieved during the 2019 research stay, 

was used in the validation of the MSroi GUI for 2DLC [9]) (which can be freely 

downloaded in the mcrals.info website). Furthermore, previous works from our 

research group have validated the use of MCR-ALS for LC-MS metabolomic studies 

compared to XCMS platforms [50,93], and their quantification capabilities have also 

been assessed compared with the peak areas provided by other vendors software 

[50]. Some examples of LC-MS benchmark datasets are also found on mcrals.info 

website. However, LC×LC benchmark datasets are still lacking, because of the still 

too recent development of LC×LC data analysis strategies compared to commercial 

software. What requirements should have these benchmark datasets are still an open 

question, as too many parameters are needed to be considered. For instance, is high-

resolution mass spectrometry a must? Should data come from multiple instrument 

vendors? and in which format (e.g., .netCDF, .csv)? Are different experimental 

conditions required (different stationary phases, modulation strategies, etc)? Hence, 

this is still a need for the LC×LC community which should be addressed soon.  

file:///C:/Users/usuari/OneDrive/Roma_new_disc/Tesis_masters_TFGs/estudiants_Tesis/miriam/mcrals.info
file:///C:/Users/usuari/OneDrive/Roma_new_disc/Tesis_masters_TFGs/estudiants_Tesis/miriam/mcrals.info
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4.4 Conclusions 

This section summarizes the specific conclusions drawn throughout this Chapter 

from different perspectives such as the proposed analytical improvements in LC×LC 

and the advantages in the developed data analysis strategies, especially related to 

the data pre-processing and the quantification steps. 

 

Concerning LC×LC developments for the analysis of lipids: 

• RP×HILIC configuration provides a higher resolution power compared to 

HILIC×RP for the analysis of lipids.  

• The use of ASM in the analysis of lipids with an RP×HILIC set-up, increases 

sensitivity, solvent compatibility and decreases total run time.  

• An optimized RP×HILIC method for untargeted lipid analysis is proposed in 

lipidomic studies, which has been employed to assess environmental effects 

caused by bisphenol A exposure in zebrafish embryos.  

 

Concerning chemometric strategies suggested for the analysis of LC×LC 

datasets: 

• In the case of very big LC×LC datasets, an intensity prefilter is recommended 

in the conversion process prior to the ROI step.  

• The proposed ROI approach (i.e., filtering and spectral compression) has 

sufficiently reduced the dimensionality of LC×LC-HRMS datasets. Other 

compression strategies (i.e., in the time dimension) and peak alignment steps 

were not required, significantly simplifying the whole pre-processing 

workflow.  

• ROI strategy demonstrated its usefulness for targeted, pseudo-targeted and 

untargeted approaches (i.e., providing absolute and relative quantification 

information).  

• From the different quantification approaches tested (ROI, classic calibration 

with MCR-ALS, and MCR-ALS with area correlation constraint), the best 

results were obtained when the ROIMCR procedure with the area correlation 

constraint (applied during the ALS optimization) were combined. However, 

acceptable quantification results can be obtained with all three strategies.  



Chapter four 

304 

References 

[1] P. Miggiels, B. Wouters, G.J.P. van Westen, A.C. Dubbelman, T. Hankemeier, Novel

technologies for metabolomics: More for less, TrAC - Trends in Analytical Chemistry. 120

(2019) 115323. https://doi.org/10.1016/j.trac.2018.11.021.

[2] W. Lv, X. Shi, S. Wang, G. Xu, Multidimensional liquid chromatography-mass spectrometry for

metabolomic and lipidomic analyses, TrAC - Trends in Analytical Chemistry. 120 (2019)

115302. https://doi.org/10.1016/j.trac.2018.11.001.

[3] A.S. Kaplitz, M.E. Mostafa, S.A. Calvez, J.L. Edwards, J.P. Grinias, Two-dimensional separation

techniques using supercritical fluid chromatography, Journal of Separation Science. 44 (2021)

426–437. https://doi.org/10.1002/jssc.202000823.

[4] A. Delvaux, E. Rathahao-Paris, S. Alves, Different ion mobility-mass spectrometry coupling

techniques to promote metabolomics, Mass Spectrometry Reviews. (2021).

https://doi.org/10.1002/mas.21685.

[5] M. du Luo, Z.W. Zhou, Z.J. Zhu, The Application of Ion Mobility-Mass Spectrometry in

Untargeted Metabolomics: from Separation to Identification, Journal of Analysis and Testing. 4

(2020) 163–174. https://doi.org/10.1007/S41664-020-00133-0/FIGURES/3.

[6] M. Grübner, A. Dunkel, F. Steiner, T. Hofmann, Systematic Evaluation of Liquid

Chromatography (LC) Column Combinations for Application in Two-Dimensional LC

Metabolomic Studies, Analytical Chemistry. 93 (2021) 12565–12573.

https://doi.org/10.1021/acs.analchem.1c01857.

[7] B.W.J. Pirok, D.R. Stoll, P.J. Schoenmakers, Recent Developments in Two-Dimensional Liquid

Chromatography: Fundamental Improvements for Practical Applications, Analytical Chemistry.

91 (2019) 240–263. https://doi.org/10.1021/acs.analchem.8b04841.

[8] D.R. Stoll, K. Shoykhet, P. Petersson, S. Buckenmaier, Active Solvent Modulation: A Valve-

Based Approach to Improve Separation Compatibility in Two-Dimensional Liquid

Chromatography, Analytical Chemistry. 89 (2017) 9260–9267.

https://doi.org/10.1021/acs.analchem.7b02046.

[9] M. Pérez-Cova, C. Bedia, D.R. Stoll, R. Tauler, J. Jaumot, MSroi: A pre-processing tool for mass

spectrometry-based studies, Chemometrics and Intelligent Laboratory Systems. 215 (2021).

https://doi.org/10.1016/j.chemolab.2021.104333.

[10] J. Jaumot, B. Igne, C.A. Anderson, J.K. Drennen, A. de Juan, Blending process modeling and

control by multivariate curve resolution, Talanta. 117 (2013) 492–504.

https://doi.org/10.1016/j.talanta.2013.09.037.

[11] A.C. de O. Neves, R. Tauler, K.M.G. de Lima, Area correlation constraint for the MCR−ALS

quantification of cholesterol using EEM fluorescence data: A new approach, Analytica Chimica

Acta. 937 (2016) 21–28. https://doi.org/10.1016/j.aca.2016.08.011.

[12] D.R. Stoll, P.W. Carr, Two-Dimensional Liquid Chromatography: A State of the Art Tutorial,

Analytical Chemistry. 89 (2017) 519–531. https://doi.org/10.1021/acs.analchem.6b03506.

[13] B.W.J. Pirok, A.F.G. Gargano, P.J. Schoenmakers, Optimizing separations in online

comprehensive two-dimensional liquid chromatography, Journal of Separation Science. 41

(2018) 68–98. https://doi.org/10.1002/jssc.201700863.



 

 

 Development and applications of LC×LC methodology for metabolomic studies  

305 

[14] M. Pérez-Cova, J. Jaumot, R. Tauler, Untangling comprehensive two-dimensional liquid 

chromatography data sets using regions of interest and multivariate curve resolution 

approaches, TrAC - Trends in Analytical Chemistry. 137 (2021). 

https://doi.org/10.1016/j.trac.2021.116207. 

[15] Y. Chen, L. Montero, O.J. Schmitz, Advance in on-line two-dimensional liquid chromatography 

modulation technology, TrAC - Trends in Analytical Chemistry. 120 (2019) 115647. 

https://doi.org/10.1016/j.trac.2019.115647. 

[16] T. Cajka, O. Fiehn, Comprehensive analysis of lipids in biological systems by liquid 

chromatography-mass spectrometry, TrAC - Trends in Analytical Chemistry. 61 (2014) 192–

206. https://doi.org/10.1016/j.trac.2014.04.017. 

[17] M. Roca, M.I. Alcoriza, J.C. Garcia-Cañaveras, A. Lahoz, Reviewing the metabolome coverage 

provided by LC-MS: Focus on sample preparation and chromatography-A tutorial, Analytica 

Chimica Acta. 1147 (2021) 38–55. https://doi.org/10.1016/j.aca.2020.12.025. 

[18] T. Xu, C. Hu, Q. Xuan, G. Xu, Recent advances in analytical strategies for mass spectrometry-

based lipidomics, Analytica Chimica Acta. 1137 (2020) 156–169. 

https://doi.org/10.1016/j.aca.2020.09.060. 

[19] A. Baglai, A.F.G. Gargano, J. Jordens, Y. Mengerink, M. Honing, S. van der Wal, P.J. 

Schoenmakers, Comprehensive lipidomic analysis of human plasma using multidimensional 

liquid- and gas-phase separations: Two-dimensional liquid chromatography–mass 

spectrometry vs. liquid chromatography–trapped-ion-mobility–mass spectrometry, Journal of 

Chromatography A. 1530 (2017) 90–103. https://doi.org/10.1016/j.chroma.2017.11.014. 

[20] M. Holčapek, M. Ovčačíková, M. Lísa, E. Cífková, T. Hájek, Continuous comprehensive two-

dimensional liquid chromatography-electrospray ionization mass spectrometry of complex 

lipidomic samples, Anal Bioanal Chem. 407 (2015) 5033–5043. 

https://doi.org/10.1007/s00216-015-8528-2. 

[21] M. Navarro-Reig, J. Jaumot, R. Tauler, An untargeted lipidomic strategy combining 

comprehensive two-dimensional liquid chromatography and chemometric analysis, Journal of 

Chromatography A. 1568 (2018) 80–90. https://doi.org/10.1016/j.chroma.2018.07.017. 

[22] M. Xu, J. Legradi, P. Leonards, Evaluation of LC-MS and LC×LC-MS in analysis of zebrafish 

embryo samples for comprehensive lipid profiling, Analytical and Bioanalytical Chemistry. 412 

(2020) 4313–4325. https://doi.org/10.1007/s00216-020-02661-1. 

[23] P. Donato, G. Micalizzi, M. Oteri, F. Rigano, D. Sciarrone, P. Dugo, L. Mondello, Comprehensive 

lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and 

multidimensional chromatography techniques coupled to mass spectrometry detection, 

Analytical and Bioanalytical Chemistry. 410 (2018) 3297–3313. 

https://doi.org/10.1007/s00216-018-1045-3. 

[24] R. Berkecz, F. Tömösi, T. Körmöczi, V. Szegedi, J. Horváth, T. Janáky, Comprehensive 

phospholipid and sphingomyelin profiling of different brain regions in mouse model of anxiety 

disorder using online two-dimensional (HILIC/RP)-LC/MS method, Journal of Pharmaceutical 

and Biomedical Analysis. 149 (2018) 308–317. https://doi.org/10.1016/j.jpba.2017.10.043. 

[25] C. Sun, Y.Y. Zhao, J.M. Curtis, Characterization of phospholipids by two-dimensional liquid 

chromatography coupled to in-line ozonolysis-mass spectrometry, Journal of Agricultural and 

Food Chemistry. 63 (2015) 1442–1451. https://doi.org/10.1021/jf5049595. 



Chapter four 

306 

[26] C. Sun, Y.Y. Zhao, J.M. Curtis, Elucidation of phosphatidylcholine isomers using two

dimensional liquid chromatography coupled in-line with ozonolysis mass spectrometry, Journal

of Chromatography A. 1351 (2014) 37–45. https://doi.org/10.1016/j.chroma.2014.04.069.

[27] M. Holčapek, M. Ovčačíková, M. Lísa, E. Cífková, T. Hájek, Continuous comprehensive two-

dimensional liquid chromatography-electrospray ionization mass spectrometry of complex

lipidomic samples, Anal Bioanal Chem. 407 (2015) 5033–5043.

https://doi.org/10.1007/s00216-015-8528-2.

[28] M. Holčapek, M. Ovčačíková, M. Lísa, E. Cífková, T. Hájek, Continuous comprehensive two-

dimensional liquid chromatography-electrospray ionization mass spectrometry of complex

lipidomic samples, Anal Bioanal Chem. 407 (2015) 5033–5043.

https://doi.org/10.1007/s00216-015-8528-2.

[29] Ö.C. Zeki, C.C. Eylem, T. Reçber, S. Kır, E. Nemutlu, Integration of GC–MS and LC–MS for

untargeted metabolomics profiling, Journal of Pharmaceutical and Biomedical Analysis. 190

(2020). https://doi.org/10.1016/j.jpba.2020.113509.

[30] E.M. Harrieder, F. Kretschmer, S. Böcker, M. Witting, Current state-of-the-art of separation

methods used in LC-MS based metabolomics and lipidomics, Journal of Chromatography B:

Analytical Technologies in the Biomedical and Life Sciences. 1188 (2022).

https://doi.org/10.1016/j.jchromb.2021.123069.

[31] A. Klåvus, M. Kokla, S. Noerman, V.M. Koistinen, M. Tuomainen, I. Zarei, T. Meuronen, M.R.

Häkkinen, S. Rummukainen, A.F. Babu, T. Sallinen, O. Kärkkäinen, J. Paananen, D. Broadhurst,

C. Brunius, K. Hanhineva, “Notame”: Workflow for non-targeted LC-MS metabolic profiling,

Metabolites. 10 (2020) 1–35. https://doi.org/10.3390/metabo10040135. 

[32] M. Xu, J. Legradi, P. Leonards, Cross platform solutions to improve the zebrafish polar

metabolome coverage using LC-QTOF MS: Optimization of separation mechanisms, solvent

additives, and resuspension solvents, Talanta. 234 (2021) 122688.

https://doi.org/10.1016/j.talanta.2021.122688.

[33] C. Martias, N. Baroukh, S. Mavel, H. Blasco, A. Lefèvre, L. Roch, F. Montigny, J. Gatien, L.

Schibler, D. Dufour-Rainfray, L. Nadal-Desbarats, P. Emond, Optimization of sample

preparation for metabolomics exploration of urine, feces, blood and saliva in humans using

combined nmr and uhplc-hrms platforms, Molecules. 26 (2021).

https://doi.org/10.3390/molecules26144111.

[34] J. Pezzatti, V. González-Ruiz, S. Codesido, Y. Gagnebin, A. Joshi, D. Guillarme, J. Schappler, D.

Picard, J. Boccard, S. Rudaz, A scoring approach for multi-platform acquisition in

metabolomics, Journal of Chromatography A. 1592 (2019) 47–54.

https://doi.org/10.1016/j.chroma.2019.01.023.

[35] K. Arena, F. Cacciola, L. Dugo, P. Dugo, L. Mondello, Determination of the metabolite content

of Brassica juncea cultivars using comprehensive two-dimensional liquid chromatography

coupled with a photodiode array and mass spectrometry detection, Molecules. 25 (2020) 1–12.

https://doi.org/10.3390/molecules25051235.

[36] A. Corgier, M. Sarrut, G. Crétier, S. Heinisch, Potential of Online Comprehensive Two-

Dimensional Liquid Chromatography For Micro-Preparative Separations of Simple Samples,

Chromatographia. 79 (2016) 255–260. https://doi.org/10.1007/s10337-015-3012-x.



Development and applications of LC×LC methodology for metabolomic studies 

307 

[37] Y.F. Wong, F. Cacciola, S. Fermas, S. Riga, D. James, V. Manzin, B. Bonnet, P.J. Marriott, P.

Dugo, L. Mondello, Untargeted profiling of Glycyrrhiza glabra extract with comprehensive two-

dimensional liquid chromatography-mass spectrometry using multi-segmented shift gradients

in the second dimension: Expanding the metabolic coverage, Electrophoresis. 39 (2018) 1993–

2000. https://doi.org/10.1002/elps.201700469.

[38] A. Baglai, M.H. Blokland, H.G.J. Mol, A.F.G. Gargano, S. van der Wal, P.J. Schoenmakers,

Enhancing detectability of anabolic-steroid residues in bovine urine by actively modulated

online comprehensive two-dimensional liquid chromatography – high-resolution mass

spectrometry, Analytica Chimica Acta. 1013 (2018) 87–97.

https://doi.org/10.1016/j.aca.2017.12.043.

[39] M. Navarro-Reig, J. Jaumot, A. Baglai, G. Vivó-Truyols, P.J. Schoenmakers, R. Tauler,

Untargeted Comprehensive Two-Dimensional Liquid Chromatography Coupled with High-

Resolution Mass Spectrometry Analysis of Rice Metabolome Using Multivariate Curve

Resolution, Analytical Chemistry. 89 (2017) 7675–7683.

https://doi.org/10.1021/acs.analchem.7b01648.

[40] L. Montero, E. Ibáñez, M. Russo, R. di Sanzo, L. Rastrelli, A.L. Piccinelli, R. Celano, A.

Cifuentes, M. Herrero, Metabolite profiling of licorice (Glycyrrhiza glabra) from different

locations using comprehensive two-dimensional liquid chromatography coupled to diode array

and tandem mass spectrometry detection, Analytica Chimica Acta. 913 (2016) 145–159.

https://doi.org/10.1016/j.aca.2016.01.040.

[41] E. Sommella, O.H. Ismail, F. Pagano, G. Pepe, C. Ostacolo, G. Mazzoccanti, M. Russo, E.

Novellino, F. Gasparrini, P. Campiglia, Development of an improved online comprehensive

hydrophilic interaction chromatography × reversed-phase ultra-high-pressure liquid

chromatography platform for complex multiclass polyphenolic sample analysis, Journal of

Separation Science. 40 (2017) 2188–2197. https://doi.org/10.1002/jssc.201700134.

[42] L. Montero, A.P. Sánchez-Camargo, V. García-Cañas, A. Tanniou, V. Stiger-Pouvreau, M.

Russo, L. Rastrelli, A. Cifuentes, M. Herrero, E. Ibáñez, Anti-proliferative activity and chemical

characterization by comprehensive two-dimensional liquid chromatography coupled to mass

spectrometry of phlorotannins from the brown macroalga Sargassum muticum collected on

North-Atlantic coasts, Journal of Chromatography A. 1428 (2016) 115–125.

https://doi.org/10.1016/j.chroma.2015.07.053.

[43] C.M. Willemse, M.A. Stander, J. Vestner, A.G.J. Tredoux, A. de Villiers, Comprehensive Two-

Dimensional Hydrophilic Interaction Chromatography (HILIC) × Reversed-Phase Liquid

Chromatography Coupled to High-Resolution Mass Spectrometry (RP-LC-UV-MS) Analysis of

Anthocyanins and Derived Pigments in Red Wine, Analytical Chemistry. 87 (2015) 12006–

12015. https://doi.org/10.1021/acs.analchem.5b03615.

[44] Y. Chen, L. Montero, J. Luo, J. Li, O.J. Schmitz, Application of the new at-column dilution (ACD)

modulator for the two-dimensional RP×HILIC analysis of Buddleja davidii, Analytical and

Bioanalytical Chemistry. 412 (2020) 1483–1495. https://doi.org/10.1007/s00216-020-02392-3.

[45] L.L. Hohrenk, M. Vosough, T.C. Schmidt, Implementation of Chemometric Tools to Improve

Data Mining and Prioritization in LC-HRMS for Nontarget Screening of Organic

Micropollutants in Complex Water Matrixes, Analytical Chemistry. 91 (2019) 9213–9220.

https://doi.org/10.1021/ACS.ANALCHEM.9B01984/SUPPL_FILE/AC9B01984_SI_001.PDF.



 

 

 Chapter four 

308 

[46] R. Martínez, L. Navarro-Martín, M. van Antro, I. Fuertes, M. Casado, C. Barata, B. Piña, 

Changes in lipid profiles induced by bisphenol A (BPA) in zebrafish eleutheroembryos during 

the yolk sac absorption stage, Chemosphere. 246 (2020) 125704. 

https://doi.org/10.1016/J.CHEMOSPHERE.2019.125704. 

[47] A. Jia, L. Xu, Y. Wang, Venn diagrams in bioinformatics, Briefings in Bioinformatics. 22 (2021). 

https://doi.org/10.1093/BIB/BBAB108. 

[48] H. Tsugawa, K. Ikeda, M. Takahashi, A. Satoh, Y. Mori, H. Uchino, N. Okahashi, Y. Yamada, I. 

Tada, P. Bonini, Y. Higashi, Y. Okazaki, Z. Zhou, Z.-J. Zhu, J. Koelmel, T. Cajka, O. Fiehn, K. 

Saito, M. Arita, M. Arita, A lipidome atlas in MS-DIAL 4, Nature Biotechnology. (n.d.). 

https://doi.org/10.1038/s41587-020-0531-2. 

[49] L. Montero, S.W. Meckelmann, H. Kim, J.F. Ayala-Cabrera, O.J. Schmitz, Differentiation of 

industrial hemp strains by their cannabinoid and phenolic compounds using LC × LC-HRMS, 

Analytical and Bioanalytical Chemistry. (2022). https://doi.org/10.1007/S00216-022-03925-8. 

[50] N. Dalmau, C. Bedia, R. Tauler, Validation of the Regions of Interest Multivariate Curve 

Resolution (ROIMCR) procedure for untargeted LC-MS lipidomic analysis, Analytica Chimica 

Acta. 1025 (2018) 80–91. https://doi.org/10.1016/j.aca.2018.04.003. 

[51] R.S.M. Pourasil, J. Cristale, S. Lacorte, R. Tauler, Non-targeted Gas Chromatography Orbitrap 

Mass Spectrometry qualitative and quantitative analysis of semi-volatile organic compounds in 

indoor dust using the Regions of Interest Multivariate Cuarve Resolution chemometrics 

procedure, Journal of Chromatography A. (2022) 462907. 

https://doi.org/10.1016/J.CHROMA.2022.462907. 

[52] G. Ahmadi, R. Tauler, H. Abdollahi, Multivariate calibration of first-order data with the 

correlation constrained MCR-ALS method, Chemometrics and Intelligent Laboratory Systems. 

142 (2015) 143–150. https://doi.org/10.1016/j.chemolab.2014.11.010. 

[53] M. Bayat, M. Marín-García, J.B. Ghasemi, R. Tauler, Application of the area correlation 

constraint in the MCR-ALS quantitative analysis of complex mixture samples, Analytica 

Chimica Acta. 1113 (2020) 52–65. https://doi.org/10.1016/j.aca.2020.03.057. 

[54] A.C. de O. Neves, R. Tauler, K.M.G. de Lima, Area correlation constraint for the MCR−ALS 

quantification of cholesterol using EEM fluorescence data: A new approach, Analytica Chimica 

Acta. 937 (2016) 21–28. https://doi.org/10.1016/j.aca.2016.08.011. 

[55] A. de Juan, J. Jaumot, R. Tauler, Multivariate Curve Resolution (MCR). Solving the mixture 

analysis problem, Analytical Methods. 6 (2014) 4964–4976. 

https://doi.org/10.1039/c4ay00571f. 

[56] Q. Wang, M. Ye, L. Xu, Z. guo Shi, A reversed-phase/hydrophilic interaction mixed-mode C18-

Diol stationary phase for multiple applications, Anal Chim Acta. 888 (2015) 182–190. 

https://doi.org/10.1016/J.ACA.2015.06.058. 

[57] J. Ito, N. Shimizu, E. Kobayashi, Y. Hanzawa, Y. Otoki, S. Kato, T. Hirokawa, S. Kuwahara, T. 

Miyazawa, K. Nakagawa, A novel chiral stationary phase LC-MS/MS method to evaluate 

oxidation mechanisms of edible oils, Scientific Reports. 7 (2017) 1–10. 

https://doi.org/10.1038/s41598-017-10536-2. 

[58] T. Řezanka, K. Sigler, Separation of enantiomeric triacylglycerols by chiral-phase HPLC, Lipids. 

49 (2014) 1251–1260. https://doi.org/10.1007/s11745-014-3959-7. 



Development and applications of LC×LC methodology for metabolomic studies 

309 

[59] S.A. Brose, B.T. Thuen, M.Y. Golovko, LC/MS/MS method for analysis of E2 series

prostaglandins and isoprostanes, Journal of Lipid Research. 52 (2011) 850–859.

https://doi.org/10.1194/jlr.D013441.

[60] T. Řezanka, I. Kolouchová, A. Čejková, T. Cajthaml, K. Sigler, Identification of regioisomers and

enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC-MS,

Journal of Separation Science. 36 (2013) 3310–3320. https://doi.org/10.1002/jssc.201300657.

[61] T. Řezanka, L. Nedbalová, K. Sigler, Enantiomeric separation of triacylglycerols containing

polyunsaturated fatty acids with 18 carbon atoms, Journal of Chromatography A. 1467 (2016)

261–269. https://doi.org/10.1016/j.chroma.2016.07.006.

[62] S. Song, H. Liu, Y. Bai, Supercritical Fluid Chromatography and Its Application in Lipid Isomer

Separation, Journal of Analysis and Testing. 1 (n.d.). https://doi.org/10.1007/s41664-017-

0031-7.

[63] M. Burlet-Parendel, K. Faure, Opportunities and challenges of liquid chromatography coupled

to supercritical fluid chromatography, TrAC Trends in Analytical Chemistry. 144 (2021) 116422.

https://doi.org/10.1016/J.TRAC.2021.116422.

[64] L. Feng, L. Wu, Y. Guo, N. Hamada, Y. Hashi, X. Li, L. Cao, Determination of vitamin D3 in daily

oily supplements by a two-dimensional supercritical fluid chromatography-liquid

chromatography-mass spectrometry system, J Chromatogr A. 1629 (2020).

https://doi.org/10.1016/J.CHROMA.2020.461510.

[65] L. Yang, H. Nie, F. Zhao, S. Song, Y. Meng, Y. Bai, H. Liu, A novel online two-dimensional

supercritical fluid chromatography/reversed phase liquid chromatography–mass spectrometry

method for lipid profiling, Analytical and Bioanalytical Chemistry. 412 (2020) 2225–2235.

https://doi.org/10.1007/s00216-019-02242-x.

[66] J.E. Kyle, X. Zhang, K.K. Weitz, M.E. Monroe, Y.M. Ibrahim, R.J. Moore, J. Cha, X. Sun, E.S.

Lovelace, J. Wagoner, S.J. Polyak, T.O. Metz, S.K. Dey, R.D. Smith, K.E. Burnum-Johnson, E.S.

Baker, Uncovering biologically significant lipid isomers with liquid chromatography, ion

mobility spectrometry and mass spectrometry, Analyst. 141 (2016) 1649–1659.

https://doi.org/10.1039/c5an02062j.

[67] C. Gonzaíez-Riano, D. Dudzik, A. Garcia, A. Gil-De-La-Fuente, A. Gradillas, J. Godzien, A.́

Ngeles Lópezlópez-Gonzaívez, F. Rey-Stolle, D. Rojo, F.J. Ruperez, J. Saiz, C. Barbas, Recent

Developments along the Analytical Process for Metabolomics Workflows, (2019).

https://doi.org/10.1021/acs.analchem.9b04553.

[68] M. Schroeder, S.W. Meyer, H.M. Heyman, A. Barsch, L.W. Sumner, Generation of a collision

cross section library for multi-dimensional plant metabolomics using UHPLC-trapped ion

mobility-MS/MS, Metabolites. 10 (2020). https://doi.org/10.3390/metabo10010013.

[69] M. Chen, Y. Hao, S. Chen, A protocol for investigating lipidomic dysregulation and discovering

lipid biomarkers from human serums, STAR Protocols. 3 (2022) 101125.

https://doi.org/10.1016/j.xpro.2022.101125.

[70] B. Spanier, A. Laurençon, A. Weiser, N. Pujol, S. Omi, A. Barsch, A. Korf, S.W. Meyer, J.J.

Ewbank, F. Paladino, S. Garvis, · Hugo Aguilaniu, Comparison of lipidome profiles of

Caenorhabditis elegans-results from an inter-laboratory ring trial, Metabolomics. 1 (123AD)

25. https://doi.org/10.1007/s11306-021-01775-6.



 

 

 Chapter four 

310 

[71] C. di Poto, X. Tian, X. Peng, H.M. Heyman, M. Szesny, S. Hess, L.H. Cazares, Metabolomic 

Profiling of Human Urine Samples Using LC-TIMS-QTOF Mass Spectrometry, J Am Soc Mass 

Spectrom. 32 (2021) 2072–2080. https://doi.org/10.1021/jasms.0c00467. 

[72] P. Venter, M. Muller, J. Vestner, M.A. Stander, A.G.J. Tredoux, H. Pasch, A. de Villiers, 

Comprehensive Three-Dimensional LC × LC × Ion Mobility Spectrometry Separation 

Combined with High-Resolution MS for the Analysis of Complex Samples, Analytical 

Chemistry. 90 (2018) 11643–11650. https://doi.org/10.1021/acs.analchem.8b03234. 

[73] D.R. Stoll, H.R. Lhotka, D.C. Harmes, B. Madigan, J.J. Hsiao, G.O. Staples, High resolution two-

dimensional liquid chromatography coupled with mass spectrometry for robust and sensitive 

characterization of therapeutic antibodies at the peptide level, Journal of Chromatography B: 

Analytical Technologies in the Biomedical and Life Sciences. 1134–1135 (2019) 121832. 

https://doi.org/10.1016/j.jchromb.2019.121832. 

[74] P. Yang, W. Gao, T. Zhang, M. Pursch, J. Luong, W. Sattler, A. Singh, S. Backer, Two-

dimensional liquid chromatography with active solvent modulation for studying monomer 

incorporation in copolymer dispersants, Journal of Separation Science. 42 (2019) 2805–2815. 

https://doi.org/10.1002/jssc.201900283. 

[75] D.R. Stoll, D.C. Harmes, G.O. Staples, O.G. Potter, C.T. Dammann, D. Guillarme, A. Beck, 

Development of Comprehensive Online Two-Dimensional Liquid Chromatography/Mass 

Spectrometry Using Hydrophilic Interaction and Reversed-Phase Separations for Rapid and 

Deep Profiling of Therapeutic Antibodies, Analytical Chemistry. 90 (2018) 5923–5929. 

https://doi.org/10.1021/acs.analchem.8b00776. 

[76] E. Fornells, B. Barnett, M. Bailey, E.F. Hilder, R.A. Shellie, M.C. Breadmore, Evaporative 

membrane modulation for comprehensive two-dimensional liquid chromatography, Analytica 

Chimica Acta. 1000 (2018) 303–309. https://doi.org/10.1016/j.aca.2017.11.053. 

[77] Y. Chen, J. Li, O.J. Schmitz, Development of an At-Column Dilution Modulator for Flexible and 

Precise Control of Dilution Factors to Overcome Mobile Phase Incompatibility in 

Comprehensive Two-Dimensional Liquid Chromatography, Analytical Chemistry. 91 (2019) 

10251–10257. https://doi.org/10.1021/acs.analchem.9b02391. 

[78] P. Hemström, K. Irgum, Hydrophilic interaction chromatography, 2006. 

https://doi.org/10.1002/jssc.200600199. 

[79] C. Seidl, D.S. Bell, D.R. Stoll, A study of the re-equilibration of hydrophilic interaction columns 

with a focus on viability for use in two-dimensional liquid chromatography, Journal of 

Chromatography A. 1604 (2019) 460484. https://doi.org/10.1016/J.CHROMA.2019.460484. 

[80] Y. Wang, X. Lu, G. Xu, Development of a comprehensive two-dimensional hydrophilic 

interaction chromatography/quadrupole time-of-flight mass spectrometry system and its 

application in separation and identification of saponins from Quillaja saponaria, Journal of 

Chromatography A. 1181 (2008) 51–59. https://doi.org/10.1016/j.chroma.2007.12.034. 

[81] A.A. Aly, M. Muller, A. de Villiers, B.W.J. Pirok, T. Górecki, Parallel gradients in comprehensive 

multidimensional liquid chromatography enhance utilization of the separation space and the 

degree of orthogonality when the separation mechanisms are correlated, Journal of 

Chromatography A. 1628 (2020) 461452. https://doi.org/10.1016/j.chroma.2020.461452. 

[82] S.R.A. Molenaar, P.J. Schoenmakers, B.W.J. Pirok, MOREPEAKS, (2021). 

https://doi.org/10.5281/ZENODO.6375413. 



Development and applications of LC×LC methodology for metabolomic studies 

311 

[83] S.R.A. Molenaar, B. van de Put, B.W.J. Pirok, MOREDISTRIBUTIONS, (2021).

https://doi.org/10.5281/ZENODO.5710530.

[84] & B.W.J.P. Stef R.A. Molenaar, Peter J. Schoenmakers, MOREPEAKS, (2021).

https://doi.org/https://doi.org/10.5281/zenodo.5786549.

[85] & B.W.J.Pirok. Stef R.A. Molenaar, Bram van de Put, MOREDISTRIBUTIONS, (2021).

https://doi.org/https://doi.org/10.5281/zenodo.5710530.

[86] C. Quiroz-Moreno, M.F. Furlan, J.R. Belinato, F. Augusto, G.L. Alexandrino, N.G.S. Mogollón,

RGCxGC toolbox: An R-package for data processing in comprehensive two-dimensional gas

chromatography-mass spectrometry, Microchemical Journal. 156 (2020) 104830.

https://doi.org/10.1016/j.microc.2020.104830.

[87] E. Hoh, N.G. Dodder, S.J. Lehotay, K.C. Pangallo, C.M. Reddy, K.A. Maruya, Nontargeted

comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry

method and software for inventorying persistent and bioaccumulative contaminants in marine

environments, Environmental Science and Technology. 46 (2012) 8001–8008.

https://doi.org/10.1021/es301139q.

[88] S. Moayedpour, H. Parastar, RMet: An automated R based software for analyzing GC-MS and

GC×GC-MS untargeted metabolomic data, Chemometrics and Intelligent Laboratory Systems.

194 (2019) 103866. https://doi.org/10.1016/j.chemolab.2019.103866.

[89] I.A. Titaley, O.M. Ogba, L. Chibwe, E. Hoh, P.H.Y. Cheong, S.L.M. Simonich, Automating data

analysis for two-dimensional gas chromatography/time-of-flight mass spectrometry non‐

targeted analysis of comparative samples, Journal of Chromatography A. 1541 (2018) 57–62.

https://doi.org/10.1016/J.CHROMA.2018.02.016.

[90] M.J. Wilde, B. Zhao, R.L. Cordell, W. Ibrahim, A. Singapuri, N.J. Greening, C.E. Brightling, S.

Siddiqui, P.S. Monks, R.C. Free, Automating and Extending Comprehensive Two-Dimensional

Gas Chromatography Data Processing by Interfacing Open-Source and Commercial Software,

Analytical Chemistry. 92 (2020) 13953–13960. https://doi.org/10.1021/acs.analchem.0c02844.

[91] B.A. Weggler, L.M. Dubois, N. Gawlitta, T. Gröger, J. Moncur, L. Mondello, S. Reichenbach, P.

Tranchida, Z. Zhao, R. Zimmermann, M. Zoccali, J.F. Focant, A unique data analysis framework

and open source benchmark data set for the analysis of comprehensive two-dimensional gas

chromatography software, Journal of Chromatography A. 1635 (2021) 461721.

https://doi.org/10.1016/j.chroma.2020.461721.

[92] N. Gawlitta, T. Gr, R. Zimmermann, J. Mass, S. Centre, H. Zentrum, New Platform-Independent

Data Analysis Software with Build-in Chemometric Tools for the Processing and Statistical

Analysis of Comprehensive Two-Dimensional Gas Chromatography Data Sets, (2019) 50–53.

[93] C.A. Smith, E.J. Want, G. O’Maille, R. Abagyan, G. Siuzdak, XCMS: Processing mass

spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and

identification, Analytical Chemistry. 78 (2006) 779–787. https://doi.org/10.1021/ac051437y.



Chapter four 

312 





 

  

 
 
 



 

 

 Applications of metabolomic workflows for environmental assessments  

315 

5.1 Introduction 

This Chapter focuses on examples of metabolomic applications used by the 

previously introduced chromatographic and chemometric methods. Particularly, the 

proposed metabolomic workflows aim to evaluate the effects of different emerging 

pollutants in model biosystems (i.e., arsenic exposure in rice and pharmaceutical 

compounds in human hepatic cells, in scientific publications VII and VIII, 

respectively). These studies combine information about the changes that the 

environmental stressors produce in the metabolome and lipidome of the model 

biosystems.  

Although the term “metabolomics” refers to the analysis of small and polar 

compounds (i.e., metabolites) as well as other larger molecules, such as lipids (i.e., 

lipidomics), the analytical workflow is usually very different, depending on the 

analyzed compounds. For instance, extraction protocols or analytical conditions (e.g., 

stationary and mobile phases solvent composition in the case of liquid 

chromatography) can suffer modifications accordingly. The ideal situation would be 

to set up a single analytical workflow for molecules from high polarity to high 

hydrophobicity, but the broad range of physicochemical properties of the analytes 

difficults this scenario. Examples from the literature often collect the polar and the 

non-polar fractions separately during the same extraction protocol (e.g., 

acetonitrile/methanol layer for metabolomics, and chloroform layer for lipidomics) 

[1–3]. Then, the injection of these fractions into liquid chromatography coupled to 

mass spectrometry (LC-MS) using methods specifically designed for metabolites or 

lipids. Other innovative approaches run the dual analysis in parallel columns (e.g., 

reversed phased (RP) and hydrophilic interaction chromatography (HILIC)) and 

merge the obtained information into one data file [4].  

Figure 5.1 summarizes the analytical workflows employed in scientific 

publications VII and VIII from the model biosystem and environmental stressor 

selection until the data processing strategy. In the case of studying arsenic exposure, 

rice is an interesting choice because its flooding conditions make this model 

organism especially vulnerable to inorganic arsenic species, present in the water or 

the soil [5]. In addition, rice is the most consumed product with a high arsenic 

content, becoming a threat to the human population [6]. In contrast, human hepatic 

cells (from the HepG2 cell line) are an appealing model biosystem for studying the 

effects of hepatotoxic pharmaceutical compounds released into the environment. 
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These compounds have been detected and quantified in wastewaters [7], but further 

effort is required to assess their toxicity.  

Both studies have in common that the evaluation of the effects of these emerging 

pollutants is performed through metabolomics approaches, although the workflows 

followed are different. The metabolomic and lipidomic information is obtained in 

scientific publication VII, through two analytical approaches, including two 

extraction protocols and two untargeted LC-MS methods. In contrast, in scientific 

publication VIII, the same extraction protocol was used for both analyses (i.e., lipids 

and metabolites) but different LC-MS approaches, a targeted method for 

sphingolipids and an untargeted method for metabolites. In both studies, RP and 

HILIC stationary phases were employed for the analysis of lipids and metabolites, 

respectively, although the separation and mass spectrometry conditions were 

different. However, data independent acquisition (DIA) (in particular, all ion 

fragmentation (AIF)) was employed for untargeted metabolomics analyses in the two 

studies.  

A more exhaustive comparison of the data analysis workflows is detailed in the 

discussion section of this Chapter. On the one side, the analytical and chemometric 

strategies from scientific publication VII were already optimized by the host 

research group at IDAEA [8–10]. Previous works from the group also merged the 

information of different omics (e.g., metabolomics and transcriptomics) [11] or the 

metabolomics and lipidomics information from diverse analytical platforms (e.g., LC-

MS and nuclear magnetic resonance (NMR) [12]). In this PhD Thesis, the main 

novelty is the simultaneous combination of both metabolomic and lipidomic LC-MS 

platforms in the same environmental assessment. On the other side, the analytical 

workflows from scientific publications VIII were designed by the group of Prof. Craig 

Wheelock for metabolomics analysis in clinical applications [13,14], and were 

employed during a three-month research stay in 2021 in the Department of Medical 

Biochemistry and Biophysics of the Karolinska Institutet (KI, Solna, Sweden). Prof. 

Wheelock is the Principal Investigator of the Integrative Molecular Phenotyping 

laboratory, which is one of the leading groups in the development of liquid and gas 

chromatography coupled to mass spectrometry methods and bioinformatics 

approaches for the quantification of lipids and other metabolites at the population 

level. The research stay carried out in 2021 had a primarily formative objective, i.e., 
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the familiarization with targeted analysis strategies from the analytical perspective, 

and also learning alternative untargeted workflows for metabolomics. 

  

 

Figure 5.1. Scheme of the metabolomic/lipidomic workflows employed in scientific publications 

VII and VIII.  

 

In summary, this Chapter is focused on discussing the metabolomics/lipidomics 

workflows employed in scientific publications VII and VIII and their main 

advantages and opportunities from the data analysis perspective.   
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5.2 Scientific publications 

This section includes a brief summary of the studies presented in scientific 

publications VII and VIII:  

SCIENTIFIC PUBLICATION VII 

Rice crops are especially vulnerable to arsenic exposure compared to other cereal 

crops, mainly due to flooding conditions in which rice is grown, which facilitates its 

uptake. Because rice and rice-based products are among the main food staples 

worldwide, they are also the most consumed products with higher arsenic content, 

becoming a threat to the environment and human population. In this work, arsenic 

exposure in rice is assessed with two treatments (supplying arsenic to rice crops at 

early stages through irrigation or through the soil), and two concentration levels. 

Although considerable effort has been put in understanding how this metalloid is 

translocated and accumulated once it has accessed through the roots, this study 

aims to shed some light on the mode of action of arsenic in rice and the changes 

caused in the metabolome and lipidome of the crops. Untargeted metabolomics and 

lipidomics platforms included one-dimensional liquid chromatography coupled to 

mass spectrometry (LC-MS) as instrumental analytical platform and regions of 

interest – multivariate curve resolution (ROIMCR) as chemometric data analysis 

approach.  

SCIENTIFIC PUBLICATION VIII 

In recent years, pharmaceutical compounds have arisen as one of the main emerging 

contaminants (ECs) because their consumption and release into the environment 

have considerably increased worldwide. The goal of this study is to assess the effects 

caused by three widely consumed hepatoxic pharmaceutical compounds: an 

antibiotic (amoxicillin), an antiepileptic (carbamazepine), and an antidepressant 

(trazodone) at environmentally relevant concentrations. A combination of an 

untargeted metabolomic workflow and a targeted sphingolipid platform has been 

selected to unravel the metabolic alterations in human hepatic cells exposed to these 

ECs at three concentrations of exposure for 24 hours. Univariate and multivariate 

statistical methods were employed for discriminating the most affected metabolites 

and sphingolipids for each drug exposure. Therefore, this study allowed identifying 

the main metabolic pathways that suffered changes due to the exposure to the 

pharmaceutical compounds.  
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VII. SCIENTIFIC PUBLICATION VII

Title: Adverse Effects of Arsenic Uptake in Rice Metabolome and Lipidome Revealed 

by Untargeted Liquid Chromatography Coupled to Mass Spectrometry (LC-MS) and 

Regions of Interest Multivariate Curve Resolution 

Authors: Miriam Pérez-Cova, Romà Tauler and Joaquim Jaumot 

Citation reference: Separations 9 (2022) 79.  

DOI: 10.3390/separations9030079 

doi:%2010.3390/separations9030079
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Table SH. Metabolite identification of the most relevant features responsible for the changes 

induced by arsenic exposure on rice in aerial tissues, in negative ionization mode.   

Table SA. Lipid identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in 
root tissues, in positive ionization mode.  

Significant lipids (PLSDA, vips) Lipids ID 

C-
WH 

C-WVL C-SM C-SL 
Sample 

type 
MCR 

component 
ROI 
ID 

m/z 
RT 

(min) 
Lipid name 

x x Roots(+) 4 26 610.5402 7.77 DG(34:2) 

x x Roots(+) 16 36 634.5410 8.30 DG(36:4) 

x x Roots(+) 19 34 632.5306 7.37 DG(36:5) 

x Roots(+) 22 40 638.5734 10.16 DG(36:2) 

x x Roots(+) 30 174 934.6590 5.79 DGDG(34:2) 

x x Roots(+) 32 125 852.5716 4.87 DGDG(28:1) 

x x Roots(+) 34 185 958.6603 5.73 DGDG(36:4) 

x x x x Roots(+) 41 85 756.5636 6.29 MGDG(33:3) 

x x x x Roots(+) 44 75 718.5447 5.95 MGDG(30:1) 

x x Roots(+) 46 43 647.4626 12.05 DG(37:7) 

x Roots(+) 50 15 510.3564 2.48 LPC(17:0) 

x x Roots(+) 54 38 636.5582 9.26 DG(36:3) 

x Roots(+) 56 127 844.6961 9.23 MGDG(39:1) 

x x Roots(+) 61 121 826.6831 9.79 HexCer(42:2;O3) 

x x x x Roots(+) 63 92 760.5891 6.94 PC(34:1) 

x Roots(+) 66 14 496.3393 2.14 LPC(16:0) 

x x x x Roots(+) 81 96 764.5518 5.08 PC(O-36:6) or PC(P-36:5) 

x x Roots(+) 86 3 338.3385 3.84 NAE(20:0) 

x x x Roots(+) 87 176 936.6726 6.63 DGDG(34:1) 

x Roots(+) 88 44 647.5161 4.62 SM(30:1;O2)  

x x x Roots(+) 89 33 630.5157 6.44 DG(36:6) 

x x Roots(+) 93 89 742.5514 5.79 MGDG(32:3) 

x x x x Roots(+) 96 80 740.5302 6.20 PC(33:4) 

x x x Roots(+) 99 77 720.5607 5.95 MGDG(30:0) 

x x x x Roots(+) 100 101 778.5451 5.30 PC(36:6) 

x Roots(+) 101 61 692.6376 16.17 CE(20:3) 

x Roots(+) 104 137 854.6949 11.43 PC(O-42:3) 

x Roots(+) 105 109 788.6353 6.47 MGDG(35:1) 

x x x x Roots(+) 106 191 962.6876 7.03 DGDG(36:2) 

x x x Roots(+) 107 99 771.6293 7.13 SM(39:2;O2) 

x x x Roots(+) 108 120 816.6635 7.87 MGDG(37:1) 

x x Roots(+) 111 79 728.5301 5.39 PC(32:3) 

x x x Roots(+) 112 9 413.3763 5.52 ST(29:2;O) 

x x x x Roots(+) 113 75 718.5447 6.63 PC(31:1) 

x x x x Roots(+) 116 67 704.5332 6.29 MGDG(29:1) 

x x x Roots(+) 118 46 663.4874 4.46 DG(38:6) 

x x x Roots(+) 122 18 573.4899 5.45 DG(O-32:2) 

x x x Roots(+) 127 2 337.2675 8.61 FA(21:3;O) 

x x x Roots(+) 128 88 758.5759 7.28 PC(34:2) 

x x x Roots(+) 129 82 742.5830 5.95 PC(P-34:2) 

x x Roots(+) 131 60 691.5192 6.20 DG(40:6) 

x Roots(+) 135 73 716.5305 5.79 MGDG(30:2) 

x x x x Roots(+) 140 81 741.5357 6.20 DG(44:9) 

x x x x Roots(+) 141 31 617.5154 7.96 DG(35:2) 

x Roots(+) 142 30 615.4991 8.95 DG(34:2) 

x x Roots(+) 144 78 726.5131 4.87 MGDG(31:4) 
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x x x x Roots(+) 145 104 782.5789 6.78 MGDG(35:4) 

x Roots(+) 146 35 633.5353 7.37 DG(35:0) 

x x Roots(+) 147 28 613.4841 7.96 DG(34:3) 

x x x Roots(+) 149 1 313.2683 8.98 FA(19:1;O) 

Table SA. Lipid identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in root tissues, in 
positive ionization mode.  

Lipids ID 

Molecular 
formula lipid 

Molecular 
formula 
adduct 

Adduct 
 m/z 
theo 

adduct 
Lipidmaps code Lipid name HMDB code 

KEGG 
code 

delta 
(ppm) 

C37H68O5 C37H72NO5 [M+NH4]+ 610.541 LMGL02010021 DG(34:2) NA NA 0.49 

C39H68O5 C39H72NO5 [M+NH4]+ 634.541 LMGL02010063 DG(36:4) HMDB0093295 NA 0.79 

C39H66O5 C39H70NO5 [M+NH4]+ 632.525 LMGL02010071 DG(36:5) HMDB0007250 NA 9.17 

C39H72O5 C39H76NO5 [M+NH4]+ 638.572 LMGL02010049 DG(36:2) HMDB0007218 C00165 2.51 

C49H88O15 C49H92NO15 [M+NH4]+ 934.646 LMGL05019F6T DGDG(34:2) NA NA 13.80 

C43H82NO15 C43H78O15 [M+NH4]+ 852.568 LMGL05019FL2 DGDG(28:1) NA NA 4.34 

C51H88O15 C51H92NO15 [M+NH4]+ 958.646 LMGL05019GIT DGDG(36:4) NA NA 14.81 

C42H74O10 C42H78NO10 [M+NH4]+ 756.562 LMGL05019AOY MGDG(33:3) NA NA 2.11 

C39H72O10 C39H76NO10 [M+NH4]+ 718.546 LMGL05019AFB MGDG(30:1) NA NA 2.37 

C40H64O5 C40H64O5Na [M+Na]+ 647.465 LMGL02010473 DG(37:7) NA NA 3.09 

C25H52NO7P C25H53NO7P [M+H]+ 510.355 LMGP01050024 LPC(17:0) HMDB0012108 NA 1.96 

C39H70O5 C39H74NO5 [M+NH4]+ 636.556 LMGL02010056 DG(36:3) HMDB0007219 C00165 3.30 

C48H90O10 C48H94NO10 [M+NH4]+ 844.687 LMGL05019AI1 MGDG(39:1) NA NA 10.54 

C48H91NO9 C48H92NO9 [M+H]+ 826.677 LMSP05010110 HexCer(42:2;O3) NA NA 7.74 

C42H82NO8P C42H83NO8P [M+H]+ 760.585 LMGP01010005 PC(34:1) HMDB0007972 C00157 5.26 

C24H50NO7P  C24H51NO7P [M+H]+ 496.34 LMGP01050018 LPC(16:0) HMDB0010382 C04230 1.01 

C44H78NO7P C44H78NO7P [M+H]+ 764.559 LMGP01030040 PC(O-36:6) or PC(P-36:5) HMDB0011222 NA 9.29 

C22H45NO2 C22H44NO [M+H-H2O]+ 338.342 LMFA08040038 NAE(20:0) NA NA 9.46 

C49H90O15 C49H94NO15 [M+NH4]+ 936.662 LMGL05019F4I DGDG(34:1) NA NA 11.53 

C35H71N2O6P C35H71N2O6P [M+H]+ 647.512 LMSP03010002 SM(30:1;O2)  HMDB0012096 C00550 6.02 

C39H64O5 C39H68NO5 [M+NH4]+ 630.509 LMGL02010401 DG(36:6) HMDB0007034 NA 10.31 

C41H72O10 C41H76NO10 [M+NH4]+ 742.546 LMGL05019AKC MGDG(32:3) NA NA 6.72 

C41H74NO8P C41H75NO8P [M+H]+ 740.523 LMGP01011704 PC(33:4) HMDB0008231 C00157 10.40 

C39H74O10 C39H78NO10 [M+NH4]+ 720.562 LMGL05019AFA MGDG(30:0) NA NA 1.80 

C44H76NO8P C44H77NO8P [M+H]+ 778.538 LMGP01010512 PC(36:6) HMDB0007892 C00157 8.99 

C47H78O2 C47H82NO2 [M+NH4]+ 692.634 LMST01020013 CE(20:3) HMDB06736 C02530 5.20 

C50H96NO7P C50H97NO7P [M+H]+ 854.7 LMGP01020252 PC(O-42:3) NA NA 5.62 

C44H82O10 C44H86NO10 [M+NH4]+ 788.625 LMGL05019AZ2 MGDG(35:1) NA NA 13.57 

C51H92O15 C51H96NO15 [M+NH4]+ 962.677 LMGL05019GIL DGDG(36:2) NA NA 10.60 

C44H87N2O6P C44H88N2O6P [M+H]+ 771.637 LMSP03010064 SM(39:2;O2) NA NA 10.50 

C46H86O10 C46H90NO10 [M+NH4]+ 816.656 LMGL05019A9T MGDG(37:1) NA NA 9.31 

C40H74NO8P C40H75NO8P [M+H]+ 728.523 LMGP01010497 PC(32:3) HMDB0007876 C00157 10.43 

C29H48O C29H49O [M+H]+ 413.378 LMST01010176 ST(29:2;O) NA NA 3.63 

C39H76NO8P C39H77NO8P [M+H]+ 718.538 LMGP01010535 PC(31:1) HMDB0007936 C00157 9.15 

C38H70O10 C38H74NO10 [M+NH4]+ 704.531 LMGL05019AC0 MGDG(29:1) NA NA 3.55 

C41H68O5 C41H68O5Na [M+Na]+ 663.496 LMGL02010162 DG(38:6) HMDB0007121 NA 12.81 

C35H66O4 C35H66O4Na [M+Na]+ 573.485 LMGL02040001 DG(O-32:2) NA C13864 8.02 

C21H36O3 C21H37O3 [M+H]+ 337.274 LMFA01070041 FA(21:3;O) NA NA 18.38 

C42H80NO8P C42H81NO8P [M+H]+ 758.569 LMGP01010585 PC(34:2) NA NA 8.57 

C42H80NO7P C42H80NO7P [M+H]+ 742.575 LMGP01030008 PC(P-34:2) HMDB0011211 NA 11.45 

C43H72O5 C43H72O5Na [M+Na]+ 691.527 LMGL02010216 DG(40:6) HMDB0007179 NA 11.53 

C39H70O10 C39H74NO10 [M+NH4]+ 716.531 LMGL05019AFK MGDG(30:2) NA NA 0.28 

C47H74O5 C47H74O5Na [M+Na]+ 741.543 LMGL02010300 DG(44:9) NA NA 9.57 

C38H70O5 C37H70O5Na [M+Na]+ 617.512 LMGL02010373 DG(35:2) NA NA 6.32 

C37H68O5 C37H68O5Na [M+Na]+ 615.496 LMGL02010349 DG(34:2) NA NA 5.17 

C40H68O10 C40H72NO10 [M+NH4]+ 726.515 LMGL05019AH3 MGDG(31:4) NA NA 2.75 
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C44H76O10 C44H80NO10 [M+NH4]+ 782.578 LMGL05019A0J MGDG(35:4) NA NA 1.53 

C38H74O5 C38H74O5Na [M+Na]+ 633.543 LMGL02010371 DG(35:0) HMDB0093295 NA 11.84 

C37H66O5 C37H66NaO5 [M+Na]+ 613.48 LMGL02010350 DG(34:3) NA NA 6.36 

C19H36O3 C19H37O3 [M+H]+ 313.274 LMFA01060128 FA(19:1;O) NA NA 17.20 

Table SA. Lipid identification of the most relevant features responsible for the changes induced by arsenic exposure 
on rice in root tissues, in positive ionization mode.  

Log 10(Fold changes) General trend  of fold changes 

Lipid name WH WVL SM SL WH WVL SM SL 

DG(34:2) -3.54 -2.15 -0.17 -3.54 DOWN DOWN DOWN DOWN 

DG(36:4) -0.16 -0.06 -0.09 -0.05 DOWN DOWN DOWN DOWN 

DG(36:5) -0.17 0.29 0.21 0.08 DOWN UP UP UP 

DG(36:2) 0.11 -0.31 -0.42 -0.01 UP DOWN DOWN DOWN 

DGDG(34:2) -0.60 -0.25 -0.22 -0.15 DOWN DOWN DOWN DOWN 

DGDG(28:1) -0.19 -0.33 -0.16 0.02 DOWN DOWN DOWN UP 

DGDG(36:4) -0.20 -0.13 -0.22 0.00 DOWN DOWN DOWN UP 

MGDG(33:3) -0.94 -0.57 -0.68 -0.56 DOWN DOWN DOWN DOWN 

MGDG(30:1) 1.01 -1.11 0.82 0.76 UP DOWN UP UP 

DG(37:7) -2.45 0.04 0.07 -0.72 DOWN UP UP DOWN 

LPC(17:0) -0.18 -0.11 -0.10 0.01 DOWN DOWN DOWN UP 

DG(36:3) 0.10 -0.31 -0.37 -0.01 UP DOWN DOWN DOWN 

MGDG(39:1) -0.61 -0.25 -0.20 -0.18 DOWN DOWN DOWN DOWN 

HexCer(42:2;O3) -0.56 -0.24 -0.19 -0.09 DOWN DOWN DOWN DOWN 

PC(34:1) -0.86 -0.94 -0.99 -0.47 DOWN DOWN DOWN DOWN 

LPC(16:0) -2.40 -0.14 -0.04 -0.09 DOWN DOWN DOWN DOWN 

PC(O-36:6) or PC(P-36:5) -0.64 -0.78 -0.73 -0.42 DOWN DOWN DOWN DOWN 

NAE(20:0) -2.46 -0.28 -0.23 -2.09 DOWN DOWN DOWN DOWN 

DGDG(34:1) -0.53 -0.24 -0.12 -0.06 DOWN DOWN DOWN DOWN 

SM(30:1;O2)  -0.29 -0.20 -0.18 -0.10 DOWN DOWN DOWN DOWN 

DG(36:6) -0.19 0.95 0.77 0.46 DOWN UP UP UP 

MGDG(32:3) -0.90 -1.06 -0.30 -0.55 DOWN DOWN DOWN DOWN 

PC(33:4) -2.53 -0.86 -0.61 -0.64 DOWN DOWN DOWN DOWN 

MGDG(30:0) 1.80 -0.42 1.02 0.80 UP DOWN UP UP 

PC(36:6) -2.55 -2.29 -2.40 -2.38 DOWN DOWN DOWN DOWN 

CE(20:3) -0.28 -1.66 -0.49 -0.37 DOWN DOWN DOWN DOWN 

PC(O-42:3) -0.59 -0.32 -0.20 -0.14 DOWN DOWN DOWN DOWN 

MGDG(35:1) -0.82 -0.32 -0.23 -0.23 DOWN DOWN DOWN DOWN 

DGDG(36:2) 0.06 0.18 0.21 0.35 UP UP UP UP 

SM(39:2;O2) -2.13 -0.18 -0.07 -1.59 DOWN DOWN DOWN DOWN 

MGDG(37:1) -0.69 -0.45 -0.43 -0.28 DOWN DOWN DOWN DOWN 

PC(32:3) -0.49 -0.28 -0.50 -0.40 DOWN DOWN DOWN DOWN 

ST(29:2;O) -0.56 -0.24 -0.57 -0.41 DOWN DOWN DOWN DOWN 

PC(31:1) -0.81 -1.02 -0.79 -0.46 DOWN DOWN DOWN DOWN 

MGDG(29:1) 0.13 -0.68 -0.63 -0.57 UP DOWN DOWN DOWN 

DG(38:6) -0.32 -0.10 0.06 0.09 DOWN DOWN UP UP 

DG(O-32:2) 0.12 -0.28 0.27 0.25 UP DOWN UP UP 

FA(21:3;O) -0.16 0.01 -0.04 -0.02 DOWN UP DOWN DOWN 

PC(34:2) -0.57 -0.44 -0.51 -0.31 DOWN DOWN DOWN DOWN 

PC(P-34:2) -1.08 -0.19 -0.26 -0.20 DOWN DOWN DOWN DOWN 

DG(40:6) -0.49 0.11 0.61 0.90 DOWN UP UP UP 

MGDG(30:2) -0.56 -0.09 -0.25 -0.07 DOWN DOWN DOWN DOWN 

DG(44:9) -1.21 -0.82 -0.92 -0.80 DOWN DOWN DOWN DOWN 

DG(35:2) 0.01 0.10 0.02 0.02 UP UP UP UP 

DG(34:2) -0.17 -0.07 -0.10 -0.03 DOWN DOWN DOWN DOWN 

MGDG(31:4) -0.13 -0.33 -0.07 0.04 DOWN DOWN DOWN UP 
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MGDG(35:4) -0.73 -0.59 -0.75 -0.48 DOWN DOWN DOWN DOWN 

DG(35:0) -0.19 -0.28 0.00 0.06 DOWN DOWN UP UP 

DG(34:3) -0.27 -0.06 -0.03 -0.04 DOWN DOWN DOWN DOWN 

FA(19:1;O) -0.21 -0.02 -0.05 0.00 DOWN DOWN DOWN UP 

 

Table SB. Lipid identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in root 
tissues, in negative ionization mode.  

Lipids ID 

Molecular 
formula lipid 

Molecular 
formula 
adduct 

Adduct 
 m/z 
theo 

adduct 
Lipidmaps code Lipid name HMDB code 

KEGG 
code 

delta 
(ppm) 

C40H75O10P C40H74O10P [M-H]- 745.5025 LMGP04010066 PG(34:2) NA NA 3.15 

C48H91NO9 C49H92NO11 [M+HCOO]- 870.6676 LMSP05010056 HexCer(36:1;O) NA NA 1.82 

C38H71O8P C38H70O8P [M-H]- 685.4814 LMGP10010088 PA(35:2) NA NA 3.23 

C42H79NO9 C43H80NO11 [M+HCOO]- 786.5737 LMSP0501AA67 HexCer(36:2;O3) NA NA 4.23 

C41H73O8P C41H72O8P [M-H]- 723.497 LMGP10010970 PA(38:4) HMDB0114846 NA 2.18 

C18H32O3 C18H31O3 [M-H]- 295.2279 LMFA01060232 FA(18:2;O) NA NA 8.87 

C21H39O7P C21H38O7P [M-H]- 433.2361 LMGP10050044 LPA(18:2) HMDB07852 C00416 6.24 

C39H72NO8P C39H71NO8P [M-H]- 712.4923 LMGP02010417 PE(34:3) HMDB0008837 C00350 2.30 

C45H82NO10P C45H81NO10P [M-H]- 826.5604 LMGP03010275 PS(39:3) NA NA 2.04 

C50H97NO10 C51H98NO12 [M+HCOO]- 916.7095 LMSP05010047 HexCer(44:1;O4) NA NA 1.07 

C22H45O9P C22H44O9P [M-H]- 483.2729 LMGP04050008 LPG(16:0) NA NA 5.49 

C18H32O4 C18H31O4 [M-H]- 311.2228 LMFA02000248 FA(18:2;O2) NA NA 6.74 

C38H70NO8P C38H69NO8P [M-H]- 698.4766 LMGP02010398 PE(33:3) NA NA 10.26 

C46H85NO9 C46H84NO9 [M-H]- 794.6152 LMSP05010169 HexCer(40:3;O3) NA NA 6.02 

C40H81NO4 C41H82NO6 [M+HCOO]- 684.6148 LMSP02020032 Cer(40:0;O3) NA NA 4.54 

C41H77O8P C41H76O8P [M-H]- 727.5283 LMGP10010198 PA(38:2) HMDB0114845 NA 3.83 

C39H68NO10P C39H67NO10P [M-H]- 740.4508 LMGP03010086 PS(33:4) NA NA 5.53 

C38H73NO4 C39H74NO6 [M+HCOO]- 652.5522 LMSP02010080 Cer(38:2;O3) NA NA 4.23 

C41H75O8P C41H74O8P [M-H]- 725.5127 LMGP10010222 PA(38:3) HMDB0114866 NA 5.81 

C41H72NO8P C41H71NO8P [M-H]- 736.4923 LMGP02010450 PE(36:5) HMDB0008877 C00350 2.06 

C39H70NO10P C39H69NO10P [M-H]- 742.4665 LMGP03010085 PS(33:3) NA NA 7.39 

C44H87NO5 C45H88NO7 [M+HCOO]- 754.6566 LMSP02010179 Cer(44:1;O4) NA NA 5.32 

C25H52NO9P C25H51NO9P [M-H]- 540.3307 LMGP03060017 LPS(O-19:0;O) NA NA 5.78 

C39H76NO8P C39H75NO8P [M-H]- 716.5236 LMGP02010378 PE(34:1) NA NA 8.83 

C23H44NO7P C23H43NO7P [M-H]- 476.2783 LMGP02050011 LPE(18:2) HMDB0011507 NA 5.02 

C35H71N2O6P C36H72N2O8P [M+HCOO]- 691.5032 LMSP03010002 SM(30:1;O2) HMDB0012096 C00550 3.48 

C47H81O8P C47H80O8P [M-H]- 803.5596 LMGP10010043 PA(44:6) HMDB0115266 NA 3.36 

C43H80NO10P C43H79NO10P [M-H]- 800.5447 LMGP03010158 PS(37:2) HMDB0116749 NA 4.62 

C48H78NO10P C48H77NO10P [M-H]- 858.5291 LMGP03010588 PS(42:8) HMDB0116765 NA 8.41 

C44H83NO9 C45H84NO11 [M+HCOO]- 814.605 LMSP0501AA69 HexCer(38:2;O3) NA NA 2.95 

C46H83O10P C46H82O10P [M-H]- 825.5651 LMGP04010883 PG(40:4) HMDB0010611 NA 0.12 

C38H71O10P C38H70O10P [M-H]- 717.4712 LMGP04010060 PG(32:2) NA NA 3.35 

  Log 10(Fold changes) General trend  of fold changes 

Lipid name WH WVL SM SL WH WVL SM SL 

PG(34:2) -2.01 -0.29 -0.18 -1.36 DOWN DOWN DOWN DOWN 

HexCer(36:1;O) -1.37 0.17 0.24 -0.54 DOWN UP UP DOWN 

PA(35:2) 2.66 -0.37 2.08 1.94 UP DOWN UP UP 

HexCer(36:2;O3) -0.33 -0.01 -0.07 -0.13 DOWN DOWN DOWN DOWN 

PA(38:4) -0.09 0.31 1.94 0.23 DOWN UP UP UP 

FA(18:2;O) 0.37 0.75 0.69 0.33 UP UP UP UP 

LPA(18:2) 1.13 2.06 2.12 1.77 UP UP UP UP 
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PE(34:3) -0.40 -0.31 -0.55 -0.61 DOWN DOWN DOWN DOWN 

PS(39:3) -0.35 -0.35 -0.57 -0.39 DOWN DOWN DOWN DOWN 

HexCer(44:1;O4) -0.19 -0.04 0.06 0.03 DOWN DOWN UP UP 

LPG(16:0) 0.45 1.02 1.15 0.78 UP UP UP UP 

FA(18:2;O2) 0.80 1.43 1.31 0.92 UP UP UP UP 

PE(33:3) 1.71 0.17 1.47 1.25 UP UP UP UP 

HexCer(40:3;O3) 0.38 0.11 0.14 0.06 UP UP UP UP 

Cer(40:0;O3) 0.50 -0.05 0.03 0.47 UP DOWN UP UP 

PA(38:2) 1.15 0.05 1.05 0.88 UP UP UP UP 

PS(33:4) 0.33 0.55 0.70 0.59 UP UP UP UP 

Cer(38:2;O3) 0.18 0.58 0.63 0.29 UP UP UP UP 

PA(38:3) 0.82 0.30 1.61 1.37 UP UP UP UP 

PE(36:5) 0.10 -0.13 0.01 0.06 UP DOWN UP UP 

PS(33:3) -0.82 0.70 0.88 0.91 DOWN UP UP UP 

Cer(44:1;O4) -0.15 0.05 0.20 0.14 DOWN UP UP UP 

LPS(O-19:0;O) -0.65 -0.01 0.04 0.09 DOWN DOWN UP UP 

PE(34:1) -0.28 -0.33 -0.28 -0.07 DOWN DOWN DOWN DOWN 

LPE(18:2) 0.09 0.58 0.51 0.27 UP UP UP UP 

SM(30:1;O2) 0.15 0.15 -0.10 -0.05 UP UP DOWN DOWN 

PA(44:6) -0.47 -0.31 -0.53 -0.40 DOWN DOWN DOWN DOWN 

PS(37:2) -0.68 -0.41 -0.71 -0.74 DOWN DOWN DOWN DOWN 

PS(42:8) 0.12 -0.09 0.19 0.43 UP DOWN UP UP 

HexCer(38:2;O3) 1.38 0.01 1.05 1.00 UP UP UP UP 

PG(40:4) -0.15 -0.06 0.13 0.07 DOWN DOWN UP UP 

PG(32:2) -2.05 0.66 0.80 -0.92 DOWN UP UP DOWN 

Table SC. Lipid identification of the most relevant features responsible for the changes induced by arsenic 
exposure on rice in aerial tissues, in positive ionization mode.  

Significant lipids (PLSDA, 
vips) Lipids ID 

C-WH C-WVL 
C-

SM 
C-
SL 

Sample 
type 

MCR 
component 

ROI 
ID 

m/z 
RT 

(min) 
Lipid name 

x x x x Aerials(+) 9 105 760.5199 4.307 PC(O-34:5) 

x x x x Aerials(+) 10 55 630.5172 6.319 DG(36:6) 

x x x x Aerials(+) 12 45 608.5277 7.773 DG(34:3) 

x x x Aerials(+) 15 131 792.5728 5.144 PG(36:2) 

x x Aerials(+) 19 197 960.6777 6.196 DGDG(36:3) 

x x x Aerials(+) 20 59 634.5431 8.176 DG(36:4) 

x x x x Aerials(+) 25 115 770.6211 7.094 PC(P-36:2) or PC(O-36:3) 

x Aerials(+) 27 1 338.3377 3.812 NAE(20:0) 

x x x x Aerials(+) 28 118 780.5660 5.947 PC(36:5) 

x x x x Aerials(+) 31 57 632.5293 7.217 DG(36:5) 

x x x x Aerials(+) 34 120 782.5779 7.278 PC(36:4) 

x x x Aerials(+) 38 20 520.3398 1.986 LPC(18:2) 

x x Aerials(+) 44 157 858.5433 4.120 SQDG(36:5) 

x x x x Aerials(+) 45 14 496.3394 2.140 LPC(16:0) 

x x x Aerials(+) 46 18 518.3242 1.706 LPC(18:3) 

x x x x Aerials(+) 52 101 758.5745 7.278 PC(34:2) 

x Aerials(+) 55 125 784.6628 10.778 HexCer(40:1;O2) 

x x x Aerials(+) 58 79 716.5325 6.691 MGDG(30:2) 

x x x x Aerials(+) 59 151 850.5566 4.400 DGDG(28:2) 

x x x x Aerials(+) 60 50 612.5564 9.630 DG(34:1) 

x x x Aerials(+) 65 116 778.5505 5.452 PG(35:2) 

x x x x Aerials(+) 70 3 374.3228 2.975 MG(18:1) 

x x Aerials(+) 84 77 714.5172 5.947 MGDG(30:3) 

x x x Aerials(+) 86 23 532.3484 1.614 LPC(19:3) 

x x x Aerials(+) 88 153 852.5735 4.741 DGDG(28:1) 

x x x Aerials(+) 94 76 704.5354 5.640 MGDG(29:1) 
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x x     Aerials(+) 106 73 688.5009 5.359 PC(29:2) 

x   x x Aerials(+) 110 109 764.5526 4.864 PC(O-36:6) or PC(P-36:5) 

x x x x Aerials(+) 101 93 744.5638 6.350 MGDG(32:2) 

Table SC. Lipid identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in aerial 
tissues, in positive ionization mode.  

Lipids ID 

Molecular 
formula lipid 

Molecular 
formula adduct 

Adduct 
 m/z 
theo 

adduct 
Lipidmaps code Lipid name HMDB code 

KEGG 
code 

delta 
(ppm) 

C42H76NO7P C42H76NO7PNa [M+Na]+ 
760.525

2 
LMGP01030033 PC(O-34:5) HMDB0011214 NA 6.93 

C39H64O5 C39H68NO5 [M+NH4]+ 
630.509

2 
LMGL02010401 DG(36:6) HMDB0007034 NA 12.61 

C37H66O5 C37H70NO5 [M+NH4]+ 
608.524

8 
LMGL02010350 DG(34:3) NA NA 4.78 

C42H79O10P C42H83NO10P [M+NH4]+ 
792.574

9 
LMGP04010107 PG(36:2) NA NA 2.63 

C51H90O15 C51H94NO15 [M+NH4]+ 
960.661

8 
LMGL05019GIR DGDG(36:3) NA NA 16.52 

C39H68O5 C39H72NO5 [M+NH4]+ 
634.540

5 
LMGL02010063 DG(36:4) HMDB0093295 NA 4.03 

C44H84NO7P C44H85NO7P [M+H]+ 
770.605

8 
LMGP01030038 

PC(P-36:2) or 
PC(O-36:3) 

HMDB0011217 NA 19.85 

C22H45NO2 C22H44NO 
[M+H-
H2O]+ 

338.341
7 

LMFA08040038 NAE(20:0) NA NA 11.71 

C44H78NO8P C44H79NO8P [M+H]+ 
780.553

8 
LMGP01010633 PC(36:5) HMDB0007984 C00157 15.68 

C39H66O5 C39H70NO5 [M+NH4]+ 
632.524

8 
LMGL02010071 DG(36:5) HMDB0007250 NA 7.06 

C44H80NO8P C44H81NO8P [M+H]+ 
782.569

4 
LMGP01010629 PC(36:4) NA NA 10.80 

C26H50NO7P C26H51NO7P [M+H]+ 
520.339

8 
LMGP01050034 LPC(18:2) NA NA 0.03 

C45H76O12S C45H80NO12S [M+NH4]+ 
858.539

6 
LMGL05019K7S SQDG(36:5) NA NA 4.28 

C24H50NO7P  C24H51NO7P [M+H]+ 
496.339

8 
LMGP01050018 LPC(16:0) HMDB0010382 C04230 0.83 

C26H48NO7P C26H49NO7P [M+H]+ 
518.324

1 
LMGP01050038 LPC(18:3) HMDB0010388 C04230 0.23 

C42H80NO8P C42H81NO8P [M+H]+ 
758.569

4 
LMGP01010585 PC(34:2) NA NA 6.67 

C46H89NO8 C46H90NO8 [M+H]+ 
784.666

1 
LMSP0501AC04 HexCer(40:1;O2) NA NA 4.23 

C39H70O10 C39H74NO10 [M+NH4]+ 
716.530

7 
LMGL05019AFK MGDG(30:2) NA NA 2.56 

C43H76O15 C43H80NO15 [M+NH4]+ 
850.552

2 
LMGL05019FMB DGDG(28:2) NA NA 5.15 

C37H70O5 C37H74NO5 [M+NH4]+ 
612.556

1 
LMGL02010004 DG(34:1) NA NA 0.48 

C41H77O10P C41H81NO10P [M+NH4]+ 
778.559

3 
LMGP04010090 PG(35:2) NA NA 11.33 

C21H40O4 C21H44NO4 [M+NH4]+ 
374.326

5 
LMGL01010024 MG(18:1) HMDB0011537 NA 9.76 

C39H68O10 C39H72NO10 [M+NH4]+ 
714.515

1 
LMGL05019ABG MGDG(30:3) NA NA 2.96 

C27H50NO7P C27H51NO7P [M+H]+ 
532.339

8 
LMGP01050003 LPC(19:3) NA NA 16.13 

C43H82NO15 C43H78O15 [M+NH4]+ 
852.567

9 
LMGL05019FL2 DGDG(28:1) NA NA 6.55 

C38H70O10 C38H74NO10 [M+NH4]+ 
704.530

7 
LMGL05019AC0 MGDG(29:1) NA NA 6.67 

C37H70NO8P C37H71NO8P [M+H]+ 
688.491

2 
LMGP01011322 PC(29:2) NA NA 14.16 

C44H78NO7P C44H78NO7P [M+H]+ 
764.558

9 
LMGP01030040 

PC(O-36:6) or 
PC(P-36:5) 

HMDB0011222 NA 8.22 

C41H74O10 C41H78NO10 [M+NH4]+ 744.562 LMGL05019AL8 MGDG(32:2) NA NA 2.39 
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Log 10(Fold changes) General trend  of fold changes 

Lipid name WH WVL SM SL WH WVL SM SL 

PC(O-34:5) -0.90 -0.19 -0.14 -0.17 DOWN DOWN DOWN DOWN 

DG(36:6) 1.32 1.93 1.78 1.55 UP UP UP UP 

DG(34:3) 0.29 0.53 0.37 0.34 UP UP UP UP 

PG(36:2) -2.15 -1.73 -0.70 -1.47 DOWN DOWN DOWN DOWN 

DGDG(36:3) -0.14 0.23 0.17 0.15 DOWN UP UP UP 

DG(36:4) -0.09 0.42 0.29 0.37 DOWN UP UP UP 

PC(P-36:2) or 
PC(O-36:3) -0.11 0.25 0.19 0.24 DOWN UP UP UP 

NAE(20:0) 0.13 0.14 0.05 -0.02 UP UP UP DOWN 

PC(36:5) -0.63 -0.29 -0.30 -0.28 DOWN DOWN DOWN DOWN 

DG(36:5) 0.14 0.59 0.39 0.34 UP UP UP UP 

PC(36:4) -0.76 -0.40 -0.31 -0.17 DOWN DOWN DOWN DOWN 

LPC(18:2) -0.52 1.24 1.25 1.30 DOWN UP UP UP 

SQDG(36:5) -0.77 -0.11 -0.05 -0.05 DOWN DOWN DOWN DOWN 

LPC(16:0) 0.72 1.58 1.42 1.37 UP UP UP UP 

LPC(18:3) 1.68 3.52 3.48 3.42 UP UP UP UP 

PC(34:2) -2.24 -1.99 -1.48 -1.64 DOWN DOWN DOWN DOWN 

HexCer(40:1;O2) -0.24 0.30 -0.03 0.17 DOWN UP DOWN UP 

MGDG(30:2) -0.15 -0.20 -0.07 0.21 DOWN DOWN DOWN UP 

DGDG(28:2) 0.15 0.29 0.23 0.36 UP UP UP UP 

DG(34:1) 0.05 0.51 0.36 0.51 UP UP UP UP 

PG(35:2) -0.39 -0.16 -0.26 -0.33 DOWN DOWN DOWN DOWN 

MG(18:1) -1.00 -0.20 -0.19 -0.34 DOWN DOWN DOWN DOWN 

MGDG(30:3) -0.13 -0.09 -0.19 0.22 DOWN DOWN DOWN UP 

LPC(19:3) -1.85 0.41 0.39 0.27 DOWN UP UP UP 

DGDG(28:1) 0.15 0.22 0.27 0.46 UP UP UP UP 

MGDG(29:1) 0.13 0.10 0.24 0.64 UP UP UP UP 

PC(29:2) 0.04 0.06 0.10 0.41 UP UP UP UP 

PC(O-36:6) or 
PC(P-36:5) 

-0.78 -0.38 -0.23 0.01 DOWN DOWN DOWN UP 

MGDG(32:2) -0.37 -0.29 -0.15 0.14 DOWN DOWN DOWN UP 

Table SD. Lipid identification of the most relevant features responsible for the changes induced by arsenic 
exposure on rice in aerial tissues, in negative ionization mode.  

Significant lipids (PLSDA, vips) Lipids ID 

C-WH C-WVL 
C-

SM 
C-SL 

Sample 
Type 

MCR 
component 

ROI 
ID 

m/z 
RT 

(min) 
Lipid name 

x x x x Aerials(-) 9 92 860.6432 7.85 PS(41:0) 

x x x x Aerials(-) 10 65 814.6031 7.14 HexCer(38:2;O3) 

x x Aerials(-) 12 55 797.5387 5.99 PG(38:4) 

x Aerials(-) 16 103 888.6792 9.18 HexCer(42:1;O4) 

x x x x Aerials(-) 17 68 822.5324 5.65 PS(39:5) 

x x Aerials(-) 18 87 842.6367 8.47 HexCer(40:2;O3) 

x x Aerials(-) 20 16 699.4935 5.96 PA(36:2) 

x x x Aerials(-) 23 4 476.2774 1.81 LPE(18:2) 

x x x x Aerials(-) 24 72 826.5603 6.46 PS(39:3) 

x x Aerials(-) 26 69 823.5528 5.65 PG(40:5) 

x x x x Aerials(-) 27 15 697.4775 5.22 PA(36:3) 

x x x Aerials(-) 31 97 870.6695 9.80 HexCer(36:1;O) 

x x Aerials(-) 32 71 825.5699 7.29 PG(40:4) 

x x Aerials(-) 34 27 714.5062 6.71 PE(34:2) 

x x x x Aerials(-) 39 74 828.5782 7.48 PS(39:2) 

x x x Aerials(-) 40 62 811.6252 10.79 PA(44:2) 

x Aerials(-) 43 21 707.4651 4.73 PA(37:5) 

x x x x Aerials(-) 44 60 804.5748 8.28 PS(37:0) 

x x x x Aerials(-) 46 78 832.6017 6.46 PS(39:0) 

x Aerials(-) 47 23 709.4771 5.22 PA(37:4) 

x x x Aerials(-) 48 42 738.5049 6.21 PE(36:4) 

x x x x Aerials(-) 51 70 824.5445 5.81 PS(39:4) 

x x x x Aerials(-) 52 93 861.6506 7.85 PG(42:0) 
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x x Aerials(-) 53 10 683.4625 4.97 PA(35:3) 

x x Aerials(-) 54 24 712.4907 5.96 PE(34:3) 

x x x x Aerials(-) 56 12 685.4774 5.65 PA(35:2) 

x x x x Aerials(-) 57 76 830.5916 8.62 PS(39:1) 

x x Aerials(-) 58 47 747.5145 5.47 PG(34:1) 

x x x Aerials(-) 60 125 961.6047 5.81 PI(40:3) 

x x x x Aerials(-) 61 18 701.5089 6.80 PA(36:1) 

x x x x Aerials(-) 64 59 803.5629 6.86 PA(44:6) 

Table SD. Lipid identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in aerial tissues, in 
negative ionization mode.  

Lipids ID 

Molecular 
formula lipid 

Molecular 
formula adduct 

Adduct 
 m/z theo 

adduct 
Lipidmaps code Lipid name HMDB code 

KEGG 
code 

delta 
(ppm) 

C47H92NO10P C47H91NO10P [M-H]- 860.6386 LMGP03010524 PS(41:0) NA NA 5.40 

C44H83NO9 C45H84NO11 [M+HCOO]- 814.605 LMSP0501AA69 HexCer(38:2;O3) NA NA 2.27 

C44H79O10P C44H78O10P [M-H]- 797.5338 LMGP04010968 PG(38:4) HMDB0010581 NA 6.14 

C48H93NO10 C49H94NO12 [M+HCOO]- 888.6782 LMSP05010058 HexCer(42:1;O4) NA NA 1.16 

C45H78NO10P C45H77NO10P [M-H]- 822.5291 LMGP03010276 PS(39:5) NA NA 4.02 

C46H87NO9 C47H88NO11 [M+HCOO]- 842.6363 LMSP0501AA81 HexCer(40:2;O3) NA NA 0.42 

C39H73O8P C39H72O8P [M-H]- 699.497 LMGP10010105 PA(36:2) HMDB0116699 NA 4.96 

C23H44NO7P C23H43NO7P [M-H]- 476.2783 LMGP02050011 LPE(18:2) HMDB0011507 NA 1.94 

C45H82NO10P C45H81NO10P [M-H]- 826.5604 LMGP03010275 PS(39:3) NA NA 0.12 

C46H81O10P C46H80O10P [M-H]- 823.5495 LMGP04010339 PG(40:5) HMDB0010641 NA 4.00 

C39H71O8P C39H70O8P [M-H]- 697.4814 LMGP10010134 PA(36:3) HMDB0114805 NA 5.62 

C48H91NO9 C49H92NO11 [M+HCOO]- 870.6676 LMSP05010056 HexCer(36:1;O) NA NA 2.18 

C46H83O10P C46H82O10P [M-H]- 825.5651 LMGP04010883 PG(40:4) HMDB0010611 NA 5.87 

C39H74NO8P C39H73NO8P [M-H]- 714.5079 LMGP02010379 PE(34:2) NA NA 2.34 

C45H84NO10P C45H83NO10P [M-H]- 828.576 LMGP03010246 PS(39:2) NA NA 2.60 

C47H89O8P C47H88O8P [M-H]- 811.6222 LMGP10010722 PA(44:2) HMDB0115262 NA 3.75 

C40H69O8P C40H68O8P [M-H]- 707.4657 LMGP10010188 PA(37:5) NA NA 0.87 

C43H84NO10P C43H83NO10P [M-H]- 804.576 LMGP03010156 PS(37:0) HMDB0112334 NA 1.46 

C45H88NO10P C45H87NO10P [M-H]- 832.6073 LMGP03010244 PS(39:0) NA NA 6.67 

C40H71O8P C40H70O8P [M-H]- 709.4814 LMGP10010157 PA(37:4) HMDB0114827 NA 6.04 

C41H74NO8P C41H73NO8P [M-H]- 738.5079 LMGP02010421 PE(36:4) HMDB0008844 C00350 4.09 

C45H80NO10P C45H79NO10P [M-H]- 824.5447 LMGP03010247 PS(39:4) NA NA 0.25 

C48H95O10P C48H94O10P [M-H]- 861.659 LMGP04010947 PG(42:0) NA NA 9.74 

C38H69O8P C38H68O8P [M-H]- 683.4657 LMGP10010151 PA(35:3) HMDB0115509 NA 4.65 

C39H72NO8P C39H71NO8P [M-H]- 712.4923 LMGP02010417 PE(34:3) HMDB0008837 C00350 2.21 

C38H71O8P C38H70O8P [M-H]- 685.4814 LMGP10010088 PA(35:2) NA NA 5.81 

C45H86NO10P C45H85NO10P [M-H]- 830.5917 LMGP03010245 PS(39:1) NA NA 0.18 

C40H77O10P C40H74O10P [M-H]- 747.5182 LMGP04010066 PG(34:1) NA NA 4.91 

C49H89O13P C50H90O15P [M+HCOO]- 961.6023 LMGP06010306 PI(40:3) NA NA 2.50 

C39H75O8P C39H74O8P [M-H]- 701.5127 LMGP10010104 PA(36:1) NA NA 5.40 

C47H81O8P C47H80O8P [M-H]- 803.5596 LMGP10010043 PA(44:6) HMDB0115266 NA 4.14 

Table SD. Lipid identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in aerial tissues, in 
negative ionization mode.  

Log 10(Fold changes) General trend  of fold changes 

Lipid name WH WVL SM SL WH WVL SM SL 

PS(41:0) -2.39 -2.20 -1.47 -1.51 DOWN DOWN DOWN DOWN 

HexCer(38:2;O3) -0.12 0.07 0.07 0.15 DOWN UP UP UP 

PG(38:4) -0.49 -0.27 -0.20 -0.29 DOWN DOWN DOWN DOWN 

HexCer(42:1;O4) -0.45 -0.25 -0.12 0.09 DOWN DOWN DOWN UP 

PS(39:5) -0.55 -0.48 -0.38 -0.43 DOWN DOWN DOWN DOWN 

HexCer(40:2;O3) -0.31 -0.10 -0.03 0.11 DOWN DOWN DOWN UP 

PA(36:2) -0.71 -0.43 -0.01 -0.14 DOWN DOWN DOWN DOWN 

LPE(18:2) 0.65 1.98 2.18 2.46 UP UP UP UP 

PS(39:3) -2.25 -1.34 -0.96 -2.46 DOWN DOWN DOWN DOWN 

PG(40:5) -0.42 -0.41 -0.15 0.11 DOWN DOWN DOWN UP 

PA(36:3) 1.28 1.09 1.35 1.57 UP UP UP UP 

HexCer(36:1;O) -0.23 -0.08 0.02 0.22 DOWN DOWN UP UP 

PG(40:4) -0.68 -0.39 -0.25 -0.19 DOWN DOWN DOWN DOWN 

PE(34:2) -0.42 -0.52 -0.31 -0.17 DOWN DOWN DOWN DOWN 
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PS(39:2) 0.29 0.36 0.48 0.56 UP UP UP UP 

PA(44:2) -0.17 -2.03 0.14 0.19 DOWN DOWN UP UP 

PA(37:5) 0.08 -0.13 0.03 0.08 UP DOWN UP UP 

PS(37:0) -2.04 -1.68 -0.98 -1.17 DOWN DOWN DOWN DOWN 

PS(39:0) -0.06 0.10 0.12 0.20 DOWN UP UP UP 

PA(37:4) -0.72 -0.36 -0.11 -0.11 DOWN DOWN DOWN DOWN 

PE(36:4) -0.50 -0.54 -0.48 -0.24 DOWN DOWN DOWN DOWN 

PS(39:4) -1.19 -1.27 -0.84 -1.20 DOWN DOWN DOWN DOWN 

PG(42:0) 0.08 0.32 0.34 0.44 UP UP UP UP 

PA(35:3) 0.12 -0.16 -0.08 0.17 UP DOWN DOWN UP 

PE(34:3) -0.20 -0.32 -0.23 -0.09 DOWN DOWN DOWN DOWN 

PA(35:2) 0.40 0.10 0.49 1.01 UP UP UP UP 

PS(39:1) -1.23 -0.85 -0.55 -0.45 DOWN DOWN DOWN DOWN 

PG(34:1) -0.85 -0.41 -0.36 -0.20 DOWN DOWN DOWN DOWN 

PI(40:3) -0.07 -0.07 0.01 0.11 DOWN DOWN UP UP 

PA(36:1) 0.74 0.55 1.17 1.44 UP UP UP UP 

PA(44:6) -0.63 -0.50 -0.37 -0.27 DOWN DOWN DOWN DOWN 

 

Table SE. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure on 
rice in root tissues, in positive ionization mode.  

Significant metabolites (PLSDA, vips) Metabolite ID 

C-WH C-SM C-SL C-WVL 
MCR 

components 
ROI ID m/z RT(min) 

MS/MS fragments, ordered by 
intensity 

x x x x 67 4 102.0563 13.47 102.06       

x x x x 70 5 104.0721 13.62 104.07 103.01     

x x x x 22 9 106.0513 13.63 106.04       

x x   x 14 14 118.0877 12.37 118.04 95.05     

x x x x 35 16 120.0670 13.45 120.06 102.03 < 90   

x x x x 39 25 130.0876 12.69 94.05 110.07 112.05 114.06 

x x x x 57 33 134.0463 12.51 < 90       

x x   x 33 72 166.0879 8.82 120.08 103.06 91.06 102.06 

  x x x 6 83 177.1040 14.43 115.04 159.07 130.04 105.03 

x x   x 41 90 182.0831 10.57 91.06 95.05 107.74 119.05 

x x x x 21 162 268.1068 7.27 134.06 268.16     

 

Table SE. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in root 
tissues, in positive ionization mode.  

Metabolite ID 

Metabolite name Adduct 

Plantcyc 
(Oryza 

L. 
sativa) 

Chemical 
Formula 

Monoisotopic-
Molecular-

Weight 

m/z theo 
adduct 

delta 
(ppm) 

HMDB Kegg 

1-Aminocyclopropane-
1-carboxylic acid 

[M+H]+ yes C4H7NO2 101.0477 102.0550 13.16 HMDB36458 C01234 

4-aminobutyric acid [M+H]+ yes C4H9NO2 103.0633 104.0706 14.18 HMDB00112 C00334  

Serine [M+H]+ yes C3H7NO3 105.0426 106.0499 13.61 HMDB0000187 C00065    

Betaine [M+H]+ yes C5H11NO2 117.0790 118.0863 11.93 HMDB00043 C00719 

Threonine [M+H]+ yes C4H9NO3 119.0582 120.0655 12.09 HMDB00167 C00188 

N4-Acetylaminobutanal [M+H]+ yes C6H11NO2 129.0790 130.0863 11.00 HMDB0004226 C05936 

Aspartic acid [M+H]+ yes C4H6NO4 133.0375 134.0448 10.98 HMDB00191 C00049 

Phenylalanine [M+H]+ yes C9H11NO2 165.0790 166.0863 9.67 HMDB00159 C00079 

Serotonin [M+H]+ yes C10H13N2O 176.0950 177.1022 9.99 HMDB00259 C00780 

Tyrosine [M+H]+ yes C9H11NO3 181.0739 182.0812 10.43 HMDB00158 C00082 

Adenosine   yes C10H13N5O4 267.0968 268.1040 10.00 HMDB0000050 C00212 

  Log 10(Fold changes) General trend  of fold changes 

Metabolite name WH WVL SM SL WH WVL SM SL 
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1-Aminocyclopropane-
1-carboxylic acid 

0.08 0.59 0.86 0.90 UP UP UP UP 

4-aminobutyric acid -3.23 -3.63 -1.27 -3.25 DOWN DOWN DOWN DOWN 

Serine -2.81 -3.83 -2.09 -2.99 DOWN DOWN DOWN DOWN 

Betaine 0.91 0.35 0.61 0.98 UP UP UP UP 

Threonine -2.26 -2.86 -0.87 -2.46 DOWN DOWN DOWN DOWN 

N4-Acetylaminobutanal 1.46 0.62 0.87 1.48 UP UP UP UP 

Aspartic acid 0.62 0.33 0.40 0.86 UP UP UP UP 

Phenylalanine 0.37 -0.02 0.13 0.43 UP DOWN UP UP 

Serotonin 0.70 0.17 0.43 0.83 UP UP UP UP 

Tyrosine 0.70 0.31 0.37 0.97 UP UP UP UP 

Adenosine 0.57 0.34 0.31 0.77 UP UP UP UP 

 

Table SF. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure on 
rice in root tissues, in negative ionization mode.  

Significant metabolites (PLSDA, vips) Metabolite ID 

C-WH C-SM C-SL C-WVL 
MCR 

components 
ROI ID m/z RT(min) 

MS/MS fragments, ordered by 
intensity 

x x x x 11 3 104.0329 13.65 104.02 
< 90 
Da 

    

      x 35 5 114.0536 12.59 114.02 
< 90 
Da 

    

x x   x 14 6 116.0692 11.80 116.07       

x x   x 13 7 117.0168 5.19 117.02 99.01     

x x   x 9 11 130.0848 10.15 130.05 112.98 115.04   

      x 22 14 132.0277 12.56 132.06 114.93     

x       30 18 135.0274 7.58 134.96 91.04 117.02   

x x   x 20 19 137.0218 2.98 137.09 93.00 94.04   

x       6 23 145.0594 13.54 145.06 127.05 128.03 109.04 

x x x x 19 28 150.0205 6.94 123.90 125.90     

x x   x 18 33 157.0339 7.53 157.05 96.96 113.99 140.01 

x x x   61 39 173.0430 8.29 173.10 93.02 111.01 137.02 

x x   x 27 44 179.0536 6.86 179.03 161.04 125.02 178.02 

  x x   48 46 181.0691 12.07 181.07 113.02 101.07 97.03 

x x   x 58 55 203.0800 8.25 203.11 159.09 142.07 116.05 

    x x 34 68 233.1270 13.77 131.08       

x x   x 39 74 255.2308 3.01 219.98       

    x   59 77 267.0697 8.09 135.03 92.06     

 

Table SF. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in root 
tissues, in negative ionization mode.  

Metabolite ID 

Metabolite name Adduct 
Plantcyc 
(Oryza L. 
sativa) 

Chemical 
Formula 

Monoisotopic-
Molecular-

Weight 

m/z theo 
adduct 

delta 
(ppm)  

HMDB Kegg 

Serine [M-H]- yes C3H7NO3 105.0426 104.0353 23.71 HMDB0000187 C00065    

Proline [M-H]- yes C5H9NO2 115.0633 114.0561 21.81 HMDB00162 C00148 

Norvaline [M-H]- yes C5H11NO2 117.0790 116.0717 21.34 HMDB0013716 C01826 

Succinic acid [M-H]- yes C4H4O4 118.0266 117.0193 21.33 HMDB00254 C00042 

Isoleucine  [M-H]- yes C6H13NO2 131.0946 130.0874 19.28 HMDB00172 C00407 

Aspartate [M-H]- yes C4H6NO4 133.0375 132.0302 19.49 HMDB00191 C00049 

Threonic acid [M-H]- yes C4H7O5 136.0372 135.0299 18.63 HMDB00943 C01620 

4-hydroxybenzoate [M-H]- yes C7H5O3 138.0317 137.0244 19.14 HMDB00500 C00156 

Glutamine [M-H]- yes C5H10N2O3 146.0691 145.0619 16.95 HMDB00641 C00064 
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2,3-
Dihydrodipicolinate 

[M-H20-
H]- 

yes C7H7NO4 169.0375 150.02 9.21 HMDB0012247 C03340 

allantoin [M-H]- yes C4H6N4O3 158.0440 157.0367 17.87 HMDB0000462 C01551 

Shikimic acid [M-H]- yes C7H9O5 174.0528 173.0455 14.96 HMDB03070 C00493 

myo-Inositol [M-H]- yes C6H12O6 180.0634 179.0561 13.80 HMDB00211  C00137   

Sorbitol [M-H]- yes C6H14O6 182.0790 181.0718 14.52 HMDB00247 C00794 

Tryptophan [M-H]- yes C11H12N2O2 204.0899 203.0826 12.90 HMDB00929 C00078 

Arginine 
[M+Hac-

H]- 
yes C6H14N4O2 174.1117 233.13 6.00 HMDB0000517 C00062 

Palmitic acid [M-H]- yes C16H32O2 256.2402 255.2330 9.00 HMDB0000220 C00249 

Inosine [M-H]- yes C10H12N4O5 268.0808 267.0735 14.29 HMDB00195 C00294 

  Log 10(Fold changes) General trend  of fold changes 

Metabolite name WH WVL SM SL WH WVL SM SL 

Serine   0.59 -0.07 0.26 UP DOWN UP UP 

Proline   0.85 0.09 0.62 UP UP UP UP 

Norvaline   0.72 0.19 0.61 UP UP UP UP 

Succinic acid   0.67 0.05 0.48 UP UP UP UP 

Isoleucine    0.92 0.17 0.60 UP UP UP UP 

Aspartate   -0.90 -2.15 0.50 DOWN DOWN UP DOWN 

Threonic acid   -1.82 -1.92 0.29 DOWN DOWN UP DOWN 

4-hydroxybenzoate   0.69 0.33 0.67 UP UP UP UP 

Glutamine   0.53 -0.46 0.64 UP DOWN UP UP 

2,3-
Dihydrodipicolinate 

  -2.08 -2.22 0.47 DOWN DOWN UP DOWN 

allantoin   0.27 -0.45 0.55 UP DOWN UP DOWN 

Shikimic acid   -1.84 -2.09 -1.96 DOWN DOWN DOWN DOWN 

myo-Inositol   0.50 -0.69 0.81 UP DOWN UP UP 

Sorbitol   -2.10 -2.22 0.46 DOWN DOWN UP DOWN 

Tryptophan   -0.69 -2.70 -0.11 DOWN DOWN DOWN DOWN 

Arginine   -0.87 -1.43 0.49 DOWN DOWN UP DOWN 

Palmitic acid   -2.38 -2.95 -1.17 DOWN DOWN DOWN DOWN 

Inosine   -0.14 -0.45 0.25 DOWN DOWN UP DOWN 

 

Table SG. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure 
on rice in aerial tissues, in positive ionization mode.  

Significant metabolites (PLSDA, 
vips) 

Metabolite ID 

C-WH C-SM C-SL C-WVL 
MCR 

components 
ROI 
ID 

m/z RT(min) 
MS/MS fragments, ordered by 

intensity 

x x x x 54 6 104.0719 13.61 104.07 < 90     

x x x x 24 10 106.0511 13.65 106.05 105.07     

  x   x 18 12 116.0718 11.48 115.03 116.06 < 90   

  x x x 34 18 120.0667 13.48 120.02 101.97 119.02   

    x x 12 28 130.0511 13.54 130.05 < 90     

x x x x 10 34 133.0619 13.87 104.12 105.07 115.05 133.07 

x x x   4 70 160.0769 16.30 116.07 118.09 133.06 142.04 

x x     9 78 166.0877 8.89 103.07 95.07 120.08 91.06 

x x     102 88 177.1035 14.17 115.07 130.07 159.07 143.07 

x x     51 110 205.0989 8.26 143.11 115.09 91.06 130.07 
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Table SG. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure 
on rice in aerial tissues, in positive ionization mode.  

Metabolite ID 

Metabolite name Adduct 
Plantcyc 
(Oryza L. 
sativa) 

Chemical 
Formula 

Monoisotopic-
MW 

m/z 
theo 

delta 
(ppm) 

HMDB Kegg 

Dimethylglycine [M+H]+ yes C4H9NO2 103.0633 104.07 12.05 HMDB00092 C01026 

Serine [M+H]+ yes C3H7NO3 105.0426 106.05 11.60 HMDB00187 C00065 

Proline [M+H]+ yes C5H9NO2 115.0633 116.07 9.93 HMDB00162 C00148 

Beta-Homoserine [M+H]+ yes C4H9NO3 119.0582 120.07 9.82 HMDB00719 C00263 

Pyroglutamic acid [M+H]+ yes C5H6NO3 129.0426 130.05 9.22 HMDB00267 C01879 

Cinnamaldehyde [M+H]+ yes C9H8O 132.0575 133.06 21.58 HMDB03441 C00903 

Indoleacetaldehyde [M+H]+ yes C10H9NO 159.0684 160.08 8.00 HMDB0001190 C00637 

Phenylalanine [M+H]+ yes C9H11NO2 165.0790 166.09 8.68 HMDB00159 C00079 

Serotonin [M+H]+ yes C10H13N2O 176.0950 177.10 7.37 HMDB00259 C00780 

Tryptophan [M+H]+ yes C11H12N2O2 204.0899 205.10 8.45 HMDB00929 C00078 

  Log 10(Fold changes) General trend  of fold changes 

Metabolite name WH WVL SM SL WH WVL SM SL 

Dimethylglycine 1.87 1.80 -1.62 -0.90 UP UP DOWN DOWN 

Serine 0.15 0.27 -0.53 -0.89 UP UP DOWN DOWN 

Proline 1.46 1.73 1.33 1.20 UP UP UP UP 

Beta-Homoserine -0.23 -0.04 -0.22 -0.46 DOWN DOWN DOWN DOWN 

Pyroglutamic acid -0.43 0.36 -0.25 -0.37 DOWN UP DOWN DOWN 

Cinnamaldehyde 1.12 0.26 -0.06 -0.34 UP UP DOWN DOWN 

Indoleacetaldehyde 0.31 0.42 0.11 -0.22 UP UP UP DOWN 

Phenylalanine 1.64 0.94 -0.59 -0.77 UP UP DOWN DOWN 

Serotonin 0.93 0.67 0.10 -0.44 UP UP UP DOWN 

Tryptophan 3.12 1.57 0.12 -0.08 UP UP UP DOWN 

 

Table SH. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in aerial tissues, 
in negative ionization mode.  

Significant metabolites 
(PLSDA, vips) 

Metabolite ID 

C-WH C-SM 
C-
SL 

C-WVL MCR component ROI ID m/z RT(min) MS/MS fragments 

x x x x 22 6 104.0331 13.62 104.02 <90       

x x x x 69 12 113.0334 13.83 113.02 112.02       

x x     27 13 114.0538 12.56 114.02 < 90 Da       

x x   x 14 17 117.0172 5.31 126.97 99.01       

x x x x 53 20 121.0272 4.20 118.98 94.98 92.03 120.04 93.04 

x x x   10 28 130.0850 10.07 130.09         

  x x x 4 30 131.0440 13.83 131.08 114.03 95.01 113.03 111.05 

  x x x 15 32 132.0280 12.36 114.98 114.02 < 90     

  x     97 38 134.0450 7.02 134.06 106.98 133.06     

  x x   33 39 135.0277 7.34 135.03 91.06 117.05     

  x x   32 44 145.0121 5.87 144.99 101.02       

x   x x 1 46 145.0598 13.66 145.11 127.00 109.04 128.05   

      x 3 55 153.0172 2.76 152.97 109.03       

x x x x 24 59 157.0343 7.52 156.94 113.99 97.06     

  x     25 65 164.0695 8.80 164.07 147.04 91.05 103.05   

x x x   9 73 173.0432 8.34 173.04 137.02 127.05 111.04 93.03 

  x     37 88 203.0806 8.20 203.00 116.05 142.07 159.09 186.06 

x x x x 69 116 285.0799 10.43 119.01 93.02 120.04     
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Table SH. Metabolite identification of the most relevant features responsible for the changes induced by arsenic exposure on rice in 
aerial tissues, in negative ionization mode.  

Metabolite ID 

Metabolite name Adduct 

Plantcyc 
(Oryza 

L. 
sativa) 

Chemical 
Formula 

Monoisotopic-
Molecular-

Weight 

m/z theo 
adduct 

delta(ppm) HMDB Kegg 

Serine [M-H]- yes C3H7NO3 105.0426 104.04 21.31 HMDB00187 C00065 

5,6-dihydrouracil [M-H]- yes C4H6N2O2 114.0429 113.04 19.61 HMDB00076 C00429 

Proline [M-H]- yes C5H9NO2 115.0633 114.06 19.75 HMDB00162 C00148 

Succinic acid [M-H]- yes C4H4O4 118.0266 117.02 18.02 HMDB00254 C00042 

Benzoic acid [M-H]- yes C7H5O2 122.0368 121.03 19.20 HMDB01870 C00180 

Leucine [M-H]- yes C6H13NO2 131.0946 130.09 18.08 HMDB00687 C00123 

Asparagine [M-H]- yes C4H8N2O3 132.0535 131.05 16.91 HMDB00168 C00152 

L-Aspartic acid [M-H]- yes C4H6NO4 133.0375 132.03 16.89 HMDB0019 C00049 

Adenine [M-H]- yes C5H5N5 135.0545 134.05 16.50 HMDB00034 C00147 

Threonic acid [M-H]- yes C4H7O5 136.0372 135.03 16.13 HMDB00943 C01620 

2-Oxoglutarate [M-H]- yes C5H4O5 146.0215 145.01 14.58 HMDB00208 C00026 

Glutamine [M-H]- yes C5H10N2O3 146.0691 145.06 14.41 HMDB00641 C00064 

2,5-dihydroxybenzoic 
acid [M-H]- yes C7H5O4 154.0266 153.02 13.76 HMDB00152 C00628 

Allantoin [M-H]- yes C4H6N4O3 158.0440 157.04 15.37 HMDB00462   C01551 

Phenylalanine [M-H]- yes C9H11NO2 165.0790 164.07 13.42 HMDB00159 C00079 

Shikimic Acid [M-H]- yes C7H9O5 174.0528 173.05 13.56 HMDB03070 C00493 

Tryptophan [M-H]- yes C11H12N2O2 204.0899 203.08 9.97 HMDB00929 C00078 

Sakuranetin [M-H]- yes C16H14O5 286.0841 285.08 10.85 HMDB30090 C09833   

  Log 10(Fold changes) General trend  of fold changes 

Metabolite name WH WVL SM SL WH WVL SM SL 

Serine -2.69 -1.96 0.43 -3.00 DOWN DOWN UP DOWN 

5,6-dihydrouracil 0.34 0.16 0.27 0.26 UP UP UP UP 

Proline 0.67 1.87 1.63 1.73 UP UP UP UP 

Succinic acid -0.10 -0.06 0.30 0.07 DOWN DOWN UP UP 

Benzoic acid 1.57 0.84 0.41 0.15 UP UP UP UP 

Leucine 0.04 -0.19 -0.31 -0.34 UP DOWN DOWN DOWN 

Asparagine -0.92 -0.22 -0.23 -0.43 DOWN DOWN DOWN DOWN 

L-Aspartic acid 1.18 0.64 0.49 0.42 UP UP UP UP 

Adenine 1.58 1.30 1.11 1.28 UP UP UP UP 

Threonic acid -0.20 0.88 -0.75 -1.32 DOWN UP DOWN DOWN 

2-Oxoglutarate 1.86 1.19 -0.70 -0.66 UP UP DOWN DOWN 

Glutamine 0.04 -0.58 -0.54 0.13 UP DOWN DOWN UP 

2,5-dihydroxybenzoic 
acid 0.52 0.00 0.06 0.07 UP UP UP UP 

Allantoin 0.95 1.63 0.07 0.28 UP UP UP UP 

Phenylalanine 2.00 1.47 0.37 0.21 UP UP UP UP 

Shikimic Acid 2.42 2.04 1.27 1.68 UP UP UP UP 

Tryptophan 2.42 2.04 1.27 1.68 UP UP UP UP 

Sakuranetin 0.87 2.19 0.39 0.17 UP UP UP UP 
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0. Abstract 

Pharmaceutical compounds have arisen as one of the main emerging contaminants (ECs) because 

their high use and release into the environment has considerably increased worldwide. The goal 

of this study was to assess the effects caused by three widely consumed hepatoxic pharmaceutical 

compounds: an antibiotic (amoxicillin), an antiepileptic (carbamazepine), and an antidepressant 

(trazodone), at environmentally relevant concentrations. A combination of an untargeted 

metabolomic and a targeted sphingolipid analyses were selected to unravel the metabolic 

alterations in human hepatic cells exposed to these ECs at three concentrations for 24 hours. 

HepG2 hepatoma cells were encapsulated in sodium alginate spheroids to improve the 

physiological relevance of this in-vitro approach. Univariate and multivariate statistical methods 

were employed for discriminating the most affected metabolites and sphingolipids for each drug 

exposure. Therefore, this study allowed identifying the main metabolic pathways altered by the 

drug exposure, including glycerophospholipid metabolism, sphingolipid metabolism, alanine 

aspartate and glutamate metabolism, taurine and hypotaurine metabolism, and lysine degradation.   

 

Graphical abstract 

 

Keywords: HepG2 cells, pharmaceuticals, metabolomics, sphingolipids, amoxicillin, 
carbamazepine, trazodone. 

 

1. Introduction 

Pharmaceuticals are one important group of worldwide emerging contaminants (ECs) due to their 

increased use and amplified release into the environment in the last decades [1–3]. Although there 

have been remarkable contributions in novel strategies for their removal from wastewaters [4–6], 
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there is still a long way before the spread of these compounds and their transformation products 

is finally contained. In the meantime, these compounds are found in rivers and other water bodies, 

as well as in sewage sludge or sediments [7]. Furthermore, as humans can end up by being affected 

by pharmaceutical exposure (through raw and drinking water, for instance) chemical risk 

assessments are needed [8]. These emerging contaminants can produce addiction, 

bioaccumulation and antibiotic resistance among other severe consequences [9]. Hence, 

pharmaceuticals pose a threat to both the aquatic ecosystems and human populations [10]. A 

considerable effort has been made in developing analytical methods for detecting these 

compounds in wastewater [11,12].  

Besides from detection and quantification of pharmaceutical compounds in the environment and 

wastewater treatment plants, it is also crucial to study the effects they may have on aquatic 

organisms and human health. Metabolomic analyses aim to decipher the biological role of 

metabolites present in cells, tissues and biofluids, ranging from small polar molecules up to lipids; 

it also looks into the regulation into the metabolic pathways to which they are associated. In 

particular, sphingolipids play a crucial role in cell metabolism. These lipids are involved in cell 

signaling and recognition, as well as many biological processes such as growth regulation, cell 

migration, adhesion, apoptosis, senescence and inflammatory responses [13]. Metabolomics can 

be applied to assess the effects of environmental stressors, such as ECs, in a more immediate 

manner than other omics. The reason is that changes in the metabolome are quicker, proving a 

snapshot of what is happening in the cell. Metabolomics also allows to identify the metabolic 

pathways affected by the contaminants and discover potential biomarkers of the exposure [14]. 

Hence, it is a very useful tool for unraveling toxicity and mechanism of action of ECs. Indeed, 

metabolomics have already been employed in ecotoxicological evaluations of pharmaceutical 

compounds at environmentally relevant concentrations, for instance, in mussels [15,16], 

crustaceans [17,18] and fish [19–21].  

Following the European legislation (Directive 2010/63/EU) that has promoted the use of non-

animal models, in-vitro models are a good alternative to replace traditional experimental testing. 

More specifically, cell lines derived from liver and kidney are commonly selected for toxicity 

assessments. In this case, the immortal and nontumorigenic human hepatocellular carcinoma 

(HepG2) cell line has been chosen. This cell line has been used in previous environmental studies 

for evaluating the effects of other pollutants, such as polycyclic aromatic hydrocarbons (PAHs) 

[22], flame retardants and dust extracts [23], natural pyrethrins [24], or microplastics [25]. With 

the aim of improving the physiological relevance of in-vitro approaches, 3D liver spheroids have 

arisen as a more robust liver model [26–28]. 

Three widely consumed hepatoxic pharmaceutical compounds were selected for their study: the 

antibiotic amoxicillin (AMOX), the antiepileptic carbamazepine (CBZ), and the antidepressant 
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trazodone (TRA). The ranges of concentration in which these compounds have been found in 

Catalonian wastewater treatment plants and senior residence wastewaters are, respectively: 0.68-

2.56 and 0-0.5 μg L-1 for AMOX, 0.14-0.74 and 0-5.4 μg L-1 for CBZ, 0.035-0.46 and 0-314 μg 

L-1 for TRA [29,30]. All three pharmaceutical compounds can cause drug-induced liver injury 

[31,32]. 

In this work, we employed a combination of LC-MS platforms for targeted sphingolipid analysis 

and untargeted metabolomics to assess the effects of AMOX, CBZ, and TRA on HepG2 cell line 

using 3D spheroids.  

 

2. Materials and methods 

2.1 Chemicals and reagents 

AMOX, CBZ, and TRA (purity > 98%) were purchased from Merck (Darmstadt, Germany), and 

their stock solutions were prepared at 100 mM in DMSO.  

Dulbecco’s Modified Eagle’s Medium (DMEM) with Ultraglutamine and fetal bovine serum 

were supplied by Lonza (Basel, Switzerland). Phosphate-buffered saline (PBS), trypsin, dimethyl 

sulfoxide (DMSO), resazurin sodium salt, sodium alginate, sodium citrate, calcium chloride 

(CaCl2), and sodium chloride (NaCl) were purchased from Merck (Darmstadt, Germany). Pierce 

™ BCA Protein Assay kit was purchased from Thermo Fisher (Waltham, Massachusetts, USA). 

CellTiter-Blue® cell viability assay was provided by Promega (Madrid, Spain).  For the 3D 

spheroids protocol, sodium alginate, sodium chloride, and calcium chloride solutions were set at 

2.4%, 9% and 101 mM respectively. Lysis solution is composed of sodium citrate at 55 mM and 

sodium chloride at 150 mM.  

LC-MS grade solvents water, acetonitrile, isopropanol, were purchased from Merck (Darmstadt, 

Germany); LC-MS methanol and 25% NH4OH solution were acquired from Honeywell Fluka 

(Seelze, Germany) and ammonium acetate 1M from Fujifilm Wako (Osaka, Japan).  

The sphingolipid internal standard mix,  prepared in MeOH, contained Cer(d18:1/16:0)-d7, 

Cer(d18:1/18:0)-d7, Cer(d18:1/24:1)-d7, Cer(d18:1/24:0)-d7, GlcCer(d18:1/18:0)-d5, 

Sphingosine-d7, Sphinganine-d7, Sphingosine-1-phosphate-d7, C15 Ceramide-1-Phosphate-d7 

and SM(d18:1/18:1(9Z))-d9, all from Avanti Lipids (distributed by Merck KGaA, Darmstadt, 

Germany), and LacCer(d18:1/16:0)-d3 and GlcCer(d18:1/16:0)-d3 from Matreya (distributed by 

Larodan ,Solna, Sweden). The following lipid abbreviation are used from now on: SM: 

Sphingomyelin; Cer: Ceramide; DhCer: Dihydroceramide; GlcCer: Glucosylceramide; 

LacCer:Lactosylceramide; S1P: Sphingosine-1-Phosphate; Spa1P: Sphinganine-1-Phosphate.  



 

 

 Applications of metabolomic workflows for environmental assessments  

373 

Metabolite internal standards piperazine-N,N′-bis-2-ethanesulfonic acid (PIPES), N-Cyclohexyl-

2-aminoethanesulfonic acid (CHES) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) were purchased from Dojindo (Kumamoto, Japan). A stock solution of 10 mM for the 

three standards was prepared in water, and it was further diluted in a acetonitrile:water (8:2) prior 

to its use in the metabolomic analysis.   

2.2 Cell culture and viability assay 

Human hepatoma cell line (HepG2) from the American Type Culture Collection (ATCC, HB-

8065) was cultured in DMEM with Ultraglutamine 1 supplemented with 10% of fetal bovine 

serum (DMEM10). Cells incubation was performed at 37 °C in a humidified incubator set at 5% 

CO2 and passaged every 3-4 days. 

The acute toxicity of each pharmaceutical compound in 2D cultures was assessed. Cells were 

rinsed with PBS, trypsinized, counted and seeded into 96-well plates at a density of 1 x 104 cells 

per well. The next day, cells were exposed to pharmaceutical compounds in a concentration range 

from 1 to 500 μM. The maximum percentage of DMSO used as vehicle was 0.5% (v/v). Four 

biological replicates per compound and per concentration level were tested. At 24 h of exposure, 

the CellTiter-Blue® cell viability assay was performed. The fluorescence at 560/590 nm 

(excitation/emission wavelengths) of the wells was measured after 4 h of incubation in a 

microplate well reader (Agilent Cary Eclipse Fluorescence Spectrometer (Agilent Technologies 

Inc., Santa Clara, CA, USA)). This process was also carried out at 48 h of exposure. 

2.3 Exposure conditions and 3D cultures 

To ensure working under sublethal doses, the highest exposure concentrations for the 3D cultures 

with no effects on cell viability were chosen for each drug. These concentration levels were set at 

30, 15 and 7.5 μM for CBZ and AMOX, whereas the levels for TRA were 4, 2, and 1 μM.  

Final exposures were performed on 3D cultures. In this case, sodium alginate was used for 

forming the gel in the spheroids [33]. The protocol for generating the 3D cultures started 

trypzining the 2D cultures and counting the number of cells. The suspension of cells in DMEM10 

and a 2.4% solution of sodium alginate were mixed in 1:1 ratio to obtain a spherification mixture 

at 7 million cells mL-1. The 24 well-plates (one drug) were filled with a 102 mM solution of CaCl2. 

Alginate cell suspension was then spilled through a 26-gauge needle into the CaCl2 solution, in a 

ratio of 10 drops per well. After 10 min, the CaCl2 was removed and spheroids were washed with 

a 0.9% NaCl solution. Again, 10 min later the NaCl was removed and substituted by DMEM10 

solution containing the different drugs at the concentration levels previously specified. 6 

replicates per dose, including control samples, were analyzed. The spheroids were incubated for 

24 h at 37 °C. Then, the drug solutions were removed, spheroids were washed with PBS (1x), and 

1 mL of lysis solution was added per well. Next steps were performed under cold conditions (ice 
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bath). The dissolved spheres were centrifuged (5 min at 1507 gat 4 ºC), pellets were washed with 

PBS and centrifuged again. Washed cell pellets were frozen at -80 ºC until extraction.  

 

2.4 Extraction protocol 

Before the extraction, samples were placed on a tray with ice. Then, 250 μL of LC-MS grade 

methanol and 10 μL of the sphingolipid internal standard mix were added to each sample. Cells 

were vortexed, sonicated for 15 minutes and centrifuged at 12000 g for 15 minutes at 6 ºC. 

Extraction solvent and material blanks following the same steps without sample were performed 

simultaneously. The supernatant of each sample was divided into two vials: 60 μL for 

sphingolipid analysis (SL), 60 μL for metabolomic analysis (MT). Additionally, a 60 μL aliquot 

from each extract was pooled to be used as Quality Control (QC pool). Two types of QCs of 

injection were aliquoted from the QC pool, according to the LC-MS analysis platform (SL or 

MT). SL samples and their QCs were analyzed directly. A dilution 1:1 was performed by adding 

a mixture of internal standards for the MT analysis to the metabolomic samples and QCs. Sample 

extracts were stored at -20 ºC until LC-HRMS analysis.  

2.5 LC-MS/MS method for sphingolipid analysis 

Targeted sphingolipid analysis was performed on a LC-MS/MS platform [34]. A detailed 

description of the analytical method employed can be found in Supplementary Material A 

Section 1.  

2.6 LC-HRMS method for untargeted metabolomic analysis 

The LC-HRMS analysis were performed on an Agilent 1290 Affinity II HPLC system coupled to 

an Agilent 6550 iFunnel QTOF mass spectrometer equipped with a dual AJS electrospray 

ionization source used in positive and negative modes. The method employed,proposed by 

Meister et al. [35] with minor modifications, can be found in Supplementary Material A Section 

1.   

2.7 Data analysis 

2.7.1 Data conversion and preprocessing 

Targeted sphingolipid analysis 

LC-MS/MS raw files were preprocessed with Masslynx and Targetlynx v4.1 (Waters 

Corporation). A table with the absolute concentration or the ratios of the areas of the compounds 

and the internal standards were reported 

Untargeted metabolomic analysis 

LC-HRMS raw files were converted to (.mzML) using ProteoWizard for a first quality check on 

MZmine 2.53 [36]. Then, the (.mzML) files were converted to “Analysis Base File” (.abf) format 

with Reifycs Abf Converter. Preprocessing and integration was performed in MS-DIAL 4.20 [37], 
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using the parameters set by Meister et al. [35], which are also included in Supplementary 

Material A Section 2 (Tables S1-S3). Annotation was performed based on in-house retention 

time and MS/MS spectral libraries [38,39]. 

A table containing the peak areas was exported from MS-DIAL. A batch correction based on the 

QCs was performed using the MATLAB algorithm proposed by Broadhurst et al. [40].  

For the sake of clarity, from now on, the different sets will be referred as SL in the case of 

sphingolipid analysis, whereas MT pos and MT neg will be designed for metabolite analysis in 

positive and negative ionization modes, respectively.  

2.7.2 Statistical assessment and multivariate analysis 

The post-processing analysis was performed on the concentration or ratio matrices in the case of 

SL platform, or on the obtained areas after QC batch correction for MT platform.  

Statistical assessment was carried out using SPSS 27.0.1.0 (©Copyright IBM Corporation). On 

one side, ANOVA tests were employed for the simultaneous evaluation of all doses (including 

control samples) per each pharmaceutical compound. On the other side, t-tests were used for 

studying the significant features between the highest concentration of exposure for each drug and 

control samples.  

Multivariate analysis with the normalized areas were performed in MATLAB environment 

(Release 2020b, The Mathworks Inc, Natick, MA, US) and PLS Toolbox 8.9.1 (Eigenvector 

Research Inc, Wenatchee, WA, US). A first exploratory analysis was conducted through principal 

component analysis (PCA) (Joliffe and Morgan, 1992). PCA analysis was performed on a matrix 

containing both the concentration or ratio results from the SL platform and the areas values from 

the MT platform (from both ionization modes). In this case, the biological replicate from each 

sample class (regarding the administered dose for each drug) should cluster together. Also, a 

differentiation according to the dose can also be expected.  

Partial least square discriminant analysis (PLS-DA) [43] is a supervised multivariate 

classification method that discriminates between groups of samples. PLS-DA was employed to 

assess the significant variables when comparing control samples (C) and the highest concentration 

level (H and M doses). The variables important in projections (VIPs) indicate the significance of 

the variables, i.e., VIP value > 1 is equivalent to a p-value < 0.05. The models were built using 

leave-one-out as internal cross validation method. PLS-DA analysis was performed on a matrix 

containing only the variables with a p-value lower than 0.05 in the univariate statistical 

assessment, including the variables from both platforms (SL and MT, in the two ionization 

modes). The quality of the binary classifications was assessed with the Matthews Correlation 

Coefficient (MCC), whose values are comprehended from -1 to 1 [44,45]. A perfect model would 

be represented with a 1, whereas a wrong prediction model would be assigned to a -1 of MCC, 
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and therefore, should be discarded. Acceptable prediction models can be considered for MCC 

values higher than 0.7.  

Autoscaling pre-processing was applied in PCA and PLS-DA analysis. 

 

3. Results and discussion 

3.1 Preliminary range-finding test for drug exposure 

Cell viability results are included in Figure 1, expressed as the % of cell viability relative to 

control cells treated with vehicle.  The range of concentrations tested was set from 500 to 1 μM 

for each drug (AMOX, CBZ, TRA) at 24 and 48 hours of exposure in 2D cultures. 

For AMOX and CBZ, the same cell viability as in the controls was observed up to 30 μM at 24 

hours of exposure, whereas the viability was reduced to approximately 70% at the maximum 

concentration tested. TRA was more toxic to cells and doses larger than 30 μM induced a more 

pronounced cytoxicity, leaving only 20% of alive cells at 500 μM. Exposures longer than 48 h 

produced higher toxicity in all drugs. Therefore, this study was limited to only 24 h for the three 

drugs. Hence, the final concentration levels were set at 30, 15 and 7.5 μM for AMOX and CBZ, 

and 4, 2, and 1 μM for TRA at 24h, henceforth referred as High (H), Medium (M), Low (L), plus 

control samples (C).  

 

Figure 1. Cell viability assessed using the resazurin assay (expressed as the % respect control cells treated with vehicle) 

for the three drugs tested: amoxicillin (AMOX), carbamazepine (CBZ) and trazodone (TRA) from 500 μM to 1 μM, 

and for 24 and 48 h of exposure. The final concentration levels for this study were set at 30, 15 and 7.5 μM for AMOX 

and CBZ, and 4, 2, and 1 μM for TRA at 24h. 
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3.2 Exploratory analysis of drug exposures 

We used PCA to explore the behavior of the different dosages of drug exposures in an 

unsupervised manner. PCA analysis was performed on a unique matrix composed by the 

concentrations or ratios from SL platform and the areas from the MT platform, after an autoscale 

normalization to compensate the differences in scale between the two platform outputs. The PCA 

scores plot obtained for each drug are shown in Figure 2: A) AMOX, B) CBZ and C) TRA. In 

all cases, the explained variance regarding the first two principal components (PC1 and PC2, 

respectively) was larger than 55%. There was no clear cluster separation according to the 

concentration dosage for AMOX, which seemed to indicate that there was no evident effect in the 

metabolome or sphingolipidome caused by the selected doses in the hepatic cells at this time of 

exposure. On the contrary, a trend Control-Low-Medium-High of clustered samples was observed 

for CBZ, as expected.  Besides, for this drug, PC2 separated the two lowest doses (and Control 

samples) from the highest dose. In the case of TRA, although Control and High dose samples 

clustered very close (even partially overlapping), there was a strong differentiation between 

Control and Medium dose samples.  

 

Figure 2. PCA scores plot of the three doses of exposure for each drug: A) amoxicillin, B) carbamazepine, and C) 

trazodone. No differentiation is observed regarding the dosage for AMOX, but there is a trend from Control to High 

dose samples for CBZ, and a clear separation of Control and Medium doses for TRA.  
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3.3 Selection of potential markers of drug exposures 

ANOVAs analyses for multiple-level comparisons and t-test analyses for two-level comparisons 

were performed on the matrices with the concentration or ratio quantification results from the SL 

platform or the areas from the MT platform in both ionization modes. Tables SA-SC from 

Supplementary Material contain information on the annotated lipids and metabolites (including 

compound ID, chemical formula, other relevant information such as HMDB or Lipid Maps codes, 

m/z and retention times), as well as the univariate statistical results. A reduced matrix including 

only the variables from SL and MT analysis with a p-value lower than 0.05 were selected for a 

further assessment with PLS-DA. PLS-DA models Control versus High and Control versus 

Medium were built for the three drugs, selected as the most interesting doses comparisons 

regarding the PCA scores plots. The models obtained for AMOX were discarded, as the MCC 

values were lower than 0.7. Consequently, this drug was not considered for the rest of the analysis 

from now on, as no reliable markers of its exposure were obtained. The best model for CBZ was 

the C vs H combination (MCC=1.0), whereas the best model for TRA was the C vs M (MCC=1.0). 

A summary of the MCC for all the models tested can be found in Table S4 from Supplementary 

Material A. These results are in agreement with the previously obtained with PCA, where the 

separation control and highest dose was very clear for CBZ, whereas in the case of TRA, the 

control and medium dose samples separation was more evident. Hence, the variables (i.e., 

sphingolipids or metabolites) that presented a VIP value higher than 1.0 with the best PLS-DA 

models and had a fold-change value lower than 0.9 or higher than 1.1 were selected as potential 

markers of the exposure of CBZ and TRA, which are included in Table 1. The total number of 

significant compounds for each drug were 18 for CBZ and 28 for TRA. In addition, six 

compounds that were detected as significantly altered due to the exposure of both drugs: 

Carnitine, N-acetyl-aspartic acid, Norvaline betaine, Glycerophosphocholine, 2-Aminoadipic 

acid and Taurine. A graphical representation of fold-change values obtained for the significant 

features is displayed in Figure 3, for each drug exposure: 3.A) CBZ, 3.B) TRA. All compounds 

presented a lower abundance regarding control samples, except taurocholic acid for TRA 

exposure. The effects of TRA on the sphingolipidome were more severe (i.e., 10 sphingolipids 

altered versus only 3 for CBZ exposure, mainly ceramides and lactosylceramides in both cases).   
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Table 1. Compounds with VIP > 1.0 in PLS-DA analysis for CBZ and TRA exposures. The common significant 

compounds from both exposures are marked in bold and italics.  

CBZ expsoure C vs H PLS-DA model  TRA expsoure C vs M PLS-DA model  

Platform Compound name VIP Platform Compound name VIP 

MT_pos Carnitine 1.46 MT_neg Glycerophosphocholine 1.48 

SL  Cer(d18:0/16:0) 1.43 MT_pos Ethanolamine 1.27 

MT_pos Iminodiacetic acid  1.42 MT_neg Glycerophosphorylethanolamine 1.22 

MT_neg 2-Aminoadipic acid 1.35 SL  Glucosyl sphingosine 1.18 

MT_neg Benzoic acid 1.33 MT_neg 4-Hydroxyphenyllactic acid 1.18 

MT_pos Norvaline betaine 1.32 MT_pos Pyridoxine 1.17 

MT_neg Aspartic acid 1.30 MT_pos Taurocholic acid  1.15 

MT_neg Taurine 1.28 MT_neg N-Acetylthreonine 1.15 

MT_pos Pro-Gly 1.27 MT_neg Fructoseglycine 1.15 

MT_pos Glycerophosphocholine  1.25 SL  LacCer(d18:1/18:1) 1.14 

MT_pos CDP-Choline  1.12 MT_pos Valeryl-carnitine 1.12 

SL  CerP(d18:1/24:0) 1.09 SL  Cer(d18:1/24:1) 1.11 

MT_pos Creatinine  1.08 MT_neg N-Acetylaspartylglutamic acid 1.09 

MT_neg Pyroglutamic acid 1.07 SL  Cer(d16:1/24:1) 1.07 

MT_neg N-Acetylaspartic acid 1.05 SL  Cer(d18:1/22:0) 1.07 

SL  LacCer(d18:1/17:0) 1.04 MT_neg N-Acetylaspartic acid 1.06 

MT_pos Phosphorylcholine 1.04 SL  LacCer(d18:1/18:0) 1.06 

MT_pos Butyryl-carnitine 1.02 MT_neg Glucose 6-sulfate 1.06 

   MT_pos Carnitine 1.04 

   MT_pos Norvaline betaine 1.04 

   MT_neg Creatine 1.04 

   MT_neg N-Acetylglutamine 1.03 

   SL  Cer(d18:1/26:1) 1.03 

   MT_neg Taurine 1.03 

   MT_pos 2-Aminoadipic acid  1.02 

   SL  Cer(d18:0/18:0) 1.02 

   SL  GlcCer(d18:1/18:0) 1.02 

   SL  LacCer(d18:1/20:0) 1.00 
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Figure 3. Graphical display of fold-changes values for the significant compounds associates with A) CBZ C vs H 

ezposure and B) TRA C vs M exposure, incluidng VIP values in a colored scale (higher VIPs present a darker tone of 

blue).  The X axis is expressed in a logaritmic scale.   

 

3.4 Discussion of the sphingolipids and metabolites altered by the drug exposures  

A pathway analysis was then carried out using MetaboAnalyst [46], to evaluate the principal 

metabolic pathway affected by these drug exposures.  The metabolic pathway analyses from 

Metaboanalyst for CBZ and TRA are included in Tables S5 and S6 from Supplementary 

Material A, respectively. Figure 4 shows the pathway analysis, for each drug exposure. CBZ 
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exposure in this study affected mainly to the following pathways (see Figure 4.A): 

glycerophospholipid metabolism (1), sphingolipid metabolism (2), alanine aspartate and 

glutamate metabolism (3), taurine and hypotaurine metabolism (4), and lysine degradation (5).  

TRA exposure altered the same metabolic pathways than CBZ, but also some others (see Figure 

4.B), such as vitamin B6 metabolism (6), ether lipid metabolism (7), primary bile acid 

biosynthesis (8), and glycine serine and threonine metabolism (9). 

 

Figure 3. Pathway analysis obtained with Metaboanalyst of the significant compounds related to the exposure to: A) 

CBZ and B) TRA. The numeric code corresponds to the following metabolic pathways: 1) Glycerophospholipid 

metabolism, 2) Sphingolipid metabolism, 3) Alanine, aspartate and glutamate metabolism, 4) Taurine and hypotaurine 

metabolism, 5) Lysine degradation, 6) Vitamin B6 metabolism, 7) Ether lipid metabolism, 8) Primary bile acid 

biosynthesis, 9) Glycine serine and threonine metabolism. 

 

3.5 Biological insights of the drug exposures  

Trazadone and carbamazepine exposures resulted in small but significant fold changes in 

sphingolipid and metabolite concentrations. 

Regarding the effects of trazodone on sphingolipids, the levels of ceramides of long fatty acyl 

chain (22:0, 24:1 and 26:1) were notably reduced (0.8 fold). Ceramides can be produced by cell 

membrane sphingomyelin hydrolysis through the action of acid sphingomyelinase activity, and 

can also be de novo synthesized through different biosynthetic steps from L-serine and palmitoyl-

CoA [47]. In relationship with the first option, previous reports have demonstrated that 

antidepressant drugs reduce acid sphingomyelinase activity and the release of ceramides from 

sphingomyelin in the hippocampus [48,49]. These studies demonstrated that this acid 

sphingomyelinase/ceramide system mediates the effects of antidepressants on neuronal 
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proliferation, maturation, and survival. The possibility that trazodone also affects the biosynthesis 

de novo is supported by the reduced levels of dihydroceramide 18:0 (0.8 fold), a direct precursor 

of ceramide 18:0. Lower levels of ceramide could explain the decreased levels of their 

glucosylated products glucosylceramide and lactosylceramide species (0.8 fold). These are 

important components of cell membrane and participate as signalling molecules in cellular 

processes such apoptosis. Also, they are the precursors of more complex glycosphingolipids, 

known as globosides and gangliosides, which have essential roles in cell membrane in the 

mediation of cell-cell interactions and regulation of membrane proteins activity [50]. The decrease 

of important chemical structures that belong to glycerophospholipid metabolism (0.7-0.8 fold), 

such as ethanolamine, glycerophosphorylethanolamine and glycerophosphocholine suggests 

changes in the levels of this lipid subfamily, of which most of their members have essential 

functions in cell membrane. This, together with the changes in ceramide glucosylation indicate 

that the structure and functions of plasmatic membrane could be affected by trazodone exposure. 

In the metabolite analysis, one of the main changes observed under trazodone is the increase in 

the conjugation of cholic acid with taurine, as reflected by the rise of taurocholic acid (1.5 fold) 

and the decrease of taurine (0.8 fold). The biosynthesis of bile acid conjugates is an exclusive 

function of hepatocytes, which is catalyzed by the enzyme bile acid coenzyme A: amino acid N-

acyltransferase (BAAT) [51]. Bile acids are required for the absorption of digested lipids and fat-

soluble vitamins in the intestine, and can also affect the proportions of the different species of 

intestinal bacteria. The conjugation of bile acids with taurine or glycine allows bile acids in the 

intestine to form micelles, which are necessary for the absorption of lipids [52]. In this case, higher 

levels of taurocholic acid suggest an increase in BAAT activity as a result of trazadone exposure, 

which in the context of human chronic exposure to trazadone could have an effect on the normal 

absorption of lipids in the intestine and on the composition of gut microbiome. 

L-carnitine and valeryl-carnitine levels were also reduced under trazodone exposure (0.7 fold). 

L- carnitine plays a key role in lipid metabolism since its function is the transport of long-chain 

fatty acids across the inner mitochondrial membrane for β- oxidation and generation of ATP 

energy. Carnitine is a non-essential amino acid that is mainly produced in the liver and kidneys. 

Therefore, a reduction of carnitine levels in the hepatocytes due to trazodone exposure could have 

an effect on the levels of this amino acid in the whole organism, and have consequences on the 

energy production rates through lipid beta-oxidation [53].   

Another interesting observation is the decrease of N-acetylation of amino acids, such as N-

acetylglutamine, N-acetylaspartic and N-acetylthreonine (0.7, 0.8, and 0.4 fold, respectively). N-

acetylation of free amino acids can occur by the action of N-acetyltransferases, but these species 

can be also generated via the proteolytic degradation of N-acetylated proteins by specific 

hydrolases.  The N-terminal acetylation of proteins by N-acetyl transferases has important 
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biological functions in cells, such as targeting proteins for degradation, proper folding of proteins, 

protein-protein interactions, or targeting proteins to membranes. Our results suggest the 

possibility that the activity of N-acetyl transferases under trazadone exposure might be altered, 

which could have an impact on the function of some proteins [54].  

 
Concerning the exposure to carbamazepine, some similarities to trazadone treatment have been 

found. Hence, the glycerophospholipid metabolism resulted altered, as shown by the reduced 

levels of CDP-choline, glycerophosphocholine, and phosphocholine (0.7, 0.8 and 0.8 fold, 

respectively). Regarding the sphingolipid family, only DhCer 16:0 and LacCer 17:0 species were 

found decreased (0.8 fold), but no changes were detected on ceramide levels, as observed with 

trazadone.  

Similar to trazadone, the levels of L-carnitine and another short chain acyl carnitine (in this case 

butyl-carnitine) were found reduced (0.6 and 0.7 fold, respectively), which may indicate that the 

exposure to this anti-epileptic drug could also cause alterations in beta-oxidation and energy 

production. This agreed with previous clinical reports in which a decrease of serum carnitine 

levels in epileptic children was found under carbamazepine therapy [55,56]. The decrease of 

taurine levels was also detected (0.8 fold), although in this case it was not accompanied with a 

rise of taurocholic acid levels, suggesting a potential effect of carbamazepine on its enzymatic 

biosynthesis from cysteine. Although in a very different context, the decrease of taurine levels 

had also been observed in rat hippocampus under carbamazepine exposure [57]. 

The decrease of aspartic acid and N-acetylaspartate (NAA) observed (0.8 fold) might have 

consequences on the cellular energy production.  In the brain, NAA is considered an important 

energy metabolite for lipid synthesis. However, its role in peripheral tissues is not well known. In 

a recent work, NAA has been described as an important energy metabolite for the regulation of 

whole-body energy homeostasis [58]. In this study, carried out in brown adipocytes, the genetic 

disruption of NAA pathway resulted in reduced cytosolic acetyl-CoA levels and lipid synthesis. 

Also, NAA reduced the glucose incorporation into acyl glycerol species. If these mechanisms 

were similar in hepatocytes, this could be related to the alteration of the glycerophospholipid 

metabolism observed under carbamazepine exposure. 

Globally, the fold changes in metabolites and lipids observed in the present study are very slight. 

This most likely due to the low doses of drugs applied, which tried to mimic realistic 

environmental exposures. However, these differences are statistically significant, and small 

changes may be able to destabilize cell homeostasis. The common features observed under both 

exposures affect lipid composition (changes in sphingolipids and glycerophospholipids 

precursors) and energy production through beta-oxidation (decrease of carnitine levels), which 

can affect cellular functions and energy production not only in hepatic cells, but also in other 
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organs. The fact that trazodone affects sphingomyelinase activity, which is considered a 

mechanism of antidepressant drugs, and that carbamazepine alters the levels of N-acetylaspartate, 

an important energy metabolite in brain, indicates that, at the concentrations applied, the changes 

previously described could have important consequences in neural cells.  

 

4. Conclusions 

Cell viability of HepG2 cells was assessed for the exposure of the three drugs (amoxicillin, 

carbamazepine and trazodone) ranging from 500 µM to 1µM at 24 and 48 hours. The same cell 

viability as in the controls was observed at 24 hours of exposure up to 30 μM for amoxicillin and 

carbamazepine, and to 4 µM for trazodone. No clear differentiation between the doses tested was 

observed in the metabolomic and sphingolipid analyses performed on amoxicillin. On the 

contrary, alterations in the following metabolic pathways were observed for carbamazepine and 

trazodone: glycerophospholipid metabolism, sphingolipid metabolism, alanine aspartate and 

glutamate metabolism, taurine and hypotaurine metabolism, and lysine degradation.  Although 

administrated at lower doses, trazodone seems to affect other specific pathways as well (i.e., 

vitamin B6 metabolism, ether lipid metabolism, primary bile acid biosynthesis, and glycine serine 

and threonine metabolism). In addition, trazodone exposure produced significant changes in 

ceramides and neutral glycosphingolipids.  

Regarding the specific effects both drugs provoked on the HepG2 cells, trazadone seems to have 

a negative impact on the structure and functions of plasmatic membrane, on the normal absorption 

of lipids in the intestine and on the composition of gut microbiome, and on energy production 

rates through lipid beta-oxidation. On the other hand, carbamazepine exposure seems also linked 

to alterations in beta-oxidation and cellular energy production. All in all, in spite of the low doses 

employed in this study, small but significant changes were observed at molecular level. Both 

drugs exposure may be related to alterations in cellular functions and energy production not only 

in hepatic cells, but also in neural cells, or even in other organs.  
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1. LC-MS methodology 
 

1.1 LC-MS/MS method for sphingolipid analysis 

Chromatographic separation was carried out on an ACQUITY UPLC System with a sample 

manager cooled to 8°C (both from Waters Corporation, Milford, MA, USA). Sphingolipids were 

separated on a Zorbax Rapid Resolution RRHD C18 Column (80Å, 1.8 µm, 2.1 mm X 100 mm) 

using a guard column (5 × 2 mm, 1.8 μm particle size) (both from Agilent Technologies). Mobiles 

phases A and B consisted of 5mM ammonium formate (Sigma-Aldrich) / 0.2% formic acid 

(Optima, Fisher-Scientific) in water and in methanol (VWR), respectively. Separation was carried 

out at a 450 μl min-1 flowrate and column temperature was held at 40°C. The following 

chromatographic gradient was used: 0 min, 75% B; time range 0 → 1 min, 75% B (constant); 

time range 1 → 5 min, 85 → 100% B (linear increase); time range 5 to 15.2 min, 100% B (isocratic 

range); time range 15.2 → 15.3 min, 100 → 75% B (linear decrease); time range 15.3 → 16 min, 

75% B (isocratic column conditioning). Samples were analyzed on a Waters Xevo® TQ-S system 

equipped with an Electrospray Ion Source (ESI) and ScanWave™ collision cell technology 

operating in the positive mode. A class specific single reaction monitoring (SRM) transition for 

each sphingolipid and internal standard was used. The method does not distinguish glycosylated 

species (GlcCer) from galactosylated species (GalCer), and Glc sphingolipids are therefore 

potentially a mixture of the two species. 

 

1.2 LC-HRMS method for untargeted metabolomic analysis 

Chromatographic separation was carried out on pre column SeQuant® ZIC®-pHILIC Guard Kit 

20 x 2.1 mm, and a column SeQuant® ZIC®-pHILIC 5 µm polymer 100 x 2.1 mm were used. 

Mobile phases composition were: A) 5 mM ammonium acetate in water with 0.04% NH4OH (pH 

9.3), B) 100% Acetonitrile. Gradient conditions expressed as time in minutes (%A, flow 

mL/min) : initial (12%, 0.28), 8.50 (40%, 0.28), 9.30 (95%, 0.28), 9.90 (95%, 0.20), 10.60 (95%, 

0.17), 13.00 (95%, 0.20), 15.00 (95%, 0.2), 17.00 (12%, 0.2), 19.00 (12%, 0.5) and held until 

28.50 min. Injection volume was set at 1 or 3 μL in positive or negative mode respectively, and 

the column oven at 35 ºC.  

MS acquisition was performed in data independent analysis (DIA) mode. A mass range of 40-

1200 m/z and an acquisition rate of 6 spectra/s were selected. MS/MS was acquired in all ion 

fragmentation (AIF) mode at three collision energies (0, 10, 30 eV).  

2. MS-DIAL settings 
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Table S1. MS-DIAL parameters used in metabolomic annotation.  

Start up a project HILIC-HRMS method ESI(+) HILIC-HRMS method ESI(-) 

Ionization type Soft ionization Soft ionization 

Separation type Chromatography (LC) Chromatography (LC) 

Method type All-ions with multiple CEs All-ions with multiple CEs 

Data type (MS1) Centroid Centroid 

Data type (MS/MS) Centroid Centroid 

Ion mode Positive ion mode Negative ion mode 

Target omics Metabolomics Metabolomics 

Data collection 

MS1 tolerance 0.01 0.01 

MS2 tolerance 0.01 0.01 

Retention time begin 0.5 0.5 

Retention time end 15 14 

Mass range begin 40 40 

Mass range end 1200 1200 

Maximum charged number 2 2 

Consider Cl and Br elements Unchecked Unchecked 

Number of threads 20 20 

Execute retention time corrections Unchecked Unchecked 

Peak detection 

Minimum peak height 800 800 

Mass slice width 0.1 0.1 

Smoothing method Linear weighted moving average Linear weighted moving average 

Smoothing level 3 3 

Minimum peak width 8 8 

Exclusion mass list (tolerance: 
0.01Da) 

121.051 and 922.0098 112.9856, 1033.988 

MS2Dec 

Sigma window value 0.5 0.5 

MS2Dec amplitude cut off 800 800 

Exclude after precursor Checked Checked 

Keep isotope until 0.5 0.5 

Keep the isotopic ion w/o MS2Dec Unchecked Unchecked 

Identification 

Retention time tolerance 2 1 

Accurate mass tolerance (MS1) 0.01 0.01 
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Accurate mass tolerance (MS2) 0.01 0.01 

Identification score cut off 70 70 

Use retention time for scoring Unchecked Unchecked 

Use retention time for filtering Unchecked Unchecked 

Postidentification Not used Not used 

Adduct 

Molecular species [M+H]+, [M+NH4]+, [M+Na]+, 
[M+K]+, [M+H-H2O]+, [2M+H]+ 

[M-H]-, [M+Na-2H]-, [M-H2O-H]+, 
[2M-H]- 

Alignment 

Retention time tolerance 0.2 0.2 

MS1 tolerance 0.02 0.02 

Retention time factor 0.5 0.5 

MS1 factor 0.5 0.5 

Peak count filter 5 5 

N% detected in at least one group 5 5 

Remove feature based on blank 
information 

Checked Checked 

Sample average / blank average 5 5 

Keep "reference matched" 
metabolite features 

Unchecked Unchecked 

Keep "suggested (w/o MS2)" 
metabolite features 

Unchecked Unchecked 

Keep removable features and assign 
the tag 

Checked Checked 

Gap filling by compulsion Checked Checked 

Isotope tracking 

  Not used Not used 
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Table S3. Experiment file used in MS method type section from 
 start a project window in MS-DIAL. 

Experiment file   

ID MS Type   Start m/z End m/z Collision 
energy 
(eV) 

Deconvolution 
target  

(0: No; 1:Yes) 
0 MSMS 40 1200 10 1 

1 MSMS 40 1200 30 1 

2 SCAN 40 1200 0 1 

 

 

3. Selection of potential markers of drug exposures 

Table S4. Matthews correlation coefficient of the PLS-DA,  
       for the comparisons Control vs Medium dose and Control vs High. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S2. Correlation deconvolution parameters. 

Correlation deconvolution  

MS2 tolerance 0.01 0.01 

MS2 minimal peak intensity 800 800 

Min. number of detected samples 4 4 

Exclude highly correlated spots 0.9 0.9 

Min. correlation coefficient (MS2) 0.7 0.7 

Margins 0.1 (target and co-eluted precursors) 
0.1 (target and co-eluted 
precursors) 

Min. detected rate 0.1 0.1 

Min. MS2 relative intensity 1% 1% 

Remove peaks larger than precursor Checked Checked 

MCC values (PLS-DA) AMOX CBZ TRA 

Doses 
comparisons 

C vs M 0.311 0.816 1.000 

C vs H 0.408 1.000 0.816 
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4. Discussion of the sphingolipids and metabolites altered by the drug exposures  

 

Table S5. Metaboanalyst pathway analysis of CBZ exposure.  

CBZ pathway 
analysis 

Total Expected Hits 
Raw 

p 
 -log(p) 

Holm 
adjust 

FDR Impact 

Glycerophospholipid 
metabolism 36 0.348 3 0.004 2.364 0.363 0.363 0.077 

Sphingolipid 
metabolism 21 0.203 2 0.017 1.782 1.000 0.694 0.270 

Alanine aspartate and 
glutamate metabolism 

28 0.271 2 0.029 1.544 1.000 0.800 0.310 

Taurine and 
hypotaurine 
metabolism 8 0.077 1 0.075 1.125 1.000 1.000 0.429 
Arginine biosynthesis 14 0.135 1 0.128 0.894 1.000 1.000 0.000 

Nicotinate and 
nicotinamide 
metabolism 15 0.145 1 0.136 0.865 1.000 1.000 0.000 
Histidine metabolism 16 0.155 1 0.145 0.839 1.000 1.000 0.000 

Pantothenate and CoA 
biosynthesis 19 0.184 1 0.170 0.771 1.000 1.000 0.000 

Ether lipid 
metabolism 20 0.194 1 0.178 0.750 1.000 1.000 0.000 

beta-Alanine 
metabolism 21 0.203 1 0.186 0.731 1.000 1.000 0.000 
Lysine degradation 25 0.242 1 0.217 0.663 1.000 1.000 0.141 

Glutathione 
metabolism 28 0.271 1 0.240 0.619 1.000 1.000 0.007 

Primary bile acid 
biosynthesis 46 0.445 1 0.365 0.438 1.000 1.000 0.008 

Aminoacyl-tRNA 
biosynthesis 48 0.465 1 0.378 0.423 1.000 1.000 0.000 
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Table S6. Metaboanalyst pathway analysis of TRA exposure. 

CBZ pathway 
analysis 

Total Expected Hits 
Raw 

p 
 -log(p) 

Holm 
adjust 

FDR Impact 

Sphingolipid 
metabolism 

21 0.257 3 0.002 2.743 0.152 0.118 0.308 

Taurine and 
hypotaurine 
metabolism 

8 0.098 2 0.004 2.418 0.317 0.118 0.429 

Alanine aspartate and 
glutamate 

metabolism 
28 0.343 3 0.004 2.375 0.346 0.118 0.2484 

Glycerophospholipid 
metabolism 

36 0.441 3 0.009 2.064 0.700 0.181 0.104 

Ether lipid 
metabolism 

20 0.245 2 0.024 1.625 1.000 0.399 0.000 

Glycine serine and 
threonine metabolism 

33 0.405 2 0.060 1.222 1.000 0.750 0.000 

D-Glutamine and D-
glutamate 

metabolism 
6 0.074 1 0.071 1.146 1.000 0.750 0.000 

Nitrogen metabolism 6 0.074 1 0.071 1.146 1.000 0.750 0.000 

Valine  leucine and 
isoleucine 

biosynthesis 
8 0.098 1 0.094 1.026 1.000 0.805 0.000 

Vitamin B6 
metabolism 

9 0.110 1 0.105 0.977 1.000 0.805 0.078 

Primary bile acid 
biosynthesis 

46 0.564 2 0.107 0.970 1.000 0.805 0.016 

Aminoacyl-tRNA 
biosynthesis 

48 0.588 2 0.115 0.939 1.000 0.805 0.000 

Arginine 
biosynthesis 

14 0.172 1 0.159 0.798 1.000 1.000 0.000 

Lysine degradation 25 0.306 1 0.267 0.573 1.000 1.000 0.141 

Glyoxylate and 
dicarboxylate 
metabolism 

32 0.392 1 0.329 0.483 1.000 1.000 0.000 

Arginine and proline 
metabolism 

38 0.466 1 0.378 0.423 1.000 1.000 0.012 

Pyrimidine 
metabolism 

39 0.478 1 0.386 0.414 1.000 1.000 0.000 

Purine metabolism 65 0.797 1 0.559 0.253 1.000 1.000 0.000 

 

 



 

 

 Chapter five 

396 

5.3 Discussion  

This section focuses on the metabolomic and lipidomic workflows employed in 

scientific publications VII and VIII, with a special emphasis on the aspects learnt 

during the 2021 research stay. Firstly, a workflow for a quick evaluation of data 

quality for large untargeted metabolomic studies (e.g., clinical cohorts) is discussed. 

Secondly, two data analysis workflows are compared for their use in untargeted 

metabolomics datasets: one based on the ROIMCR strategy and the other based on 

the analysis provided by the MS-DIAL software. Finally, the targeted versus 

untargeted analysis problematic is discussed.  

 

5.3.1 Quick check of data quality for large untargeted 

metabolomics  

When performing the instrumental analysis of large untargeted metabolomics 

studies, such as clinical cohorts where multiple batches are analyzed non-stop 

during several months, it is crucial to ensure intra- and inter- batch reproducibility of 

the results. Figure 5.2 summarizes the basic steps to consider for evaluating data 

quality, designed by the research group from KI [13]. Although considerably shorter 

than a clinical cohort, this data quality evaluation protocol was also employed to 

assess the quality of the untargeted metabolomic study from scientific publication 

VIII. In this case, the samples from each drug exposure (i.e., amoxicillin, 

carbamazepine, and trazodone) were considered as an entire batch, in each 

ionization mode (i.e., positive and negative). Therefore, six batches were separately 

evaluated. Besides, a replicate for each condition (drug and dose) was re-injected at 

the end of the sequence, to further verify the method’s reproducibility.  

The first step in this evaluation workflow could be checking the pressure profiles 

(see Figure 5.3). The registered pressure along the whole analysis sequence should 

be stable and reproducible among samples. If the pressure of an individual sample 

increases suddenly, it could indicate an augment in column pressure. This issue is 

often encountered in HILIC separations, where the high percentage of the aqueous 

phase needed for an optimal gradient usually forces the user to work at high 

pressures, closer to the maximum pressure that the column can hold. This is the case 

when high-performance liquid chromatography (HPLC) columns are used instead of 

ultra-high-performance liquid chromatography (UHPLC). Column pressure profile 

was stable during the metabolomic study from scientific publications VIII. 
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The superposition of base peak chromatograms (BPCs) or total ion 

chromatograms (TICs) is useful to quickly determine whether all samples have been 

injected, and if they present similar intensities. In the case that overall profiles of 

BPCs (or TICs) of all samples do not at least partially overlap, retention times may 

have shifted among samples, and a proper alignment and/or peak modelling could 

be necessary during data processing. If only an individual sample presents a different 

chromatographic profile and/or intensity from its replicates (or from other samples 

expected to have a similar profile), the user could decide to re-inject it. None of these 

scenarios was encountered for the dataset of scientific publications VIII.  

 

Figure 5.2. Workflow for a quick data analysis check of large untargeted metabolomic studies. BPC: 

base peak chromatograms; TIC: total ion chromatogram; QC: Quality control; IS: internal standard; CV: 

coefficient of variance; PCA: principal component analysis.  

Quality controls (QCs) are representative mixtures of aliquots composed of a 

pool of all types of samples, which are run repeatedly along the analysis sequence 
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(e.g., every 8-10 samples). Hence, they can be used for intra- and inter- batch 

correction when required. QCs should have identical elution profiles and intensities, 

as the same homogeneous solution is injected repeatedly. Otherwise, QCs batch 

correction can be applied to compensate, for instance, instrumental drifts [15,16]. In 

the case of scientific publications VIII, a QC batch correction [17] was applied to 

the different batches, for each ionization mode separately for inter-batch corrections.  

Blanks are often analyzed at the beginning and end of each batch. They are 

useful to detect carryover effect (i.e., if compounds from a sample are not properly 

eluted and they appear in the following chromatogram) and to check for IS 

reproducibility (if spiked with the IS solution). It is recommended to pre-condition 

the column in the sample matrix after running a blank, which can be performed by 

running a certain number of QCs at the beginning of the sequence. Although the 

composition of these initial QCs is the same as the other QCs, they are usually 

referred to as conditioning QCs. In scientific publications VIII, blanks were only 

measured at the beginning and at the end of each ionization mode analysis instead 

of between each drug sample set, due to the short length of the analysis sequence. 

In addition, fifteen conditioning QCs were added before running the samples in each 

ionization mode.  

Lock masses are calibrant solutions used by the instrument to calibrate the mass 

values throughout the analysis. Whenever the lock masses are detected, it is possible 

to re-calibrate the datasets after the analysis is complete. Spikes in the lock masses 

can be caused by ionization suppression regions in the chromatogram, and special 

attention is required to the m/z values of the compounds present in these regions, 

as they present larger mass errors compared to other regions. No spiking regions 

were found for the cell samples from scientific publications VIII (see Figure 5.2).  

The internal standards (IS) added to the samples just before the injection are 

useful to calculate the reproducibility of the analysis and correct for instrumental 

drifts during the QC batch correction already mentioned. Coefficient of variances 

(CVs) of these compounds are often considered acceptable under 10% in QCs and 

under 20% in the rest of samples, in the cases of large studies. If fewer samples are 

analyzed, then the reproducibility should be higher. For instance, PIPES and HEPES, 

two compounds used as IS, presented CVs lower than 5% for negative ionization 

batches after QC batch correction. A visual inspection of the peak shapes and 

intensities is also useful for a qualitative overview of the reproducibility among QCs 
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and all samples from the batch. In the case that the user has some a priori knowledge 

of compounds expected to be present in the samples, a quick screening of their CVs 

values and an exploration of their elution profiles is also desirable. For instance, N-

acetyl aspartic acid and taurine were used to check the reproducibility of peak 

shapes and intensities across cells samples, in negative ionization mode, as shown 

in Figure 5.2.  

Lastly, a PCA scores plot can help identify outliers and detect some trends in the 

data (e.g., if the QCs cluster together). A summary of all the previous information is 

also handy, and a table with all the CVs is also recommended for a global inspection 

of multiple batches. Although a report with such a level of detail as the one proposed 

here is unnecessary in practice, it becomes useful because information on every 

batch is collected and data quality is ensured, especially in large cohorts. All in all, 

the minimum steps that require a thorough inspection are blanks and QCs profiles, 

CVs of IS (in samples, blanks and QCs) and confirmation that the lock mass is 

detected in all chromatograms.  

 

5.3.2 Data analysis workflows for untargeted metabolomics 

Two data analysis workflows have been employed in the publications included in 

this Chapter, which are summarized in Figure 5.3. Workflow A (scientific 

publication VII) in the Figure represents a ROIMCR based pipeline. In contrast, 

workflow B represents an MS-DIAL based pipeline (scientific publications VIII). 

This section aims to highlight the main advantages and limitations of each workflow. 

The use of the ROI approach in combination with MCR-ALS has been widely 

discussed throughout this PhD Thesis (see Chapter 3 for more details). Although 

MS-DIAL software [18,19] has also been used in different PhD Thesis publications 

for compound annotation, only in scientific publications VIII is also employed for 

data pre-processing. Briefly, the MS-DIAL pipeline incorporates a between samples 

alignment step for the chromatographic peaks, and the possibility to filter the signals 

present in a blank (e.g., extraction blank). Besides, MS-DIAL also performs peak 

integration, and, more interestingly, compound annotation based on retention time 

(RT) and MS/MS libraries. 



 

 

 Chapter five 

400 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Comparison of data analysis workflows employed in scientific publications VII (workflow 

A) and VIII (workflow B). ROI: regions of interest; MCR: multivariate curve resolution; ASCA: ANOVA 

simultaneous component analysis; PCA: principal component analysis; HCA: hierarchical clustering; 

DIA: data independent acquisition; RT: retention times; ANOVAs: ANalysis Of Variance; PLS-DA: partial 

least squares discriminant analysis.  
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An important benefit of using ROI compared to MS-DIAL on raw data is the 

reduction in data dimensionality. When high-resolution mass spectrometry (HRMS) 

is employed after chromatography, the resulting datasets are usually very big. In 

addition, all precursor ions are fragmented in all ion fragmentation (AIF) acquisition 

mode (used in both metabolomic studies from this Chapter). In scientific 

publications VII and VIII, AIF provided MS1 (m/z spectrum) and MS2 (MS/MS 

patterns from the m/z values from MS1) levels for each retention time, which 

increments data size. For instance, the entire metabolomic raw dataset size of both 

studies (cells and rice) is approximately 40 GB each (including the two ionization 

modes). Therefore, importing and processing these datasets into MS-DIAL can last 

several hours, whereas the pre-processing with ROI can be much shorter (if the 

appropriate settings are selected, see discussion about ROI parameters in Chapters 

3 and 4).  

The use of MCR-ALS provides an elution profile and a mass spectrum (MS1) for 

each component. Ideally, each chemical compound present in the mixture would be 

represented by one component, and the different adducts and isotopic forms of the 

same compound would be joined into the same component, i.e., what is known by 

componentization. On the contrary, MS-DIAL can furnish several hits for the same 

compound, according to different adducts forms, or even the same adduct at different 

retention times if MS/MS hits are found. Moreover, sometimes the correct adducts 

are not well assigned automatically (e.g., the software may assign a [M+Na]+ adduct 

when the m/z value obtained corresponds to a [M+H]+ form of the same compound), 

and a further check should be carried out with complementary information from 

databases, such as the Human Metabolome DataBase (HMDB) [20,21] or Lipid 

MAPS [22,23]). Besides, the compounds found by MS-DIAL (e.g., lipid annotation 

based on MS1 level only) should be checked carefully in the absence of MS/MS 

information. For instance, in the untargeted rice lipidomic analysis from scientific 

publications VII (where no information at MS/MS level was acquired), the tentative 

annotation provided by Lipid MAPS [22,23] and an in-house library was preferred to 

the provided by MS-DIAL.  

However, one of the main limitations of the ROIMCR workflow is the annotation 

step, especially for untargeted analysis. Until now, MCR-ALS only provided 

compound resolution and quantification at the MS1 level, and the annotation has 

been confirmed based on the MS2 information through other software. For instance, 
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in a preliminary compound annotation of the rice dataset, a list of relevant 

components was obtained with partial least squares discriminant analysis (PLS-DA) 

(after evaluating the differences between arsenic treatments supplied to rice) and 

selected for annotation. Then, the MS2 spectra for each retention time (associated 

with the relevant components) were acquired from the raw data through vendor 

software. These MS/MS spectra were compared to spectral libraries from HMDB 

[20,21], Global Natural Product Social Molecular Networking (GNPS) [24], and 

Massbank [25,26]. However, a low number of hits were obtained and, therefore, only 

a few metabolites were tentatively annotated. The main reason was a lack of prior 

deconvolution of the AIF data, which means that the used MS2 spectra were a mix 

of MS/MS fragmentation patterns of all the detected m/z values from the MS1 level 

at that retention time. This deconvolution step, especially useful in data independent 

acquisition (DIA) such as AIF, is included in MS-DIAL, which makes it appealing for 

compound annotation. In addition, a new algorithm, known as Corrdec [27], has been 

recently proposed for an alternative deconvolution of DIA data at the MS/MS level, 

and has been incorporated into the MS-DIAL software. Thus, this deconvolution step 

becomes necessary for compound annotation (especially for DIA data). Current work 

is being pursued for using MCR-ALS for the resolution of the MS2 level too. The aim 

is to obtain for each compound an elution profile, an MS1 mass spectra profile, and 

a resolved MS2 mass spectra profile containing only the fragments from that specific 

MS1 profile (instead of a mix of all the MS1 profiles from all the compounds 

fragmented at the same retention time).  

Apart from the deconvolution step, another main benefit of MS-DIAL is the 

possibility of incorporating compound libraries when processing the data, in order to 

automatize compound annotation. On the one hand, the user can create RT libraries 

in the same chromatographic conditions that in the new samples by injecting 

standard solutions of as many analytes as possible. On the other hand, MS/MS 

libraries are also available. MS-DIAL already includes a rich MS/MS library of lipids 

[19] that is constantly being updated with new lipids. For metabolites, MS/MS 

compilations from the main public spectral libraries are available on the MS-DIAL 

website for each ionization mode [28]. Alternatively, MS/MS libraries created by the 

user could also be uploaded. This functionality of MS-DIAL is especially useful for 

pseudo-targeted and untargeted approaches in routine metabolomic platforms (e.g., 

when metabolomic analyses from sample extraction to data analysis steps are 

offered as a service). The users could create their own libraries using the 
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chromatographic and mass spectrometric methods of their routine analysis and 

continue to complement them by discovering unknown compounds from the new 

analyses, cyclically. The KI research group has implemented this strategy in 

collaboration with Gunma University in Japan [13]. 

Although not employed in scientific publications VIII, there are other two 

valuable tools related to MS-DIAL (marked in the grey section of Figure 5.3). On the 

one side, MS-LIMA [29] is a software that allows the management of the existing 

MS/MS libraries, and could also be used to create new libraries, based on MS/MS 

information acquired by the user in different modes and collision energies. On the 

other side, MS-FINDER [30] is a tool for discovering unknown compounds, especially 

useful in untargeted analysis (i.e., provides structural information and MS/MS 

fragmentation patterns of potential candidates, plus other information such as 

InChIKeys of these potential compounds).  

All in all, a proper comparison of the capabilities of ROIMCR versus MS-DIAL is 

still lacking. The main advantages of MS-DIAL processing are related to compound 

annotation, which is straightforward when MS/MS information from the samples is 

acquired (for both, data dependent and data independent acquisitions). However, 

the ROIMCR provides more complete and transparent processing that includes 

compression and resolution of the data, although including the resolution at the MS2 

level and an automatic annotation step from the resolved spectra are needed. Future 

work will be pursued in this direction.  

 

5.3.3 The targeted versus untargeted analysis problematic  

In recent years, the tendency has been to move towards fully untargeted 

analyses, for the discovery of unknown compounds to expand current metabolome 

knowledge and provide a holistic overview of the effects of a certain exposure (e.g., 

exposure to an environmental stressor, or differences between healthy and ill 

patients/tissues), as shown in Figure 5.4. Both analytical and data analysis methods 

have been developed to detect and annotate as many compounds as possible from 

many different families. Consequently, the amount of information that can be 

achieved per analyzed sample has considerably increased, but also data size. In the 

era of big data, automatic workflows (e.g., based on executing multiple commands 

via scripts in which the user merely supervises each step to ensure the quality of the 

results) are required, for the sake of time.  
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The main question here is: are we detecting new compounds with these 

approaches, or are we mainly detecting the same compounds over and over again?  

Sometimes, aiming for a bigger picture, the actual limitations of a one-for-all 

solution can be ignored. As stated at the beginning of this Chapter, the variety of 

physicochemical properties of the analytes makes it difficult to implement a unique 

analytical workflow. Moreover, these generical conditions can detriment the 

analytical measurements compared to targeted approaches where the experimental 

conditions for each family or group of compounds are optimized. In addition, 

metabolites present in the samples in low abundances may be lost with untargeted 

analysis due to the unspecific conditions and the ion suppression caused by other 

predominant compounds. On the contrary to polymerase chain reaction (PCR), which 

copies and amplifies the signal of deoxyribonucleic acid (DNA) fragments, there is 

no current technology able to increase these signals of the less abundant metabolites 

without a specific pre-treatment of the sample.  

 

 

Figure 5.4. Comparison of targeted, pseudo-targeted and untargeted approaches for metabolomic 

analysis.  
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Strategies that aim to solve the problem of ion suppression may involve data 

dependent acquisition (DDA). In these cases, samples can be reinjected cyclically, 

establishing different intensities thresholds. For instance, the first fifty more intense 

compounds would be detected and fragmented. Then, in the second injection, the 

next fifty more intense are detected, and so on. An iterative auto MS/MS, a form of 

DDA, was employed in scientific publication V for the fragmentation of QC samples. 

These approaches are more effective when a list of interesting compounds is 

available for fragmentation (otherwise, low abundant compounds may be lost), but 

to know which are these interesting compounds, a preliminary untargeted approach 

is needed. In contrast, DIA acquisitions fragment every compound eluting at that 

retention time (even the less abundant), but a deconvolution step is crucial in order 

to associate the fragments to the compound, as already discussed.  

Another aspect to keep in mind is that every potential discovery found with 

untargeted approaches should be further validated in a targeted manner. The 

differences between untargeted and targeted analysis are summarized in Figure 5.4. 

In the untargeted analysis, the aim is a global overview of the samples’ metabolome, 

whereas the targeted provides identification and quantification of a reduced number 

of compounds (e.g., lower than a hundred). Regarding untargeted discovery 

validation, if the finding is related to specific metabolic pathways altered by a certain 

stressor, the solution would be to study these pathways individually, delimiting the 

number of compounds detected with the same method and optimizing the analytical 

conditions for their quantification. In the case of detecting new metabolites, then the 

confirmation needs to be via structural elucidation based, for instance, on NMR 

analysis. However, for achieving a complete validation of the annotated compounds, 

a standard of each new metabolite is needed, which requires the synPhD Thesis of 

these compounds if they are not commercially available (in most cases). Hence, 

these discoveries are not as fast as we may want them to be, or as if the effort would 

be concentrated on a smaller picture (e.g., first, focusing on one family of relevant 

compounds on a certain matrix, then another etc., instead of looking for a needle in 

a haystack). In both scenarios, the targeted second step is more expensive due to 

the need for standard solutions for each analyte and certified reference materials. In 

the end, the effort may seem doubled, as the first untargeted analysis provides only 

preliminary results.  
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An intermediate solution may be using pseudo-targeted approaches (as used in 

scientific publication VIII for the metabolomic analysis). In this scenario (see Figure 

5.4.), the aim is to screen as many compounds as possible with a generic method, 

but with the guarantee of previously characterizing standard of these compounds 

with the same method (e.g., retention time information, MS/MS patterns in different 

acquisition modes and collision energies). Metabolite libraries of hundreds of 

compounds are already commercially available. Although it would seem expensive, 

this strategy is worthy of routine analyses. Instead of injecting the calibration curves 

of the standard solutions in each analysis, these standards are only injected when 

optimizing and validating the method, but their characterization will still be available 

afterwards. However, an absolute quantification or correction based on internal 

standards for each compound (e.g., correct extraction losses or ion suppression 

effects) is not possible with this approach. Another disadvantage of this approach is 

that the slightest change in the analytical workflow (e.g., using a brand new 

chromatographic column although in theory identical to the previous one) may need 

re-adjustments in the whole characterization process. Therefore, there is little room 

for improvements once the method has been validated. Hence, the use of this 

approach has an expiration date dependent on the current technology (e.g., new 

stationary phases or packing technologies for chromatographic columns, new mass 

spectrometers with novel capabilities).  

After these considerations, the way out of this dead-end may be in the use of 

multidimensional approaches discussed in the previous Chapter, or the simultaneous 

combination of multiple platforms, as pointed out in the publications from this 

Chapter. Nevertheless, there is no doubt that the application of these novel 

approaches will need automatic, straightforward, accessible, flexible, and reliable 

data analysis workflows from pre-processing to compound annotation. Otherwise, 

the analytical developments will not achieve their full potential.  
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5.4 Conclusions 

This section includes the specific conclusions drawn throughout this Chapter 

about the different metabolomics data analysis workflows employed.  

• A quick check of the quality of the data right after the acquisition is essential 

to ensure the reliability of the results and enable the re-injection of certain 

samples if needed (otherwise, the information from these samples may be 

lost due to instrumental errors). This quality check is especially crucial in the 

case of large metabolomic studies (e.g., clinical cohorts).  

• ROIMCR is a powerful approach for the analysis of untargeted metabolomic 

datasets, from the pre-processing (i.e., compression) to the resolution of 

compounds in complex mixtures (i.e., elution and spectral profiles). However, 

it currently lacks the resolution of information at the MS2 level and an 

automatic annotation step.  

• On the contrary, MS-DIAL is a user-friendly tool for metabolomic data 

processing, including deconvolution of MS/MS spectra and compound 

annotation. However, no compression is applied, which slows down the whole 

analysis time. Besides, it is only recommended when MS/MS information 

from the samples is available, and a double-check of the assigned adducts is 

desirable. In addition, special attention is required when several hits with the 

MS/MS libraries at different retention times are found.  

• Regarding the targeted versus untargeted dilemma, the decision needs to be 

made on a case-by-case basis. Still, all untargeted analyses need to be further 

validated using targeted methods afterwards. Current trends are moving 

towards pseudo-targeted approaches, an in-between solution, where a large 

scope of metabolites and pathways are targeted, and relative quantification 

and annotation based on RT, MS and MS/MS information are provided.  
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 Conclusions 

The analytical methodologies and data analysis strategies developed in this PhD 

Thesis, based on the use of one- and two-dimensional liquid chromatography 

coupled to mass spectrometry (LC-MS and LC×LC-MS, respectively), have been 

successfully optimized and validated for metabolomic (and lipidomic) studies.  

Furthermore, analytical and chemometric pipelines have been proposed to assess 

the effects) that environmental stressors produce in the metabolome and lipidome 

of model biosystems. In conclusion, the new approaches methodologies (NAMs) 

followed in this PhD Thesis have facilitated the extraction of the most relevant 

analytical and biological information related to the exposure of the investigated 

emerging contaminants (ECs).  

Conclusions related to the analytical and data analysis strategies employed in this 

PhD Thesis are described in detail below: 

 

Analytical conclusions 

• Two-dimensional liquid chromatography coupled to high-resolution mass 

spectrometry (LC×LC-HRMS) has been successfully applied for untargeted 

lipidomics analyses. An RP×HILIC configuration has been preferred 

because it provided a higher chromatographic resolution power for lipid 

analysis. The use of the active solvent modulation (ASM) strategy led to an 

increase in sensitivity and solvent compatibility, as well as the decrease of 

the total run time. However, more research is still required to optimize the 

conditions allowing a better retention of the less polar lipids in the second 

column dimension (e.g., ceramides and triacylglycerides). 

• There is a need for reducing the analysis time of metabolites using LC×LC-

MS while enhancing solvent compatibility between the two dimensions. The 

ASM strategy is highly recommended. However, more research is also 

required to assess the efficacy of ASM, in particular, for small and polar 

molecules.  

• Individual metabolomic and lipidomic workflows are conditioned by the wide 

variety of physicochemical properties of the analytes. Even if a common 

extraction step is used to improve the efficiency and analysis times of 

untargeted studies, LC-MS analyses should still be performed on different 
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MS platforms or with multidimensional separations to achieve a broader 

coverage. The combined information about metabolic and lipidic pathways 

affected by emerging contaminants provides a holistic coverage and 

assessment of their mode of action at molecular level.  

 

Chemometric conclusions 

• The assessment of the multiway structure and behavior of LC×LC MS and 

UV datasets showed deviations from the ideal full trilinear factor 

decomposition model. Hence, trilinear model-based methods such as 

parallel factor analysis (PARAFAC) are not recommended in general for LC

×LC data. In contrast, acceptable results can always be obtained using a 

bilinear model factor decomposition, for instance using the multivariate 

curve resolution alternating least squares (MCR-ALS) method.  

• Data fusion strategies combining the information from multiple detectors 

provided a more complete resolution of the sample constituents and an 

easier identification of the compounds associated with each MCR-ALS 

resolved component. 

• Multivariate analysis of variance (ANOVA) – based methods gave acceptable 

results for the statistical assessment of statistically significant effects 

produced by the tested factors (environmental stressors) in designed 

experiments and allowed variable selection. However, further work is 

required to establish the best method to fulfil both goals. The workflow 

proposed in this PhD Thesis combines ANOVA simultaneous component 

analysis (ASCA) and partial least squares discriminant analysis (PLS-DA) 

for optimal statistical analysis and variable selection, respectively.   

• The ROI approach for filtering and spectral compression provided a 

sufficient dimensionality reduction of LC×LC-HRMS datasets. This ROI 

strategy demonstrated its usefulness for targeted, pseudo-targeted and 

untargeted approaches, also allowing the proper recovery of absolute and 

relative quantification information.  

• Acceptable quantification results can be obtained in the analysis of LC×LC-

MS datasets with ROIMCR based strategies. The use of the peak area 

correlation constraint for the known calibration samples (applied during the 

alternating least squares optimization) is recommended for strongly 
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coeluted analytes because, in these cases (e.g., biological matrices with 

multiple overlapping compounds, some of them isobaric), more accurate 

absolute quantifications of the analytes are obtained.  

• Different data analysis workflows were tested for untargeted metabolomic 

studies. ROIMCR is a very powerful approach for analyzing untargeted 

metabolomic datasets, but further work is required to extract information at 

the MS2 level and incorporate an automatic annotation step. Meanwhile, the 

ROIMCR approach can be complemented with other approaches such as 

MS-DIAL, to improve the deconvolution of MS/MS spectra and the proper 

compound annotation. In conclusion, results obtained with the proposed 

metabolomic workflows allowed the assessment of the effects produced by 

the environmental stressors investigated in this Thesis.  
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Annex 1. Experimental conditions employed for the acquisition 

of the chromatograms shown in Figure 4.3.  

 

The experimental conditions in which the chromatograms of Figure 4.3 were 

acquired are described below. Visualization of the chromatograms shown in Figure 

4.3 were obtained with MassHunter Workstation Software, Qualitative Analysis 

Navigator, version B.08.00 (Agilent TechnologiesSanta Clara, CA, USA).  

A) and B). HILIC 1DLC separation of phospholipid extracts. The HILIC column was 

prepared in-house by slurry packing unmodified bare Zorbax silica (3.5 μm, 80 Å pore 

size) (Agilent Technologies, Santa Clara, CA, USA) into a small column (50 mm x 2.1 

mm i.d.). Mobile phases employed were: A) Ammonium formate 30 mM, B) AcN.  

Injection volume: 2 μL. Flow rate: 0.4 mL min-1. Temperature: 40 ˚C. Gradient 

(percentage of B): 0 (98), 1 (80), 5 (60), 10 (60), 10.1 (98), 15 (98) min. RP 1DLC 

separation of phospholipid extracts. HPH C18 column (50 x 2.1mm i.d., 2.7 μm) 

(Agilent Technologies, Santa Clara, CA, USA). Mobile phase composition: A) 30 mM 

Ammonium formate (pH 4.5), B) AcN/IPA (1:2). Injection volume: 2 μL. Flow rate: 

0.03 mL min-1. Temperature: 50 ˚C. Gradient (percentage of B): 0 (70), 8 (90), 9 (100), 

10 (100), 10.1 (70), 13 (70) min. 

C) The HILIC column was prepared in-house by slurry packing unmodified bare 

Zorbax silica (3.5 μm, 80 Å pore size) (Agilent Technologies, Santa Clara, CA, USA) 

into a small column (20 mm x 2.1 mm i.d.). Mobile phases employed were: A) 

Ammonium formate 30 mM, B) AcN.  ASM step was set to 0.22min, ASM factor at 5, 

and flow rate at 2 mL min-1, with a split ratio of 1:2 (one part to MS, two parts to 

waste). Gradient was established as follows (percentages of B):0 min (98), 0.22 (98), 

0.85 (80), 0.97 (60), 0.98 (98). In this example, four EICs of lipids are shown: 16:0 

D31-18:1 PE, 16:0 D31-18:1 PG, 16:0 D31-18:1 PC, and 1,2,3-17:0 TG, purchased 

from Avanti Polar Lipids (Merck KGaA, Darmstadt, Germany). 

All chromatograms from parts A, B and C were acquired with a 6545XT AdvanceBio 

LC/Q-TOF (Agilent Technologies, Santa Clara, CA, USA) mass spectrometer with an 

Agilent JetStream (AJS) electrospray ionization source in positive mode. Full scan 

spectra were acquired from 150 to 1500 Da, with an acquisition frequency of 125 ms 

per spectrum and a resolution of over 20000 FWHM in the m/z lipid range. 
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Annex 2. Experimental conditions employed for the acquisition 

of the chromatogram shown in Figure 4.4.  

 

The RP×HILIC-HRMS chromatogram shown in Figure 4.4 was included by Pérez-

Cova et al. in the publication about the MSroi GUI as pre-processing step in all types 

of MS data [1]. The experimental conditions in which this chromatogram was 

acquired are summarized below. Visualization in Figure 4.4 was performed with GC 

Image™ LC×LC version software (GC Image, LLC, Lincoln, USA).  

In this example, a mixture of nine lipids (17:0 MG, 17:0 Lyso PA, 17:1 Lyso PE, 

17:1 Lyso PG, 17:1 Lyso PS, 17:0 Lyso PC, 1,3-17:0 D5 DG, 17:0 cholesteryl ester, 

16:0 D31-18:1 PE, 16:0 D31-18:1 PG, 16:0 D31-18:1 PC, 16:0 D31-18:1 PS and 1,2,3-

17:0 TG) was analyzed to evaluate the distribution of these compounds into the two-

dimensional chromatographic space. LC×LC analysis was carried out using a 

combination of chromatographic modes configurated in an RP×HILIC setting. For 

the first-dimension separation, an Agilent Poroshell HPH C18 (150 mm x 2.1 mm i.d., 

1.9 μm) (Agilent Technologies, Santa Clara, CA, USA) using a flow rate of 40 μL·min-

1 and a temperature of 50 ºC.  The two mobile phases were: A) 30 mM ammonium 

formate (pH 4.5); B) ACN/IPA 1:2 (v/v). Elution gradient was as follows (percentages 

of A): 0 min (30), 60 min (10), 75 min (0), 120 min (0), 121 min (30), 150 min (30) (re-

equilibration). The total chromatographic analysis time was 150 min. In the second 

chromatographic dimension, a HILIC column was prepared in-house by slurry 

packing unmodified bare Zorbax silica (3.5 μ, 80 Å pore size) (Agilent Technologies, 

Santa Clara, CA, USA) into a small column (20 mm x 2.1 mm i.d.). The column was 

used at 40˚C, and a flow rate of 2 mL min-1, with a split ratio of 1:2 (one part to MS, 

two parts to waste), by passive flow splitting using a simple T-piece before detection. 

Mobile phases consisted of A: 30 mM ammonium formate (pH 4.5); and phase B: 

ACN, with the following gradient (percentages of A):  0 min (0), 0.22 min (0), 0.8 min 

(35), 1.00 min (0), where the initial 0.22 min corresponds to active solvent modulation 

(ASM) step, and modulation time was 1 min. The ASM factor was set to 5. The mass 

spectrometer was a 6545XT AdvanceBio LC/Q-TOF (Agilent Technologies, Santa 

Clara, CA, USA) with an Agilent JetStream (AJS) electrospray ionization source in 

positive mode. Full scan spectra were acquired from 100 to 1500 Da, with an 

acquisition frequency of 125 ms per spectrum and a resolution of over 20000 FWHM 

in the m/z lipid range. 
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Annex 3. Experimental conditions employed for the acquisition 

of the chromatograms shown in Figure 4.5.  

 

The experimental conditions in which the chromatograms of Figure 4.5 were 

acquired, are described below. Visualization of the chromatograms shown in Figure 

4.5 were obtained with A) GC Image™ LC×LC version software (GC Image, LLC, 

Lincoln, USA); B) MassHunter Workstation Software, Qualitative Analysis Navigator, 

version B.08.00 (Agilent Technologies, Santa Clara, CA, USA).  

A) HILIC (1D) conditions: HILIC column was prepared in-house by slurry packing 

unmodified bare Zorbax silica (3.5 μm, 80 Å pore size) (Agilent Technologies, Santa 

Clara, CA, USA) into a small column (50 mm x 2.1 mm i.d.). Mobile phases 

composition: A) Ammonium formate 30 mM, B) AcN.  ASM step: 0.22min, 

Temperature (column oven): 40 ˚C. Injection Injection volume: 4 μL. Gradient 

(percentage of B): 0(98), 60(89), 140(70), 170(40), 171(98), 200 (98) min.  

RP (2D) conditions: Carbon prototype column (30 x 2.1 mm i.d., 2.7 μm). Mobile 

phases composition: A) 30 mM Ammonium formate (pH 4.5), B) ACN. Temperature 

(column oven): 50 ̊ C. Gradient (percentage of B): 0 (0), 0.44 (0), 0.87 (20), 1.07 (100), 

1.22 (100), 1.3 (0), 1.5 (0) min. ASM step: 0.44 min. ASM factor 5. Modulation time: 

1.5 min. Flow rate:1 mL min-1 with a split ratio of 1:1 (one part to MS, one part to 

waste). 

B) Mobile phases composition: A) 30 mM Ammonium formate (pH 4.5), B) ACN. 

Temperature (column oven): 50 ˚C. ASM factor at 5. Injection volume: 2 μL (in 100% 

AcN).  

Column 1 (left side): Carbon prototype column (30 x 2.1 mm, 2.7 μm). Gradient 

(percentage of B): 0 (0), 0.44 (0), 0.87 (20), 1.07 (100), 1.22 (100), 1.3 (0), 1.5 (0) min. 

ASM step: 0.44 min. Modulation time: 1.5 min. Injection volume: 2 μL (in 100% AcN). 

Flow rate:1 mL min-1, with a split ratio of 1:1 (one part to MS, one part to waste).   

Column 2 (right side): Zorbax SB-C18 (2.1x30mm, 3.5µm) (Agilent Technologies, 

Santa Clara, CA, USA). Gradient (percentage of B): 0 (2), 0.29 (20), 0.69 (100), 0.79 

(100), 0.89 (2), 1 (2) min. ASM step: 0.29 min. Modulation time: 1 min. Flow rate:1.5 

mL min-1 with a split ratio of 1:1 (one part to MS, one part to waste). 
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All chromatograms from parts A and B were acquired with a 6545XT AdvanceBio 

LC/Q-TOF (Agilent Technologies, Santa Clara, CA, USA) mass spectrometer with an 

Agilent JetStream (AJS) electrospray ionization source in positive mode. Full scan 

spectra were acquired from 150 to 1500 Da, with an acquisition frequency of 125 ms 

per spectrum. 
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