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The oxidation of solutions of glucose with methylene-blue as a catalyst in basic media can induce hydro-
dynamic overturning instabilities, termed chemoconvection in recognition of their similarity to convective
instabilities. The phenomenon is due to gluconic acid, the marginally dense product of the reaction, which
gradually builds an unstable density profile. Experiments indicate that dominant pattern wavenumbers initially
increase before gradually decreasing or can even oscillate for long times. Here, we perform a weakly nonlinear
analysis for an established model of the system with simple kinetics, and show that the resulting amplitude
equation is analogous to that obtained in convection with insulating walls. We show that the amplitude
description predicts that dominant pattern wavenumbers should decrease in the long term, but does not repro-
duce the aforementioned increasing wavenumber behavior in the initial stages of pattern development. We
hypothesize that this is due to horizontally homogeneous steady states not being attained before pattern onset.
We show that the behavior can be explained using a combination of pseudo-steady-state linear and steady-state
weakly nonlinear theories. The results obtained are in qualitative agreement with the analysis of experiments.
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I. INTRODUCTION

When a solution of glucose contained in an open Petri
dish and in the presence of methylene-blue is oxidized in a
basic medium, the blue oxidized form of methylene-blue
eventually becomes colorless(except in a thin layer at the
free surface) [1]. Gluconic acid is formed as a product and
accumulates throughout the solution, particularly in the up-
per extent, where there is a continuous supply of oxygen
from the atmosphere. This product forms a solution which is
0.044 g/cm3 M more dense [2] than a corresponding
equimolar solution of glucose, and the ensuing top-heavy
distribution results in an overturning instability. Ponset al.
[2,3] presented detailed experiments on the resulting patterns
and time and length scales, and provided compelling evi-
dence for the above instability mechanism. The reaction it-
self is well known[4–6] and its chemistry can be described
using just two chemical equations[2] as a robust approxima-
tion to the full but complicated system[7]. Beeset al. [8]
formulated a minimal model of the hydrodynamic system
and explored the linear stability of steady-state and pseudo-
steady-state(PSS) profiles. Linear theory predicts that the
lowest value of the critical Rayleigh number for which the
system first becomes unstable to a mode-1 solution occurs at
a wavenumber approaching zero. This is not the more usual
situation in the literature[9], although it is not exceptional.
For instance, it occurs in convection with poorly conducting
boundaries[10], for which convection develops in a layer of
fluid heated from below such that the fluxes of heat at the top
and bottom are constant and are not affected by convection.

Also, a similar behavior can occur in bioconvection, which is
ultimately driven by the biased motions of swimming micro-
organisms. Patterns reminiscent of convection, termed bio-
convection, arise when motile microorganisms in suspension,
with densities dissimilar to the fluid in which they swim,
aggregate and consequently induce gravitational instabilities.
For example, algae and bacteria may swim upward in re-
sponse to gravity[11,12], light [13], or chemical gradients
such as oxygen[14], and so accumulate at the top of the
layer, or may accumulate in certain regions of the flow due to
a balance of gravitational and viscous torques[12,15]. Re-
cent nonlinear analyses[16] of bacterial bioconvection about
zero critical wavenumbers have highlighted the limitations of
linear analyses of these systems. Furthermore, experiments
[17] on bioconvection in suspensions of gyrotactic, swim-
ming algae(for which linear theory predicts a competition
between zero and nonzero critical wavenumbers[15]) reveal
that the dominant pattern wavenumber varies significantly
with time during the initial stages of the experiments in re-
gions of parameter space close to the linear neutral stability
curve. We shall show that analogous initial behavior in the
chemoconvection system is not captured by the standard
weakly nonlinear approach.

Amplitude equation based descriptions can usefully de-
scribe the dynamics of a system for a small, nonvanishing
step above the linear neutral stability curve[9]. In some
cases the amplitude description is also a fair approximation
of the full nonlinear system some distance from the bifurca-
tion. Symmetry arguments allow for the construction of the
form of the amplitude description for the system, although
the explicit details must be obtained by other methods. For
instabilities with a zero critical wavenumber, the precise am-
plitude description may, in general, be obtained by an appro-
priate expansion in terms of the long horizontal scale. Al-
though this form of expansion is documented in the literature
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[10,16,18–21] several nontrivial complications occur in the
chemoconvective system, as we shall describe.

In Sec. II we describe essential experimental observations
of the chemoconvection system. The amplitude description
about a horizontally homogeneous steady state is derived in
Sec. III, where the solution behavior is analyzed. Further-
more, we discuss the apparently conflicting predictions from
PSS linear theory and the amplitude description. These re-
sults are reviewed in Sec. IV where we state some open
problems.

II. EXPERIMENTAL OBSERVATIONS

An example of a typical chemoconvection pattern is pre-
sented in Fig. 1, observed from above[2]. Figure 2 shows a
plume of sinking fluid produced “artificially” from an oxy-
gen source(a small hole in the lid of a completely filled
cuvette; see Ref.[2] for details). This experiment, as well as
other evidence[2], strongly supports the hypothesis of an
overturning instability due to the formation of dense reaction
products.

The essential reactions can be described by[2]

2MBH + O2 → 2MB+ + 2OH−, s1d

GL + MB+ + OH− → MBH + GLA, s2d

where MB+ is the blue oxidized form of methylene-blue,
MBH is the colorless reduced form, GL is glucose, GLA is
gluconic acid, and the rate of(1) is much larger than that of
(2).

In Beeset al. [8] a minimal model of the system(fluid
flow plus reaction-advection-diffusion) was constructed and

the linear stability analysis of steady and pseudosteady pro-
files investigated. An important result of this is the prediction
of the appearance at criticality of a pattern with wavenumber
approaching zero.

In Pons et al. [3] the first quantitative analysis of the
evolution of experimental patterns was documented. Therein,
the dominant time and length scales were studied for sets of
evolving patterns for which the experimental parameters
were varied(particularly viscosity,pH, and layer depth). The
overall behavior was similar in all cases and composed of
three mostly identifiable stages. In the first, linear regime
(very early stages of the evolution), the dominant wavenum-
ber increases with time, which may possibly be explained
with the PSS approximation(see later) and understood in
terms of evolving neutral stability and linear growth curves.
In the second(apparently transitionary) stage the growth of
the dominant wavenumber slows and stops. In the third, and
final, fully nonlinear regime a variety of behavior occurs(see
Fig. 3). For instance, under certain conditions the dominant
wavenumber monotonically decreases at long times or, in
other cases, competition between modes is evident[3], re-
sulting in self-sustained oscillations in the dominant wave-
number. The second and third stages cannot be satisfactorily
explained using linear theory[8].

A transition from dot shaped patterns to line shaped pat-
terns is observed when either the temperature or depth is
increased. This transition may be a consequence of an ex-
change of stability between different configurations(dots and
rolls) [22] or may be due to secondary physical mechanisms,
such as surface tension effects or otherwise(note, however,
that patterns also emerge and evolve in closed containers
with oxygen permeable upper boundaries).

FIG. 1. Picture showing a chemoconvection pattern seen from
above. The width of the image corresponds to 12.4 cm. The experi-
mental conditions are as follows: temperature 19 °C, depth
0.59 cm, fNaOHg=0.02 M, fmethylene-blueg=4.6310−5 M,
fglucoseg=0.054 M, andR<1.48. The image is taken 4800 s after
pouring the fluid into the Petri dish. Darker regions correspond to
the oxygen-rich fluid originally located on top of the layer. Lighter
regions correspond to the fluid originally located below the blue
subsurface layer.

FIG. 2. Image corresponding to a chemoconvective plume. The
oxygen-rich plume sinks from a small hole in the lid of a com-
pletely filled cuvette of width 6.3 cm, height 6.7 cm, and thickness
1.3 cm. R is of order 1. The experiment is conducted at room
temperature.
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This paper aims to take a step in the direction of elucidat-
ing some of these nonlinear phenomena by means of an am-
plitude equation approach, although we shall restrict atten-
tion to two dimensions in this initial study.

III. DERIVATION OF THE AMPLITUDE EQUATION
ABOUT A STEADY STATE

We begin from the following nondimensionalized set of
governing equations[8] in two dimensions:

]tA = − = · sAu − dA = Ad + B, s3d

]tB = − = · sBu − = Bd + kVs1 − Bd − B, s4d

]tV = − = · sVu − d = Vd − lVs1 − Bd, s5d

Sc
−1f]tu + u · = ug = − = P − RAk + ¹2u, s6d

= ·u = 0, s7d

wherek is a unit vector directed vertically upward. Here,A,
B, and V denote the concentrations of gluconic acid, the
oxidized(blue) form of methylene-blue and oxygen, respec-
tively, and u represents the fluid velocity. Furthermore,dA
and d are diffusivity ratios relative to the diffusivity of the
methylene-blue catalyst,k and l stand for reaction ratios,
andR andSc correspond to the Rayleigh and Schmidt num-
bers, respectively. For completeness(see Beeset al. [8] for
more details), we note thatB and A have been nondimen-

sionalized withW0, V with V̄0, length withH̄=ÎD /kobs, and
time with kobs

−1 , whereW0 is the total(oxidized plus reduced)
concentration of methylene-blue,V̄0 is the concentration of
oxygen at the upper surface,D is the diffusivity of MBH and
MB+, and kobs is the effective rate constant[2] of reaction
(2). Furthermore, it is worth noting that the Rayleigh number

for this problem is defined asR=gDrW0H̄
3/mdD, whereg is

the acceleration due to gravity,md is the viscosity,H̄ is the
sublayer depth of reactants(as much of the instability is
driven by reactions occurring in this surface sublayer), and
Dr is the molar excess solution density of GLA, with respect
to GL [2,8].

The first three equations model the reaction-advection-
diffusion of each reactant, and the last two equations are the
Navier-Stokes equations for viscous flow with a gluconic-
acid-dependent density term, subject to the Boussinesq ap-
proximation, and an incompressibility condition, respec-
tively. Solutions are required to exhibit zero vertical flux ofA
andB at the upper,z=0, and lower,z=−d, boundaries such
that

k · sAu − dA = Ad = k · sBu − = Bd = 0

at z= 0,−d. s8d

Additionally, there is zero oxygen flux at the lower
boundary,

k · sVu − d = Vd = 0 atz= − d, s9d

and we impose fixed flux at the upper boundary,

k · sVu − d = Vd = C at z= 0, s10d

where the constantC is chosen such that the concentration of
nondimensional oxygen,V, is equal to 1 at the surface be-
fore the onset of instability. It is clear that the imposition of
this boundary condition constitutes a simplification of rather
complex chemistry and transport mechanisms across a thin
layer at the upper surface[23].

In this study we shall consider a two-dimensional system
so that variations in the transversey direction are zero. For a
solid (no-slip) boundary, such as typically occurs at the lower
boundary,

u = su,0,wd = 0, s11d

while for a stress-free boundary, which typically occurs at
the upper surface,

u ·k =
]u

]z
= 0. s12d

The linear analysis predicts that the neutrally stable mode
with the lowest value of the Rayleigh number(critical Ray-
leigh numberRc) occurs for a wavenumber of zero. How-
ever, a wavenumber of zero requires a system of infinite
extent which cannot be realized experimentally. In a large
finite system, with a Rayleigh number close to the critical
one, one might expect to see a single plume(although the
time taken for this instability to develop is long). Thus it is
natural to investigate the behavior of the system with regard
to a long horizontal length scaleL. Therefore, we rescale the
horizontal variablex with a small(but noninfinitesimal) pa-
rametere=OsL−1d!1 [10], to give

]x = e]X. s13d

Furthermore, so that time evolution and leading order non-
linear effects(just) appear at the same order ofe (in the

FIG. 3. Time evolution of the dominant wavenumber(k; periods
per image width 12.4 cm) of chemoconvection patterns. Experi-
mental conditions are identical to those in Fig. 1 except for depth.
(1) corresponds to depth 0.68 cm and(3) corresponds to depth
1.17 cm. The time shown is counted from the instant when the
pattern appears in each experiment. Two experiments from many, as
reported in[3].
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resulting amplitude description), a systematic investigation
of scales indicates that we need also to scale time and the
Rayleigh number such that

]t = e4]T, s14d

R= Rc + Rcme2, s15d

where Rcm=Os1d. Scaling otherwise leads to trivial solu-
tions, linear analysis or systems of partial differential equa-
tions with complexity comparable to that of the original sys-
tem.

The incompressibility condition(7) is automatically satis-
fied whenu is written in terms of a stream function

u = s]zc,− ]xcd = s]zc,− e]Xcd. s16d

Additionally, we set

c = ef s17d

in order that the magnitude of the fluid velocity is at least
one order higher ine than the rest of the variables; we im-
pose zero flow before pattern onset.

Note that the system necessarily incorporates at least two
characteristic time scales as the mean concentration of glu-
conic acid always increases(in the time of any feasible ex-
periment) subject to the availability of oxygen at the upper
surface. Furthermore, note that although the horizontally ho-
mogeneous profile of gluconic acid never reaches a steady
state, the variation ofA about its spatial mean does. The
vertical gradient, rather than the absolute value ofA, drives
the instability and so the equations are invariant to constant
additions ofA. Hence, the following ansatz generates a set of
equations that takes account of the spatially averaged in-
crease ofA:

A = tB0
z + A0szd + FsX,Td + o

m=1

`

e2mA2msX,z,Td,

B = B0szd + o
m=1

`

e2mB2msX,z,Td,

V = V0szd + o
m=1

`

e2mV2msX,z,Td,

s18d

f = RcSf0szdFXsX,Td + o
m=1

`

e2mf2msX,z,TdD ,

where the superscriptz indicates a vertical average and the
subscriptX indicates the partial derivative with respect toX.
FsX,Td is the amplitude function to be determined and rep-
resents a horizontally local excess or deficit of vertically av-
eraged gluconic acid, and its presence in the definition ofA
is indicative of the aforementioned invariance. The func-
tional dependence off on FX arises naturally, and is chosen

ab initio for convenience, consistent with the governing
equations.[Note that the variablef0 is not strictly part of the
steady state(no-flow) solution as it has been scaled withe,
but labeled for convenience.]

Hence, rescaling the equations, taking the curl of(6), sub-
stituting (18), and collecting terms of the same order ine
gives the following systems of differential equations. At or-
der e0

dAsA0dzz+ B0 = B0
z, s19d

sB0dzz− B0 + kV0s1 − B0d = 0, s20d

dsV0dzz− lV0s1 − B0d = 0, s21d

− 1 − sf0dzzzz= 0. s22d

The boundary conditions(8)–(12) become

sA0dz = sB0dz = f0 = sf0dzz= 0

andsV0dz = − C/d at z= 0, s23d

and

sA0dz = sB0dz = f0 = sf0dz = sV0dz = 0

at z= − d. s24d

Equivalently, for convenience at this order, we may fix the
oxygen concentration directly at the upper surface by setting
V0=1, and maintain null flux at higher orders[see text after
Eq. (10)]. Equation(22) may be solved using these boundary
conditions to give

f0 =
− 2z4 − 3dz3 + d3z

48
. s25d

For a realistic set of model parameters[8], k=248.0, l
=21.9, dA=1.675,d=5.275, andd=25, numerical solutions
for A0, B0, andV0, and their derivatives, are presented in Fig.
4.

Similarly, at ordere2 we obtain

dAsA2dzz+ B2 = − hJfRcf0FX,A0g + JfRcf0FX,Fg + dAFXXj,

s26d

sB2dzz− B2 + kV2 − kfV0B2 + V2B0g = − hJfRcf0FX,B0gj,

s27d

dsV2dzz− lV2 + lfV0B2 + V2B0g = − hJfRcf0FX,V0gj,

s28d

− sA2dX − sf2dzzzz= − h− Sc
−1JfRcf0FX,sf0dzzFXg − mFX

− 2sf0dzzFXXXj, s29d

with boundary conditions

sA2dz = sB2dz = f2 = sf2dzz= sV2dz = 0

at z= 0, s30d

and
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sA2dz = sB2dz = f2 = sf2dz = sV2dz = 0

at z= − d. s31d

Here, Jfm,ng=s]m/]Xds]n/]zd−s]n/]Xds]m/]zd is the
usual Jacobian.(The Jacobian terms arise due to advection.)

The equations at ordere4 are presented in Appendix A.

A. Solvability and solutions at order e2

At second order, a solvability condition is required in or-
der to remove secular(resonant) terms. This solvability con-
dition can be obtained via Fredholm alternative theory or by
inspection(due to uniqueness).

Consideration of the right-hand sides of Eqs.(26)–(29)
naturally leads to the decompositions

A2sX,z,Td = Ã2szdFXXsX,Td + Â2szdfFXsX,Tdg2 + GsX,Td,

s32d

B2sX,z,Td = B̃2szdFXXsX,Td + B̂2szdfFXsX,Tdg2, s33d

V2sX,z,Td = Ṽ2szdFXXsX,Td + V̂2szdfFXsX,Tdg2, s34d

f2sX,z,Td = f̃2szdFXXXsX,Td + f̂2szdFXsX,TdFXXsX,Td

+ mf0szdFXsX,Td + f0szdGXsX,Td, s35d

where GsX,Td is an as yet arbitrary function that can be
determined at higher orders. Substituting Eqs.(32)–(35) into
Eqs. (26)–(29) produces the system of equations given in
Appendix B.

Calculation of the adjoint operator of the homogeneous
system, with the inner product ofX and Y given by

kX ,Yl=e−d
0 dzX ·Y, is straightforward(Appendix A). The

adjoint problem possesses the solutionsA†,B†,V†d
=s1,1,k /ld. The solvability condition can be obtained by
finding the inner product of the adjoint solution with Eqs.
(26)–(28); directly integrating Eqs.(26)1(27)1sk /ld(28)
with respect toz over the fluid depth gives an equation that
determines the critical Rayleigh number for the instability:

E
−d

0

dzf− Rcf0sM0dz − dAg =E
−d

0

dzsN2dzz= 0, s36d

where M0szd and N2szd are defined in Appendix B. This
equation is analogous to that obtained by Chapman and Proc-
tor [10].

We thus obtain

Rc =
− dAd

E
−d

0

dzff0szdsM0dzszdg
. s37d

With this solvability condition and the realistic set of param-
eter values as above, solutions to Eqs.(B1)–(B8) may be

computed(Fig. 5). However,Ã2szd andÂ2szd are arbitrary up
to the addition of a constantc, which consequently alters the
profile of f̃2 and f̂2 with the addition ofcf0szd [see Eq.
(B4)] and 2cf0szd [see Eq.(B8)], respectively. These factors
can be absorbed into the functionGsX,Td which is deter-
mined at higher orders and so do not affect the amplitude

equation inF. Hence, we are free to setÃ2
z=Â2

z=0. Boundary
conditions equivalent to these integral conditions are easier
to implement numerically and can be obtained in the follow-
ing manner. Equations(B4) and(B8) are integrated with re-
spect toz to obtain relationships on the third derivatives of
f̃2 and f̂2 at the boundaries. For example, for a stress-free
upper boundary and no-slip lower boundary we obtain

fsf̃2dzzzg−d
0 = −

d3

24
andfsf̂2dzzzg−d

0 =
Rcd

6

Sc482 . s38d

Using these boundary conditions, solutions to the equations
are presented in Fig. 5.

B. Solvability condition at order e4

The solvability condition at ordere4 is determined in a
similar manner to ordere2. Integrating Eqs.(A1)1(A2)
1sk /ld(A3) with respect toz over the fluid depth using the
boundary conditions, we obtain, after some integration by
parts,

FT = mk1FXX + k2FXXXX+ k3sFXFXXdX + k4sFX
3dX. s39d

Here

k1 =
Rc

d
E

−d

0

dzf0szdsM0dzszd = − dA,

k2 =
Rc

d
E

−d

0

dzf̃2szdsM0dzszd +
1

d
E

−d

0

dz N2szd,

s40d

FIG. 4. Steady profiles at ordere0 (solid lines) and their deriva-
tives (dashed lines). They are calculated using the following set of
parameters:k=248.0,l=21.9,dA=1.675,d=5.275,Sc=2500.0(as
standard but not used), and d=25. The vertical step size isDz
=25/1024.A0sz=−dd is fixed to zero for numerical convenience
(we rename this fielda0), which has no further consequence in our
calculations as only its derivative is used at higher orders.
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k3 =
Rc

d
E

−d

0

dzf0szdsM̃2dzszd

+
Rc

d
E

−d

0

dzf2szdsM0dzszd

+ 2
1

d
E

−d

0

dz N̂2szd,

k4 =
Rc

d
E

−d

0

dzf0szdsM̂2dzszd.

Equation(39) is the required amplitude equation and models
the evolution of the modulating functionF.

This amplitude equation has been obtained in other con-
texts (Rayleigh-Bénard convection between insulating
boundaries[10] and Marangoni convection[19]). Equation
(39) has the form of a conservation equation, expressing a
symmetry in the system([9]; system invariant to homoge-
neous additions ofA).

For the aforementioned realistic set of model parameters,
we numerically calculate thatRc=4.893310−4. Furthermore,
we obtain the amplitude equation(39) with parameter values

k1 = − 1.6684,k2 = − 93.8471,
s41d

k3 = 2.6706,k4 = 0.2855,

wherem is determined directly from the Rayleigh number of
the system. Equation(39) represents the amplitude descrip-
tion for the evolution, in terms of the modulating functionF,
of finite amplitude perturbations about the horizontally ho-
mogeneous steady state. To obtain the amplitude equation in
terms of the original space and time scales we substituteX
=ex, T=e4t and the definition ofm in the amplitude equation
(39), such that

Ft = SR− Rc

Rc
Dk1Fxx + k2Fxxxx+ k3sFxFxxdx + k4sFx

3dx.

s42d

C. Steady solution of the amplitude equation

Chapman and Proctor[10] make a detailed study of the
spatially periodic steady solutions of equation(39). Initially
they considerk3=0 and conclude that there exist infinitely
many periodic solutions for an infinite system, of various
spatial frequencies. These solutions can be obtained employ-
ing elliptic functions. Furthermore, qualitative changes in
horizontally unconstrained solutions do not occur for differ-
ent values ofmk1, or k2, as these can be absorbed into the
variables and parameters with the transformations

X =Îmk1

k2
X =ÎSR− Rc

Rc
Dk1

k2
x and

T = − m2k1
2

k2
T = − SR− Rc

Rc
D2k1

2

k2
t. s43d

We choose the boundary conditions

Fx = Fxxx= 0 atx = 0,L s44d

(i.e., such that there is zero horizontal flow and tangential
stress atx=0, L).

For finite L, which quantizes the possible periodic solu-
tions depending on the length of the box, there aren possible
steady solutions differing in wavenumber(number of nodes)
for 2pnøÎfsR−Rcd /Rcgsk1/k2d Lø2psn+1d.

Finally, the main effect of includingk3Þ0 is to break the
up-down symmetry of the solution. The larger the value ofk3
the more asymmetric will be the profile producing descend-
ing plumes[10]. In our experiments up-down asymmetry is
clearly evident: the down-welling centers of the dot or line
patterns are always blue and the circulation cells’ edges are
always colorless.

D. Time-dependent solutions in a box

The time evolution of solutions of the amplitude equation
can best be obtained numerically. Fork3=0, Chapman and

FIG. 5. Steady profiles at ordere2 (solid lines) and their deriva-
tives (dashed lines). They are calculated using the set of parameters
shown in caption of Fig. 4.
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Proctor investigated the stability of the steady-state solutions
to small perturbations, both analytically and numerically(us-
ing a Lyapunov function representation). For k3Þ0, stability
results were also obtained for an appropriate initial value
problem. The main conclusion from these results is that each
mode is unstable to one of smaller wavenumber. This predic-
tion is consistent with our experimental results for long times
(e.g., see Fig. 3). This result is a genuine consequence of the
nonlinear amplitude description and, therefore, cannot be ex-
plained using linear theory. However, the prediction is incon-
sistent with the experimental results in the early stages of the
instability, which is likely to be due to the nonsteady nature
of the horizontally homogeneous vertical profiles at onset.

In Figs. 6 and 7 we present the above behavior for a
choice of parameter values. In particular, we can see that the
wavenumber of the long-time state in the figure increases
with sR−Rcd /Rc. As before, to explain this one may
remove the explicit dependence of the amplitude equation on
sR−Rcd /Rc by rescaling the length scale via Eq.(43). How-
ever, the scaled system lengthL8;ÎfsR−Rcdk1/Rck2g L
then increases withsR−Rcd /Rc. Since the disturbance is left
to evolve to its natural state, more waves can fit into the
larger rescaled box length.

In conclusion, the amplitude description is able to explain
the qualitative experimental behavior at long times, but not
at the initial stages.

E. PSS analysis versus the amplitude description

The PSS approximation[8] describes the linear stability
of the system as horizontally homogeneous solutions evolve
to steady state. It provides useful information as long as the
system is close to the curve of(steady-state) neutral linear
stability. For each timet, the PSS analysis predicts a neutral
curveRsk,td and a linear growth rate curvessk,td for modes
of different wavenumberk, which slowly evolve to the
steady-state curves. The neutral curve is seen to decrease∀ k
and the growth rate curve to increase. For a given set of
parameters just above supercriticality at steady state, there
will exist a time in the evolution of the horizontally homo-
geneous solutions where the system is critical(with a critical
wavenumber of zero), with regard to the PSS approximation.
Beyond this time the wavenumber of the mode with the
greatest linear growth rate increases with time(the zero
wavenumber always has zero linear growth rate[8]). Inher-
ent in the PSS description is the assumption that any insta-
bility develops in a time frame that is quicker than that as-
sociated with the evolving profiles. There is experimental
evidence to suggest that this is the case([3]; profiles evolve
over a time scale of an hour, and slower as steady state is
approached, and patterns first emerge and then evolve in the
linear regime over a time scale of 10 min).

However, as we observe above, the amplitude description
indicates that each mode is unstable to modes of smaller
wavenumber.

How can we reconcile these two views? Recall that the
weakly nonlinear effects occur over a very long time scale,
and we get a sense of this long term behavior from Fig. 3
(upper curve) and similar experiments[3]. There are clearly
time scale restrictions on the validity of each of the descrip-

FIG. 6. Evolution in time ofFsx,td from amplitude equation
(42), with random initial conditions. The values ofFsx,td have been
normalized with respect to the final maximum and minimum values
of Fsx,td, to 256 gray levels. Darker regions correspond to lower
values ofFsx,td and lighter regions to higher values ofFsx,td. x is
represented horizontally and timet increases upward. The set of
parameters in the amplitude equation for the model parameters used
in Fig. 4 is as follows:k1=−1.67,k2=−93.85,k3=2.67,k4=0.285,
sR−Rcd /Rc=1, L=1000, and total evolution time is 5000. Here,
Dx=1000/4095 andDt=0.2.

FIG. 7. Evolution in time ofFsx,td from amplitude equation
(42), with random initial conditions. The representation is similar to
that shown in Fig. 6. The set of parameters are as in Fig. 6 except
that sR−Rcd /Rc=5.
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tions as discussed above which do not easily allow them to
be merged. However, it seems reasonable to hypothesize that
sufficiently close to criticality there is a transitionary period
where PSS and weakly nonlinear effects act antagonistically.

IV. CONCLUSION

In this paper we have derived an amplitude equation for
the chemoconvection system about a horizontally homoge-
neous steady state. If the system starts at steady state before
instability onset, the amplitude description models the
weakly nonlinear development and interaction of modes. The
amplitude equation is of the form derived by[10] for which
modes are unstable with respect to modes of smaller wave-
number(grain coarsening).

Previous linear studies[8] have highlighted the fact that a
horizontally homogeneous steady state is never fully
achieved before the onset of instability(which is also the
situation with bioconvection, although never addressed theo-
retically). Linear analyses about these evolving profiles,
termed pseudo-steady linear analyses, have demonstrated
that the most unstable wavenumber increases with time from
zero (at criticality). In this paper, we attempt to explain ob-
servations of experiments close to the curve of neutral linear
stability using a blend of pseudo-steady-state linear analysis
(leading to an increase in dominant wavenumber with time)
and weakly nonlinear analysis about an initially steady, hori-
zontally homogeneous solution(which predicts a long term
reduction in the dominant wavenumber). In summary, at ini-
tial times the wavenumber grows, resulting from a slowly
evolving vertical concentration profile that can be interpreted
in terms of slowly evolving neutral stability and linear
growth curves. In the long term, nonlinear terms control this
linear growth and trigger a coarsening process. Clearly there
must be a transitionary period in which the dominant wave-
number stops increasing and begins to decrease. Interest-
ingly, experiments are suggestive of these three regimes.

An alternative interpretation might be valid for systems
with Rayleigh number well above the critical one. For such
experiments, a band of wavenumbers may grow rapidly as-
sociated with strong advection. This behavior could only be
described by a fully nonlinear theory. However, it is possible
that the states found in the weakly nonlinear theory are glo-
bally stable and that the transient solutions decay to them in
the long term.

Future work should address the question of whether it is
possible to construct a reduced description(such as an am-
plitude equation) that can incorporate this wealth of time
scales, particularly in regimes where instability develops
well before a steady state is approached, or whether the dy-
namics in each of these regimes are best separately de-
scribed.

There is much experimental behavior in our system that
cannot be currently explained, such as mode competition
(e.g., self-sustained oscillations, observed in many
experiments)—likely due to fully nonlinear effects well
above the neutral linear stability curve. Future research
should aim to explain these features.
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APPENDIX A: AMPLITUDE EXPANSION

Equations at ordere0 and e2 are given in the text[Eqs.
(19)–(22) and (26)–(29), respectively] and at ordere4 we
have

dAsA4dzz+ B4 = − hJfRcf0FX,A2g + JfRcf2,A0 + Fg

+ dAsA2dXX − FTj, sA1d

sB4dzz− B4 + kV4 − kfV0B4 + V4B0g

= − h− kV2B2 + JfRcf0FX,B2g

+ JfRcf2,B0g + sB2dXXj, sA2d

dsV4dzz− lV4 + lfV0B4 + V4B0g

= − hlV2B2 + JfRcf0FX,V2g + JfRcf2,V0g

+ dsV2dXXj, sA3d

− sA4dX − sf4dzzzz= Sc
−1JfRcf0FX,sf2dzzg

+ Sc
−1JfRcf2,sf0dzzFXg + msA2dX

+ 2sf2dXXzz− Sc
−1sf0dzzFTX

+ Sc
−1JfRcf0FX,f0FXXXg + f0FXXXXX.

sA4d

The adjoint problem is

1dA¹z
2 0 0

1 ¹z
2 − s1 + kV0d lV0

0 ks1 − B0d d¹z
2 − ls1 − B0d

21A†

B†

V†2 = 0,

sA5d

subject to the adjoint boundary conditions

sA†dz = sB†dz = sV†dz = 0 atz= 0, d. sA6d

It is well known (e.g., Ref.[24]) that if the only solution of
the original homogeneous problem is the trivial solution then
the same is true of the adjoint problem. Without a nontrivial
adjoint solution a solvability condition would not be ob-
tained, and the method would fail to determine a critical
Rayleigh number and an amplitude description. Note that
sA†,B†,V†d=s1,1,k /ld is a valid solution of Eqs.(A5) and
(A6).
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APPENDIX B: EQUATIONS AT ORDER e2

dAsÃ2dzz+ B̃2 = − Rcf0sA0dz − dA, sB1d

sB̃2dzz− B̃2 − kV0B̃2 + kṼ2 − kB0Ṽ2 = − Rcf0sB0dz,

sB2d

dsṼ2dzz− lṼ2 + lV0B̃2 + lṼ2B0 = − Rcf0sV0dz, sB3d

− Ã2 − sf̃2dzzzz= 2sf0dzz. sB4d

dAsÂ2dzz+ B̂2 = Rcsf0dz, sB5d

sB̂2dzz− B̂2 − kV0B̂2 + kV̂2 − kB0V̂2 = 0, sB6d

dsV̂2dzz− lV̂2 + lV0B̂2 + lV̂2B0 = 0, sB7d

− 2Â2 − sf̂2dzzzz= Sc
−1Rchf0sf0dzzz− sf0dzsf0dzzj. sB8d

Notice that we have organized the sets of equations in
such a way that(B1)–(B4) [respectively,(B5)–(B8)] corre-
spond to the terms proportional toFXX [respectively,sFXd2]
for the concentration fields andFXXX [respectively,FXFXX]
for the stream function, respectively. The solutions are best
obtained numerically.

We define the following fields that are used in the solv-
ability conditions:

M̃kszd = Ãkszd + B̃kszd +
k

l
Ṽkszd,

sB9d

Ñkszd = dAÃkszd + B̃kszd +
dk

l
Ṽkszd.

We employ a similar nomenclature when; is substituted by
∧ or nothing.
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