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Enhanced pulse propagation in nonlinear arrays of oscillators

Antonio Sarmiento,* Ramon Reigada,† Aldo H. Romero,‡ and Katja Lindenberg
Department of Chemistry and Biochemistry 0340, University of California at San Diego, La Jolla, California 92093-0340

~Received 29 June 1999!

The propagation of a pulse in a nonlinear array of oscillators is influenced by the nature of the array and by
its coupling to a thermal environment. For example, in some arrays a pulse can be speeded up while in others
a pulse can be slowed down by raising the temperature. We begin by showing that an energy pulse~one
dimension! or energy front~two dimensions! travels more rapidly and remains more localized over greater
distances in an isolated array~microcanonical! of hard springs than in a harmonic array or in a soft-springed
array. Increasing the pulse amplitude causes it to speed up in a hard chain, leaves the pulse speed unchanged
in a harmonic system, and slows down the pulse in a soft chain. Connection of each site to a thermal
environment~canonical! affects these results very differently in each type of array. In a hard chain the
dissipative forces slow down the pulse while raising the temperature speeds it up. In a soft chain the opposite
occurs: the dissipative forces actually speed up the pulse, while raising the temperature slows it down. In a
harmonic chain neither dissipation nor temperature changes affect the pulse speed. These and other results are
explained on the basis of the frequency vs energy relations in the various arrays.@S1063-651X~99!11411-9#

PACS number~s!: 05.40.Ca, 05.45.Xt, 02.50.Ey, 63.20.Pw
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I. INTRODUCTION

In recent years there has been a great deal of intere
the interplay of nonlinearity and applied forcing~determin-
istic and/or stochastic! in the stationary and transport prop
erties of discrete spatially extended systems@1#. The ability
of discrete anharmonic arrays to localize and propagate
ergy in a persistent fashion, and the fact that noise may
~sometimes against one’s intuition! to enhance these prope
ties, has led to particularly intense activity@2–4#. Interesting
noise-induced phenomena include stochastic resonance@5#,
noise-induced phase transitions@6#, noise-induced front
propagation@7#, and array-enhanced stochastic resona
@8#.

Our interests in this area have been motivated by the r
tive dearth of information concerning the effects of a therm
environment on the sometimes exquisite balances that
required to achieve these interesting resonances and pe
tences@3,9,10#. At the same time, we have also noted th
most of the literature has concentrated on overdamped ar
~often motivated by mathematical or computational co
straints rather than physical considerations!, a restriction that
leaves out important inertial effects and that is easily ov
come.

Perhaps the simplest generic discrete arrays in whic
analyze these issues are systems of oscillators consistin
masses that may be subject to local monostable poten
~harmonic or anharmonic! and nearest neighbor monostab
interactions~harmonic or anharmonic! ~other generic arrays
of current interest are bistable units linearly or nonlinea
connected to one another!. These are the systems of choice
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our work, and we have separated our inquiries into th
distinct groups of questions:~1! The study of such arrays in
thermal equilibrium@9#. The questions here concern the sp
tial and temporal ‘‘energy landscape’’ that determines
degree of spontaneous energy localization due to ther
fluctuations and the temporal persistence of high or low
ergy regions;~2! The study of the propagation of a persiste
signal applied at one end of the array@10#. The questions
here concern the signal-to-noise ratio and distance of sig
propagation;~3! The study of the propagation of an initia
d-function energy pulse~this work!. The questions here con
cern the velocity of propagation and the dispersion of suc
pulse.

It is useful and relevant to provide a very brief summa
of our conclusions on the first two sets of questions. O
work on equilibrium energy landscapes@9# was based on
chains of harmonically coupled oscillators subject to a lo
potential that may be anharmonic. Each oscillator is c
nected to a heat bath at temperatureT. We analyzed the
thermal fluctuations and their persistence as influenced
the local potential~we compared hard, harmonic, and so
potentials!, the strength of the harmonic coupling betwe
the oscillators, the strength of the dissipative force conne
ing each mass to the heat bath, and the temperature. Am
our conclusions are the following:~1! An increase in tem-
perature in weakly coupled soft chains leads not only
greater energy fluctuations but also to a slower decay
these fluctuations;~2! an increase in temperature in weak
dissipative hard chains leads not only to greater energy fl
tuations but also to a slower decay of these fluctuations;~3!
high-energy-fluctuation mobility in harmonically couple
nonlinear chains in thermal equilibrium doesnot occur be-
yond that which is observed in a completely harmonic cha

However, we noted earlier that interest in energy locali
tion in perfect arrays, as contrasted with localization induc
by disorder, arises in part because localized energy in th
systems may bemobile. Dispersionless or very slowly dis
persive mobility would make it possible for localized ener
5317 © 1999 The American Physical Society
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to reach a predetermined location where it can participat
a physical or chemical event. Our results raised the poss
ity of observing such localized mobility if the anharmonici
lies in the interoscillator interactions rather than~or in addi-
tion to! the local potentials. We ascertained that a persis
sinusoidal force applied to one site of a chain of mas
connected by anharmonic springs may indeed propa
along the chain@10#. Furthermore, we demonstrated a set
resonance phenomena that we have calledthermal reso-
nancesbecause they involve optimization viatemperature
control. In particular, these results establish the existenc
optimal finite temperatures for the enhancement of
signal-to-noise ratio at any site along the chain, and of
optimal temperature for maximal distance of propagat
along the chain. These resonances differ from the us
noise-enhanced propagation where the noise is exte
and/or the system is overdamped.

This work addresses the third set of questions po
above concerning the way in which a nonequilibrium init
condition in the form of an energy pulse propagates as
system relaxes toward equilibrium. More specifically, we
vestigate the motion and dispersion of such an energy p
and the effects of finite temperatures on pulse propagat
In view of our earlier results on thermal resonances, perh
the most interesting question to be asked at this point is t
Is it possible to enhance pulse propagation via tempera
control?

In order to monitor the evolution of the nonequilibriu
initial condition it is useful to partition the Hamiltonian as

H5(
n

En , ~1!

whereEn contains the kinetic energy of siten and an appro-
priate portion of the potential energy of interaction with
nearest neighbors~1/2 in one dimension, 1/4 in two dimen
sions!. In one dimension

En5
pn

2

2
1

1

2
V~xn11 ,xn!1

1

2
V~xn ,xn21!. ~2!

In Sec. II the potentials considered in this paper
briefly presented. Section III contains our analysis and
sults for one-dimensional oscillator chains. Here we disc
ways to characterize the mobility and dispersion of an ini
localized impulse, and compare the behaviors of harmo
hard anharmonic, and soft anharmonic chains. In Sec. IV
present some results for isolated two-dimensional arrays
note some interesting geometric features with perhaps u
ticipated consequences. Section V is a summary of resu

II. POTENTIALS

The particular potentials as a function of the relative d
placementy[xn2xn21 used in our presentations are th
harmonic,

V0~y!5
k

2
y2, ~3!

a hard anharmonic,
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Vh~y!5
k

4
y4, ~4!

and a soft anharmonic,

Vs~y!5k@ uyu2 ln~11uyu!#. ~5!

The anharmonic potentials have been chosen to be str
hardening and strictly softening, respectively, with incre
ing amplitude. The potentials are shown in the first pane
Fig. 1. In almost all our simulations we takek51.

The displacement variabley of a single oscillator of en-
ergy E in a potentialV(y) satisfies the equation of motion

dy

dt
56A2@E2V~y!#. ~6!

This equation can be integrated and, in particular, one
express the period of oscillationt(E) and the frequency of
oscillationv(E) as

t~E!5
2p

v~E!
54E

0

ymax dy

A2@E2V~y!#
. ~7!

The amplitudeymax is the positive solution of the equatio
V(y)5E. The resulting oscillation frequencies obtaine

FIG. 1. First panel: the potentials defined in Eqs.~3!–~5! with
k51. Solid curve: harmonic potential,V0(y). Dashed curve: hard
anharmonic potential,Vh(y). Dotted curve: soft anharmonic poten
tial, Vs(y). Second panel: frequency as a function of the oscilla
energy for these potentials. The dot-dashed line shows the
quency curve for the commonly used potentialV0(y)1Vh(y).
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PRE 60 5319ENHANCED PULSE PROPAGATION IN NONLINEAR . . .
from the integration of Eq.~7! for the three potentials with
k51 as well as that of the frequently used ‘‘quadratic p
quartic potential’’ are shown in the second panel of Fig
@11#.

The frequency vs energy variations seen in Fig. 1 can
shown via rescaling and bounding arguments to repre
general features of hardening and softening monostable
tentials. The exercise is trivial if the potential is of the for

V~y!5
k

a
ya ~8!

since then

t~E!54E
0

ymax dy

A2@E2kya/a#

54S a

k D 1/aE
0

1 dz

A2~12za!
E1/a21/2[BaE1/a21/2 ~9!

whence

v~E!5
2p

Ba
E1/221/a. ~10!

The coefficientBa can be expressed exactly in terms of t
b function and is equal to 2p for the harmonic potential.

If the potential is not of the simple single-power form it
still possible to bound the resulting energy dependence
establish the trend@11#. For example, the soft potential, Eq
~5!, is bounded below by (k/2)uyu and above bykuyu. These
bounds immediately lead to the conclusion that the ass
ated v(E) must decrease asE21/2. The argument for a
mixed power potential such asV(y)5 1

2 y21 1
4 y4 is a bit

more cumbersome but otherwise similar: by making
change of variables fromy to 1

2 y21 1
4 y45Ez4 one can show

not only thatv(E) is an increasing function ofE but that it
lies above the harmonic potential result for any positiveE.

Figure 1 summarizes the well known frequency charac
istics of oscillators: for a harmonic oscillator the frequency
independent of energy~and, with our parameters, equal
unity!; for a hard oscillator the frequencyincreaseswith en-
ergy, while that of a soft oscillatordecreaseswith energy.
The hard oscillator frequency curve starts below the ot
two if a harmonic portion is not included. These frequenc
energy trends are generalized to oscillator chains in App
dix A. The frequency vs energy behavior will figure prom
nently in our subsequent interpretations. In particular,
following broad view seems to be overarchingly support
the speed and dispersion of pulse propagation in disc
arrays of oscillators are principally dependent on the m
frequency associated with the energy in the pulse. Hig
frequencies lead to faster propagation and slower dispers

III. ONE-DIMENSIONAL ARRAYS

We consider one-dimensional arrays of 2N11 sites num-
bered from2N to N with periodic boundary conditions. W
distinguish isolated chains~that is, ones not connected to
heat bath!, chains connected to a heat bath at zero temp
ture, and finite temperature chains. This provides an op
e
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tunity to organize the effects of different parameters on
behavior of the chains.

In all cases at timet50 a kinetic energy« is imparted to
one particular oscillator~the oscillator atn50) of the chain.
If the chain is isolated or at zero temperature, this init
impulse is applied to an otherwise quiescent chain. At fin
temperatures the chain is first allowed to equilibrate and t
this impulse is imparted in addition to the thermal motio
already present. We then observe how this initiald-function
impulse propagates and spreads along the chain, and
these behaviors depend on system parameters.

A. Isolated chains

The equations of motion for an isolated chain are

ẍn52
]

]xn
@V~xn2xn21!1V~xn112xn!#. ~11!

The initial conditions are

xn~0!50 for all n,

ẋn~0!50 for nÞ0, ~12!

ẋ0~0![p05A2«.

For a harmonic array this system can of course be sol
exactly, and we do so in Appendix B. The analytic harmo
results are helpful and informative, although our discuss
is primarily based on simulation results since the anharmo
chains cannot be solved analytically. The numerical integ
tion of the equations of motion is performed using the s
ond order Heun’s method~which is equivalent to a secon
order Runge Kutta integration! @12,13# with a time stepDt
50.0001.

One can think of the dynamics ensuing from the init
momentum impulse in two equivalent ways. One is to int
pret thexn and ẋn as displacements and momentaalong the
chain. Two symmetric pulses start from site zero and mo
to the left and to the right along the chain, and our discuss
focuses on either of these two identical pulses. This sym
try occurs regardless of thesign of the initial momentum
since the energy does not depend on the sign, i.e., the
traction of the spring between sitesn50 andn51 that fol-
lows an initial positive impulse has exactly the same eff
as the equal extension of the spring between sitesn50 and
n521. Alternatively, one can think ofxn and ẋn as dis-
placements and momenta perpendicular to the chain, the
then simply representing motion ‘‘up’’ or ‘‘down.’’ The
symmetry around the siten50 is then even more obvious.

In any case, the energy« excites the displacements a
well as momenta of other oscillators as it moves and d
perses. The evolution can be characterized in a numbe
ways. We have found the most useful to be the mean
tance of the pulse from the initial site, defined as

^x&[
(

n
unuEn

(
n

En

~13!
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and the dispersion

s2[^x2&2^x&25

(
n

n2En

(
n

En

2^x&2. ~14!

~The sums overn extend from2N to N.! Here theEn are the
local energies defined in Eq.~2! and, since these depend o
time, so do the mean distance and the variance. The
dependence of the mean distance traveled is a measure o
velocity of the pulse, and that of the dispersion is a meas
of how long the pulse survives before it degrades to a u
form distribution. An indication of the progression of a pul
is shown in Appendix B for a harmonic chain.

Results for the mean distance traveled by the pulse
function of time for isolated chains of 151 sites are shown
the first panel in Fig. 2 for the hard, harmonic, and s
potentials and for various values of the initial pulse amp
tude p0. The mean distance varies essentially linearly w
time in all cases~this is only approximately true in al
cases—even the harmonic oscillator exhibits early deviati
from linear behavior due to inertial effects!. The important
results apparent from Fig. 2 are summarized as follows
can be understood from the frequency vs energy trend
Fig. 1.

FIG. 2. First panel: Mean distance traveled by the initial ene
pulse as a function of time for the hard, harmonic, and soft cha
with several initial momentum amplitudes. Second panel: pulse
persion as a function of mean pulse position for the three ch
with initial amplitudep058.
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~1! The pulse velocity in the harmonic chain isindepen-
dent of the initial amplitude. This reflects the energy ind
pendence of the mean frequency~and in fact of the entire
frequency spectrum! for harmonic chains~also see Appendix
B!.

~2! The pulse velocity in the hard chainincreaseswith
increasing initial amplitude. This is because the mean
quency for the hard chains increases with increasing ene

~3! The pulse velocity in the soft chaindecreaseswith
increasing initial amplitude. This is because the mean
quency for the soft chains decreases with increasing ene

We note that with our choice of potentials the velocity
the hard chain for very weak initial amplitudes may actua
lie below that of the harmonic chain or even the soft ch
because we have omitted a harmonic contribution to the h
potential, but the hard chain velocity necessarily increa
and surpasses that of the other chains with increasing in
pulse amplitude.

Not only is the pulse transmitted more rapidly in the ha
isolated chains than in the others, but the pulse retains
integrity over longer distances in the hard chain. This is s
in the second panel in Fig. 2. The dispersions2 is shown for
the three chains for a particular initial pulse amplitud
Rather than the dispersion as a function of time, the disp
sion is shown as a function of position along the chain
that the pulse widths at a particular location along the ch
can be compared directly. Clearly the hard chain pulse is
most compactat a given distance from the initially disturbe
site ~a plot ofs2 vs t would show the opposite trend, that i
the pulse in the hard chain would have the greatest width,
it will have traveled a much greater distance than the pu
in the other chains!. This combination of results leads t
interesting geometrical consequences in higher dimens
~see Sec. IV!.

B. Chains at zero temperature

If the chains are connected to a heat bath at zero temp
ture, the equations of motion Eq.~11! are modified by the
inclusion of the dissipative contribution,

ẍn52
]

]xn
@V~xn2xn21!1V~xn112xn!#2g ẋn , ~15!

whereg is the dissipation parameter. The initial conditio
are as set forth in Eqs.~12!.

The mean distance traveled by the pulse is shown in F
3 for each of the chains with and without friction so that t
frictional effects can be clearly established. The salient
sults can again be understood from the frequency vs en
trends in Fig. 1.

~1! The pulse velocity in the harmonic chain isindepen-
dentof friction. This again reflects the energy independen
of the mean frequency for harmonic chains. The energy l
suffered through the frictional effects therefore does not
fect the pulse velocity.

~2! The pulse in the hard chainslows downwith time in
the presence of a frictional force. This is because the ch
loses energy via friction, and the mean chain frequency
creases with decreasing energy.
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~3! The pulse in the soft chainspeeds upwith time in the
presence of a frictional force. This is because the chain lo
energy via friction, and the mean chain frequency increa
with decreasing energy.

The dependence of the pulse width on friction~not shown
explicitly! follows trends that are consistent with our oth
results. An increase in friction causes the pulse to narrow
the soft chain. This is consistent with the observation t
higher frequencies are associated with narrower pulses.
harmonic chain there is also some narrowing of the pu
but not nearly as much as in the soft chain~detailed expla-
nation of this would require consideration of the spectr
beyond just the mean frequency!. In the hard chain we can
not make an unequivocal claim from our numerical resu
because the dependence of pulse width on friction for
parameters is extremely weak, with perhaps a very sm
amount of narrowing.

C. Chains at finite temperature

If the chains are connected to a heat bath at temperatuT,
the equations of motion Eq.~15! are further modified by the
inclusion of the fluctuating contribution,

ẍn52
]

]xn
@V~xn2xn21!1V~xn112xn!#2g ẋn1hn~ t !.

~16!

The hn(t) are mutually uncorrelated zero-centered Gauss
d-correlated fluctuations that satisfy the fluctuatio
dissipation relation:

^hn~ t !&50, ^hn~ t !h j~ t8!&52gkBTdn jd~ t2t8!.
~17!

The initial conditions are now no longer given by Eqs.~12!.
Instead, the chain is allowed to equilibrate at temperaturT
and at timet50 an additional impulse of amplitudeA2« is
added to the thermal velocity of siten50. The integration of
the equations of motion proceeds as before, but now we
port averages over 100 realizations. The system is initi
allowed to relax over enough iterations to insure therm
equilibrium, after which we take our ‘‘measurements.’’

FIG. 3. Mean pulse position as a function of time for the ha
harmonic, and soft chains with initial amplitudep058, with and
without friction.
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The pulse dynamics is no longer conveniently charac
ized by the mean pulse velocity~although this was the mos
useful and direct characterization in the absence of ther
fluctuations!. This is because there is now a thermal bac
ground that causes fluctuations and distortions of the in
mation in this mean~as well as in other simple moments an
measures such as the pulse maximum!. We find that the most
suggestive presentation of the dynamics is that of the ene
profile itself. An illustrative set of typical profiles for chain
of 51 sites is presented in Fig. 4, showing energy profiles
a function of time on the fifth site on either side ofn50 as
a function of temperature. In all cases there is a delay t
until the pulse reaches the fifth site~reflecting a finite veloc-
ity!. The local energy around this site then reaches a m
mum, and the pulse moves on, leaving behind a serie
later energy oscillations at ever decreasing amplitudes
eventually settle down to the appropriate thermal levels. T
after-oscillations are derived analytically in Appendix B f
the harmonic case. The discussion below concentrates ex
sively on the first pulse, which we think of as characterizi
the arrival of the disturbance at that site.

The important conclusions, some illustrated in the figu
can once again be understood from the trends in Fig. 1
include the following.

~1! The pulse velocity in the harmonic chain isindepen-
dent of temperature. This is illustrated in the figure by th
fact that the peak of the pulse reaches the particular
under observation at the same time for the two temperat
shown. The reason once again is that the characteristic
quencies of the chain are independent of energy and th
fore the inclusion of thermal effects is immaterial to th
measure.

~2! The pulse velocity in the hard chainincreaseswith
increasing temperature. This is illustrated by the ever ear
arrival of the pulse at the site under observation with incre
ing temperature. The reason is that the mean frequency o
chain increases with energy, so that the hard chain at hig
temperatures is associated with a higher frequency tha
lower temperatures and hence with a faster pulse.

~3! The pulse velocity in the soft chaindecreaseswith
increasing temperature. This is not explicitly illustrated
the figure, but is due to the decrease of the mean freque

,
FIG. 4. Energy profile vs time at the fifth site for hard an

harmonic chains at different temperatures. The damping param
in all cases isg50.2 and the initial pulse amplitude isp058.
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with increasing temperature. Thus the soft chain at high
temperatures is associated with a lower frequency and he
a slower pulse.

~4! The hard chain not only transmits pulses more rapid
than the other chains, increasingly so with increasing te
perature, but it also transmits the most compact and per
tent pulses at any temperature. This is seen not only by
obviously smaller width of the pulses in the hard chain, b
by the fact that the energy trace ‘‘left behind’’ as the firs
pulse passes through is lower in the hard chain than in
other cases.

The pulses in all cases become more dispersive with
creasing temperature. This behavior is clearly evident in F
4 for the hard and harmonic chains, as is the fact that t
temperature dependence of the pulse width is weakest for
hard chain~and strongest for the soft chain!. These depen-
dences complement those described earlier for the pu
width as a function of friction: increasing friction in all case
narrows the pulse~subject to our caveat concerning the har
chain mentioned earlier! while increasing the temperature
broadens it, both of these dependences being weakest for
hard chain.

IV. TWO-DIMENSIONAL ISOLATED ARRAYS

We showed in Sec. III A that a pulse travels more rapid
and less dispersively in an isolated hard chain than in a h
monic or soft chain. In higher dimensions these two tende
cies, that of moving faster and that of maintaining the ener
localized, leads to some interesting geometric effects and
very different pulse propagation properties depending on
spatial configuration of the initial condition.

In one dimension one could visualize the displacemen
and momentax,ẋ as describing motion along the chain o
perpendicular to the chain. In two dimensions these are d
tinct cases: a generalization of the first requires introducti
of two-dimensional coordinates (x,y) and momenta (ẋ,ẏ).
The second requires only a single perpendicular coordinatz

and associated momentumż for each site, and this is the cas
we pursue. We thus consider a two-dimensional square ar
of dimension (2N11)3(2N11) wherein motion occurs in
a direction perpendicular to the array. The Hamiltonian wi
żn, j[pn, j is expressed as a sum of local energy contrib
tions,

H5(
n, j

En, j , ~18!

where

En, j5
pn, j

2

2
1

k

4
@~zn, j2zn11,j !

21~zn, j2zn21,j !
2

1~zn, j2zn, j 11!21~zn, j2zn, j 21!2#

1
k8

8
@~zn, j2zn11,j !

41~zn, j2zn21,j !
4

1~zn, j2zn, j 11!41~zn, j2zn, j 21!4#. ~19!
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For the harmonic case we takek50.5 andk850, and for the
hard anharmonic array we setk50 andk850.5. Our lattices
are of size 51351 and our integration time step isDt
50.0005. The boundary conditions are immaterial~although
we happen to use boundaries whose edge sites have
three connections and its corners sites only two! because the
lattices are sufficiently large for the initial excitations not
reach the boundaries within the time of our computations

We consider two initial excitation geometries. In one
‘‘front’’ is created by exciting all sites along the line
(0,j ), 2N< j <N, with the same initial momentump0,j
5p0. The front then moves symmetrically away from th
line and its motion is measured by the mean distance
dispersion~in all double sumsn and j each range from2N
to N)

^x&[
(
n, j

unuEn, j

(
n, j

En, j

, ~20!

s2[^x2&2^x&25

(
n, j

n2En, j

(
n, j

En, j

2^x&2. ~21!

In the other, an initial pulse of kinetic energy is deposited
the central site of the array. We then measure the mean ra
distance of the pulse from the origin,

^r &[
(
n, j

An21 j 2En, j

(
n, j

En, j

~22!

~the dispersion in this case is less informative but can also
monitored if desired!. The motion and dispersion in this ge
ometry are expected to be roughly spherically symme
subject to the square connectivity of the lattice.

Typical gray-scale snapshots of the energy distribut
are shown in Figs. 5 and 6, and the differences, while ea
understood, are clearly dramatic. In the case of the front,
tendency of a hard lattice to propagate faster than the
monic lattice while maintaining the energy more localized
clearly realized. The associated mean distance and dispe
that quantify the comparison are shown in Fig. 7. In the c
of an initial point pulse, on the other hand, there is clearl
conflict between rapid motion and smaller dispersion—o
can be realized only at the expense of the other. The la
‘‘wins:’’ the pulse remains more localized in time in the ha
lattice than in the harmonic. The associated mean radiu
shown in Fig. 8. In the anharmonic lattice the pulse at fi
expands as fast as the harmonic but it essentially quic
saturates while the harmonic pulse continues to disperse

V. CONCLUSIONS

In this paper we have considered pulse propagation
discrete arrays of masses connected by harmonic or an
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monic springs. We have focused on the pulse velocity
width, and have found a pattern of behavior that can
strongly correlated with the energy dependence of the m
array frequency.

First we investigated the propagation of pulses in isola
~microcanonical! arrays. We found that in a hard array a
amplitude increase causes a pulse to travel more rapidly
less dispersively. In a harmonic array the pulse speed
width are independent of pulse amplitude, while in a s
array a more intense pulse travels more slowly and spre
out more rapidly. These trends are a result of the fact tha
a hard array the mean frequency increases with energy,
harmonic array it is independent of energy, and in a s
array the mean frequency decreases with increasing ene
In higher dimensions these trends lead to interesting in
condition dependences that in turn may lead to appare
‘‘opposite’’ behavior in different cases. Thus, for example
front in a two-dimensional isolated hard array propaga
more rapidly and more sharply than in harmonic or soft
rays, and the effect is enhanced if the front is more inten
On the other hand, a point pulse in a hard array spreads m
slowly than in the others: it is not possible in this geome
to both propagate quickly and yet retain a strong localizat
of energy, and the latter tendency dominates the dynam

We then investigated the effects on pulse propagation
connecting the nonlinear chains to a heat bath~we did this
only for the one-dimensional arrays!. We found that dissipa-
tive forces tend to slow down the pulse in the hard arr
leave its speed unchanged in the harmonic chain, and a

FIG. 5. Snapshot at a subsequent time of the energy distribu
for the propagation of an initial front. Upper panel: harmonic l
tice. Lower panel: hard lattice.

FIG. 6. Snapshot at a subsequent time of the energy distribu
for the propagation of an initial pulse at the center of the array. F
panel: harmonic lattice. Second panel: hard lattice.
d
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,
tu-

ally speed it up in the soft array. This somewhat counter
tuitive behavior is, however, fully consistent with the obse
vation that dissipation causes a decrease in energy and h
a decrease in mean frequency in the hard case and a
crease in mean frequency in the soft chain~and no change in
the mean frequency of the harmonic chain!. Dissipation in all
cases causes a narrowing of the pulse, the effect being g
est in the soft array.

n

n
t

FIG. 7. First panel: temporal evolution of the mean distance^x&
of front propagation in harmonic~solid line! and hard anharmonic
~dashed line! lattices. Second panel: the associated dispersion
function of the mean distance traveled.

FIG. 8. Temporal evolution of the mean radius^r & of pulse
propagation in harmonic~solid line! and hard anharmonic~dashed
line! lattices.
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An increase in temperature has the opposite~and again at
first sight perhaps somewhat counterintuitive! effect: it
speeds up the pulse in the hard array, leaves it unchang
the harmonic array, and slows it down in the soft cha
Again this behavior is consistent with the frequency vs
ergy trends and the fact that an increase in temperatur
associated with an increase in the energy of the chain
temperature increase in all cases causes a broadening o
pulse, the effect again being greatest in the soft array.
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APPENDIX A: FREQUENCY VERSUS ENERGY
FOR OSCILLATOR CHAINS

Consider a chain of oscillators, and let us focus on
displacement variablex of a particular mass in the chain, sa
oscillatorj, whose displacement satisfies the equation of m
tion
o-
er
ai
th

f
rg
ie
th
pl
in

e
e

-

in
.
-
is
A
the

h

-

at
-

e

-

dxj

dt
56S 2FE2(

n
V~xn2xn21!G2(

nÞ j
pn

2D 1/2

. ~A1!

The period of oscillation for oscillatorj can be defined in
analogy with Eq.~10!:

t~E;x8,p8!5
2p

v~E;x8,p8!

54E
0

xmax dxj

S 2FE2(
n

V~xn2xn21!G2(
nÞ j

pn
2D 1/2,

~A2!

where x8 stands for the set of all thex’s except xj , and
similarly for p8. The upper limit of integrationxmax depends
not only on E but on all the other displacements and m
menta, and is the positive value ofxj at which the denomi-
nator of the integrand vanishes. The resultingv with all the
coordinate and momentum dependences is not very us
but it would seem reasonable to simply average over all p
sible values of these coordinates and momenta and thus
tain an average period. We define the average period as
t~E![^t~E;x8,p8!&[4

E •••E dx8E •••E dp8E
0

xmax
dxj S 2FE2(

n
V~xn2xn21!G2(

nÞ j
pn

2D 21/2

E •••E dx8E •••E dp8

. ~A3!
za-
the
ains

n-
their

d
n-
The limits of integration not explicitly indicated are appr
priate nested relations among the variables and the en
such that the argument of the square root always rem
positive. The multiple integral in the denominator covers
same integration regime and insures proper normalization
this average. Our interest lies in extracting the ene
dependence—the remaining energy-independent coeffic
are complicated and not important for our arguments. If
pair potentials are powers as in the single oscillator exam
the scaling argument can be generalized by introduc
scaled variableszn;(xn2xn21)E1/a and un;pnE1/2 with
appropriate constants of proportionality. The limits of int
gration then become independent of energy and the only
ergy dependence arises from factoring anE1/2 from the
square root in the denominator and anE1/a from the numera-
tor because it contains onez integration more than the de
nominator. The result, as before, is that

t~E!5B aE1/a21/2 ~A4!

with a complicated butenergy-independentexpression for
the coefficientBa , and therefore

v~E![
2p

t~E!
;E1/221/a. ~A5!
gy
ns
e
or
y
nts
e
e,
g

-
n-

More complicated potentials require suitable generali
tion of this argument, but the result in any case is that
average frequencies for the hard, harmonic, and soft ch
follow the same trends as those shown in Fig. 1.

APPENDIX B: ISOLATED LINEAR OSCILLATOR CHAIN

Although linear oscillator chains are of course fully u
derstood, it is nevertheless useful to present aspects of
behavior in the context of the present discussion.

The linear equations of motion~11! with the initial con-
ditions ~12! are easily solved:

xn~ t !5
A2«

2N11 (
q52N

N
sin~vqt !

vq
e22p iqn/(2N11)

5A2«E
0

t

J2n~2Akt!dt, ~B1!

where the frequenciesvq obey the dispersion relation

vq
254k sin2S 2pq

2N11D , ~B2!

and whereJn(z) denotes the Bessel function of the first kin
of integer ordern. ~The energy independence of the freque
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cies for the harmonic chain seen here in the« independence
of the vq is prominent in our discussions throughout th
paper.! The momenta are then

ẋn~ t !5A2«J2n~2Akt!. ~B3!

Using a number of relations obeyed by the Bessel fu
tions it is possible to combine these results and obtain for
local energy the simple expression

En~ t !5«FJ2n
2 ~2Akt!1

1

2
J2n11

2 ~2Akt!1
1

2
J2n21

2 ~2Akt!G .
~B4!

The energy profiles for various sites are shown in Fig. 9. T
n55 profile @here obtained from the analytic expressi
~B4!# also appears in Fig. 4~there obtained by numerica
integration!. Note that the energy is not transported in
single absorption-emission process but rather in a serie
oscillatory steps of decreasing amplitude. Our analysis in
body of the paper focuses on the first energy pulse.

In Sec. III A we rely on^x(t)&, the mean distance trav
eled by the pulse as a function of time, as one measur
characterize the transport properties of our arrays. An a
native measure that can be calculated analytically for
harmonic chain~but turns out to be somewhat less conv
nient for numerical computation! is the time-dependent sit
n* (t) at which the energy is a maximum. Because the pa
ing energy pulse in general leaves a track behind it,
expectsn* (t)[xmax(t) to grow more rapidly than̂x(t)&.
That this is indeed the case is illustrated in the first pane
Fig. 10, where both quantities are shown for a harmo
chain with unit force constant. The steps in thexmax curve
are a consequence of the discreteness of the problem.
analytic result forn* (t) is obtained by maximizing Eq.~B4!
with respect ton and is, after some manipulation, found to

FIG. 9. Temporal evolution of the energyEn(t) at several sites
in a harmonic chain with force constantk51 and initial momentum
p052.
.
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the solution of the relation

11A2n21

2n11

4n
5

J2n~2Akt!

2AktJ2n21~2Akt!
. ~B5!

Except for a very short initial transient the solution is ess
tially linear in time and exceedingly simple:

n* ~ t ![xmax~ t !'Akt. ~B6!

This dependence is confirmed in the second panel of Fig
for three values of the force constant. The curves shown
obtained numerically, and differ from the analytic straig
lines only at the very earliest times by an exceedingly sm
barely visible amount.

FIG. 10. First panel: Mean distance traveled by the pu
~dashed curve! and pulse maximum~solid curve! as a function of
time for a harmonic chain of unit force constant. Second pan
Pulse maximum as a function of time fork52 ~long-dashed curve!,
k51 ~solid curve!, andk51/2 ~short-dashed curve!. The slopes of
these numerically generated curves are essentially as given in
analytic expression Eq.~B6!.
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