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Facultat de F́ısica, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.

Advisor: Maria Mañosas

Felix Ritort Farrán

Abstract: Helicases are molecular motors that convert the chemical energy of ATP hydrolysis
into mechanical work to move along one strand of DNA and unzip the double helix. Using magnetic
tweezers (MT) we follow the activity of a single helicase unzipping a DNA hairpin. From these
experiments we can characterize the enzyme motion (e.g. velocity and diffusion) but the ATP
hydrolysis reaction is not directly measured. Here we investigate whether we can infer information
about the helicase chemical cycle from our helicase displacement data by using non-equilibrium
relations such as the thermodynamic uncertainty relation (TUR) and the fluctuation theorem (FT)
for entropy production. To address this question, we use the random walk formalism to model
the helicase motion and we analytically derive expressions for the TUR and the FT. The derived
theoretical results are verified with simulations of the model and compared with experiments. We
find qualitatively agreement between experiments and theory. However, some important differences
are observed. In particular, the distributions of the helicase displacement deviates from the Gaussian
distribution predicted by the theory and the experimental test of the FT fails. We conclude that a
refined model is needed to better describe the real experimental system.

I. INTRODUCTION

DNA is the molecule carrying the genetic information
in cells. It is made of two strands that wrap around
each other forming a double helix. Each strand con-
sists of a sequence of bases (adenine (A), guanine (G),
cytosine (C), and thymine (T)) that encode the differ-
ent genes. DNA is manipulated (unwound, rewound, cut
and pasted, etc) by molecular motors, enzymatic proteins
that convert chemical energy into mechanical work. Mu-
tations in DNA-processing motors genes are responsible
for severe diseases [1]. Understanding how these nano-
scale machines work at the molecular level is crucial not
only from a biophysical perspective but also for their po-
tential applications in medicine. In this work we focus
on the study of one of these motors, called helicase. Heli-
cases are proteins that catalyse the separation of the two
strands of the DNA double-helix, a common reaction in
many cellular processes such as replication, transcription,
or translation [2].

These enzymes translocate along one strand of DNA
while promoting the unwinding of the DNA double helix
using the energy of adenosine triphosphate (ATP) hydrol-
ysis. In the helicase mechanochemical cycle the energy
stored in the ATP bonds is released and converted into
mechanical work used to reduce the activation barrier
needed to unzip the DNA base pairs. If the mechano-
chemical coupling is tight, for each ATP consumed the
motor takes one step forward, which is typically a step
of one or few bases along the DNA chain. Since bases
are separated by 3-5 Armstrong, this motor elemental
motion, called physical step size, is on the scale of the
nanometer (nm). On the other hand, the forces gener-
ated are on the scale of the PicoNewton (pN). Finally,
the energies involved in this unwinding reaction, i.e the

energy of breaking a DNA base-pair and the energy from
ATP hydrolysis, are on the order of the thermal agitation
energy kBT (where kB is the Boltzmann constant and T
is the temperature) that at ambient temperature corre-
sponds to 1kBT ∼ 4 pNnm. Therefore helicases, and
molecular motors in general, work in strong Brownian
environment.

Traditionally, these molecular reactions have been
studied using standard biochemical ensemble assays, that
measure the average behaviour of a large ensemble of
molecules (typically on the scale of the Avogadro’s num-
ber). These average measurements provide limited in-
formation on molecular reactions occurring at nano-scale
typically involving energies of few kBT , where deviations
from the average behaviour play a very important role
[3]. In the last 30 years, the emergence of single-molecule
techniques has completely changed the field of molecu-
lar biophysics, providing a way to measure properties of
individual molecules (e.g. position, orientation, end-to-
end extension) that can be used as reaction coordinates
to follow the evolution of the molecule along a reaction
pathway[4–6].

In particular, in single molecule force spectroscopy
techniques, including atomic force microscope optical
tweezers and magnetic tweezers (MT), mechanical ma-
nipulation is achieved by tethering a single molecule be-
tween a surface and a force probe (magnetically or opti-
cally trapped bead, or cantilever tip) [6, 7]. Using these
techniques we can measure physical quantities (and their
fluctuations) that are difficult to determine in bulk as-
says, such as mechanical force, torque or molecular exten-
sion. By designing a DNA molecular construct in such a
way that the motor enzymatic activity leads to a changes
in some of these magnitudes, we can use them as a reac-
tion coordinates. Therefore by monitoring these reaction
coordinates we can follow the enzymatic reaction of an
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individual protein motor in real time. These techniques
cover forces in the range of fN to nN and extensions in the
range of nm to µm and have temporal resolution on the
range of seconds to microseconds allowing us to perform
accurate measurements of complex molecular reactions.

One typical example of single-molecule experiment
is the mechanical unzipping of DNA, where the double
helix is opened mechanically pulling each strand apart.
Using optical tweezers we can capture a micro-sized
bead into a moving optical trap. A DNA molecule
can be tethered between the trapped bead and another
bead immobilized via suction to a pipette. Moving the
micro-pipette (or the optical trap) we can increase the
applied force until breaking the intramolecular bonds
between the base-pairs leading to DNA unzipping.
The result is a force-extension saw-tooth signal that is
characteristic of the specific DNA sequence [8]. This
assay allows investigating internal DNA properties and
measure the base-pair energies, enthalpies and entropies
[9]. This example has similarities with the experiments
performed in this work where we follow the opening of
the DNA but, in this case, carried out by the helicase.

In this work we use MT to study the activity of a
replicative helicase, gp41 of the T4 bacteriophage. An
schematic representation of the MT set up is shown in
Fig. 5. A magnetic field gradient is used to manipulate
a micron-sized bead by applying both force and torque.
Tethering a molecular construct (e.g. a DNA molecule)
between the bead and a surface we can stretch and ro-
tate the tethered molecule. By measuring the molecular
extension and the applied force or torque we can per-
form single molecule experiments. In our experiments
we work with a DNA hairpin (see Fig. 5) attached by
one of its extremities to a glass surface of the microflu-
idic chamber (via digoxigenin anti-digoxigenin interac-
tion, see methods) and by the other to a magnetic bead
(via biotin-streptavidin interactions, see methods). The
magnets placed above the chamber generate a magnetic
force that pulls the bead up keeping the DNA stretched.
By changing the height of the magnets we can control
the applied force, the closer the magnets to the beads
the greater the exerted force. The force typically ranges
from 10−3 to 100 pN [10]. An important advantage of
using MT, as compared to optical tweezers, is the paral-
lelization, since we can track several beads at the same
time obtaining a lot of statistics in a single experiment.

In the assays performed in this work we follow in real
time the extension of the DNA molecule monitoring the
changes in the bead position. The unzipping of the DNA
hairpin molecule catalysed by the helicase lead to an in-
crease on the DNA hairpin extension, allowing us to fol-
low the unzipping reaction in real time. In other words,
the DNA hairpin extension is an indirect measurement
of the enzyme position along the DNA. From the anal-
ysis of experimental traces showing helicase activity we
can investigate the enzyme motion (its velocity, diffusiv-
ity....). However, we cannot track the ATP hydrolysis

reaction that is coupled to enzyme motion. In particular
we do not know the number of ATPs that are hydrolysed
or the mean number of base-pairs unzipped per ATP.
And whether the mechano-chemical reaction is tightly or
loosely coupled is also unknown. The question we try to
address in this work is whether by using relations from
non-equilibrium statistical physics, such as the fluctua-
tion theorems (FTs) [11, 12] or the TUR [13–15] we can
extract some information about the helicase chemical cy-
cle from experimental traces of the motor motion.
FTs are a set of relations for the energy fluctuations in

small systems under non-equilibrium conditions [11, 16].
They provide a deeper understanding of some physical
laws that for small systems need to be revised, such as
the second law of thermodynamics. While the second law
predicts that the entropy of an isolated system should al-
ways increase, in small systems, the entropy can decrease
in a finite time interval.
The Crook’s FT [16] quantifies the probability of ob-

serving negative entropy production events relative to
positive ones. Considering S the entropy produced in
a non-equilibrium process during a time t we can write
the simplest form of this FT as:

Pt(S)

Pt(−S)
= e

S
kB . (1)

Where Pt(S) is the probability distribution of entropy
production S. Rewriting the expression as Pt(−S) =

Pt(S)e
−S
kB and integrating both sites of the equality, we

get: 1 = ⟨e
−S
kB ⟩, which is the so-called Jarzynski equality

[11]. Applying Jensen inequality (⟨ex⟩ > e⟨x⟩) we deduce
the second law of thermodynamics, ⟨S⟩ ≥ 0. The Jarzyn-
ski equality and the Crooks FT have been successfully
applied to predict the free energy of molecular structures
from non-equilibrium irreversible processes [16]. Differ-
ent versions of FTs have been derived for different types
of non-equilibrium processes [17].
Helicases work in non-equilibrium conditions generat-

ing thermodynamic costs known as dissipation, i.e, an
average positive entropy production during the process.
However, the helicase motion is highly affected by Brown-
ian fluctuations, since the energies involved in the unzip-
ping reaction are on the order of thermal energy kBT . As
a consequence, at short times, a particular helicase tra-
jectory can have negative entropy production. The fluc-
tuations and dissipation are related by the TUR through
the QTUR factor [13, 15],

QTUR = σ
2D

v2
≥ 2kB , (2)

where σ is the entropy production rate, v is the mean
helicase unwinding rate and D is the helicase diffusion
constant. σ/v is related to the dissipation and the ra-
tio between the diffusion coefficient and the mean motor
velocity ( 2Dv ) is related to the fluctuations. If we as-
sume a tight mechanochemical coupling of one base pair
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unwound for each ATP consumed, the entropy produc-
tion can be written as the product of the mean entropy
production per unwound base-pair Sbp times v, and the
QTUR factor reads as:

QTUR = Sbp
2D

v
. (3)

In a previous work we analyze the TUR relation for
the gp41 helicase unzipping reaction. As in experiments
we did not measure the ATP hydrolysis chemical cycle
we used Eq. 3 and assume the 1 base-pair tight coupling
approximation to compute Sbp. From MT experimental
traces we estimated D and v and computed the QTUR

factor finding a large QTUR value (102-103kB). This sug-
gest that the lower limit of 2kB given by the TUR is very
far from the QTUR values of real molecular systems and
raises the question of whether the TUR inequality gives
useful information. However, it could also be that the
1 base-pair tight coupling approximation is not valid for
this motor and the value of QTUR factor we obtained is
not correct.

In this work we investigate how to estimate the entropy
production from our measurements using tools from non-
equilibrium statistical mechanics. In order to address
this question we study a simple model for helicase mo-
tion and compute the entropy production using FTs. As
a first step, we model the helicase motion along a DNA
chain as a biased random walk moving in a one dimen-
sional lattice (which represents the DNA chain). Because
the motor movement is a dynamic process that gener-
ates a steady state for long times (times longer than the
characteristic step time of the motor), the entropy pro-
duction should fulfill a FT. We then use this model to
verify if the FT holds and how the QTUR factor behaves.
In order to check our analytical results we also perform
simulations of the biased random walk. Apart from vali-
dating the theoretical results, the simulations also allow
us to compare the model with experimental results. The
simplest simulation considers the random walk dynamics
in an homogeneous chain without external fluctuations,
where the helicase is a random walker with three constant
probabilities P+, P− and P0 (moving forward, backward
or no move). With this simple model we can check the
theoretical results and make a first approximation to the
experimental ones. However, simulations can be easily
extended to take into account multiple kinetic pathways,
inhomogeneities in the DNA chain (such as the DNA se-
quence) or fluctuations of the media.

II. METHODS

A. MT experiments

In this work we study the hexameric helicase gp41 of
the T4 bacteriophage [18] as a model helicase. We use
MT to manipulate a DNA molecule and follow the move-
ment of the enzyme through the DNA. The experiment

has a temporal precision of few millisecond and a spa-
tial precision of the nanometer. In the assays we used
PicoTwist instrument (www.picotwist.com). We use a
DNA hairpin with single-stranded tails that are labeled
with digoxigenin and biotin to their extremities. The
magnetic beads are coated with streptavidin so that can
be attached to one of the DNA hairpin tails. On the other
hand, we build a microfluidic chamber with a glass sur-
face that is treated with anti-digoxigenin and passivated
with a special buffer to prevent non-specific binding of
biomolecules. By inserting the bead-hairpin construct
into the chamber we obtain the configuration shown in
Fig. 5A where the 3’ end of the hairpin is attached to
the surface and the 5’ end to the magnetic bead. We
illuminate the microfluidic chamber with a red LED and
use and inverted microscope connected to a CCD cam-
era (working at 300hz) to image the beads. The parallel
and monochromatic illumination used generates diffrac-
tion patterns that allow performing 3D tracking of the
beads in real time with nanometric resolution [19] .
The experiments were carried out using a 531 bp hairpin
with a known sequence at 25ºC in a buffer containing 150
mM KAc, 10mM MgAc and 1 mM DTT. The helicase re-
action is started adding 60 nM gp41 helicase at constant
ATP concentration (4mM) and constant force (∼12pN).
In Fig. 5 we show the experimental setup (panel A) and
the gp41 unzipping traces (panels B-C). The experimen-
tal traces consist of a rising edge corresponding to the
unzipping of the hairpin catalysed by the helicase until
reaching the hairpin loop and a falling edge where the
helicase follows translocating along the single-stranded
DNA and the hairpin re-anneals in its back. Since the
hairpin is always reformed after an helicase burst, many
DNA unwinding events can be observed in a single DNA
molecule (Panel B). Moreover, several beads (typically ∼
30-50) are tracked simultaneously, which allows taking a
lot of statistics. The measured extension (panel B) can
be converted into number of unwound base pairs know-
ing that our hairpin has a length of 531 base pair (bp),
as shown in panel C.

For each bead we have obtained several unwinding
traces (∼200-400). From the analysis of these traces,
we can extract kinetic information about the motor such
as the mean velocity v or the diffusion coefficient D. To
do so we take every trace and segment it into windows
of variable size and compute the displacement. Then, we
calculate the mean displacement and variance and plot
it as a function of the time window (Fig. 6). Both the
mean and variance present a lineal dependence with time.
Therefore we perform lineal fits: ⟨x⟩ = vt and ⟨x2⟩ = 2Dt
to estimate v and D (see Fig. 6). The analysis has been
done using a home-made Python program that allows us
to detect the individual traces. Sometimes the helicase
detaches before reaching the hairpin loop or show long
pauses. For the analysis we only select full unwinding
traces that reach the hairpin loop and do not show sig-
nificant pausing.
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B. Simulations

Experiments and theory are complemented with simu-
lations of a biased random walk. We developed a Python
program that produce trajectories {n0, n1, n2...}, where
ni is the walker position at time Mi, starting at n0 = 0,
with the three parameters P+, P− and P0 representing
the probabilities of moving forward, backward or staying
in the same point.
The algorithm works as follows:

1. Generate a random number between 0 and 1

2. Check if that number is bigger or lower than P+ or
P+ + P− or P+ + P− + P0

3. If it is lower than P+ we add 1 to the position of
the walker. If it is bigger than P+, but lower than
P++P− we subtract 1 to the position of the walker.
If it is bigger than P++P− we add 0 to the position
of the walker.

4. Repeat this process M times

With this algorithm we can simulate many trajecto-
ries. Due to stochasticity of the process each trajectory
will end at different point N, generating an ensemble
of trajectories. From these trajectories we will be
able to compute the probability distribution of a given
displacement N, for a fixed M, which we can compare
with theoretical results and experiments described in
the results section.

1. Extended simulation

In the simulations described above we consider the sim-
plest model. However, in the the real experimental sys-
tem, the movement of the helicase is affected by addi-
tional factors such as the specific sequence of the DNA.
Moreover, the bead position which gives the experimen-
tal signal, has large Brownian fluctuations. If we want
to consider a more realistic description of the bead mo-
tion we can consider that the position of the bead (x)
follows a Langevin dynamics of an overdamped particle
with evolution given be:

γ
dx

dt
= F − kDNAx+ ξ, (4)

where we have modeled the DNA as an elastic spring
with stiffness kDNA, and F is the external applied force.
The noise (ξ) is a white noise with zero mean and
variance 2kBTγ, being γ the drag coefficient of the bead.

On the other hand, because different base-pairs have
different energy of stabilization (going from 1 to 4 kBT )
[9], the probabilities of stepping forward (and unzipping

one base-pair) might be affected by the DNA sequence.
In overall, sequence and fluctuations modify the prob-
abilities which are no longer constant, but depend on
the force, position of motor and position of the bead,
making the simulation more complex. For a more realis-
tic description of the motor motion in the experimental
conditions we define the probabilities of stepping one bp
forward and backwards per unit time as the rates k+ and
k− given by:

k+(n, F ) = k0 exp

(
−∆Gbp(n) +Wnet(F )

kBT

)
, (5)

k−(n) = k0 exp

(
−∆µ

δkBT

)
, (6)

where k0 is an attempt frequency, ∆Gbp(n) is the free
energy of formation of the n base-pair, ∆µ is the energy
coming from the ATP hydrolysis, δ is the motor step
size and Wnet(F ) is the net work done by the force.
These rates verify the detailed balance condition, since
the total change in free energy between two consecutive
positions is given by ∆GT = ∆µ/δ −∆Gbp +Wnet. To
calculate the mechanical work Wnet, we consider the
DNA as a polymer and we used the worm-like chain
model (WLC) which describes the behaviour of polymers
with a force-extension relation [20] characterized by
a persistence length (P) and a contour length (L).
The persistence length characterizes the stiffness of a
polymer (for lengths shorter than P the polymer acts as
a rigid rod) whereas the contour length, is the length of
the polymer when its completely elongated.

The ATP dependence that influences the progress of
the helicase can also be considered. If the helicase
mechano-chemical coupling is tight, for each ATP hy-
drolyzed the motor takes an step of δ bps forward and
the mean velocity increase as the ATP concentration in-
creases following a Michaelis-Menten like curve. Soft cou-
pling can be introduced by adding an extra kinetic rate
for the loose coupling. Another complexity that can be
added in the simulations is the presence of different ki-
netic pathways that lead to pausing or enzyme dissocia-
tion. The presence of different competing kinetic path-
ways has been observed for different helicases.

C. FT in stochastic systems

We consider an arbitrary process in a system in contact
with a thermal bath at temperature T. Initially at time

t=0, the system is in equilibrium with P eq
λi
(n) = e

−βEλi
(n)

Zλi

, being β = 1
kBT . Then a perturbation parameterized by

λ takes the system along a path towards a different state
[17]. A trajectory or path Γ in configurational space is de-
scribed by a discrete sequence of configurations in phase
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space, Γ ≡ {n0, n1..., nM}, where the system occupies
configuration nk at time tk = k∆t, being ∆t the discrete
time step. We consider paths that start at n0 = 0 at
time t = 0 and end at nM = M at time t = M∆t. The
continuous time limit is recovered by taking M −→ ∞ and
∆t −→ 0. The control parameter(λ) is a value or set of
values that characterise the external perturbations that
drive the evolution of state of the system, for example,
the magnetic field, the concentration of ATP or, in the
case of single molecule experiments with optical tweez-
ers, the distance between the trap and the bead.
We can compute the energy difference in the time interval
k as,

∆Ek = Eλk+1
(nk+1)− Eλk(nk) = Wk +Qk. (7)

Where we have defined work as the change in energy
due to the change in the control parameter (λ) and heat
as the change of energy due to a change in configuration
maintaining λ constant:

Q =

M−1∑
k=0

(Eλk+1
nk+1

− Eλk+1
nk

),

W =

M−1∑
k=0

(Eλk+1
nk

− Eλk
nk

),

E = Q+W = EλM
nM

− Eλ0
n0
.

(8)

The path Γ can be written in terms of conditional

probabilities as, P (Γ) =
∏M−1

k=0 Pλk
(nk+1|nk). Where

the transition probabilities must satisfy detailed balance
in order to guarantee that the equilibrium state (P eq

λ (x))
is stationary,

Pλk
(nk+1|nk)

Pλk
(nk|nk+1)

=
P eq
λk
(nk+1)

P eq
λk
(nk)

= e−β(Eλk
(nk+1)−Eλk

(nk)).

(9)
From this relation we can write,

P (Γ) =

M−1∏
k=0

Pλk
(nk+1|xk) =

=

M−1∏
k=0

Pλk
(nk|nk+1)e

−β(Eλk
(nk+1)−Eλk

(nk)) =

=P (Γ∗)e−βQk .

(10)

where Γ∗ = {nM , nM−1, . . . , n0} is the reverse path of
Γ. Finally, rearranging terms we obtain,

P (Γ)

P (Γ∗)
= e−βQ(Γ). (11)

Which has the form of a FT for the heat. If we want
to include information about the work (W) we have to

consider the probability of exerting some work into the
system,

P (W ) =
∑
Γ

P (Γ)P eq
λ0
(n0)δ(W −W (Γ)), (12)

where δ(W −W (Γ)) = δW only takes into account the
trajectories in which some work has been exerted. By

using Eq. (11) and remembering P eq
λ0
(n0) = e

−βEλ0
(n0)

Zλ0

with Zλ = e−βFλi we have,

P (W ) =
∑
Γ

P (Γ∗)P eq
λ0
(x0)e

−βQδW =

=
∑
Γ

P (Γ∗)
e−βEλ0

(n0)

Zλ0

e−βQδW ,

(13)

multiplying and dividing by eβEλM
(nM ) we get,

P (W ) =
∑
Γ

P (Γ∗)
eβ(Q+W )

Zλ0

e−βQδW e−βEλM
(nM ), (14)

where eβ(EλM
(nM )−Eλ0

(n0)) = eβ(Q+W ) and taking
e−βEλM

(nM ) = ZλM
P eq
λM

(nM )

P (W ) =
ZλM

Zλ0

∑
Γ

P (Γ∗)P eq
λM

(nM )eβW (Γ)δW . (15)

Analogously, as in Eq. (12) the reverse probability is

P ∗(W ) =
∑
Γ∗

P (Γ∗)P eq
λM

(xM )δ(W −W (Γ∗)), (16)

using the relation P eq
λM

(xM ) = eβW
ZλM

Zλ0
P ∗(−W ) we

arrive at

P (W )

P (−W )
= eβ(W−∆F ). (17)

This is the Crooks FT for work, where
∆F = FλM

− Fλ0 is the difference of Helmholtz
free energy (F = −kBT log(Z)) between the initial
and final state and W − ∆F = Wd is the dissipated
work in the forward process. P ∗(−W ) is exponentially
suppressed relative to P (W ).
According to Eq. (17), we can find a value for W = ∆F
looking at the crossing point of the forward (P (W )) and
reverse (P (−W )) work distribution, independly of how
far the system is driven out of equilibrium.
Rewriting Eq. (17) as P ∗(−W ) = e−β(W−∆F )P (W )
and integrating over W we get 1 =∫∞
−∞ dWP (W )e−β(W−∆F ) = ⟨e−β(W−∆F )⟩ obtain-
ing:
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∆F = −kBT log(⟨e−βW ⟩). (18)

This result, known as the Jarzynski equality [11],
relates the free energy difference between states A
and B with the irreversible work carried out when
moving the system from A to B along a given protocol.
In the case of an infinitely slow protocol, the work
exerted on the system is the equilibrium one, obtaining:
∆F = W . Jarzynski equality and FTs are useful tools
from non-equilibrium physics that go beyond classical
thermodynamics connecting equilibrium information
with non-equilibrium measurements. These relations
give the possibility of recovering free energy differences
from measurments of out-of-equilibrium irreversible
processes [21, 22].

III. RESULTS

A. Random walk

Here we model the helicase motion as a random walk.
We consider the movement of the helicase through a DNA
chain as a random walker moving in a one dimensional
lattice taking steps forward and backwards with proba-
bilities P+ and P−.

FIG. 1. Schematics of the one-dimensional random walk for
the helicase motor. The motor moves forward and backwards
with probabilities P+ and P− respectively. The probability of
staying at the same place is defined by normalization: P0 =
1 − P+ − P− . In red is marked the final position N of the
motor after taking M steps.

At each time step ∆M the walker moves a distance ∆n
or stays in the same place. This latest possibility is ac-
counted in the model with the probability P0 that takes
into account the waiting time between steps. After M
steps the walker has done n+ steps forward, n− step back-
ward and n̂ null steps. For simplicity and without loss of
generality we take ∆M = 1 and ∆n = 1. Note that tak-
ing ∆n = 1 means that the motor displacement n would
be in units of the motor step size δ, which is defined as
the number of base-pairs the enzyme moves (and unzips)
in an elementary step of the mechano-chemical reaction

(e.g the hydrolysis of a single ATP molecule). Many he-
licases hydrolyze one ATP per bp unwound, δ = 1 bp,
but others have an step size of few base-pairs δ = 2 − 4
bp [23]. The position n of the walker after M + 1 steps
can be obtained in three ways from the M : Start at n
and stay there, from n − 1 take a step forward or from
n + 1 take a step backwards. Therefore the probability
of being at n after M + 1 steps can be expressed as:

p(n,M+1) = P0p(n,M)+P+p(n−1,M)+P−p(n+1,M).
(19)

For long times, this model describes the non-
equilibrium steady state (NESS) of an ideal motor. In
the following we will use this model to compute the en-
tropy production during motor activity and test whether
the FT for NESS holds.

B. FT for a random walk

Let us consider a stochastic system describing a trajec-
tory Γ ≡ {n0, n1..., nM}. We define Pk(nk) as the proba-
bility measured that the system is at time k in position nk

(see methods). We will focus on the trajectory described
by a random walker going forward, backward or staying
in the same location with probability P+, P− and P0 re-
spectively. We assume that the dynamics of the system
is Markovian, i.e, the probability of the system being in
a given configuration at any given time only depends on
its previous configuration. Considering that our external
control parameter, the ATP concentration (λ=[ATP]), is
fixed, and setting the starting point at n0 = 0 we can
write:

P (Γ) = P0(n0)

M−1∏
k=0

P (nk+1|nk). (20)

The expected value of any observable A(Γ) is given by,

⟨A⟩ =
∑
Γ

A(Γ)P (Γ), (21)

where summing over Γ is equivalent of summing over
every possible state nk of the motor.

⟨A⟩ =
∑

n0...nM

A(Γ)P0(n0)

M−1∏
k=0

P (nk+1|nk), (22)

by applying detailed balance (9) we have,

⟨A⟩ =
∑

n0...nM

A(Γ)P0(n0)

M−1∏
k=0

P (nk|nk+1)
P eq(nk+1)

P eq(nk)
.

(23)
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Lets consider A = e−S∗
t (Γ) = b(pM )

P0(n0)

∏M−1
k=0

P eq(nk)
P eq(nk+1)

.

Where b(pM ) is a positive normalized function
(
∑

b(pM ) = 1):

⟨e−S∗
t (Γ)⟩ =

∑
n0...nM

b(pM )

M−1∏
k=0

P (nk|nk+1) = 1. (24)

Where we have applied a telescopic sum, we first
summed for every b(pM ) and then over the rest of vari-
ables using

∑
P (nk|nk+1) = 1 . We can define the total

dissipation (S∗
t ) as,

S∗
t =

M−1∑
k=0

log(
P eq(nk+1)

P eq(nk)
) + log(P0(n0))− log(b(pM )).

(25)
Applying Eq. (9) we get,

S∗
t =

M−1∑
k=0

log(
P (nk+1|nk)

P (nk|nk+1)
) + log(P0(n0))− log(b(pM )).

(26)
In the latest equation we have a boundary term

(log(P0(n0))− log(b(pM ))) and we can define the entropy
production of the system as,

S =

M−1∑
k=0

log(
P (nk+1|nk)

P (nk|nk+1)
). (27)

This expression is equivalent to the one obtained for
heat using the detailed balance condition and the defini-
tions in Eq. (8) divided by β,

Q =

M−1∑
k=0

(Enk+1
− Enk

) = − 1

β

M−1∑
k=0

log(
P (nk+1|nk)

P (nk|nk+1)
).

(28)
Therefore the expected value of the exponential of the

entropy production A = e−S = eβQ can be computed as,

⟨A⟩ = ⟨eβQ⟩ =
∑

n0,n1...nM

eβQP0(n0)

M−1∏
k=0

P (nk+1|nk) =

=
∑

n0=0,nM=N

eβQ
∑

n1...nM−1

P0(n0)

M−1∏
k=0

P (nk+1|nk) =

=
∑

n0=0,nM=N

eβQϕM (N),

(29)

where we have defined ϕM (N) =∑
n1...nM−1

P0(n0)
∏M−1

k=0 P (nk+1|nk). Taking into

account that in the sum appearing in Eq. (29) N can

take values in range of -M to M we can write the
previous expression as:

⟨eβQ⟩ =
M∑

N=−M

eβQϕM (N). (30)

FIG. 2. (A.) A 1000 simulated trajectories of the random
walk model with probabilities: P+ = 0.60, P− = 0.25, P0 =
0.15. The trajectories that end at a particular position N=350
are shown in red. The probability ϕ at N=350 is computed
as the ratio between the number of red trajectories and the
total number of trajectories. In this case #red

#total
= 0.017 that

coincides with the theoretical ϕ value given by Eq. (31),
ϕ = 0.016. (B.). Probability distribution of observing a
displacement N in M steps, ϕM (N), computed theoretically
(Eq. (31)) and from simulations for three different M . In
red we plot the values obtained using Eq. (31), in blue the
Gaussian approximation obtained in appendix B and in green
the values obtained from simulations.

In order to proceed our calculation we need to compute
ϕM (N), which is the probability of reaching the position
N after M steps. We have performed this computation
for a non-biased random walk using the Gaussian ap-
proximation for Ising-like model (see Appendix A) and
for a biased one-dimensional random walk using the large
fluctuations approach (see appendix B) obtaining:

Master’s Thesis 7 Barcelona, June 2022



Entropy production of DNA-translocating molecular motors Victor Rodriguez Franco

ϕM (N) =
( P0

P−
)N 1√

a′′(N)
eMa(N)∑M

N=−M ( P0

P−
)N 1√

a′′(N)
eMa(N)

, (31)

where a(N) is a continuous function defined in Eq.
(58) and its second derivative a′′(N) is computed in
Eq. (61). In order to check this result we performed
simulations of the random walk model presented (Meth-
ods section). In Fig. 2 we show a set of simulated
trajectories n(M) (panel A) and the fraction ϕM (N)
(panel B) computed from simulations. The results are
compared to the theoretical expressions finding good
agreement.

Now we need to compute eβQ. For our model, using
the definitions in Eq.8, we find Q = E (fixed λ implies
W = 0). Considering that energy at step k is propor-
tional to the initial energy E1 we can obtain a value for
Q as, Q = E = NE1. To find E1 we apply the detailed

balance condition, Eq. 9, obtaining, E1 = − 1
β log(P+

P−
)

and therefore eβQ = (P−
P+

)N . With this result we can

write,

⟨eβQ⟩ =

∑M
N=−M ( P0

P+
)N
√

1
a′′(N)e

Ma(N)∑M
N=−M ( P0

P−
)N
√

1
a′′(N)e

Ma(N)
. (32)

This expression for < eβQ > can be greatly simplified
considering the symmetry: P+ ↔ P− , N ↔ −N where:

eMa(−N) = eMa(N)

(
P+P−

P 2
0

)−N

,

a′′(−N) = a′′(N).

(33)

Imposing these relations we find ϕ
P+,P−
M (N) =

ϕ
P−,P+

M (−N) and also

⟨eβQ⟩ = 1. (34)

This result is equivalent to the expression (24) and it
corresponds to the Jarzynski equality. Using Eq. (31-33)
we find the following symmetry relation for ϕM (N):

ϕM (N)

ϕM (−N)
= (

P+

P−
)N . (35)

Using Eq. (28) it can be proved that (P+

P−
)N = e−βQ

and Eq. 35 can be written as:

ϕM (N)

ϕM (−N)
= e−βQ = eS , (36)

which is a form of Crook’s FT for the entropy produc-
tion Q. Eq. (31) has been obtained for large M using the
saddle point approximation. In the following we will per-
form the calculation without the large M approximation
obtaining the same results. Let’s consider the probability
of finding the walker at position N after M steps in one
trajectory as,

FIG. 3. (A. and B.) Displacement distributions ϕM (N) at
four different M : Mi = 200 (blue), Mi = 100 (red), Mi = 50
(green) and Mi = 25 (yellow) for simulations of the random
walk model using probabilities P+ = 0.4, P− = 0.318 and
P0 = 0.282 (panel A) and P+ = 0.4, P− = 0.2 and P0 = 0.5
(panel B) (C.) Test of the FT for the random walk model.
In magenta and cyan we show the theoretical predictions of
the FT (Eq. 35) for the probabilities shown in panels A and
B respectively, corresponding a linear behaviour with slope

log
P+

P−
=0.23 and 1.38 respectively. The squares are values

obtained from simulations for the ratio
ϕMi

(N)

ϕMi
(−N)

for different

Mi. Colors as in panel A.

ϕM (N) =
1

ΩN

∑
M=n++n−+n̂
N=n+−n−

P
n+

+ P
n−
− P n̂

0 , (37)

where ΩN is a normalization constant. Multiplying by
P

n−
+ P

n+
−

P
n−
+ P

n−
−

and arranging terms we find:

ϕM (N) =
1

ΩN

∑
M=n++n−+n̂
N=n+−n−

P
n−
+ P

n+

− P n̂
0 (

P+

P−
)N . (38)

Analogously we can write:

ϕM (−N) =
1

ΩN

∑
M=n++n−+n̂
N=n+−n−

P
n−
+ P

n+

− P n̂
0 . (39)

These functions verify the relation found in Eq. (35).

Eq. 35 tell us that if we plot the logarithm of ϕM (N)
ϕM (−N) as
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a function of N we should find a straight line with slope
given by the logarithm of the ratio between probabilities.
To check this result we use the simulations to compute
ϕM (N) and verify the FT (Fig. 3).

FIG. 4. (A.)QTUR factor for the random walk model, Eq. 41,
as a function of P− for different P+ values. (B.) QTUR factor
computed using Eq. 41 as a function of P− for different P0

values. In both representations the lower limit Q ≥ 2, shown
as a black line, is satisfied.

As previously discussed in our model S = −βQ.
Therefore the entropy production rate can be expressed
as,

σ =
⟨S⟩
M

=
⟨N⟩
M

log
P+

P−
, (40)

where ⟨N⟩ is the mean position given by ⟨N⟩ = vM =
(P+−P−)M (the relation v = (P+−P−) has been derived
in Appendix B). Using the expression of the entropy pro-
duction rate we can compute the QTUR factor (Eq. 2),
as:

QTUR = σ
2D

v2
=

P+ + P−

P+ − P−
log

P+

P−
. (41)

Note that QTUR only depends on the forward and
backward probabilities. Taking into account the prob-
ability normalization: P+ +P− +P0 = 1, we can rewrite
the previous expression as,

QTUR =
w

2x− w
log

x

w − x
, (42)

where x = P+ and w = 1−P0. Taking the derivative of
Eq. 42 and equaling it to zero we find the extreme value
at xmin = w

2 . We find QTUR(xmin) = 2, coinciding
with the lower limit found in [15]. In Fig. 4 we show
the numerical results for QTUR for different values of the
probabilities P+, P− and P0. We can identify that QTUR

increases fastly when we approach to the unidirectional
case, where P+ = 0 or P− = 0.

C. Experimental results

We used MT to manipulate a 531 base-pair DNA
hairpin and monitor the DNA unzipping activity of
the helicase gp41. The hairpin is tethered between a
magnetic bead and the glass surface of the microfluidic
chamber where the experiments take place (Fig. 5).
Changing the position of the magnets we can control
the force applied. In the experiments presented the
force is kept fixed (the magnets are always at the
same height). By tracking the position of the bead
we can indirectly track the position of the molecular
motor along the hairpin. Initially the DNA hairpin is
formed and the bead is close to the surface, at height h1

(see Fig. 5A). When the helicase starts unzipping the
hairpin, the DNA lengthens, gaining approximately 1
nm per base-pair unzipped, until reaching the maximum
extension h3 > h1, when the helicase has fully unzipped
the hairpin. This unzipping activity is observed in the
experimental traces as bursts of extension increase (Fig.
5B). As observed in Fig. 5 C the experimental trace
corresponds to a triangular signal, with a rising edge
corresponding to the DNA hairpin unzipping catalysed
by the helicase followed by a falling edge. The latter
corresponds to the motion of the helicase translocating
along the unwound single-stranded DNA after reaching
the loop, whereas the hairpin reforms in its wake.
Note that the slope of the rising edge (related to the
unwinding rate of the helicase) is lower than that of
the falling edge (related to the translocation rate of the
helicase). This means that this helicase translocates
slower when it has to unzip the DNA double-helix ahead
than when it moves along the single-stranded DNA
(without unzipping). This property has been associated
with the passive character of this helicase [24]. Here we
will focus our analysis on the unzipping part of the trace
(rising edge).
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FIG. 5. (A.) Schematic representation of the magnetic tweez-
ers experimental set up. The helicase (in purple) unwinds
the hairpin going from the initial (closed) configuration at
h1 to the final (opened) configuration h3. (B.) An example
of DNA extension versus time data showing different helicase
unwinding events. (C.) Experimental unwinding and rewind-
ing trace. The full unwinding of the hairpin catalysed by the
helicase is followed by the hairpin rezipping while the helicase
translocation on the unwound DNA. Red arrows indicate he-
licase motion and black arrows indicate bead motion. The
extension in µm (panel B) has been converted in number of
unwound bps (panel C) by using that the maximum extension
corresponds to the length of the hairpin (531bps).

With MT we can track several beads in the same ex-
periment obtaining large statistics for the data analysis.

However, the force exerted on beads may vary from bead
to bead due to differences in the bead’s magnetic mo-
ments and inhomogeneities in the magnetic field created
by the magnets. Therefore, to avoid mixing traces at dif-
ferent forces, we will analyse the beads separately.
We developed a home-made python code to isolate the
unwinding traces from the data. The traces obtained
have a high degree of stochasticity (Fig. 6A), a typical
signature of single-molecule data. Analyzing several un-
winding traces we can compute the mean unwinding rate
and the diffusion coefficient (see methods) for the heli-
case, as shown in Fig. 6B-C. For the data shown in Fig.
6 we obtain a mean unwinding of v = 121 ± 2 bp/s and
a diffusion coefficient of D = 522± 10bp2/s.

FIG. 6. (A.) Experimental helicase unwinding traces. (B.).
Mean unwinding rate obtained from the lineal fit to the mean
displacement as a function of time computed from experimen-
tal traces in panel A. (C.) Diffusion coefficient obtained from
the lineal fit to the variance of the displacement as a function
of time computed from experimental traces in panel A.

Now we want to see if we can match the experimen-
tal results with the simple random walk model studied
in previous section. In order to do it, we use the rela-
tion found in appendix B between the velocity and the
diffusion coefficient and the forward and backward prob-

abilities: v = (k+ − k−)∆x and D = k++k−
2 (∆x)2 where

k+ and k− are the forward and backward rates (proba-
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bility per unit of time (P+/∆t and P−/∆t) and ∆x is
the extension unit, in our case ∆x = 1 bp. Using values
for the probabilities that match the experimental v and
D, we can try to reproduce the experimental results.

FIG. 7. (A.) Trajectories from simulations of the random
model using P+ and P− values that fit the experimentally
measured v and D (Fig. 6B-C): P+ = 0.4 and P− = 0.318. In
red we plot the traces that ends at N=188. The ratio between
number of red traces and the total number of traces is 0.009
which approximately coincides with the theoretical prediction
ϕ = 0.01, Eq. (31). On the right panel we show the histogram
of the displacements N at the final M together with the the-
oretical ϕM (N) from Eq. (31) in red discontinuous line, and
the Gaussian fit in a green line. (B.) Experimental unwind-
ing traces, in red those that ends at x=188 bps. On the right
panel we show the histogram of the helicase displacement after
1.25 seconds and the theoretical predicted Gaussian distribu-
tion (see appendix B) with the mean and variance measured
in the experiments.

As shown in Fig. 7A we simulate motor trajectories
using the random walk model (see methods) with P+

and P− values that reproduce the experimental v and D.
In Fig. 7 we compare the simulated results with one set
of experimental unzipping traces obtained for one bead.
One can see that the traces are qualitatively similar.
However, if we look at the distribution of the displace-
ment probability, ϕ(x), some differences can be detected.
Whereas ϕ(x) obtained from simulations follows a
Gaussian distribution with mean vt and variance 2Dt

as predicted by the theory (Eq. 67), the experimental
ϕ(x) shows clear deviations from the expected Gaussian
behavior. In particular, the experimental distribution
present much larger tails, a typical characteristic of
small systems. These deviations indicate that the model
used is too simple to fully reproduce the experimental
phenomenology. Introducing in the model different
features of the real experimental system, such as the
heterogeneity on the DNA sequence, the ATP chem-
ical cycle with a single or multiple pathways, etc, we
could investigate what features are responsible for the
enlargement of the tails of the experimental distributions.

We next have investigated if we can apply the FT,
Eq. 35, to our experimental data. To this end, we have
computed the experimental distribution ϕ(x) for different
times windows (Fig. 8A) and compute the logarithm of
the ratio between ϕ(x) and ϕ(−x). We have found that
the data collapse in a single line, as predicted by the FT
(Eq. 35), Fig. 8B. The theory also predicts that the
slope of the line should be related to the mean velocity
v and the diffusion coefficient D as:

log(
ϕ(x)

ϕ(−x)
) = x log(

2D
∆x + v
2D
∆x − v

), (43)

where ∆x = 1 bp. This relation is not fulfilled in
the experimental case, since the slope Eq. 43 using
the values obtained experimentally for v and D leads to
log( 2D+v

2D−v ) = 0.19 (blue line in Fig. 8B) and the exper-

imental slope using the FT is ∼ 0.33 (black line in Fig.
8B). This is also an indication that the experimental sys-
tem is more complex than a random walker moving in an
homogeneous chain.
Since the probabilities P+ and P− should fulfil detailed
balance, we have that the FT slope is related to the free
energy difference ∆G = G(n) − G(n + 1) between the
states n and n+ 1, :

P+

P−
= e

∆G
kB . (44)

Since n (or extension x) is in units of base-pairs the free
energy ∆G corresponds to the free energy difference in 1
bp unzipping step given by: ∆G = WF−∆Gbp+∆GATP ,
where ∆Gbp is the energy of formation of a base-pair (∼
2kBT ), WF is the mechanical work done by the applied
force when unzipping a single base-pairs (∼ 1kBT in our
conditions) and ∆GATP is the energy associated to the
ATP hydrolysis for a single base-pair movement. The
energy associated with the hydrolysis of a ATP molecule,
at the experimental conditions, is ∆µ ∼ 20kBT [25]. If
δ is the mechano-chemical step size, that is the number
of bps unzipped per ATP hydrolyzed, then ∆GATP =
∆µ/δ. The logarithm of the detailed balance condition,
Eq. 44, can be compared with the measured slope in Fig.
8B to extract ∆G.
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As we can estimate the value of WF −∆Gbp at our ex-
perimental conditions (∼ 1kBT ) we can use the measured
slope to extract the value of ∆GATP , obtaining a value of
1.3kBT , leading to an estimated mechano-chemical step
size δ of 15 bps. This value is much larger than the typi-
cal measurements of helicase step sizes, which are in the
range of 1-4 bps [23]. This results reflects again that
we are probably lacking some important features in our
modeling.

FIG. 8. (A.) Experimental distribution of displacement x
computed from the experimental traces shown in Fig. (7B)
at different times. (B.) The logarithm of the ratio of the

probabilities
ϕti

(x)

ϕti
(−x)

as a function of x for the data shown in

panel A. The lineal fit to all data, shown in black, gives an

slope of 0.33. The theoretical value obtained from log(
P+

P−
) =

0.23

Finally we compute the value of the QTUR factor us-
ing the values of D and v calculated previously. The ex-
pression for QTUR in terms of the velocity and diffusion
coefficient reads as:

QTUR =
2D

v∆x
log(

2D
∆x + v
2D
∆x − v

), (45)

obtaining a value of QTUR ≈ 2 (in kB units) with
∆x = 1 bp. This would indicate that the motor dissipates
as minimum as possible. However note that the same

experimental results for v and D also lead to the failure
of the FT and to bad estimations of the motor step size.
Indeed using an helicase step size of 1 bp, a value that
might approach better to the real step size of the gp41
helicase, and using Eq. 3, one finds a QTUR ∼ 200 (in
kB units). Therefore, in the future, we will need to revise
the model to better reproduce the experimental results
and obtain a reliable value for QTUR.

IV. CONCLUSIONS

Helicases are enzymes that participate in various
metabolic processes. They convert the chemical energy
from ATP hydrolysis into mechanical work to translo-
cate along one strand of DNA unwinding the double he-
lix. They work under non-equilibrium conditions per-
forming a mechano-chemical cycle acting as molecular
motors. The energies involved in this process are on the
order of the thermal energy (kBT ) and consequently, the
molecular motor work in strong Brownian environment,
where fluctuations play an important role. In their out
of equilibrium activity they incur thermodynamic costs
(dissipation).
Using MT single-molecule experiments we followed the
activity of an helicase while unzips a DNA hairpin. By
tracking the extension of the DNA hairpin we follow
the position of the helicase along the DNA in real time.
Analysing the DNA unzipping traces we compute prop-
erties related to the motion of the enzyme, i.e, velocity
and diffusion coefficient. But the progress of the ATP
hydrolysis reaction is inaccessible in these type experi-
ments. In this project we investigate whether we can
obtain information about the mechano-chemical reaction
using non-equilibrium relations such as the TUR or the
FT for entropy production. In order to test these re-
lations we use a simple model for the helicase motion
along the DNA. We describe the DNA chain as a one-
dimensional lattice, and model the helicase motion as a
random walk taking forward and backward steps in the
lattice with constant probabilities (P+, P−). We have
been able to verify that our model satisfies the FT for
the entropy production and we have computed an ana-
lytical expression for the QTUR factor that is a factor
that relates the fluctuations and dissipation in the motor
activity.
The theoretical results have been verified through simu-
lations of the random walk model. The simulations act
as a bridge between theory and experiments. Even that
in this work we have only tested the simplest random
walk model, the simulations can be easily extended to
include several aspects of the real system (as described
in Methods section).
Results from theory and simulations has been next

compared to experiments, by using values for the prob-
abilities P+ and P− that fit the best the experimental
results. Simulations generate helicase trajectories that
qualitatively reproduce the experimental ones. However,
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the shape of the distribution of helicase displacement de-
viates from the Gaussian distribution predicted by the-
ory, showing much larger tails. Interestingly, the experi-
mental distributions also verify a kind of FT relation but
with an slope that do not correspond to the predicted
by the theory proposed. Moreover, from the experimen-
tal slope in the FT relation we can estimate the value
of the helicase mechano-chemical step size (that is the
number of bps the helicase unzips for ATP hydrolized)
that disagrees with the expected one. In overall these
results suggest that the simple random walk model lacks
some important aspects of the experimental system, such
as the DNA sequence, the Brownian fluctuations of the
bead or the different steps of the mechano-chemical cycle
(Methods section). In that direction we plan to include
several experimental features in the simulations to in-
vestigate which ingredients might be responsible for the
enlargement of the displacement distribution and the fail-
ure of the FT.

V. APPENDIX

A. Gaussian approximation to Ising-like model

Consider a one dimensional random walker moving on
a lattice taking steps of size a = 1 to the left (back-
ward) and the right (forward) with the same probability
(P+ = P− = 1

2 ). We can relate this structure with an
Ising model of spins in a 1D lattice, where the spin up
indicates one step forward and spin down indicates one
step backward. The probability of finding the walker at
distance N after M steps is PM (N) which satisfies the
following recursive relation:

PM+1(N) =
1

2D

M∑
j

JijPM (j) (46)

whereD is the dimension and Jij is the interaction ma-
trix. This Jij can be computed in the one dimensional
case considering steps of size 1 giving a contribution of
δn,â for the right step and δn,−â for the left step. Mov-
ing to the Fourier space (wave vectors ”k”) we obtain
a total contribution of Jij(k) = (F(δn,â) + F(δn,−â)) =

2
∑D

α=0 cos(kαa).
Introducing the generating function (Gq(N)) we can

recover the probability function PM (N) using the defini-
tion:

PM (N) =
1

M !

dMGq(N)

dqM

∣∣∣
q=0

(47)

Since the expression of the generating function is
unknown we will work through the Fourier transform
(Gq(N) =

∑∞
k=0 Ĝq(k)e

−ikN ) which we know its result
[26]:

PM (N) =
1

M !

dM
∑∞

k=0 Ĝq(k)e
−ikN

dqM

∣∣∣
q=0

(48)

where Ĝq(k) =
∑∞

N=0 Gq(N)e−ikN = 1
1− q

2D Jij
=

1
1− q

D

∑D
α=1 cos(kαa)

. Substituting this expression in 48 and

taking derivatives we find:

PM (N) =

∞∑
k=0

eikN

(∑D
α=1 cos(kαa)

D

)M

(49)

which can be written as an integral using the relation∑
k = V

(2π)D

∫
k
[27].

PM (N) =
1

DM

V

(2π)D

∫
k

dDkeikN

(∑D
α=1 cos(kαa)

D

)M

(50)
As we have said, we are interested in the one dimen-

sional case (D=1). The integration limits in Fourier space
are −π

a < k < π
a :

PM (N) =
V

2π

∫
k

dk eikNcosM (ka)

PM (N) =
V

2π

∫ π
a

−π
a

dk eikNacosM (ka) =

=
1

π

∫ π

0

dk cos(Nk) cosM (k)

(51)

where in the last equality of Eq. (51) we have changed
the integration limits, we have taken only the real part
of the exponential and we make explicit a = 1 giving
V = aD = 1. Integrating by parts we find a recursive
integral and we obtain an expression for PM (N):

PM (N) =
M !

2M (M−N
2 )!(M+N

2 )!
(52)

which can be physically understood: M ! refers to the
number of total steps, (M+N

2 )!, (M−N
2 )! are the number

of forward and backwards steps respectively and 2M

is a normalization factor which takes into account all
the possible combinations using these two parameters
(forward and backward). We can see that the result can
be expressed as combinatorics about how many ways
we can arrange M steps in groups of n+ = M+N

2 steps

forward and n− = M−N
2 steps backward. For large M

this expression converges to a Gaussian distribution:

Pt(x) = 1√
4πDt

e−
x2

4Dt with mean 0 and variance 2DM ,

where the diffusion coefficient D = 1/2 for this particular
case.
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From the result found in Eq. (52) we can propose a
combinatorics method that will allow us to understand a
more general case. Let us consider the same one dimen-
sional random walk with forward and backward probabil-
ities given by P+ and P− respectively. The possible com-
binations of arriving at distance N after M steps is given
by C(n+, n−) = M !

n+!n−! , then the probability should be

written as:

PM (N) =
∑

n+,n−

C(n+, n−)P
n+

+ P
n−
− (53)

we can express Eq. (53) only in terms of n+ using the
relations N = n+ − n−, M = n+ + n− as:

PM (N) =
M !

M+N
2 !M−N

2 !
P

M+N
2

+ P
M−N

2
− (54)

As we can see if we take the symmetric case (P+ =
P− = 1

2 ) in Eq. (54) we obtain the same result of Eq.
(52). If we take large M we also find a Gaussian distri-
bution, in this case with a drift term (x̂) due to the bias
in the probability P+ ̸= P− (in general),

Pt(x) =
1√
4πDt

e−
(x−x̂)2

4Dt (55)

with D = 2P+P− and x̂ = (P+− P−).

B. Large deviation approach

Using this method we can compute the general case
where the random walker can move forward (n+), back-
ward (n−) and stay still (n̄) with probabilities P+, P−
and P0 respectively. In this case we have changed the
label for the probability from P to ϕ to differentiate it
from the particular case. Then, the probability of finding
the walker at distance N after M steps starting at zero is
given by:

ϕ(n0 = 0, nM = N) =
∑

n+,n−,n̄

M !

n+!n−!n̄!
P

n+

+ P
n−
− P n̄

0

(56)
Taking into account the following restrictions: n+ +

n− + n̄ = M and n+ − n− = N .

ϕ(n+, N,M) =
PM+N
0

PN
−

M+N
2∑

n+=N

M !

n+!(n+ −N)!(M +N − 2n+)!
αn+

ϕ(n+, N,M) =
PM+N
0

PN
−

M+N
2∑

M+=N

eA(n+)

(57)

where A(n+) = log( M !
n+!(n+−N)!(M+N−2n+)! )α

n+ and

α = P+P−
P 2

0
. Using the Stirling approximation log(n!) ≈

n log(n)− n we obtain the following expression.

A(y, z) = Ma(y, z)

a(y, z) = z log(α)− z log(z)− (z − y) log(z − y)

− (1 + y − 2z) log(z + y − 2z)

(58)

where z = n+

M and y = N
M . Multiplying Eq. (57)

for the increment ∆n+ = 1 and dividing by the total
number of steps M , we can write Eq. (57) as an integral

considering the limit M −→ ∞ (∆n+

M = dz).

ϕ(n+, N,M) = M
PM+N
0

PN
−

M+N
2∑

n+=N

eA(n+)∆n+

M

ϕ(y, z) = M
PM+N
0

PN
−

∫ 1+y
2

y

eA(y,z)dz

(59)

Where the latest integral can be computed using saddle
point approximation,

ϕ(y, z∗(y)) = M
PM+N
0

PN
−

√
−2π

a′′(y, z∗(y)
eMa(y,z∗(y)) (60)

with,

a′′(y, z∗(y)) = −
(

1

z∗(y)
+

1

z∗(y)− y
+

1

1 + y − 2z∗(y)

)
z∗(y) =

y + 1

2
− 1

2(1− 4α)

(
1±

√
4α+ y2(1− 4α

)
(61)

as we can see in the expression of the relative ex-
trema (z∗(y)) we have two possible solutions: z∗+ and
z∗−. We use the one that guarantee that the second
derivative of a(y, z) is negative in order to have a
maximum in the saddle point approximation, then

z∗(y) = y+1
2 − 1

2(1−4α)

(
1−

√
4α+ y2(1− 4α

)
.

Due to the number of approximations made (Stirling
and saddle point) we need to re-normalize Eq. (60) ob-
taining the final result:

ϕ(y, z∗(y)) =
( P0

P−
)N
√

1
a′′(y,z∗(y))e

Ma(y,z∗(y))∑M
N=−M ( P0

P−
)N
√

1
a′′(y,z∗(y))e

Ma(y,z∗(y))

(62)
which in terms of our initial variables is,

ϕM (N) =
( P0

P−
)N 1√

a′′(N)
eMa(N)∑M

N=−M ( P0

P−
)N 1√

a′′(N)
eMa(N)

(63)
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The time evolution of this model can be thought as a
probabilistic combination of different states (pi) at differ-
ent times (M) described by the following master equa-
tion,

pn(M) = P+pn−1(M − 1) + P−pn+1(M + 1) + P0pn(M)
(64)

expanding the latest expression as a Taylor series we
obtain a partial differential equation, changing to contin-
uous notation (x,t):

∆t
∂px(t)

∂t
= (∆x)2(

P+ + P−

2
)
∂2px(t)

∂x2
−∆x(P+−P−)

∂px(t)

∂x
,

(65)

If we identifyD = (∆x)2

∆t
P++P−

2 and u = (∆x)
∆t (P+−P−)

we get,

∂px(t)

∂t
= D

∂2px(t)

∂x2
− u

∂px(t)

∂x
, (66)

which is the diffusion equation with an advection term.
The solution for this equation is:

px(t) =
1√
4πDt

e−
(x−ut)2

4Dt , (67)

with the corresponding values of D and u found before.

We have finally obtained an expression for the prob-
ability of finding the walker at position N after M
steps in the more general case (Eq. (63)) and related
with a diffusive process following a Gaussian distribution.
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