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José M. Menchón b,c,d, Virginia Soria b,c,d, Cristina Cañete-Massé a,e, Maribel Peró-Cebollero a,e,f, 
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A B S T R A C T   

Background: Late-life depression (LLD) is characterized by cognitive and social impairments. Determining 
neurobiological alterations in connectivity in LLD by means of fMRI may lead to a better understanding of the 
neural basis underlying this disorder and more precise diagnostic markers. The primary objective of this paper is 
to identify a structural model that best explains the dynamic effective connectivity (EC) of the default mode 
network (DMN) in LLD patients compared to controls. 
Methods: Twenty-seven patients and 29 healthy controls underwent resting-state fMRI during a period of eight 
minutes. In both groups, jackknife correlation matrices were generated with six ROIs of the DMN that constitute 
the posterior DMN (pDMN). The different correlation matrices were used as input to estimate each structural 
equation model (SEM) for each subject in both groups incorporating dynamic effects. 
Results: The results show that the proposed LLD diagnosis algorithm achieves perfect accuracy in classifying LLD 
patients and controls. This differentiation is based on three aspects: the importance of ROIs 4 and 6, which seem 
to be the most distinctive among the subnetworks; the shape that the specific connections adopt in their net-
works, or in other words, the directed connections that are established among the ROIs in the pDMN for each 
group; and the number of dynamic effects that seem to be greater throughout the six ROIs studied [t = 54.346; df 
= 54; p < .001; 95 % CI difference = 5.486–5.906]. 
Limitations: The sample size was moderate, and the participants continued their current medications. 
Conclusions: The network models that we developed describe a pattern of dynamic activation in the pDMN that 
may be considered a possible biomarker for LLD, which may allow early diagnosis of this disorder.   

1. Introduction 

The study of brain connectivity in major depressive disorder (MDD) 
has noticeably attracted considerable interest in recent years. This 
serious mental disorder is characterized by a sustained negative affect 
along with difficulties in experiencing a positive affect, deficits in affect 
regulation and cognitive control, anhedonia, and the presence of 

cognitive biases (American Psychiatric Association, 2013; Joormann 
and Stanton, 2016). According to recent estimations, in the general 
community, up to 7 % of adults older than 60 years of age are affected by 
MDD, which in this group is known as the late-life depression (LLD) 
(Wen et al., 2022). LLD is particularly susceptible to poor outcomes, 
including no remission, aggravation of comorbidities, and diminished 
daily functioning (Gunning et al., 2021), as well as increasing the risk of 
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dementia and mortality (Manning et al., 2019). Hence, LLD results in 
significant costs for individuals and society as a whole since it is a 
leading contributor to disability worldwide (Sartorius, 2001; Wen et al., 
2022). However, its neuropathological mechanisms remain unclear. 

The perspective of effective connectivity (EC) for the study of brain 
connectivity furnishes deep insights into brain dynamics and neuronal 
interactions (Friston, 2011; Zarghami and Friston, 2020). EC reveals the 
influence that a neuronal system exerts over another and vice versa and 
the direction of such effects (Friston, 2011; Friston et al., 2014; Zar-
ghami and Friston, 2020). EC analyses engender a variety of causal 
models of distributed brain connections, and the network best suiting 
the data is selected (Friston, 2011; Razi et al., 2015; Razi and Friston, 
2016; Zarghami and Friston, 2020). Structural equation modeling (SEM) 
is among the most prevalent methods for EC analysis, allowing an 
analysis of causal influences by examining the support that a given 
neural model accumulates given the covariance observed in the data 
(Inman et al., 2012). The combination of SEM and functional magnetic 
resonance imaging (fMRI) serves as a powerful tool for time series 
network analysis and estimates of intrinsic EC (Razi et al., 2017). For 
such analyses, brain connectivity should be conceived in terms of dy-
namic activity, which may be conceived in terms of connectivity esti-
mates across temporal lags (lag 1 in this study) (Friston, 2011; Zarghami 
and Friston, 2020). Accordingly, we can estimate the effect that an ROI 
at a moment t exerts over another ROI at a previous time, t + 1, that is, 
how the activity occurring at a certain region of the network influences 
later signals at a different location (Beltz and Gates, 2017; Gates et al., 
2011; Zhang et al., 2020). 

However, the assessment of dynamic EC in MDD remains minimally 
explored, most specifically using the SEM approach. However, two 
recent studies show the suitability of this approach to assess dynamic 
EC. First, the research by Zhang et al. (2020) is an example of the 
implementation of group iterative multiple model estimation (GIMME) 
to estimate dynamic EC in the field of neurolinguistics. Second, Fig-
ueroa-Jiménez et al. (2021) appraised dynamic EC within a region of the 
default mode network (DMN) by means of the SEM method and revealed 
the best model to represent this connectivity in people with Down 
syndrome. 

Previous findings provide evidence that depression is related to 
abnormal patterns of fluctuating connectivity among brain regions 
accountable for the severity of this disorder and its characteristic 
pathological cognitive, behavioral and emotional manifestations. In 
particular, the DMN has been consistently reported to be impaired in 
patients with MDD and LLD, and its crucial role in the clinical neuro-
science of these disorders has been clearly established (Guàrdia-Olmos 
et al., 2022; Wise et al., 2017). The DMN is a network of neural systems 
exhibiting increased activity in the absence of external demanding 
perceptual tasks (Raichle, 2015). It is implicated in self-referent pro-
cesses, assigning value to stimuli and affecting laden behavioral with-
drawal. Collectively considered, these processes lead depressed 
individuals to engage in maladaptive ruminative thoughts (Cooney 
et al., 2010; Hamilton et al., 2015; Jacob et al., 2020). Furthermore, 
increased DMN connectivity in MDD has been identified as a precursor 
of MDD (Li et al., 2017; Li et al., 2018; Pang et al., 2020; Posner et al., 
2016). Nevertheless, some pieces of evidence point in a different di-
rection: reduced connectivity within the DMN underlies depression (Li 
et al., 2019; Yan et al., 2019). 

The literature regarding LLD is very limited compared to the number 
of reports on MDD. Here, we cite research that we believe illustrates the 
latest advances in disturbed DMN connectivity in LLD patients. On the 
one hand, Manning et al. (2019) claim that increased DMN activity is 
associated with an inability to regulate emotions in older patients with 
depression. On the other hand, Gandelman et al. (2019) characterized 
LLD by decreased DMN connectivity, and Wang et al. (2021) identified 
reduced posterior DMN connectivity as opposed to increased activation 
within the anterior DMN. However, these studies primarily examine 
functional connectivity, except for Li et al. (2017) and Li et al. (2019), 

and none of them employ SEM since the application of this approach to 
dynamic connectivity is currently starting to develop within the neu-
roimaging discipline. 

To the best of our knowledge, no studies to date have explored dy-
namic effective connectivity within the DMN in persons with MDD using 
SEM. The few reported EC studies do not fully disclose the neural causal 
influences among the resting-state networks in LLD and, specifically, the 
putatively core disturbed network, the DMN. Considering the lack of 
data and the need for further advances in the dynamics of the complex 
brain, in the present study, we aimed to elucidate the dynamic effective 
connectivity in an LLD group compared to a control group. For this 
purpose, we employ SEM with resting-state fMRI in six regions of in-
terest (ROIs) within the DMN aiming to (1) analyze the estimated dy-
namic connectivity models for each group by employing SEM and a lag 1 
approach, (2) identify the complexity of the models for each group, and 
(3) compare the levels of complexity of the obtained models between 
both groups. This strategy allowed us to identify a neural model 
explaining EC dynamics in LLD and therefore apply this knowledge to 
develop early and more accurate diagnostic strategies for LLD. More-
over, in view of the abovementioned research, we hypothesize that (a) 
patients with LLD will show a more complex connectivity pattern within 
the DMN at rest considering the number of effects and its intensity than 
control individuals, and (b) this pattern will be reflected in the models 
that SEM will provide for each group, as this will constitute a possible 
biomarker for LLD. Finally, we justify the DMN selection based on two 
criteria. First, this network represents the main and most basic func-
tioning regions of the DMN and should therefore be the most sensitive 
structure of all the subareas constituting the extensive DMN (Figueroa- 
Jiménez et al., 2021). Second, the computational difficulties arising 
from estimating a large number of possible structural models of the 
extensive DMN impose a series of restrictions regarding the limited 
number of ROIs and networks to consider. 

2. Materials and methods 

2.1. Participants 

The initial sample was consisted of 59 persons, including 28 patients 
diagnosed with MDD and 31 healthy controls. Late-life MDD patients 
were consecutively recruited from the Department of Psychiatry at 
Bellvitge University Hospital (Barcelona, Spain). In all cases, major 
depression was the primary diagnosis, and the first depressive episode 
appeared after 40 years of age. The inclusion criteria for patients were 
(a) age between 60 and 75 years and (b) a formal diagnosis of primary 
late-life MDD. The exclusion criteria included (a) evidence of other past 
or current comorbid psychiatric diagnoses besides MDD, (b) substance 
use with the exception of nicotine, (c) intellectual disability, and (d) the 
presence of any inconvenience that prevented the person from under-
going a neuroimaging exam (e.g., prostheses or implants that are not 
compatible with fMRI equipment). 

After fMRI acquisition, data from three subjects—one patient and 
two controls—were discarded due to excessive movement in one patient 
and one control (i.e., mean displacement values above the 1.5-mm 
threshold of framewise displacement for 3-mm isotropic voxels, as 
suggested by Soares et al. (2016) or Zhu et al. (2012)) and because of 
abnormally high scores for the depressive symptom scales in the other 
control participant. Thus, the final sample for this study was composed 
of a total of 56 participants, including 27 individuals with MDD (age: M 
= 68.19 and SD = 4.048; 74.1 % of women (nw = 20)). The control 
group included 29 healthy persons age: M = 67.9 and SD = 3.976; 69.0 
% women (nw = 20). In MDD individuals, medication doses were 
maintained throughout the study. 

2.2. Measures 

After providing voluntary, written informed consent, participants 
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completed several cognitive and emotional assessments, including the 
Mini-Mental State Examination (MMSE) (Lobo et al., 1999), the vo-
cabulary subtest of the Wechsler Adult Intelligence Scale, third edition 
(WAIS-III) (TEA Ediciones, 2001), the Geriatric Depression Scale (GDS) 
(Martínez et al., 2002), the Hamilton Depression Rating Scale (HDRS) 
(Conde and Franch, 1984) and the Spielberger State-Trait Anxiety In-
ventory (STAI) (Spielberger et al., 1982). MDD diagnoses were estab-
lished according to DSM-IV-TR criteria, which do not substantially differ 
from the DSM-V criteria. See a further breakdown in the Supplementary 
materials. 

2.3. Procedure 

All participants were evaluated by the same clinical team designated 
for that purpose at Bellvitge University Hospital (Barcelona) affiliated 
with the University of Barcelona. The data registry was completed in 
three sessions: the first two for the questionnaires, scales and clinical 
interviews and the third for brain imaging. The protocol was approved 
by the Ethics Committee of Bellvitge University Hospital, and the 
research was performed in accordance with the ethical guidelines laid 
down in the 1964 Declaration of Helsinki and its later amendments 
(2013). All participants provided written informed consent for their 
participation. 

Data storage followed the anonymity guidelines established by the 
European Data Management, and access was restricted to the accredited 
researchers. Rights to access and modification of the data were pre-
served for all participants in the study as stated in the informed consent 
that they signed. 

2.4. MRI image acquisition and preprocessing 

Each participant underwent an 8-minute resting-state fMRI scan in a 
3 T Philips Ingenia scan (Philips Health care, Best, The Netherlands) 
using a 32-channel head coil. Scanning parameters are reported in the 
Supplementary materials. 

2.5. Regions of interest 

The regions of interest (ROIs) were defined by the Automatic 
Anatomical Labeling atlas (AAL) (Tzourio-Mazoyer et al., 2002). This 
atlas contains 90 cortical and subcortical areas, with 45 in each hemi-
sphere. To acquire the full signal of a given ROI, the signal from within 
ROI voxels should be estimated through principal component analysis 
(PCA) at each time point across the entire time series. In this study, 
however, we focused on DMN ROIs according to the justification pro-
vided in the introduction. In particular, we evaluated the signal from six 
ROIs of the posterior DMN (pDMN) subnetwork, as detailed in Table 1 
and whose spatial localization is represented in Fig. 1. 

2.6. Statistical analysis 

Sociodemographic and clinical data were analyzed with IBM SPSS 
(version 27.0.0). Between-group differences in quantitative variables 
were estimated with Student's t-test, while qualitative variables were 
assessed with the chi-square test. MANOVA was used to explore the 
interaction between a categorical independent variable and two 
continuous dependent variables. The level of significance was set to p <
.05 for all tests. 

Regarding the analysis of the imaging data, once the images were 
preprocessed, correlation matrices were obtained between the six ROIs 
mentioned in Table 1 for each subject evaluated. To avoid the aberrant 
effect of values in some especially high or low ROIs (outliers), the 
jackknife correlation was estimated. Other simulation possibilities exist 
when estimating statistical significance, but for small samples, this 
method is still recommended. This technique consists of calculating all 
the correlation coefficients between all the possible ROI pairs if one of 
the observations is excluded in each iteration. The average of all the 
correlations for each ROI pair attenuates the effects of the outliers. Each 
jackknife correlation coefficient is estimated using the following 
expression: 

θ(ROIi,ROIj) = Jackknife Correlation Mean (ROIi,ROIj) =
1
n

∑n

k=1
ri  

where ri is Pearson's correlation between each pair of ROIs and n is the 
sample number in which the correlations in each pair have been esti-
mated by extracting the record (volume) i. The SE of each average was 
also estimated from the expression: 

SE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n − 1

n
∑n

i=1
(ri − θ)2

√

This allows the confidence intervals' estimation for each correlation 
coefficient. Selecting between the correlation coefficient obtained with 
the whole sample or the coefficient obtained through jackknife estima-
tion depends on the bias value obtained. The bias is defined by the 
following expression: 

Bias = (n − 1)*(θ − r̂)

For each correlation between ROIs, the bias value was obtained, and 
when this value was close to 0, the average jackknife value was used. In 
cases where the bias was different from 0, the lower limit value of the 
confidence interval was used to avoid the probability of a type I error. To 
perform these analyses, the dist R library (3.6.2) was used. The different 
correlation matrices were used as input for the estimation of each SEM 
for each subject in both groups. 

In essence, all structural models are adjusted by minimizing the 
matrix (R − Σ). This expression involves reproduction (Σ) of the initial 
matrix of correlations (R) between ROIs from the combination of the 
estimation result of the parameters with statistical significance. In other 
words, the result shows the best possible model for each subject 
considering the incorporation of the recursive and nonrecursive effects 
between ROIs and incorporating the lag effects already described. A 
much broader description of SEMs applied to this context can be found 
in Guàrdia-Olmos et al. (2018), and since the SEM is exactly the same as 
DCM models under certain conditions, the difference in the current case, 
as already mentioned, is the incorporation of the dynamic effect. 

3. Results 

No statistically significant differences in age or sex were found be-
tween the patients and the healthy controls. Expectedly, patients had 
significantly higher scores on all the questionnaires administered. These 
demographic and clinical characteristics are presented in Table 2. 

The results of the adjustment models for each participant according 

Table 1 
Relationship of ROIs for the construction of the DMN according to the AAL90 
atlas and their coordinates.  

ROI DMN 

ROI AAL90 Region name X Y Z  

1  59 Parietal_Superior_Left − 23  − 60  59  
2  60 Parietal_Superior_Right 26  − 59  62  
3  61 Parietal_Inferior_Left − 43  − 46  47  
4  62 Parietal_Inferior_Right 46  − 46  50  
5  85 Temporal_Middle_Left − 56  − 34 − 2  
6  86 Temporal_Middle_Right 57  − 37 − 1 

Note. All the coordinates were extracted with a sphere radius of 10 mm (Tzourio- 
Mazoyer et al., 2002). 
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to the previously defined groups are displayed in Supplementary 
Table 1. This classification offers a modularity value of − 0.0089, which 
confirms the nonexistence of communities other than the two 
proposed—a group of LLD persons and a group of healthy persons. 

Table 3a describes the number of parameters with statistically sig-
nificant effects for each of the six ROIs, including both synchronous and 
dynamic effects in the group of healthy persons. Likewise, Table 3b 
shows the same type of data in the group of persons with LLD. Fig. 2 

visually summarizes these results with the total of statistically signifi-
cant parameters. 

Considering these results, we analyzed the concordance between the 
two groups regarding the different functions of the effects. We found 
that ROI 4 (parietal inferior right region) and ROI 6 (temporal middle 
right region) presented the highest variation between both groups in 
their synchronous and dynamic connections. ROI number 4 showed 
increased connections in the persons with MDD, but conversely, ROI 
number 6 exhibits greater connections in the control group. In addition, 
ROI 3 (parietal inferior left region) and ROI 5 (temporal middle left 
region) showed mild variation, being higher in the control group than 
the MDD group. The two remaining ROIs, ROI 1 (parietal superior left 
region) and ROI 2 (parietal superior right region), showed highly 
concordant effects with little difference between the groups. 

Notably, these results suggest a heterogeneous distribution of the 
concordance and variation among effects between the groups. More-
over, throughout the six ROIs, we observe that the dynamic effects seem 
to be greater than the synchronous effects. 

Fig. 3 illustrates the characteristic SEMs for each group, including all 
29 participants in the control group (Fig. 3a) and all 27 subjects in the 
LLD group (Fig. 3b), at the same time. 

Given these results, we also included the two best-fitting SEMs from 
each group as examples. These models are presented in Supplementary 
Fig. 1. 

Our data show perfect accuracy in the correct classification of the 56 
subjects in two different groups based on their effective connections 
over the pDMN: Group 1, referred to as the control group (29), and 
Group 2, referred to as the LLD group (27). 

Fig. 1. Spatial localization of the six ROIs studied in the DMN.  

Table 2 
Demographic and clinical data.   

Healthy controls (n =
29) 

Patients (n = 27) Significance 

Sex (M/F) 9/20 7/20 .672a 

Age (mean, SD) 67.9 ± 3.976 68.19 ± 4.048 .789b 

MMSE (mean, SD) 28.90 ± 1.398 26.74 ± 2.177 <.001b,* 
WAIS-III (mean, 

SD) 
45.17 ± 8.502 29.22 ± 7.382 <.001b,* 

GDS (mean, SD) 0.90 ± 1.235 5.74 ± 4.503 <.001b,* 
HDRS (mean, SD) 0.79 ± 1.177 11.56 ± 7.298 <.001b,* 
STAI-S (mean, SD) 7.55 ± 5.748 24.93 ± 13.485 <.001b,* 
STAI-T (mean, SD) 11.24 ± 6.345 29.67 ± 13.419 <.001b,* 

MMSE, Mini Mental State Examination; WAIS-III, Weschler Adult Intelligence 
Scale; GDS, Geriatric Depression Scale; HDRS, Hamilton Depression Rating 
Scale; STAI-S, Spielberger's State Anxiety Inventory; STAI-T, Spielberger's Trait 
Anxiety Inventory. 

a χ2 test. 
b Independent sample t-test. 
* p < .05. 
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Then, we explored the 66 possible connections between the six 
defined ROIs to compare the mean connectivity strengths. First, we 
examined the mean values of each effect considering all participants to 
elucidate which effects showed a significant directional connection. We 
found that among the 66 expected effects, 55 were significant. The 
remaining 10 are listed in Supplementary Table 2. 

Next, we evaluated the differences in the significant effect values 
between the two groups by conducting independent samples t-tests 
comparing the mean connectivity strengths. Among the 55 significant 
effects between ROIs, only eight were found to be significantly different 
between the LLD group and the control group (see Supplementary 
Table 3 for details). The remaining differences were not significantly 
different from zero in either group. In addition, four of the significant 
effects corresponded to dynamic effects, while the other four corre-
sponded to synchronous effects. 

In the control group, 709 significant effects were obtained, while in 
the MDD group, 646 were detected, with a slightly greater number of 

effects in the control group. However, this difference in the number of 
estimated parameters was not statistically significant according to the 
comparison between both means [t = 1.265; df = 54; p = .211; 95 % CI 
difference = − 0.522–2.307]. The analysis of the values of the estimated 
parameters indicated the same lack of statistical significance [t =
− 1.055; df = 54; p = .296; 95 % CI difference = − 0.011–0.003]. 

With respect to the characteristics of the effects, we identified a total 
of 837 dynamic (lag 1) effects and 518 synchronous (lag 0) effects. This 
result clearly indicates a considerably higher number of dynamic effects 
compared to synchronous effects. In relation to the number of connec-
tions, we identified a statistically significant difference and a higher 
effect size between the two types of effects when comparing their means 
[t = 54.346; df = 54; p < .001; 95 % CI difference = 5.486–5.906; r =
0.90]. In the case of the dynamic effects, the average was M = 14.95 (SD 
= 1.407), and for the synchronous effects, the average was M = 9.25 (SD 
= 1.352). 

In addition, the possible interaction between the groups and the type 

Table 3a 
The number of statistically significant parameters in the group of control persons.   

Group number 1: Healthy controls 

ROI1 lag ROI2 lag ROI3 lag ROI4 lag ROI5 lag ROI6 lag ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 

ROI1  29  29  6  1  4  7  0  29  7  2  6  7 
ROI2  6  29  5  29  1  8  6  0  5  29  2  7 
ROI3  29  4  29  3  4  5  29  4  0  4  4  3 
ROI4  4  2  3  29  6  29  4  3  5  0  7  29 
ROI5  8  5  29  5  29  29  8  6  29  6  0  29 
ROI6  0  0  1  1  0  29  0  0  1  1  0  0  

Table 3b 
The number of statistically significant parameters in the group of people with LLD.   

Group number 2: Persons with LLD 

ROI1 lag ROI2 lag ROI3 lag ROI4 lag ROI5 lag ROI6 lag ROI1 ROI2 ROI3 ROI4 ROI5 ROI6 

ROI1  27  27  10  4  6  4  0  27  10  4  8  5 
ROI2  6  27  4  27  4  3  6  0  5  27  5  3 
ROI3  27  10  27  11  9  4  27  10  0  10  10  4 
ROI4  0  0  1  27  5  0  0  1  1  0  5  1 
ROI5  2  2  7  5  27  5  1  2  7  5  0  5 
ROI6  8  8  4  27  8  27  9  9  4  27  8  0  

Fig. 2. The total number of statistically significant parameters for the two groups. Each column represents the number of effects that each ROI receives in a syn-
chronous or dynamic (lag 1) situation. 

R. Cosío-Guirado et al.                                                                                                                                                                                                                        



Journal of Affective Disorders 318 (2022) 246–254

251

of effects were tested through MANOVA, but no statistically significant 
effect was obtained [F = 0.273; df = 2 and 53; p = .762]. 

Therefore, the differences between the control group and the LLD 
group lie in the synchronous and dynamic effects regarding ROIs 4 and 6 
as well as the overall dynamic effects that seem to be greater than the 
synchronous connections. Fig. 4 shows the most distinctive effects 
among the most frequent effects for each group, which allows us to 
visually identify the effects that are repeated the most and to differen-
tiate each group along with the brain areas containing the connections. 

4. Discussion 

In this study, we recruited a group of patients with LLD and matched 

controls to investigate EC changes within the posterolateral DMN by 
comparing the results obtained in the adjustment of dynamic (lag 1) 
SEMs. Ultimately, the main goal was to identify the neural model best 
explaining the dynamic EC within the posterolateral DMN in persons 
with LLD. 

The results obtained in this study lead us to assert that the dynamic 
EC in the pDMN is different between persons with depression and 
healthy controls. In fact, in classification analyses, we were able to 
identify the existence of two separate groups—a group of LLD persons 
and another group of control persons—defined by distinctive activation 
of the mentioned DMN subnetwork. Moreover, with our SEM, we ach-
ieved 100 % accuracy in classifying the subjects into either one of these 
two groups. These results are consistent with those of converging 

Fig. 3. Path diagram representations of each group: (a) the control group and (b) the MDD group. Black paths are at the group level, green paths are at the subgroup 
level, and gray paths are at the individual level; the thickness of the line represents the count. 
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neuroimaging studies over recent years suggesting that posterior DMN 
connectivity alterations are nuclear in MDD (Li et al., 2019; Li et al., 
2017; Li et al., 2016; Pang et al., 2020; Wise et al., 2017; Yan et al., 
2019). Some of them have also obtained high percentages of classifi-
cation between MDD and control persons; for instance, Khan et al. 
(2021) reached perfect accuracy. 

The perfect classification found in this study is based on the existence 
of a network of effects that differentiate between the groups regarding 
ROI 4 (parietal inferior right region) and ROI 6 (temporal middle right 
region). These two ROIs had the largest number of effects in the LLD 
group and the control group. More precisely, our findings indicate that 
connections from ROI 6 (temporal middle right region) to ROI 4 (pari-
etal inferior right region) and from ROI 3 (parietal inferior left region) to 
ROI 4, ROI 2lag (parietal superior right region) and ROI 5 (temporal 
middle left region) are the core set of effects that may lead to the 
pathological cognitive, behavioral and emotional manifestations of LLD. 

Prior evidence has documented that the parietal inferior right region 
is primarily involved in several high cognitive functions, including 
interoception and the representation of subjective feeling states, inhi-
bition of inappropriate responses, social and spatial cognition, reasoning 
and visuospatial attention (Luo et al., 2018; Wang et al., 2016). In MDD 
patients, this overactivation within the parietal inferior right region has 
been associated with impaired control of negative emotions (Wang 
et al., 2016). The enhanced connectivity in the parietal inferior right 
region might reflect a compensatory mechanism that MDD brains 
implement to achieve normal functioning. The characteristics of the 
disease imply impairment in the mentioned functions associated with 
the parietal inferior right region and, therefore, the brain is compelled to 
overactivate to achieve similar performance to that of healthy controls. 

The revised literature does not suggest a robust link between the 
temporal middle right region and depression, which can be interpreted 
in two ways: first, our study method—SEM—has helped identify this 
prominent effect, or second, the effect may be abnormal. Thus, an 
additional study focusing on this specific ROI 6 is required. 

Furthermore, the fact that the increased connectivity of the six ROIs 
studied appears to be distributed between the LLD group and the control 
group leads us to speculate that LLD brains overactivate those regions 
that, due to the nature of the disease, are more affected and thus develop 
a compensatory mechanism to maintain relatively normal cognitive 

performance. This idea of compensation has been postulated by other 
authors in their works, such as Zhang et al. (2018) and Zhu et al. (2012). 

Compared to the number of synchronous effects, the number of dy-
namic (lagged) effects seemed to be greater throughout the six ROIs 
studied. The dynamic component was demonstrated to be the key in 
mapping the directed connectivity within the pDMN in LLD patients and 
constitutes the main difference between persons with LLD and healthy 
persons. This finding is in line with other evidence emphasizing the 
importance of dynamic connectivity to reveal significant aspects of brain 
connectivity in MDD (Bi et al., 2019; Kaiser et al., 2016). However, no 
studies have explored dynamic EC by means of SEM. 

Some aspects of intrinsic network organization in the DMN might 
have been long overlooked. In this study, implementing the use of SEM 
and exploring dynamic connectivity helped us refine the results ob-
tained by other colleagues and thus unveil the specific connections that 
characterize LLD. Here, we were able to elucidate the directed effects 
that discriminate between persons with LLD and healthy persons. 
Beyond the complexity based on the number of associations or its in-
tensity, the shape that the specific connections adopt in their networks 
truly differentiates between people with depression and those consid-
ered to belong to the general population. In other words, what directed 
connections are established among the ROIs in the pDMN? In addition, 
the dynamics in these connectivity patterns are crucial elements that 
describe both groups. 

The present study has some limitations. First, the sample size was 
limited to 56 participants. Therefore, the validity of the findings should 
be further tested in a larger sample. However, our sample is in line with 
the sample sizes of other related papers or even larger. Second, the LLD 
persons were taking various antidepressants and mood stabilizers, 
which is a variable that we did not control for and may have had some 
influence on our findings. This is a limitation in many studies on 
depression and is present in a large part of the revised literature. Third, 
we adopted a categorical perspective of depression—the presence or 
absence of MDD—but MDD is a heterogeneous disorder, and different 
subtypes of depression may produce unique patterns of abnormal dy-
namic connectivity. Finally, we also considered six ROIs of the DMN that 
constitute a small portion of the network even though they are consid-
ered the most representative ROIs. 

However, this study had some strengths that must be highlighted. 

Fig. 4. Spatial representation of the structural equation model for each group considering the most distinctive frequent effects in both groups. Purple paths represent 
the control group, and yellow paths represent the MDD group. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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The dynamic EC provides unique information about communication 
within the pDMN beyond that provided by static EC. Moreover, this 
paper shows for the first time that the structure of a dynamic connec-
tivity network can perfectly discriminate between a group of people 
with LLD and a group of healthy controls. 

The clinical relevance of this work is based on the fact that it provides 
a diagnostic tool complementary to those that already exist. This study, 
along with other compelling findings describing resting-state activation 
in MDD, establishes an emerging approach that might contribute to the 
accuracy of diagnosis. At present, connectivity studies are at an early 
stage, and therefore, we are in the early stages of drawing more specific 
conclusions. However, an important number of papers concerning dy-
namic brain connections have found differences between the population 
with cognitive and mental impairments and healthy persons. More 
research is needed to thoroughly disclose the nature of DMN connec-
tivity and consistently identify an altered pattern of activation in persons 
with LLD that can undoubtedly constitute a biomarker for this disorder, 
which would allow early detection of LLD: even if patients do not show 
behavioral manifestations of their disorder, their brain connectivity may 
present certain properties compatible with characteristic LLD connec-
tivity. This information could create a breakthrough in the early diag-
nosis of LLD and consequently facilitate the development of preventative 
treatments that might attenuate the progression of more severe 
symptomatology. 

In summary, we provide new insight into the neurobiology of LLD 
that underlines the relevance of dynamic connectivity. The distinction 
between patients with LLD and controls is based on three aspects: the 
importance of ROIs 4 and 6, which seem to be the most distinctive 
among the subnetwork; the shape that the specific connections adopt in 
their networks, or in other words, the directed connections that are 
established among the ROIs in the pDMN for each group; and the 
number of dynamic effects that seem to be greater throughout the six 
ROIs studied. The network models that we developed according to the 
aims of the SEM describe a pattern of activation in the pDMN that 
constitutes a biomarker that can discriminate the levels of cognitive 
ability—those attributed to individuals with depression and healthy 
controls in this case. 
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