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Abstract

Quantum Annealing (QA) is an alternative to gate based Quantum Computation (QC) to
solve problems not efficiently tractable on classical devices. Right now, QA is advantageous
over QC in the noisy intermediate-scale quantum (NISQ) era for its lesser need of error
correction codes and the resource overhead they suppose. However, hardware limitations
in terms of connectivity and feasible interactions create incompatibilities between the chip
and the structure of the problem, which leads to what is called the graph embedding
problem. To circumvent this obstacle, we first analyse the current solutions based on
heuristic algorithms and their limitations. We then explore the potential of a digital
assisted annealing (DaA) approach. The novelty of this technique relies on the fact that
the state generated by the quantum annealer is used as the initial state of the variational
circuit, the role of which is to approach a target solution the annealer could not reach by
itself due to its hardware limitations. We complete this thesis with a detailed study on the
performance of our approach for different scenarios and branches we would like to explore.
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1 Introduction
Quantum computation (QC) harnesses quantum mechanical effects such as superposition,
interference, and entanglement, to bring potential advantages over classical computing
(CC) [1]. The reason QC was proposed as an alternative to CC was to solve problems
out of reach for CC [2]. Among others, some are based on combinatorial optimisation
or satisfiability, such as travelling salesman or maximum independent set, while others
relate to the direct simulation of quantum systems, such as the electronic structure of
molecules for chemical simulations. To realise QC, different computing paradigms are being
developed. One of the most popular ones is the circuit or gate model, a digital paradigm
in which the problem is encoded into a sequence of quantum gates. Its algorithms aim
to create the circuits that are applied to an initial easy-to-prepare state to yield a final
state encoding the solution. It is an universal QC paradigm, meaning that it can encode
any arbitrary quantum problem. Then we have quantum annealing (QA) and adiabatic
quantum computation (AQC), where the problem is encoded into the ground state of a
final Hamiltonian. Both are analogue and universal, as long as you can construct arbitrary
Hamiltonians [3], and while AQC is constrained to adiabatic evolution, QA also allows
for diabatic transitions. However, currently available QA and AQC implementations only
encode a restricted type of Hamiltonian, thus they are not universal. All these paradigms
are in current development and their success relies on the improvement of the hardware.
In the AQC framework, we are seeking an approach that is not restricted to the classical
Ising model, which is the typical limitation, but that also works well with quantum models.
Moreover, between gate QC and AQC, the latter is expected to be more advantageous in
the Noisy Intermediate-Scale Quantum (NISQ) [4] era, where only moderately sized and
noisy devices are available, for being more robust against errors [5]. We are still quite far
from reaching the fault-tolerance quantum computing era for which we will have enough
quantum resources and control to correct errors from digital quantum circuits, and here
we choose to explore the AQC/QA paradigm instead, which from now on we will generally
refer to as quantum annealing (QA).

1.1 Adiabatic model of computation
The AQC model [6] uses the adiabatic theorem [7] to find the global minimum of a function
by taking advantage of quantum fluctuations to avoid getting stuck on local minima. An
algorithm is constructed by taking an easy-to-prepare initial Hamiltonian, Hinit, and a
desired final Hamiltonian, Hfinal, encoding the problem solution in the ground state of the
latter. The system is evolved in a slow manner by interpolating between Hinit and Hfinal

such that for t ∈ [0, T ], with T being the total running time, the system’s Hamiltonian
takes the following form:

H(t) = (1 − s (t)) Hinit + s (t) Hfinal (1)

where the schedule, s, increases monotonically from s(0) = 0 to s(T ) = 1 alongside the
evolution path: s : [0; T ] ⇒ [0; 1]. Time complexity is determined by the minimum spectral
gap, the difference between the two lowest energy levels, of H(T ). When the spectral gap is
small, the Hamiltonian has to be evolved more slowly. To ensure a high success probability
T needs to be lower bounded by T = O

(
1

g2
min

)
where gmin is the minimum spectral gap.
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1.2 Problem encoding
Before solving any quantum or classical problem on a QA device it has to be encoded into
a Hamiltonian that describes it. Hardware capabilities may limit which Hamiltonians we
can encode, while the aim is to be able to encode arbitrary ones to reach universality by
using more powerful hardware and algorithms. For example, a fermionic Hamiltonian can
be encoded into a spin Hamiltonian with a Jordan–Wigner transformation. On the other
hand, many classical combinatorial optimisation problems can be mapped into Quadratic
Unconstrained Binary Optimisation (QUBO) [8], which only requires a resourceful but
restricted type of Hamiltonian that has been already easily implemented, the classical
Ising model. Solving these problems allows us to solve any other NP-complete problems
as polynomial time mappings among them exist [8]. Let B = {0, +1} be the binary, N
natural and R real sets. Given B, N and R, a general QUBO problem can be defined as a
quadratic polynomial over binary variables with quadratic and linear terms:

fQ(b) =
n∑
i

Qi,ibi +
∑
i<j

Qi,jbibj (2)

The QUBO binary variable b ∈ BN (N ∈ N) forms the problem variable, the vector of
bi ∈ B. Coefficients Qij ∈ R for 1 ≤ j ≤ i ≤ n are QUBO parameters. Solving it means
finding the vector b∗ that minimises fQ. Then the first step of the quantum formulation of
an optimization problem is the mapping of its QUBO variables bi ∈ {0, +1} into the Ising
binary variables zi ∈ {−1, +1}. Applying the mapping bi ⇒ 1−zi

2 yields its Ising equivalent
(see appendix 6.1 for more details):

b∗ = arg min
b∈{0,1}n

fQ(b) ≡ arg min
z∈{1,−1}n

∑
i

hizi +
∑
i<j

Jijzizj (3)

One typical example of QA Hamiltonian to minimise an Ising problem Hfinal would be:

H(t) = −(1 − s(t))
(∑

i

σ̂i
x

)
︸ ︷︷ ︸

Initial Hamiltonian

+ s(t)

 n∑
i

hiσ̂
i
z +

∑
⟨ij⟩

Ji,j σ̂i
zσ̂j

z


︸ ︷︷ ︸

Final Hamiltonian

(4)

where hi, Jij ∈ R are the qubit biases and coupling strengths, respectively. σ̂i
x = I ⊗ I ⊗

. . .⊗σx ⊗ . . .⊗I ⊗I represents the Pauli matrix σx acting in the ith position, and similarly
for σ̂i

zσ̂j
z. The pairs of variables ⟨ij⟩ that take nonzero coefficients are called neighbours.

Hinit is usually chosen to comprise of transverse magnetic fields, Hinit = −
∑

i σ̂i
x, so that

the ground state is an equal superposition of all states in the computational basis.

It is important to note that both classical and quantum problems can be regarded as a
graph, G = (NG, EG) (see appendix 6.2). For the classical Ising, each variable zi represents
a node ni ∈ NG with weight hi, and we draw an edge e = {zi, zj} ∈ EG if and only if its
corresponding weight Jij is nonzero. For arbitrary quantum models we proceed similarly
but now keeping in mind that we have additional interactions and local terms σx, σy or
σz that are also encoded as nodes and edges, respectively. The quantum chip can also be
regarded as a graph, D = (ND, ED), where each node ni ∈ ND corresponds to a qubit,
and each edge ij ∈ ED to the presence of a physical coupler between qubit i and j. Once
both problem and chip graphs have been constructed they need to be mapped one to the
other: this is called the graph embedding problem. However, mapping issues may appear
due to discrepancies in the topology and type of connections required on both problem
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and hardware graphs. These come from the fact that so far we can only fabricate devices
with a limited density of connections due to engineering challenges. Moreover, for arbitrary
quantum models we face additional difficulties related to the hardness of implementing σx

and σy interactions in comparison with σz in certain hardware platforms.

1.3 Current approaches and limitations
There is still no favoured hardware implementation for QC, but common factors among
them are the constraint on the number of connections each qubit can have and the lack
of tunable interactions that go beyond Ising. However, for QA superconducting qubits [9]
are preferred. In this platform, placing the qubits in planar chips makes it challenging
to have high density of connections due to limited space and cross-talk. In other words,
connectivity is far from all-to-all, being the identification of efficient graph embeddings on
the available hardware topologies one of the main bottlenecks for QA.

The embedding of a graph involves finding the graph minor of G in D to act as a
logical graph. This means that G can be embedded in D by deleting edges and nodes
and contracting edges [10], so D has to be equal or bigger than G. However, determinis-
tically finding it is an intractable problem. To deal with this, investigations have mainly
focused on researching fast and high-quality heuristics, being the MinorMiner algorithm
from Dwave one of the most popular ones [11]. This is a temporal solution for non-perfect
graph embedding due to its non-scalability. For this mapping, each logical qubit is repre-
sented by a tree of ferromagnetically-coupled physical qubits called logical qubits or chain
T =

∑
i qi for i ∈ chain to keep them having equal binary values. Theoretically, by set-

ting the inner chain coupling Jij = −∞, they ensure that qi and qj take the same value
during the annealing, but current devices do not allow Jij to take these values. Moreover,
if chain strength is too large, the chains themselves will interfere and change the problem.
Conversely, if it is too small, chains will have different values for each qubit and alter the
problem. This creates the parameter setting problem for their chain embeddings [12], for
which appropriate values for hi and Jij need to be set. Furthermore, for long chains it is
challenging to find chain strengths powerful enough to balance other problem terms. For
a summarised analysis of this algorithm see appendix 6.3.

Let us now explore the limitations of this approach. First, it is heuristic, so success is
not guaranteed, neither is the non-existence of an embedding in case of failure. Second,
each run can result in different embeddings, so the whole process is repeated and the best
solution is selected, which is the one using fewer qubits and shorter chains. Third, it
depends heavily on the fact that if G is smaller than D so there are numerous distinct G
minors in D. Fourth, it is not scalable, as its time complexity is exponential, because it
relies on a exponentially increasing number with ND of shortest path distance calculations
that need to be recomputed in each iteration due to the changing weights. Fifth, it is
tailored to DWave’s Chimera topology, which makes it quite restrictive, as this graph has a
large treewidth and automorphism group, reducing the number of choices in their heuristic
method [11].Moreover, the graph is sparse, meaning shortest paths can be computed in
linear time, but for general graphs, the scaling of this shortest path search is worse. Sixth,
we also found something odd regarding how it behaves with different hardware topologies.
For the 1st nearest neighbours of the grid graph, with degree 4, this approach will not
find embeddings for anything larger than a complete 5 node graph K5 even for huge
grids. However, it does find embeddings for a less connected random graph of degree 3
(see appendix 6.3.4) and a 1st and 2nd nearest neighbours connected grid. Seventh, the
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Figure 1: Workflow of the different NISQ approaches to solving QUBO (all) and quantum (green and
red) problems. The red dashed line belongs to DaTA and is what differences it from DaFA.

heuristic is restricted to embeddings into Ising models, so it can not work with arbitrary
quantum problems. Finally, for the lab implementation the following issues, derived from
this embedding strategy, are detrimental to performance [13]. First, the required precision
and control over the setting up of hi and Jij makes the problem subject to control errors.
Second, limitations on the tunability of hi and Jij relative to thermal scales KbT bound the
range of parameters that can be used in the search for an embedding. That poses a problem
for systems with very small gaps, where very low temperatures, currently unreachable,
would be required in order to obtain an acceptable embedding solution.

1.4 Novel approach
In the pursuit of universality in the NISQ era, we choose a hybrid approach that allows
us to target any desired Hamiltonian. For this we take the most of the two main models
of QC and propose a hybrid Digitally-assisted Tunable/Fixed Annealing (DaTA/DaFA)
or more generally, Digitally-assisted Annealing (DaA) algorithm (red flow of Fig. 1). We
use QA as a first part of our approach as it is advantageous over gate QC for being less
prone to control errors. We then explore the use of variational quantum circuits inspired
on VQE [14](green flow of Fig. 1) to fix the connectivity issues and the lack of certain
interaction types on our device. The novelty of those approaches rely on the fact that
the state generated by the quantum annealer is used as the initial state of the variational
circuit, the role of which is to approach a target solution the annealer could not reach by
itself due to its hardware limitations. We design this approach with hopes of improving
the reach, efficiency and accuracy of heuristic-based embeddings (blue flow of Fig. 1).

2 Variational Quantum Eigensolver, VQE
VQE is a variational hybrid quantum-classical algorithm [15, 16] where a parameterised
quantum circuit or ansatz (UL (θL) . . . U1 (θ1)) is applied to an initial state ρ0 to prepare
a complex density matrix ρ(θ) = UL (θL) . . . U1 (θ1) ρ0U †

1 (θ1) . . . U †
L (θL) by sequentially

minimising a classical cost function that is constructed out of measured quantum observ-
ables. Its goal is typically to compute the ground state of a Hamiltonian H and θ is the
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collection of parameters that describe the parameterised gate operations of the circuit,
U(θ). VQE is commonly used for Quantum Chemistry applications like finding the ground
state of molecular systems. Its characterisation, gate placement and operation order, is
purely classical, subject to numerical optimisation with classical assistance. VQE uses the
variational principle which states that the average energy of the ansatz is strictly larger or
equal than the energy of the sought ground state, λmin ≤ E(θ) to build its cost function
C(θ) = E(θ) = Tr(ρ(θ)H) as the expected energy, which is averaged over all states. Solv-
ing for θopt = argminθ E(θ) gets a good ground state approximation.

However, VQE faces the exponential size of the Hilbert space that makes any approach
that searches paths characterising the quantum circuit in the parameter space handle
tiny gradients. This may cause classical optimisers to get stuck on local minima or lost,
especially with large problems and more complex energy landscapes. Another limitation is
circuit depth coming from problems that may require so many layers that they go beyond
the coherence capabilities of the devices. On the other hand, QA is guaranteed to find the
ground state of a Hamiltonian, at the expense of a very slow evolution. Both methods’
pros and cons have been reviewed in [17], and here we aim at combining the advantages
of both to solve the graph discrepancies between the problem and hardware, as well as for
engineering missing interactions not present in the hardware that the problem may require.

3 Digitally-assisted Annealing, DaA
We propose DaA as an extension of VQE that uses adiabatic or diabatic evolution to
improve efficiency and get rid of the hardware limitations in terms of connectivity and
interaction types of using typical QA alone. It is an analogue-digital algorithm because
we tune the chip that uses QA (analogue model) to generate initial states for the VQE
(digital model). The main difference between our algorithm and traditional QA is that
the lack of certain type of interactions and density of connections is handled by the digital
part while the analogue bit allows us to prepare a favourable initial state ρD. That way,
we also hope to make the required circuits smaller while reducing the accumulated errors
that a high amount of gates introduce in NISQ devices. In this method, we first create
the initial Hamiltonian Hinit of the QA algorithm which is implementable in an available
Ising-based annealer that is to be driven to an Hfinal, defined in the hardware graph D,
whose parameters hi and Jij are tunable for DaTA and fixed for DaFA. That means, DaFA
is the same as DaTA but without optimisation happening in the annealer. So at every step,
the parameters θ divided on those from the circuit, θc, and those from chip Hamiltonian ,
θa, are optimised classically for DaTA while for DaFA that only happens for θc. At first,
the parameters are just picked randomly from a uniform distribution over a given interval.
Our aim is to modify Hfinal, which we will just call H form now on, such that after
applying a complex enough U(θ) its eigenstates |ηk⟩ with eigenvalue ηk are mapped to the
arbitrary problem Htarget, defined as the graph G, with eigenstates |λk⟩ and eigenvalues
λk. It is important to note that for degenerate cases the optimal U(θ) will not be unique,
as eigenstates need only be mapped in the degenerate target subspace. The general outline
of the method is as follows:

1. Use the annealer to prepare a thermal state ρD(θa).

2. Apply the parameterised quantum circuit U(θc)ρD(θa)U †(θc).

3. Measure our cost function: C(θ) = Tr[HtargetU(θc)ρD(θa)U †(θc)]
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4. Optimise C(θ) by tuning θ in DaTA or just θc on DaFA with the classical optimiser
of choice (see Appendix 6.5).

We assume ρD to be well described by a Gibbs state ρH = 1
Z exp [−βH] with β = 1

KBT .
The (effective) inverse temperature β gives us a measure of how noisy the process is. For
a quantum mechanical discrete canonical ensemble, the partition function Z is defined as
the trace of the Boltzmann factor: Z = tr(e−βH). Let us note that DaA works for any
arbitrary problem and encoding unlike DWave’s approach, i.e. our Htarget can take the
form of any arbitrary Hamiltonian. In order to evaluate the performance of our method,
we conduct the experiments on a classical simulator of an ideal quantum computer in the
limit of infinite measurements, eliminating quantum uncertainty. These results can be
complemented in the future by simulating a finite amount of measurements emulating QC
indeterminacy. The code used Networkx [18] for the representation of graphs and Qibo [19]
for quantum circuits and optimization. As we only analysed small circuits, less than 10
qubits, the overhead from casting arrays to GPU was larger than just executing on CPU.

3.1 Hardware and target problem details
Current quantum devices have limited capabilities, so identifying hardware-efficient ap-
proaches and algorithms that make the most out of them is crucial. We take this into
consideration and in our simulations we do not allow the presence of any two-qubit gates
that cannot be implemented via the native chip connectivity, something that would require
costly additional SWAP operations. To leave more room for the optimization we generally
assume the hardware chip to have more qubits than required by the problem to be encoded.
The additional qubits are ancillary qubits identified with the subscript A and they will in-
troduce degeneracy to the system after the embedding. We then use the subscript T to
denote the target qubits upon which G is acting. We note that as long as we are consistent
with the qubits’ labelling in the cost function and partial trace, we can choose any qubits
as target ones. TrA and TrT stand for the partial traces over these respective degrees of
freedom. After tracing out the ancillary system, we end up with a reduced density matrix
we called effective Hamiltonian Heff , defined by:

ρT (θ) = TrA

[
U(θ)ρDU †(θ)

]
∼ exp[−Heff (θ)] (5)

We can conceive Heff as the Hamiltonian acting on sub-system T after tracing the ancillas
A. The cost function C(θ) takes into account this discrepancy in dimensions as follows:

C(θ) = Tr
[
U(θ)ρDU †(θ)(Htarget ⊗ 1A)

]
= Tr

[
TrA[U(θ)ρDU †(θ)]Htarget

]
(6)

We will benchmark this approach asking two different questions. First, can our method
allow us to simulate more complex connectivities than the device’s one? And second, can
our method simulate problems encoded in Hamiltonians that go beyond the Ising model?
As Ising interactions are relatively easy to engineer in superconducting flux qubit devices,
one of the most common current implementations of quantum annealers. For this we
assume our hardware to be of this type and be described by the following Hamiltonian:

HHardware =
∑
i∈V

hizi +
∑

i,j∈E

Jijzizj zi = (1 − σz
i ) /2 (7)

We consider two problems with different associated Hamiltonians: a classical Weighted
Maximum Independent Set (WMIS) problem (see appendix 6.6) and the simulation of an
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arbitrary quantum XX-Y Y -Heisenberg model:

Hclassical =
∑
i∈V

hizi +
∑

i,j∈E

Jijzizj (8)

Hquantum =
∑
i∈V

hizi +
∑

i,j∈E

Jijxixj + Jijyiyj (9)

3.2 Circuit ansatzes
We want our circuits to be highly expressive using the minimal number of gates to reduce
the impact of errors [20]. To attain this, it is important that the circuit is chip-motivated
and for that we introduce what is known as hardware-efficient ansatzes. These ansatzes
include two-qubit gates that are part of the native gate set, i.e. two-qubit gates are applied
only between qubits pairs that have an existing physical link. This allows to maintain the
circuit depth, as no additional SWAP or Bridge gates to logically connect non-physically
linked qubits are required. This is not the only way to construct ansatzes given that
those are often problem-dependent, with different ways to organise the gates and their
parametrisation [20][18]. For our analysis the hardware-efficient ansatz is enough to bench-
mark DaTA vs DaFA to give a solution to the lack of connectivity and interactions available.

After these considerations, we build the circuit from single-qubit parameterised gates
and a fixed two-qubit gate blocks. One sequence of blocks is called a layer, and usually,
several of them are used. For the single-qubit gates we choose parameterised general
single-qubit rotations U3 and for the two-qubit gates, Controlled-NOT gates (CNOT). For
each block, see Fig. 2, a), we place 4 U3 gates, with a total of 12 different parameters to
optimise per block. For our ansatz, we observe that by combining the consecutive single-
qubit rotations into just one the performance improves from reducing its parameter count
without any downsides. We called this the reduced blocks ansatz that is shown in Fig. 2, b).
The effect of alternating control and target qubits among layers for small-scale problems
was also studied, but we did not appreciate any relevant changes.

U3(θ, ϕ, λ) =

 e−i(ϕ+λ)/2 cos
(

θ
2

)
−e−i(ϕ−λ)/2 sin

(
θ
2

)
ei(ϕ−λ)/2 sin

(
θ
2

)
ei(ϕ+λ)/2 cos

(
θ
2

)  CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Figure 2: a) Building block for the variational circuit. b) Variational layers for a 2x2 1st nearest
neighbours grid Fig. 3 d) for the reduced block ansatz with an average of 33 parameters per layer.
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3.3 Efficiency indicators
To evaluate performance we study two different efficiency indicators. First, we evaluate
the state probability, Pi, as the probability of measuring a state belonging to the ground
(i = 0) or one of the excited subspaces (i > 0). Then, the state fidelity, Fi, which measures
how close our states, ground (i = 0) or excited (i > 0), are to the target ones:

Pi = Tr [ρT ϵi] Fi = ⟨τi|ϵi|τi⟩ (10)

where ϵi =
∑

k |λk
i ⟩⟨λk

i | represents the degenerate target subspace i, and |τi⟩ are the eigen-
vectors extracted from ρT with eigenvalues τi arranged in ascending order τi ≤ τi+1. We
assess both indicators for the ground state by plotting P0 and F0 alongside the normalised
cost function CN (θ) = C(θ)+|λ0|

|λ0|+|λmax| versus the amount of circuit layers of our ansatz. We

also represent the final thermal state ρF =
∑

i

∑L

l
Pi∗|τil⟩⟨τil|

L , where L is the degeneracy of
each target subspace, in a histogram alongside with the target solution |λ0⟩ or solutions∑K

k |λk
0⟩/K (here assumed to be known) where K is the degeneracy. The algorithm’s

success is also quantified by the computational basis bitstring probability distribution and
how it overlaps with the target solution. For Ising problems, to retrieve the solution we
just need to find the most probable state through measurement statistics in the Z basis, as
the solution is a single bitstring. However, for quantum Hamiltonians even it the bitstring
probabilities match with the target ones, the state may not be correct due to the lack of
phase information. Nevertheless, this match is a good sign, but for the full state informa-
tion we need to look into measurements in a different basis. In the next section, we will
use these metrics to compare the performance of DaFA and DaTA algorithms for different
Hamiltonians, degenerate and non-degenerate target ground states and different sizes of
both the problem and the chip.

4 Results and discussion
Let us now move to the results of the variational optimisation and their analysis. All
the results here have been averaged over 5 realisations and their uncertainties are shown
as error bars, sometimes too small to be noticed. For each of these 5 realisations we
initialise both the circuit and the chip with a set of random values chosen uniformly from
[−2π, 2π]. We label the number of layers of the circuit, i, as di and the total number of
required parameters, j, as θj . Then we refer to Ki as a complete graph (i.e. all-to-all
connected), Ri as a randomly generated graph with 2/3 probability of edge creation, Gi

as a grid graph and Ci as a chain graph, being i the number of nodes. Both the chip
and problem graphs will be showed next to the the F0 and P0 for clarity. The weights of
the target problem are taken to be integers selected randomly from the following uniform
distributions: hi ∈ {−2, −1, 0} for the nodes, Jij = 2 for the Ki edges and Jij ∈ {1, 2}
for Ri edges. The initial chip for DaTA and fixed chip for DaFA is parameterised like a
Ki graph. Finally, we bound the parameters of the chip Hamiltonian (considered to be an
Ising Hamiltonian), hi, Jij , ∈ {−3, 3}. Finally, the plotted lines were displaced slightly on
their corresponding X and Y axis to avoid overlapping with the others.

4.1 Temperature dependence on the optimisation
We start by analysing the effect of temperature by changing β, which is the inverse tem-
perature, for the simple case displayed in Fig. 3. In this analysis we review three different
scenarios: β = 5, β = 1 and β = 0.25. For β = 5 the ground state probability approaches
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Problem Hardware

Figure 3: a) K3 target problem with b) non-degenerate and c) degenerate ground-state solutions. d)
Hardware layout, G4

Non-degenerate
Ising

g) h)

Figure 4: Temperature analysis for a non-degenerate solution K3 Ising target Hamiltonian to be
embedded into G4 hardware graph using DaFA for d1 and θ36. a) P0 b) F0. All bitstring overlaps and
Pi for c),f) β = 0.25; d),g) β = 1 and e),h) β = 5, respectively

the unity, for β = 1 the ground state predominates over all the other excited states and for
β = 0.25 some excited states are more probable than the ground state. The tests are first
conducted using DaFA for non-degenerate K3 Ising target problems to be embedded into
G4. What we observe in Fig. 4, b) is that for any of the temperature values considered
we manage to learn the ground state with high fidelity, in spite of thermal noise. In Fig. 4
a), f) and g) we observe clearly how the result comes from sampling the noisy state and
not just the ground state of our device. We now compare the performance of DaTA and
DaFA for a non-degenerate K3 Ising and Heisenberg target Hamiltonian ( a) and b) in

9



Figure 5: DaTA vs DaFA for non-degenerate K3 into G4 with variable temperature. a) P0 for Ising
with DaTA (d1, θ44) vs DaFA (d1,θ36), b) P0 for Heisenberg with DaTA (d2, θ68) vs DaFA (d2,θ60),
deeper circuit because this is a harder case that requires it to start behaving optimally.

Fig. 5, respectively) that has been embedded into a G4 hardware graph for different β and
observe similar behaviour for both Hamiltonians provided we have enough circuit layers:
as we increase inverse temperature the ground-state probability increases. Importantly, we
observe that DaTA learns to reduce the thermal noise by maxing out the parameter ranges.
For the rest of the results, we choose β = 1 as it yields good results while still considering
the presence of moderate thermal noise that makes our investigations more realistic.

4.2 Simple K3 target problem case
Now, we analyse the performance of DaA for both Hamiltonians and different degeneracy.

4.2.1 Non-degenerate Ising and Heisenberg target Hamiltonians

Figure 6: DaTA vs DaFA for non-degenerate K3 Ising into G4. a) P0 b) F0. All bitstrings overlaps for
c) DaTA with (d1, θ44), d) DaTA with (d3, θ92), e) DaFA with (d1, θ36), f) DaFA with (d3, θ84).
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Figure 7: DaTA vs DaFA for non-degenerate K3 Heisenberg into G4. a) P0 b) F0. All bitstrings overlaps
for c) DaTA with (d1, θ48), d) DaTA with (d3, θ92), e) DaFA with (d1, θ36), f) DaFA with (d3, θ84).

We start comparing the performance of our approaches for target problems with non-
degenerate solutions. For the Ising case in Fig. 6, DaTA gives slightly better overlaps than
DaFA for any circuit depth. However, DaFA is generally faster in terms of number of
optimisation steps required to converge. If we move to the Heisenberg case in Fig. 7, we
observe a big performance increase for d2 with both approaches. We believe this is because
generally the circuit needs to be more complex to go from the chip ZZ interactions to XX
and Y Y ones. DaTA thermal noise removal is key when working with quantum Hamilto-
nians because it allows DaTA to get an exact result with high probability of measuring it
while DaFA only manages to get a noisy result, as shown in Fig. 7.

4.2.2 Effect of degeneracy in the solution

We conduct an analogous analysis as the previous one but with degenerate solutions. In
Fig. 8, the problem ground state is triple degenerate, each solution corresponding to equally
likely single bistrings whose fidelities are represented with different orange tonalities in inset
b). We highlight that for circuit layers larger than d3 DaFA reaches enough expressability
to map all 3 solutions, while this happens at d4 for DaTA. Here we observe that once the
performance indicators have saturated there is not point in increasing the circuit depth
further as the optimisation becomes faultier as shown in Fig. 8 e),f) and in the slight
decrease of F0. For the Heisenberg case, the problem ground-state is double degenerate
with contributions from several bitstrings as they are superposition states. Now, both
algorithms require d4 to return useful overlaps as we see in Fig. 9, b). However, as in the
last Heisenberg case, DaTA returns the solution state with high probability while DaFA
carries the thermal noise. To conclude, degenerate cases pose a greater challenge as the
system needs to learn more states, but it is ultimately able to do so.
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Figure 8: DaTA vs DaFA for degenerate K3 Ising into G4. a) P0 b) F0 for the 3 degenerate states
(different orange shades). All bitstrings overlaps for c) DaTA (d3, θ92), d) DaTA with (d4, θ116), e)
DaFA with (d3, θ84), f) DaFA with (d4, θ108).

Figure 9: DaTA vs DaFA for degenerate Heisenberg K3 into G4. a) P0 b) F0 for the 2 degenerate
states (different orange shades). All bitstrings overlaps for c) DaTA with (d1, θ44), d) DaTA with (d4,
θ116), e) DaFA with (d1, θ36), f) DaFA with (d4, θ108).

4.3 Scaling of the problem and different topologies
We present the chips and problems graphs considered for the scaling analysis in Fig. 10.
Note that as we scale the problem the edge count increases at a faster rate than the node
count, and this is where the hardness comes from. It is useful to have in mind that K4 is
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composed of 6 edges, R5 of 8, R6 of 11 and R7 of 14. On the other hand, G5 only has 5
edges; G6, 7; G7, 8 and C7, 6.

K4

R7R6R5 e) f)

Figure 10: Labelled chip topologies for a) G5, G6, and G7 b) C7. Labelled (left) and weighted (right)
non-degenerate solution problem graphs for c) K4 d) R5, e) R6, f) R7. Note, f) has different weights
for non-degenerate Ising case.

4.3.1 Scaling up the Chip

Figure 11: G4 vs G6 Ptr[0-1] for non-degenerate K4 Ising using DaFA. a) P0 b) F0. Most probable 5
bitstrings overlaps for c)G4 with (d1, θ36), d) G4 with (d3, θ84), e) G6 with (d1, θ63) and f) G6 with
(d3, θ147).

First, we study the chip size effect. For this purpose, we fix our problem to be K4 into
Gi chips. In Fig. 11 we compare the embedding of the problem into G4 with G6 with DaFA.
F0 for the G4 quickly reaches unity, while G6 only gets good values at d3. We find that
the performance of P0 is moderate for both graphs, but the probability of the larger graph
tends to increase with circuit depth. Nevertheless, DaTA performs much better for these
cases: in Fig. 12 the smaller grid performs so well that it leaves no room for improvement
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Figure 12: G4 vs G6 Ptr[0-1] for non-degenerate K4 Ising using DaTA. a) P0 b) F0. Most probable 5
bitstrings overlaps for c) G4 with (d1, θ44), d) G4 with (d3, θ92), e) G6 with (d2, θ118) and f) G6 with
(d3, θ160).
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Figure 13: G4 vs G6 Ptr[0-1] for non-degenerate K4 Heisenberg using DaFA. a) P0 b) F0. Most
probable 8 bitstrings overlaps for c)G4 with (d1, θ36), d) G4 with (d3, θ84), e) G6 with (d1, θ63) and f)
G6 with (d3, θ147).

for the larger one and they end up performing similarly, aside from statistical variations.
Moving on to the harder Heisenberg case, we show in Fig. 13 that DaFA is not capable of
finding the solution for the limited circuit depths considered, neither can we see the bigger
system perform better. Meanwhile, with DaTA (see Fig. 14) we almost find an exact

14



Figure 14: G4 vs G6 Ptr[0-1] for K4 non-degenerate Heisenberg using DaTA. a) P0 b) F0. Most
probable 8 bitstrings overlaps for c) G4 with (d1, θ44), d) G4 with (d3, θ92), e) G6 with (d1, θ76) and
f) G6 with (d3, θ160).

solution with G4 while for G6, if the tendency is kept, an extra layer would be needed
to match the same performance. We also note how similar looking P0 and F0 are due to
DaTA’s temperature-decreasing effect, which will also be observed in many of the following
DaTA graphs. To sum up, DaTA keeps outperforming DaFA in this scenario while the
increase of ancillary qubits in the chip seems to affect negatively the performance of the
optimisation but further investigations are required to draw definitive conclusions.

4.3.2 Scaling up the Problem

Figure 15: Non-degenerate Ising problems mapped into G7(Ptr[1,5,6], Ptr[0,1], Ptr[1]) with DaTA. Most
probable 5 bitstrings overlaps with (d1, θ87) on a) K4, b) R5, c) R6, e) R7; (d3, θ183) on d) R6, f) R7.

We now move on to the analyse the effect of problem size. In Fig. 15 we consider the
Ising case for DaTA, G7 as the hardware graph and the problem graphs are shown in Fig. 10
c), d), e) and f). For the small problems (K4, R5) we already reach good solutions with d1,
while for R6 the same probabilities require deeper circuits and for R7 we are not able to
recover the solution due to the stark connectivity difference. We perform a similar analysis
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Figure 16: Non-degenerate Heisenberg problems into G7(Ptr[0,5,6], Ptr[0,1], Ptr[1]) with DaFA vs
DaTA. F0 for a) K4, b) R5, c) R6, d) R7.

for the Heisenberg case as shown in Fig. 16. As the complexity of the problem increases,
the performance of both DaTA and DaFA tends to decrease considerably. We see the same
behaviour as in the other cases where DaTA learns better than DaFA.Then, we observe
that the K4 case has the lower cost function but, it did not perform as well as the others
because we had a small gap in Htarget where the optimiser got stuck. So asides for this
specific K4 case, as the problem complexity increases the overall performance decreases.

4.3.3 Comparing chip topologies

Finally, we compare the performance with different chip topologies, grid and chain. In
Fig. 17 we focus on the embedding of a R5 Heisenberg problem into a chain chip (C5 and
C6) and we inspect the performance of DaTA after partially tracing qubits on different
positions (2 and 3). We then compare the results with the case where chip and problem
have the same size. Further analysis is needed but we can conclude for now that it does
not matter which qubit is traced out, since as the circuit grows they all seem to converge.
Moving on to the grid and chain comparison we observe slight better performance for
the Ising case on K4 and R5 problems with DaFA for the grid (G4 vs C4 and G5 vs C5,
respectively) which is a more densely connected topology than the chain. In Fig. 18 we
show this same behaviour with DaTA and a harder K4 and R5 Heisenberg problem. We
conclude by comparing G4 and C4 that the former has smaller deviations and has better
performance. C7 was also added into the comparison hoping than by adding extra ancilla
qubits it could compete with G4 but we do not see increase in P0 or F0 as we add more
layers. We believe that the algorithm might be getting trapped in a local minima that is
very close in energy to the true solution, as indicated by the good behaviour of the cost
function. To sum up, the sparse chip topologies perform worse than denser ones. However,
further work is needed to have a complete understanding of the effect of the chip topology.
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Figure 17: Chains for non-degenerate R5 Heisenberg using DaTA a) P0 b) F0. Most probable 10
bitstrings overlaps for c) C5 with (d3, θ93), d) C6 Ptr[2] with (d3, θ116), e) C6 Ptr[3] with (d3, θ116).

Figure 18: G4 vs C4 vs C7 Ptr[1-3-5] for non-degenerate K4 Heisenberg using DaTA a) P0 b) F0. Most
probable 8 bitstrings overlaps for c) G4 with (d3, θ92), d) C4 with (d3, θ70), e) C7 with (d3, θ139).

As for a correct comparison we should scale both the chip and problem sizes, because we
can see on Fig. 19 how for small cases the grid and chain graphs can be almost equal in
terms of their topology and perform similarly.

4.4 Further results
We also implemented other alternatives trying to enhance DaA. However, as this is still
preliminary work and that has only been briefly studied we decided not to cover it in
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Non-degenerate
Heisenberg

Figure 19: G5 vs C5 for non-degenerate R5 Heisenberg using DaTA a) P0 b) F0.

a) b)
Figure 20: a) Building block composed of RY and CZ. b)Variational layers for a G4 reduced circuit
ansatz with an average of 24 parameters per layer

detail. First, we included a different cost function that only averages over a fraction of the
lower energy states based on the Conditional Value at Risk (CVaR), which according to
literature results is supposed to improve performance (see appendix 6.4). Second, we did a
brief analysis with blocks made of parameterised single-qubit rotations in the Y direction
(RY) and parameterised controlled-phase gates (CZ) as entangling gates (see appendix 6.7
or Fig. 20 a)). For each block, we only need four parameters as RY takes a single one while
U3 takes three. However, we needed an extra parameter for the entangling gates to achieve
a universal set of rotations made of {RY, CZ, 1} something unattainable with a fixed CZ.
Third, another ansatz proposal with a greater ratio of two-qubit to single-qubit gates (see
appendix 6.9) was considered, it was named reduced circuit approach and it is presented in
Fig .20 b). As this procedure tends to require a higher number of layers due to the lesser
number of parameters, we end up applying more two-qubit operations, which are generally
more faulty and thus we decided not to use this case. However, this ansatz should be
explored as it reduces the parameter count and might benefit the optimisation. Fourth, we
studied a more advanced case where we use parameterised controlled U3 (CU3) entangling
gates and add a penalty to the cost function depending on how far they are from being
the identity. This regularisation prunes superfluous entangling gates by making them to
be close to the identity and therefore decreasing the experimental error. We show some
preliminary tests in the Appendix 6.8 where we used the reduced circuit as well. More
work is needed on refining the parameters of the regularisation cost. Finally, during the
code development we used non-noisy states, as in VQE, for testing. This could be used for
our next step, compare VQE with DaA.
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5 Conclusion and future work
We have presented two digital-assisted adiabatic algorithms, DaA, that combine two models
of QC using variational quantum circuits and QA. This way, we build an extension of
VQE that takes as an input a density operator prepared with an annealer with the aim of
getting rid of the hardware limitations of the device in terms of connectivity and allowed
interactions. This digital processing thus allow us to enhance the capabilities of an Ising-
like annealer and reach arbitrary final states. We evaluated the performance of two different
proposals: DaFA, in which the parameter optimisation entirely happens in the digital part,
and DaTA, in which both digital and analogue parts get optimised. For this analysis
we have assessed a set of efficiency parameters for different types, sizes and topologies of
problem Hamiltonians; size and topologies of the device; inverse temperature and number
of circuit layers. While further research is required for a complete assessment of these two
methods, we can draw the following conclusions from the analysis presented here:

• In general,both DaTA and DaFA methods can be used to learn an arbitrary ground
state and thus provide a good solution to the embedding problem. It is important
to note that DaTA is more advantageous as it effectively reduces the thermal noise
of our annealing process and typically requires shallower circuits than DaFA while
getting higher probabilities of measuring the right solution.

• The Heisenberg and degenerate cases pose a greater challenge than Ising and non-
degenerate cases but DaA is ultimately capable of solving them all provided we have
enough layers on the circuit.

• Our results indicate that the required resources for the embedding of a problem with
DaA are higher in terms of circuit depth for larger chips (i.e. with additional ancillary
qubits). We also note that the choice of ancillary qubit to be traced out does not
generally change the overall result. However, an expanded analysis on the scaling of
the chip is required as with the current analysis we cannot guarantee whether too
many ancillary qubits are always detrimental to performance or not.

• As we increase the size of the problem to be embedded, our preliminary results
indicate a decrease in the performance of both methods. This is especially apparent
for the Heisenberg case, even though a more extensive analysis is required.

• When analysing different hardware topologies, we observe that both methods have
better performance when the topology is dense.

Finally, we plan to further analyze what has been mentioned in Section 4.4 along with
some noisy simulations on the chip, circuit and finite number of measurements emulating
the uncertainties of current quantum computers. Also, we also want to explore whether
optimising the chip and circuit separately improves the overall optimisation process’ speed.
In addition, other parameters of the annealing process, such as the annealing schedule,
could be optimised and investigated as well. Overall, we showed how DaA can be used
as an alternative to heuristic-based embeddings. We therefore believe that the proposed
approach of assisting annealing with variational digital processing has promising prospects
for the realisation of practical quantum computations in the NISQ era and thus is an
interesting venue for further research.

19



Bibliography
[1] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum infor-

mation (10th anniversary edition). 2010.
[2] Moll Nikolaj et al. Quantum optimization using variational algorithms on near-term

quantum devices. Quantum Science and Technology, 3, 2018.
[3] Ari Mizel, Daniel A Lidar, and Morgan Mitchell. Simple proof of equivalence be-

tween adiabatic quantum computation and the circuit model. Physical review letters,
99(7):070502, 2007.

[4] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.
[5] Andrew M Childs, Edward Farhi, and John Preskill. Robustness of adiabatic quantum

computation. Physical Review A, 65(1):012322, 2001.
[6] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum com-

putation by adiabatic evolution. arXiv: Quantum Physics, 2000.
[7] Tameem Albash and Daniel A Lidar. Adiabatic quantum computation. Reviews of

Modern Physics, 90(1):015002, 2018.
[8] Andrew Lucas. Ising formulations of many np problems. Frontiers in physics, 2014.
[9] William M. Kaminsky, Seth Lloyd, and T. P. Orlando. Scalable superconducting

architecture for adiabatic quantum computation. arXiv: Quantum Physics, 2004.
[10] Vicky Choi. Minor-embedding in adiabatic quantum computation: Ii. minor-universal

graph design. Quantum Information Processing, 10(3):343–353, 2011.
[11] Jun Cai, William G. Macready, and Aidan Roy. A practical heuristic for finding graph

minors. ArXiv, abs/1406.2741, 2014.
[12] Vicky Choi. Minor-embedding in adiabatic quantum computation: I. the parameter

setting problem. Quantum Information Processing, 7(5):193–209, 2008.
[13] Zhengbing Bian, Fabian Chudak, Robert Brian Israel, Brad Lackey, William G

Macready, and Aidan Roy. Mapping constrained optimization problems to quantum
annealing with application to fault diagnosis. Frontiers in ICT, page 14, 2016.

[14] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, and Simon C Benjamin et al. Vari-
ational quantum algorithms. Nature Reviews Physics, 3(9):625–644, 2021.

[15] Abhinav Kandala and Antonio Mezzacapo et al. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum magnets. Nature, 549:242–246, 2017.

[16] Marco Cerezo, Kunal Sharma, Andrew Arrasmith, and Patrick J. Coles. Variational
quantum state eigensolver. arXiv: Quantum Physics, 2020.

[17] A García-Sáez and JI Latorre. Addressing hard classical problems with adiabatically
assisted variational quantum eigensolvers. arXiv: Quantum Physics, 2018.

[18] Aric Hagberg et al. Exploring network structure, dynamics, and function using net-
workx. Technical report, Los Alamos National Lab.(LANL), 2008.

[19] S Efthymiou, S Ramos-Calderer, C Bravo-Prieto, A Pérez-Salinas, D García-Martín,
A Garcia-Saez, JI Latorre, and S Carrazza. Qibo: a framework for quantum simulation
with hardware acceleration. Quantum Science and Technology, 7(1):015018, dec 2021.

[20] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and entangling
capability of parameterized quantum circuits for hybrid quantum-classical algorithms.
Advanced Quantum Technologies, 2(12):1900070, 2019.

[21] Panagiotis Kl Barkoutsos, Giacomo Nannicini, and Anton Robert et al. Improving
variational quantum optimization using cvar. Quantum, 4:256, 2020.

[22] Pablo Díez-Valle, Diego Porras, and Juan José García-Ripoll. Quantum variational
optimization: The role of entanglement and problem hardness. Physical Review A,
104(6):062426, 2021.

20



6 Appendix
6.1 QUBO to Ising
We need to transform QUBO problems’ variables x ∈ BN (N ∈ N) with coefficients Qij ∈ R
for 1 ≤ j ≤ i ≤ n into the Ising model, which requires Ising spin variables zi ∈ {−1, +1}.
The requires applying xi ⇒ 1−zi

2 , which yields:

min
x

[
n∑
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Qixi +
∑
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Qi,jxixj ] = min
z
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We remind the reader that constants can be neglected as they do not change the minimum.
Both formulations are equivalent via the bijective relations: hi = −1

2(ai +
∑

j bij), Jij = bij

4 .

6.2 Basic graph theory
We use graphs all throughout this work. Specifically, undirected graphs with weighted
nodes and edges. To understand what this implies, we made this brief introduction to
graph theory for undirected simple graphs (see an example graph of this kind in Fig. 21).

Figure 21: Undirected simple graph with 6 nodes and 7 edges

• Graphs: Mathematical structures used to model pairwise relations between objects.
A graph G is an ordered G = (N, E) comprising: N , a set of nodes; and E ⊆ {{x, y} |
x, y ∈ V and x ̸= y} a set of edges, each one associated with two distinct nodes.

• Undirected simple graphs: The edges link two nodes symmetrically. Multiple edges,
i.e. two or more edges that join the same two nodes, or loops, i.e. when an edge
starting and ending on the same vertex, are not allowed.

• Graph order |N |: The graph’s number of nodes.

• Graph size |E|: The graph’s number of edges.
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• Vertex degree: Number of edges that are incident to a vertex.

• Graph degree: Maximum of the degrees of its nodes.

• Regular graph: Graph in which every vertex has the same degree.

• Complete graph Kn: Regular graph of order n where all nodes have the maximum
degree, n − 1.

• Graph minor: An undirected graph D is called a minor of the graph G if D can be
formed from G by deleting edges and nodes and by contracting edges.

• Planar graph: A graph that can be drawn without crossings on the plane.

• Treewidth: Informally, an integer specifying, how far the graph is from being a tree.
Used in graph algorithms analysis for their parametrised complexity. Many NP-hard
algorithms for general graphs become easier when the treewidth is bounded by a
constant.

• Graph automorphism: Form of symmetry in which the graph is mapped onto itself
while preserving the edge–node connectivity. Formally, an automorphism of a graph
G = (N, E) is a permutation σ of the node set N , such that the pair of nodes (u, v)
form an edge if and only if the pair (σ(u),σ(v)) also forms an edge.

6.3 Dwave’s embedding algorithm
6.3.1 Graph problem

Embedding a problem graph G = (NG, EG) into a hardware graph D = (ND, ED) requires
mapping φ of each node in NG to a subset of nodes in ND:

φ : NG → 2ND ,

where 2ND is the set of all subsets of ND, that fulfils:

1. For each node v in NG, the set of nodes φ(v) induces a connected subgraph in D,
called the chain of v. Chains can be composed single qubits.

2. For every edge e = {u, v} ∈ EG there exist nodes ũ ∈ φ(u) and ṽ ∈ φ(v) such that
{ũ, ṽ} ∈ ED. If u and v are connected on D they would also be in φ(x) and φ(y).

3. If φ(v) ∩ φ(u) = ∅ for all u ̸= v ∈ NG, i.e., each node ṽ of D appears in the mapping
of at most one node of G, ϕ(x) and ϕ(y) are disjoint if x ≠ y. In other words, chains
do not share logical qubits.

Only if all three conditions are satisfied a minor-embedding will be achieved. To find
φ : NG → 2ND the algorithm would construct the node model of G in D and iteratively
improve the embedding by examining each node x ∈ N(G) and rebuilding its chain in
D. An improvement is defined as a reduction of the largest amount of chains using a
determined qubit. Otherwise, cutting down the quantity of qubits used would be the
secondary goal.

22



6.3.2 Parameter setting

The chain parameters need to be set carefully in order to keep its qubits with the same
binary value during the anneal without distorting the problem. New parameters must solve
the original problem on G by solving the embedded one on D. A one-to-one correspondence
between the minimums of E and Eemb is sought. Intuitively, they maintain hij and Jij for
any element not belonging to any chain of length CL. We did a study on all this on 6.3.3
but first we show our parameter setting scheme for the ones chained:

1. Split hi evenly among qubits in the logical chain, hT
i = hi

CL
.

2. Select a strong negative coupler Cij value for all chain edges. Its absolute value must
be bigger than those of regular couplings around it (i.e. Cij = −Jij − 1).

3. Compensate Cij effect by adding hc
i = hT

i + |Cij |
CL

to each qubit ∈ Ti.

6.3.3 Minor embedding analysis
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Figure 22: a) Original graph to be embedded, b) Weights, c), d) Solutions, e) Energy spectrum

We analyse their algorithm for the Maximal Independent Set (MIS) problem (See ap-
pendix 6.6). We use DWave’s implementation available openly on GitHub. They keep
both the energy and degeneracy of the original ground state. The most notable difference
is the expected change in degeneracy for energies above the ground state for the embedded
case. Let us show this with the small example of Fig. 22 a) with our parameters:

hij = −1; Jij = 2
hcji = 1; Cij = −3

}

Its solutions are [0,1,4,7] and [0,3,4,7]. By using the 1 to mean it belongs to the MIS while
0 means they do not, and we build a bistring to name each state. So, those solutions as
a bistring would be [11001001] and [10011001], respectively. If you look at the coloured
solutions on the graphs, blue nodes belong to the MIS while red ones do not. Their energy
and ground state can be calculated, in this case is −4. Considering the two extra qubits
required for the embedding and the new labelling, our solution would be [1100100001] and
[1001100001]. In Fig. 22 we show the graph G to be embedded, its different weights, so-
lutions and energy spectrum as a histogram where to acknowledge the degeneracy of each
state. In Fig. 23 we show more similar graphs containing the optimal embedding alongside
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Figure 23: Top: Optimal minor embedding on a 25 element 1st nearest neighbours grid or G25. Mid-Top:
Random minor embedding on G25. Mid-Bottom: Optimal minor embedding on 2x2 Chimera. Bottom:
Random minor embedding on 2x2 Chimera. a) Minor embedding, b) Labels, c) Weights, d) One of the
two solutions, e) Energy Spectrum.

another random one generated by Dwave’s algorithm for the grid and chimera hardware
graphs. To them we superimpose different colours for the original problem graph and op-
timal embedding energy spectra for a more insightful comparison. Blue for the original
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graph, green for the optimal embedding and red for a random embedding different from
the optimal one.
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Figure 24: Top: C∗
ij = −1, Bottom: C∗

ij = −5. a)Optimal embedding weights with the given C∗
ij , b)

Energy spectrums of the original problem and the embedding with the given C∗
ij , c) Energy spectrums

of the embeddings with Cij = −3 and the given C∗
ij .

We justify our choice of |Cij | to be slightly greater than Jij , Cij = −3. For this, we will
compare the different energy spectrums generated by varying Cij for the optimal embed-
ding on the grid topology with the original and Cij = −3 energy spectrums in Fig. 24 and
Fig. 25. In those figures blue represents the original graph, green the embedded graph with
the given C∗

ij and red the embedded graph with Cij = −3. In summary, we see how the
energy spectrum shifts to higher energies as we increase |Cij | until it reaches a point where
setting it too high distorts the problem. However, we can see how setting the chain strength
too low compared to the problem’s biases leads to the appearance of more states whose
energy is the same as the ground state, ones which could wrongfully be labelled as solutions.
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Figure 25: Top: C∗
ij = −7, Bottom: C∗

ij = −10. a)Optimal embedding weights with the given C∗
ij , b)

Energy spectrums of the original problem and the embedding with the given C∗
ij , c) Energy spectrums

of the embeddings with Cij = −3 and the given C∗
ij .

6.3.4 Limitations

Here we just show that Minorminer is unable to embed small graphs on a 1st nearest
neighbours grid in Fig. 26. But it is capable of finding embedding of more complex G on
other graphs that may be even more limited, like on a random graph of degree 3 in Fig. 27.

6.4 CVAR cost function
This cost function envisioned by [21] only works with a fraction α ∈ {0, 1} of the lower
energy states to compute its value unlike the general cost function that consisted in an
average over all states. It is called Conditional Value at Risk (CVaR) cost function as it is
inspired by this approach. We can calculate it as follows, being λk the eigenvalues sorted
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a) b) c) d)

a) b) c) d)

a) b) c) d)

Figure 26: Top: K3 on a 100 element 1st nearest neighbours grid or G100, Mid: K4 on G100, Bottom:
K5 could not be embedded even on G10000, here we just show the already packed G100. a)Problem
Graph, b) Hardware graph, c)Minor embedding, d) Embedded graph.

in non decreasing order of our final state.

CV aRα = K

⌈α2n⌉

⌈α2n⌉∑
k=0

λk (14)

X(θ) is a random variable composed the eigenvectors of Hamiltonian. The CVaR cost is
the expected value of the lower α-tail of the X distribution.

X(θ) = Hj,jforj ∈ {0, 1}n (15)

Prob(X(θ)) = Hj,j = Tr[TrA[U(θ)ρdeviceU †(θ)]|j⟩⟨j|] (16)

Note that in the limits α → 0, CV aRα→0 = λ0 and α → 1, CV aR1 corresponds to the
regular average or expected value of the energy we used on the main work. So, CVaR
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a) b) c) d)

a) b) c) d)

a) b) c) d)

Figure 27: Top: K6 on random 30 node 3 degree per node graph, Mid: K6 on 10x10 1st and 2nd nearest
neighbours connected grid, Bottom: K6 on 2x2 Chimera cell graph. a)Problem Graph, b) Hardware
graph, c)Minor embedding, d) Embedded graph.

mixes an expected value and a minimum. Hence, we are interested in small α values
regarding only the lower energy states but by having several of them instead of just λ0
so the optimiser handles the optimisation process in a easier way. All in all, we want to
explore the claimed improvements on success rate and speed for any problems for DaA
and how changing α may affect its performance. A prototype has already been coded and
tested but, at the moment, CV aR1, takes longer to compute than the cost function used
on the main work although they are equivalent. This was due to the lack of optimisation in
the code, an issue to be resolved in the future. Anyway, for tested CV aR0.1 and CV aR0.2
we saw slight time improvements over CV aR1 without affecting the quality of the results.
For DaFA the overlap with the ground state improved slightly and for DaTA the overlap
could not be improving as it reached almost the unity in all cases. Further analysis is
needed for bigger systems, where this method is expected to outperform the previous one
by cutting a greater number of states from the cost function.
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6.5 Classical optimiser choice

Figure 28: From [22], comparison of VQE performance with a variety of classical optimisation methods
to optimise the variational parameters using exact quantum states resulting from simulation. From left
to right, they increase the number of layers L of the ansatz. On the X axis, they plot the size of the
problem: (a),(b) success rate, (c),(d) objective function evaluations needed to converge. The results
indicate the average of 1600 instances and a 95% confidence interval. The better would be the better
in terms of higher chance of success and lower function evaluations.

First of all, we use the optimisation methods from QUBO that come from those pro-
vided by SciPy. Note that all of them could converge to a local minimum, since classi-
cal optimisers use convergence criteria based on the change of the cost function in each
step. Therefore, convergence of the algorithm does not imply success. Fig. 28 from [22]
shows different performance depending on the optimiser used. They also concluded that
gradient-free optimisers such as SPSA, COBYLA, Powell, and Nelder-Mead perform well
even when the information of the objective function is not complete. Whereas, Gradient-
based optimisers such as SLSQP, BFGS, and L-BFGS-B perform very well in wave function
simulations. However, they fail in the last case, as the descent direction is not computed
properly. As our case was more similar to the last we choose the best performing one for
our code. Hence, we use L-BFGS-B for all this thesis.

6.6 WMIS and MIS problem
The classical optimisation problem we study for this work will be the Maximal Independent
Set (MIS) problem, an example of which can be found in Fig. 29. A MIS is a set of nodes
of which no pair of them are adjacent, that is not a subset of any other independent set. It
is a special case of the Weighted Maximal Independent Set (WMIS) problem where hi = h
for all the nodes. For WMIS, node weight has to be considered in a way that smaller
independent sets may be preferable, for their accumulated weight, rather than bigger ones
with less value overall. This problem is described by the following Hamiltonian:

HW MIS =
∑
i∈V

hizi +
∑

i,j∈E

Jijzizj with zi = (1 − σz
i ) /2 (17)
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Figure 29: Edited from https://commons.wikimedia.org/wiki/File:
Cube-maximal-independence.svg. This graph has six different maximal independent sets
(the first two are maximum), shown as the red nodes.

Whose eigenvalues are, as calculated in [12]:

E (z1, . . . , zn) = −
∑

i∈V(G)
hizi +

∑
ij∈E(G)

Jijzizj (18)

6.7 RY-CZ gate set

Figure 30: DaTA vs DaFA for non-degenerate K3 Ising into G4 with the reduced block ansatz with
RY-CZ gates. a) P0 b) F0. All bitstrings overlaps for c) DaTA with (d1, θ24), d) DaTA with (d3, θ48),
e) DaFA with (d1, θ16), f) DaFA with (d3, θ40).

First we note that Y ,Z rotations are universal, so in this case our entangling gate
CZ needs to be parameterised and we need to change control-target qubits each layer to
implement full Z rotations on each qubit. That way we have an universal circuit with
the block in Fig. 20 a). Another option would be to add a single-qubit Z rotation in
front of every RY gate but this makes the circuit more complex. Now that the gates are
determined we can say this approach is lighter on the number of parameters used than
U3-CNOT. Because, single-qubit rotations are now implemented using a RY gate which
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only uses a single parameters instead of the three used by a U3 gate.

RY (θ) =
(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)
CZ(ϕ) =


1 0 0 0
0 1 0 0
0 0 e−iϕ/2 0
0 0 0 eiϕ/2

 (19)

For our small conducted test in Fig. 30 we observe how we require more layers to reach
similar result than those of the U3-CNOT case. However, the RY-CZ set is way faster
due to reduced parameter count. For reaching the same results while being shallower, we
decided to use the circuit composed of U3-CNOT as it relies on a smaller number of two-
qubit gates by having harder single-qubit gates, as the latter are more robust with the
current technology. As part of the future work we would want to benchmark this gate set
to analyse how the performance of the circuit changes by using this type of layers with less
parameters with bigger problems and chips.

6.8 Regularised DaA

Figure 31: DaFA vs DaTA vs Regularised DaTA for non-degenerate K3 Ising into G4 with the reduced
circuit ansatz with U3-CU3 gates. a) P0 b) F0. c) Shows the normalised regularised cost function. The
norm used was the one corresponding to the non-regularised case to show the regularisation effect on
the cost function. The cost function starts over the unity due to regularisation term which dominates
over the energy term, which is bound ∈ [0, 1], until the two-qubit gates get optimised. Afterwards, the
energy term gets optimised. The regularisation penalty is plotted on the right axis. It keeps a near zero
value at the end of the optimisation indicating that the entangling gates were heavily pruned without
affecting our ability to reach the solution.
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Another topic worth exploring is the case were all gates are tunable and the cost
function has a penalty term related to how far are our entangling gates from the identity.
The aim is to reduce as much as possible the two-qubit gate parameters because we lessen
the experimental noise on the process not only by removing 2-qubit gates altogether, but
also by making them operations closer to the identity. Hence, we prune the two-qubit
gates and only consider applying them when there is a significant improvement on the
energy term. The question would be what we will call "significant" as you need some kind
of parameter before the two-qubit gates renormalization term for it to be of comparable
magnitude to the energy while avoiding the system of over optimising the regularising term.
We came up with a constant of 0.01 ∗ |λ0|. It would also be preferred to add some kind of
depth consideration to take into account the greater number of parameters as the circuit
grows. A test was conducted for the reduced circuit topology with U3-CU3 gates with a
G4 chip and non-degenerate K3 Ising problem. For the results in Fig 31, we check how
the regularising term decreases in the early set of iterations indicating how we managed
to turn most two-qubit gates into the identity for the simple case considered where the
solution was reached practically by just using single-qubit rotations. Obviously, we do not
have an improvement over DaTA as we are reducing the expressibility of our circuit but
the performance is close to it, which was our initial goal. Further analysis with bigger
circuits is needed to get proper conclusion of the effect of the regularising term.

6.9 Circuit resources
This is a gate and parameter count for the two different considered ansatzes, reduced blocks
(Fig. 2 b)) and reduced circuit (Fig. 20 b)) for the U3-CNOT gate set. We recall how each
hardware graph D(ND, ED) was composed of a different number of nodes and edges, we
will name |ND| and |ED| the node and edge count respectively. Finally, Gp are the required
parameters for our parameterised gate of choice, for U3 Gp = 3, and di are the amount
of circuit layers we use. Take into account, that grid and chain topologies have a different
growth for |ED| depending on |ND| as the grid is a more connected topology.

• Reduced Blocks

DaFA = 2|EH |Gpdi + |NH |Gp DaTA = DaFA + (|EH | + |NH |) (20)

1Q = 2|EH ||NH |di 2Q = |EH |di 1Q/2Q = 2|NH | (21)

• Reduced Circuit

DaFA = |NH |Gp(di + 1) DaTA = DaFA + (|EH | + |NH |) (22)

1Q = |NH |(di + 1) 2Q = |EH |di 1Q/2Q = |NH |(di + 1)
|EH |di

(23)

The result to be drawn is that the ratio 1Q/2Q, of single-qubit gates over two-qubit gates,
is always bigger for the reduced blocks case for our chips topologies considered, grid and
chain. Hence, that was the one chosen for leveraging more importance on single-qubit
gates.
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