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Motivation

Light carries momentum which can give rise to radiation pressure forces. The idea of
electromagnetic radiation exerting a force onto physical objects was already postulated
in the 17th century by Kepler [1], who observed that the tail of comets always point
away from the Sun during their transit. This phenomenon is now used for a variety of
applications such as the cooling of atomic motion with lasers [2,3], the cooling vibrational
motion of mechanical resonators [4–8], and the induction of mechanical oscillations in
a system [9, 10]. This lattermost application is in accordance with the work of V.B.
Braginsky [11] which predicted that circulating radiation in a Fabry-Pérot cavity could
induce a pressure that is able to couple optical modes to the mechanical modes of the
structure. Mechanical oscillation generation has significant potential for applications in
information processing [12, 13] and data communication. This is because phonons have
the possibility to be used as carriers of information signals in the MHz and GHz domain
which allows them to connect the operating regimes of electronics and optics [14,15].
In 2007, P. Del’Haye et al. employed a silica micro-toroid resonator and demonstrated
that by coupling the optical modes of the structure to the mechanics of the platform, an
equally spaced frequency spectra appeared [16]. This was the first demonstration of the so
called Kerr frequency combs, a type of optical comb generated via the Kerr nonlinearity.
Frequency combs, more specifically, optical frequency combs have revolutionized the field
of frequency metrology and spectroscopy and are enabling components for a variety of
applications due to their ability to allow for precise measurement of optical frequencies [17].
Applications include comb-calibration of tunable lasers [18], direct comb spectroscopy
[19], arbitrary waveform generation [20], and advanced telecommunications. Although the
formation of mechanical combs has also been observed [21–24], they have not received as
much attention as their optical counterparts.
The present work presents an optomechanical system based on two phononic crystals with a
guided mode around 6.8 GHz placed alongside an air-slot which serves as the optical cavity.
A vibrational mode in the MHz has also been reported in the structure. The coupling of
an optical mode to the mechanical modes of the structure allows for the amplification of
the oscillations in the platform via the radiation pressure force. This Mechanical-Optical-
Mechanical (M-O-M) coupling between light and mechanics allows the observation of a
phononic periodic spectral feature centered at 6.78 GHz with a width of around 2 GHz
when the radiation pressure is increased. This study reports a self-sustained phononic
comb formation in the GHz range.
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1 Concepts and definitions

This section reviews the fundamentals of cavity optomechanical (OM) systems. Start-
ing from the main variables and equations describing mechanical resonators and optical
cavities and radiation pressure definition, the reader will be introduced the principal pa-
rameters and behaviours of the optomechanical theory.

1.1 Introduction to mechanical resonators and wave propagation

Most vibrating systems can be modeled as a mechanical oscillator. From Appendix A,
the behaviour of these kinds of oscillators is described by

meff
d2x(t)

dt2
= −meffΩ2

mx(t) −meffΓm
d

dt
x(t) + F (t) (1.1)

where meff , Ωm, and Γm, represent the effective mass, resonance frequency, and decay
rate of the mechanical resonator, respectively. As such, this equation includes a harmonic
oscillator term, a damping term, and an external force.
Different resonators have different responses to the exciting force and, depending on their
properties, they oscillate in different manners. The effective mass term meff allows the
description of a structure to be done through this formula treating it as a spring-mass
system. The effective mass is not the mass of the resonator itself, but a calculation that
depends on the mode displacement profile under study. For a mechanical resonator, the
effective mass for the nth mode can be calculated from [25]

meff,n =

∫
dV ρ(x) |rn(x)|2 (1.2)

where ρ(x) is the position dependent density of the resonator and rn(x) is the normalized
mode shape. As the amplitude of the mode is dependent on the position (x0) this expres-
sion is even more complex, as it must be modified dividing by |rn (x0)|2, revealing that
the position in the sample is important for the measurements.
Considering an oscillating force, the frequency dependent behaviour deriving from equation
1.1 is given by

x(ω) = χ(ω)F (ω) (1.3)

where χ(ω) = 1/meff (Ω2
m − ω2)− iΓmmeffω is the mechanical susceptibility. The mechanical

quality factor Qm, a well known figure of merit for describing dissipation in mechanical
resonators, is defined as:

Qm = 2π
Energy stored per cycle

Energy dissipated per cycle
=
mΩm

Γm
(1.4)

1.2 Optical cavities

If two parallel mirrors are placed one in front of one another, light can reflect on their
surfaces several times and can even remain confined in it. This is the idea of optical
cavities, where a standing wave cavity resonator is formed. These cavities allow an optical
beam to bounce back and forth. If the round-trip length (i.e., twice the cavity length, 2L)
is a multiple of the incident light wavelength (λ), the laser will constructively interfere
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inside the cavity, amplifying the power inside it. This particular relation leads to a cavity
optical frequency (ωc) distribution following equation 1.5:

ωc = 2π
c

λ
=
πc

L
N (1.5)

where c is the vacuum speed of light and N is an integer.
If we consider one individual cavity mode with frequency ωo, the gain of the cavity when
an incident flux of photons with a frequency ωl is acting has the following behaviour [26,27]

da(t)

dt
= i∆a(t) − κ

2
a(t) +

√
κℓāin (1.6)

where a(t) is the field inside the cavity, ∆ = ωL−ωo is the detuning of the laser frequency
ωL with respect to the mode frequency ωo, āin is the incident optical field rate (meaning
that |āin|2 is the input photon rate), κℓ is the loss rate into the side-coupled waveguide,
and κ the total loss rate of the cavity.
From equation 1.6 the steady-state solution (da(t)dt = 0) can be extracted for the field a

and cavity population |a|2, considering PL = h̄ωl |āin|2 as the input laser power:

a =

√
κℓain

κ
2 − i∆

(1.7)

|a|2 =
κℓ

∆2 + (κ/2)2
|ain|2 =

κℓ
∆2 + (κ/2)2

PL

h̄ωl
(1.8)

The experimental measurements of this work will be done through a bus-waveguide-
coupled optical cavity coupling configuration, a schematic of which can be found in Figure
22. For this type of coupling κℓ = κe/2, being κe the external losses rate. Transmission
and reflection expressions for this type of system can be expressed as follows [28]:

T (∆) = |t|2 =

∣∣∣∣aout,tain

∣∣∣∣2 =

∣∣∣∣∣ain −
√
κe/2 a

ain

∣∣∣∣∣
2

=
∆2 + (κi/2)2

∆2 + (κ/2)2
(1.9)

R(∆) = |r|2 =

∣∣∣∣aout,rain

∣∣∣∣2 =

∣∣∣∣∣−
√
κe/2 a

ain

∣∣∣∣∣
2

=
(κe/2)2

∆2 + (κ/2)2
(1.10)

If κe = 0,R = 0 and T = 1 since the cavity is invisible to the bus waveguide and, as κe
approaches κ, there will appear a dip centered at ∆ = 0 (ωL = ωo). For the minimum
transmission point, T (0) = (1 − κe/κ)2, this peak can reach T = 0 when κe = κ.

Figure 1: Schematic of a bus-waveguide-coupled optical cavity coupling configuration

As with mechanical resonators, the Q factor of the optical cavity can be calculated as

Q =
ωo

κ
(1.11)
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A detailed discussion of the concepts that will be used during this work including wave
propagation in various periodic media, an introduction to photonic and phononic crystals,
and Anderson localization (AL) can be found in Appendix C.

1.3 Radiation pressure

The behavior of how phonons propagate through different media can be understood by
treating light as a wave (see Appendix C). Nevertheless, particle-wave duality and De
Broglie’s hypothesis [29] lead to the momentum p of the photon of wavelength λ

p = h̄k

(
where k =

2π

λ

)
(1.12)

The reflection of a single photon off of a surface imparts a momentum transfer of ∆p = 2h̄k.
If this photon comes from a coherent light beam with a photon rate |āin|2, the beam would
exert a force, known as the so-called radiation pressure force [30,31], FRP , given by:

FRP =
∆p

∆t
= 2h̄k |āin|2 (1.13)

Given the PL definition, the force can be related to the laser power by

FRP =
2kPL

ωl
=

2PL

c
(1.14)

The momentum transfer from these photons to macroscopic mirrors is generally negligible.
However, by creating an optical cavity using a second mirror as the illustrated in fig.
2, a resonant photon makes multiple round-trips before being lost either via leakage or
absorption, increasing FRP acting on the mirror surface [11].

Figure 2: Schematic illustration of an optomechanical cavity

In such a cavity with a length L and corresponding frequency ωo, if the circulating power
Pcirc is written in terms of the cavity photons |a|2 and the round-trip time τrt = 2L/c, the
formula can also be expressed as

FRP =
2Pcirc

c
=

2h̄ωo

c

|a|2

τrt
=
h̄ωo|a|2

L
≡ h̄G|a|2 (1.15)

where G ≡ ωo/L is the optomechanical coupling rate that can be interpreted as the fre-
quency shift induced by a small mechanical displacement of the mirror and is related to the
radiation-pressure force exerted by a single cavity photon. Generally, for optomechanical
systems the vacuum optomechanical coupling rate go is preferred. This value corresponds
to the frequency shift of the cavity due to a displacement equal to the zero-point fluctua-
tions xzpf and relates to G as

go = Gxzpf (1.16)
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where xzpf =
√
h̄/2meffΩm

These types of optical cavity systems are used, for example, in gravitational wave detectors,
such as LIGO, where the results are obtained precisely from displacement measurements.
In this case, this radiation pressure is a hindrance which serves as a source of uncertainty in
the displacement measurement [32,33]. Nevertheless, for optomechanical (OM) purposes,
the effect of this force is of relevant interest as it allows phonons to be introduced into a
system.

1.4 Dynamics of optomechanical resonators

Assuming that the interaction occurs between a single pair of coupled optical and me-
chanical modes, the dynamics of such a system can be described by

da(t)

dt
= i(∆ +Gx(t))a(t) − κ

2
a(t) +

√
κℓāin (1.17)

meff
d2x(t)

dt2
= −meffΩ2

mx(t) −meffΓm
d

dt
x(t) + h̄G|a(t)|2 + Fth (1.18)

where, |āin|2 is the input photon flux, κ = κe + κi is the sum of external and internal
optical losses, ∆ = ωL − ω0 is the detuning of the pump laser frequency from the optical
resonance frequency, and meff ,Ωm, and Γm, respectively represent the effective mass,
resonance frequency, and decay rate of the mechanical resonator. Equation 1.18 is then
1.1 with F (t) = FRP + Fth i.e., radiation pressure force and a thermal excitation force.
The output photon flux |āout|2 is related to the input via

āout(t) = āin −
√
κℓā(t) (1.19)

If equations 1.17 and 1.18 are studied for G = 0, we would have the equations for a coupled
mode driven optical cavity and the dynamics of a thermally-driven damped harmonic
oscillator. Their physics can be studied separately through the equations shown in sections
1.1 and 1.3. The system can be further simplified if neglecting the thermal force, as it is
a low value stochastic excitation.

1.4.1 Optomechanical effects

In the scenario in which G ̸= 0, the optical cavity and the mechanical resonator do not
act independently. Introducing the cavity population |ā|2 calculated from eq. 1.8, the
radiation pressure force in the steady state is

Frp(x) = h̄G|ā|2 =
h̄Gκℓ

(κ/2)2 + (∆ +Gx)2
|āin|2 (1.20)

which is a conservative force that would change the bare harmonic potential of the me-
chanical resonator as

V (x) = Vrp(x) +
1

2
meffΩ2

mx
2 (1.21)

where the light-induced potential Vrp(x) is

Vrp(x) = 2h̄
κℓ
κ

|āin|2 arctan

(
2(∆ +Gx)

κ

)
(1.22)
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This potential function is now dependent on the laser photon flux āin. The addition of
Vrp(x) changes the curvature at the minimum of the potential, thus changing the effective
spring constant. The system can be still described as a damped mechanical resonator, but
some of the parameters, like the mechanical frequency or the damping, will have deviations
from the initial value.
Appendix B describes the dynamics the system undergoes in that situation. The conclu-
sion leads to the following expression that shows the evolution of the damping Γeff in the
case of a weak laser drive (go ≪ κ), i.e., evaluating them at the unperturbed oscillation
frequency ω = Ωm.

Γeff = Γm + Γom = Γm + g2o |ā|2
(

κ(
∆̄ + Ωm

)2
+ (κ/2)2

− κ(
∆̄ − Ωm

)2
+ (κ/2)2

)
(1.23)

Here, a blue detuned laser (∆ > 0) reduces the effective damping of the mechanical
resonator as Γom(ω) ≤ 0. This effect can be observed experimentally (see section 2.4.1).
By plotting the damping as a function of the incident laser power it is possible to calculate
the value of go.

1.4.2 Dynamical backaction and lasing

When increasing the power, mechanical oscillations of the phononic mode grow exponen-
tially up to a maximum amplitude. As gain starts to compensate losses, the reduction of
the Γeff results in a narrowing in the mechanical peak. As seen in Appendix A, this
growth can not extend infinitely due to damping in the system (thermoelastic damping,
air damping, etc.), so it saturates at some maximum value.
Following the effective damping behaviour, there is a certain incident laser power Pin where
Γeff = 0 i.e., Γom = −Γm. By introducing equation 1.8 in eq. 1.23, this power threshold
results in

Pth = −Γm
h̄ωl

g2o

(
(κ/2)2 + ∆̄2

κl

)(
κ

(∆̄ + Ωm)2 + (κ/2)2
− κ

(∆̄ − Ωm)2 + (κ/2)2

)−1

(1.24)

Whenever Pin > Pth the intrinsic mechanical losses are compensated and high-amplitude
coherent mechanical oscillations are activated. As in photonics, this regime in which the
mechanical oscillations are self-sustained, almost monochromatic, and coherent is referred
to as mechanical lasing.
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2 Optomechanical platform

This section will present the optomechanical system under study. By storing light in a
cavity it allows to improved light-matter interactions enabling phonon lasing in both the
MHz and GHz regime by optically driving an Anderson-localized photonic mode.

2.1 Sample description

The samples consist of a 220 nm thick silicon (Si) Phononic Crystal (PnC) waveguide
incorporating a periodic shamrock pattern (see Figure 3a). This PnC possesses a bandgap
in the GHz range and has a line defect that creates a guided mode at 6.8 GHz [34]. The
guided mode profile can be seen in Figure 3b and design details are given in [35].
At both ends, the PnC periodicity is changed (see Figure 3a). These regions with a
different lattice constant act as acoustic shields for the waveguide as they have a larger
lattice constant, resulting in a different band structure [35]. This change shifts the guided
mode to a lower frequency and prevents coupling between the modes of each section. As
the frequency of interest does not correspond to a mode in the shields, it is reflected
when it arrives at the interface between the shield and the center waveguide, resulting in
confinement of the mechanical mode.
Two of these PnC are placed with mirror y-symmetry creating, at the centre of the struc-
ture, a 45 nm wide air slot (see the SEM, Scanning Electron Microscope, image in Figure
4a). This design creates an optical cavity at the centre of each phononic crystal, i.e., we
have both a photonic and phononic cavities within the same structure.
In addition to the guided mode, each PnC has its characteristic vibration modes. Figure
3c shows the profile for the in-plane breathing mode. As it is seen, compared to the guided
mode, this mode extends through the structure and does not only propagate along the
line defect. The coexistence of this modes in the same platform at different frequencies
can allow to modulate the GHz mechanical displacements.

Figure 3: a) SEM image of the structure showing the air slot and the different PnCs for the
center and shield regions in blue and brown, respectively. b) Mode profile for the guided
mode (Reprinted figure with permission from Guilhem Madiot and Ryan C Ng (2022)
Optomechanical generation of coherent GHz vibrations in a phononic waveguide [35]). c)
Mode profile for the breathing mode of the structure.

Due to inherent nanofabrication imperfections the sidewalls of the slot offer some roughness
that act as scattering points for the light inside it. Figure 4a shows a SEM image zooming
at the air slot where the non-flat walls of the structure are visible. Anderson Localization
(discussed in Appendix C) is also present in the structure as these scatterers can lead
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to light interference and confinement. This posibility of high interactions between the
optical field and the structure is of a great interest for the main objective of this design:
OM coupling.

2.2 Optomechanical characterization setup

Near-field optical and optomechanical properties were examined by placing a tapered fiber
loop in contact with the structure along the waveguide axis. Through that contact the
fiber can evanescently couple with the optical cavity modes. This method is widely used
in cavity optomechanics [36].
A mono-mode fiber taper is fabricated from a telecom optical fiber (SMF-28). After
removing the coating of the fiber, it is heated at 1180ºC with a ceramic microheater
while stretched by two micromanipulators [37]. To allow a more precise contact, a loop is
created by twisting the fiber (2π rotation on each side: 4π total twist) and approaching
its two endpoints. The desired size is obtained by pulling again and reducing the loop’s
dimension.
The optical fiber is connected to a high-power tunable laser (Yenista Tunics T100S-
HP/SCL) that operates from 1440 to 1640nm. The output signal is then measured with
a high speed photo-detector and split into a DC and an AC component (see schematic in
figure 4c).

Figure 4: a) SEM image of the structure under study showing the air slot. b) Mode profile
for the optical mode showing its confinement inside the slot (Madiot, Ng et al. (2022)
Optomechanical generation of coherent GHz vibrations in a phononic waveguide [35]) c)
OM setup schematic. d) Image of the loop in contact with the sample.

2.3 Optical characterization

By placing the tip of the taped fiber loop on the slot of the waveguide (Figure 4d), it is
possible to evanescently couple into optical cavity modes such as the one shown in Figure
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4b. A representative optical DC spectrum is shown in Figure 20a in Appendix E, in
which resonant cavity optical modes manifest as transmission dips. The overlap of the
evanescent fields of the two modes i.e., the fiber taper and the optical cavity one, enables
their coupling whenever the two have the same frequency and are phase-matched (same k
vector). The spectra shows both the Fabry-Pérot modes and the localized modes with no
distinction. Madiot, Ng et al. [35] exhibits a similar figure with the average transmission
spectra along the air slot where the Fabry-Pérot modes are differentiated from the localized
modes.

2.3.1 Optical resonance characterization

At low power inputs, the cavity has low field values, meaning that the radiation pressure
force is very small. For sufficiently small input powers, mechanics can be neglected and
transition peaks follow equation 1.9.
Figure 5 shows a transmission peak measured for a low incident power measurement
(<0.2mW). The peak is centered at ωo = 2π ·201.179 THz and is the one used to transduce
the mechanics of the system. By fitting the corresponding equation, the values of the
different loss rates can be extracted. In this case, κi = 2π · 6.258 GHz and κ = 2π · 8.390
GHz. This means that κe = 2π · 2.132 GHz. The quality factor Q of the peak can also be
obtained from equation 1.10, giving a result of Q = 23978.

Figure 5: Experimental transmission peak: experimental data (black dots) are fitted by
equation 1.9 (red line)

2.3.2 Thermo-optical effects and Self-Pulsing (SP)

Light interaction with the sample does not only limit to the mechanics, it can also affect
the free carrier density and the temperature. The group index of a material changes with
temperature due to the thermo-optic effect. This change, which can be considered linear
for low temperatures (< 600K) is given by the thermo-optic coefficient, dn/dT . This
behaviour causes non-linear dynamics when the laser power, PL, is increased.
Other non-linear processes must be considered to fully describe a system. Effects such
as free carrier absorption (FCA) and two-photon absorption (TPA) constantly occur in
a structure, which consequently increase the temperature, especially through thermal re-
laxation. Due to the thermo-optic effect, the refractive index n will change, shifting the
cavity’s resonance frequency ωo. The same occurs depending on the concentration of free
carriers (N).
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As Figure 20 shows, the group index of the system is a key factor that determines how
Fabry-Pérot optical modes are distributed. Whenever this group index changes, the peaks
will have a different resonance frequency. A simple description of how the mode’s optical
frequency ω′

o would change from its initial value ωo depending on the carrier density (N)
and the temperature increase (∆T ) can be

ω′
o = ωo −

ωo

no

dn

dN
N − ωo

no

dn

dT
∆T (2.1)

where dn
dN is the group index variation derived from the presence of free carriers, dn

dT is
the group index variation caused by temperature increase i.e., the first order thermo-optic
coefficient, and no is the original group index. The consequence of such shifts in resonance
frequency allow for the observation of bi-stabilities such the one shown in Figure 6. Two
stable solutions are possible and can be reached depending on the detuning we approach
the resonance with.
When coupling with the optical mode from a blue-shifted detuning (black line in Figure
6a), the field inside the cavity increases, causing the temperature to increase as well.
This temperature increase causes the resonance frequency to red-shift, i.e. the resonance
wavelength shifts to a higher one. If a wavelength sweep is done for the transmission
measurement, a dip like the one shown in Figure 5 for low input powers would result in a
similar spectra as the shown in black Figure 6a.
Nevertheless, when the optical mode is approached with a red-shifted frequency (red line
in Figure 6a), the mode cannot be coupled until the detuning is sufficiently reduced. When
that point is reached, the field can increase in the cavity and the depth in transmission is
seen. This also causes the temperature to increase, so the optical resonance frequency is
red-shifted again and the back and forth states coincide.

Figure 6: Right: Bi-stability experimental measure. Left: Experimental timetrace of Self
Pulsing

Temperature and carrier density are two variables that depend on the number of photons
inside a cavity. At the same time, changing those two parameters would change the
”effective” frequency of the mode, increasing the detuning and consequently decreasing
the field and the number of photons inside the cavity. This situation leads to a limit-cycle
in which the coupling into the cavity, and thus the transmission, are being controlled by
N and ∆T and change in time. This is known as Self-Pulsing (SP).
The Self-Pulsing regime results from the interplay between thermo-optic (TO) effects and
free carrier dispersion (FCD) [38, 39]. These effects have a repercussion on the detuning
but, more importantly, they have different response times. The fast characteristic response
of free carriers due to light absorption followed by the slow reaction of the temperature,
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mainly due to thermal relaxation of the carriers, causes behaviours like the one shown
in Figure 6b extracted from the experimental system. The dynamic competition among
these effects results in a strong an-harmonic modulation of the light in a stable regime.
The signature temporal behaviour of SP is a quick increase in the transmission, due
to the free carrier absorption, followed by another peak resulting from the subsequent
thermalization. The characteristic Fast Fourier Transform (FFT) has the shape of multiple
peaks spectrally located at integers of main SP frequency (νSP ). Both mechanical lasing
and SP can coexist in the same system, which can lead to a large variety of dynamical
regimes such as synchronization [40] or chaos [41].

2.4 Optomechanical characterization methods

The output signal is divided into a DC and AC components, with the latter corresponding
to the radio-frequency (RF) domain. This AC constituent can be studied in an elec-
tronic spectrum analyzer (ESA) allowing for the mechanical behavior of the system to
be visualized (see Appendix D). The extent of the OM coupling is measured through
the go parameter. Depending on this value, the different modes present in the structure
would behave differently to the input laser. This constant can be obtained using different
methods, two of which are explained in this section.

2.4.1 Calibration of go via optomechanical narrowing

From equation 1.23 in section 1.4.1 it was proven that, by increasing the input power (PL),
the linewidth of the mechanical peak narrows. This relation is plotted in Figure 7b for the
guided mode (Ωm= 6.8 GHz). For powers as low as 1.8 mW the peak is already lasing,
as indicated by the effective damping value stabilization. At different positions along the
waveguide and driving different localized modes the go value can change [35]
For the particular localized optical mode of interest, the effective damping, Γeff , starts
to lower from Γeff = Γm at approximately 0.4mW. The value of the damping when the
mode is thermally activated, i.e. when backaction is still negligible, is the corresponding
mechanical damping of the mode. The damping parameter has a value on the order of
Γm/2π = 5.15 MHz. After that, the effective damping decreases until it saturates at
Γeff ≈ 0 at around 1.75mW. Through this linear decay in the damping of the mechanical
mode, a value of go/2π = 183.8 kHz can be extrapolated.

2.4.2 Calibration of go via phase modulation method

Moreover, an approximate value of the go parameter can also be extracted using a phase
modulated signal [42]. This second method compares the power spectral density (PSD)
of the known modulated signal and that of the mechanical mode. An approximate value
of the parameter can be obtained through a single measurement via:

g20 ≈ 1

2 ⟨nm⟩
ϕ20Ω

2
mod

2

Smeas
II (Ωm) · Γm/4

Smeas
II (Ωmod) · ENBW

(2.2)

where ENBW is the effective noise bandwidth, Ωmod is the modulated frequency, ⟨nm⟩
in the mechanical occupation number, and Smeas

II (Ωmod) correspond to the PDS of the
mechanical and modulated frequency peaks, respectively.
This approximation becomes more valid for large mechanical occupation numbers ⟨nm⟩ ≈
kBT/h̄Ωm ≫ 1. Using this method, a result for the vacuum optomechanical coupling rate
of similar order of magnitude is obtained for the GHz guided mode.
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Figure 7: a) Radio-frequency spectrum showing the mechanical mode for different input
laser powers. Dynamical back-action is observed, which leads to mechanical lasing. b)
Corresponding effective mechanical damping as a function of the power. Three regimes
are seen: thermal (Γeff = Γm), dynamical backaction (in red), and mechanical lasing
(Γeff → 0)

Figure 8: Spectral measurement for the goMHz showing the mechanical peak in the thermal
regime and the modulated signal at 310 MHz

Apart from the GHz guided mode, the spectra shows that a mode around 265 MHz also
begins to lase for higher input powers (PL). This mode corresponds to the characteristic
breathing in-plane mode of the platform shown in Figure 3c. Through this method, the
corresponding go value for this mode can also be attained (see Figure 8). In this case, the
value corresponds to go/2π = 77.89 kHz.
The mechanical damping of this MHz mode can be extracted from a low input power
measurement of the mechanical spectra. By fitting the curve when the mode is still being
thermally activated. The result leads to a Γm/2π = 2.81 MHz
This considerable difference in the coupling with this mode compared with the guided one
leads to a particular situation. As the field inside the cavity is increased, the two regimes
start to be thermally activated. Gradually, the GHz peak begins to narrow and increase in
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intensity until it lases. Meanwhile, the MHz mode continues to be in the thermal regime
until reaching its particular Pth, where both modes can lase at the same time.
Table 1 includes a compilation of the most important values of the sample and the setup
extracted until now.

Parameter Value Description

ωo 2π·201.179 THz Optical mode frequency
κi 2π·6.258 GHz Internal optical losses
κe 2π·2.132 GHz External optical losses
κ 2π·8.390 GHz Total optical losses

ΓMHz 2π·2.81 MHz Damping MHz peak
ΓGHz 2π·5.15 MHz Damping GHz peak
ΩMHz 2π·265 MHz MHz peak mechanical frequency
ΩGHz 2π·6.78 GHz GHz peak mechanical frequency
goMHz 2π·77.89 kHz MHz peak vacuum optomechanical coupling rate
goGHz 2π·183.8 kHz GHz peak vacuum optomechanical coupling rate

Table 1: Sample OM parameters

3 M-O-M GHz mechanical frequency comb

Driving an Anderson localized optical mode will allow optomechanical interactions with
different couplings to the mechanics. One of those localized modes is found around λ=
1490.2 nm (ω0 = 2π·201.179 THz) and previous measurements show that it can be driven
to couple to the mechanical modes of the platform. Through this optical mode, OM
coupling is achieved and is used to stimulate mechanics both in the MHz and the GHz
simultaneously. The emergence of a regime of a mechanical comb formation is observed,
giving rise to a periodic spectral feature centered at 6.7 GHz with a width of around 2
GHz.

3.1 Theoretical model

The potential of the system to drive two mechanical modes with a single optical localized
mode can be modeled with a set of equations similar to the ones shown in section 1.4. In
this case, the fact that there exists two mechanical modes of frequencies ΩMHz and ΩGHz

coupled with different optomechanical coupling rates to the optical mode would have to
be taken into account. A schematic of the interaction between a driven optical mode and
two mechanical resonators including the main parameters is shown in Figure 22.
An assumption is done considering the two vibrating modes as two different independent
mechanical resonators coupled through the driven optical mode and no direct coupling
between the two mechanical equations is taken into account. Neglecting the thermo-
optic effect of increasing the incident power, the set of equations which can describe the
characteristics of the system is:

ȧ = i(∆ +GMHzx1 +GGHzx2)a−
κ

2
a+

√
κe/2ain
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ẍ1 = −ΓMHz ẋ1 − Ω2
MHz

x1 +
h̄GMHz

meffGHz

|a|2 (3.3)

ẍ2 = −ΓGHz ẋ2 − Ω2
GHz

x2 +
h̄GGHz

meffGHz

|a|2

where GMHz , ΓMHz and, meffMHz
are the MHz mode optomechanical coupling rate, me-

chanical damping factor and, effective mass, respectivelly. GGHz , ΓGHz and, meffGHz
are

the analogous parameters for the GHz mode.
The formula for the effective mass of a certain mode of a resonator is shown in equation
1.2 highlighting the importance of the position along the waveguide for the measurements.
The meff can also be calculated from finite elements method (FEM) simulations, but the
use of this parameter can be avoided by renormalizing the above equations 3.3 using the
variable xi = xn

xzpf,nc
and the vacuum optomechanical coupling rate gon = Gnxzpf,n. The

zero point fluctuation displacement, xzpf,n, of the mechanical resonator can be calculated
with the expression given in equation 1.16. By doing so, the set of equations ends up as:

ȧ = i(∆ + goMHzx1 + goGHzx2)a−
κ

2
a+

√
κe/2ain

ẍ1 = −ΓMHz ẋ1 − Ω2
MHz

x1 + 2ΩMHzgoMHz |a|
2 (3.4)

ẍ2 = −ΓGHz ẋ2 − Ω2
GHz

x2 + 2ΩGHzgoGHz |a|
2

The set of equations 3.4 involves now multiple parameters that can be evaluated experi-
mentally from different measurements. The ensemble of the parameters and values, that
have been discussed during the development of this work, is presented in Table 1. The
optical parameters such as ωo, κi, κe, and κ were extracted from the low power (<0.2mW)
transmission measurement of the peak shown in Figure 5. Mechanical and optomechanical
parameters calculation, like Γn, Ωn and gon , is discussed in Section 2.4 and their corre-
sponding values are summarized in Table 1 as well. In this way, the field excites each
mode through the vacuum coupling rate and, in consequence, it also changes when the
mechanics start to emerge.
The output signal, that is directly related to the transmission (T ), can be extracted from
equation 1.19 for a given input laser power PL = h̄ωl |āin|2. This set of equation allow for
a qualitative prediction of the behavior of the system when driving it at different optical
frequencies around the resonance (ωo). By computing the time trace of the transmission
and its corresponding FFT, a comparison with the experimental data can be done.

3.2 Mechanical comb formation

Experimentally, when increasing the input power, thermo-optic effects become more ap-
parent and the optical transmission dip begins to experience a red shift (see section 2.3.2).
This means that in order to reduce the detuning of the laser, the optics will be driven
with a different, lower, optical frequency than the initial resonance to start to excite the
mechanics.
The DC constituent of the transmission is used to check when the optical mode is being
driven looking at the transmission dip. The optical mode of interest that has its resonance
frequency at ωo = 2π·201.179 THz, corresponding to a wavelength of λ = 1490.2 nm, can
experience a shift as high as 4.5 nm in wavelength when PL = 6.5 mW (see Figure 9a).
This PL was chosen deliberately as it is greater than the corresponding Pth of each of the
mechanical modes under study. Exciting the mechanics with that optical mode at such
incident laser powers allows both modes to lase at the same time. Figure 9 shows all
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Figure 9: Different regimes of the system when driven at PL=6.5mW showing the MHz
and GHz spectra. a) Optical transmission peak. b and c) Single mode lasing (SML). d
and e) Comb formation f and g) Comb formation and Self-Pulsing

the salient features of the mechanics when driving the optical mode under study from a
blue-shifted detuning.
Transmission depth can serve as an indirect indicator of the radiation pressure force that
the system undergoes. As we saw in Section 1.3, the exerted force is proportional to the
field inside the cavity. Having a dip in the transmission is directly related to an increase
of the field inside the cavity, meaning that there is a rise in the number of photons in the
cavity as well.
Then, when we increase the field in the cavity, in this case by approaching the resonance
with a red-shifted effective detuning, the mechanical motion will consequently be amplified
due to dynamical backaction. The mode with a higher coupling rate, that in this case
happens to be the ΩGHz one, will be the first to lase at a higher detuning from the shifted
resonance. Different behaviours can be studied in the structure.
The situation when the detuning is still high and only the guided mode at ΩGHz is las-
ing is referred as SML, for Single Mode Lasing (see Figure 9c). Its spectrum shows a
really intense peak in the mechanical frequency as studied in the go calibration Figure 7.
Nevertheless, mechanics in the MHz regime are not inappreciable, as they are thermally
excited as well (see Figure 9b). This also has an effect in the higher frequencies, as two
side-bands are formed on each side of the lasing guided mode. This last observation will
be of important relevance: in a manner akin to a modulator signal, the low frequency
regime seems to modulate the GHz oscillations.
When the red-shifted effective detuning is further reduced, the regime where both 265
MHz and 6.8 GHz peaks are lasing is reached. Here, the amplitude of the ΩGHz frequency
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oscillations will start to be modulated with a frequency of ΩMHz as both modes oscillations
are self-sustained. Figure 9d shows the ΩMHz mode lasing as the peak has considerably
increased and narrowed. As the MHz peak is lasing, the mechanical spectra will not only
exhibit the main peak at ΩMHz, but the different harmonics at MΩMHz (being M an
integer number) will also appear. This harmonics of the breathing in-plane mode are not
visible in Figure 9, but can be seen if the span is increased. Figure 21 presents the full
span of the ESA arriving to almost 14 GHz. The presence of this harmonics is translated
into the emergance of their corresponding peaks in the sidebands of the ΩGHz mode (see
Figure 9e). A comb is formed around the guided mode frequency with a spectral separation
corresponding to ΩMHz and a width of 2 GHz. This feature gives the name to this regime
in the Figure: Comb.

3.3 Theoretical vs experimental results

To clarify the origin of this behavior, the optomechanical model introduced in 3.3 is
adapted including radiation pressure of the single localized mode driving the mechanics
both in the MHz and in the GHz. At the end, the model results in three coupled second
order differential equations: one for the optical cavity and the other two to describe each
mechanical mode.
The model satisfactorily reproduces the experimental spectral response and the main fea-
tures: the onset of lasing in the guided mode (ΩGHz), followed by the formation of the
frequency comb when the breathing mode (ΩMHz) begins to lase (see Figure 10a and
b). When the detuning from the optical mode is reduced, a peak in the GHz frequency
starts to appear as it happened experimentally. After the peak narrowing and increase in
amplitude in the GHz corresponding to the SML regime, the detuning is further reduced
and mechanics in the MHz start to become visible. When performing the simulation at
the optical frequency, the comb formation was also observed.
The time traces of each of the two regimes can be acquired experimentally using an oscillo-
scope (Tektronix MSO/DPO70000 Series) to plot the AC component of the transmission.
Experimental time response of the transmission corresponding to the lasing regimes of the
ΩGHz mode and comb formation in the GHz are shown in Figures 10e and f, respectively.
The first of these two shows an almost sinusoidal-shaped oscillation each 0.15 ns corre-
sponding to the ΩGHz frequency oscillations. The second one still shows the oscillations of
the guided mode, but this time displaying a marked modulation of the envelope at 4 nm,
i.e. the ΩMHz frequency is modulating the previous one. Looking closely at Figure 10e,
it can be seen that the amplitude of the oscillations is not constant with time and seems
to be slightly modulated with a similar envelope at around ΩMHz. This can be explained
when taking into account the thermal activation of the breathing in-plane mode discussed
in the previous section.
From the results of model, time traces can also be extracted and compared to the exper-
imental data. Figure 10c shows the time dependence of the transmission for the regime
where only the GHz mode lases and Figure 10d shows the time trace for the comb forma-
tion. The computed transmission closely follows the experimental behavior of the system
at the two signature regimes. Even so, the Comb regime time trace seems to double the
modulation frequency. This characteristic can be explained when looking at the FFT of
the model in Figure 21 showing the second harmonic at 2ΩMHz with higher amplitude
than the first harmonic at ΩMHz. This can be explained as the saturation of the mechanics
in the experimental platform due to non-linear elasticity of the mechanic resonator like the
Duffing non-linear term, changing the potential with a higher order anharmonical term.
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Figure 10: Model FFT for the SML (a) and Comb (b) regimes. c) Time traces of the
transmission for SML for the model (Top) and experimental setup (Bottom). d) Time
traces of the transmission for the Comb regime for the model (Top) and experimental
setup (Bottom)

These non-lineraities are not considered in the simulations and so numerical saturation
gains importance.

3.4 Non-linear effects: Self-Pulsing

To have a complete description of the system we would have to add several nonlinearities
coming from temperature and free carriers. If phenomena such as free carrier absorption
(FCA) and two-photon absorption (TPA) are considered, the generation of heat and free
carriers would affect the results. The impact of an increase in temperature is seen ex-
perimentally in the transmission spectra shown in Figure 9a, blue-shifting the resonance
frequency through the thermo-optic effect.
As explained in Section 2.3.2, the fast and slow characteristic response of carriers and
temperature, respectively, will generate RF dynamics leading to Self-Pulsing (SP) limiting
cycle and represent the last signature regime of the system: Comb + SP.
When the cavity field is sufficiently high, i.e. driving the optical mode with an even lower
detuning, SP can also be achieved. Mechanical lasing and SP can simultaneously happen
in the same system, so the new behaviour difference with the previous one in the frequency
spectrum is the ofset of the SP peak. Figure 9f and 9g show the experimental data in this
situation. The figure shows that, in the MHz regime, around the 265 MHz lasing peak a
new comb is formed with peaks having a difference of about ωSP=13.5 MHz. As occured
when the ΩMHz peak began to lase, the different harmonics were also present and arose in
the GHz sidebands (Figure 9e). Now, the SP peak located at 13.5MHz and its harmonics
are contributing to the comb formation in the MHz. Not only that, this spectra and its
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corresponding harmonics also emerged in the principal comb’s sidebands around ΩGHz.
As a result, we have a multiple comb formation. A main comb formed around ΩGHz with
a peak separation of ΩMHz, where each of the peaks of the comb, including the central
one, also exhibit a comb with a smaller spectral separation of ωSP (see Figure 9f). A map
showing when the different regimes emerge at each incident power is given in Figure 23 in
Appendix F.
This last behaviour can also be modelled and other works include this effects in their
models [21]. The incorporation of SP into the model will force the system to be described
by at least two more differential equations: one for the density of free carriers (N) in the
system and another for the temperature increase (∆T ).

4 Conclusion

A Mechanical-Optical-Mechanical (M-O-M) coupling is achieved in a Phononic Crystal
(PnC) waveguide where a single Anderson Localized (AL) optical mode is able to excite
the mechanics in the platform at frequencies with an order of magnitude of difference.
The difference on the coupling rates of each of the excited modes induces the formation
of a frequency comb centered at a mechanical carrier frequency of 6.8 GHz with a span
on the order of 2 GHz when certain threshold power is surpassed. The experimental
dynamics follow the predictions of the above presented three coupled equation model that
only relies on the experimental characterization of the system’s parameters. Frequency
domain study has shown that the dynamics that the system undergoes when the comb is
formed could extend to the tens of THz and experimental data seems to be in accordance
with this data. Moreover, when non-linear effects like photon absorption by the carriers
and temperature increase cease to be negligible, the experimental platform can experience
Self-Pulsing, leading to an even more important modulation of the system’s behaviour.
To our knowledge, this platform is is the first to show a self sustained frequency comb
coming from purely from the mechanical dynamics of two vibration modes. The interplay
of phonons and photons in this same structure including signal modulation is of a great
interest for the development of phononic circuits [43] as well for optical signal processing.
Other potential perspectives lead to synchronization and mechanical mode locking [44]
and for metrological applications.
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VARIABLE COMPILATION LIST

Parameter Description

meff Effective mass
Γm Decay rate of the mechanical oscillator
Ωm Mechanical frequency
ωo Cavity optical frequency
G Optomechanical coupling rate
go Vacuum optomechanical coupling rate
xzpf Zero point fluctuation
FRP Radiation pressure force
PL Incident laser power
ωL Laser optical frequency

∆ = ωL − ωo Detuning of the pump laser frequency from the optical resonance frequency
|āin| Incident photon rate
κℓ Laser drive channel losses rate
κi Internal optical losses rate
κe External optical losses rate
κ Total optical losses rate
n Group index

Table 2: Optomechanic parameters
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5 APPENDIX

A Mechanical oscillators basics

A.1 Harmonic oscillator

In classical mechanics, an harmonic oscillator is a system that, when displaced from its
equilibrium position, experiences a restoring force F proportional to the displacement y:

F⃗ = −ky⃗ (A.1)

where k is a positive constant. A typical harmonic oscillator is a mass attached to a spring
(Figure 11), and the proportionality constant, k, between the force and the displacement
is the spring constant. In that sense, when the system is displaced from its equilibrium
position, it will experience a force that brings it back to it.

Figure 11: Spring-mass model

By simply applying the second Newton’s law, we can see that:

m
d2y

dt2
= −ky (A.2)

Solving the differential equation, we get:

y(t) = Aei(ω0t+φ) (A.3)

Where A is the amplitude of the movement, y is the position (being y=0 the equilibrium
position) and φ is the initial phase for t=0. This movement corresponds to an oscillation at

a characteristic angular frequency, called resonance frequency, of ω0 =
√

k
m . The relation

of the angular frequency and the frequency is just ω0 = 2πf .

A.2 Damped harmonic oscilator

In real systems there are other forces that can affect the behaviour of the oscillator, such
as friction. This type of forces act in the direction that is opposite to the movement and
tend to attenuate the amplitude of the movement. They are called damping forces, and so
the proportionality factor between it and the velocity (b in equation A.4), is the viscous
damping coefficient.

m
d2y

dt2
= −ky − b

dy

dt
(A.4)
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From the second Newton’s law, what we obtain is now that the position with respect to
the equilibrium follows the following expression:

y(t) = A1e
λ1t +A2e

λ2t where

{
λ1 = −b−

√
b2−4km
2m

λ2 = −b+
√
b2−4km
2m

(A.5)

Rewriting the expression as the equation A.3 one, this time without the phase, to simplify,
we can see that:

y (t) = Aeiω
′t (A.6)

where ω′ = iω0

(
−ζ ±

√
ζ2 − 1

)
and ζ =

b

2
√
mk

The herein defined ζ is the so-called damping ratio and is the parameter that determines
how the oscillator will behave. Now we see that depending on the value of ζ -that depend
on k, m and b- we can have 3 possible situations that are ilustrated in Figure 12.

A.2.1 Overdamped harmonic oscillator (ζ > 1)

This situation leads to a purely real term in the exponential. And so, the final equation
results in an exponential decay to y = 0, i.e. to the equilibrium position. The larger the
damping ratio, the slower is the return to that equilibrium position.

y(t) = Ae−|ω′|t (A.7)

A.2.2 Critically damped harmonic oscillator (ζ = 1)

In this case, the damping makes the system return to the equilibrium as quickly as possible,
as ω′ = −iω0 giving an exponential decay.

A.2.3 Underdamped harmonic oscillator (ζ < 1)

In this last situation we will have the following expression describing the movement:

y(t) = Ae−ζω0t−iω0

√
1−ζ2t = Ae−ζω0teiω0

√
1−ζ2t (A.8)

In this case we have an oscillation at a characteristic angular frequency ω1 = ω0

√
1 − ζ2

but with a decreasing amplitude that returns to the equilibrium position as in the critically
damped harmonic oscillator (at a decay time τ = 1

ζω0
).

A.3 Response to a force of a harmonic oscillator

In an underdamped system it is interesting to define the quality factor Q as:

Q = 2π
energystored

energylostinaperiod
=

√
km

b
=

1

2ζ
(A.9)

In fact, this value is π times the number of oscillations that the system makes while its
amplitude is divided by a factor e. As seen in equation A.9, Q is inversely related to the
damping factor, which makes sense, because a higher damping leads to more energy losses
in the system.
The previous division of damped mechanical oscillators can be also done looking at this
Q factor. In this sense, overdamped oscillators have a Q < 1/2, critically damped ones
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Figure 12: Response of an oscillator depending on the damping factor

a Q = 1/2 and undamped oscillators, Q > 1/2. This factor is really relevant because it
describes the response of the resonator to an external force. In this case, we study how
the oscillator responds to an external oscillating force. So, applying the second Newton’s
law again, we can see that:

m
d2y

dt2
+ b

dy

dt
+ ky = Fme

ωt (A.10)

The solution for this system is the one in equation A.3, but the amplitude of the movement
is

A =
Fm

k −mω2 + ibω
(A.11)

This includes an extra phase to the movement, as the amplitude has an imaginary part.
To summarize all, the final expression (considering the initial phase to be 0) is:

y = ρeiϕeiωt = ρei(ωt+ϕ) (A.12)

where

 ρ = |A| =
∣∣∣ Fm
k−mω2+ibω

∣∣∣
ϕ = arg(A) = arg

(
Fm

k−mω2+ibω

)
There are two important conclusions that can be extracted from this result:

• The extra phase that appears in the oscillator is always negative, meaning that the
oscillator responds belatedly to the external force.

• Rewriting the expression in terms of Q, we notice that a higher quality factor in-
creases the amplitude of the movement. This is in accordance to the Q factor defi-
nition, which attends to the stored energy (in this case it is the sum of the potential
and kinetic energies at some point in time) times the lost energy (which is the work
done by the external force each cycle, to maintain amplitude).

A =
Fm

k

1

1 −
(

ω
ωo

)2
+ i ω

ωo

1
Q

(A.13)
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Figure 13: Response of an oscillator at different frequencies. y axis is expressed in Fm
k

units

A.3.1 Notation for mechanical resonators

Equation A.9 can also be expressed as

meff
d2x(t)

dt2
= −meffΩ2

mx(t) −meffΓm
d

dt
x(t) + F (t) (A.14)

where meff ,Ωm and Γm, respectively, represent the effective mass, resonance frequency
(ωo) and decay rate of the mechanical resonator. This last parameter Γm is related with
the damping ratio as Γm = 2ζωo.
And so, the response of the resonator to the external force can be expressed as in equation
A.11, using the mechanical resonator parameters, in the frequency domain as follows

x(ω) = χ(ω)F (ω) (A.15)

where the susceptivility χ(ω) expression is

χ(ω) =
1

meff (Ω2
m − ω2) − iΓmmeffω

(A.16)

Moreover, the response of the oscillator could be now expressed as

xh(t) = Aoe
−Γm/2e

i

(√
Ω2

m−(Γm
2 )

2
t

)
(A.17)

And the quality factor Q as

Qm =
Ωm

Γm
(A.18)
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B Effective mechanical frequency and damping derivation

To understand the dynamics our system undergoes, we can assume that the system makes
small variations δa(t) and δx(t) arround the equilibrium position: a(t) = ā+ δa(t), x(t) =
x̄+ δx(t). Equations 1.17 and 1.18 will result in

dδa(t)

dt
= i(∆ +Gx̄)δa(t) − κ

2
δa(t) + iGāδx(t) (B.1)

meff
d2δx(t)

dt2
= −meffΩ2

mδx(t) −meffΓm
dδx(t)

dt
+ h̄Gā (δa(t) + δa∗(t)) + F (t) (B.2)

As a next step, we can Fourier transform the set of equations to obtain

−iωδa(ω) = i(∆ +Gx̄)δa(ω) − κ

2
δa(ω) + iGāδx(ω) (B.3)

−meffω
2δx(ω) = −meffΩ2

mδx(ω) − imeffΓmωδx(ω) + h̄G′ā (δa(ω) + δa∗(ω)) + F (ω)
(B.4)

Obtaining

δa(ω) =
iGā

−i(∆ +Gx̄+ ω) + κ
2

δx(ω) (B.5)

The induced intracavity energy modulation gives rise to an oscillating lightinduced force
Frp(ω) = h̄Gā (δa(ω) + δa∗(ω)) called dynamical backaction.
On the mechanical size, the effective susceptivility χm,eff (ω), which relates to δx(ω) as
δx(ω) = χm,eff (ω)F (ω) takes the form

χm,eff (ω) =
1

meff

(
Ω2
eff − ω2

)
− iωmeffΓeff

(B.6)

were

Ω2
eff = Ω2

m + Ω2
om = Ω2

m + 2Ωmg
2
o |ā|2

(
∆̄ + Ωm(

∆̄ + Ωm
)2

+ (κ/2)2
+

∆̄ − Ωm(
∆̄ − Ωm

)2
+ (κ/2)2

)
(B.7)

Γeff = Γm + Γom = Γm + g2o |ā|2
(

κ(
∆̄ + Ωm

)2
+ (κ/2)2

− κ(
∆̄ − Ωm

)2
+ (κ/2)2

)
(B.8)
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C Wave propagation in ordered and disordered materials

C.1 Electrons in periodic potentials

Any crystalline material consists in a regular array of atoms arranged in a crystal lattice.
The most important property of this periodicity in space is that crystals have translational
invariance, meaning that displacing the crystal by one lattice constant, will end up in the
same structure. In 1D this can be written as:

U(x+ a) = U(x) (C.1)

where a is the lattice constant of the one-dimensional lattice.
The atoms and ions of the structure create a periodic potential. This potential creates an
electromagnetic field to which electrons in the material are subjected to.

C.1.1 Free electrons

If the electrons were moving in a periodic potential where V (r⃗) = 0, free electrons, we
would have the following Hamiltonian.

− h̄2

2m0
∇2ψ(r⃗) = Eψ(r⃗) (C.2)

This free electron model gives a plane wave solution, ψ(r) = Aeik·r, for which the energy

dispersion is E = h̄2|k|2
2mo

.

C.1.2 Kronig–Penney model

To illustrate the effect of the periodic potential we can look at the Kronig–Penney model.
This is a simple model in which the electron is placed in an infinite 1D crystal in which
the atom’s potential is considered to be rectangular. The Hamiltonian of the system is
then:

− h̄2

2m0
∇2ψ(r⃗) + V (r⃗)ψ(r⃗) = Eψ(r⃗) (C.3)

∇2ψ(r⃗) +
2m0

h̄2
[E − V (r⃗)]ψ(r⃗) = 0 (C.4)

Bloch’s theorem establishes that the wave function ψ
k⃗
(x) of the electron in a crystal, can

be expressed as the product of a plane wave and a function with the same periodicity of
the lattice u

k⃗
(x), called Bloch function.

ψ
k⃗
(x) = eik·xu

k⃗
(x) (C.5)

where
u
k⃗
(x) = u

k⃗
(x+ a) (C.6)

and so
ψ
k⃗
(x+ a) = eikaψ

k⃗
(x) (C.7)

Now, by solving the solution for a single period of the lattice, considering each region as
having constant potential. Then, the Bloch Function u

k⃗
(x) can be found.
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Figure 14: Schematic of the Kronig–Penney model periodic potential

Taking Figure 14 as the reference, for the 0 < x < (a− b) region, we have:

ψ(x) = Aeiαx +A′e−iαx
(
where α2 =

2mE

h̄2

)
(C.8)

as this function must follow equation C.5, we have that:

u(x) = Aei(α−k)x +A′e−i(α+k)x (C.9)

And for −b < x < 0:

ψ(x) = Beiβx +B′e−iβx
(
where β2 =

2m (E + V0)

h̄2

)
(C.10)

u(x) = Bei(β−k)x +B′e−i(β+k)x (C.11)

To end up having the correct solution, we have to ensure that the wavefunction and the
Bloch function are continuous, smooth and periodic.

ψ
(
0−
)

= ψ
(
0+
)

ψ′ (0−) = ψ′ (0+)
u(−b) = u(a− b) u′(−b) = u′(a− b)

If this 4 equation system is solved with a non-trivial solution we have the following relation:

cos(ka) = cos(βb) cos[α(a− b)] − α2 + β2

2αβ
sin(βb) sin[α(a− b)]. (C.12)

That for the case where we have a potential with infinite delta functions (b→ 0; V0 → ∞)
the expression simplifies like:

cos(ka) = cos(αa) +
mV0ba

h̄2
sin(αa)

αa
(C.13)

C.1.3 Band diagrams

This type of relation between E (which is inside α and β) and k gives rise to different
energy dispersion relation diagrams. In Figure 15 we see the band structure of Si. We can
observe a band gap in the 0-1.12 eV energy range.
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Figure 15: Band structure of Si from an empirical nonlocal (full line) or local (dotted
line) pseudopotential calculation. (Reprinted figure with permission from Chelikowsky JR
and Cohen ML (1976) Nonlocal pseudopotential calculations for the electronic structure
of eleven diamond and zinc-blende semiconductors. Physical Review B 14: 556; American
Physical Society [45])

C.2 Light in photonic crystals

C.2.1 Maxwell-Schrödinger isomorphism

C.2.1.1 Maxwell laws
During the 19th century, scientists formulated quantitative laws that related the interac-
tions between electrical current in conductors, electric fields and magnetic fields. Some of
them are the Ampère’s law (1831) [46], Faraday’s law (1831) [47] or Lenz’s law (1834) [48].
It wasn’t until 1865, when James Clerk Maxwell published ’A Dynamical Theory of the
Electromagnetic Field’ [49], when these laws were unified in a coherent description of the
electromagnetic field. Later in 1884, Oliver Heaviside and Willard Gibbs put these equa-
tions together and reformulated them in the current vector notation. For a linear medium
we have that:

∇⃗ · −→E =
ρf
ϵ

∇⃗ · −→B = 0

∇⃗ × −→
E = −∂

−→
B
∂t

∇⃗ × −→
B = µJ⃗f + µϵ∂

−→
E
∂t

(C.14)

where ρf is the free charges density, J⃗f the current density, µ is the permeability and ϵ the

permittivity of the medium. Maxwell equations describes the electric (
−→
E ) and magnetic

field (
−→
B) and their changes. The first one is the Gauss Law that describes how charges

affect the electric field, and so tells that free charge density are the source of displacements.
The second law tells that magnetic monopoles do not exist and so the magnetic field closes
on itself. The third one is the Faraday Law. That tell how the electric field will react to
magnetic field changes in time. And the forth one, the Ampère-Maxwell law, tells us that
the magnetic field will react to free charges moving and to a change in the electric field.
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C.2.1.2 Propagation speed in an homogeneous medium
Considering a linear and homogeneous medium, in which there are no free charges, i.e.,
ρf = 0 . From the third equation in C.14 we can extract that:

∇⃗ ×
(
∇⃗ × E⃗ = −dB⃗

dt

)
∇⃗(∇⃗ · E⃗) −∇2E⃗ = − d

dt [∇⃗ × B⃗]
(C.15)

Knowing there are no free charges, J⃗f = 0. And so, we can introduce the first and forth
equations in C.14 into the equation C.15 we get that

∇2E⃗ − µε
d2

dt2
E⃗ = 0 (C.16)

Solving this differential equation, we see that the wave has a speed such that: 1
v2

= µε.
Knowing that µ0 and ϵ0 are the vacuum permeability and permittivity, respectively, the
relationship of the speed in the medium with the vacuum speed of light, c, via the refractive
index, n, can be obtained as

n =
c

v
=

√
µrεr (C.17)

where µr = µ
µ0

and ϵr = ϵ
ϵ0

.

C.2.1.3 Propagation speed in a non-homogeneous medium
A non-homogeneous medium can be achieved having a position-dependant refractive index.
Some examples could be multilayer materials, nanostructures, dopping, etc.
Now, restoring the possible spatial dependence on ε and µ, considering them as time-
independent scalars, we see that equation C.16 changes as:

∇2E⃗ − n2(r⃗)

c2
d2

dt2
E⃗ = 0 (C.18)

So, calling A the amplitude of the vector fields, with a behavior A(r⃗, t) = A(r⃗)e−iωt, we
obtain for equation 1.21 that:

∇2A(r⃗) +
n2(r⃗)

c2
ω2A(r⃗) = 0 (C.19)

C.2.1.4 Electromagnetism-quantum mechanics analogy
This equation above should be compared with Schrödinger’s equation shown in eq. C.4
from where the identical mathematical structure is evident and a direct analogy can be
done between the following terms:

Electromagnetism Quantum mechanics

Function A(r⃗) ψ(r⃗)

k2(r⃗) λ2 n
2(r⃗)
c2

ω2 λ2 2m0

h̄2 [E − V (r⃗)]

Table 3: Electromagnetism-quantum mechanics analogies

where k2(r⃗) are the so called Helmholtz functions and λ2 are some characteristic lengths to
rewrite the equations in terms of dimensionless parameters. So, in the same way electrons
tend to go to regions with low potential energy (regions with a high [E − V (r⃗)] value),

32



photons will tend to regions with high n2 (r⃗). This last assertion is reliable to the Snell
law, where a photon changes direction by a change on the refractive index. This similar
phenomena is a consequence of the wave character of both entities: light and electrons.
Any other entity described by a wavelike equation (phonons in solids, sound in air, water
in a pond, etc.) may also present the same collection of quantum effects.

C.2.2 A taste of photonic crystals

Just as it happens with electrons in a periodic potential, the periodicity of the group index
n (r⃗) in a photonic crystal can generate photonic gaps (see Figure 16). This gap depends
on the ratio of the group index of the two materials and can give rise to some exotic
phenomena such as:

• Slow light: regions of the diagram with dω/dk → 0. This can be used in distributed
feedback laser (DFB) lasers [50].

• Negative refraction: regions with dω/dk < 0. This property can be used to develope
superlens that may allow imaging below the diffraction limit or higher nanolithog-
raphy resolutions [51].

• Regions with a high curvature, i.e. a quick change in the refractive index with
frequency that could allows very large angular separation [52].

Figure 16: Band diagram of a Photonic crystal with a square pattern (from Alongkarn
Chutinan, Nazir P. Kherani, Stefan Zukotynski, ”High-efficiency photonic crystal solar cell
architecture,” Opt. Express 17, 8871-8878 (2009)) [53]

If at some point of the structure, the pattern is not followed the energy diagram will
change. In the case of punctual defects, a mode can be pushed up or down in energy.
This can generate a mode that is in the band gap region. The mode in that deffect will
be localized and the field will be an exponential decay proportional to

√
ω − ωo.

If we have a line defect, we could have a energy band that could be in the center of the
gap if the design of the structure is the optimal. This can allow to have modes confined in
that line defect. Those are also called guided modes since the frequencies of these modes
are not allowed outside the gap region, i.e., they can only be able to propagate through it
as they can’t couple to any other band of the diagram.
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C.3 Anderson Localization

Anderson Localization (AL) is a phenomena associated with any undulatory system (elec-
tromagnetic wave, quantum mechanics, acoustics, sea waves, etc.) with disorder [54].
If we consider a 1D wave propagating in space, we will see that its intensity is equal to
its power (I = P ). If we look at a 2D wave, the power of the wave is now distributed for
all the perimeter, so the intensity should be I = P

2πr . The same happens in 3D, where the
power is distributed for all the surface: I = P

4πr2
. A general relation can be extracted:

InD ∝ 1

rn−1
(C.20)

where r is the distance from the emission point and n the number of dimensions. When
disorder starts to play a role in the system, we can have some points where the light
scatters and where it can even bounce back. This will generate positive and negative
interferences that change the intensity of the wave depending on position.

C.3.1 1D Anderson Localization

We will consider emission in the x = 0 position in a system with impurities (scatterers).
As waves with the same amplitude but random phases will start to sum up, the amplitude
of the wave will exponentially decay. The result is a wave that doesn’t propagate, it is
localized.

A = Aoe
− x

λloc (C.21)

where the λloc parameter is the localization length, a measurement of the size of the
localized state. It could be compared with similar parameters in Quantum Mechanics, like
the Bohr radius in the hydrogen atom.

C.3.2 2D and 3D Anderson Localization

In these two cases, we also sum up waves with random phases but not with the same
amplitude, as from equation C.20 we see that this parameter had a distance dependance.
So now, light scattered nearer to the emissor will have more importance in this localiza-
tion. Amplitude will decay both for the number of dimensions and for the localization
phenomena, and a λloc parameter can be extracted as well.

C.3.3 Amount of disorder vs Anderson Localization

The scatterer density has an important relevance in AL as the distance from the emission
point to a scattering point is important for low dimension propagating waves. In 1D
systems any disorder can produce AL, as ideally the amplitude remains constant at any
position x. Nevertheless, in 2D we have a logarithmic divergence, as it has been proven
that any scatterer density can also cause AL, but for higher dimensions there is a threshold
under which there is not AL.
For small sistems, i.e., systems with a characteristic length smaller than the localization
length (L << λloc) we won’t see the effects of the localization.
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C.4 Vibrations in photonic crystals

C.4.1 Phonon propagation

C.4.1.1 1D phonon propagation model
Just as in the photonic propagation, we can see the one-dimensional lattice model for
phonons and make the extrapolation to multiple dimensions. In this case we have an
N -atomic lattice of identical atoms equally spaced with a distance a in equilibrium and a
mass m (see Figure 17). Each atom can be denoted a number n = 1, . . . , N corresponding
to his position in the lattice.

Figure 17: 1D atomic row classical model

Atoms in equilibrium are equally spaced. So, the position of the nth atom can be denoted
as

xn = na (C.22)

And its deviation from equilibrium is given by:

un(t) = xn(t) − na (C.23)

All in all, if we consider K to be the spring constant that links the atoms, we have a bunch
of coupled harmonic oscillators that could be described with the following Hamiltonian:

H =
∑
n

1

2
m

(
dun
dt

)2

+
K

2

∑
n

(un − un−1)
2 (C.24)

The equation of motion would be then:

mün = −∂Uhar

∂un
(C.25)

mün = −K (2un − un−1 − un+1) (C.26)

If we consider periodic boundary conditions, i.e., un+N = un. The solution of eq. D.36
can be solved as:

un = Aei(kna−ωt) (C.27)

where

k =
2π

Na
l

(
l = −N

2
, . . . ,

N

2

)
(C.28)

When substituting the expression D.37 in D.36, we have

mω2 = K
(
2 − eika − e−ika

)
= 4K sin2

(
ka

2

)
(C.29)

and so, the dispersion relation is:

ω = 2

√
K

m

∣∣∣∣sin(ka2
)∣∣∣∣ (C.30)
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C.4.1.2 1D phonon propagation model in a periodic medium
In the previous cases a periodicity in the potential or the refractive index could give rise
to different bands and result in band gaps where some frequencies are not allowed. In this
case, what will produce this effect will be the periodicity in the spring constant between
the atoms, i.e., a periodic change of the elastic modulus of the material.
A quick demonstration of the emergence of band gaps is the dimerization of the lattice.
Considering a system of atoms of the same mass m, but joined with springs of different
spring constant K and G. W will now have two types of atoms per cell (herein called type-1
and type-2). The potential energy of the system will be:

Uhar =
K

2

N∑
n=1

(u1n − u2n)2 +
G

2

N∑
n=1

(u2n − u2,n+1)
2 (C.31)

Proceeding as in the previous section, we see that:

u1n = A1e
i(kna−ωt)

u2n = A2e
i(kna−ωt) (C.32)

And the energy dispersion relation is:

ω2 =
K +G

M
± 1

M

√
K2 +G2 + 2KG cos(qa) (C.33)

Figure 18: Right: phonon dispersion relation for a monatomic chain. Left: phonon dis-
persion relation for a diatomic chain.

C.4.2 Phononic crystals (PC)

Just as in photons, arranging periodically different materials with different elastic constant
can produce phenomena like phononic gaps or slow sound. A proper design can also lead to
the creation of localized and guided modes which can also have different applications [55].
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D Mechanical motion detection

In the setup, mechanical motion is detected by measuring the transmitted light with a
high frequency photoreceiver.
Given a detuning ∆ = ωℓ − (ωo −Gx(t)) ≡ ∆0 +Gx(t). we can aproximate the transmit-
tance as

T (t,∆) = T (∆0) +
dT

d∆

∣∣∣∣
∆=∆o

d∆

dx(t)
x(t) = T (∆) +

dT

d∆
Gx(t) (D.34)

where we have considered that there is no backaction of the light field on the mechanical
motion. The transmission derivative with respect to the detuning is:

dT

d∆
=

∆κe
(
κ− κe

2

)(
∆2 +

(
κ
2

)2)2 (D.35)

Figure 19 diagramatically shows the mechanism to detect mechanical motion and plots
the derivative dT

d∆ . The transduction of this mechanical motion has two maxima and is
null at the resonance (∆ = 0).

Figure 19: Optomechanical transduction of motion scheme (Reprinted figure from ”Light-
motion interaction in disordered nanostructures” Artegui, Guillermo (2021) [28])

The total modulated power we expect from a mechanical motion x(t) is

Pm(t) = Pin
dT

d∆
Gx(t) = 2h̄ωℓG |ain|2

∆κe
(
κ− κe

2

)(
∆2 +

(
κ
2

)2)2x(t) (D.36)

The optical power Pm(t) is measured on a photodetector, leading to a voltage Vm(t) =
ηdetGdetPm(t), where we have introduced the detector efficiency ηdet and its transimpedance
gain Gdet. The photodetector signal is then fed to an electronic spectrum analyzer
(ESA), which measures the electrical power Pe =

〈
Vm(ω)2

〉
/R, with R the character-

istic impedance of the detector. The measured signal is therefore

PESA(ω) = 2

(
ηdetGdet√

R

)2

G2h̄ωℓ |ain|4
(
dT

d∆

)2 〈
x(ω)2

〉
(D.37)

from which the power spectral density can be extracted.
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E Group velocity and Anderson Localized modes of the
sample

For wavelengths between 1460 nm and 1485 nm, the spectral position of the dips are
periodic in wavelength. These dips are manifestations of the Fabry-Pérot modes of the
optical cavity. At higher wavelengths the location of the transmission dips is not regular.
This is a regime of Anderson-localization and the dips will depend on the position of the
air slot where the measurement is taken.
The localization phenomenon in that wavelength range derives from the slow light regime
presented by the device. The optical band structure flattens near the Brillouin Zone edge.
Group velocity can be obtained from the band diagram of a system, via the following
relation:

vg =
∂ω

∂k
(E.38)

So, the flatter the ω vs k dispersion relation, the slower the light. In a Fabry-Pérot cavity,
the group index can be extracted from the frequency difference between the characteristic
modes following the following relation:

ng =
c

2∆vFSRL
(E.39)

where ng is the group index, c is the speed of light, ∆vFSR is the free spectral range, and
L the length of the cavity.

Figure 20: Top: Low PL (<0.2mW) transmission spectra. Bottom: Comparison of the
experimental and numerical group index

The group index is the relation between the speed of light in vacuum and the group veloc-
ity: ng = c/vg. Figure 20 compares both the theoretical (from the band diagram presented
in [35]) and the experimental group index (using equation E.39). The experimental and
theoretical group index seem to be shifted from one-another by a wavelength of 5 nm.
This mismatch can be explained considering the nanofabrication errors. Both experimen-
tal and theoretical group index calculations were done taking the original design length
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L. Ideally, the cavity length of the platform should be the same as in the design one, but
a difference of several nanometers can slightly change the properties of the sample.
Results seem to be in accordance until reaching the aforementioned localized region, where
Fabry-Pérot modes are still present but are not the only visible modes in the transmission
spectrum as dips corresponding to the localized modes are also present.
In this regime of slow light, electromagnetic waves interact more strongly with the medium
making it more sensitive to the nanoscale roughness. As light-matter interactions increase,
some of the wavelengths can experience positive interferences when scattering on those
nanofabrication imperfections giving rise to localized modes that do not spatially span the
length of the entire cavity.
Few AL modes appear in this low power measurement comparing it with the Figure shown
in [35] where the average spectrum seems to show the presence of several of them. This
is again a remarkable influence on the position where the measurement is taken. As it is
performed at low powers, the evanescent field of the fiber will only be able to couple to
the optical modes in the proving point.

F Extra figures

Figure 21: Top: full ESA range for the Comb regime. Bottom: FFT mot the model result
in the same regime
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Figure 22: Schematic of the M-O-M coupling

Figure 23: Color map showing the different regimes of the system. Dark line shows the
optical resonance wavelength shifted by the TO effect. Blue and yellow lines show the Pth

of the GHz and MHz modes respectively. Red line the input power for which the SP is
activated. Coloured regions correspond to SML (blue), Comb (orange) and Comb + SP
(red).
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