
Simulating Quantum Computers with Tensor Net-
works
Erik Recio

Supervised by: Antonio Acín
Co-supervised by: Korbinian Kottmann and Paolo Stornati
Institute of Photonic Sciences, 08860 Castelldefels, Barcelona
September 2022

Erik Recio: erik.recio@icfo.eu

1

mailto:erik.recio@icfo.eu


We are setting up a pipeline to simulate variational quantum algorithms
for relevant system sizes. Most simulators only allow for a few qubits. With
tensor networks we can access much larger systems. One of the most promis-
ing algorithms is the variational quantum eigensolver, where a parametrized
circuit is optimized to prepare an approximation of the ground state. We are
investigating the reverse process of disentangling a ground state to a product
state variationally, so we can study the necessary circuit depth needed in order
to achieve the disentangling.
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1 Introduction
Most quantum algorithms are concerned with preparing a specific state starting from the
0-state. This process is unitary, and thus, invertible. Here we want to investigate this
reverse process, the decoding, starting from a specific state |ψ⟩ and trying to get to |0⟩n.
Studying the nuances of decoding states can give us clues on how to better create them
in a more efficient and precise manner. In this work we simulate variational quantum
algorithms with tensor networks with the objective of decoding certain states and study
the circuits that make it possible. We will also attempt to increase the number of sites of
our quantum systems thanks to the use of tensor networks, which gives us a linear scaling
on the number of coefficients that need to be set in order to define the state (instead of an
exponential scaling with the exact wave function).

2 Tensors
A tensor is the generalization of scalars (that have no indices), vectors (that have exactly
one index), and matrices (that have exactly two indices) to an arbitrary number of indices
(figure 1) [Sto21]. A tensor with r indices is called a rank-r tensor. Each index has its
dimension (di). In order to obtain the total number of components of a tensor, we multiply
the dimensions of each index. The total number of components of a tensor would then be∏r
i=1 di. If the dimension is the same for every index, then the total number of components

of the tensor is dr [BB17].

Figure 1: Diagrammatic representation of different multidimentional tensors.

3 Matrix Product States
A generic wave function of a quantum many-body system requires an exponentially large
memory to be stored. For a spin chain of spin 1/2 and length n, we would need to store
O(2n) complex numbers on the computer’s memory. This exponential cost makes direct
calculations of quantum mechanical systems unfeasible. Matrix Product States attempt to
improve this scalability assuming a small error [Ba2].

We define the wave function of a many-body quantum state as:

|ψ⟩ =
∑

s1,...,sn

cs1,...,sn |s1⟩ ⊗ . . .⊗ |sn⟩

These coefficients cs1,...,sn can be interpreted as a tensor, and therefore can be redefined
as the contraction of tensors Asi [Sch11]:

cs1,...,sn =
∑

α,β,...,γ

As1
α,βA

s2
β,δ . . . A

sn
γ,α
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The indices α, β, ..., γ can be contracted to recover the tensor cs1,...,sn . This is an exact
relation (figure 2). We have simplified the rank-n tensor c with n rank-3 tensor A. These
tensors A can be interpreted now as lists of matrices (the 2 greek indices make up the
matrix and the spin si makes the list), making it possible to apply Singular Value Decom-
position and reduce the dimension of the tensors A as we will see later on this chapter.

Figure 2: Schematic form of the MPS.

We can now compare the number of parameters in the quantum mechanical representa-
tion of the wave function and the matrix product state ansätz. We consider a many-body
quantum system. We denote the local Hilbert space dimension (e.g., the spin dimension if
we have a spin chain) d. In the wave function’s quantum mechanical representation, the
number of lattice points is n such that there is a total of O(dn) parameters. For the matrix
product state we set the maximal dimension of the greek indices to be at most D (usually
called bond dimension in the literature). Each tensor A has 3 indices: si of dimension
d and 2 greek indices of dimension D. Therefore, since there are n of these tensors, the
number of parameters in the matrix product state is O(ndD2), which increases linearly on
the number of sites n instead of exponentially.

The exponential scaling in the matrix product state is hidden in the bond dimension
D. We need to have an exponentially large D to have an exact equivalence. The MPS
is just an approximation that can be useful in some cases. We can truncate this bond
dimension by fixing a smaller maximal value of D. This truncation is at the core of the
matrix product state and it can be done using the singular value decomposition (SVD) of
the tensors A. The singular value decomposition decomposes a matrix as the product of
three different matrices and highlights the singular values of the matrix. Given a generic
rectangular matrix M , it is always possible to find the matrices U , Λ, V such that:

M = UΛV †

U is a matrix containing the left eigenvectors of M and therefore has orthonormal
columns (U †U = 1). Λ is a diagonal matrix with non-negative entries. The diagonal ele-
ments of Λ are the singular values of M . V † is a matrix that contains the right eigenvectors
of M and therefore has orthonormal rows (V †V = 1). As mentioned earlier, a tensor of a
matrix product state Asi

α,β can be thought of as a list of matrices. We can perform the SVD
for each of these rectangular matrices and keep only the largest singular values. Moreover,
we can remove the right and left eigenvectors of the small singular values of the matrix
and reshape them back to the previous form. The bond dimension of the new tensor Asi

will be reduced, but the biggest contribution to the wave function given by the biggest
singular values will be kept. In this manner we can achieve a good approximation of the
wave function with a linear increase on the number of sites.
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4 Variational Quantum Eigensolver
The VQE (or Variational Quantum Eigensolver) is a hybrid quantum-classical algorithm
used to find an approximation of the minimum eigenvalue of a given Hamiltonian. As can
be seen on figure 3, a quantum processor prepares a state according to a set of variational
parameters (unitary V (θ⃗)). Then, using measurement outputs of the prepared state

|ψ(θ⃗)⟩ = V (θ⃗) |0⟩

we calculate its expected energy with the given Hamiltonian:

⟨0|V (θ⃗)†HV (θ⃗)|0⟩ = ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩

The variational parameters are then optimized by a classical computer and fed back
to the quantum machine in a closed loop. This optimization is stopped when either a
convergence criterion or a maximum number of iterations defined by the user is reached.

Figure 3: Schematic form of the VQE algorithm.

5 Magnetization and Entanglement measures
Magnetization is the density of magnetic dipole moments (spins in our case) that are
induced in a magnetic material when it is placed in a magnetic field. We will measure it
with the following quantity:

M = 1
n

n∑
i

⟨ψ|Zi |ψ⟩ (1)

Quantum entanglement is the physical phenomenon that occurs when a group of par-
ticles interact in a way such that the global state cannot be described by the state of its
individual particles alone (it is more than the sum of its parts). We will get a measure of
the entanglement of our systems by using the Von Newmann entropy (see equation 2). We
will divide our spin chain in half and calculate the entropy of one of the subsystems (since
it’s symmetric, it will be the same quantity for both of them) [ECP10].

S = − Tr(ρ log ρ) (2)
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6 Explanation of the problem
In short, the problem is about putting the ground state of a given Hamiltonian into a
quantum circuit that will decode it and end with the state |0⟩⊗n. The quantum circuit will
be composed of a number of equal layers with variational parameters. These parameters
will change from run to run until we reach a good enough result on the decoding. Notice
we are using the VQE algorithm, but reversed. We start from the ground state and we
decode it to an all-|0⟩ state.

The states that we will be decoding will be ground states of the transverse field Ising
model Hamiltonian. Since we are looking at one-dimensional systems, this Hamiltonian
can be written as the following:

HIsing = −
∑
i

JiZiZi+1 − µ
∑
i

hiXi (3)

We will study the case where the interaction between sites is the same regardless of
the site. Similarly with the magnetic field, its strength will be constant through the whole
chain. Redefining the HamiltonianH and the constant h in order to simplify the expression,
we obtain the following:

HIsing = −
∑
i

ZiZi+1 − h
∑
i

Xi (4)

In order to solve this expression and find the ground state, we use the density-matrix
renormalization group algorithm (DMRG). Once we have the ground state, we are ready
to put it through our pipeline of layers, just like in VQE.

The circuit used is divided into k layers of the same type. Every layer will have the
same gates, but their variational parameters will be different. Every layer is a unitary (Uj)
that is applied to the state that we are decoding. The type of layer used in our simulations
can be seen in Figure 4. A rotational gate Ry for every qubit and a CNOT gate for each
neighbouring qubit.

Figure 4: Schematic form of the j-th layer.
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Stacking k of these layers together creates our variational circuit, as we can see in Fig-
ure 5. m is the number of qubits that will be decoded into the state |0⟩ or, alternatively,
the number of trash qubits.

Figure 5: Schematic form of our quantum circuit.

The Hamiltonian that we are using in our reversed VQE will be the one in eq. 5. This
is what VQE will try to find the minimum eigenvalue of.

HVQE(m) = 1
2m

m∑
i

(1− Zi) (5)

Therefore, the energy (or alternatively loss function L) will be the expression we find
in equation 6. Since the result of this function is positive, and equal to 1 for an all-1 state
and equal to 0 for an all-0 state, its minimization makes sure that all of the m qubits go
to the state |0⟩.

E(θ⃗) = L = ⟨ψ(θ⃗)|HVQE(m)|ψ(θ⃗)⟩ = 1
2m

m∑
i

(1 − ⟨ψ(θ⃗)|Zi |ψ(θ⃗)⟩) (6)

After calculating L, the information is passed to a classical optimization algorithm
(Nelder Mead in this case) and we obtain a new set of parameters, from wich we will start
the process again. The first set of parameters θ⃗0 are random values.
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7 Results
This work is the result of a classical simulation with code written in Julia (Appendix A).
Julia is a programming language similar to Python but with a process of compilation be-
fore execution. This makes the language very suitable for research because it is highly
optimized during the compilation and a speed advantage is gained in the long run.

Before starting with the VQE, we can analyse the ground states resulting from the
DMRG algorithm (figure 6). For the magnetization (the order parameter of the phase
transition), we see that it’s not happening at the same value of h for every number of sites
n. The phase transition starts happening at low h for small n and increases until it reaches
h = 1 the more qubits we add (which is the known value for the thermodynamic limit on
the Ising model). Regarding the entropy, we see that it increases at the change of phase.
For every value of n, the entropy increases until the phase transition finishes.

Figure 6: Magnetization and Entropy of the ground state for several cases of total sites. DMRG
calculation has been done with 5 sweeps and 10 as the maximum bond dimension, for all values of n.

One more thing to notice is that for some values of n, the dots at the phase transition
are not smooth. This is due to the DMRG algorithm not achieving the true ground state,
just a close approximation. As stated before, when in transition, entropy grows a lot so
more parameters are needed to define the wave function exactly. The MPS approximation
of the algorithm turned out to be not too exact, although enough for our purpose.

We start the simulations with a small number of sites, increasing it step by step until
the computing time is too large to continue. We test some values of m (trash qubits) for
each of the following cases (n being the total number of sites, h the Ising transversal field
and k the number of layers):

n = 4, 8, 15, 21

0 ≤ h ≤ 2

k = 1, 2, 3, 4
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7.1 n = 4 sites
As mentioned before (figure 6), the change of phase occurs around h = 0.3 instead of h = 1
due to the boundary conditions and the low number of qubits simulated. Looking at the
Von Neumann entropy, we see that its peak matches with the phase transition. The ground
state is more entangled as the system becomes critical at the transition.

The first results are in the Figure 7. For m = 1 (1 trash qubit), we can see the minimum
loss L obtained for each value of k layers. Some of the expected results are present:

• For low k, the minimum loss follows closely the entropy of the system. The circuit can
not decode entirely the ground state, having a small but clear limit when minimizing
the function. This limit follows the entropy, meaning that the more entangled a
system is, the longer the circuit has to be in order to be able to disentangle the state
and the more error we will have for short circuits.

• The more layers we add, the more accurate the system becomes. Every layer we add
reduces the value of L, getting us closer to the all-|0⟩ state.

• For 3 and 4 layers we can also see that there is no curve limiting the decoding. We
have just a flat line (with local minima). Although the error for 2 layers is very small,
from 3 layers on is when the value of the loss function is negligible and a very good
decoding is achieved.

We can see some unexpected results as well:

• There is a small noisy bump in the loss function for 0.10 < h < 0.25 and k = 2, 3, 4.
We suspect this to be due to the structure of the layer used. Since we have a lot of
CNOTs, our layers entangle the system very fast and the job of the rotational gates
is to counter that, since for low values of h the ground state is almost |0⟩ at every
site.

• For 1 layer the loss function doesn’t exactly follow the entropy and has a pointy
maximum around h = 0.7 instead of 0.5 like the entropy in figure 6.

• There are many floating points that don’t seem to belong to a specific curve. This is
due to the local minima not allowing the optimization to find the absolute minimum.

Another way of looking at the plots is with the one on figure 8. We have the same
4 figures from before plotted together. Here we gain perspective on the value of the loss
function. The plot for 2 layers becomes a small bump, meanwhile the local minima from 3
and 4 layers disappears. We will use both types of plots depending on what suits the most
each case.
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Figure 7: Minimum value achieved by the loss function for each value of h for m = 1 (trash qubits) and
different values of k (number of layers).

Figure 8: Minimum value achieved by the loss function for each value of h for m = 1 (trash qubits) and
different values of k (number of layers).
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Following the same style, we can see all the plots for n = 4 together on figure 9. We
can see that all the figures are very similar. The peaks have all the same approximate
values and the curves look more or less the same. For 1 and 4 trash qubits the curve is
more pointy and for 1 layer we have the exception, as mentioned before, that its peak it’s
not exactly on the phase transition, although is very close.

Another thing to notice on figure 9 is that increasing the number of trash qubits doesn’t
affect too much on the quality of the decoding. The values on the loss function are almost
the same. What changes is the appearance of local minima, which is non-existent for k = 1.

Figure 9: Minimum value achieved by the loss function for several m values (trash qubits). In each plot
there are four curves, one for every number of layers considered.

7.2 n = 8 sites
For 8 qubits we can start to appreciate that the phase transition is moving to the right
(figure 6) at around h = 0.5. The entropy continues to follow the phase transition as
expected. On figure 10, we can see the same results as we saw for 4 qubits, but now the
convergence into local minima is getting very relevant, bigger the more trash qubits we try
to decode. The values for the global minimum of the loss function also remain the same
for any value of m, as seen previously for 4 qubits.

A difference to notice with respect to 4 sites is that the values of L for 1 and 2 layers
have increased. As expected, the more sites we try to decode, the harder it will be.
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Figure 10: Minimum value achieved by the loss function for each value of h for different values of m
(trash qubits) and k (number of layers).
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7.3 n = 15 sites
For 15 qubits the phase transition is already at around h = 0.75 (figure 6). In figures 11,
12 and 13 we can see that local minima is making the plots not reliable. The scale of the 4
plots for every figure is the same, meaning that most of the time the global minimum is not
being accomplished. Another observation worth mentioning is that, for 3 and 4 layers, the
global minimum is quite low, meaning that most of the difficulty on decoding the states is
not going to be solved by adding more layers. You could in principle obtain a very good
decoding with just 3 layers (less than L = 0.02), but the local minima would give you a
hard time.

Figure 11: Minimum value achieved by the loss function for each value of h for m = 1 (trash qubits)
and different values of k (number of layers).

7.4 n = 21 sites
For 21 sites the phase transition is almost at h = 1 and the entropy continues to follow it
(figure 6). The problem here is that the long calculation times and the local minima makes
the study unfeasible (see figure 14).
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Figure 12: Minimum value achieved by the loss function for each value of h for m = 8 (trash qubits)
and different values of k (number of layers).

Figure 13: Minimum value achieved by the loss function for each value of h for m = 15 (trash qubits)
and different values of k (number of layers).
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Figure 14: Minimum value achieved by the loss function for each value of h for different values of m
(trash qubits) and k (number of layers).
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7.5 Loss function vs number of sites
Although we can’t make proper simulations beyond 20 qubits, we can calculate some points
for more qubits. In figure 15 we can see the minimum Loss value versus the number of
sites, up to 40 qubits. As expected, the larger the amount of qubits we want to decode,
the worse the loss value will be (the plot has fixed parameters: m = 1 trash qubits, k = 3
layers, h = 1.6.). Despite that, the relationship is linear, which means that we can get a
good enough decoding for a large number of qubits just with a small circuit (like the one
on the figure 15, which has 3 layers).

Figure 15: Minimum value achieved by the loss function for each value of n. Fixed parameters: m = 1
trash qubits, k = 3 layers, h = 1.6. for different values of m (trash qubits) and k (number of layers).
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8 Execution times
One of the points of this thesis was to use tensor networks in order to work with lots of
qubits. Our simulations couldn’t get past 20 qubits, simply because of the time. On figure
16 we can see that the times and iterations needed to execute the Nelder Mead algorithm
for each number of qubits follows an exponential trend instead of a linear one expected
from an MPS. We can also see on figure 17 that the calculation of the loss function is not
what is holding back the algorithm. The scaling with the number of sites is linear. This
linearity relationship coupled with the exponential one from the iterations, makes clear
that the problem with the times is on the workings of the Nelder Mead algorithm.

Figure 16: Single instances of a calculation for each number of qubits. This time is only of the Nelder
Mead algorithm. Fixed parameters: m = 1, k = 3, h = 1.6.

Figure 17: Single instances of a calculation for each number of qubits. This time is only of the Loss
function. Fixed parameters: m = 1, k = 3, h = 1.6.
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9 Next steps
The first thing worth putting time on is the efficiency of the algorithm. We would need to
investigate with other algorithms like SPSA [Che21] or discover what is the problem with
the current one [Meh20]. From here, it would be interesting to simulate large numbers of
qubits and see the differences. It would also be interesting to try ground states of different
Hamiltonians or even other entangled states not necessarily related to any Hamiltonians.

10 Conclusions
• The more entangled the state is, the longer the circuit needs to be in order to precisely

decode the state.

• Nevertheless, increasing the number of layers will not directly result on a better
decoding. As mentioned, local minima also increases and it will become harder to
reach the global minimum. A lot of runs will be required in order to find the global
minimum. It might also be impossible to have an accurate picture for complex
systems and long circuits due to barren plateaus [MBS+18]

• Both n and k increase the local minima. Since the number of variational parameters
on our quantum circuit is n∗k, it is expected that increasing n or k will give us more
local minima since the dimensionality of the search space also increases. [CSV+21].

• Interestingly, m also increases the local minima. The more trash qubits we try to
decode, the easier it is to get stuck there. The value of the absolute minimum of the
loss function L doesn’t change as much with smaller or larger m, so in principle you
would be able to obtain very good results with a big number of trash qubits. The
problem comes when trying to get there. Since there are so many local minima, it
would be harder to properly disentangle the state.

• As expected, n makes the loss function increase. The limit on how good a fixed
number of layers perform is worse the larger the number of qubits we want to decode.
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A Code
A.1 Main variables

• nsites: number of sites

• h: value of the ising model field

• nqubits0: number of trash qubits

• nlayers: number of layers of the quantum circuit

• iter: number of maximum iterations that the optimizer will make

• θ: array of the variational parameters of the quantum circuit

• ψ0 : MPS of the ground state

• qubit0_start: position of the first trash qubit

• qubit0_end: position of the last trash qubit

A.2 Functions
ising_hamiltonian(nsites; h)

Defines the Hamiltonian for the ground state.

layer(nsites, θ)
Defines a layer of the quantum circuit

variational_circuit(nsites, nlayers, θ)
Defines the quantum circuit

loss(θ, ψ0, nqubits0, nlayers, qubit0_start, qubit0_end)
Defines the loss function L to be optimized

ground_state(nsites, h)
Calculates the ground state from the given hamiltonian

optim_nelder(ψ0, nqubits0, nlayers, iter, qubit0_start, qubit0_end)
Optimizes the loss function given a ground state

main()
Sets variables, creates files and calls the other functions
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A.3 Pseudocode

� �
main()

loop for nsites, h, nqubits0, nlayers

ground_state()
ising_hamiltonian()

optim_nelder()
loss()

variational_circuit()
layer()� �

The main function starts looping through all the values set by the user. Then calcu-
lates the ground state (using the hamiltonian function) and starts with the optimization
(optim nelder function). This function receives the ground state and calls the loss function,
optimizing the parameters at every iteration until the value L is good enough to stop, or
until the maximum number of iterations is reached.

The loss function calls the variational circuit function which calls the layer function
and they build the quantum circuit. Then proceeds to apply this circuit to the ground
state and lastly calculates the value L for the result before passing it to the optim nelder
function.

A.4 Code of the program

� �
using ITensors
using Random
using Optim

using BenchmarkTools
using Dates
using Printf

function ising_hamiltonian(nsites; h)
H = OpSum()
for j in 1:(nsites - 1)

H += -1, "Z", j, "Z", j + 1
end
for j in 1:nsites

H -= h, "X", j
end
return H

end

# A layer of the circuit we want to optimize
function layer(nsites, θ )

RY_layer = [("Ry", (n,), (θ=θ [n],)) for n in 1:nsites]
CX_layer = [("CX", (n, n + 1)) for n in 1:(nsites - 1)]
return [RY_layer; CX_layer]

end

# The variational circuit we want to optimize
function variational_circuit(nsites, nlayers, θ )

range = 1:nsites
circuit = layer(nsites, θ [range])
for n in 1:(nlayers - 1)

circuit = [circuit; layer(nsites, θ [range .+ n * nsites])]
end
return circuit
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end

function loss(θ , ψ0, nqubits0, nlayers, qubit0_start, qubit0_end)
nsites = length(ψ0)
s = siteinds(ψ0)

Uθ = variational_circuit(nsites, nlayers, θ )
Uθ = ops(Uθ , s)
global ψθ = apply(Uθ , ψ0; cutoff=1e-8)

p1 = 0

for j in qubit0_start:qubit0_end
orthogonalize!(ψθ ::MPS,j)
Sz_j = op("Sz", s, j)
ψθ _dag_j = dag(prime(ψθ [j]::ITensor, "Site"))
p1 += 0.5 - scalar(ψθ _dag_j * Sz_j * ψθ [j]::ITensor)

end

return real.(p1)/nqubits0

end

function ground_state(nsites, h)

####################################
# Calculate Ground State ######
####################################

s = siteinds("Qubit", nsites)
ψ0 = MPS(s, "0")
#ψ0 = randomMPS(ComplexF64, s; linkdims=bondim)

H = ising_hamiltonian(nsites; h=h)
H = MPO(H, s)

sweeps = Sweeps(5)
setmaxdim!(sweeps, 10)
e_dmrg, ψ0 = dmrg(H, ψ0, sweeps)

####################################
# Print initial wave function ######
####################################

open(name_file_sumup, "a") do f
write(f, "\np1_i = [")

for j in 1:nsites

orthogonalize!(ψ0,j)
Sz_j = op("Sz", s, j)
ψ0_dag_j = dag(prime(ψ0[j], "Site"))
p = real.(round( 0.5 - scalar(ψ0_dag_j * Sz_j * ψ0[j]), digits = 3) )

p_str = @sprintf "%4.3f" p

if j != nsites
write(f, "$p_str, ")

else
write(f, "$p_str")

end

end
write(f, "]")

end

################################################################
# Calculate the entanglement entropy of the wave function ######
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################################################################

q_middle = trunc(Int, (nsites + 1)/2)

orthogonalize!(ψ0, q_middle)
U,S,V = svd(ψ0[q_middle], (linkind(ψ0, q_middle-1), siteind(ψ0, q_middle)))
SvN = 0.0
for n=1:dim(S, 1)

p = S[n,n]ˆ2
SvN -= p * log(p)

end

#########################################################
# Calculate the magnetization of the wave function ######
#########################################################

m = 0.0
for j in 1:nsites

orthogonalize!(ψ0,j)
Z_j = op("Z", s, j)
ψ0_dag_j = dag(prime(ψ0[j], "Site"))
m += real.(round( scalar(ψ0_dag_j * Z_j * ψ0[j]), digits = 3) )

end
m /= nsites

return ψ0, SvN, m

end

function optim_nelder(ψ0, nqubits0, nlayers, iter, qubit0_start, qubit0_end)

####################################
# Optimization ######
####################################

nsites = length(ψ0)
s = siteinds(ψ0)

θ 0 = 2π * rand(nsites * nlayers)
rest = Optim.optimize(θ -> loss(θ , ψ0, nqubits0, nlayers, qubit0_start,

qubit0_end), θ 0, NelderMead(), Optim.Options(iterations = iter, g_tol
= 8e-7))

####################################
# Print final wave function ######
####################################

open(name_file_sumup, "a") do f
write(f, "\np1_f = [")

for j in 1:nsites
orthogonalize!(ψθ ::MPS,j)
Sz_j = op("Sz", s, j)
ψθ _dag_j = dag(prime(ψθ [j]::ITensor, "Site"))
p = real.(round( 0.5 - scalar(ψθ _dag_j * Sz_j * ψθ [j]::ITensor),

digits = 3) )

p_str = @sprintf "%4.3f" p

if j != nsites
write(f, "$p_str, ")

else
write(f, "$p_str")

end

end
write(f, "]")
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s_spaces_begin = " , "ˆ(qubit0_start - 1)

if qubit0_end == nsites
s_spaces_end = ""
s_last = ""
s_zeros = "0.000, "ˆ(nqubits0 - 1) * "0.000"

else
s_spaces_end = " , "ˆ(nsites - qubit0_end - 1)
s_last = " "
s_zeros = "0.000, "ˆ(nqubits0)

end

write(f, "\nidea = [$s_spaces_begin$s_zeros$s_spaces_end$s_last]")
write(f, "\ng_converged = $(rest.g_converged)")
write(f, "\nmin_loss = $(rest.minimum)")
write(f, "\niterations $(rest.iterations)/$iter")

end

open(name_file_plot, "a") do f
write(f, "\n$(rest.g_converged) $(rest.minimum) $(rest.iterations)")

end

return nothing
end

function main()

####################################
# Parameters ###################
####################################

#Random.seed!(1234)

#conf_ = [begin, end, runs, step]
conf_nsites = [4, 4, 0, 1]
conf_nqubits0 = [1, 1, 1, 0]
conf_h = [1.6, 1.6, 1, 0]
conf_nlayers = [3, 3, 1, 0]

iter = 1000000000

####################################
# Code #########################
####################################

# Caculate Steps if missing ###

if conf_nsites[4] == 0
if conf_nsites[3] != 1

conf_nsites[4] = (conf_nsites[2] - conf_nsites[1])/(conf_nsites[3] - 1)
else

conf_nsites[4] = conf_nsites[2]
end

end

if conf_h[4] == 0
if conf_h[3] != 1

conf_h[4] = (conf_h[2] - conf_h[1])/(conf_h[3] - 1)
else

conf_h[4] = conf_h[2]
end

end

if conf_nqubits0[4] == 0
if conf_nqubits0[3] != 1

conf_nqubits0[4] = (conf_nqubits0[2] - conf_nqubits0[1])/(conf_nqubits0[3]
- 1)

else
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conf_nqubits0[4] = conf_nqubits0[2]
end

end

if conf_nlayers[4] == 0
if conf_nlayers[3] != 1

conf_nlayers[4] = (conf_nlayers[2] - conf_nlayers[1])/(conf_nlayers[3] - 1
)

else
conf_nlayers[4] = conf_nlayers[2]

end
end

# Caculate Runs if missing ###

if conf_nsites[3] == 0
conf_nsites[3] = trunc(Int, (conf_nsites[2] - conf_nsites[1] + 1)/

conf_nsites[4] + 1)
end

if conf_h[3] == 0
conf_h[3] = (conf_h[2] - conf_h[1])/conf_h[4] + 1

end

if conf_nqubits0[3] == 0
conf_nqubits0[3] = trunc(Int, (conf_nqubits0[2] - conf_nqubits0[1])/

conf_nqubits0[4] + 1)
end

if conf_nlayers[3] == 0
conf_nlayers[3] = trunc(Int, (conf_nlayers[2] - conf_nlayers[1])/

conf_nlayers[4] + 1)
end

# Choose the directory to save the files
dir_pc = "C:/Users/Nosgraph/Documents/GitHub/TFM/Results raw/"
dir_lap = "/home/user/Documents/TFM/TFM/Results raw/"

dir = dir_lap

if ispath(dir_pc)
dir = dir_pc

else
dir = dir_lap

end

# Name the sumup file
time_now = Dates.format(now(), "yy.mm.dd e, HH.MM.SS")
global name_file_sumup = dir * time_now * " - 0. Sumup.txt"

# Name the plot file with the changes
name_changes = "Time"

if conf_nsites[3] != 1
name_changes *= " vs nsites"

else
name_changes *= " vs nsites = $(conf_nsites[1])"

end
if conf_nqubits0[3] != 1

name_changes *= " vs nqubits0"
else

name_changes *= " vs nqubits0 = $(conf_nqubits0[1])"
end
if conf_h[3] != 1

name_changes *= " vs h"
else

name_changes *= " vs h = $(conf_h[1])"
end
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if conf_nlayers[3] != 1
name_changes *= " vs nlayers"

else
name_changes *= " vs nlayers = $(conf_nlayers[1])"

end

global name_file_plot = dir * time_now * " - " * name_changes * ".txt"

# Write the headers in the files
open(name_file_sumup, "a") do f

write(f, "nsites = $conf_nsites\nnqubits0 = $conf_nqubits0\nh = $conf_h\
nnlayers = $conf_nlayers\n\nchanges = $name_changes\niter = $iter\
nmethod = $method\n\n")

end

open(name_file_plot, "a") do f
write(f, "g_converged min_loss iter nsites nqubits0 h nlayers SvN time m")

end

#initialize some variables
ψ0 = 0
SvN = 0
m = 0
nsites_2 = 0
nqubits0_2 = 0
h_2 = 999
qubit0_start = 0
qubit0_end = 0

# Start loop for the calculations
for nsites in range(conf_nsites[1], conf_nsites[2], step = conf_nsites[4])

max_nqubits0 = min(nsites, conf_nqubits0[2])
for h in range(conf_h[1], conf_h[2], step = conf_h[4])

for nqubits0 in range(conf_nqubits0[1], max_nqubits0, step = conf_nqubits0
[4])

for nlayers in range(conf_nlayers[1], conf_nlayers[2], step =
conf_nlayers[4])

nsites = trunc(Int, nsites)
nqubits0 = trunc(Int, nqubits0)
nlayers = trunc(Int, nlayers)

# Save the qubits in the middle of the state (the ones we will turn to
0)

if nsites_2 != nsites || nqubits0_2 != nqubits0
qubit0_start = trunc(Int, (nsites-nqubits0)/2 ) + 1
qubit0_end = qubit0_start + nqubits0 - 1

end

# Calculate the ground state everytime there is a change
if h_2 != h || nsites_2 != nsites
ψ0, SvN, m = ground_state(nsites, h)

end

nsites_2 = nsites
nqubits0_2 = nqubits0
h_2 = h

# Execute minimizer algorithm, save the time
time = @elapsed optim_nelder(ψ0, nqubits0, nlayers, iter, qubit0_start

, qubit0_end)

# Write the last data on the files
open(name_file_sumup, "a") do f

write(f, "\nh = $h")
write(f, "\nnlayers = $nlayers")
write(f, "\nSvN = $SvN")
write(f, "\nm = $m")
write(f, "\ntime = $time s\n")

27



end

open(name_file_plot, "a") do f
write(f, " $nsites $nqubits0 $h $nlayers $SvN $time $m")

end
end

end
end

end

return nothing

end

for j in range(1, 1, step=1)
main()

end� �
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