Knowledge and Information Systems
https://doi.org/10.1007/5s10115-022-01743-z

REGULAR PAPER

®

Check for
updates

On the use of the descriptive variable for enhancing the
aggregation of crowdsourced labels

Iker BeRaran-Munoz'® - Jeronimo Hernandez-Gonzalez? - Aritz Pérez!

Received: 25 April 2021/ Revised: 1 August 2022 / Accepted: 6 August 2022
© The Author(s) 2022

Abstract

The use of crowdsourcing for annotating data has become a popular and cheap alternative
to expert labelling. As a consequence, an aggregation task is required to combine the dif-
ferent labels provided and agree on a single one per example. Most aggregation techniques,
including the simple and robust majority voting—to select the label with the largest number
of votes—disregard the descriptive information provided by the explanatory variable. In this
paper, we propose domain-aware voting, an extension of majority voting which incorporates
the descriptive variable and the rest of the instances of the dataset for aggregating the label of
every instance. The experimental results with simulated and real-world crowdsourced data
suggest that domain-aware voting is a competitive alternative to majority voting, especially
when a part of the dataset is unlabelled. We elaborate on practical criteria for the use of
domain-aware voting.

Keywords Crowdsourcing - Label aggregation - Descriptive variable

1 Introduction

In the last decade, the machine learning community has resorted to crowdsourcing for obtain-
ing labelled data at a relatively low cost. Instead of relying on costly experts with low
availability for labelling their datasets, crowds of non-expert workers (or annotators), which
are available for this type of short tasks, are employed. The main issue is that the expertise
of annotators is not guaranteed and their labelling might be misleading. To work around this
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problem, each example is usually labelled by many annotators, assuming that the consensus
label is more reliable than each single annotation [1, 2].

The process of inferring the consensus label from a (multi)set of labels is known as label
aggregation. This process, by the nature of crowdsourcing, is usually focused on being cost-
effective, that is, to reach the maximum accuracy counting on the minimum resources. That
involves requiring non-expert annotators and as few labels as possible. The simplest yet
effective technique is majority voting (MV), where the consensus label is the one with the
largest number of votes among annotators for each specific instance. . Many other methods
have been proposed but, surprisingly, the descriptive information provided by the explanatory
variable of the instances, available in every machine learning problem, is rarely used to
enhance label aggregation. Similarly, given an observed instance, the rest of the dataset is
usually not taken into account for label aggregation. Our intuition is that useful information
for label aggregation can be inferred from other instances through the descriptive variable,
assuming that the class conditional distribution evolves smoothly with respect to the instance
space.

In this paper, we propose domain-aware voting (DAV), an extension of MV that carries out
label aggregation by efficiently combining the labels available for the example at hand and
using its explanatory data to gather information from the rest of the instances of the dataset.
Thus, it can produce the correct labelling even when an example has never been annotated. A
simple way to understand our proposal is to think of the k-nearest neighbours classifier [3]:
it predicts a class distribution based on the neighbours of an example. In our framework,
the annotations provided for nearby examples would form the predicted class distribution
and this would be added as an extra vote to the label aggregation process. Nevertheless,
DAV is a general solution that exploits the domain information by using an estimate of the
class conditional distribution which might have been obtained in diverse ways. That domain
information is transformed into an extra vote that is obtained at zero cost. In our extensive
empirical validation, DAV performs equal or better than MV in most scenarios with fewer
labels. That is, DAV outperforms MV in terms of cost-effectiveness and its use can lead to
reducing costs of labelling through crowdsourcing, which is the ultimate goal of resorting to
a crowd of annotators for labelling.

The rest of the paper is organised as follows: Firstly, the related work is presented, and
then, the problem is formally defined and our proposal is presented. In Sect. 5, the hypotheses
behind our method are tested through an extensive experimental setting, and the results are
broadly discussed next. Finally, we draw the conclusions and suggest open questions as future
work.

2 Related work

Recently, crowdsourcing has become popular and many platforms, such as Amazon MTurk
or Figure-Eight.com, have been born to put in contact workers and task schedulers for data
collection, where the use of mobile devices is gaining a central role [4]. Crowdsourcing has
been used for a variety of purposes: labelling of data examples for machine learning [5], text
correction [6], text translation [7], various forms of disease diagnosis [8], among others [9].

Regarding label aggregation, the robustness of MV, a popular strategy that is explicitly
or implicitly used by many methods, has been extensively studied [1, 10]: as long as many
annotators take part, they might not be experts. It stands out as it does not model the crowd.
Our proposal shares this same level of simplicity. Other methods estimate the reliability
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of the annotators, such as weighted voting, which uses the reliability estimates to weigh
their votes [11]. Many methods use the Expectation-Maximisation strategy, starting from
the seminal work of [12], to iteratively infer a better fit of the model of annotators and
improve the estimate of the class labels. It has been combined with spectral methods [13]
and deep learning [14], among others. Other methods do not have an explicit voting step and
introduce the crowd information into more complex models [15]. The information from the
descriptive variable is rarely used for label aggregation. For example, [15—17] used it mainly
for estimating the reliability of the annotators. [2] considered it to model the difficulty of
the instances within a framework of active learning. [18] use the features and the labels to
generate clusters in two layers, that are finally related to the true class labels. In general, the
contribution of the descriptive information into the final aggregation is indirect and hardly
measurable. Our proposal is a simple voting method that directly integrates the features.

A commonly related task is that of learning from this type of data, known as crowd
learning [16]. Crowd learning methodologies can be roughly divided into (i) those that per-
form label aggregation as the predictive model is learnt [10, 14-16] and (ii) techniques that
approach label aggregation and model learning sequentially [2, 11, 12, 17, 18]. This paper
would be useful for those in this second group, as we solve the problem of label aggregation,
which can then be combined with any classical learning algorithm.

3 Problem formalisation and background

The context of this work is a supervised learning problem where a training dataset has been
labelled by a crowd of annotators. Formally, let X and C be two random variables where
(X, C) is distributed according to p(x, ¢), X is the d-dimensional descriptive variable and
C is the categorical class variable that takes values in the domain Q = {1, ..., r}. A dataset
D = {x;}?_, with n unlabelled instances is provided. The real class label c, of the instances x
is hidden, and only a multiset of labels S, = {11, ..., ¥} is available for each x € D, where
m. € Z7T is the number of appearances of the class label ¢ in S,.. The labels € S, are provided
by the annotators from a crowd. In this work, we assume that annotators (i) provide labels
independently and (ii) tend to provide the correct label with the highest probability. That is,
neither colluding nor adversarial annotators are considered. Under realistic fair conditions [1],
S, provides relevant information about the true class ¢, of instance x. Label aggregation can
be formally defined as the procedure of assigning a class ¢, to each instance x € D, based on
the information at hand: the instances and their collections of labels. The goal is to recover
the true label of x, that is, to obtain ¢ = ¢, as frequently as possible. Let us define a labelling
L as a tuple that assigns a label, ¢, € £, to each instance of the dataset, L = {¢, : x € D}.
Thus, the goal of label aggregation can be redefined as to infer a labelling L that maximises
the aggregation accuracy:

1 .
a(l) =~ 3 1@ = co) (1)

xeD

where 1(cond) = 1 if cond = true and 0 otherwise.
The majority voting (MV) function for x can be formally written as

v(Sy) = arg max v(c|Sy) 2)
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Fig.1 Bayesian interpretation of

DAV: For each instance x, o
and g (c|x) provide the
hyperparameters of the Dirichlet

prior for that instance, B. That

Dirichlet prior, along with the
collection of labels Sy, , provides >
the posterior probabilities for cj, 'L k-

foreachi € {1,...,r}

where v(-|Sy) is the voting estimate, which corresponds to the maximum likelihood estimate

of the class: |
v(elS) =Y 1l =0 ©)

B s

4 Domain-aware voting

The class uncertainty surrounding an instance decreases as the size of the multiset Sy increases
(more annotations) and the number of distinct labels decreases (annotations concentrated
on particular classes, best case single class). In instances with high class uncertainty, the
information obtained solely from S, may be insufficient. The incorporation of the descriptive
information of instances into the voting could enhance the performance of label aggregation.
Moreover, we can also incorporate into the aggregation task the intuition that examples with
similar descriptive vectors might also share the same class.

In this work, we propose an extension of the classical MV approach which makes use
of the explanatory variable X to incorporate information regarding all the instances from
the dataset. When inferring the class label of an instance x, its descriptive information is
exploited along with the information provided by the multiset of labels S,. Our proposal,
called domain-aware voting (DAV), can be expressed as follows,

v*(x, Sy) = argmax v*(c|x, Sy) 4)
ceQ
where the DAV estimate, v*(c|x, Sy), is:

v (clx, Sy) = S [1Sx] - v(clSx) + ap - g(clx)] (%)
[Sxl + a0

The g(c|x) is an estimate of the conditional class distribution p(c|x), which we will call
domain vote. It is an extra vote added to the voting estimate, which is weighted by means of
aparameter «p. DAV becomes the MV strategy when ogp = 0. Interestingly, the DAV estimate
has self-regulatory properties for the aggregation of annotations. Given a fixed «p value, the
influence of the domain vote in DAV decreases as the size of the collection S, increases.
In other words, as the number of collected labels tends to infinity, the DAV estimate tends
to the voting estimate. Similarly, as the collection Sy is reduced, the information provided
by the domain vote gains relevance. This self-regulatory behaviour is particularly suitable
for crowd-labelling scenarios in which the size of the collections of labels of the different

instances is typically unbalanced.
In fact, assuming that ¢(c|x) is given a priori, DAV can be understood as a Bayesian
estimate of the class distribution for an instance (see in Fig. 1 its plate model), where domain
votes are the hyperparameters of a Dirichlet prior, 8r = «¢ - g(c|xx). In this viewpoint,
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ag is the equivalent sample size, which weighs the contribution of the domain votes to the
aggregation scheme.

Note that DAV is a general method where the domain votes can be obtained through a
variety of means: They could be considered as priors, the output of a classification model,
or obtained through density estimation, to name a few. Throughout the remainder of the
paper, we call domain voter to a classifier learnt with the voting estimates of the instances
as probabilistic ground truth, which introduces the descriptive information into the label
aggregation task. A classifier that can provide a probability distribution over the class labels
is preferred, to reflect the uncertainty of its predictions. Depending on the specific application,
our domain voter could be any type of classifier: from a simple naive Bayes for structured
data to a deep neural network for image classification.

Note that, conceptually, DAV is in line with crowdsourcing, which was introduced as a
cost-saving alternative to expert supervision. DAV considers an extra weighted vote which
is obtained for free. While the aggregation performance is preserved, DAV requires fewer
annotators, thus reducing the cost.

4.1 Intuition on the behaviour of DAV

For the sake of a better understanding of the expected performance of DAV, some insights
into its behaviour under different conditions are given hereafter. Here we put the focus on
two types of scenarios: (i) Scenarios in which the domain voter may switch the choices made
by MV and (ii) scenarios in which DAV is expected to obtain better results than MV, in terms
of accuracy.

For the sake of simplicity, let us consider a binary class ( = 2) and a deterministic domain
voter (g (c|x) = 1 for alabel ¢, and O for the rest of labels). Let us define annotator reliability
as the probability, rel, that each annotator selects the correct label. In this binary class context,
the most reliable annotator (rel = 1) always makes the correct choice; meanwhile, the least
valuable contribution comes from those that randomly guess a label (rel = 0.5). As we
have assumed that annotators provide on average the real class label, we have considered
reliability values rel > 0.5.! The following results are based on the binomial distribution.
Briefly, the probability that k annotators out of the total number m (all having reliability rel)
select the correct class label is (’,’:)relk(l —rel)ymk,

Firstly, it could be useful to have some insight into when the domain voter can shift the
labels provided by MV. In Fig. 2, the probability that the output of the domain voter differs
from the one given by MV is depicted. The probabilities estimated for different numbers of
annotators (from 1 to 14), reliability values (from 0.5 to 1) and «( values (1 in Fig. 2a and
4 in Fig. 2b) are shown, using a domain voter with 0.7 of accuracy. According to Fig. 2,
the probability that the domain voter changes the choices made by MV increases (i) as the
number of annotators decreases and (ii) as their reliability decreases. On the one hand, as the
reliability of the annotators decreases, a lower proportion of them will vote for the same label
(higher balance is expected). Thus, there is a higher probability that DAV tips the balance
towards the other option. On the other hand, the expected difference between the number
of votes gathered by both classes decreases as fewer annotators take part and, again, DAV
has higher chances of giving an output different from that of MV. The aforementioned self-
regulated behaviour of DAV can be observed: fixed «p, the probability of shifting the decision
of MV increases as the number of annotators decreases. Finally, note that, when the number

! Remember that DAV does not model neither annotator reliability, nor any other characteristic. This reliability
concept is an experimental design parameter.
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Fig. 2 Graphical description of the probability that the domain voter changes the choice made by MV, as the
number of annotators increases (from 1 to 14) and the reliability of annotators increases (from 0.5 to 1). The
value of the parameter « is different for each subfigure and the performance of the domain voter is set to 0.7
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Fig.3 Graphical description of the expected accuracy values of DAV and MV, as the reliability of annotators
increases (from 0.5 to 1) and the performance of the domain voter is equal to that of MV (ranging from 0.5 to
1). The value of the parameter « is different for each subfigure, and the number of annotators is set to 5

of annotators is even, ties may occur when applying MV. In those cases the domain vote
would break the tie. This difference explains the stepped behaviour observed in Fig. 2: the
contribution of DAV is unquestionably more promising.

These results suggest that the reliability of the annotators has a greater influence than the
number of annotators on the probability that DAV changes the answer of MV. The effective
difference between both factors rises with large «g values (Fig. 2b vs. a). Reliable annotators
(rel — 1) tend to concur voting for the correct label and, intuitively, shifting the choice
made by MV is harder. Conversely, almost random annotators (rel — 0.5) tend to provide
both labels at the same rate, and shifting the choice made by MV is more probable.

If the reliability of the annotators and the performance of the domain voter are known,
the expected accuracy values of DAV and MV can be computed. That information would be
useful to make decisions before applying DAV. In Fig. 3, we compare both methods as the
reliability of the annotators and the performance of the domain voter ranges from 0.5 to 1
and the parameter o takes the values 1 and 4 (the number of annotators is set to 5). DAV
is expected to outperform MV when annotators are unreliable and the performance of the
domain voter is high. The difference increases as the reliability of the annotators decreases
and the performance of the domain voter increases. MV outperforms DAV when annotators
show intermediate reliability and the domain voter performs poorly. Regarding o, DAV
outperforms MV more often in experiments where the weight of the domain voter is lower
(g = 1). However, the performance differences between DAV and MV are more prominent
when the domain voter performs better and it is given a higher weight (g = 4). Note that
not all the scenarios observed in Fig. 3 are necessarily realistic. It is reasonable to expect that
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Table 1 Selected supervised

datasets from UCI Name " d ! Name " d g
repository [19]. The columns Arrhythmia 452 279 13 Segment 2310 19 7
display, in the following order: .

Name of the dataset, number of Dermatology 366 34 6 Vehicle 846 18
instances (n), dimension of the Glass 214 9 6 Vowel 990 10 11
explanatory variable (d) and Satimage 6435 36 6

number of classes (r)

the domain voter performs better than a single annotator, as it might simply be built taking
into account the labels provided by all annotators. A domain voter with performance much
lower than annotator reliability might be unusual in practice.

In the next section, we present a more realistic and extensive comparison between DAV
and MV under varying experimental conditions.

5 Empirical study

The presented label aggregation scheme, DAYV, is proposed as an enhancement of MV that
incorporates extra information, from the descriptive variable and all the instances. We sim-
ulate a large spectrum of scenarios and aim to identify those in which DAV outperforms
MV. Scenarios where instances might be labelled by few or no annotators, where these have
varying reliability values, are considered. Each experiment is run 100 times, and the mean
values of the accuracy are reported.

Our hypotheses are: (H1) There exists an «p > 0 for every dataset that makes DAV better
(or at least not worse) than MV in terms of aggregation accuracy (Eq. 1), (H2) the advantage
of DAV regarding MV tends to increase as the number of labels collected for each instance
decreases, and (H3) the advantage of DAV regarding MV increases as the reliability of the
annotators decreases. We validate these hypotheses with (i) standard supervised data and
synthetic annotators and (ii) real crowdsourced data in the following subsections.

5.1 Experiments with artificial annotations on standard supervised datasets

Firstly, we consider fully supervised datasets and synthetically transform them into crowd-
sourced labelled datasets employing simulated annotations. This allows us to control the
reliability of the annotators and thus to validate Hypothesis H3.

We consider datasets with different numbers of instances, class labels, and dimensions
of the explanatory variable, to cover a variety of experimental scenarios. In that way, the
strengths and weaknesses of DAV concerning the baseline MV can be observed accounting
for a wide range of characteristics. The datasets, collected from the UCI repository [19], and
their main characteristics are summarised in Table 1.

5.1.1 Artificial labels generation

To generate meaningful synthetic labels for each dataset , we take into account the class-
confusion matrix of a random forest (RF) classifier [20]. a reliability parameter (rel) sets the
probability that an annotator labels an instance correctly, and is used to simulate the mistakes
of the annotators.
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To generate the multiple noisy labels, the following procedure is carried out. Given a
supervised dataset, we use stratified 10-fold cross-validation [21] to estimate the mean class
confusion matrix M of a RF model learned from it. The rows of M are normalised so that
they all add up to 1. Then, a matrix R is constructed as follows. For c € {1, ..., r}:

e R..=rel
e Forc #c:

M. (1—rel) . ,
—R../:L'Li,llec/ c: M. . > 0.
6.c Zc”#c M o 75 ec

- Reo = lri’ fl, otherwise.

In this way, the element R, . is the probability that an annotator assigns the label ¢’ to
an instance of real class c. The annotator model is consistent with the specified annotator
reliability, as rel = R, ., and with the confusion between classes estimated in matrix M.

An annotation for an instance of class ¢, can be simulated by sampling the distribution
Re, = (Re,15 ..., Re, r). To obtain several artificial annotations, the distribution R, is
independently sampled. As our goal is not to model the annotators, we do not consider
differences between them: all of them are simulated through the same matrix, R. Also, for
the sake of simplicity, the same number of labels, /, is sampled for each instance. Given an
instance x with real class cy, the distribution R._is sampled / times, and the obtained labels
form the collection S,.

5.1.2 Label sets of different sizes

Crowdsourced datasets usually have instances with different numbers of labels (some even
with very few labels or none), a scenario strongly related to hypothesis H2. To consider this
in our experiments, the label sets of the instances might be transformed in three different
ways:

Config. A The datasets are used with all the sampled labels.
Config. B All labels assigned to a specific subset of the instances are discarded.
Config. C Labels are randomly discarded (uniformly or not).

For configuration B, the proportion of instances whose assigned label sets are emptied
is controlled by a parameter p,. In practice, labels are discarded as follows: An instance
is randomly selected with probability p,. Next, all the labels of the selected instances are
discarded. The expected number of instances whose labels are discarded is |D| - py. By
assigning different values to pg, the robustness of the methods in front of datasets with
unlabelled examples can be observed.

For configuration C, a concentration parameter (con) controls the variance of the number
of discarded labels for different instances. The proportion of labels to eliminate for each
particular instance is determined by a Beta distribution. In practice, labels are removed as
follows: Given an instance x, each label in the collection Sy is discarded with probability
Bx ~ B(con, con). Since the two parameters of the Beta distribution are equal, the expected
average number of discarded labels is ISQ-“I. When con = 1, all the numbers of labels to
discard in the range {0, ..., |Sy|} have the same probability. As con — 0, the number of
eliminated labels tends to be extreme (closer to either O or |Sy|), i.e., the variance tends to its
maximum. As con — 00, the number of discarded labels gets closer to the mean % ie.,
the variance tends to 0. By varying the value of the parameter con, scenarios where there is
a fixed budget but the annotations are distributed throughout the instances in different ways

can be observed.
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Fig. 4 Graphical description of the accuracy obtained by DAV with different classifiers and the classifiers
themselves compared to the accuracy of MV, as the weight of the domain voter () increases, oy = 2°¢
with e € {—3, ..., 3}. Results obtained with artificial annotations on supervised datasets are displayed, using
all labels (configuration A). The values of the rest of the parameters are fixed: / = 6 (number of labels per
instance) and rel = 0.7 (reliability of the annotators)

5.1.3 Implementation of DAV

Domain voter building Three models have been selected as domain voters: k-nearest neigh-
bours (k-NN), logistic regression (LR) and random forest (RF). The domain voter is trained
using all the annotated instances. In particular, the instances have probabilistic labels corre-
sponding to their voting estimate (see Eq. 3).

Operating DAV Given an instance x, the domain voter is used to get a distribution over
the classes and the voting estimate (Eq. 3) is computed for all classes. Both are combined
computing the DAV estimate as in Eq. 5, and the argument of the maximum is taken as the
result (Eq. 4).

5.1.4 Experimental results with supervised datasets

The results obtained with supervised datasets (Table 1) and under different experimental
conditions are discussed below. Inspired by real scenarios (see Sect. 5.2), we fix | = 6
simulated labels for each instance from the supervised datasets. Each experiment is run 100
times, and the mean values of the accuracies are obtained.

@ Springer



|. BeAaran-Muiioz et al.

L0 . L0 R et
ant> e - g
0.9 ol ///, P o
0.8 // 0.8 g ¥
. - g
R £ e N - 4
7 0.7 (0’/ d s -
0.6 " 6 ol 728
205 < 5 K2
0.5 «&ll . e 4
04 &
0.3/ 028
0.2
03 04 05 06 07 08 09 10 03 04 05 06 07 08 09 L0 05 06 07 08 09 L0

reliabilities reliabilities reliabilities
@Arrhythmia, ag = 1, 1 = 3 (b) Arrhythmia, ag = 1, | = 6 (¢) Arrhythmia, ap = 4,1 =3
1.0

1.0

accuracy
accuracy

03 04 05 06 07 08 09 1.0 03 04 05 06 07 08 09 1.0 03 04 05 06 07 08 09 1.0
reliabilities reliabilities reliabilities

(d) Arrhythmia, ag = 4,1 =6 (e) Satimage, ag = 1,1 =3 (f) Satimage, ap = 1,1 =6
10

mmm DAV RF
B0l Classif. RF
DAV LR
Classif. LR
i MV
DAV k-NN
Classif. k-NN

accuracy

03 04 05 06 07 08 09 1.0 03 04 05 06 07 08 09 10
reliabilities reliabilities

(8) Satimage ag =4,1=3 (h)Satimage ap =4,1=6

Fig.5 Graphical description of the accuracy obtained by MV, DAV with different classifiers and the classifiers
themselves, as the value of the parameter rel (reliability of the annotators) increases, rel € {0.25,0.3, ..., 1}.
Results obtained with artificial annotations on the supervised datasets arrhythmia and satimage are displayed,
using the complete labellings (configuration A). Specific configurations (dataset and values of alphag and [)
are used in each subfigure, as detailed in their captions

In Fig. 4, the evolution of the mean accuracy with respect to the weight of the domain voter
(ap) can be observed. The value of «p ranges from 273 (when DAV closest resembles MV)
to 23 in a logarithmic scale, without discarding any label (configuration A). The reliability
parameter rel is set to 0.7. DAV achieves a better (or at least equal) performance than MV
in all the datasets, as there always exists a value of oo and a classifier for each dataset that
allows DAV to outperform MV. Summing up through the different combinations of datasets
and classifiers, DAV outperforms MV in 19 out of the 21 experiments. Note that DAV obtains
a higher accuracy than the domain voter in 20 out of the 21 experiments. When a classifier
obtains a lower accuracy than MV, in most cases, the accuracy of DAV gets closer to that of
MYV as the weight of the domain voter increases. However, there are cases where the accuracy
of DAV increases as the weight of the domain voter increases, such as the datasets dermatology
(Fig. 4b), satimage (Fig. 4d) and segment (Fig. 4e). Thus, by using a selection criterion for
the value of o (as discussed in Sect. 6.2), a setup that leads to equal or better performance
than that of MV can be achieved. These results are in line with our Hypothesis H1. Note that
the domain voters have a poorer performance than MV in almost all the scenarios observed in
Fig. 4. Nevertheless, DAV is still able to outperform MV in most cases: The extra information
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Fig.6 Graphical description of the accuracy obtained by MV, DAV with different classifiers and the classifiers
themselves, as the value of the parameter p; (configuration B) increases, p; € {0,0.1,...,0.9}. Results
obtained with artificial annotations on supervised datasets are displayed. The values of the rest of the parameters
are fixed: @g = 1,/ = 6 (maximum number of labels per instance) and rel = 0.7 (reliability of the annotators)

incorporated by DAV seems to complement the plain aggregation of labels. Moreover, DAV
used with the k-NN model leads to the best results in almost all experiments, even though
that classifier has an overall poorer performance than the other ones.

Figure 5 shows the evolution of the mean accuracy of the methods with respect to the
reliability of the annotators, rel € {0.25,0.3, ..., 1}, and considering different values for
parameters «g and /. We concentrate in two datasets: arrhythmia and satimage, as they
show similar trends to the results on other datasets). As the reliability of the annotators
increases, so do the accuracy values of DAV and MV. The accuracies of DAV and MV are
very similar for extreme values of rel in most scenarios. DAV reaches a better performance
than the domain voters for most levels of annotator reliability, except for the lowest values
in arrhythmia dataset (Figs. 5a to d) and for medium values in satimage dataset (Figs. 5e
to f). With arrhythmia, the reliability of the annotators does not have a visible influence in
the differences between the accuracy values of the studied methods, as opposed to satimage.
Moreover, in the cases where the reliability affects the difference between the accuracy values
of DAV and MV, this increases quickly with low reliability values, and then reduces smoothly.
This behaviour is related to our hypothesis H3, as there is a greater difference for non-extreme
low reliability (rel) annotators. Similarly to the previous one, Fig. 5 shows that the mean
accuracy of the domain voter is lower than that of MV in almost all the experiments.
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Fig. 7 Graphical description of the accuracy obtained by DAV with different classifiers and the classifiers
themselves compared to the accuracy of MV, as the value of the parameter con (configuration C) increases,
con = 2¢ with e € {—4, ..., 3}. Results obtained with artificial labels on supervised datasets are displayed.
The values of the rest of the parameters are fixed: ¢g = 1,/ = 6 (max. no. of labels per instance) and rel = 0.7
(reliability of the annotators)

In Fig. 6, configuration B (Sect. 5.1.2), where the label set of each instance is emptied with
probability py, is studied. The values of p; range from 0 to 0.9 and the value of g is setto 1,
i.e., the domain voter has the same weight as any other annotator. As the proportion of non-
annotated instances (pg) grows linearly, the performance difference between DAV and MV
grows linearly as well, until the proportion of unlabelled instances reaches 0.5 — —0.7. Then,
in most cases, that difference slightly decreases, with a few exceptions (Figs. 6a and 6d).
That is, DAV does not seem to be affected by the lack of labels as much as MV does, which
supports our hypothesis H2. Note that, as the proportion of unlabelled instances (p;) grows,
the accuracy of each classifier gets closer to the accuracy of DAV obtained with that classifier.
This behaviour is related to the fact that DAV provides the same label as the domain voter
for unlabelled instances.

Results under experimental configuration C are displayed in Fig. 7. The evolution of the
accuracy with respect to the concentration of labels (con) (values 2¢ where e € {—4, ..., 3})
can be observed. The rest of the parameters are fixed: g = 1 and re/ = 0.7. Let us recall
the effect of parameter con in the distribution of labels: When the parameter con has low
values, half of the instances tend to lose all their labels; when con is high, all the instances
tend to lose half of their labels. In this way, the effect of the lack of labels is observed in the
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Table 2 Selected crowdsourced datasets. The columns display, in the following order: Name of the dataset,
number of instances (n), dimension of the explanatory variable (), number of classes (r), number of annotators
and mean number of labels per instance. The dataset music genre is from [22], the datasets of Quality assessment
(QA) are from the UCI repository and sentiment polarity was introduced by [23]

Name n d r # annot. mean # labels
music genre 700 124 10 44 4.21

QA: Green 98 62 2 6

QA: Hinselmann 97 62 2 6

QA: Schiller 92 62 2 6

Sentiment polarity 4999 1200 2 203 2.55

whole spectrum between the two aforementioned scenarios. The average difference between
the performances of DAV and MV observed in Fig. 7 is greater than the one observed
in Fig. 4. This fact matches Hypothesis H2 since fewer labels are collected in average in
configuration C (Fig. 7) than in configuration A (Fig. 4). Moreover, the difference between
the accuracy values of the two methods is larger when a subset of instances is unlabelled (low
values of con) than when all the instances provided have fewer labels (high values of con).
Indeed, this is related to the self-regulatory behaviour of DAV: Given a weight for the domain
voter («g), the domain vote gains importance over the votes of the annotators as the number
of available labels decreases. It is again noteworthy that, even when a classifier reaches a
poorer performance than MV, DAV outperforms MV when using that classifier as domain
voter.

5.2 Experimental results with real-world crowdsourced datasets

In this second set of experiments, real crowdsourced datasets are used to test our hypothe-
ses. Datasets with different numbers of annotators and mean numbers of labels per instance
have been considered, as summarised in Table 2. A similar experimental setting as in the
previous subsection is followed. It only differs in the fact that, in this new set of experiments,
real crowd annotations are available and their simulation is not needed.

Figure 8 shows the evolution of the accuracy with respect to the weight of the domain
voter («g), which ranges from 273 (when DAV closest matches the behaviour of MV) to 23
in a logarithmic scale, without discarding any label (configuration A). According to Fig. 8,
H1 seems to be supported as DAV outperforms or at least equals the performance of MV
for g < 2 on all the considered datasets and classifiers. Moreover, the average difference
between the accuracy values of the two methods seems to be higher. Again, the weight of the
domain voter («tp) increases, it gains more importance over the crowdsourced labels, and the
accuracy of DAV tends to that of the classifier. If the accuracy of the classifier is lower than
that of MV, it may affect DAV resulting in a worse performance than MV. As aforementioned,
the results suggest that an equal or better accuracy than that of MV can be achieved with
DAV for certain values of the parameter «y.

In Fig. 9, the results for experimental configuration B (Sect. 5.1.2) are displayed, where all
the annotations of each instance are discarded with probability ps € {0, 0.1, ..., 0.9}. Recall
that, when pg = 0, all the labels of each dataset are included. The rest of the parameters are
fixed: @p = 1 and rel = 0.7. In that figure, similar patterns to those observed in the real
crowd datasets can be seen (Fig. 6 in Sect. 5.1.4). The increase in the difference between
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e € {3, ..., 3}. Results obtained with real crowdsourced datasets are displayed
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Fig.9 Graphical description of the accuracy obtained by MV, DAV with different classifiers and the classifiers
themselves, as the value of the parameter p; (configuration B) increases, p; € {0,0.1,...,0.9}. Results
obtained with annotations of real crowdsourced datasets are displayed. The value of & is set to 1

the accuracy values of DAV and MV is almost linear with respect to the evolution of the
parameter py, with a small drop for p; > 0.7, in almost every scenario.

Configuration C is considered in Fig. 10. Labels are discarded depending on a Beta dis-
tribution B(con, con) as explained in Sect. 5.1.2 and the results are displayed for different
values of the concentration of labels (con) (values 2¢ where e € {—4, ..., 3}). The value
of «g is fixed to 1. The results match those observed in the experimental results obtained
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Fig. 10 Graphical description of the accuracy obtained by DAV with different classifiers and the classifiers
themselves compared to the accuracy of MV, as the value of the parameter con (configuration C) increases,
con = 2¢ with e € {—4, ..., 3}. Values of con are 2¢, starting with ¢ = 3 and decreasing to e = —4. Results
obtained with annotations of real crowdsourced datasets (Table 2) and parameter o = 1 are displayed

with artificial labels, although the differences between the accuracy values of DAV and MV
are more limited in this case. A larger difference between the accuracy values of DAV and
MYV can be observed when there is a lack of labels than when all instances are provided
| = 6 labels (Fig. 8), which would support our hypothesis H2. Furthermore, that difference
increases when all labels are concentrated in a part of the dataset (low values of parameter
con), which is a similar scenario to configuration B (Fig. 9).

Overall, the results obtained in this set of experiments are in line with those with synthetic
data. Once again it is noteworthy that DAV outperforms MV even when its underlying
classifier does not show better results than MV. Similarly, DAV obtains higher accuracy
than the domain voter in all the studied scenarios.

6 Discussion

Our DAV method can be a promising tool for tackling label aggregation in learning from
crowd environments. Evidence collected through two sets of experiments seem to support
our three working hypothesis:

H1 Results in Figs. 4 and 8 show that, for each dataset and classifier, there is at least one
value of oy > 0 such that DAV outperforms or equals the accuracy of MV.

H2 Results in Figs. 6, 7, 9 and 10 show that the advantage of DAV over MV increases when
there are fewer labels available.

H3 Resultsin Fig. 5 show that there is a greater advantage of DAV over MV for (non-extreme)
low reliability values.

When applying DAYV, several decisions such as the method to obtain the domain votes
or how to select the value for «p must be made. The ideal way of making those decisions
would be by selecting the values that lead to the best performance of DAV. Unfortunately,
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this involves the estimation of the performance in the context of crowdsourced labelled data,
which is an unsolved problem with a short related literature (e.g., [24]). A few guidelines are
offered below on the way of obtaining the domain votes and the selection of a value for «,
including other issues.

Some of these guidelines might require an uncertainty measure for quantifying how sure
we are about the consensus label obtained for a given instance. One could use the entropy of
the DAV estimate over the class labels of each instance, taking into account the number of
collected labels. But this is not enough, as even although an instance with a single label would
have entropy equal to 0, this label might be mistaken since annotators are not expert. One
could, instead, perform Bayesian estimation using Dirichlet priors with all hyperparameters
equal to 1. Another option could be the Label and Model Uncertainty (LMU) proposed by
[2]. In this framework, considering a binary class, the Label Uncertainty (LU) is computed
as the tail probability below the labelling decision threshold, assuming that the posterior
probability over the true label follows a Beta distribution whose parameters depend on the
numbers of both positive and negative votes. The Model Uncertainty (MU) is a score that
uses classifiers trained on the available data, and the LMU is computed as the geometric
mean of the LU and the MU.

6.1 Construction of the domain votes

A key contribution to DAV comes from the domain voter. In the experiments presented in
this work, the domain voter is a classifier. We suggest to use the best available classifier
in the state of the art for the domain of the problem at hand. Currently, all the instances
are considered, with the same weight, to obtain the domain votes However, one could use
an uncertainty measure as aforementioned to identify certainly labelled examples. Instances
with highly certain labelling could be given larger weight when building the domain voter, and
the other way around. In the particular case that a subset of the instances is fully supervised
(completely reliable), the domain voter could be obtained from this subset only. This is
evident, for example, in the medical domain where intrusive practices such as punctures or
biopsies are limited to a subset of patients. Techniques of semi-supervised learning [25, 26]
could also be used to learn from a larger subset including the supervised examples. Finally,
if the use of DAV reduces the uncertainty surrounding a specific subset of the instance space,
the domain votes could be re-computed including that subset. This reveals a possible iterative
application of DAV: The domain votes could be re-computed using the labels obtained through
DAV, then perform DAV with the new domain votes, and so on.

6.2 Criteria for the selection of ap

One of the main findings from our experiments is that the value of ¢ is determinant and it
has to be adjusted for the successful performance of DAV.

There is no straightforward way to choose the optimal value for «g. As aforementioned,
selecting « using cross-validation is unfeasible. Taking that into account, a few guidelines
on the selection of the value of «( are as follows:

— Since g controls the weight of the domain votes on DAV, one could pay attention to the
performance of the domain voter. When the performance of the domain votes increases,
the value of «p should be higher, and the other way around. If the performance of the
domain votes can be estimated, it can help us make this decision.
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— Asthe mean reliability of the annotators increases, the relative performance of the domain
voter is reduced and a lower value for g could be chosen. In that case, the self-regulatory
behaviour of DAV would cause a shift in the choices of MV only in instances with few
labels or tied voting. Annotator models [11, 12, 27] could be used to estimate those
reliability values.

As many of these concepts (good/bad performance, low/high uncertainty) are subjective,
the final user has to choose among the considered scenarios and recommendations based on
their own judgement.

6.3 DAV in dynamic environments

Note that the scenario considered in this work is static: All of the instances and labels are
available from the beginning. All of them are then used to obtain the domain voter, which is
used to enhance the label aggregation process.

However, in many real-world applications, the environment is dynamic, i.e., new instances
and/or labels may be gathered after the domain votes were computed. Different such examples
include online learning, where instances come sequentially and not in a single batch from the
beginning, and active learning [28], where new labels can be requested for specific instances.
In these dynamic scenarios, the ideal strategy would be to re-compute the domain votes for
every new piece of information (instance and/or label), as it is always beneficial for DAV.
However, the methods for obtaining the domain votes could be excessively costly regarding
the available resources. Thus, to adapt DAV to dynamic environments, one should consider
whether the domain voter needs to be re-computed or not at every single step. To make
that decision, one could use one of the aforementioned uncertainty measures in order to
quantify the information gathered since the last update. For example, a new instance with
low uncertainty or a new label that reduces the uncertainty of an instance would bring more
information than an instance with higher uncertainty or a label which increases the uncertainty
of an instance. When the amount of information brought by the new instances (or labels) is
sufficiently high, the domain votes should be computed again including the new data in the
dataset. The parameter o could be tuned accordingly as well.

7 Conclusions and future work

In this work, domain-aware voting (DAV), a novel method for crowdsourced label aggrega-
tion, is presented. As opposed to majority voting, it uses information from the entire dataset
and the descriptive variable by means of an extra weighted vote.

Empirical evidence, which was obtained through a vast experimental setting, supports our
three hypotheses: (i) there exists a weight for the domain vote for every dataset that makes
DAV competitive regarding MV, (ii) DAV outperforms MV more largely as the number of
annotations per instance decreases, and (iii) the difference becomes bigger as the reliability
of the annotators decreases. Thus, DAV arises as a useful alternative to MV, especially for
scenarios where labels are scarce. DAV also exhibits an interesting self-regulated behaviour:
The importance of the domain vote increases as the number of annotations decreases, and
vice versa. As a consequence of the enhanced efficiency of DAV (its results are better with
fewer annotations), the budget for crowdsourced labelling might be reduced.

We also provide practical guidelines on how to set DAV parameters. In the future, it would
be interesting to work on a robust method to select a value for the relevant «g parameter in
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a more informed way. Another next step would be to consider other domain voters, such as
using prior probabilities or density estimation based on previously observed data. Moreover,
DAV could be easily adapted for dynamic environments or to work as an intermediate step
of more sophisticated techniques. It would be particularly interesting to develop techniques
that involve modelling the annotators. Having an annotator model can serve to weigh their
contribution or to detect and correct adversarial or colluding behaviours.
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