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Abstract

Time series analysis allows complex processes to be expressed in simple terms to under-
stand how these processes were generated and to predict future values. SARIMA models
assume that the observations of a process depend on the previous observations and the
variation between them to give an expression of the underlying data generating process.

To find the SARIMA model that better fits our data we introduce the Box and Jenkins
method, based on three iterative steps: model identification, parameter estimation and
fitness check. Once we have identified the most appropriate fitting model, we use it to
forecast future values.

We have followed this methodology to find the model that best fits the Spanish un-
employment series from 2002 to the first quarter of 2022 and to forecast the next 8
observations.

Resum

L’anàlisi de sèries temporals permet expressar processos complexos en termes simples
per entendre com s’han generat aquests processos i predir valors futurs. Els models
SARIMA suposen que les observacions d’un procés depenen de les observacions anteriors
i de la variació entre aquestes per donar una expressió del procés generador de dades
subjacent.

Per a trobar el model SARIMA que més s’ajusta a les nostres dades presentem el
mètode de Box i Jenkins, basat en tres passos iteratius: la identificació de models, l’es-
timació dels paràmetres i la comprovació de l’ajust. Quan s’ha identificat el model que
millor s’ajusta a les dades, s’utilitza per predir valors futurs.

Hem seguit aquesta metodologia per trobar el model que millor s’ajusta a la taxa
d’atur espanyola des del 2002 fins al primer trimestre del 2022 i predir les 8 observacions
següents.
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Introduction

Since the irruption of digital technologies, the amount of data collected has increased
drastically. In recent years, smartphones and Internet of Things devices (amongst others)
have allowed generating lots of data that we were not able to record before. The analysis
of the data can help us spot trends or find correlations between different sets of data.
This is useful for different scientific branches, business staff and governments to make
decisions based on predictive analysis of the data.

In this project, we focus on the analysis of time series. Time series are series of observa-
tions recorded at a specific time or, in other words, sequences of data taken at equidistant
points of time. The analysis of time series allows extracting meaningful statistics and
other characteristics, such as trends and patterns, that can be attributed to dependency
relationships among observations. The nature of these dependencies between observa-
tions has practical interest. Time series analysis considers different methods to study
this dependence and models that can be used to understand the underlying forces that
generated the observed data and to forecast future observations of the series.

Forecasting refers to the prediction of some future event or condition as a result of a
study and analysis of available data.1 Even though the prediction is based on statistical
studies and not on guesses, it is almost impossible to forecast an exact value for a future
observation. There are multiple forecasting methods and models and the selection of a
particular one should be based on their expected accuracy and the previous analysis of
the data.

The observation of regularities and/or trends in data is very old, but a scientific study
taking into account the knowledge of statistics can be traced at the beginning of XX
century, with the works of G. U. Yule [17] and G. Walker [13]. They made important
contributions tot the theory and practice of correlation and regression and the definition
of the autoregressive model.

It was not until 1970 when G. E. P. Box and G. Jenkins published the book “Time
Series Analysis: Forecasting and Control” [5] that a method to estimate the parameters
of the models in terms of likelihood was defined. They also described a method to find
the best ARIMA model fitting a time series based on three iterative stages: identification
of feasible models, estimation of their parameters and checking the fitness of the models.

The progress in the analysis of time series has also been tied to technological improve-
ments. They have allowed to record, store and make accessible large data sets as well as
to make the calculations easier thanks to computation.

1https://www.merriam-webster.com/dictionary/forecasting
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2 INTRODUCTION

About this work

The first chapter is devoted to introduce introduce some basic concepts of time series
needed to understand the different models described later and some examples of series.

In subsequent chapters we describe the autoregressive moving average models (ARMA),
used to express stationary time series in terms of polynomials. These models can be
expanded to include non-stationary series. The autoregressive integrated moving average
models (ARIMA) eliminate the non-stationarity in mean terms of time series through
differentiation to fit an ARMA model on them and the seasonal autoregressive integrated
moving average models (SARIMA) also take into account the seasonal behavior of the
data.

Finally, in Chapter 4, we explain the Box and Jenkins method to find the best fitting
model to a time series. We use this methodology in Chapter 5 to fit a SARIMA model to
the Spanish unemployment rate, one of the main macroeconomic indicators of a country,
and forecast some of their future values.

To perform the necessary calculations to apply the different methods, we use the
R programming language, a language designed for statistical computing and graphics.
It is an open-source implementation of the S programming language developed at Bell
Laboratories. R was designed by R. Ihaka and R. Gentleman in 1993 (see https://www.
r-project.org/).



Chapter 1

Time Series

In this chapter, we introduce the basic ideas of time series needed to understand
the concepts described later. One of this concepts is the stationarity of time series.
Stationary series are processes which some of their properties do not vary with time. We
also introduce the autocorrelation function and partial autocorrelation function, which
will be used later to identify the underlying process generating the observations of a time
series.

Finally, we present some examples of time series, such as the white noise processes,
the random walk processes and an actual economic time series.

In this chapter we follow the books by G. E. P. Box, G. M. Jenkins, G. C. Reinsel and
G. M. Ljung [7], P. J. Brockwell and R. A. Davis [9], [10] and P. S. P. Cowpertwait and
A. V. Metcalfe [11], as in the subsequent chapters.

1.1 Time series and stochastic processes

A time series is a set of observations xt generated sequentially over time t. We can
distinguish between continuous time series if the observations are recorded continuously
over time and discrete time series if the set of observations is discrete. In this thesis we
consider only discrete time series where the observations are recorded at fixed intervals
of time.

We can also differentiate the time series whose future values can be exactly determined
by a mathematical functions, which we call deterministic time series, from the time series
that have some random component which does not allow us to explicitly describe their
behavior with an analytical expression, which we call non-deterministic time series.

In order to forecast future values of non-deterministic time series we have to assume
that there is a probability model that generates the observations of the time series.

Definition 1.1. A discrete time stochastic process is a sequence of random variables {Xt}
defined over time t ∈ Z.

This means that at every time t there is a random variable {Xt} that will take different
values depending on its probability distribution.

A stochastic process generates an infinite set of time series that could be observed.
We can think of the time series that we analyze as a particular realization of a stochastic

3



4 CHAPTER 1. TIME SERIES

process. The analysis of time series that we do in this thesis consists of deducing the
stochastic process that has generated our time series from the observations that we have
of the time series.

1.2 Stationarity of time series

When forecasting, we assume that some properties of the time series are maintained
over time and that we can extrapolate them to the future. For example, if we detect
that the observations of the time series tend to increase around a fixed interval with each
observation since the beginning of the series or if the observations are always around the
same value or that a change on the trend of the observations always implies a similar
variation on the future data, it is not daring to think that this characteristics will also
be present on future observations. Let’s define these properties and the time series whose
properties are constant over time.

Definition 1.2. Let {Xt} be a time series. The mean function of {Xt} is defined as

µ(t) = E(Xt) t = 1, 2, . . . , n,

where E(Xt) is the expected value of the random variable Xt.

Now we define the covariance function between two random variables of our time series.

Definition 1.3. Let {Xt} be a time series. The covariance function of {Xt} is

γ(t, t+ h) = Cov(Xt, Xt+h)

= E[(Xt − µ(t)) · (Xt+h − µ(t+ h))],

where t = 1, 2, . . . , n and h = 1, 2, . . . , n− t.

This function indicates the degree of association between two variables. If the value
of Xt+h tends to be high when Xt is high or the value of Xt+h tends to be small when
Xt is small, the value of the covariance is positive and different from zero. On the other
hand, if the values of Xt+h tends to be high when Xt is small or vice-versa, the value of
the covariance is negative and different from zero. Finally, if there is no relation between
the two variables, then the value of the covariance is zero or near to zero.

Definition 1.4. Let {Xt} be a time series. {Xt} is strictly stationary if (X1, . . . , Xn)
and (X1+h, . . . , Xn+h) have the same joint distributions for all h.

That is to say that a time series is strictly stationary if its distribution is unchanged
after any arbitrary time shift.

This definition of stationary is quite restrictive. Therefore, we define the less strin-
gently weakly stationary.

Definition 1.5. Let {Xt} be a time series. {Xt} is weakly stationary if

1. E(X2
t ) <∞ for all t ∈ Z,

2. µ(r) = µ(s) for all r, s ∈ Z,
3. γ(r, r + h) = γ(s, s+ h) for all r, s and h ∈ Z.
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In other words, a time series is weakly stationary if its second-moment is finite, its
mean is constant and its covariance depends only on the distance between observations,
known as lag. From now on, we refer to weakly stationary series as stationary series and,
when talking about stationary series, we refer to the mean as µ instead of µ(t), since it
does not depend on time.

1.3 Correlation

We can see that, on stationary time series, since the covariance only depends on the
lag h, we can define the covariance function of these time series with only one variable.
This function is known as the autocovariance function.

Definition 1.6. Let {Xt} be a stationary time series. The autocovariance function
(ACVF) of {Xt} at lag h is

γ(h) = Cov(Xt, Xt+h) = E[(Xt − µ) · (Xt+h − µ)].

Notice that γ(0) = E[(Xt − µ)2] = σ2 is the variance of the time series.

It’s easy to check that γ(0) ≥ 0, since γ(0) = Var(Xt) ≥ 0 and that |γ(h)| ≤ γ(0) for
all h, since from the Cauchy-Schwarz inequality

|γ(h)|2 = (E [(Xt − µ) · (Xt+h − µ)])2 ≤ E
[
(Xt − µ)2

]
· E
[
(Xt+h − µ)2

]
= γ(0)2.

From this definition of the autocovariance function, we can describe the autocorrelation
function.

Definition 1.7. Let {Xt} be a stationary time series. The autocorrelation function
(ACF) of {Xt} at lag h is

ρ(h) =
γ(k)

γ(0)
.

We can see that ρ(0) = 1 and, from the properties of the autocovariance function,
|ρ(h)| ≤ 1.

On some time series, the observations Xt and Xt+h are correlated because they are
correlated with other observations between them even though there is no direct correlation
between Xt and Xt+h. For example, there may be a correlation between the observations
X1 and X3 because they are correlated with the observation X2. The partial autocorre-
lation function gives the correlation between variables without taking into account the
middle observations between them. We formally define this function on Section 2.2 be-
cause we need some concepts that we present on that chapter. On stationary time series
we can also define this function in terms of the lag between variables.

The correlograms are the chart representation of the autocorrelations as a function of
the lags. When we talk of the correlograms we are referring to the ACF correlogram and
the PACF correlogram. These charts are useful for the model identification process on
the Box-Jenkins method described on the Chapter 5.

Let’s see some examples of time series, and analyze their plots, their main character-
istics described on this chapter and their correlograms.
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1.4 Some examples

This section is devoted to show several useful examples of time series and their char-
acteristics.

Example 1.1. White Noise. This time series consist of a sequence of uncorrelated random
variables {Xt} with mean µ = 0 and variance σ2. This series is the simplest example of a
stationary time series. If the random variables are independent and identically distributed,
the series is called IID noise and if they follow a normal distribution, the series is called
Gaussian white noise, which is an example of IID noise. Let’s generate a Gaussian white
noise series in R of 100 observations and σ2 = 1. The series is plotted on Figure 1.1 and
its correlograms are plotted on Figure 1.2. The code to generate them can be found on
the Annex I on page 1.

Since the random variables are independent, they are not correlated, so its autocovari-
ance function is σ2 at lag 0 and 0 at lags h > 0, its autocorrelation function is 1 at lag 0
and 0 at lags h > 0 and its partial autocorrelation function is 0 at all lags.

Figure 1.1: Plot of a Gaussian white noise series of 100 observations and σ2 = 1.

On the correlograms we can see that the autocorrelations are not exactly 0. This is
because of sampling variation. The dashed blue lines on the correlograms indicate the
confidence intervals for the autocorrelations to be 0 with confidence level 95%. This means
that the values lying within this interval are not statistically significant with confidence
level 95%. By default R assumes that the series is a Gaussian white noise and shows the
interval [−1.96/

√
n, 1.96/

√
n], since 1.96 is the 0.975 quantile of the Gaussian distribution

with mean 0 and σ2 = 1.

Example 1.2. Random Walk. This time series is obtained by sequentially adding in-
dependent and identically distributed random variables to the observations of the time
series.

Definition 1.8. Let {Xt} be a time series and {Wt} an IID noise time series. {Xt} is a
random walk if

X1 =W1,
Xt = Xt−1 +Wt, if t > 1.
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Figure 1.2: Correlogram (left) and partial correlogram (right) of a Gaussian white noise
series of 100 observations and σ2 = 1.

Notice that sequentially substituting Xt−1 on the equation, a random walk can also be
defines as

Xt =W1 +W2 + · · ·+Wt.

The mean of this time series is µ(t) = 0 and its covariance is

Cov(Xt, Xt+h) = Cov

 t∑
i=1

Wi,

t+h∑
j=1

Wj

 =

t∑
i=1

Cov(Wi,Wi) = tσ2,

since Cov(Wi,Wj) = 0 if i ̸= j and Cov(Wi,Wi) = Var(Wi) = σ2. Therefore, as the
covariance depends on the time, this process is not stationary.

Random walks can be generated on R using the code on Annex I on page 1.

Figure 1.3: Plot of a random walk of 100 observations.

Looking at the plot of the generated series, we can see that there is an increasing
trend. This pattern is explained due to the high serial correlation of the series and the
randomness involved on generating this time series. Changing the seed on the R code
shows that the increasing trend is not a characteristic of random walks but from this
realization.
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Figure 1.4: Correlogram (left) and partial correlogram (right) of a random walk of 100
observations.

The correlogram of this series starts at 1 and slowly tends to 0 and the partial cor-
relogram has only one significant value at lag 1. Random walks are the special case of
non-stationary AR(1) process (explained on Chapter 2) and these patterns on the correl-
ograms are characteristic of this kind of series.

Example 1.3. Quarterly earnings per Johnson & Johnson share

Finally, let’s see an example of real data. The time series of quarterly earnings in US
dollars per Johnson & Johnson share from 1960 to 1980 is one of the data sets implemented
on the default R packages and can be accessed using the call JohnsonJohnson.

Figure 1.5: Plot of quarterly earnings per Johnson & Johnson share from 1960 to 1980.
Source: R “datasets” package.

In Figure 1.5 we can see that the series follows an increasing trend, that there is a
pattern on the data that repeats over time each year known as seasonal component and
that the variance increases over time. Therefore, we can conclude that this time series is
not stationary.



Chapter 2

Stationary processes

Stationary processes are series which some of their properties do not vary with time.

In this chapter, we introduce a representation for stationary processes as a linear
combination of random variables and the concepts of causality and invertibility based on
this representation.

We also define the autoregressive models (AR),that allows us to express the time series
in terms of the previous observations and a random component; the moving average
models (MA), that allows us to express the time series in terms of the current random
component and the previous random components of the series; and the autoregressive
moving average models (ARMA), that consider both dependencies at the same time.
These methods were first defined by P. Whittle in 1951 [14] and were popularized by G.
E. P. Box and G. Jenkins in 1970 [5].

2.1 Linear processes

According to Yule’s [17] and Wold’s [15] studies, all stationary time series {Xt} can
be characterized as linear processes. This is that they can be represented as

Xt = µ+
∞∑

i=−∞
ψiWt−i, for all t,

where µ ∈ R, {ψi} is an absolutely summable sequence of constants and {Wt} is a white
noise series with mean 0 and variance σ2. For a linear process to be stationary it’s
necessary that the series is {ψi} is absolutely summable.1

Defining the backward shift operator, B, as BXt = Xt−1 and BiXt = Xt−i, linear
processes can also be represented as

Xt = µ+ ψ(B)Wt,

where ψ(B) =
∑∞

i=−∞ ψiB
i.

1Recall that a series
∑∞

n=−∞ an is absolutely summable if
∑∞

n=−∞ |an| < ∞

9



10 CHAPTER 2. STATIONARY PROCESSES

We can see that the mean of a linear process {Xt} is µ and its covariance function is

γ(h) = Cov(Xt, Xt+h) = Cov

(
µ+

∞∑
i=−∞

ψiWt−i, µ+

∞∑
i=−∞

ψiWt+h−i

)

=
∞∑

i=−∞
ψiψi+hCov(Wt−i,Wt−i) = σ2

∞∑
i=−∞

ψiψi+h,

since Cov(Wt−i,Wt+h−i) = 0 if t− i ̸= t+ h− i.

A linear process is said to be causal if Xt can be expressed as a linear combination
of present and past values of the white noise Ws (such that s ≤ t) and therefore is
uncorrelated with the future observations of Ws (such that s > t). This property is
formally described below.

Definition 2.1. A linear process is causal or a causal function of {Zt} if there exist
constants {ψi} such that

∑∞
i=0 |ψi| <∞ and

Xt =
∞∑
i=0

ψiWt−i for all t.

On the other hand, a linear process is invertible if the white noise series {Wt} can be
represented as a causal function of {Xt}. This property is formally described below.

Definition 2.2. A linear process is invertible if there exist constants {πi} such that∑∞
i=0 |πi| <∞ and

Wt =

∞∑
i=0

πiXt−i for all t.

2.2 AR processes

Autoregressive models are based on the idea that the current value of the process can
be expressed as a combination of the p previous observations of the series plus a random
component.

Definition 2.3. Let {Xt} be a time series and {Wt} a white noise series. An autorre-
gressive model of order p (or AR(p)) is defined as

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p +Wt,

where ϕi are constants for i = 1, . . . , p and ϕp ̸= 0.

Using the backward shift operator, the process can also be expressed as

ϕ(B)Xt =Wt,

where ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p.

For the AR(1) process

Xt = ϕXt−1 +Wt,
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the condition of invertibility is always fulfilled and the condition of stationarity is equiv-
alent to the condition that |ϕ| < 1. Notice that if |ϕ| > 1 we can rewrite the process
as

Xt−1 = ϕ−1Xt − ϕ−1Wt,

or

Xt = ϕ−1Xt+1 − ϕ−1Wt+1.

A simple manipulation leads us to obtain

Xt = −
∞∑
i=1

ϕ−iWt+i,

and since |ϕ−1| < 1, the process is stationary but not causal.

We can see that the only non-stationary AR(1) process is the random walk defined on
Example 1.2. From now on, we consider only causal autoregressive processes.

Taking expectations on the representation of the AR(1) process, we can see that its
mean is:

µ = E(Xt) = E(ϕXt−1 +Wt) = ϕE(Xt−1) + E(Wt),

and, since {Wt} is a white noise sequence with mean 0, {Xt} is stationary and ϕ ̸= 0,
E(Xt) = ϕE(Xt) implies that µ = 0.

The autocovariance function of the AR(1) process is

γ(h) = Cov(Xt, Xt−h) = Cov(ϕXt−1, Xt−h) + Cov(Wt, Xt−h) = ϕγ(h− 1) + 0.

Iterating the process we have that γ(h) = ϕhγ(0) and therefore the autocorrelation
function of the AR(p) process is

ρ(h) =
γ(h)

γ(0)
= ϕh.

The correlogram of this process starts at 1 at lag 0 and geometrically decreases to 0 and
the partial autocorrelogram has a significant value at lag 1 and the rest are 0. If ϕ < 0
the values of the ACF alternate between positive and negative. Let’s see the correlograms
of a generated AR(1) process with ϕ = 0.9 and ϕ = −0.9. The code used to generate the
processess and the graphs can be found on Annex I, page 2.

Figure 2.1: Correlogram (left) and partial correlogram (right) of an AR(1) process with
ϕ = 0.9.
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Figure 2.2: Correlogram (left) and partial correlogram (right) of an AR(1) process with
ϕ = −0.9.

For the general AR(p) process, since ϕ(B) is finite, all autoregressive processes are
invertible. To check the stationary condition, we can write the process as:

Xt =
1

ϕ(B)
Wt = ψ(B)Wt,

and we can see that for the process to exist and to be stationary, ϕ(B) must not have
roots on the unit circle and to also be causal, the roots of ϕ(B) have to lie outside of the
unit circle.

The autocorrelation function of a stationary autoregressive process can be obtained
multiplying its formula by Xt−h for h > 0:

XtXt−h = ϕ1Xt−1Xt−h + · · ·+ ϕpXt−pXt−h +WtXt−h,

and taking the expected values on each side of the equation:

γ(h) = ϕ1γ(h− 1) + · · ·+ ϕpγ(h− p) + E(WtXt−h),

where E(WtXt−h) = 0 since Xt−h can only be related to white noises up to time t − h.
Now, dividing by γ(0) we find the autocorrelation function

ρ(h) = ϕ1ρ(h− 1) + · · ·+ ϕpρ(h− p).

The autocovariance function of an AR(p) process decreases to 0 geometrically as lags
increase if the polynomial ϕ(B) = 1− ϕ1B − ϕ2B

2 − · · · − ϕpB
P has no complex roots or

converges to 0 following a sinusodial function if it has complex roots.

Substituting h on the autocorrelation function by 1, . . . , p we obtain a set of linear
equations for ϕ1, . . . , ϕp in terms of ρ(1), . . . , ρ(p). These equations are known as Yule-
Walker equations (see [17] and [13]).

ρ(1) = ϕ1 + ϕ2ρ(1) + · · ·+ ϕpρ(p− 1),
ρ(2) = ϕ1ρ(1) + ϕ2 + · · ·+ ϕpρ(p− 2),
...

...
...

...
ρ(p) = ϕ1ρ(p− 1) + ϕ2ρ(p− 2) + · · ·+ ϕp.

(2.1)

Notice that we can rewrite the equations in a matrix form

ρ(p) = P (p)ϕ,
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where ρ = (ρ(1), . . . , ρ(p))T , ϕ = (ϕ1, . . . , ϕp)
T and P is the matrix

P =


1 ρ(1) ρ(2) . . . ρ(p− 1)
ρ(1) 1 ρ(1) . . . ρ(p− 2)
ρ(2) ρ(1) 1 . . . ρ(p− 3)
...

...
... . . .

...
ρ(p− 1) ρ(p− 2) ρ(p− 3) . . . 1

 .

These equations are useful because they allow us to estimate the ϕi parameters replac-
ing the theoretical autocorrelations ρ(h) by their sample values.

Now we can formally define the partial autocorrelation function introduced on Section
1.3 as a function of the autocorrelations.

Definition 2.4. Let {Xt} be a time series and ϕki be the i-th coefficient in an autore-
gressive representation of order h of {Xt}.2 We define the partial autocorrelation function
of {Xt} at lag h (PACF) as α(h) = ϕhh.

From the definition, we can see that the PACF of an AR(p) process is different from
0 if h ≤ p and 0 if h > p.

2.3 MA processes

Moving average models are based on the idea that the current value of the process
can be expressed as a linear combination of the current white noise term and the q most
recent past white noise terms.

Definition 2.5. Let {Xt} be a time series and {Wt} a white noise series. A moving
average model of order q (or MA(q)) is defined as

Xt =Wt − θ1Wt−1 − · · · − θqWt−q,

where θi are constants for i = 1, . . . , q and θq ̸= 0.

Using the backward shift operator, the process can also be expressed as

Xt = θ(B)Wt,

where θ(B) = 1− θ1B − θ2B
2 − · · · − θpB

p.

Observations. On the R language, the moving average models are defined using positive
signs instead of negative signs between the coefficients3. This flips the signs of estimated
coefficient values and θ terms in formulas like the ACF and PACF. We have to consider
this notation when we use the software.

2Recall that the set of ϕhi fulfill the equations

ρ(h) = ϕh1ρ(h− 1) + · · ·+ ϕh(h−1)ρ(j − h+ 1) + ϕhhρ(j − h) for j = 1, . . . , h.

(see the Yule-Walker equations (2.1))
3https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/arima
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For the MA(1) process
Xt =Wt − θWt−1,

the condition of stationarity is always fulfilled. Rewriting the equation using the back-
wards shift operator B it is easy to check that the condition of invertibility is equivalent
to the condition |θ| < 1:

Xt = (1− θ)Wt,

Wt =
1

1− θB
Xt,

where the root of (1− θB) must lie outside the unit circle, meaning that |θ| must be less
than 1.

The mean of the MA(1) process is 0 since it is a sum of zero mean white noises. Its
autocovariance function is

γ(0) =Var(Xt) = E(W 2
t + θ2W 2

t−1 − 2θWtWt−1)

= E(W 2
t ) + θ2E(W 2

t−1)− 2θE(WtWt−1) = σ2(1 + θ2),

γ(1) =Cov(Xt, Xt−1) = E[(Wt − θWt−1)(Wt−1 − θWt−2)]

= E(WtWt−1)− θE(WtWt−2)− θE(W 2
t−1) + θ2E(Wt−1Wt−2)

=− θE(W 2
t−1) = −θσ2,

γ(h) =Cov(Xt, Xt−h)

= E[(Wt − θWt−1)(Wt−h − θWt−h−1)] = 0, if h > 1.

Hence its autocorrelation function is

ρ(h) =


σ2θ

σ2(1 + θ2)
=

−θ
1 + θ2

, if h = 1,

0, if h > 1.

Finally, substituting the autocorrelation function on the Yule-Walker equations (2.1),
we get the partial autocorrelation function

α(h) =
−θh(1− θ2)

1− θ2(h+1)
.

This function gradually decreases to 0 and, if θ is positive, the function is negative
whereas if θ is negative, the sign of the function alternates. In Figure 2.3 and Figure 2.4
we can see the correlograms of a generated MA(1) process with θ = 0.9 and θ = −0.9
respectively as an example. The code used to generate the processess and the graphs can
be found on Annex I page 2.

For the general MA(q) process, since θ(B) is finite, all moving average processes are
stationary. To check the invertibility condition, we can write the process as:

Wt =
1

θ(B)
Xt = π(B)Xt,
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Figure 2.3: Correlogram (left) and partial correlogram (right) of an MA(1) process with
θ = 0.9.

Figure 2.4: Correlogram (left) and partial correlogram (right) of an MA(1) process with
θ = −0.9.

and we can see that the roots of the polynomial θ(B) must lie outside the unit circle for
the process to be invertible.

The autocovariance function of a moving average process can be obtained as we did
for the AR(p) process, multiplying by Xt−h for h > 0 and taking the expected values on
each side of the equation:

γ(h) = E[XtXt−h]

= E[(Wt − θ1Wt−1 − · · · − θqWt−q)(Wt−h − θ1Wt−h−1 − · · · − θqWt−h−q)]

=− θhE(W 2
t−k) + θ1θh+1E(W 2

t−h−1) + · · ·+ θq−hθqE(W 2
t−q),

since Wt are uncorrelated.

In conclusion

γ(h) =


(1 + θ21 + · · ·+ θ2q)σ

2, for h = 0,

(−θh + θ1θh+1 + θ2θh+2 + · · ·+ θq−hθq)σ
2, for h = 1, . . . , q,

0, for k > q.

Dividing by γ(0) we get the autocorrelation function

ρ(h) =


−θh + θ1θh+1 + · · ·+ θq−hθq

1 + θ21 + · · ·+ θ2q
, for k = 1, . . . , q,

0, for k > q.

The partial autocorrelation formula of an MA(q) process decays to 0 as the lag in-
creases.
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2.4 ARMA processes

The autoregressive model and the moving average model take into account different
kinds of dependencies between observations over time. We can consider both dependencies
at the same time on a unique autoregressive moving average process.

Definition 2.6. Let {Xt} be a time series and {Wt} a white noise series. An autoregres-
sive moving average process of order (p, q) (or ARMA(p, q)) is defined as

Xt = ϕ1Xt−1 + · · ·+ ϕpXt−p +Wt − θ1Wt−1 − · · · − θqWt−q,

where ϕi are constants for i = 1, . . . , p, ϕp ̸= 0, θj are constants for j = 1, . . . , q and
θq ̸= 0.

Using the backward shift operator, the process can be expressed as

ϕ(B)Xt = θ(B)Wt,

where ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p and θ(B) = 1− θ1B − θ2B
2 − · · · − θpB

p.

Writing the process as

Xt =
θ(B)

ϕ(B)
Wt, or

ϕ(B)

θ(B)
Xt =Wt,

we can see that ϕ(B) and θ(B) do not have common factors and that the conditions of
stationarity, causality and invertibility are the same for ϕ(B) and θ(B) that the ones on
pure autoregressive models and pure moving average models respectively.

In particular, we can think an ARMA(p, q) process as an AR(p) process ϕ(B)Xt = Yt
where Yt follows a MA(q) process Yt = θ(B)Wt or as a MA(q) process Xt = θ(B)Yt where
Yt follows an AR(p) process ϕ(B)Yt =Wt

The autocorrelation function and the partial autocorrelation function of an ARMA
(p, q) process both gradually decrase to 0 geometrically or following a sinus wave, de-
pending on p and q and the sign of the parameters.

For the ARMA(1, 1) process

Xt = ϕXt−1 +Wt − θWt−1,

the stationary condition is ϕ ̸= 1, the causal condition is |ϕ| < 1 and the invertibility
condition is |θ| < 1.
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The autocovariance function is

γ(0) = E[(ϕXt−1 +Wt − θWt−1)
2] = ϕ2E(X2

t−1) + E(W 2
t ) + θ2E(W 2

t−1)

+ 2ϕE(Xt−1Wt)− 2ϕθE(Xt−1Wt−1)− 2θE(WtWt−1)

= ϕ2γ(0) + σ2 + θ2σ2 − 2ϕθσ2 = ϕ2γ(0) + σ2(1 + θ2 − 2ϕθ)

=
σ2(1 + θ2 − 2ϕθ)

1− ϕ2
,

γ(1) = E[(ϕXt−1 +Wt − θWt−1)Xt−1]

= ϕE(X2
t−1) + E(WtXt−1)− θE(Wt−1Xt−1) = ϕγ(0)− θσ2

=
σ2(1− ϕθ)(ϕ− θ)

1− ϕ2
,

γ(h) = E(XtXt−h) = E[(ϕXt−1 +Wt − θWt−1)Xt−h]

= ϕE(Xt−1Xt−h) + ϕE(WtXt−h)− θE(Wt−1Xtt− h)

= ϕγ(h− 1) = ϕh−1γ(1), if h > 1.

Hence, the autocorrelation function is

ρ(1) =
(1− ϕθ)(ϕ− θ)

1 + θ2 − 2ϕθ
,

ρ(h) = ϕρ(h− 1) = ϕh−1ρ(1), for h > 1.

So the correlogram decreases geometrically from lag 2.

The partial autocorrelation function of an ARMA(1, 1) is ρ(1) at lag 1 and then behaves
like the PACF of a MA(1) process (see Fig.2.3 and Fig.2.4). Let’s see the correlograms of
a generated ARMA(1, 1) with parameters ϕ = 0.9 and θ = 0.7. The code used to generate
the process and the graphs can be found on Annex I, page 2.

Figure 2.5: Correlogram (left) and partial correlogram (right) of an ARMA(1, 1) process
with ϕ = 0.9 and θ = 0.7.
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Chapter 3

Non-stationary Models

Some time series are not stationary because of trends or seasonal effects. The non-
stationary series due to trends can be transformed into stationary series by differentiating
them. Once differentiated we can fit an ARMA process on them. These processes are
known as autoregressive integrated moving average processes (or ARIMA) since the differ-
entiated series needs to be summed or integrated to recover the original series. ARIMA
models were introduced by A. M. Yaglom (1955) [16] and expanded among other authors
by G. E. P. Box and G. M. Jenkins (1962) [4].

The seasonal component of a time series is a change in the observations that is repeated
cyclically over time at the same frequency. The ARIMAmodels can be extended to include
the analysis of the seasonal component. This is done by considering additional parameters
and differentiation for the seasonal period. The ARIMA models that include the seasonal
parameters are known as seasonal autoregressive integrated moving average models (or
SARIMA).

3.1 ARIMA processes

A time series that is not stationary in terms of mean can be differentiated as many
times as needed until it is stationary. It is done by subtracting the previous observation
to the current observation. We can define the differential operator ∇ as

∇ := (1−B), and ∇Xt = (1−B)Xt = Xt −Xt−1,

where B is the backwards shift operator.

As an example, let {Xt} be a random walk. This process was defined in Example 1.2
and can be expressed as

Xt = Xt−1 +Wt,

where {Wt} is a white noise series.

We saw that this process is not stationary, but if we differentiate it:

∇Xt = Xt−1 +Wt −Xt−1 =Wt,

so the differentiated process is stationary.

A series is integrated of order d if it is not stationary but its d difference is stationary.
Fitting an ARMA to an integrated process is known as fitting an ARIMA model.

19
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Definition 3.1. Let {Xt} be a time series and d a non negative integer. {Xt} is an
autoregressive integrated moving average processes of order (p, d, q) (or ARIMA(p, d, q) if
Yt := (1−B)dXt is a causal ARMA(p, q) process.

Substituting Yt, we get the general form:

ϕ(B)(1−B)dXt = θ(B)Wt,

where ϕ(B) = 1 − ϕ1B − ϕ2B
2 − · · · − ϕpB

p, θ(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q and
{Wt} is a white noise process.

Notice that if d = 0, this model represents a stationary ARMA(p, q) process.

To detect if a process will be better fitted by an ARIMA model than an ARMA model,
we can look at its plot for trends or parts with stationary behaviour but with different
means. We can also look at its correlogram, since the ACF of integrated processes are
characterized by a slow decay towards zero instead of a geometrical decay of ARMA
processes. Let’s generate an ARIMA(1, 1, 0) and an ARIMA(0, 1, 1) and look at their
plots, differentiated plots and correlograms.

Example 3.1. ARIMA (1, 1, 0)

On this example, we generate an ARIMA(1, 1, 0) process with ϕ = 0.8 of 100 observa-
tions. All the code used to generate the process and the figures on this example can be
found on Annex I, page 2. We use the seed (2) instead of the seed (1) used on previous
examples since the process generated is more interesting.

Figure 3.1: Plot of an ARIMA(1, 1, 0) process with ϕ = 0.8 of 100 observations (above)
and plot of the differentiated process (below).
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In Figure 3.1 we can see that the plot of the process has a clear decreasing trend
followed by an increasing trend from observation 78. This is a non stationary behavior
and leads us to consider differentiating the process. The plot of the differentiated process
in Figure 3.1 has a stationary behavior, so from the observation of the plots we can
conclude that the process is integrated of order 1.

Now, looking at the correlograms of the differentiated series in Figure 3.2 we can
identify that it follows an AR(1) model, as described in Section 2.2.

Figure 3.2: Correlogram (left) and partial correlogram (right) of a differentiated
ARIMA(1, 1, 0) process with ϕ = 0.8 of 100 observations.

If we started looking at the correlogram instead of the plot of the series or if we wrongly
assumed that the process was stationary and proceeded to analyze the correlograms, we
would have seen that the correlogram of the series (Figure 3.3) slowly decays to 0, thing
that suggests that the series should be differentiated.

Figure 3.3: Correlogram (left) and partial correlogram (right) of an ARIMA(1, 1, 0) pro-
cess with ϕ = 0.8 of 100 observations.

Looking at both correlograms, we might also think that an AR(2) model could fit
the process, as the correlogram decreases and the partial correlogram only has significant
values at lags 1 and 2. On Section 4.3 we define the Akaike information criterion (or
AIC), that helps us choose which model fits better the underlying process.

Now, let’s look at an ARIMA(0, 1, 1) and check that its correlograms resemble the
ones of the ARIMA(1, 1, 0), with a slowly decreasing ACF.

Example 3.2. ARIMA(0, 1, 1)

The code used to simulate the ARIMA(0, 1, 1) process with θ = 0.8 and its graphs can
be found on Annex I, page 3.

Looking first at the correlograms of the series this time (Figure 3.4), we can see that
they have a pattern more resembling the correlograms of the ARIMA(1, 1, 0) than the
ones of the stationary processes studied on Chapter 2, with a slow leaning towards 0 of
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the ACF. This is a sign that the series is not stationary and that we should differentiate
it.

The correlograms of the differentiated series on Figure 3.5 have a close behavior to the
correlograms of the MA(1) process defined on Section 2.3.

Figure 3.4: Correlogram (left) and partial correlogram (right) of an ARIMA(0, 1, 1) pro-
cess with θ = 0.8 of 100 observations.

Figure 3.5: Correlogram (left) and partial correlogram (right) of a differentiated
ARIMA(0, 1, 1) process with θ = 0.8 of 100 observations.

If we look at the plot of the process (Figure 3.6) we can see that it has an increasing
trend, hence it is non-stationary and we should differentiate it in order to fit an ARMA
model. In Figure 3.7 we can see that the differentiated series is stationary.

Figure 3.6: Plot of an ARIMA(0, 1, 1) process with θ = 0.8 of 100 observations.
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Figure 3.7: Plot of a differentiated ARIMA(0, 1, 1) process with θ = 0.8 of 100 observa-
tions.

To conclude this section, we want to remark that we have to be careful to not overdiffer-
entiate the series once stationarity has been achieved. It introduces extra serial correlation
and increases the complexity of the model. As an example, consider again a random walk
process {Xt}. We have seen at the beginning of the section that differentiating the process
transforms it into a white noise and thus a stationary process. If we differentiate it again,
we get

∇2Xt = ∇Wt = (1−B)Wt =Wt −Wt−1.

This means that the model for {Xt} is an ARIMA(0, 2, 1) with θ = 1 instead of an
ARIMA(0, 1, 0). Apart from being a more complicated process, the value of θ = 1 means
that it is non invertible and would cause problems when estimating the parameters.

In practice, most processes can be well fitted with d ≤ 2.

3.2 SARIMA processes

Seasonal time series are defined by a strong serial correlation at the seasonal lag and
(possibly) at their multiples. They can be pure seasonal models if there only exist depen-
dencies among variables from one season to the next one or multiplicative seasonal models
if there are dependencies between values from one season to the next as well as between
the near observations of the series. The seasonal ARIMA (or SARIMA) models allow
to study both kinds of processes. These models are an extension of the ARIMA models
described previously including including autoregressive and moving average terms at lag
s.

Definition 3.2. Let {Xt} be a time series, and d, D non negative integers. {Xt} is an
seasonal autoregressive integrated moving average process of order (p, d, q) × (P,D,Q)s
with period s (or SARIMA(p, d, q)× (P,D,Q)s) if the process Yt = (1−B)d(1−B2)DXt

is a causal ARMA process defined by

ϕ(B)Φ(Bs)Yt = θ(B)Θ(Bs)Wt,
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where ϕ(B) = 1− ϕ1B − ϕ2B
2 − · · · − ϕpB

p, Φ(Bs) = 1−Φ1B
s −Φ2B

2s − · · · −ΦPB
Ps,

θ(B) = 1− θ1B− θ2B2−· · ·− θqBq, Θ(Bs) = 1−Θ1B−Θ2B
2s−· · ·−ΘQB

Qs and {Wt}
is a white noise process.

Substituting Yt, we get the general form:

ϕ(B)Φ(Bs)(1−B)d(1−B)DXt = θ(B)Θ(Bs)Wt

Notice that if p, d and q are zero, the formula describes a pure seasonal process.
Otherwise, if P , D or Q is non zero the formula describes a multiplicative seasonal process.

The conditions of stationary, causality and invertibility for the seasonal processes are
the same as the ones of the non seasonal processes but considering Φi instead of ϕi and
Θi instead of θi and their correlograms behave the same but s-lagged. In Figure 3.8 we
can see the correlograms of a simulated pure seasonal autoregressive process of order 1
with period 12 of 500 observations. Notice that the integer lags of the correlogram tend
to 0 geometrically and there is only one significant value in the partial autocorrelogram
at lag 1. Notice that on R, the lags are counted based on the seasonality and therefore,
what we would count as lag 12 appears as lag 1 on the graph.

Figure 3.8: Correlogram (left) and partial correlogram (right) of a SARIMA(0, 0, 0) ×
(1, 0, 0)12 process with Φ = 0.7 of 500 observations.

For the multiplicative seasonal processes the correlograms show both the regular com-
ponent as described in Section 3.1 and the seasonal component as described previously in
this section. In Figure 3.9 we can see the correlograms on a SARIMA(1, 0, 0) × (1, 0, 0).
The code use to simulate the processes and generate the graphs on Figures 3.8 and 3.9
can be found on Appendix A.3, Listing A.9.

Figure 3.9: Correlogram (left) and partial correlogram (right) of a SARIMA(1, 0, 0) ×
(1, 0, 0)12 process with ϕ = 0.7 and Φ = 0.7 of 500 observations.



Chapter 4

Model identification and
forecasting

The main reason for applying the studied models and methods of time series is for
forecasting purposes. Therefore, it is necessary to know which model is worth using to
get accurate future predictions.

First, we identify which model could explain the behavior of our data and estimate the
parameters of the model. Then we apply different methods to check if there is any lack
of fit on the model that we have selected and diagnose the cause of it. This will be done
by using the Akaike information criterion, studying the significance of the parameters
and analyzing the residuals of the fitted model. The Akaike information criterion (or
AIC) was first introduced by H. Akaike at a 1971 symposium, published in 1973 [1] and
formally defined in 1974 [2]. It is a measure of the relative quality of statistical models
for a given set of data.

If we identify any inadequacy, we start again the process identifying another tentative
model that could explain our data behavior using the information from the diagnosis.
This process is repeated until a suitable model is found.

Finally, when the model that approximates better our data has been identified, we use
it to predict future values.

We explain this process following the classical example of the monthly totals of in-
ternational airline passengers from January 1949 to December 1960. This data was first
used as an example in 1976 by Box and Jenkins [6] and has been used by many authors
since then (see for example Brockwell and Davis, 2006 [9], 2016 [10] and Cowpertwait and
Metcalfe, 2009 [11]). The data set is build-in on R’s default database and can be accessed
using the call AirPassengers.
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4.1 Model identification

The goal of this stage is to identify models that could potentially fit our data or, in
other words, of which model could our analyzed data be a particular realization. There
can be many potential models identified, since the exact behavior of the data depends
on the behavior of the physical world and it cannot be described by purely mathematical
arguments.

The first thing that we have to do for trying to fit an ARMA model is to make sure
that the time series that we are analysing is stationary. We have seen in Chapter 3
how to identify and transform non stationary series in mean terms into stationary series
by differentiating. To identify non stationarity in variance terms we can look at its
plot for an increase of variability over time, this is that the values gradually tend to be
further from the mean. Non stationarity in variance can be addressed applying the power
transformation defined by Box and Cox in 1964 [3].

Definition 4.1. Let {Xt} be a time series. We define the Box-Cox transformation fλ as

fλ(Xt) =


Xλ

t − 1

λ
, λ > 0,

lnXt, λ = 0,

where λ is a real parameter.

In practice, if the transformation is needed, λ = 0 is often an adequate parameter.
The transformation has to be applied before the differentiation of the series both in the
regular part or the seasonal part. Notice that it can only be applied on positive processes.

Example 4.1. Previous transformations and stationarity of the international airline pas-
sengers series.

Let’s look at the plot of the airline passengers data to see if this transformation is
necessary.

Figure 4.1: Plots of the monthly total international airline passengers from January 1949
to December 1960. Source: R “datasets” package.
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In Figure 4.1 we can see that the airline passengers has an increasing trend, a strong
seasonal effect of cycle 12 and an increase on variance over time. Therefore, we need to
apply a log-transformation and consider differentiating the series on its regular part, on
its seasonal part or on both.

Figure 4.2: Plots of the log-transformed airline passengers series: undifferentiated series
(top left), regular differentiated series (top right), seasonal differentiated series (bottom
left) and regular and seasonal differentiated series (bottom right).

Figure 4.3: Sample ACF of the log-transformed airline passengers series: undifferentiated
series (top left), regular differentiated series (top right), seasonal differentiated series
(bottom left) and regular and seasonal differentiated series (bottom right).

Looking at the plots of the differentiated series in Figure 4.2 and its sample auto-
covariarnce functions in Figure 4.3, it is clear that the series needs to be differentiated
once on regular terms in order to be stationary as the difference removes the trend and
the sample ACF tends to 0 slowly without the difference. Regards the need of seasonal
differentiating, notice that the sample ACF of the regular differentiated series tends to 0
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slowly and considering a first order difference both on regular terms and seasonal terms
the sample ACF follows a stationary pattern. Finally, we can also see that the plot of
the regular and seasonal differentiated series has a stationary behavior. Hence we should
consider a seasonal multiplicative model.

Once we have transformed (or not) the series into a stationary series we can begin
to speculate on which model could fit better our data. In Chapter 2 and Chapter 3
we have seen that each process following one of the models studied has a characteristic
behavior of its plot or correlograms. We consider the different tentative models based
on the particularities that we identify looking at their sample correlograms. A summary
of these patterns for the regular part can be found in Table 4.1. The patterns for the
seasonal part with frequency s are the same as the ones for the regular part but spaced
s lags.

Table 4.1: Summary of the behavior of the ACF and the PACF for AR(p), MA(q) and
ARMA(p, q) processes.

AR(p) MA(q) ARMA(p, q)

AFC
Decays geometrically
to 0.

Significant values
for the first q lags.
Non significant
values afterwards.

Decays geometrically
to 0 from lag q.

PACF

Significant values
for the first p lags.
Non significant
values afterwards.

Decays geometrically
to 0.

Decays geometrically
to 0 from lag p.

Example 4.2. Model identification for the log-transformed airline passengers series.

The sample correlograms of the series in Figure 4.4 both have significant spikes at
lags 1 and 12 (remember that R shows lag 12 as lag 1 as s = 12) and the rest are
non significant. Since there is no geometrical trend towards 0 on any correlogram,
we consider 5 potential models that could fit the series: SARIMA(0, 1, 1) × (0, 1, 1)12,
SARIMA(0, 1, 1) × (1, 1, 0)12, SARIMA(1, 1, 0) × (0, 1, 1)12, SARIMA(1, 1, 0) × (1, 1, 0)12
and SARIMA(1, 1, 1) × (1, 1, 1)12. We will see which model fits better the series when
diagnosing the series at Section 4.3.

Figure 4.4: Correlogram (left) and partial correlogram (right) of the regular and seasonal
differentiated log-transformed airline passengers series.
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4.2 Parameter estimation

Once some feasible models have been identified we have to estimate the parameters
ϕ1, . . . , ϕp,Φ1, . . . ,ΦP , θ1, . . . , θq,Θ1, . . . ,ΘQ of that model. For pure autoregressive pro-
cesses the ϕi parameters can be estimated using the Yule-Walker equations (2.1) replacing
the autocorrelations ρ(h) by the sample autocorrelations, but this method is not used for
moving average processes since it would imply solving a complicated nonlinear equations
system.

One of the most used methods for parameter estimation and the one used by default
by the arima function in R is the maximum likelihood estimation. This method estimates
the parameters that maximize the probability of the observed series to be a particular
realization of the estimated model. In this way the estimated parameters of the model
using this method are the ones with the highest probability of obtaining the observed
series.

Definition 4.2. Let {Xt} be a time series, Xn = (X1, . . . , Xn) and Γn the covariance
matrix Γn = E(X′

nXn). Assuming that Γn is nonsingular, the function of likelihood of
Xn is

L(Γn) = (2π)−n/2(det Γn)
−1/2 exp

(
−1

2
XnΓ

−1
n X′

n

)
.

This definition can be found in Brockwell and Davis, 2016 [10].

Notice from the autocovariance formulas calculated in Chapter 2 that the covariance
matrix Γn depends on the parameters ϕ1, . . . ϕp, θ1, . . . , θq and on σ2. Therefore, L de-
pends on the chosen model. In Brockwell and Davis, 2016 [10] it is also shown how to
obtain an expression of the likelihood function for an ARMA process using the innovators
algorithm and the conditions for the parameter estimators to be the maximum likelihood
ones.

The estimators that maximize the likelihood function are found differentiating lnL(Γn)
partially with respect to σ2 and finding the parameters that make ∂

∂σ2 lnL(Γn) = 0.

Example 4.3. Parameter estimation of the potential models for the airline passengers
series.

Using the code on Annex I, page 3, we fit each potential model considered in Example
4.2 for the monthly airline passengers series and get the estimations for the parameters
of Table 4.2.

Table 4.2: Estimated parameters for the potential models to fit the log-transformed airline
passengers series

Model ϕ θ Φ Θ

SARIMA(0, 1, 1)× (0, 1, 1)12 0.4018280 0.5569448
SARIMA(0, 1, 1)× (1, 1, 0)12 0.4423334 -0.4742972
SARIMA(1, 1, 0)× (0, 1, 1)12 -0.3395210 0.5618858
SARIMA(1, 1, 0)× (1, 1, 0)12 -0.3744776 -0.4637481
SARIMA(1, 1, 1)× (1, 1, 1)12 0.1666474 0.5614956 -0.0990091 0.4973187
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4.3 Model Diagnostic Checking

Once we have a set of feasible models and their estimated parameters, we have to
choose which one could fit better our analyzed series and check if the model is adequate.
If we find evidences that the model could be inadequate, we will need to know the reasons
why the model is inadequate to modify it and find an appropriate model.

To choose the model with the highest potential of “good fitting” we use the Akaike
information criterion. This criterion estimates the quality of a model relative to other
models considered based on the information that is lost by using the model instead of the
others. The AIC also takes into account the simplicity of the model, penalizing models
with more parameters if they do not improve substantially the loss of information.

Definition 4.3. Let {Xt} be a time series and L be the likelihood function of the
model given on Definition 4.2. The Akaike information criterion for a SARIMA(p, d, q)×
(P,D,Q)s is

AIC = 2(p+ q + P +Q+ 1)− 2 lnL.

The model that minimizes the loss of information is the one with the minimum AIC
value.

Example 4.4. AIC of the potential models to fit the airline passengers series.

In Table 4.3 we can see that the considered model with smaller AIC from the ones
that we considered on Example 4.2 is the SARIMA(0, 1, 1) × (0, 1, 1)12. Hence it is the
model that minimizes the loss of information among them and is the one that we will
continue diagnosing on further examples.

Table 4.3: AIC of the potential models fitted to the log-transformed airline passengers
series

Model AIC

SARIMA(0, 1, 1)× (0, 1, 1)12 -483.3991
SARIMA(0, 1, 1)× (1, 1, 0)12 -477.4053
SARIMA(1, 1, 0)× (0, 1, 1)12 -481.4896
SARIMA(1, 1, 0)× (1, 1, 0)12 -474.8188
SARIMA(1, 1, 1)× (1, 1, 1)12 -480.3109

The code used to calculate these values can be found on Annex 1, page 3.

Now that we have found the model that minimizes the loss of information, let’s check
if it is an adequate model. The first validation that we will do is on the significance
of the estimated parameters. If any of the parameters is not significantly different from
zero we should consider a simpler model. The significance of each parameter is tested by
analyzing the ratio between the parameter estimation β̂i and its standard error

σi =

√∑i−1
j=0 β̂

2
j

n
.

If the ratio |β̂i/σ| < 1.96 we can conclude that the parameter is not significant. Notice
that the condition on the ratio is equivalent to the condition that 0 is not in the 95%
confidence interval of the parameters β̂i = [β̂i − 1.96σ, β̂i + 1.96σ].
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Example 4.5. Significance of the estimated parameters of the SARIMA(1, 1, 1)×(1, 1, 1)12
and SARIMA(0, 1, 1) × (0, 1, 1)12 models fitted to the log-transformed airline passengers
series.

On R, the arima function returns a list of information including the estimated pa-
rameters and its standard error. In Listing 4.1 we can see the output of fitting a
SARIMA(0, 1, 1)× (0, 1, 1)12 model to the log-transformed airline passengers series.

Listing 4.1: R output for ap011011

Cal l :
arima (x = log ( AirPassengers ) , order = c (0 , 1 , 1 ) ,

s e a sona l = l i s t ( order = c (0 , 1 , 1 ) , 12) )

C o e f f i c i e n t s :
ma1 sma1

−0.4018 −0.5569
s . e . 0 .0896 0 .0731

sigmaˆ2 est imated as 0 . 001348 : l og l i k e l i h o o d = 244 .7 ,
a i c = −483.4

We can see that both θ and Θ are significant since their ratios 0.4018/0.0896 = 4.48
and 0.5569/0.0731 = 7.62 respectively are greater than 1.96.

If we firstly assumed that the SARIMA(1, 1, 1)× (1, 1, 1)12 model fits better the series,
checking the significance of its parameters (Listing 4.2) we would see that ϕ and Φ are not
significant, since their ratios are 0.1666/0.2459 = 0.68 and 0.099/0.154 = 0.64 respectively
and we should consider a model without those parameters. Notice that θ and Θ are
still significant since their ratios are 0.5615/0.2116 = 2.65 and 0.4973/0.1360 = 3.66
respectively, suggesting to reduce the model to a SARIMA(0, 1, 1)× (0, 1, 1)12 model.

Listing 4.2: R output for ap111111

Cal l :
arima (x = log ( AirPassengers ) , order = c (1 , 1 , 1 ) ,

s e a sona l = l i s t ( order = c (1 , 1 , 1 ) , 12) )

C o e f f i c i e n t s :
ar1 ma1 sar1 sma1

0.1666 −0.5615 −0.099 −0.4973
s . e . 0 .2459 0 .2116 0 .154 0 .1360

sigmaˆ2 est imated as 0 . 001336 : l og l i k e l i h o o d = 245 .16 ,
a i c = −480.31

Finally, we compare the predicted values of the fitted model to our actual observations
and check if, in fact, it provides a good fit or not. The residuals of the model are the
difference between the predicted values and the actual observations. The predicted values
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of the series can be computed substituting the real values on the formula of the model.
If the considered model was the process that generated our observations, the residuals
would be uncorrelated or, in other words, the series of the residuals would behave as a
white noise process (recall Example 1.1). If the residuals show any kind of correlation
we might have missed something on the identification process and a better fitting model
should be considered.

One way to check if the residuals are uncorrelated is looking at their correlograms.
The residuals behave as a white noise if their correlograms have no significant spikes. If
the residuals’ correlograms have any significant spike, we might have forgotten to include
an ARMA process to the model. The forgotten process can be identified analyzing the
behavior of the residuals’ correlograms as in Section 4.1.

Example 4.6. Analysis of the residuals’ correlograms of the SARIMA(0, 1, 1)× (0, 1, 1)12
and SARIMA(0, 1, 0) × (0, 1, 1)12 models fitted to the log-transformed airline passengers
series.

In Figure 4.5 we see that only the value of the ACF at lag 23 lies outside of the
significance bounds. Since less that 5% of the values of the AFC and PACF of the
residuals of fitting a SARIMA(0, 1, 1) × (0, 1, 1)12 model on the data lie outside of the
significant bounds, we do not reject the hypothesis that the residuals behave as a white
noise and the model is well fitted.

Figure 4.5: Correlogram (left) and partial correlogram (right) of the residuals of the
SARIMA(0, 1, 1)× (0, 1, 1)12 model fitted to the log-transformed airline passengers series.

From the residuals’ correlograms of the SARIMA(0, 1, 0) × (0, 1, 1)12 model fitted to
the log-transformed airline passengers series in Figure 4.6 we can see that the residuals
do not behave as a white noise and that an AR(1), MA(1) or ARMA(1, 1) could be added
to the model, since both ACF and PACF have a significant spike at lag 1.

Figure 4.6: Correlogram (left) and partial correlogram (right) of the residuals of the
SARIMA(0, 1, 1)× (0, 1, 1)12 model fitted to the log-transformed airline passengers series.

Another way to check that there is no correlation between the residuals of the fitted
model is to perform portmanteau tests in the residuals’ series with the null hypothesis
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that the residuals are not correlated. These tests are a great addition to the analysis of
the correlograms on the diagnosis of the fitted models, but should not substitute them.
Box-Pierce test and Ljung-Box test are two portmanteau tests with the null hypothesis
that the first H residuals are not correlated.

The first test was developed by George E. P. Box and David A. Pierce (1970) [8] and
states that if the residuals are not correlated, then

Q = n
H∑

h=1

ρ2r(h) ∼ χ2(H − p− q),

where n is the sample size minus d and ρr are the autocorrelations of the residuals. A large
value of Qmeans that the autocorrelation of the residuals is to high to be considered white
noise. We reject the null hypothesis at significance level α = 5% if Q > χ2

1−α(H − p− q).
On most statistical programs, the test returns the p-value of Q < χ2

1−α(H − p− q).

In 1978 Greta M. Ljung and George E. P. Box [12] showed that the χ2 distribution did
not provide an adequate approximation to the distribution of the Q statistic and proposed
a modification of the statistic

Q̃ = n(n+ 2)
H∑

h=1

ρ2r(h)/(n− h).

Example 4.7. Portmanteau tests on the residuals of the SARIMA(0, 1, 1) × (0, 1, 1)12
and SARIMA(0, 1, 0) × (0, 1, 1)12 models fitted to the log-transformed airline passengers
series.

The code used to perform the tests can be found in Annex I, page 3.

Performing both tests at lag 24 on the residuals of the SARIMA(0, 1, 1) × (0, 1, 1)12
model we get that the p-value for the Box-Pierce test is 0.5008 and 0.3309 for the Ljung-
Box test. Since they are greater than 0.05 we do not reject the null hypothesis of the
independence of the residuals.

On the other hand, performing the tests on the residuals of the SARIMA(0, 1, 0) ×
(0, 1, 1)12 model, that we already know does not fit well the data, we get that the p-values
for the Box-Pierce and Ljung-Box tests are 0.006347 and 0.001985. Hence we reject the
null hypothesis and conclude that the residuals are correlated. A different SARIMA model
should be considered.

After all the checking, we can conclude that the best fitting SARIMA model for the
log-transformed airline passengers series is the SARIMA(0, 1, 1)×(0, 1, 1)12 and therefore,
is the model that we will use to predict future values of the series.

4.4 Forecasting

Now that we have identified and checked the best model to explain the underlying
process of our observed data, we use it to forecast the future values of the observed time
series. At time t we have the observations {x1, x2, . . . , xt} of the time series {Xt} and we
want to forecast the value of the observation xt+i. For the underlying SARIMA process,
this observation can be directly computed from the equation of the model

ϕ(B)Φ(Bs)(1−B)d(1−B)Dxt+i = θ(B)Θ(Bs)wt+i,
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recursively substituting the observed values on the expanded form of the equation

xt+i =

p+P+d+D∑
j=1

πjxt+i−j −
q+Q∑
j=1

ψjwt+i−j ,

where πj are obtained expanding ϕ(B)Φ(Bs)(1 − B)d(1 − B)D and ψj are obtained ex-
panding θ(B)Θ(Bs).

It can be proved (G. E. P. Box and G. M. Jenkins [7]) that for the time series, the
estimator x̂t(i) of the observation xt+i is the one that minimizes the square error of the
forecast, where is the x̂t(i) is the expectation of xt+i conditional on the past observed
values and the parameters

x̂t(i) = E[xt+i|x1, . . . , xt;ϕ,Φ, θ,Θ].

To simplify the notation, we will use the square brackets to refer to the conditional
expectation at time t on the observed values and the parameters of the model.

[xt+i] = E[xt+i|x1, . . . , xt;ϕ,Φ, θ,Θ].

Taking conditional expectations at time t in the expanded equation we get

x̂t(i) = [xt+i] =

p+P+d+D∑
j=1

πj [xt+i−j ]−
q+Q∑
j=1

ψj [wt+i−j ].

Notice that

[xt+i] = xt+i, if i = 0,−1, . . . ,−t,
[xt+i] = x̂t(i), if i ≥ 1,
[wt+i] = wt+i = xt+i − x̂t+i−1(1), if i = 0,−1, . . . ,−t,
[wt+i] = 0, if i ≥ 1.

Therefore, the forecasts x̂t(i) (j ≥ 1) can be calculated recursively substituting the ob-
served values, the forecast for the previous i−1 values and the errors of the one-step-ahead
forecast of the observed values (notice that the expected errors for the future observations
is 0).

Writing the equation of xt+i as a function of {wt}

xt+i =
∞∑
j=0

ψjwt+i−j ,

where ψj are obtained expanding ϕ(B)−1Φ(Bs)−1(1−B)−d(1−B)−Dθ(B)Θ(Bs), we can
calculate the forecast errors εt(i)

xt+i =(wt+i + ψ1wt+i−1 + · · ·+ ψi−1wt+1)

+ (ψiwt + ψi+1wt−1 + . . . )

=εt(i) + x̂t(i),

From the standard deviation of the forecast errors

σ2(i) =
√

Var[εt(i)] = (1 + ψ2
1 + · · ·+ ψ2

i−1)
1/2σw

and assuming that {wt} follow a normal distribution we can obtain the bounds of the
confidence intervals for the forecasts x̂t(i). The 95% confidence interval of the forecasts
x̂t(i) are then [x̂t(i)− 1.96σ(i), x̂t(i) + 1.96σ(i)].
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Example 4.8. Forecasting future values of the airline passengers series.

On R, we can predict future values of a fitted SARIMA model using the function
predict. This function returns the forecasts x̂t(i) and standard errors of the forecast.
We will use it to calculate the 24 next values (two times the season length). The code
used to generate Listing 4.3, Figure 4.7 and Figure 4.8 can be found on Appendix A.4,
Listing A.10.

Listing 4.3: R output for p.ap

$pred
Jan Feb Mar Apr May Jun

1961 6.110186 6.053775 6.171715 6.199300 6.232556 6.368779
1962 6.206435 6.150025 6.267964 6.295550 6.328805 6.465028

Jul Aug Sep Oct Nov Dec
1961 6.507294 6.502906 6.324698 6.209008 6.063487 6.168025
1962 6.603543 6.599156 6.420947 6.305257 6.159737 6.264274

$se
Jan Feb Mar Apr May

1961 0.03671562 0.04278291 0.04809072 0.05286830 0.05724856
1962 0.09008475 0.09549708 0.10061869 0.10549195 0.11014981

Jun Jul Aug Sep Oct
1961 0.06131670 0.06513124 0.06873441 0.07215787 0.07542612
1962 0.11461854 0.11891946 0.12307018 0.12708540 0.13097758

Nov Dec
1961 0.07855851 0.08157070
1962 0.13475740 0.13843405

Notice from Listing 4.3 and Figure 4.7 that the standard errors increase over time,
decreasing the accuracy of the predicted values.

Figure 4.7: Plot of the log-transformed airline passengers series with 24 predicted months
(dashed) and their 95% confidence intervals (red dashed).
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Recall that we applied a log-transformation on the data. To get the forecasts for the
original series we have to undo the transformation by applying the exponential function
on each forecast. The plot of the original data and its forecasted values can be found in
Figure 4.8.

Figure 4.8: Plot of the airline passengers series with 24 predicted months (dashed) and
their 95% confidence intervals (red dashed).



Chapter 5

Analysis of the Spanish
unemployment rate

The goal of this chapter is to fit a SARIMA model to the Spanish unemployment rate
following the process defined in Chapter 4 and forecast some future values for it. All the
code used for the graphs and tables of this chapter can be found in Appendix A.5, Listing
A.11.

The unemployment rate is one of the main macroeconomic indicators of the situation
of the economy of a country and has been a theme of discussion for economists over the
years.

According to the OECD (Organisation for Economic Co-operation and Development)
“The unemployed are people of working age who are without work, are available for work,
and have taken specific steps to find work”.1 The unemployment rate is defined as the
relation between the number of unemployed people and the sum of the unemployed people
plus those in employment.

A high unemployment rate has negative effects for a country both in the economic
and social sense. It means that there is a waste of resources (workforce) and that a
significant amount of people is unable to earn money to meet their financial obligations,
increasing inequality and driving people to poverty. This can lead into an increase of
conflict in the country since the population tends to attribute the state of the economy
to the government and the unrest can end up in riots. It also usually involves an increase
of crime, since it becomes the only way for people without income for a long period of
time to survive.

In Spain, this indicator is estimated through the “Encuesta de población activa”, a
quarterly survey on households to obtain data on the workforce of the country. The
outcome of this survey can be accessed through the INE (“Instituto Nacional de Es-
tad́ıstica”) webpage.2 To work with the data on R we use the “API JSON INE”, a
service that allows to access all the data available through an URL petition in JSON
format. To find the URL petition that we need, we can use their URL generator (https:
//www.ine.es/dyngs/DataLab/es/manual.html?cid=66). We explicitly request for the
data from the first quarter of 2002 to the first quarter of 2022 in order to maintain the
usability of this work over time.

1https://data.oecd.org/unemp/unemployment-rate.htm
2https://www.ine.es/index.htm

37
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5.1 Model identification

Before checking for stationary conditions on the series, we have to perform some trans-
formation on the data obtained to format it as a time series object, needed to apply some
of the functions that we use. Once formatted, we can see in Figure 5.1 that the series is
not stationary both in mean and variance terms. Therefore, we apply a log-transformation
to the series and proceed to analyze the differences needed to transform the series into a
stationary one.

Figure 5.1: Plot of the quarterly unemployment rate of Spain from Q1 2002 to Q1 2022.

Figure 5.2: Plots of the log-transformed Spanish unemployment rate series: undifferenti-
ated series (top left), regular differentiated series (top right), seasonal differentiated series
(bottom left) and regular and seasonal differentiated series (bottom right).
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Figure 5.3: Sample ACF of the log-transformed Spanish unemployment rate series: undif-
ferentiated series (top left), regular differentiated series (top right), seasonal differentiated
series (bottom left) and regular and seasonal differentiated series (bottom right).

From the plots of the differentiated series in Figure 5.2 and its sample autocovariance
functions in Figure 5.3 we can see that the seasonal differentiated series and the regular
and seasonal differentiated series show a stationary behavior. Let’s check the correlograms
of both series and identify feasible models.

Figure 5.4: Correlogram (left) and partial correlogram (right) of the seasonal differentiated
log-transformed Spanish unemployment rate series.

Figure 5.5: Correlogram (left) and partial correlogram (right) of the regular and seasonal
differentiated log-transformed Spanish unemployment rate series.
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Looking at the sample correlograms of the seasonal differentiated series in Figure
5.4 we can clearly identify the pattern of an AR(2) process, since the ACF decays to
0 and the significant values of the PACF are only the 2 first. This suggests that the
SARIMA(2, 0, 0) × (0, 1, 0)4 is one of the models to consider. On the other hand, the
sample correlograms of the seasonal differentiated series in Figure 5.5 suggest that the
regular part may follow an AR(1) process and the seasonal part may follow an AR(1)4,
a MA(1)4 or an ARMA(1,1)4 process. This means that we should also consider the
SARIMA(1, 1, 0)× (1, 1, 0)4, SARIMA(1, 1, 0)× (0, 1, 1)4 and SARIMA(1, 1, 0)× (1, 1, 1)4
models.

5.2 Parameter estimation and model diagnostic checking

On R, the statistics used to evaluate the considered models are calculated at the same
time that the parameters of the model and are stored in the same object of the class
“Arima”. So, we will fit the models to the sample series and show their parameters at
the same time that we diagnose them.

We will start the diagnostic check the significance of the parameters of the models,
reconsider them if necessary and then check which is the one with smaller AIC.

Listing 5.1: R output for sp200010

Cal l :
arima (x = log . spur . ts , order = c (2 , 0 , 0 ) ,

s e a sona l = l i s t ( order = c (0 , 1 , 0 ) , 4 ) )

C o e f f i c i e n t s :
ar1 ar2

1 .6119 −0.7055
s . e . 0 .0774 0 .0778

sigmaˆ2 est imated as 0 . 001403 : l og l i k e l i h o o d = 141 .84 ,
a i c = −277.69

Listing 5.2: R output for sp110110

Cal l :
arima (x = log . spur . ts , order = c (1 , 1 , 0 ) ,

s e a sona l = l i s t ( order = c (1 , 1 , 0 ) , 4 ) )

C o e f f i c i e n t s :
ar1 sar1

0 .6988 −0.3563
s . e . 0 .0811 0 .1119

sigmaˆ2 est imated as 0 . 001446 : l og l i k e l i h o o d = 140 .11 ,
a i c = −274.23
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Listing 5.3: R output for sp110011

Cal l :
arima (x = log . spur . ts , order = c (1 , 1 , 0 ) ,

s e a sona l = l i s t ( order = c (0 , 1 , 1 ) , 4 ) )

C o e f f i c i e n t s :
ar1 sma1

0.7218 −0.6811
s . e . 0 .0802 0 .1577

sigmaˆ2 est imated as 0 . 001271 : l og l i k e l i h o o d = 144 .13 ,
a i c = −282.27

Listing 5.4: R output for sp110111

Cal l :
arima (x = log . spur . ts , order = c (1 , 1 , 0 ) ,

s e a sona l = l i s t ( order = c (1 , 1 , 1 ) , 4 ) )

C o e f f i c i e n t s :
ar1 sar1 sma1

0.6968 0 .2901 −0.9038
s . e . 0 .0845 0 .1663 0 .1550

sigmaˆ2 est imated as 0 . 001193 : l og l i k e l i h o o d = 145 .47 ,
a i c = −282.94

Dividing each parameter by their standard error we can see that the only parameter
that is not significant from the considered models is the Φ of the SARIMA(1, 1, 0) ×
(1, 1, 1)4 model. The ratio of the parameter is 0.2901/0.1663 = 1.7444 and it is the only
one smaller than 1.96. Therefore, we can eliminate this model from the considered ones.

Table 5.1: AIC of the potential models fitted to the log-transformed Spanish unemploy-
ment rate series

Model AIC

SARIMA(2, 0, 0)× (0, 1, 0)4 -277.69
SARIMA(1, 1, 0)× (1, 1, 0)4 -274.23
SARIMA(1, 1, 0)× (0, 1, 1)4 -282.27
SARIMA(2, 0, 0)× (0, 1, 1)4 -286.31

In Table 5.1 we can see that the model with smaller AIC of the considered ones is the
SARIMA(1, 1, 0) × (0, 1, 1)4 model. The function auto.arima of the “forecast” library
allow us to easily calculate the AIC of a large set of models, even models that we have
initially not considered. It identifies the fitted model for a time series with smaller AIC
within a given maximum order for the processes. Applying the function to our series,
returns the SARIMA(2, 0, 0)× (0, 1, 1)4 model, with an AIC of −286.31.
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Notice that if we had started the diagnostic by analyzing the residuals of the se-
ries, we would had identified that the residuals of the fitted SARIMA(2, 0, 0) × (0, 1, 0)4
model follow a SARIMA(0, 0, 0) × (0, 0, 1) process and we would had considered the
SARIMA(2, 0, 0)× (0, 1, 1)4 model.

Figure 5.6: Correlogram (left) and partial correlogram (right) of the residuals of the
SARIMA(2, 0, 0) × (0, 1, 0)4 model fitted to the log-transformed Spanish unemployment
rate series.

Listing 5.5: R output for sp200011

Cal l :
arima (x = log . spur . ts , order = c (2 , 0 , 0 ) ,

s e a sona l = l i s t ( order = c (0 , 1 , 1 ) , 4 ) )

C o e f f i c i e n t s :
ar1 ar2 sma1

1.6827 −0.7180 −0.5771
s . e . 0 .0776 0 .0755 0 .1777

sigmaˆ2 est imated as 0 . 001199 : l og l i k e l i h o o d = 147 .15 ,
a i c = −286.31

In Listing 5.5 we can see that all the parameters of the SARIMA(2, 0, 0) × (0, 1, 1)4
model are significant and that the process is invertible, since |Θ| = 0.5771 < 1 and causal,
since the roots of 1− ϕ1x− ϕ2x

2 = 1− 1.6827x+0.7180x2 are 1.18015e±0.119061i, that lie
outside the unit circle.

Finally, performing the portmanteau tests on the residuals of the fitted model at lag 8
we get that the p-value for the Box-Pierce test is 0.9281 and the p-value for the LjungBox
test is 0.9113. Since both of them are greater than 0.05 and since there are no significant
values on the ACF and PACF of the residuals, we do not reject that the residuals are not
correlated.

The diagnostic that we have performed concludes that the SARIMA(2, 0, 0)× (0, 1, 1)4
model is the one that fits better the log-transformed Spanish unemployment series. Hence,
we will use this model for forecasting.
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Figure 5.7: Correlogram (left) and partial correlogram (right) of the residuals of the
SARIMA(2, 0, 0) × (0, 1, 1)4 model fitted to the log-transformed Spanish unemployment
rate series.

5.3 Forecasting

We get the forecasted values of the log-transformed series for the 8 next values in
Listing 5.6 using the function predict and use them and their standard errors to plot
the graph in Figure 5.8

Listing 5.6: R output for p.sp

$pred
Qtr1 Qtr2 Qtr3 Qtr4

2022 2.602433 2.602337 2.576267
2023 2.607806 2.602322 2.606409 2.583199
2024 2.616548

$se
Qtr1 Qtr2 Qtr3 Qtr4

2022 0.03462427 0.06777357 0.09974046
2023 0.12868042 0.16230575 0.19499427 0.22429201
2024 0.24933459

Figure 5.8: Plot of the log-transformed Spanish unemployment rate series with 8 predicted
quarters (dashed) and their 95% confidence intervals (red dashed).
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Finally, we undo the log-transformation applying the exponential function on each
forecast. The forecasted values can be found in Listing 5.7 and The plot of the original
data and its forecasted values can be found in Figure 5.9

Listing 5.7: R output for exp(p.sp$pred)
Qtr1 Qtr2 Qtr3 Qtr4

2022 13.49653 13.49524 13.14796
2023 13.56925 13.49503 13.55031 13.23942
2024 13.68838

Table 5.2: 95% confidence intervals of the 8 forecasted values of the Spanish unemploy-
ment rate series

Q1 Q2 Q3 Q4

2022
[12.610999,
14.44425]

[11.816545,
15.41241]

[10.813284,
15.98671]

2023
[10.544377,
17.46188]

[9.817852,
18.54946]

[9.246271,
19.85782]

[8.529977,
20.54898]

2024
[8.396809,
22.31465]

Figure 5.9: Plot of the Spanish unemployment rate series with 8 predicted quarters
(dashed) and their 95% confidence intervals (red dashed).
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Conclusions

Even though the SARIMA model selected for forecasting was the best fitting model
for the Spanish unemployment rate, we can see in Table 5.2 that the length of the 95%
confidence intervals of the forecasted value for the first unknown data is quite narrow,
but they increase in length rapidly over time, suggesting that we should take with a grain
of salt any forecast for a quarter later than the last of 2022.

This limited accuracy could be explained by different factors, being the first one the
lack of observations. Many authors conclude that to try fitting a SARIMA model we
should have at least 50 observations of the time series, but preferably more than 100.
We have 81 observations of the series, which is over the recommended minimum, but
perhaps more observations could have helped identifying undetected underlying processes
and making the estimations of the parameters more accurate.

Another possible reason is that the best fitting model has changed over time and
including old observations in the analysis does not allow us to identify the current under-
lying process. It is not daring to think that the behavior of the Spanish unemployment
rate of the early 00’s is completely different from the actual behavior and therefore it
should not be included in the analysis.

In addition, processes like the evolution of the unemployment rate are highly related
with other macroeconomic processes. The increase of the unemployment in 2008 and the
posterior decrease in 2013 can be attributed as a consequence of the economic recession
that took place between those years and the spike in 2020 can be explained by the im-
pact of the COVID-19 in the economy. With the SARIMA models we only analyze the
relationships of the series with itself. To expand the knowledge of this process it could
be interesting to perform a multivariate analysis with series like the GDP of Spain. This
kind of analysis also study the relationships between different time series.

Besides, I want to remark the importance that the evolution of computation and the
development of specific software has meant for this branch of mathematics. With just
one function on R I have been able to estimate the parameters of tenths of models and
compare one of their statistics in a couple of seconds. This would have take several hours
if it had to be done by hand.

To conclude, I think it’s interesting to have a thought about the phrase “All models
are wrong, but some of them are useful”, generally attributed to G. E. P. Box, one of the
main contributors to the analysis of time series. It is almost impossible to find a model
that is an exact representation of the reality. If we were able to find it, it would mean

45
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that there were no random component and it would be a fact rather than a model. With
methods like the ones introduced in this thesis we are able to give an approximation for
complex processes in a simple model that are close enough to reality and can help us
understand how the process has been generated and forecast accurate approximations of
future values.
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principle, in Petrov, B. N.; Csáki, F. (eds.), 2nd International Symposium on Infor-
mation Theory.

[2] Akaike, H. (1974). A new look at the statistical model identification, IEEE Transactions
on Automatic Control, 19 (6): 716–723.

[3] Box, G. E. P.; Cox, D. R. (1964). An analysis of transformations (with discussion).
Journal of the Royal Statistical Society B, 26, 211–252.

[4] Box, G. E. P.; Jenkins, G. M. (1962).Some statistical aspects of adaptive optimization
and control, Journal of the Royal Statistical Society B, 24, 297–331.

[5] Box, G. E. P.; Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control,
San Francisco: Holden-Day.

[6] Box, G. E. P.; Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control,
rev. ed., Oakland, California: Holden-Day.

[7] Box, G. E. P.; Jenkins, G. M.; Reinsel, G. C.; Ljung, G. M. (2015). Time Series
Analysis: Forecasting and Control, John Wiley & Sons, Hoboken.

[8] Box, G. E. P.; Pierce, D. A. (1970). Distribution of residual autocorrelations in au-
toregressive integrated moving average time series models, J. Am. Stat. Assoc., 65,
1509–1526.

[9] Brockwell, P. J.; Davis R. A. (2006). Time Series: Theory and Methods, Springer
International Publishing.

[10] Brockwell, P. J.; Davis R. A. (2016). Introduction to Time Series and Forecasting,
Springer International Publishing.

[11] Cowpertwait, P. S. P.; Metcalfe A. V. (2009). Introductory time series with R,
Springer.

[12] Ljung, G. M.; Box, G. E. P. (1978). On a measure of lack of fit in time series models,
Biometrika, 65, 297–303.

[13] Walker, G. (1931). On periodicity in series of related terms, Proc. R. Soc., A131,
518–532

[14] Whittle, P. (1951). Hypothesis testing in times series analysis. Uppsala: Almqvist &
Wiksells Boktryckeri AB.

47



48 BIBLIOGRAPHY

[15] Wold, H. O. (1938). A Study in the Analysis of Stationary Time Series, Almqvist &
Wiksell, Uppsala, Sweden; 2nd ed., 1954.

[16] Yaglom, A. M. (1955). The correlation theory of processes whose n-th difference con-
stitute a stationary process, Mat. Sb., 37(79), 141.

[17] Yule, G. U. (1927), On a method of investigating periodicities in disturbed series, with
special reference to Wolfer’s sunspot numbers, Philos. Trans. R. Soc., A226, 267–298.



Appendix A

R code

A.1 Chapter 1

Listing A.1: Example 1.1

set.seed (1)

x <- rnorm (100, mean = 0, sd = 1)

plot(x, type = "l", xlab = ’Time’)

acf(x, main = "")

pacf(x, main = "")

Listing A.2: example 1.2

set.seed (1)

x <- w <- rnorm (100, mean = 0, sd = 1)

for(t in 2:100) x[t] <- x[t-1] + w[t]

plot(x, type = "l", xlab = ’Time’)

acf(x, main = "")

pacf(x, main = "")

Listing A.3: example 1.3

library(datasets)

plot(JohnsonJohnson)

1
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A.2 Chapter 2

Listing A.4: Section 2.2

set.seed (1)

AR10.9 <- arima.sim(list(order = c(1,0,0), ar = 0.9), n=100)

acf(AR10.9, main = "")

pacf(AR10.9, main = "")

AR1n0 .9 <- arima.sim(list(order = c(1,0,0),

ar = -0.9), n=100)

acf(AR1n0.9, main = "")

pacf(AR1n0.9, main = "")

Listing A.5: Section 2.3

set.seed (1)

MA10.9 <- arima.sim(list(order = c(0,0,1), ma = -0.9), n=100)

acf(MA10.9, main = "")

pacf(MA10.9, main = "")

MA1n0 .9 <- arima.sim(list(order = c(0,0,1), ma = 0.9), n=100)

acf(MA1n0.9, main = "")

pacf(MA1n0.9, main = "")

Listing A.6: Section 2.4

set.seed (1)

ARMA11 <- arima.sim(list(order = c(1,0,1), ar = 0.9,

ma = -0.7), n=1000)

acf(ARMA11 , main = "")

pacf(ARMA11 , main = "")

A.3 Chapter 3

Listing A.7: Example 3.1

set.seed (1)

ARIMA110 <- arima.sim(list(order = c(1,1,0), ar = 0.8),

n=100)

plot(ARIMA110)

plot(diff(ARIMA110 ))

acf(ARIMA110 , main = "")

pacf(ARIMA110 , main = "")

acf(diff(ARIMA110), main = "")

pacf(diff(ARIMA110), main = "")
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Listing A.8: Example 3.2

set.seed (1)

ARIMA110 <- arima.sim(list(order = c(0,1,1), ma = -0.8),

n=100)

plot(ARIMA011)

plot(diff(ARIMA011 ))

acf(ARIMA011 , main = "")

pacf(ARIMA011 , main = "")

acf(diff(ARIMA011), main = "")

pacf(diff(ARIMA011), main = "")

Listing A.9: Section 3.2

install.packages ("astsa")

library (astsa)

set.seed (1)

SARIMA1 <- sarima.sim(sar = 0.7, S = 12, n=500)

acf(SARIMA1 , main = "")

pacf(SARIMA1 , main = "")

set.seed (1)

SARIMA2 <- sarima.sim(ar = 0.7, sar = 0.7, S = 12, n=500)

acf(SARIMA2 , main = "")

pacf(SARIMA2 , main = "")

A.4 Chapter 4

Listing A.10: Monthly total international airline passengers from January 1949 to De-
cember 1960

plot(AirPassengers)

plot(log(AirPassengers ))

plot(diff(log(AirPassengers )))

plot(diff(log(AirPassengers), 12))

plot(diff(diff(log(AirPassengers )), 12))

acf(log(AirPassengers), 50, main = "")

acf(diff(log(AirPassengers )), 50, main = "")

acf(diff(log(AirPassengers), 12), 50, main = "")

acf(diff(diff(log(AirPassengers )), 12), 50, main = "")

pacf(diff(diff(log(AirPassengers )), 12), 50, main = "")

ap011011 <- arima(log(AirPassengers), order = c(0,1,1),

seasonal = list(order = c(0,1,1), 12))

ap011110 <- arima(log(AirPassengers), order = c(0,1,1),
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seasonal = list(order = c(1,1,0), 12))

ap110011 <- arima(log(AirPassengers), order = c(1,1,0),

seasonal = list(order = c(0,1,1), 12))

ap110110 <- arima(log(AirPassengers), order = c(1,1,0),

seasonal = list(order = c(1,1,0), 12))

ap111111 <- arima(log(AirPassengers), order = c(1,1,1),

seasonal = list(order = c(1,1,1), 12))

ap011011$coef
ap011110$coef
ap110011$coef
ap110110$coef
ap111111$coef

ap011011$aic
ap011110$aic
ap110011$aic
ap110110$aic
ap111111$aic

ap011011

ap111111

acf(ap011011$residuals , 50, main = "")

pacf(ap011011$residuals , 50, main = "")

ap010011 <- arima(log(AirPassengers), order = c(0,1,0),

seasonal = list(order = c(0,1,1), 12))

acf(ap010011$residuals , 50, main = "")

pacf(ap010011$residuals , 50, main = "")

Box.test(ap011011$residuals , lag = 24, "Box -Pierce")

Box.test(ap011011$residuals , lag = 24, "Ljung -Box")

Box.test(ap010011$residuals , lag = 24, "Box -Pierce")

Box.test(ap010011$residuals , lag = 24, "Ljung -Box")

p.ap <- predict(ap011011 , 24)

p.ap

ts.plot(log(AirPassengers), p.ap$pred , p.ap$pred - 1.96 *

p.ap$se , p.ap$pred + 1.96 * p.ap$se, lty = c(1,2,2,2),

col = c(1,1,2,2))

ts.plot(AirPassengers , exp(p.ap$pred), exp(p.ap$pred - 1.96 *

p.ap$se), exp(p.ap$pred + 1.96 * p.ap$se),
lty = c(1,2,2,2), col = c(1,1,2,2))
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A.5 Chapter 5

Listing A.11: Analysis of the Spanish unemployment rate

install.packages ("rjson")

library (rjson)

#Access the data

spur <- fromJSON(file = "https://servicios.ine.es/wstempus/

js/ES/DATOS_SERIE/EPA86913?date =20020101:20220511")

#Format the data as a ts object

spur.values <- seq(1 : length(spur$Data))
for (i in 1: length(spur$Data )){

spur.values[i] <- spur$Data[[i]]$Valor
}

spur.ts <- ts(spur.values , st = 2002, fr = 4)

#Model identification

plot(spur.ts)

log.spur.ts <- log(spur.ts)

plot(log.spur.ts)

plot(diff(log.spur.ts))

plot(diff(log.spur.ts , 4))

plot(diff(diff(log.spur.ts , 4)))

acf(log.spur.ts , 20, main = "")

acf(diff(log.spur.ts), 20, main = "")

acf(diff(log.spur.ts , 4), 20, main = "")

acf(diff(diff(log.spur.ts , 4)), 20, main = "")

pacf(diff(log.spur.ts , 4), 20, main = "")

pacf(diff(diff(log.spur.ts , 4)), 20, main = "")

#Parameter estimation and model diagnostic checking

sp200010 <- arima(log.spur.ts, order = c(2,0,0),

seasonal = list(order = c(0,1,0), 4))

sp110110 <- arima(log.spur.ts, order = c(1,1,0),

seasonal = list(order = c(1,1,0), 4))

sp110011 <- arima(log.spur.ts, order = c(1,1,0),

seasonal = list(order = c(0,1,1), 4))

sp200010

sp110110

sp110011

sp110111
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auto.arima(log.spur.ts)

acf(sp200010$residuals , 20, main = "")

pacf(sp200010$residuals , 20, main = "")

sp200011 <- arima(log.spur.ts, order = c(2,0,0),

seasonal = list(order = c(0,1,1), 4))

sp200011

acf(sp200011$residuals , 20, main = "")

pacf(sp200011$residuals , 20, main = "")

Box.test(sp200011$residuals , lag = 8, "Box -Pierce")

Box.test(sp200011$residuals , lag = 8, "Ljung -Box")

#Forecasting

p.sp <- predict(sp200011 , 8)

p.sp

ts.plot(log.spur.ts , p.sp$pred , p.sp$pred - 1.96 *

p.sp$se, p.sp$pred + 1.96 * p.sp$se, lty = c(1,2,2,2),

col = c(1,1,2,2))

ts.plot(spur.ts , exp(p.sp$pred), exp(p.sp$pred - 1.96 *

p.sp$se), exp(p.sp$pred + 1.96 * p.sp$se),
lty = c(1,2,2,2), col = c(1,1,2,2))


