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1 Introduction

The experimental measurement of Lepton Flavour Universality Violating (LFUV) processes
in B meson decays, in tension with the Standard Model (SM) predictions, would represent
a clear sign for physics beyond the SM. For the b→ s`+`− processes, observables such as
the ratios of branching fractions RK(∗) ,

RK(∗) =
BR

(
B → K(∗)µ+µ−

)
BR

(
B → K(∗)e+e−

) , (1.1)

provides evidence of LFUV and are of particular interest because much of the theoretical
uncertainty cancels in the ratio. It is well known that in the SM, as a consequence of Lepton
Flavour Universality (LFU), RK = RK∗ = 1 with uncertainties of the order of 1% [1, 2].
However, the latest experimental results from LHCb, in the specified regions of q2 di-lepton
invariant mass, are:

R
[1.1,6]
K = 0.846+0.042

−0.039
+0.013
−0.012 [3]

R
[0.045,1.1]
K∗ = 0.66+0.11

−0.07 ± 0.03 R
[1.1,6]
K∗ = 0.69+0.11

−0.07 ± 0.05 . [4] (1.2)

Clearly, the results for the compatibility of the individual measurements with respect to
the SM predictions depend of the q2 di-lepton invariant mass region, being of 3.1σ for the
RK ratio, 2.3σ for the RK∗ ratio in the low-q2 region and 2.4σ in the central-q2 region.
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The Belle collaboration has also reported experimental results for the RK(∗) ratios [5, 6],
although with less precision than the LHCb measurements.

Other targets of flavour violating processes are the b→ c`ν transitions. The ratios of
branching fractions R`

D(∗) and Rµ
D(∗) , defined by,

R`D(∗) =
BR

(
B → D(∗)τ ν̄τ

)
[
BR

(
B → D(∗)eν̄e

)
+ BR

(
B → D(∗)µν̄µ

)]
/2
, (1.3)

and

Rµ
D(∗) =

BR
(
B → D(∗)τ ν̄τ

)
BR

(
B → D(∗)µν̄µ

) , (1.4)

also exhibit sizeable deviations from their predicted SM values [7],

R` SM
D = 0.299± 0.003, R` SM

D∗ = Rµ SM
D∗ = 0.258± 0.005. (1.5)

Their measurements at BaBar [8], Belle [9] and LHCb [10] experiments are larger than
the SM prediction. By assuming universality in the lighter leptons, the world average of
the experimental values for the RD(∗) ratios, as obtained by the Heavy Flavour Averaging
Group (HFLAV), are [7]

Rave
D = 0.340± 0.027± 0.013, Rave

D∗ = 0.295± 0.011± 0.008. (1.6)

These values imply a 1.4σ discrepancy with the SM predictions for RD, and 2.5σ for RD∗ .
When combined together, including their correlation, the excess is 3.08σ.

There exist other observables displaying some discrepancies with SM predictions even
when larger theoretical uncertainties are taken into account [11–14]. It is clear than
when investigating the implications of the experimental measurements in flavour physics
observables, a global fit should be considered. Several global fits can be found in the
literature (see, for example [15–25] and references therein). We have recently done a global
fit to the updated experimental information in [24, 25], where an extensive list of references
to previous analyses is included.

From the theoretical point of view, Effective Field Theory is one of the most widely
used tools to study any possible New Physics (NP) contribution. The effective Hamiltonian
approach allows us to perform a model-independent analysis of NP effects. In this paper,
we consider the Standard Model Effective Field Theory (SMEFT) Lagrangian and we
perform a global fit to the Wilson coefficients using the packages flavio v2.3 [26] and
smelli v2.3 [27] (as described in details in section 3). The global fit includes the RK(∗)

and RD(∗) observables, the electroweak precision observables; W and Z decay widths and
branching ratios to leptons, superallowed nuclear β decays, all the available experimental
data for the related b→ s`+`− observables; i.e. the b→ sµ+µ− observables (including the
optimized angular observable P ′5 and the branching ratio of Bs → µ+µ−, as well as all the
available data on angular observables in B → K(∗)µ+µ− decay), the relevant data related
to B → K(∗)e+e− decays, and also the angular observables measured in different bins for
Bs → φµµ decays. Finally, the b→ sνν̄ observables are also included in the global fit.
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Because the Gaussian approximation to characterize the fit is not successful, we will use
for the first time in this context a Montecarlo analysis to extract the confidence intervals
and other relevant statistics, and we explicitly show that machine learning, taking jointly
with the SHAP (SHAPley Additive exPlanation) values, constitute a suitable strategy to
use in this analysis.

The rest of this work is organized as follows: section 2 presents a brief summary of the
Effective Field Theory used to describe possible NP contributions to B decays observables.
We then discuss in section 3 the details of the global fits performed, introducing the
phenomenological scenarios that we used in the analysis and presenting our results. We
found that the Gaussian approximation is not suitable to characterize the fit and, therefore,
in order to extract the confidence intervals and other relevant statistics, we use a Montecarlo
analysis that is described in section 4. The agreement of the results obtained by the Machine
Learning Montecarlo algorithm that we have proposed and the ones obtained by using
the Renormalization Group equations is also included in this section. Section 5 includes
a discussion of the phenomenological implications of our analysis in leptoquark models.
The conclusions are presented in section 6. Appendix A contains the list of observables
that contribute to the global fit, as well as their prediction in the most general scenario
considered in this work.

2 Brief summary of the Effective Field Theory

This section presents a short summary of the Effective Field Theory used in our analysis.
First, at energy scales relevant for flavour processes it is convenient to work at an energy
scale below the electroweak (EW) scale, for example µWET = mb, with the top quark, Higgs,
W and Z bosons being integrated out. The relevant terms of the Weak Effective Theory
(WET) Lagrangian [28–31] for the semileptonic decays of B mesons are:

Leff = −4GF√
2
Vcb

∑
`=e,µ,τ

(
1 + C`V L

)
O`V L + 4GF√

2
VtbV

∗
ts

e2

16π2

∑
`=e,µ

(
C`9O`9 + C`10O`10

)

+ 4GF√
2
VtbV

∗
ts

e2

16π2

∑
`=e,µ,τ

C`νO`ν , (2.1)

where GF is the Fermi constant, e is the electromagnetic coupling and Vqq′ are the elements
of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. The dimension six operators are
defined as,

O`V L = (c̄LγαbL)
(

¯̀
Lγ

αν`
)
, O`9 = (s̄LγαbL)

(
¯̀γα`

)
,

O`10 = (s̄LγαbL)
(

¯̀γαγ5`
)
, O`ν = (s̄LγαbL) [ν̄`γα (1− γ5) ν`] , (2.2)

being their corresponding Wilson coefficients C`V L, C`9, C`10 and C`ν , respectively. The
last three coefficients have contributions from both the SM processes (CSM `

i ), and NP
contribution (CNP `

i ),

C`i = CSM `
i + CNP `

i , i = 9, 10, ν . (2.3)
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The dependence of the RK(∗) ratios on the Wilson coefficients has been previously
obtained in [15],

R
[1.1,6]
K∗ ' 0.9875 + 0.1759 ReCNPµ

9 − 0.2954 ReCNPµ
10 + 0.0212|CNPµ

9 |2 + 0.0350|CNPµ
10 |2

1 + 0.1760 ReCNP e
9 − 0.3013 ReCNP e

10 + 0.0212|CNP e
9 |2 + 0.0357|CNP e

10 |2
.

(2.4)
where an analytic computation of this ratio as a function of CNPµ

9 , CNPµ
10 in the region

1.1 ≤ q2 ≤ 6.0 GeV2 was performed.
For the RD(∗) ratios, the dependence of the RD(∗) ratios on the Wilson coefficients is

given by [32, 33]:

R`D(∗) = R`,SM
D(∗)

|1 + CτV L|2

(|1 + CeV L|2 + |1 + CµV L|2) /2 ,

Rµ
D(∗) = Rµ,SM

D(∗)
|1 + CτV L|2

|1 + CµV L|2
. (2.5)

Second, the NP contributions at an energy scale Λ (Λ ∼ O(TeV)) is defined via the
Standard Model Effective Field Theory (SMEFT) Lagrangian [34],

LSMEFT = 1
Λ2

(
Cijkl`q(1)O

ijkl
`q(1) + Cijkl`q(3)O

ijkl
`q(3)

)
, (2.6)

where ` and q are the lepton and quark SU(2)L doublets in the basis of electroweak
eigenstates, and i, j, k, l denote generation indices. The dimension six operators are defined as

Oijkl`q(1) =
(

¯̀′
iγµ`

′
j

) (
q̄′kγ

µq′l
)
, Oijkl`q(3) =

(
¯̀′
iγµτ

I`′j

) (
q̄′kγ

µτ Iq′l

)
(2.7)

with τ I being the Pauli matrices.
We note that we will use the SMEFT operators for our numerical analysis, and will

refer to the WET operators only for discussion and comparison with other previous results
in the literature.

The translation between the SMEFT Lagrangian in the electroweak basis and in the
mass basis was obtained in [29]. The SMEFT Lagrangian in the mass basis is

Lmass
SMEFT =

C̃ijkl`q(1)
Λ2

(
ν̄i Lγµνj L + ēi Lγµej L

)(
VmkV

∗
nlūmLγ

µunL + d̄k Lγ
µdl L

)

+
C̃ijkl`q(3)

Λ2

(
ν̄i Lγµνj L − ēi Lγµej L

)(
VmkV

∗
nlūmLγ

µunL − d̄k Lγµdl L
)

+ 2
C̃ijkl`q(3)

Λ2

[
(ν̄i Lγµej L)(VmkūmLγ

µdl L) + (ēi Lγµνj L)(V ∗nld̄k LγµdnL)
]
. (2.8)

The relation between the C`q coefficients in the electroweak basis and the C̃`q coefficients
in the mass basis is given by [29]

C̃ijkl`q(1) = Cijmn`q(1) (U∗dL)km(UdL)ln , C̃ijkl`q(3) = Cijmn`q(3) (U∗dL)km(UdL)ln , (2.9)

– 4 –
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where UdL and UuL are the SM rotation matrices for the left-handed quarks. The only
constraint for these matrices is given by the CKMmatrix, V = UuLU

†
dL. The choice UdL = 1,

UuL = V defines the “Warsaw-down” basis of the SMEFT [35], where C`q(1) = C̃`q(1) and
C`q(3) = C̃`q(3).

Finally, there is a recent proposal that links the B meson anomalies with NP in the
top sector [33, 36, 37]. In the interaction basis, denoted by double-primed fermions, only
the third generation particles exhibit NP couplings,

LNP = 1
Λ2

[
C1
(

¯̀′′
3γµ`

′′
3

) (
q̄′′3γ

µq′′3
)

+ C3
(

¯̀′′
3γµτ

I`′′3

) (
q̄′′3γ

µτ Iq′′3

)]
, (2.10)

where C1 = C3333
`q(1) and C3 = C3333

`q(3). The interaction basis is related to the basis where the
mass matrices are diagonal via the unitary transformations,

uL = Ûuu
′′
L , dL = Ûdd

′′
L , νL = Û`ν

′′
L , eL = Û`e

′′
L , (2.11)

where ψL = PLψ (ψ = u, d, ν, e), Ûψ are unitary matrices, and the quark unitary matrices
are related to the CKM matrix as ÛuÛ †d = V . The fermionic bilinears are transformed
as follows,

ū′′3γµu
′′
3 = λuij ūiγµuj , d̄′′3γµd

′′
3 = λqij d̄iγµdj , ū′′3γµd

′′
3 = λudij ūiγµdj

ē′′3γµe
′′
3 = λ`ij ēiγµej , ν̄ ′′3γµν

′′
3 = λ`ij ν̄iγµνj , ē′′3γµν

′′
3 = λ`ij ēiγµνj ,

(2.12)

with the flavour matrices λ given by

λuij =
(
Ûu
)

3i

(
Ûu
)∗

3j
, λqij =

(
Ûd
)

3i

(
Ûd
)∗

3j
,

λudij =
(
Ûu
)

3i

(
Ûd
)∗

3j
, λ`ij =

(
Û`
)

3i

(
Û`
)∗

3j
. (2.13)

We can write all the quark matrices in terms of λq,

λu = V λqV † , λud = V λq , (2.14)

so every u-type quark picks an additional CKM matrix, which are exactly the same factors
appearing in the Lagrangian for the mass basis in eq. (2.8). For example, if we expand the
first term in eq. (2.10), we obtain

C1
Λ2

(
¯̀′′
3γµ`

′′
3

) (
q̄′′3γ

µq′′3
)

= C1
Λ2
(
ν̄ ′′3γµν

′′
3 + ē′′3γµe

′′
3
) (
ū′′3γ

µu′′3 + d̄′′3γ
µd′′3

)
= C1

Λ2λ
`
ijλ

q
kl (ν̄i Lγµνj L + ēi Lγµej L)

(
VmkV

∗
nlūmLγ

µunL + d̄k Lγ
µdl L

)
, (2.15)

which agrees with eq. (2.8) with the identification Cijkl`q(1) = C̃ijkl`q(1) = C1λ
`
ijλ

q
kl. Repeating

the same steps with the other term in eq. (2.10), we arrive to Cijkl`q(3) = C̃ijkl`q(3) = C3λ
`
ijλ

q
kl.

– 5 –
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In conclusion, the Lagrangian of eq. (2.10) in the “Warsaw-down” basis becomes

LNP =
λ`ijλ

q
kl

Λ2

(
C1
(

¯̀
iγµ`j

)
(q̄kγµql) + C3

(
¯̀
iγµτ

I`j
) (
q̄kγ

µτ Iql
))

. (2.16)

We perform the Renormalization Group (RG) running of the SMEFT Wilson coefficients
from Λ = 1 TeV down to µEW [38], where we match the SMEFT and WET operators [39],
and finally we perform the RG running of the WET coefficients down to µ = mb [40]. We
check that the analytical expressions are in agreement with the numerical results obtained
by the package Wilson [41]. This operation is performed for all the effective operators in the
WET that receive contributions from the Lagrangian in eq. (2.16). Here we reproduce the
matching conditions for the Wilson coefficients with the largest impact on the semileptonic
B meson decays, that is, CiNP

9 and CiNP
10 for the B → K(∗)`+`− decays, CiNP

V L for the
B → D(∗)`ν decays, and Ciν for the B → K(∗)νν̄ decays:

CNP i
9 ≈ 2

√
2π2

e2VtbV
∗
ts

1
GFΛ2 (C1 + C3)λq23λ

`
ii +

√
2

3VtbV ∗ts
1

GFΛ2 (C1 + C3)λq23 log mb

Λ ,

CNP i
10 ≈ − 2

√
2π2

e2VtbV
∗
ts

1
GFΛ2 (C1 + C3)λq23λ

`
ii ,

CiV L ≈ −
1√

2GFΛ2C3λ
`
ii

(
Vcs
Vcb

λq23 + λq33

)
,

Ciν ≈
2
√

2π2

e2VtbV
∗
ts

1
GFΛ2 (C1 − C3)λq23λ

`
ii + 3

√
2g′2

2e2VtbV
∗
ts

1
GFΛ2C3λ

q
23λ

`
ii log mb

Λ . (2.17)

We find out that there is a sizeable subleading term that affects CNP i
9 and not CNP i

10 ,
thus breaking the leading-order relation CNP i

9 = −CNP i
10 . However, this subleading term is

LFU, since it does not depend on the leptonic rotation matrix λ`, and consequently has a
negligible effect on the universality ratios RK(∗) . The spoiling of the tree-level relation will
become relevant in observables that include only one lepton flavour, such as the branching
ratios and angular observables for B → K(∗)µ+µ−; which depend on Cµ9 and Cµ10; and
Bs → µ+µ− only depending on Cµ10. The interplay between the tree-level and loop-induced
terms is well known and was also previously discussed by [42].

In order to describe the rotation from the two bases, the λ matrices introduced in
eq. (2.13) must be hermitian, idempotent λ2 = λ, and trλ = 1. These properties are
consequences of the fact that, in the interaction basis, NP only affects one generation, and
follow immediately from the definitions:

λji = U∗3jU3i = (U∗3iU3j)∗ = λ∗ij ,

λijλjk = U∗3iU3jU
∗
3jU3k = U∗3iU3k = λik ,

trλ =
∑
i

λii =
∑
i

U∗3iU3i =
(
U †U

)
33

= 1 . (2.18)

– 6 –
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A 3×3 hermitian idempotent matrix with trace one has 4 free real parameters, or equivalently,
2 free complex parameters. Without loss of generality, we can use the parameterization [33]

λ`, q = 1
1 + |α`, q|2 + |β`, q|2


|α`, q|2 α`, qβ̄`, q α`, q

ᾱ`, qβ`, q |β`, q|2 β`, q

ᾱ`, q β̄`, q 1

 , (2.19)

where α`, q and β`, q are complex numbers, which are related to the unitary rotation
matrices as

(U`,q)31 = ᾱ`,q√
1 + |α`,q|2 + |β`,q|2

,

(U`,q)32 = β̄`,q√
1 + |α`,q|2 + |β`,q|2

,

(U`,q)33 = 1√
1 + |α`,q|2 + |β`,q|2

,

α`,q =
(U∗`,q)31

(U`,q)33
β`,q =

(U∗`,q)32

(U`,q)33
(2.20)

We can therefore understand the parameters α` and β` as the relative degree of mixing
to the first and second generations of leptons, respectively, produced by the rotation from
the interaction basis to the mass basis. Analogously, the parameters αq and βq represent
the relative degree of mixing to the first and second generations of d-type quarks (remember
that the u-type quarks pick additional CKM factors).

The conditions in eq. (2.19) impose several relations between the LFUV operators,
which are proportional to the diagonal entries of λ`, and the LFV operators, proportional
to the off-diagonal entries:

C11ij
`q =

|C13ij
`q |2

C33ij
`q

C22ij
`q =

|C23ij
`q |2

C33ij
`q

. (2.21)

On the other hand, the O`q operators also produce unwanted contributions to the
B → K(∗)νν̄ decays [33]. In order to obey these constraints, we will fix at the scale µ = Λ
the relation

Cijkl`q(1) = Cijkl`q(3) ≡ C
ijkl
`q . (2.22)

This relation cancels the tree-level contribution to the B → K(∗)νν̄, but there is still a
loop-induced contribution, proportional to the C`q(3) coefficients. However, we have checked
that in our scenarios, this is only a 0.1% correction of the SM predictions.

3 Global fits

Since the effective operators affect a large number of observables, connected between them
via the Wilson coefficients, any NP prediction based on Wilson coefficients has to be

– 7 –
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confronted not only with the RK(∗) an RD(∗) measurements, but also with additional several
measurements involving the B-mesons decays. The RG evolution in the SMEFT produces
a mix of the low-energy effective operators, which implies that the W and Z couplings to
leptons are modified [43, 44]. Then, several EW observables are affected, such as the W
boson mass, the hadronic cross-section of the Z boson (σ0

had) or the branching ratios of
the Z to different leptons. In order to keep the predictions consistent with this range of
experimental test, global fits have proven to be a valuable tool [18–21]. We have previously
done in [24, 25] an analysis of the effects of the global fits to the Wilson coefficients, assuming
a model independent effective Hamiltonian approach.

In the current paper the global fits to the C`q Wilson coefficients have been performed
by using the packages flavio v2.3 [26] and smelli v2.3 [27].1 This code assumes unitarity
of the CKM matrix. Note that the experimental measurements used to determine the SM
input parameters, such as the µ→ eν̄ν decay, are not included in the fit in order to ensure
the consistency of the procedure.

In our analysis, the goodness of each fit is evaluated with its difference of χ2 with respect
to the SM, ∆χ2

SM = χ2
SM − χ2

fit. The package smelli actually computes the differences of
the logarithms of the likelihood function ∆ logL = −1

2∆χ2
SM. In order to compare two fits

A and B, we use the pull between them in units of σ, defined as [45, 46]

PullA→B =
√

2Erf−1
[
F
(
∆χ2

A −∆χ2
B;nB − nA

)]
, (3.1)

where Erf−1 is the inverse of the error function, F is the cumulative distribution function
of the χ2 distribution and n is the number of degrees of freedom of each fit.

The SM input parameters used for these fits are the same as in our previous work [24].
The Renormalization Group effects of the SMEFT operators that shift the Fermi constant
GF [39] from its SM value G0

F are considered. The effects on the CKM matrix [47] are not
implemented, and its parameters are treated as nuance parameters instead.

Now we proceed to fit the set of flavour observables to the parameters C1 = C3 ≡ C,
α`, q and β`, q of eqs. (2.16) and (2.19). In this setting, we consider two Scenarios:

• Scenario I: λ`, q11 = λ`, q12 = λ`, q13 = 0, that is, α` = αq = 0, and C1 = C3.

• Scenario II: the only assumption is C1 = C3.

In both scenarios C1 = C3 in order to implement the constraints from the B → K(∗)ν̄ν

observables, as previously mentioned (see eq. (2.22)). In Scenario I we also set λ`, q11 =
λ`, q12 = λ`, q13 = 0, i.e. α` = αq = 0, assuming that the mixing affecting the first generation are
negligible; this is the same assumption used in [33]. Scenario II is more general, including
non-negligible mixings to the first generation, allowing us to check the validity of the above
assumption and to discuss the results in a more general situation; focusing in the relevance
of the mixing in the first generation. In both scenarios, we only consider real values for the
parameters of the fit.

1We have supplemented the experimental measurements of the smelli v2.3 database with additional
B → K∗e+e− [48] and B → K∗µ+µ− [49] angular observables.
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Scenario I Scenario II

C −0.12± 0.05 −0.123± 0.010

α` ±(0.074± 0.024)

β` 0± 0.025 0± 0.019

αq −0.07+0.08
−0.01

βq 0.78+1.70
−0.4 0.71+1.1

−0.47

∆χ2
SM 41.37 58.84

SM Pull 5.83 σ 6.70 σ

p-value 5.5× 10−9 2.1× 10−11

Table 1. Best fits to the rotation parameters and the coefficient C in Scenarios I and II.

The best fits to the rotation parameters α and β for leptons and quarks and to the
Wilson coefficient C ≡ C1 = C3 in these two Scenarios are summarized in table 1. The best
fit is found for Scenario II, with a pull of 6.70 σ with respect to the Standard Model, 3.77
σ with respect to Scenario I. We note that the β` parameter, which mixes the second and
third generations of leptons at tree level, is negligible in both fits. Figure 1 shows the two-
dimensional sections of the likelihood function ∆χ2

SM for the α`-β` and αq-βq parameters
in Scenario II, at 1σ and 2σ. The rest of parameters are given as in the best fit point of
this Scenario. Results for the RK(∗) and RD(∗) observables and for the LFV observables, as
well as for the global fit are included. We can observe that, due to the non-linear relations
imposed by eq. (2.19), the regions of equal probability are highly non-ellipsoidal. Therefore,
we cannot use the Gaussian approximation to characterise the fit. Instead, we will use a
Montecarlo analysis, described in section 4, in order to extract the confidence intervals and
correlations between observables. The values of the parameters of the Lagrangian (2.16) in
Scenario II are C = C1 = C3 = −0.126± 0.010, and

λ` =


(5± 4)× 10−3 (0± 9)× 10−4 (7± 3)× 10−2

(0± 9)× 10−4 (0± 2)× 10−4 (0± 2)× 10−2

(7± 3)× 10−2 (0± 2)× 10−2 0.995± 0.004

 , (3.2)

λq =


(3+0
−3)× 10−3 (−3+2

−0)× 10−2 (−4+2
−0)× 10−2

(−3+2
−0)× 10−2 0.34± 0.29 0.47± 0.09

(−4+2
−0)× 10−2 0.47± 0.09 0.66± 0.29

 . (3.3)

The most notable effect of the mass rotation is the mixing of the second and third gen-
eration quarks, and there is also some mixing between the first and third generation leptons.
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Figure 1. 1σ and 2σ contours for the (a) α` and β` and (b) αq and βq parameters, with the rest of
parameters as in the best fit point of Scenario II.

The more relevant WET Wilson coefficients in Scenario II are

CNPµ
9 = −0.6± 0.2, CNPµ

10 = −0.002± 0.01, CNP τ
V L = 0.09± 0.03 ,

CNP e
9 = −0.25± 0.21, CNP e

10 = −0.36± 0.23. (3.4)

As established in eq. (2.17), subleading RG effects cause a notable deviation from
the leading-order relation CNPµ

9 = −CNPµ
10 . This is in agreement with the fits performed

in [15, 16, 46, 50–61], where the Wilson coefficient CNPµ
9 receives a greater NP contribution

than CNPµ
10 . According to our fit, CNPµ

10 ≈ 0: from the matching conditions, this operator
is generated at tree level and is proportional to λ`22 ∼ |β`|2. From the plot in figure 1 we
learn that the parameter β` is severely constrained by the LFV observables, in green lines.
Consequently CNPµ

9 = −CNPµ
10 + C loop

9 ≈ C loop
9 is dominated by the loop-generated term

in eq. (2.17). Clearly, the logarithmic term that appear in the first equation of (2.17) is
relevant in the phenomenological analysis. In the electron sector, the mixing parameter
α` does not suffer large constraints from the LFV sector. In this case, the tree-level and
loop-level terms are similar, and therefore CNP e

9 = −CNP e
10 +C loop

9 ≈ −CNP e
10 +CNPµ

9 , which
is of the same order of magnitude as CNP e

10 . In section 5.1, we assess an specific model of
leptoquarks where these relations are met.

The predictions for RK(∗) and RD(∗) observables in the best fit points for both scenarios
are displayed in figure 2, where the central value and 1σ uncertainty of the observables are
included. The yellow area corresponds with the SM prediction, and the green area with the
experimental measurements for each observable. Table 2 summarizes the results for the
RK(∗) and RD(∗) observables in Scenarios I and II for the corresponding best fit points. For
comparison, an statistical combination of all the available measurements of each observable,
performed by flavio is included in the last column of this table.
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Figure 2. Central value and 1σ uncertainty (blue lines) of the (a) RK(∗) observables and (b) RD(∗)

observables in Scenarios I and II, compared to the Standard Model prediction (yellow area) and
experimental measurements (green area).

Observable Scenario I Scenario II Measurement

R
[1.1,6]
K 1.0009± 0.0002 0.83± 0.03 0.85± 0.06

R
[0.045, 1.1]
K∗ 0.9244± 0.0005 0.884± 0.010 0.65± 0.09

R
[1.1, 6]
K∗ 0.996± 0.002 0.84± 0.03 0.68± 0.10

R`D 0.351± 0.013 0.351± 0.010 0.35± 0.03

R`D∗ 0.289± 0.011 0.290± 0.010 0.296± 0.016

RµD∗ 0.289± 0.011 0.290± 0.009 0.31± 0.03

Table 2. Values of the RK(∗) and RD(∗) observables in Scenarios I and II for the best fit points.

From the above results, it is clear that the assumptions of Scenario I do not allow for a
simultaneous explanation of the RK(∗) and RD(∗) anomalies, as already pointed out in [33].
In particular, a value of the mixing between the second and third generation leptons β`
is large enough to describe RK(∗) through the tree-level CNPµ

9 = −CNPµ
10 coefficients, but

implies that RD(∗) < RSM
D(∗) . Instead, our fit shows a preference for a negligible β`, and

therefore the RD(∗) anomalies are explained only through NP in CτV L. The predictions for
the branching ratios and angular observables of the B → K(∗)µ+µ− decays are improved
thanks to the flavour-universal loop-induced contribution to CNP

9 = C loop
9 , while the RK(∗)

ratios are not sensible to the universal contribution and remain SM-like.
The parameters in the fit of Scenario II, on the other hand, are able to describe

the RK(∗) and RD(∗) anomalies at the same time, as it is shown in figure 2 and table 2.
To consider the mixing between the first and third lepton generation does not notably
alter the prediction for RD(∗) . At the same time, it originates a tree-level contribution
to CNP e

9 = −CNP e
10 , that breaks the universality between the electron and muon Wilson
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Figure 3. Pulls in the Standard Model (orange) and Scenario II (blue) of the observables included
in the global fit. The observables whose pull changes in more than 1.5σ between the SM and Scenario
II are specially marked in the plot.

coefficients, allowing for RK(∗) 6= 1. The comparison of the pull of each observable for this
scenario with respect to their experimental measurement (blue line), compared to the same
pull in the SM (orange line) is presented in figure 3. The observables whose pull changes in
more than 1.5σ between the SM and Scenario II are specially marked in the plot, i.e. Rl

D(∗) ,
RK and Rµ

D(∗) (observables 2, 7 and 13 in table 4 of appendix A). It is clear that for these
observables NP improves their prediction. For completeness, the full list of predictions and
pulls is also included in appendix A. We have checked that all the observables in table 4,
with the only exception of |εK | (observable 33), can receive a contribution from the Wilson
coefficients in Scenario II when considering the full RG equations. It is also important to
note that the muon lifetime is not included in the above list of observables because it is
used to determine the SM value of GF ; an input parameter.

Finally, we also investigate which class of observables constraint each parameter of the
fit. For this purpose we modify the rotation parameters α and β for leptons and quarks
and the Wilson coefficient C ≡ C1 = C3 independently, and we compare the results with
respect to the likelihood for RK(∗) , RD(∗) and LFV observables, and to the global likelihood.
Figure 4 shows the evolution of the likelihood for RK(∗) and RD(∗) observables and LFV
observables, as well as the global likelihood, when one parameter is modified from its best
fit value. The interplay between all observables is clearly established when the Wilson
coefficient C is modified (figure 4(a)). In the case of the lepton mixing, it is clear that the
RK(∗) observables determine the best values of α` (figure 4(b)), while the LFV observables
limit the allowed values of β` to a narrow region around zero; being the observables that
determine the behaviour of the global fit in this case (figure 4(c)). In the quark mixing
(figure 4(d) and (e)), we found that αq is constrained by the observable BR(K+ → π+νν̄)
(observable 406), while βq is determined by the interplay of RK(∗) and RD(∗) , that prefer
larger values, and the LFV observables, that disallow βq > 1.
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Figure 4. Likelihood of the fit when one coefficient is modified: (a) C, (b) α`, (c) β`, (d) αq, (e) βq.

Clearly, the above results show the interplay between all parameters and confirm the
relevance of considering all observables when performing phenomenological studies in the
context of B-anomalies and the discussion of possible explanation of these anomalies through
NP models.

4 Montecarlo analysis using Machine Learning

In this section we study the parameter points in the neighbourhood of the best fit point.
We will generate samples of parameter points following the χ2 distribution given by the
likelihood of the fit. The Montecarlo algorithm is the standard procedure to generate
samples that follow a known distribution. In our case, the computation time needed to
calculate the likelihood of each candidate point is a huge drawback. Instead, we opted to
use a Machine Learning algorithm to construct an approximation to the likelihood function
and that can be evaluated in a much shorter time. As far as we know, this is the first time
that these procedure is used in the analysis of flavour anomalies. There exist a previous
paper that address the problem of NP model in b→ cτντ decays by using a specific machine
learning algorithm [62], but the techniques used in this paper are different to the ones we
used here. In the following we give some details of the Machine Learning procedure and
then, we present our results.

4.1 Methodology

The first Machine Learning tool that we will use for our analysis is a model able to
approximate any arbitrary function f : Rn → R, that we will use to create an approximation
of the log-likelihood function of our fit. We have chosen an ensemble method based on
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Figure 5. Example of regression tree with four leaves. In red, application of the function f(x)
associated with the tree to an input x.

regression trees, which is implemented by the XGBoost (eXtreme Gradient Boosting)
algorithm [63].

Regression trees are a type of decision tree. A decision tree is a diagram that recursively
partitions data into subsets, based on the binary (true/false) conditions located at the
nodes of the tree. The final subsets in which the data are classified are called “leaves”. A
decision tree with T leaves is formally a function q : Rn → {1, 2, . . . , T} which associates to
each data point x ∈ Rn its leaf q(x). A regression tree assigns to each leaf i a real number
wi ∈ R. The regression tree therefore defines a function f : Rn → R, given by

f(x) = wq(x) . (4.1)

An example of a regression tree with four leaves is depicted in figure 5. In practice, a single
tree is not general enough to reproduce an arbitrary function. For this reason, we consider
instead an ensemble of K regression trees F = {f (1), f (2), . . . , f (K)}. The ensemble defines
a function φ : Rn → R,

φ(x) =
K∑
i=1

f (i)(x) =
K∑
i=1

w
(i)
q(x) . (4.2)

The function φ(x) will represent the approximation for the log-likelihood function.
It will be calculated using supervised learning, that is, the trees are obtained from a
dataset D = {(xi, yi)} where x1, . . . xN ∈ Rn are the inputs and y1, . . . yN ∈ R are the
pre-computed outputs for each input. In our case, the input data will be of the form
xi = (Ci, α`i , β`i , α

q
i , β

q
i ), and the outputs will be yi = logL(xi).

In order to train the model from the dataset, we need to define an objective function
L[φ] that measures how well the model fits the data,

L [φ] =
∑
i

l (φ (xi) , yi) +
∑
k

Ω
(
f (k)

)
, (4.3)

which has two components:

• The loss function l(φ(xi), yi) is a differentiable function that measures the similarity
between the true output yi and its approximation φ(xi). We use as loss function the
mean absolute error, l(φ(xi), yi) = |φ(xi)− yi|.

• The function Ω is the regularization term, that penalizes the complexity of trees, that
is, trees with many leaves or with large ||w||. The purpose of the regularization is
to prevent over-fitting, that is, the model learning “by heart” the training data and
being unable to extrapolate from them.
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The ensemble is constructed in an iterative way, starting from one single tree f (0)

that contains just one leaf. At the step t of the iteration, the tree f (t) is obtained by
splitting one of the leaves of the tree f (t−1) into two leaves; the splitting is determined by
the optimization of the objective function. In order to prevent over-fitting, the shrinkage
technique is used, that scales newly added weights by a factor η < 1, similar to the learning
rate in other Machine Learning algorithms.

Once we have an approximation of the log-likelihood function, we put it to use and
generate new samples of datapoints xi = (Ci, α`i , β`i , α

q
i , β

q
i ). We use a Montecarlo algorithm

to produce the data distributed according to the χ2 distribution of the fit. At each step of
the Montecarlo algorithm, a new tentative xi is proposed, which is accepted if the ratio
of its probability divided by the probability of the best fit point is greater than a random
number u distributed uniformly in the interval [0, 1], and rejected otherwise. Expressed in
terms of the logarithms of the likelihood function instead,

logL(xi) > logLbf + log u , (4.4)

where Lbf is the likelihood of the best fit. This algorithm requires many calls to the
likelihood function, which are computationally very tasking, and most of the proposed
points are rejected. As a way to ease the burden, we use the approximated log-likelihood
φ(xi) instead of the true function.

We can asses the importance of each parameter in the Machine Learning approximation
at any point of the generated samples by using SHAP (SHAPley Additive exPlanation)
values [64, 65]. SHAP values are based in Lloyd Shapley’s work on game theory [66], who
won the Nobel Prize in Economics for it in 2012.

The SHAP values are designed with three properties in mind:

• Local accuracy: the sum of the SHAP values is equal to the model prediction.

• Missingness: if any feature is missing, its SHAP value is zero.

• Consistency: if the model is changed so any feature has larger impact, its SHAP
value will increase.

Given a model φ(x), the SHAP trains 2n new models φz(x) for z ∈ {0, 1}n binary
vectors. The model φz(x) contains the feature x(i) only if z(α) = 1, while that feature is
ignored when training if z(α) = 0. The marginal contribution φz′(xi)−φz(xi) for two models
differing only in the presence of one feature (i.e. z(α) = 0, z′(α) = 1 and z(β) = z′(β) ∀ β 6= α),
gives the importance of adding the feature α to the model z. The SHAP value for the
feature α in the point xi is just the weighted average of all marginal contributions, with the
weight given by a combinatorial factor. An example is depicted in figure 6. The prediction
without any features φ0···0 is simply the average of the values yi in the dataset, and acts as
a base value common for all xi.

Finally, we will analyze the correlations between the points in the generated samples,
in order to understand the physical relations caused by NP.
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Figure 6. Prediction models that would we necessary to train for three features in order to calculate
the SHAP values. The edges represent the marginal contributions for each feature: in red for x1,
green for x2 and blue for x3.

4.2 Procedure and results

In the first place we create a sample of 5000 parameter points and their likelihood using
the traditional algorithm. We discard the points with ∆χ2

SM < 20, retaining 3760 points.
We train a Machine Learning predictor using the pre-computed sample. We used the

XGBoost (eXtreme Gradient Boosting) algorithm [63], implemented by the Python package
xgboost. We split the sample in two parts, 75% of the points for the training and 25%
points for the validation of the model. The algorithm uses a learning rate of 0.05 and 1000
estimators, allowing early stopping at 5 rounds. The performance of the Machine Learning
predictor can be seen in figure 7(a). The horizontal axis represents the actual value of the
∆χ2

SM for each point of the validation dataset, computed using the full flavio and smelli
code, with the best fit point found in section 3 corresponding to the maximum value. The
vertical axis represents the predicted value for the same points obtained using the Machine
Learning Montecarlo algorithm. The predicted values for the ∆χ2

SM reproduce their actual
values, with a Pearson regression coefficient r = 0.970 and Mean Absolute Error of 0.719 in
the validation dataset. The agreement between the predicted and actual values is specially
good for parameters near the best fit point (∆χ2

SM > 55).
Finally we implement the Montecarlo algorithm: we generate random points ~C near

the best fit. The predictor produces an approximation of the ∆χ2, and therefore, also an
approximation of the logarithm of the likelihood, log L̃( ~C). The point is accepted if this
approximation verifies the Montecarlo condition

log L̃
(
~C
)
> logLbf + log u , (4.5)
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Figure 7. Predictor performance: (a) Regression of the predicted values of ∆χ2 compared to
the real ones in the validation dataset. (b) Histogram of the Montecarlo points generated using
the Machine Learning algorithm: blue bins for the predicted distribution and orange bins for the
actual distribution.

Base SHAP value for Final Actual

value C α` β` αq βq prediction logL

40.552 3.599 3.355 3.384 2.375 3.914 57.180 58.844

Table 3. SHAP values and Machine Learning prediction for the best fit point.

where Lbf is the likelihood of the best fit and u is a number randomly chosen from an
uniform distribution in the interval [0, 1). To check if the Machine Learning Montecarlo
algorithm can actually reproduce the χ2 distribution, we generate a sample of 1000 points.
The histogram for the predicted values of the χ2 is plotted in figure 7(b). The histogram
follows the general shape of the χ2 distribution, although there is an excess of points near
the best fit and a deficit of points in the region of low likelihood.

In order to understand how each parameter affects the prediction of the likelihood, we
use the SHAP values as described above. Remember that once we have an approximation
of the log-likelihood function, we put it to use generating new samples of datapoints
xi = (Ci, α`i , β`i , α

q
i , β

q
i ), and we use a Montecarlo algorithm to produce the data distributed

according to the χ2 distribution of the fit. Table 3 contains an example of the SHAP values
for logL at the best fit point. According to the Machine Learning model, the values of C
and α` and βq have the larger impact in the Machine Learning prediction.

Figure 8 shows the impact of each parameter to the final prediction, measured as the
mean of the absolute values of their SHAP values across a sample of 10000 Montecarlo points.
The SHAP values allow us to quantify the relative importance of each parameter in the fit.
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Figure 8. Distribution of the SHAP values for each parameter in a sample of 10000 generated points.
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Figure 9. SHAP values for the parameters of the fit at the sample of 10000 generated points.

The parameters βq and α` have the largest contribution and β` and C contribute the less.
This result is in disagreement with the assumption of Scenario I regarding the parameter α`
describing the mixing to the first generation of leptons. Therefore, the obtained result is in
agreement with the previous section, where we already concluded that the mixing with the
first generation were necessary in order to describe both anomalies simultaneously. On the
other hand we see that, while moderate values of β` are relatively unimportant compared to
the other mixing parameters, extreme values have a large negative impact in the prediction
for the likelihood.
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We calculate the SHAP values for the logarithm of the likelihood at each point of the
Montecarlo sample. In this way, we can determine how each parameter contributes to the
fit, as shown in figure 9. We can compare these SHAP values with figure 4, where only
one parameter was changed at a time. Then, it is clear the agreement between the results
obtained by the Machine Learning Montecarlo algorithm proposed in this work and the
ones obtained by following the RG equations. Therefore, we can conclude that the SHAP
values reproduce correctly the general features of the fit.

The above results show that the Machine Learning Montecarlo algorithm can be
very useful in this kind of analysis, being able to reproduce the results obtained in the
previous section in a shorter time. We can conclude that the machine learning, made jointly
with the SHAP values, constitute a suitable strategy to use in complex fitting problems
with large dimensionalities and complicated constraints, where a direct evaluation is too
time-consuming.

4.3 Correlations between observables

In order to check our Machine Learning procedure, we now discuss on the agreement of the
results obtained by the Machine Learning Montecarlo algorithm that we have proposed and
the ones obtained by using the RG equations defined as given in section 2.

The Lagrangian in eq. (2.16) exhibit a flavour structure, given by the λ matrices, relating
the different entries of the tensor of Wilson coefficients Cijkl`q . Under the RG evolution
and matching, this flavour structure is imprinted in the WET Lagrangian in eq. (2.1), and
therefore in the related observables. Using the Machine-Learning Montecarlo algorithm
described in the previous section, we generate a sample of 15000 points in parameter space
around the best fit point. In each point we run the RG equations down to the electroweak
scale, perform the matching with the WET, and run the RG equations again down to
µ = mb. We compute the correlations between the semileptonic b→ s and b→ c coefficients
C9, C10, CV L and Cν for the different lepton generations. Figure 10 shows the matrix of
Pearson coefficients describing linear correlations between the WET Wilson Coefficients.
In the electron sector, Ce10, CeV L and Ceν show strong correlations close to ±1. In the
muon sector, Cµ10, C

µ
V L and Cµν are also correlated between them, however they are linearly

independent of Cµ9 . Instead, C
µ
9 is correlated with the tau coefficients CτV L and Cτν , and to

a lesser extent to Ce9 .
The correlations that we have found are consistent with the results of RG evolution and

matching in eq. (2.17). In the case of the electron sector, the Ce10, CeV L and Ceν coefficients are
all proportional to the product Cλq23λ

`
11 appearing in the tree-level contribution. Analogously

in the muon sector Cµ10, C
µ
V L and Cµν , depend on Cλq23λ

`
22 and in the tau sector CτV L and

Cτν depend on Cλq23λ
`
33. The coefficient Cµ9 is not correlated to the rest of the muonic

coefficients because it is dominated by the loop-level contribution C loop
9 , which depends on

the product Cλq23. The coefficient Ce9 receives sizeable contributions both from the tree-level
and the one-loop terms, and consequently shows a mild correlation with Cµ9 and a total
correlation with the combination Cµ9 − Ce10. Lastly, there is a perfect correlation of ±1
between Cµ9 and the tau coefficients, which is caused by the fact that λl33 = 0.994± 0.001 is
almost constant, so Cλq23λ

l
33 ≈ Cλ

q
23. We can therefore conclude that the obtained data is

in agreement with the arrangement of Wilson coefficients presented in eq. (2.17).
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Figure 10. Matrix of Pearson correlation coefficients between semileptonic WET Wilson Coefficients
in the sample of 15000 points in parameter space.

Figure 11. Matrix of Pearson correlation coefficients for selected observables in the 15000
points sample.

Besides, in the same sample of 15000 points, we determine the predictions of our model
for several selected observables of various flavour sectors, with large pull differences between
the SM and Scenario II predictions: R

[1.1,6]
K∗ (observable 12 in table 4 of appendix A),

BR(B+ → K+νν̄) (observable 94) and BR(Bs → µ+µ−) (observable 45) from b→ s decays,
R`D (observable 77) from b → c decays, BR(B0 → µ+µ−) (observable 245) from b → d

decays, BR(K+ → π+νν̄) (observable 406) from s→ d decays that has a great impact in
the fit value of αq, and the tau decay BR(τ− → µ−νν̄) (observable 37). The correlation
matrices are depicted in figure 11.
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From the above results, it is clear that the observables R`D∗ and BR(B+ → K+νν̄)
show an almost-perfect correlation. Then, predictions for these two observables in the
generated sample are shown in figure 12. The green vertical band in this figure corresponds
to the R`D∗ measurement [7], the red horizontal band to the 90% CL excluded region
for BR(B → K∗νν̄) [67] and the grey band to the 2021 world average obtained by Belle
II [68]. The yellow horizontal band summarizes the SM prediction. The obtained values of
Montecarlo points and the best fit prediction of our computations are also included. It is
important to stress that R`D∗ depends on the Wilson coefficient CτV L, and BR(B+ → K+νν̄)
on Cτν , and both of them are proportional to the product Cλq23λ

`
33. This is in contrast

with the conclusions of [69], where several leptoquark scenarios coupling to right-handed
neutrinos did not find a significant correlation between both observables. Even if the
correlation is strong, the prediction for the B+ → K+νν decay remains compatible with
the 90% confidence level (CL), BR(B → K+νν) < 1.6 × 10−5 [67], for the whole range
of experimentally-compatible values of R`D∗ . The world average for the branching ratio
obtained by Belle II [68] (not included in our numerical analysis) shows an enhancement
of a factor of 2.4± 0.9 compared to the SM prediction [69]. While our data is in tension
with this world average, it is an encouraging sign of a possible interplay between RD(∗)

and BR(B+ → K+νν̄). Future experimental results from Belle II will further clarify
the situation.

It is worth stressing that the observable RK∗ displays a moderate correlation with R`D∗
and BR(B+ → K+νν̄), caused by the relation of the Wilson coefficient Cµ9 with CτV L and
Cτν . On the other hand, RK∗ shows almost no correlation to BR(Bs → µ+µ−), even though
both observables depend on Cµ10. This is a result that sets us apart from many NP models
that impose the relation Cµ9 = −Cµ10.

Finally, none of the selected observables display a large correlation to the goodness of
fit measured by ∆χ2. This is a sign that there is not a single observable dominating the fit,
and reaffirms that global fits are in fact a necessity on the analysis of flavour anomalies.

5 Connection to leptoquark models

In this section we discuss the phenomenological implications of our assumptions in the
vector leptoquark model. The vector leptoquark U1 = (3̄,1)2/3 couples to left-handed and
right-handed fermions as

L = xijL q̄iγµU
µ
1 `j + xijR d̄RiγµU

µ
1 `Rj + h.c. (5.1)

An U1 leptoquark with massMU , when matched with the SMEFT at the scale Λ, contributes
to the following Wilson coefficients [70]:

Cijkl`q(1) = Cijkl`q(3) = −Λ2

2M2
U

xliLx
kj∗
L ,

Cijkled = −1
2C

ijkl
qde = −Λ2

M2
U

xliRx
kj∗
R . (5.2)
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BR(B+ → K+ν̄ν) 2021 World average

BR(B+ → K+ν̄ν) SM prediction

Rℓ
D measurement, 1 σ

Best fit prediction

Figure 12. Predictions for the observables R`D∗ and BR(B+ → K+νν̄) in the generated sample.
The green vertical band corresponds to the R`D∗ [7] measurement, the red horizontal band to the
90% CL excluded region for BR(B → K∗νν̄) [67], the grey band to the 2021 world average obtained
by Belle II [68] and the yellow horizontal band to its SM prediction.

Our model does not include couplings to right-handed leptons in the interaction
Lagrangian, and therefore all the xR couplings are set to zero. The left-handed couplings
xL are related to the parameters of the Lagrangian (2.16) according to

|xjiL |
2 = −2M2

U

Λ2 Cλ`iiλ
q
jj ,

Arg
(
xjiL

)
= Arg

(
λqj3

)
−Arg

(
λ`i3

)
+ θ , (5.3)

where θ is a free global complex phase. Since the rotation matrices λ are hermitian (λ`ii and
λqjj are real and positive), we need C1 = C3 to be a real negative number. This condition is
fulfilled in both Scenarios I and II.

Without loss of generality we set θ = 0. The mass of the leptoquark is chosen to be
MU = 1.5 TeV, the lowest mass not excluded by direct searches [71]. The results in Scenario
I correspond to

xL =


0 0 0

0 1.6× 10−9 0.452

0 2× 10−9 0.580

 , (5.4)

and the results of Scenario II are

xL =


−3.18× 10−3 3.00× 10−10 −0.0431

0.0318 −3.00× 10−9 0.430

0.0446 −4.20× 10−9 0.604

 . (5.5)

In both scenarios, the most important coupling are x23
L to second generation quarks

and third generation leptons, and x33
L to third generation quarks and leptons. A similar
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leptoquark model has been proposed previously, as scenario RD2A in [72] as a solution for
the RD(∗) anomaly. The advantage of our proposal is that the inclusion of small non-zero
values of the couplings x21

L and x31
L is able to explain the RK(∗) anomalies at the same time.

The values of x23
L and x33

L are compatible with the exclusion limits set in [72].
Other leptoquark models do not retain the C`q(1) = C`q(3) condition [32, 70], and

therefore produce large contributions to the B → K(∗)νν̄ decays. That is the case of
the scalar S3 = (3̄,3)1/3, that predicts C`q(1) = 3C`q(3), and the vector U3 = (3̄,3)2/3,
where C`q(1) = −3C`q(3). The scalar S1 = (3̄,1)1/3 is even less suited, as it predicts
C`q(1) = −C`q(3), which would result in no NP contributing to b→ s`+`− at all. New vector
bosons W ′ and Z ′ would also be in conflict with the B → K(∗)νν̄ decays, as they predict
C`q(1) = 0 while C`q(3) has a non-zero value.

5.1 A simplified model

In this section, we will propose a simplified U1 leptoquark model, depending only on two
coupling constants, that reproduces the numerical results that we have obtained in section 3.
This scenario implies that the NP contributions to the Ce9 and Cµ9 Wilson coefficients are of
the same order, but the ones to Ce10 is two orders of magnitude larger than to Cµ10.

In the quark sector, we assume that the leptoquark does not interact with the first
generation quarks, and that it interacts equally with second and third generation quarks.
The rotation matrix corresponding to this assumption has elements (Ûq)31 = 0 and (Ûq)32 =
(Ûq)33 = 1√

2 . The parameters of the mixing matrix, αq = 0 and βq = 1, are compatible
with the results of the fit obtained in table 1.

For the leptonic sector, we assume that the leptoquark interacts differently with each
generation, being the interaction with the second generation leptons negligible. That is,
β` = 0 and a non-zero value for α`.

Using these simplifying assumptions in eq. (5.3), we obtain the following couplings for
the U1 leptoquark with the left-handed fermions:

xL = MU

Λ

√
−C

1 + |α`|2


0 0 0

α` 0 1

α` 0 1

 =


0 0 0

x1 0 x3

x1 0 x3

 . (5.6)

In this model, the interactions of the U1 leptoquark with fermions are governed by just
two couplings, x1 and x3. Their numerical values, assuming again a leptoquark mass of
MU = 1.5 TeV and the best fit values for C and α` in Scenario II given in table 1, are

x1 = 0.0378 , x3 = 0.540 . (5.7)

6 Conclusions

In this paper, we present the results of the global fit to the flavour physics observables
that exhibit some discrepancies with respect to the SM values, by considering the NP
effects on the Wilson coefficients of the SMEFT Lagrangian. The global fit includes
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the b → sµµ observables; i.e. the Lepton Flavour Universality ratios RK(∗) , the angular
observables P ′5, the branching ratio of Bs → µµ and all the available data on angular
observables in B → K(∗)µ+µ− decay, as well as the RD(∗) observable, the relevant data
related to B → K(∗)e+e− decays and the angular observables measured in different bins
for Bs → φµµ decays, b → sνν̄ and electroweak precision observables (W and Z decay
widths and branching ratios to leptons). We choose two scenarios in which the condition
C1 = C3 is imposed in order to avoid unwanted contributions to the B → K(∗)νν̄ decays.
In Scenario I we fix parameters by assuming that the mixing in the first generation is
negligible, as already considered in [33]. Scenario II includes non-negligible mixings to the
first generation, allowing us to check the validity of the above assumption. We found that
the better fit is obtained for Scenario II, with a pull of 6.70 σ with respect to the Standard
Model, 3.77 σ with respect to Scenario I (table 1). Simultaneous explanation of the RK(∗)

and RD(∗) anomalies have been also found in Scenario II (figure 2 and table 2).
We show that the Gaussian approximation to characterize the fit is not successful (see

figure 1) and therefore, we use for the first time in the context of the so-called B-anomalies
a Machine-Learning Montecarlo analysis to extract the confidence intervals and correlations
between observables. We found that our procedure reproduce the results obtained in
section 3 for both the ∆χ2 distribution and the analysis of the impact of each parameter
on the global fit. We also have checked the agreement between the results obtained by the
Machine Learning Montecarlo algorithm proposed in this work and the ones obtained by
following the RG equations. Therefore, we conclude that machine learning, jointly with the
SHAP (SHAPley Additive exPlanation) values, constitute a suitable strategy to use in this
kind of analysis.

This is a promising area of study even if present uncertainties do not allow us to
conclusively establish the presence of physics beyond the SM, and further analyses are
needed. An observation of the B+ → K+νν̄ decay in the near future at Belle II could provide
further insight in the RK(∗) and RD(∗) anomalies, especially if the excess in the current
world average is confirmed. This, together with the expected improved measurements of the
electroweak observables in the future linear colliders that we previously studied in [24, 25],
underlines the fundamental role of global analyses and experimental precision in the quest
for an explanation of the B anomalies.

Acknowledgments

The authors want to thank Paride Paradisi for useful discussions. The work of J. A. and
S. P. is partially supported by Spanish grants MINECO/FEDER grant FPA2015-65745-P,
PGC2018-095328-B-I00 (FEDER/Agencia estatal de investigación) and DGIID-DGA No.
2015-E24/2. J. A. is also supported by the Departamento de Innovación, Investigación y
Universidad of Aragón goverment, Grant No. DIIU-DGA and the Programa Ibercaja-CAI
de Estancias de Investigación, Grant No. CB 5/21. J.G. has been suported by MICIN under
projects PID2019-105614GB-C22 and CEX2019-000918-M of ICCUB (Unit of Excellence
María de Maeztu 2020-2023 ) and AGAUR (2017SGR754). J. A. thanks the warm hospitality
of the Università degli Studi di Padova and Istituto Nazionale di Fisica Nucleare during the
completion of this work.

– 24 –



J
H
E
P
0
7
(
2
0
2
2
)
1
1
5

A Pulls of the observables in Scenario II

In this appendix we collect the list of all observables that contribute to the global fit, as
well as their prediction in Scenario II and their pull in both scenario II (NP pull) and SM
(SM pull). Observables are ordered according to their SM pull, and color-coded according
to the difference between the scenario II and SM pulls: green observables have a better pull
in scenario II, red observables have a better pull in the SM and white observables have a
similar pull in both cases.

Predictions for dimensionful observables are expressed in the corresponding power of
GeV (for example, ∆Ms in GeV and σ0

had in GeV−2). The notation 〈· · ·〉 means that the
observable is binned in the invariant mass-squared of the di-lepton system q2, with the
endpoints of the bin in GeV2 given in the superscript. Accordingly, the notation 〈BR〉

BR
denotes a binned branching ratio normalised to the total branching ratio.

Observable NP prediction NP pull SM pull

0 〈 dBR
dq2 〉(Bs → φµ+µ−)[2.5, 4.0] 4.5857× 10−8 3.1 σ 3.9 σ

1 aµ 0.0011659 4.6 σ 4.6 σ

2 Rτ`(B → D∗`+ν) 0.2898 0.41 σ 3.3 σ

3 〈P2〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.131 3.3 σ 3.3 σ

4 〈 dBR
dq2 〉(Bs → φµ+µ−)[1.1, 2.5] 4.9665× 10−8 2.4 σ 3 σ

5 〈 dBR
dq2 〉(Bs → φµ+µ−)[4.0, 6.0] 4.8464× 10−8 2.3 σ 3.2 σ

6 〈FL〉(B+ → K∗+µ+µ−)[2.5, 4] 0.77058 3.2 σ 3.3 σ

7 〈Rµe〉(B± → K±`+`−)[1.1, 6.0] 0.83438 0.28 σ 3.2 σ

8
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, 0.8, 1.0] 7.236 3 σ 3 σ

9 〈P ′5〉(B0 → K∗0µ+µ−)[4, 6] -0.63083 1.9 σ 2.9 σ

10 〈 dBR
dq2 〉(Bs → φµ+µ−)[0.1, 0.98] 1.0903× 10−7 2.2 σ 2.5 σ

11 BR(W± → τ±ν) 0.10837 2.6 σ 2.6 σ

12 〈Rµe〉(B0 → K∗0`+`−)[1.1, 6.0] 0.84052 1.4 σ 2.5 σ

13 Rτµ(B → D∗`+ν) 0.29041 0.75 σ 2.5 σ

14 A0,b
FB 0.10307 2.4 σ 2.4 σ

15 ε′/ε −2.5903× 10−5 2.5 σ 2.5 σ

16 〈Rµe〉(B0 → K∗0`+`−)[0.045, 1.1] 0.88373 2.1 σ 2.4 σ

17 〈BR〉
BR (B → D∗τ+ν)[10.4, 10.93] 0.018511 2.3 σ 2.3 σ

18 B̃
[0.591]
n 0.98894 2.1 σ 2.1 σ

19 Ae 0.14703 2.2 σ 2.2 σ

20
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, 0.8, 1.0] 6.253 2.2 σ 2.2 σ

21 〈 dBR
dq2 〉(B± → K±µ+µ−)[4.0, 5.0] 3.0034× 10−8 1.4 σ 2.2 σ

22 〈P3〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.002973 2.1 σ 2.1 σ

23 〈P ′4〉(B0 → K∗0µ+µ−)[4, 6] -0.4918 2.1 σ 2.2 σ

24 〈 dBR
dq2 〉(B+ → K∗+µ+µ−)[4.0, 6.0] 4.7946× 10−8 1.6 σ 2 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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Observable NP prediction NP pull SM pull

25 〈P ′8〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.012738 2.2 σ 2.1 σ

26 〈S3〉(Bs → φµ+µ−)[4.0, 6.0] -0.019079 2.1 σ 2.1 σ

27 〈S7〉(Bs → φµ+µ−)[0.1, 0.98] -0.023765 2.1 σ 2.1 σ

28 〈BR〉
BR (B → D∗τ+ν)[5.07, 5.6] 0.063084 2.1 σ 2.1 σ

29 〈 dBR
dq2 〉(B+ → K∗+µ+µ−)[15.0, 19.0] 5.5776× 10−8 1.4 σ 2.1 σ

30 〈P1〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.023052 2.1 σ 2.1 σ

31 〈P ′5〉(B+ → K∗+µ+µ−)[15, 19] -0.57111 1.9 σ 2.1 σ

32 〈A`hFB〉(Λb → Λµ+µ−)[15, 20] 0.15645 2.2 σ 2 σ

33 |εK | 0.0016895 2.6 σ 2.2 σ

34 BR(KL → e+e−) 1.7139× 10−13 2.1 σ 2.1 σ

35 BR(B± → K±τ+τ−) 4.7492× 10−5 2 σ 2 σ

36 〈 dBR
dq2 〉(Bs → φµ+µ−)[1.0, 6.0] 4.8217× 10−8 1.7 σ 2 σ

37 BR(τ− → µ−νν̄) 0.17279 2.2 σ 2 σ

38 〈P2〉(B+ → K∗+µ+µ−)[4, 6] 0.17723 1.5 σ 2 σ

39 〈S4〉(Bs → φµ+µ−)[15.0, 18.9] -0.30243 1.9 σ 1.9 σ

40 〈P3〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.0013782 2 σ 2 σ

41 〈 dBR
dq2 〉(B0 → K0µ+µ−)[4.0, 6.0] 2.7751× 10−8 1.4 σ 2 σ

42 〈 dBR
dq2 〉(B± → K±µ+µ−)[5.0, 6.0] 2.9802× 10−8 1.2 σ 2 σ

43 〈 dBR
dq2 〉(B0 → K0µ+µ−)[15.0, 22.0] 1.2012× 10−8 1.1 σ 2 σ

44 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[15.0, 19.0] 5.1475× 10−8 0.99 σ 2 σ

45 BR(Bs → µ+µ−) 3.6625× 10−9 2 σ 2 σ

46 〈 dBR
dq2 〉(B± → K±µ+µ−)[1.1, 2.0] 3.0533× 10−8 1.2 σ 2 σ

47 〈P ′5〉(B0 → K∗0µ+µ−)[2.5, 4] -0.31442 0.94 σ 2 σ

48 〈S7〉(Bs → φµ+µ−)[4.0, 6.0] -0.016304 1.9 σ 1.9 σ

49 〈P1〉(B0 → K∗0µ+µ−)[4.3, 6] -0.16842 1.8 σ 1.9 σ

50 〈BR〉
BR (B → Dτ+ν)[7.73, 8.27] 0.091527 1.9 σ 1.9 σ

51 〈BR〉
BR (B → D∗τ+ν)[7.2, 7.73] 0.10189 1.9 σ 1.9 σ

52
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, −0.6, −0.4] 0.835 1.9 σ 1.9 σ

53 〈P2〉(B0 → K∗0µ+µ−)[4, 6] 0.17518 0.8 σ 2 σ

54 µZh(h→ cc̄) 1 1.8 σ 1.8 σ

55 ae 0.0011597 2 σ 2 σ

56
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, 0.6, 0.8] 4.428 1.8 σ 1.8 σ

57 〈 dBR
dq2 〉(B0 → K0µ+µ−)[2.0, 4.0] 2.8117× 10−8 1.2 σ 1.8 σ

58
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, −1.0, −0.8] 0.702 1.8 σ 1.8 σ

59 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[4.0, 6.0] 4.4322× 10−8 0.97 σ 1.6 σ

60
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, −1.0, −0.8] 0.542 1.7 σ 1.7 σ

61 〈 dBR
dq2 〉(B± → K±µ+µ−)[15.0, 22.0] 1.304× 10−8 0.52 σ 1.6 σ

62 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[4.3, 6] 4.4754× 10−8 1 σ 1.6 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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Observable NP prediction NP pull SM pull

63 mW 80.359 1.7 σ 1.7 σ

64
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, 0.0, 0.2] 1.731 1.7 σ 1.7 σ

65 µWh(h→ τ+τ−) 1 1.7 σ 1.7 σ

66 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[1.1, 2.5] 4.3012× 10−8 1.2 σ 1.6 σ

67
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, 0.2, 0.4] 2.056 1.7 σ 1.7 σ

68
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, −0.6, −0.4] 0.77 1.7 σ 1.7 σ

69 〈 dBR
dq2 〉(Λb → Λµ+µ−)[15, 20] 6.1552× 10−8 2.1 σ 1.7 σ

70 µtt̄h(h→W+W−) 1 1.7 σ 1.7 σ

71 A∆Γ(Bs → φγ) 0.030507 1.6 σ 1.6 σ

72 R(e+e− →W+W−)[182.7] 1 1.6 σ 1.6 σ

73 〈P ′5〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.73171 2.1 σ 1.7 σ

74 BR(KS → π+e+ν) 0.00071986 1.6 σ 1.6 σ

75 〈BR〉
BR (B → Dτ+ν)[9.0, 9.5] 0.066851 1.6 σ 1.6 σ

76 τBs→µµ 2.4506× 1012 1.5 σ 1.5 σ

77 Rτ`(B → D`+ν) 0.35166 0.17 σ 1.6 σ

78 〈 dBR
dq2 〉(B± → K±µ+µ−)[3.0, 4.0] 3.0227× 10−8 0.82 σ 1.6 σ

79 BR(KL → π+e+ν) 0.41115 1.6 σ 1.6 σ

80 〈FL〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.71303 0.86 σ 1.5 σ

81 〈P ′6〉(B0 → K∗0µ+µ−)[4, 6] -0.033762 1.6 σ 1.6 σ

82 〈P ′5〉(B0 → K∗0µ+µ−)[1.1, 2.5] 0.28288 0.54 σ 1.5 σ

83 〈Dµe
P ′5
〉(B0 → K∗0`+`−)[14.18, 19.0] 0.0063961 1.5 σ 1.5 σ

84 A0,τ
FB 0.016234 1.5 σ 1.5 σ

85 〈P ′6〉(B+ → K∗+µ+µ−)[15, 19] -0.0025476 1.6 σ 1.6 σ

86 〈FL〉(Bs → φµ+µ−)[1.1, 4.0] 0.77839 0.93 σ 1.5 σ

87 〈FL〉(Bs → φµ+µ−)[0.1, 0.98] 0.31124 0.92 σ 1.5 σ

88 R0
µ 20.734 1.5 σ 1.5 σ

89 BR(B− → π−τ+e−) 3.8305× 10−9 1.5 σ 1.5 σ

90 〈 dBR
dq2 〉(Bs → φµ+µ−)[15.0, 19.0] 4.8237× 10−8 0.32 σ 1.6 σ

91
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, 0.2, 0.4] 2.189 1.5 σ 1.5 σ

92 〈S4〉(Bs → φµ+µ−)[0.1, 0.98] 0.07794 1.7 σ 1.4 σ

93 FL(B0 → D∗−τ+ντ ) 0.46989 1.5 σ 1.5 σ

94 BR(B+ → K+νν̄) 5.7715× 10−6 1.1 σ 1.4 σ

95 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[2.5, 4.0] 4.0312× 10−8 0.84 σ 1.4 σ

96 BR(KS → µ+µ−) 5.1711× 10−12 1.4 σ 1.4 σ

97 〈BR〉
BR (B → D∗τ+ν)[6.0, 6.5] 0.080351 1.4 σ 1.4 σ

98 BR(W± → µ±ν) 0.10842 1.4 σ 1.4 σ

99 R0
e 20.734 1.4 σ 1.4 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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100 〈A9〉(B0 → K∗0µ+µ−)[15, 19] 4.3753× 10−5 1.4 σ 1.4 σ

101 Reµ(K+ → `+ν) 2.4755× 10−5 1.4 σ 1.4 σ

102 〈BR〉(B → Xse+e−)[14.2, 25.0] 3.223× 10−7 1.3 σ 1.4 σ

103 Ft(10C) 4.6665× 1027 1.4 σ 1.4 σ

104 Sφγ -0.0002381 1.4 σ 1.4 σ

105 〈P ′5〉(B+ → K∗+µ+µ−)[4, 6] -0.63902 1.1 σ 1.4 σ

106 BR(B0 → e+e−) 2.5781× 10−15 1.3 σ 1.3 σ

107 〈 dBR
dq2 〉(B± → K±µ+µ−)[0, 2] 3.0579× 10−8 0.69 σ 1.4 σ

108
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, −0.2, 0.0] 1.403 1.3 σ 1.3 σ

109 BR(KS → e+e−) 1.6179× 10−16 1.3 σ 1.3 σ

110 〈Dµe
P ′5
〉(B0 → K∗0`+`−)[1.0, 6.0] 0.079643 1.2 σ 1.3 σ

111 BR(B+ → e+ν) 1.0243× 10−11 1.3 σ 1.3 σ

112 〈P ′8〉(B0 → K∗0µ+µ−)[4, 6] -0.010263 1.3 σ 1.3 σ

113 BR(KL → π0νν̄) 3.9929× 10−11 1.3 σ 1.3 σ

114 〈BR〉
BR (B → D∗τ+ν)[8.27, 8.8] 0.10324 1.3 σ 1.3 σ

115 BR(B0 → ρ0νν̄) 2.045× 10−7 1.3 σ 1.3 σ

116 〈P ′4〉(B0 → K∗0µ+µ−)[2, 4] -0.32689 1.3 σ 1.3 σ

117 BR(Bs → e+e−) 1.0113× 10−13 1.3 σ 1.3 σ

118 BR(B− → π−e+τ−) 3.8305× 10−9 1.3 σ 1.3 σ

119 BR(K+ → π0e+ν) 0.051558 1.3 σ 1.3 σ

120 〈Rµe〉(B0 → K0`+`−)[4.0, 8.12] 0.83533 0.86 σ 1.3 σ

121
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, 0.0, 0.2] 1.561 1.3 σ 1.3 σ

122 BR(B0 → K∗0νν̄) 1.2523× 10−5 1.5 σ 1.3 σ

123 µtt̄h(h→ V V ) 1 1.3 σ 1.3 σ

124 ∆Ms 1.2469× 10−11 1.1 σ 1.2 σ

125 〈FL〉(B0 → K∗0µ+µ−)[2, 4] 0.76742 1 σ 1.3 σ

126 BR(KS → π+µ+ν) 0.00047682 1.3 σ 1.3 σ

127 〈BR〉
BR (B → Dτ+ν)[9.86, 10.4] 0.052842 1.2 σ 1.2 σ

128 µVBF(h→ bb̄) 0.99999 1.2 σ 1.2 σ

129 〈P3〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.0013201 1.2 σ 1.2 σ

130
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, 0.6, 0.8] 3.806 1.2 σ 1.2 σ

131 SψKS
0.73839 0.89 σ 1.4 σ

132 〈BR〉
BR (B → D∗τ+ν)[4.0, 4.5] 0.026461 1.2 σ 1.2 σ

133 〈FL〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.72081 0.93 σ 1.2 σ

134 BR(τ+ → K+ν̄) 0.0071397 1.4 σ 1.3 σ

135 µZh(h→ bb̄) 1 1.1 σ 1.1 σ

136 BR(B+ → K∗+νν̄) 1.3482× 10−5 0.87 σ 1.1 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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137 aτ 0.0011772 1.1 σ 1.1 σ

138 µZh(h→W+W−) 1 1.1 σ 1.1 σ

139 〈P ′4〉(B+ → K∗+µ+µ−)[15, 19] -0.63439 1.1 σ 1.1 σ

140 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[2, 4.3] 4.0519× 10−8 0.55 σ 1.1 σ

141 〈 dBR
dq2 〉(B± → K±µ+µ−)[2.0, 3.0] 3.0393× 10−8 0.36 σ 1.1 σ

142 〈P1〉(B0 → K∗0e+e−)[0.002, 1.12] 0.035188 1.1 σ 1.1 σ

143 〈P ′4〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.069371 1.1 σ 1.1 σ

144 µWh(h→W+W−) 1 1.1 σ 1.1 σ

145 Rµe(W± → `±ν) 1 1.1 σ 1.1 σ

146 〈P ′5〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.25656 0.86 σ 1.1 σ

147 〈P ′8〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.030261 1.1 σ 1.1 σ

148 〈BR〉(B → Xsµ+µ−)[1.0, 6.0] 1.5114× 10−6 0.88 σ 1.1 σ

149 〈P ′6〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.069809 1.1 σ 1.1 σ

150
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, −0.8, −0.6] 0.841 1.1 σ 1.1 σ

151 BR(K+ → π0µ+ν) 0.034039 1.1 σ 1.1 σ

152 〈P1〉(B0 → K∗0µ+µ−)[4, 6] -0.16517 1 σ 1.1 σ

153 µtt̄h(h→ γγ) 1 1 σ 1 σ

154 µgg(h→ Zγ) 1 1 σ 1 σ

155 〈P1〉(B0 → K∗0µ+µ−)[2, 4] -0.075133 1.1 σ 1.1 σ

156 Ft(46V) 4.6665× 1027 1 σ 1 σ

157 〈P3〉(B0 → K∗0µ+µ−)[15, 19] -0.00051093 1 σ 1 σ

158 〈P2〉(B0 → K∗0e+e−)[0.002, 1.12] -0.049076 1.1 σ 1 σ

159
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, −0.6, −0.4] 1.011 1 σ 1 σ

160 µWh(h→ γγ) 1 0.99 σ 0.99 σ

161 〈P1〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.042657 1 σ 0.99 σ

162 〈P ′4〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.20737 0.59 σ 0.95 σ

163 〈S7〉(Bs → φµ+µ−)[1.1, 4.0] -0.026843 0.92 σ 0.96 σ

164 ACP(B → Xs+dγ) 0 0.92 σ 0.92 σ

165 〈BR〉
BR (B → D∗τ+ν)[10.5, 11.0] 0.0098782 0.96 σ 0.96 σ

166 〈P ′5〉(B0 → K∗0µ+µ−)[15, 19] -0.56812 1.4 σ 1 σ

167 〈P1〉(B+ → K∗+µ+µ−)[4, 6] -0.16359 0.98 σ 0.97 σ

168 ã
[0.695]
n -0.09921 0.83 σ 0.83 σ

169
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, −0.8, −0.6] 0.781 0.95 σ 0.95 σ

170 µVBF(h→W+W−) 1 0.94 σ 0.94 σ

171 〈A7〉(B0 → K∗0µ+µ−)[1.1, 6] 0.0026103 0.95 σ 0.94 σ

172
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, −0.6, −0.4] 0.928 0.94 σ 0.94 σ

173 〈BR〉
BR (B → D∗τ+ν)[7.73, 8.27] 0.10629 0.94 σ 0.94 σ

174 R(e+e− →W+W−)[204.9] 1 0.94 σ 0.94 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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175 R(e+e− →W+W−)[188.6] 1 0.92 σ 0.92 σ

176 〈BR〉(B → Xsµ+µ−)[14.2, 25.0] 3.0957× 10−7 1 σ 0.9 σ

177 〈Dµe
P ′4
〉(B0 → K∗0`+`−)[1.0, 6.0] 0.026086 0.85 σ 0.91 σ

178 〈BR〉
BR (B → Dτ+ν)[10.93, 11.47] 0.023168 0.9 σ 0.9 σ

179
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, −0.4, −0.2] 0.972 0.9 σ 0.9 σ

180 Aτ 0.14722 0.95 σ 0.9 σ

181 〈BR〉
BR (B → Dτ+ν)[6.67, 7.2] 0.095702 0.89 σ 0.89 σ

182 〈A7〉(B0 → K∗0µ+µ−)[15, 19] 0.00011378 0.89 σ 0.89 σ

183 µgg(h→ µ+µ−) 1 0.89 σ 0.89 σ

184 µZh(h→ γγ) 1 0.88 σ 0.88 σ

185 µgg(h→ ZZ) 1 0.88 σ 0.88 σ

186 〈BR〉
BR (B → Dτ+ν)[10.0, 10.5] 0.046209 0.87 σ 0.87 σ

187
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, 0.4, 0.6] 3.003 0.87 σ 0.87 σ

188 BR(B− → K−e+τ−) 5.4113× 10−7 0.9 σ 0.87 σ

189
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, 0.4, 0.6] 2.822 0.87 σ 0.87 σ

190 〈BR〉
BR (B → Dτ+ν)[8.8, 9.33] 0.074315 0.86 σ 0.86 σ

191 µV h(h→ bb̄) 1 0.86 σ 0.86 σ

192 〈P ′4〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.20224 0.76 σ 0.85 σ

193 〈BR〉
BR (B → Dτ+ν)[5.5, 6.0] 0.081066 0.86 σ 0.86 σ

194 Ft(22Mg) 4.6665× 1027 0.85 σ 0.85 σ

195 〈FL〉(B0 → K∗0µ+µ−)[1, 2] 0.67427 0.39 σ 0.83 σ

196 〈BR〉
BR (B → D∗τ+ν)[8.8, 9.33] 0.097951 0.85 σ 0.85 σ

197 BR(τ− → e−νν̄) 0.17766 1.1 σ 0.84 σ

198 〈BR〉
BR (B → D∗τ+ν)[5.5, 6.0] 0.069889 0.84 σ 0.84 σ

199 〈BR〉
BR (B → Dτ+ν)[7.2, 7.73] 0.094208 0.84 σ 0.84 σ

200 Ã
[0.586]
n -0.11027 0.72 σ 0.72 σ

201 〈BR〉
BR (B → D∗τ+ν)[6.13, 6.67] 0.089674 0.83 σ 0.83 σ

202 〈BR〉
BR (B → Dτ+ν)[9.5, 10.0] 0.05713 0.83 σ 0.83 σ

203 〈BR〉
BR (B → Dτ+ν)[10.4, 10.93] 0.038397 0.83 σ 0.83 σ

204 A0,c
FB 0.07361 0.83 σ 0.83 σ

205 〈A8〉(B0 → K∗0µ+µ−)[1.1, 6] 0.00063229 0.82 σ 0.83 σ

206 BR(W± → e±ν) 0.10842 0.83 σ 0.82 σ

207 〈BR〉
BR (B → Dτ+ν)[6.13, 6.67] 0.095556 0.82 σ 0.82 σ

208 BR(KL → π+µ+ν) 0.27234 0.79 σ 0.79 σ

209
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, 0.4, 0.6] 2.946 0.81 σ 0.81 σ

210 〈S3〉(Bs → φµ+µ−)[15.0, 18.9] -0.21041 0.83 σ 0.83 σ

211 Ã
[0.559]
n -0.11027 0.69 σ 0.69 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).

– 30 –



J
H
E
P
0
7
(
2
0
2
2
)
1
1
5

Observable NP prediction NP pull SM pull

212 〈A9〉(B0 → K∗0µ+µ−)[1.1, 6] 8.0666× 10−5 0.8 σ 0.8 σ

213 µVBF(h→ τ+τ−) 0.99999 0.8 σ 0.8 σ

214 Ft(26mAl) 4.6665× 1027 0.79 σ 0.79 σ

215 〈A`FB〉(Λb → Λµ+µ−)[15, 20] -0.33733 1.1 σ 0.8 σ

216 〈BR〉
BR (B → D∗τ+ν)[6.67, 7.2] 0.096421 0.8 σ 0.8 σ

217 〈FL〉(Bs → φµ+µ−)[4.0, 6.0] 0.73564 0.6 σ 0.82 σ

218 〈BR〉
BR (B → Dτ+ν)[6.0, 6.5] 0.087333 0.78 σ 0.78 σ

219 〈P3〉(B+ → K∗+µ+µ−)[2.5, 4] 0.0031721 0.75 σ 0.75 σ

220
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, −1.0, −0.8] 0.661 0.77 σ 0.77 σ

221 τ
[0.655]
n 1.3795× 1027 0.65 σ 0.65 σ

222
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, 0.8, 1.0] 7.783 0.77 σ 0.77 σ

223 R(e+e− →W+W−)[199.5] 1 0.76 σ 0.76 σ

224 〈P1〉(B0 → K∗0µ+µ−)[2.5, 4] -0.095022 0.69 σ 0.74 σ

225 〈FL〉(B0 → K∗0µ+µ−)[0, 2] 0.34884 0.52 σ 0.77 σ

226 〈BR〉
BR (B → Dτ+ν)[7.5, 8.0] 0.086998 0.75 σ 0.75 σ

227
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, −0.4, −0.2] 1.021 0.75 σ 0.75 σ

228 〈P ′6〉(B0 → K∗0µ+µ−)[15, 19] -0.0025531 0.84 σ 0.84 σ

229 〈P1〉(B0 → K∗0µ+µ−)[2, 4.3] -0.08532 0.8 σ 0.76 σ

230 〈P2〉(B0 → K∗0µ+µ−)[2.5, 4] -0.1968 0.021 σ 0.81 σ

231 〈AFB〉(B0 → K∗0µ+µ−)[4.3, 6] 0.087753 0.52 σ 0.8 σ

232 〈AFB〉(B0 → K∗0µ+µ−)[1, 2] -0.18509 0.53 σ 0.7 σ

233
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, 0.4, 0.6] 2.903 0.74 σ 0.74 σ

234 〈P ′4〉(B+ → K∗+µ+µ−)[4, 6] -0.48992 0.81 σ 0.78 σ

235 R0
b 0.21581 0.73 σ 0.73 σ

236 〈P1〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.032294 0.73 σ 0.72 σ

237 µVBF(h→ γγ) 1 0.72 σ 0.72 σ

238 Ft(34Ar) 4.6665× 1027 0.7 σ 0.7 σ

239
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, 0.2, 0.4] 2.161 0.71 σ 0.71 σ

240 〈P ′6〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.057525 0.71 σ 0.68 σ

241
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, 0.0, 0.2] 1.715 0.7 σ 0.7 σ

242 〈P3〉(B+ → K∗+µ+µ−)[4, 6] 0.0022227 0.69 σ 0.69 σ

243 〈P2〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.13439 0.68 σ 0.69 σ

244 R0
uc 0.17225 0.69 σ 0.69 σ

245 BR(B0 → µ+µ−) 1.0218× 10−10 0.66 σ 0.66 σ

246 〈P ′5〉(B0 → K∗0µ+µ−)[4.3, 6] -0.64735 1.1 σ 0.66 σ

247 A0,e
FB 0.016214 0.69 σ 0.69 σ

248 µgg(h→ bb̄) 1 0.68 σ 0.68 σ

249 〈BR〉
BR (B → Dτ+ν)[8.5, 9.0] 0.075222 0.68 σ 0.68 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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250 BR(B+ → π+νν̄) 1.2776× 10−7 0.68 σ 0.68 σ

251 〈BR〉
BR (B → D∗τ+ν)[7.5, 8.0] 0.097746 0.68 σ 0.68 σ

252 〈BR〉
BR (B → Dτ+ν)[10.5, 11.0] 0.034069 0.68 σ 0.68 σ

253
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, 0.6, 0.8] 4.122 0.68 σ 0.68 σ

254 BR(B+ → ρ+νν̄) 4.4059× 10−7 0.67 σ 0.68 σ

255 Ft(38Ca) 4.6665× 1027 0.63 σ 0.63 σ

256 〈FL〉(B0 → K∗0µ+µ−)[4, 6] 0.69713 0.47 σ 0.7 σ

257 µtt̄h(h→ ZZ) 1 0.67 σ 0.67 σ

258 〈BR〉
BR (B → Dτ+ν)[4.0, 4.53] 0.039797 0.67 σ 0.67 σ

259 〈BR〉
BR (B → D∗τ+ν)[10.0, 10.5] 0.05616 0.66 σ 0.66 σ

260 BR(B0→K∗0γ)
BR(Bs→φγ)

1.0404 0.7 σ 0.7 σ

261
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, −0.2, 0.0] 1.402 0.65 σ 0.65 σ

262 〈FL〉(B0 → K∗0µ+µ−)[2.5, 4] 0.76816 0.2 σ 0.63 σ

263 Rτe(W± → `±ν) 0.99956 0.64 σ 0.65 σ

264 〈FL〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.26291 0.12 σ 0.65 σ

265
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, −1.0, −0.8] 0.532 0.64 σ 0.64 σ

266 〈AFB〉(B0 → K∗0µ+µ−)[2, 4.3] -0.07142 0.3 σ 0.65 σ

267 BR(B0 → π0νν̄) 5.9466× 10−8 0.63 σ 0.63 σ

268 〈BR〉
BR (B → Dτ+ν)[4.0, 4.5] 0.03694 0.63 σ 0.63 σ

269 µWh(h→ bb̄) 1 0.62 σ 0.62 σ

270 〈P3〉(B0 → K∗0µ+µ−)[4, 6] 0.0022678 0.62 σ 0.62 σ

271 Dn 5.6759× 10−25 0.61 σ 0.61 σ

272 Rτµ(W± → `±ν) 0.99956 0.58 σ 0.61 σ

273 〈AIm
T 〉(B

0 → K∗0e+e−)[0.002, 1.12] 0.00030904 0.63 σ 0.63 σ

274 R(e+e− →W+W−)[195.5] 1 0.61 σ 0.61 σ

275 BR(B0 → π−τ+ντ ) 0.00010418 0.62 σ 0.62 σ

276 〈BR〉
BR (B → D∗τ+ν)[4.53, 5.07] 0.047598 0.61 σ 0.61 σ

277
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, −0.8, −0.6] 0.642 0.61 σ 0.61 σ

278 µZh(h→ τ+τ−) 1 0.6 σ 0.6 σ

279 〈AFB〉(B0 → K∗0µ+µ−)[0, 2] -0.1143 0.65 σ 0.62 σ

280 ΓZ 2.494 0.65 σ 0.6 σ

281 Ft(54Co) 4.6665× 1027 0.57 σ 0.57 σ

282 〈Rµe〉(B+ → K∗+`+`−)[15.0, 19.0] 0.82969 0.84 σ 0.59 σ

283 SK∗γ -0.023713 0.64 σ 0.64 σ

284 〈Rµe〉(B± → K±`+`−)[4.0, 8.12] 0.83532 1 σ 0.59 σ

285 Ab 0.93471 0.59 σ 0.59 σ

286 µgg(h→W+W−) 1 0.58 σ 0.58 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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287 〈FL〉(B0 → K∗0µ+µ−)[4.3, 6] 0.69013 0.46 σ 0.56 σ

288 BR(τ− → e−µ+e−) 3.1651× 10−87 0.58 σ 0.58 σ

289 〈P ′8〉(B+ → K∗+µ+µ−)[15, 19] 0.00074585 0.57 σ 0.57 σ

290 〈P ′6〉(B0 → K∗0µ+µ−)[2.5, 4] -0.055089 0.56 σ 0.57 σ

291 BR(B− → K−τ+µ−) 4.8069× 10−21 0.57 σ 0.57 σ

292 λ
[0.581]
AB -1.251 0.49 σ 0.49 σ

293 〈P ′5〉(B0 → K∗0µ+µ−)[1, 2] 0.41094 0.89 σ 0.54 σ

294 Rµe(B → D∗`+ν) 0.99581 0.53 σ 0.56 σ

295 〈BR〉
BR (B → Dτ+ν)[8.27, 8.8] 0.083047 0.56 σ 0.56 σ

296 〈P ′5〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.7282 0.7 σ 0.56 σ

297 〈S3〉(Bs → φµ+µ−)[1.1, 4.0] 0.0018078 0.57 σ 0.54 σ

298 〈BR〉
BR (B → Dτ+ν)[4.53, 5.07] 0.0622 0.53 σ 0.53 σ

299 〈Rµe〉(B0 → K0`+`−)[14.18, 19.0] 0.8385 0.7 σ 0.53 σ

300 A0,µ
FB 0.016214 0.53 σ 0.53 σ

301 〈P ′5〉(B0 → K∗0µ+µ−)[0.04, 2] 0.59624 0.23 σ 0.49 σ

302 〈P3〉(B+ → K∗+µ+µ−)[15, 19] -0.00050856 0.54 σ 0.54 σ

303 〈A8〉(B0 → K∗0µ+µ−)[15, 19] 5.7209× 10−5 0.52 σ 0.52 σ

304 〈BR〉
BR (B → Dτ+ν)[11.5, 12.0] 0.0018997 0.52 σ 0.52 σ

305 〈P1〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.021985 0.55 σ 0.55 σ

306 BR(τ− → µ−e+µ−) 2.9187× 10−59 0.51 σ 0.51 σ

307 BR(π+ → e+ν) 0.0001234 0.51 σ 0.51 σ

308 〈P2〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.45833 0.51 σ 0.49 σ

309 〈FL〉(B+ → K∗+µ+µ−)[15, 19] 0.33766 0.5 σ 0.5 σ

310 R(e+e− →W+W−)[206.6] 1 0.5 σ 0.5 σ

311 〈Rµe〉(B0 → K0`+`−)[0.1, 4.0] 0.83377 0.67 σ 0.5 σ

312 〈BR〉
BR (B → D∗τ+ν)[4.5, 5.0] 0.042537 0.5 σ 0.5 σ

313 µtt̄h(h→ τ+τ−) 1 0.49 σ 0.49 σ

314
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, −0.4, −0.2] 1.181 0.49 σ 0.49 σ

315 BR(τ− → µ−e+e−) 2.1388× 10−26 0.49 σ 0.49 σ

316 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[0, 2] 7.9753× 10−8 0.65 σ 0.52 σ

317 BR(B0 → K0νν̄) 5.344× 10−6 0.35 σ 0.48 σ

318 〈 dBR
dq2 〉(B+ → K∗+µ+µ−)[2.0, 4.0] 4.3806× 10−8 0.77 σ 0.49 σ

319 〈 dBR
dq2 〉(B0 → K0µ+µ−)[0, 2] 2.837× 10−8 0.22 σ 0.48 σ

320 BR(Bc → τ+ν) 0.027986 0.55 σ 0.46 σ

321 〈BR〉
BR (B → D∗τ+ν)[7.0, 7.5] 0.094377 0.45 σ 0.45 σ

322 As 0.93552 0.45 σ 0.45 σ

323 BR(B− → K∗−e+µ−) 9.6097× 10−23 0.45 σ 0.45 σ

324
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, −0.8, −0.6] 0.664 0.45 σ 0.45 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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325 〈BR〉
BR (B → D∗τ+ν)[9.86, 10.4] 0.067671 0.44 σ 0.44 σ

326 〈BR〉(B → Xse+e−)[1.0, 6.0] 1.8587× 10−6 0.23 σ 0.43 σ

327 〈FL〉(B0 → K∗0µ+µ−)[0.04, 2] 0.34884 0.74 σ 0.42 σ

328 〈P ′4〉(B+ → K∗+µ+µ−)[2.5, 4] -0.36809 0.45 σ 0.42 σ

329 〈P1〉(B0 → K∗0µ+µ−)[15, 19] -0.62273 0.45 σ 0.45 σ

330 µWh(h→ ZZ) 1 0.43 σ 0.43 σ

331 〈BR〉
BR (B → Dτ+ν)[11.0, 11.5] 0.019884 0.43 σ 0.43 σ

332 BR(KL → µ+µ−) 7.3525× 10−9 0.49 σ 0.48 σ

333 〈 dBR
dq2 〉(B± → K±µ+µ−)[2, 4.3] 3.0283× 10−8 0.17 σ 0.43 σ

334 〈P2〉(B0 → K∗0e+e−)[0.000784, 0.257] -0.013216 0.42 σ 0.45 σ

335 µgg(h→ γγ) 1 0.42 σ 0.42 σ

336 BR(Bs → φγ) 4.0183× 10−5 0.4 σ 0.41 σ

337 〈P2〉(B0 → K∗0µ+µ−)[15, 19] 0.3547 0.14 σ 0.47 σ

338 〈FL〉(B0 → K∗0µ+µ−)[2, 4.3] 0.76366 0.066 σ 0.39 σ

339
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, −0.4, −0.2] 1.137 0.41 σ 0.41 σ

340 an -0.09921 0.36 σ 0.36 σ

341 Ft(34Cl) 4.6665× 1027 0.4 σ 0.4 σ

342 Ft(74Rb) 4.6665× 1027 0.4 σ 0.4 σ

343 〈S3〉(Bs → φµ+µ−)[0.1, 0.98] 0.025883 0.42 σ 0.4 σ

344 〈FL〉(Bs → φµ+µ−)[15.0, 18.9] 0.34109 0.4 σ 0.39 σ

345 〈 dBR
dq2 〉(B0 → K0µ+µ−)[2, 4.3] 2.8092× 10−8 0.13 σ 0.38 σ

346
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, 0.0, 0.2] 1.666 0.38 σ 0.38 σ

347 R0
τ 20.777 0.28 σ 0.37 σ

348 〈P ′4〉(B0 → K∗0µ+µ−)[0.04, 2] 0.12513 0.48 σ 0.43 σ

349 〈P1〉(B0 → K∗0µ+µ−)[0.1, 0.98] 0.041777 0.38 σ 0.36 σ

350 〈Rµe〉(B0 → K∗0`+`−)[0.1, 8.0] 0.85706 0.038 σ 0.37 σ

351 〈P2〉(B+ → K∗+µ+µ−)[15, 19] 0.35626 0.16 σ 0.36 σ

352 〈Rµe〉(B0 → K∗0`+`−)[15.0, 19.0] 0.8297 0.79 σ 0.36 σ

353 µVBF(h→ ZZ) 1 0.35 σ 0.35 σ

354 Rn 1.4017× 10−20 0.3 σ 0.3 σ

355 Aµ 0.14703 0.34 σ 0.34 σ

356 〈S4〉(Bs → φµ+µ−)[1.1, 4.0] -0.083009 0.32 σ 0.33 σ

357 BR(Bs → τ+τ−) 0.00021854 0.41 σ 0.33 σ

358 〈P ′8〉(B+ → K∗+µ+µ−)[4, 6] -0.010236 0.3 σ 0.3 σ

359 〈P ′8〉(B0 → K∗0µ+µ−)[2.5, 4] -0.01417 0.3 σ 0.31 σ

360 〈P1〉(B0 → K∗0µ+µ−)[0.04, 2] 0.040635 0.3 σ 0.31 σ

361 µtt̄h(h→ bb̄) 1 0.32 σ 0.32 σ

362 〈BR〉
BR (B → Dτ+ν)[6.5, 7.0] 0.090073 0.32 σ 0.32 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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363 Ft(42Sc) 4.6665× 1027 0.3 σ 0.29 σ

364 〈AhFB〉(Λb → Λµ+µ−)[15, 20] -0.31831 0.36 σ 0.36 σ

365 〈BR〉
BR (B → Dτ+ν)[4.5, 5.0] 0.055942 0.3 σ 0.3 σ

366 σ0
had 0.00010655 0.46 σ 0.3 σ

367 〈FL〉(B+ → K∗+µ+µ−)[0.1, 0.98] 0.27126 0.52 σ 0.28 σ

368 BR(B̄0 → K̄∗0µ+e−) 8.9257× 10−23 0.3 σ 0.3 σ

369 〈FL〉(B+ → K∗+µ+µ−)[4, 6] 0.69788 0.22 σ 0.32 σ

370 〈Rµe〉(B± → K±`+`−)[14.18, 19.0] 0.83849 0.88 σ 0.29 σ

371 〈Rµe〉(B± → K±`+`−)[0.1, 4.0] 0.83376 0.36 σ 0.28 σ

372 〈P2〉(B+ → K∗+µ+µ−)[2.5, 4] -0.18954 0.77 σ 0.32 σ

373 〈P ′5〉(B+ → K∗+µ+µ−)[2.5, 4] -0.33447 0.4 σ 0.26 σ

374 xIm,D
12 −5.1857× 10−18 0.24 σ 0.24 σ

375 〈P ′5〉(B0 → K∗0µ+µ−)[2, 4.3] -0.26537 0.79 σ 0.29 σ

376 Sψφ 0.038846 0.19 σ 0.26 σ

377 R(W+ → cX) 0.50001 0.25 σ 0.25 σ

378 BR(B− → K∗−µ+e−) 9.6097× 10−23 0.25 σ 0.25 σ

379 〈FL〉(B0 → K∗0e+e−)[0.002, 1.12] 0.18456 0.31 σ 0.24 σ

380 µVBF(h→ µ+µ−) 0.99999 0.24 σ 0.24 σ

381 〈P ′6〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.05434 0.23 σ 0.23 σ

382 µZh(h→ ZZ) 1 0.23 σ 0.23 σ

383 Γ(π+ → µ+ν) 2.5202× 10−17 0.26 σ 0.26 σ

384 〈 dBR
dq2 〉(B+ → K∗+µ+µ−)[0, 2] 8.3465× 10−8 0.18 σ 0.25 σ

385 µV h(h→ ZZ) 1 0.23 σ 0.23 σ

386 〈P ′4〉(B0 → K∗0µ+µ−)[2.5, 4] -0.36997 0.35 σ 0.23 σ

387 〈AIm
T 〉(B

0 → K∗0e+e−)[0.000784, 0.257] 0.00026802 0.2 σ 0.2 σ

388 〈BR〉
BR (B → D∗τ+ν)[5.6, 6.13] 0.076832 0.22 σ 0.22 σ

389 〈BR〉
BR (B → Dτ+ν)[11.47, 12.0] 0.002539 0.22 σ 0.22 σ

390 〈P ′5〉(B0 → K∗0µ+µ−)[2, 4] -0.22201 0.31 σ 0.23 σ

391 BR(K+ → µ+ν) 0.63364 0.21 σ 0.21 σ

392 〈FL〉(B0 → K∗0e+e−)[0.000784, 0.257] 0.052728 0.26 σ 0.21 σ

393 R(e+e− →W+W−)[191.6] 1 0.21 σ 0.21 σ

394 〈P3〉(B0 → K∗0µ+µ−)[2.5, 4] 0.0032127 0.21 σ 0.21 σ

395 〈BR〉
BR (B → D∗τ+ν)[8.5, 9.0] 0.095922 0.2 σ 0.2 σ

396 µV h(h→ γγ) 1 0.2 σ 0.2 σ

397
〈
dR
dθ

〉
(e+e− →W+W−)[189.09, 0.2, 0.4] 2.187 0.2 σ 0.2 σ

398 BR(B− → K−τ+e−) 5.4113× 10−7 0.15 σ 0.2 σ

399 〈P ′8〉(B+ → K∗+µ+µ−)[1.1, 2.5] -0.02296 0.19 σ 0.2 σ

400
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, 0.6, 0.8] 4.445 0.19 σ 0.19 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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401 〈P1〉(B+ → K∗+µ+µ−)[15, 19] -0.61934 0.2 σ 0.2 σ

402 BR(B → Xsγ) 0.00033122 0.18 σ 0.2 σ

403 BR(B− → π−τ+µ−) 3.4× 10−23 0.18 σ 0.18 σ

404 BR(τ+ → π+ν̄) 0.10837 0.13 σ 0.19 σ

405 〈P1〉(B0 → K∗0µ+µ−)[1, 2] 0.039208 0.18 σ 0.17 σ

406 BR(K+ → π+νν̄) 1.1422× 10−10 0.43 σ 0.13 σ

407 〈BR〉
BR (B → D∗τ+ν)[6.5, 7.0] 0.088536 0.17 σ 0.17 σ

408 〈BR〉
BR (B → Dτ+ν)[7.0, 7.5] 0.089808 0.17 σ 0.17 σ

409 ΓW 2.0917 0.16 σ 0.16 σ

410 〈P1〉(B+ → K∗+µ+µ−)[2.5, 4] -0.095285 0.16 σ 0.14 σ

411 BR(B0 → K∗0γ) 4.1806× 10−5 0.16 σ 0.15 σ

412 〈 dBR
dq2 〉(B0 → K∗0µ+µ−)[1, 2] 4.526× 10−8 0.17 σ 0.15 σ

413
〈
dR
dθ

〉
(e+e− →W+W−)[182.66, 0.8, 1.0] 5.434 0.15 σ 0.15 σ

414 Ft(50Mn) 4.6665× 1027 0.15 σ 0.15 σ

415 〈BR〉
BR (B → D∗τ+ν)[5.0, 5.5] 0.05722 0.14 σ 0.14 σ

416 〈P ′6〉(B+ → K∗+µ+µ−)[2.5, 4] -0.046371 0.11 σ 0.11 σ

417 〈P ′6〉(B+ → K∗+µ+µ−)[4, 6] -0.031689 0.13 σ 0.14 σ

418 〈FL〉(B0 → K∗0µ+µ−)[15, 19] 0.33993 0.12 σ 0.11 σ

419 〈BR〉
BR (B → Dτ+ν)[8.0, 8.5] 0.082028 0.13 σ 0.13 σ

420 σtrident/σ
SM
trident 1 0.13 σ 0.13 σ

421 〈BR〉
BR (B → D∗τ+ν)[9.33, 9.86] 0.087022 0.13 σ 0.13 σ

422 R(e+e− →W+W−)[201.6] 1 0.12 σ 0.12 σ

423 〈P ′8〉(B0 → K∗0µ+µ−)[15, 19] 0.00074654 0.17 σ 0.17 σ

424 〈P ′4〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.069775 0.057 σ 0.098 σ

425
〈
dR
dθ

〉
(e+e− →W+W−)[198.38, −0.2, 0.0] 1.265 0.1 σ 0.1 σ

426 〈Rµe〉(B+ → K∗+`+`−)[0.1, 8.0] 0.85648 0.33 σ 0.1 σ

427 〈BR〉
BR (B → Dτ+ν)[5.07, 5.6] 0.07714 0.1 σ 0.1 σ

428 〈S4〉(Bs → φµ+µ−)[4.0, 6.0] -0.21145 0.11 σ 0.092 σ

429 〈BR〉
BR (B → Dτ+ν)[5.6, 6.13] 0.087798 0.1 σ 0.1 σ

430 BR(τ− → e−e+e−) 3.577× 10−12 0.1 σ 0.1 σ

431 RT (K+ → π0µ+ν) 2.2333× 10−37 0.084 σ 0.084 σ

432
〈
dR
dθ

〉
(e+e− →W+W−)[205.92, −0.2, 0.0] 1.231 0.097 σ 0.097 σ

433 Ac 0.66752 0.092 σ 0.092 σ

434 〈P3〉(B+ → K∗+µ+µ−)[1.1, 2.5] 0.0030204 0.11 σ 0.12 σ

435 〈BR〉
BR (B → D∗τ+ν)[8.0, 8.5] 0.098402 0.084 σ 0.084 σ

436 〈BR〉
BR (B → D∗τ+ν)[9.0, 9.5] 0.089545 0.082 σ 0.082 σ

437 ln(C)(K+ → π0µ+ν) 0.19988 0.075 σ 0.075 σ

438 〈S7〉(Bs → φµ+µ−)[15.0, 18.9] -0.0011254 0.078 σ 0.076 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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439 〈Dµe
P ′4
〉(B0 → K∗0`+`−)[14.18, 19.0] −8.5847× 10−5 0.072 σ 0.072 σ

440 〈BR〉
BR (B → Dτ+ν)[5.0, 5.5] 0.070732 0.066 σ 0.066 σ

441 〈P2〉(B0 → K∗0µ+µ−)[1.1, 2.5] -0.45664 0.13 σ 0.078 σ

442 〈P ′6〉(B+ → K∗+µ+µ−)[0.1, 0.98] -0.05012 0.092 σ 0.085 σ

443 BR(B+ → K∗+γ) 4.2486× 10−5 0.036 σ 0.047 σ

444 〈BR〉
BR (B → D∗τ+ν)[9.5, 10.0] 0.077734 0.053 σ 0.053 σ

445 Ft(14O) 4.6665× 1027 0.047 σ 0.049 σ

446 R0
c 0.17223 0.042 σ 0.041 σ

447 Ft(38mK) 4.6665× 1027 0.022 σ 0.021 σ

448 〈P ′4〉(B0 → K∗0µ+µ−)[15, 19] -0.63501 0.066 σ 0.063 σ

449 〈P ′8〉(B+ → K∗+µ+µ−)[2.5, 4] -0.015614 0.029 σ 0.029 σ

450 〈BR〉
BR (B → D∗τ+ν)[4.0, 4.53] 0.028569 0.026 σ 0.026 σ

451 µgg(h→ τ+τ−) 1 0.025 σ 0.025 σ

452 〈P ′8〉(B0 → K∗0µ+µ−)[0.1, 0.98] -0.0022203 0.041 σ 0.012 σ

453 〈BR〉
BR (B → Dτ+ν)[9.33, 9.86] 0.063887 0.016 σ 0.016 σ

454 BR(B+ → µ+ν) 4.3728× 10−7 0.11 σ 0.029 σ

455 〈 dBR
dq2 〉(B+ → K∗+µ+µ−)[2, 4.3] 4.4015× 10−8 0.17 σ 0.031 σ

456 BR(B0 → τ+τ−) 1.5613× 10−6 0.038 σ 0.0045 σ

457 Ft(62Ga) 4.6665× 1027 0.028 σ 0.028 σ

458 BR(B̄0 → K̄∗0e+µ−) 8.9257× 10−23 0 σ 0 σ

459 BR(B− → K−e+µ−) 4.1197× 10−23 0 σ 0 σ

460 BR(B− → K−µ+e−) 4.1197× 10−23 0 σ 0 σ

461 BR(B− → K−µ+τ−) 4.8069× 10−21 0 σ 0 σ

462 BR(B− → π−µ+τ−) 3.4× 10−23 0 σ 0 σ

463 BR(B̄0 → e±µ∓) 1.569× 10−27 0 σ 0 σ

464 BR(B̄0 → e±τ∓) 7.2051× 10−9 0.00048 σ 0 σ

465 BR(B̄0 → µ±τ∓) 6.4246× 10−23 0 σ 0 σ

466 BR(B̄s → e±µ∓) 2.2551× 10−25 0 σ 0 σ

467 BR(B̄s → µ±τ∓) 9.3099× 10−21 0 σ 0 σ

468 BR(B̄0 → π0e±µ∓) 2.3091× 10−25 0 σ 0 σ

469 BR(B− → π−e±µ∓) 4.961× 10−25 0 σ 0 σ

470 BR(KL → e±µ∓) 1.6281× 10−24 0 σ 0 σ

471 BR(µ− → e−e+e−) 1.0333× 10−27 0 σ 0 σ

472 BR(µ→ eγ) 7.9068× 10−37 0 σ 0 σ

473 BR(τ → µγ) 2.2135× 10−35 0 σ 0 σ

474 BR(τ− → µ−µ+µ−) 3.1758× 10−26 0 σ 0 σ

475 BR(τ− → e−µ+µ−) 2.409× 10−12 0 σ 0 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull (continues).
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476 BR(τ → eγ) 2.5109× 10−21 0 σ 0 σ

477 BR(τ+ → ρ0e+) 1.4568× 10−12 0.00013 σ 0 σ

478 BR(τ+ → ρ0µ+) 1.2778× 10−26 0 σ 0 σ

479 BR(τ+ → φe+) 8.4242× 10−9 0.45 σ 0 σ

480 BR(τ+ → φµ+) 7.3617× 10−23 0 σ 0 σ

481 CR(µ− e) in 48
22Ti 1.7449× 10−26 0 σ 0 σ

482 CR(µ− e) in 197
79 Au 2.0817× 10−26 0 σ 0 σ

483 BR(Z0 → e±µ∓) 3.6051× 10−28 0 σ 0 σ

484 BR(Z0 → e±τ∓) 7.4896× 10−12 0.0026 σ 0 σ

485 BR(Z0 → µ±τ∓) 6.6495× 10−26 0 σ 0 σ

Table 4. List of all observables included in the global fit in Scenario II, indicating their NP
prediction, NP pull and SM pull.
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