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The study of percolation transitions has proven useful to reveal information of the structure of
complex networks, in particular living neuronal networks. Here we considered simulated neuronal
networks and use inverse percolation, the process of erasing connections while keeping track of the
size of the giant component g, to characterize their resilience to damage. We observed a phase
transition in g, revealed by a sudden jump of g at a critical value for the connectivity of the
network. We compared the behaviour of different network models (random and scale–free graphs)
and different types of attack (damaging connections or neurons, random or targeted attack). We
also investigated the critical exponent of the transition for a random graph.

I. INTRODUCTION

With the objective to study how the brain works, and
to understand its functionality in relation to its struc-
ture (physical connectivity), numerical models of neu-
ronal networks have emerged in the last decade as a pow-
erful modelling tool. These models can explore living
networks as mathematical graphs and try to reproduce
the functionality of the original circuit.

An interesting concept that this graph approach can
explore is percolation. It is a classical problem in statis-
tical mechanics that can be viewed as the transport of
information throughout a network. Specifically, it stud-
ies if there is a path between two vertices of the graph
along which a property (a fluid, information...) could
pass. If working with periodic, two dimensional graphs,
percolation leads to exact results for the critical point of
the transition [1], but arbitrary networks can be studied
as well. The appeal of percolation is that it exhibits a
phase transition, which means that the system behaves
differently in the two regions separated by the critical
point. Additionally, the topology of the graph and its
statistical traits (average connectivity for instance) are
related to this critical point.

When a network is built and studied using percolation,
an important property to investigate is the biggest clus-

FIG. 1: Sketch of the disintegration of the giant component
(blue area) as connectivity decreases from step (i) to (iv).

ter of connected components, called giant component g
(Fig. 1). It goes up as connectivity c increases (standard
percolation) or goes down as connectivity decreases (in-
verse percolation, the case of Fig. 1). Mathematically,
g shows a sudden jump at a critical connectivity c0 and
that separates a connected network from one formed of
isolated clusters. This behaviour is characterized as a
percolation transition given by a power law:

g ∼ |1− c

c0
|β ,

where β is the critical exponent. This exponent typ-
ically characterizes the topology of the particular net-
work being studied, while c0 characterizes the average
number of connections per node. This means that values
of β can be found for different types of network by run-
ning simulations, to then potentially compare them to
values obtained experimentally in real systems, such as
epidemics, rumours spreading, or connectivity in living
neuronal networks.
To obtain β, one can plot g vs |1 − c

c0
| in logarithmic

scale and fit a power law to get the critical exponent as
the slope:

ln(g) ∼ β ln
(
|1− c

c0
|).

Percolation has been used to study neural cultures ex-
perimentally because it gives information on the struc-
ture of the network that is difficult to obtain other-
wise [2]. Indeed, as illustrated in Fig. 2, the behavior
of g as a function of c reveals aspects related to the con-
nectivity of the network, such as the average connections
per neuron. In the figure, the blue network has a higher
average connectivity than the black one and therefore the
critical point c0 for the blue is smaller. However, both
networks have a similar topology, and therefore they have
similar β (inset of the figure) [2].
Thus, knowing the importance of percolation in neu-

ronal networks and other systems, we used a computa-
tional approach to explore the behavior of different net-
works. We considered inverse percolation (as in Fig. 1),
in which the network gradually breaks down, and investi-
gated also the behavior when either nodes or connections
were removed.
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FIG. 2: Example of an experimental percolation transition in
in vitro neuronal circuits. Main plot: symbols are experimen-
tal data in two kinds of networks, highly connected (blue) and
moderately connected (black). Inset: log–log plot to obtain
the critical exponent. Graph adapted from Ref. [4].

II. METHODS

A. Network generation

As we have said, the critical exponent β is related to
the particular topology (degree distribution) in our net-
work. Degree distributions allow us to understand how
measures such as node degree —the number of connec-
tions each node has with the rest— are distributed across
the network. We considered two main cases, single–scale
networks and scale–free networks.

Single–scale networks (Fig. 3, left) follow a binomial
distribution, where the probability of finding a node with
degree k is:

P (degree = k) =

(
N − 1

k

)
pk(1− p)N−1−k.

Scale–free networks (Fig. 3, right) follow a power law
distribution:

P (degree = k) ∼ k−γ .

Single–scale networks like Erdős-Rényi graphs or ran-
dom graph (RG) are used in this study. They have a
defined characteristic scale that represents the average
connectivity of most nodes in the network. Scale–free
networks like Barabási–Albert graphs, also used in our
study, do not have a characteristic scale that can be used
to estimate the average degree of the nodes. Many real–
world networks, such as the brain, are scale–free [3], but
neurons grown in a culture are not and follow a random
graph [4]. This seems to be related to the lack of func-
tionality of of these cultures. That comparison can be
used to our advantage to understand what makes the
real brain so capable and highlights the importance of
studying these two degree distributions in parallel.

FIG. 3: Example of a random graph and a scale-free graph.

B. Numerical simulations and network analysis

A script was written in Python to make simulations of
the evolution of different networks when the connectivity
c was reduced. The NetworkX package from Python was
used to generate both the connectivity (adjacency) ma-
trices that represent the network and visualize them as
graphs, taking advantage of the fact that there is an easy
conversion between these two objects. The numpy pack-
age allows us to work with the adjacency matrix, which
is a square matrix that represents the equivalent graph.

We mostly worked with networks constituted by 500
neurons. In that case, their adjacency matrices had a
dimension of 500 × 500 nodes, so each component (i, j)
has the connectivity information between the neurons i
and j. When working with unweighted networks like in
our case, the matrix is binary, so a 0 means that there is
no connection and a 1 means that there is. The networks
used are also all undirected, so the adjacency matrix is
symmetric.

Graph objects from the NetworkX package were used
to extract important parameters using built–in functions,
such as the giant component, global efficiency and mod-
ularity.

The giant component of a graph g was found by using a
NetworkX function to extract the size of all the connected
paths and selecting the biggest one. The global efficiency
GEFF was computed directly with a built–in function of
that same package and community was used to compute
the modularity Q.

The quantity GEFF quantifies the efficiency of network
communication. It varies between 0 for no information
flow and 1 for maximum information flow and that corre-
sponds to a scenario in which a node connects with any
other. The modularity Q describes the tendency of a
network to show their nodes organized in groups, where
nodes within a group are more connected with themselves
than with the rest of the network. Q varies between 0
(the whole network is the only module) and 1 (each node
is independent and shapes by itself a module).
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FIG. 4: Degree distributions for the random and scale free
graphs used. (A) Histograms depicting the occurrence of a
given degree. (B) The same data plotted on logarithmic axes.
(C) Cumulative distribution functions, plotted on logarithmic
axes

III. RESULTS AND DISCUSSION

A. Networks structure

We worked with two different initial networks; a ran-
dom one generated by us using the random package from
Python, in which connections were added to an empty
matrix, and a scale–free one generated by the NetworkX
package using the Barabási–Albert algorithm (degree dis-
tribution following a power law). The degree distribu-
tions for both are plotted in Fig. 4. We can see the
networks behave as expected according to their distribu-
tion, which is binomial and power law, respectively [5].
We want to note that these are the initial networks used
to be attacked afterwards. To study the networks, algo-
rithms were developed to remove either nodes or edges
of these graphs (Fig. 5). Removing nodes was achieved

FIG. 5: Graphs illustrating the different cutting methods used
in our algorithms.

by deleting all the connections of a node (and therefore
‘killing’ the node). When attacking the network in a
random manner, the algorithm randomly selected a node
pair (i, j), checked for a connection there, and either elim-
inated just that connection or the whole node. After each
step, the program saved the graph’s giant component,
global efficiency and modularity. Another algorithm was
developed for studying targeted attacks, where neurons
with the most connections were eliminated first. In that
case, the graph object was used to extract the degree of
each node and eliminated the node with the highest de-
gree, meaning the neuron with the most connections, on
each step. The program then saved the graph’s param-
eters just like above. The random connection selection
was done by using the adjacency matrix and the node se-
lection for both random failure and targeted attack used
the graph object.
In the plots that will be presented next, the giant com-

ponent is the median of ten data sets obtained with differ-
ent random seeds. The global efficiency and modularity
are directly plotted from a single simulation.

B. Inverse percolation on different networks

We know that living neuronal networks are adaptable
and repair themselves when they get damaged. For the
system to react on time as effectively as possible, it is im-
portant that signs of damage become apparent as early
as possible. In the opposite scenario, if the living network
cannot notice disruptions until the damage has substan-
tially advanced, it will not have time to react. With this
ideas in mind, we can judge the robustness and vulner-
ability of our networks by looking at the shape of the
giant component or other curves. If there are more or
less flat and suddenly decay, the system is vulnerable,
but if they decay gradually, then the system may start
response mechanisms.
In Fig. 6A we compare the evolution of the gi-

ant component for a network when nodes (red) or
edges/connections (blue) are cut. The initial network
is the same random graph (RG) made of 500 neurons
presented before, for damage actions. Since the initial
network has a few connections per neuron, we need more
steps in the algorithm in the case of cutting connections
to observe the transition, particularly ten times as many
steps. Regardless, what we see in the comparison is that
the network starts to experience changes when the edges
are attacked, since g gradually decays. For nodes, the gi-
ant component remains high (whole system connected,
although with fewer nodes) until suddenly falls with-
out warning. We see a similar behavior in the global
efficiency and modularity plots (Fig. 6B–C), since the
curves for node cutting have a steadier behaviour at first
and then collapse suddenly. If we think about what is
happening, edge removal in a RG changes the network’s
structure whereas node removal simply causes an equiva-
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FIG. 6: Network evolution comparison of node versus edge cutting, for our initial random graph with 500 neurons.

FIG. 7: Network evolution comparison of initial random graph versus scale free graph when cutting nodes.

FIG. 8: Network evolution comparison of targeted attack versus failure, for our initial scale free graph with 500 neurons.

lent, but smaller, network to take its place. In this latter
case the observed parameters will not change very much
until the networks gets really small, as we are observing
here. For a living system, it is too late to react.

Next we compared the disintegration curves of two dif-
ferent networks as nodes were cut in an arbitrary order
(random attack or failure). As shown in Fig. 7A, the
initial networks are the same random graph (RG) from
above and a scale free graph (SF), both made of 500
neurons. In this comparison, an equal number of steps
was performed. We can see that the SF decays ear-
lier and gradually since it is possible that a node with
many connections is removed. This makes this network
more robust from a biological perspective, since it can
notice changes and react. The curves for the RG are
collapsing later and very suddenly. In this case, we ver-
ified that SF are more resilient to random attacks than
RG. We can also note the initial values that the global
efficiency and modularity take for these two different
networks (Fig. 7B–C). RG has higher connectivity and
therefore a higher initial value for their global efficiency.
RG has a rather uniform degree distribution whereas SF

has a modular organization, which makes the modularity
higher at the beginning.

Finally, we compared the evolution of a network when
cutting nodes either in a random manner or targeting in a
malicious way, i.e., by deleting first those nodes with the
highest connectivity. In this comparison twice as many
steps were needed in the random failure case. We used
a SF network for this exploration because we know by
construction that it is more vulnerable to targeted at-
tacks than a RG, so the difference will be more visible.
As we saw previously, scale–free networks have a very
different degree distribution than random graphs, and
they have few nodes that are highly connected. That
means that, if we choose knowingly, we do not have to
cut many connections to compromise system’s function-
ality. As shown in Fig. 8A, and as expected, we can see
that in the case of targeting the highly connected neurons
first (green curve), the network experiences abrupt de-
cays with no previous warning, and where a single jump
is almost 50% loss of giant component. SF are thus ex-
tremely vulnerable to targeted damage, as expected. The
global efficiency and modularity also behave differently
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(Fig. 8B–C), changing more abruptly for targeted attack.

C. Percolation exponent

We found interesting to extract the critical exponent
for RG graphs and cutting edges, and by using data
points near the transition. We run different seeds for the
same kind of network to get statistics. Although some
data sets had to be discarded, we finally used 7 numerical
simulations. As shown in Fig. 9, we plotted g vs |1− c

c0
|

and adjusted a power fit to the logarithmic plot to find
an exponent of β = 0.274. This value is consistent with
previous works on percolation in random graphs [10, 11].

FIG. 9: Power fit of the data points from the transition. Since
for each transition we had a whole row of points with the same
value of g, only the first one of each was used in this plot for
clarity. The value of the critical exponent was found with all
the data points.

IV. CONCLUSIONS

Neural networks of sizes 500 × 500 and 1000 × 1000
were successfully simulated by using a graph approach in
Python, and the desired phase transition was observed.

By extracting the giant component, global efficiency and
modularity of 500 × 500 graphs we were able to com-
pare the robustness of two types of networks and cutting
methods. The critical exponent β of the transition was
found for a random graph of size 1000× 1000.
Random graphs (RG) are more robust when attack-

ing their edges because edge removal changes slightly the
network’s structure, and that can be detected from early
on, giving the potential living network time to repair or
adapt. Node removal, on the other hand, does not have
much of an impact besides making the network smaller
but similar, and it is not until the last stages when it is
gotten small enough that we can detect the damage.
Scale free graphs (SF) are more robust than random

graphs (RG) when removing their nodes [6, 7]. Many
biological networks are scale–free because natural
selection shapes their formation. After all, different
attachments have a certain impact on specimen survival
and fitness and an effective preferential attachment can
be obtained because of that [8]. Biological networks are
in general benefited from this structure because they
need robustness to random damage, since that is the
type of damage they normally face, for example in the
case of mutations in the genome. On the other hand,
scale–free graphs (SF) are more vulnerable to targeted
attacks than to random failure when removing their
nodes. We can see the network losing functionality more
suddenly in the targeted attack case, as it is expected
for SF. An example of targeted attacks in neuronal
networks is Alzheimer’s disease, which leaves the brain
closer to a RG [9].
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