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Abstract: The violation of the first three of Bell’s inequalities is tested on the 5-qubit IBM
quantum computer. A hidden variable proposition is used to make sure we do not cherry-pick
our results. To prove the inequalities we created an entangled state and measured it on different
directions. The experimental data shows that there is a clear violation of the three inequalities.
Furthermore, the data matches the quantum mechanics prediction more than the hidden variables
one. Thus we conclude that the computer behaves as quantum mechanics dictates with some
systematic error.

I. INTRODUCTION

In 1935 Einstein, Podolsky, and Rosen (EPR) pub-
lished an article [1] where they concluded that quantum
mechanics is an incomplete theory. Furthermore, they
discussed the possibility that it should be complemented
by a set of hidden variables that would determine the
result of what we measure. In other words, quantum me-
chanics should be a statistical consequence of them [1, 2].
This theory has been a controversial topic over the years.
Bell changed that with the article [3], where he imposed
the condition of locality over the hidden variable theory.
Which meant that, on that framework, for changes to oc-
cur they must interact within a reasonable distance. Due
to quantum mechanics postulates, entanglement does not
require locality. Bell exploited that property and identi-
fied an experimentally measurable expectation value that
could be used to compare both approaches and then for-
mulated the first inequality (1964) which revealed the
limitations of the hidden variable formalism. Later on,
Clauser, Horne, Shimony and Holt (CHSH) proposed a
second inequality of the same nature (1969) [2]. Further-
more, a year later Bell derived a more general inequality
[4] which was used in the first experiment by Aspect in
1982, using entangled photons [5].

The purpose of this work is to test and compare these
three inequalities on a quantum computer. Moreover,
we want to see how quantum mechanics and the hid-
den variable theories resemble to the experimental data.
The IBM-qe [8] offers an open access five-qubit quantum
computer. It represents an opportunity to experiment
quantum properties with ease.

The structure of the paper is the following. In section
II we present the mathematical tools to understand the
expectation value derived by Bell. In section III we pro-
pose a realistic hidden variable equation so that we can
compare with the quantum mechanical predictions. In
section IV we present the three inequalities that we are
going to test. The following sections V and VI explain
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the basics of quantum gates and then the process of the
simulation. In Sect. VII we present the main result and
discussion. Finally, in Sect. VIII we summarize the main
conclusions of our work.

II. FORMULATION

Bell, in order to prove that quantum mechanics
(QM) is complete and not controlled by a set of hidden
variables (HV), formulated mathematically an statistical
product which is incompatible with the QM predictions.
In this section we explain its meaning. For the purpose
of this explanation we consider a pair of spin one half
particles that are the result of a disintegration of a spin
zero particle. Both particles are entangled, because the
measurement of one spin direction determines the result
of the other. In this case the state of the system is given
by the singlet state,

|Ψ⟩ = 1√
2
(|↑⟩ |↓⟩ − |↓⟩ |↑⟩). (1)

To measure the spins we use two separated Stern Gerlach

Magnets (SGM), on certain direction a⃗ and b⃗. The cor-
responding result is +1 or −1 depending on the relative
position of the spin with respect to the direction of the
SGM. The results of the measurements are given by the
functions A(λ, a⃗) = ±1 and B(λ, b) = ±1 where λ is a
possible hidden variable.
For the HV to work, two hypothesis must be stated,

the first one is that we assume that the measurement of
one particle does not alter the result of the other particle,
in other words the interactions must be local (2). The
other hypothesis is that, according to QM, if we measure
in the same direction on both SGM one result must be
the opposite of the other (3), because of the entanglement
proposed before

(Aa ·Bb)(λ) = Aa(λ) ·Bb(λ) (2)

A(⃗a, λ) = −B(⃗a, λ). (3)

If we assume that ρ(λ) is the normalised probability dis-
tribution of the HV, the expectation value of the product
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FIG. 1: Illustration of the different detection regions. The
dashed lines mark the regions where the detectors give differ-
ent results, see text for details.

of both results is [3, 6, 7]

E(⃗a, b⃗) =

∫
ρ(λ)A(λ, a⃗)B(λ, b⃗)dλ. (4)

The corresponding QM result is, (where a⃗ and b⃗ are uni-
tary vectors)

EQM (⃗a, b⃗) = ⟨Ψ| σ⃗ · a⃗⊗ σ⃗ · b⃗ |Ψ⟩ = −a⃗ · b⃗ = − cos(ϕ). (5)

σ⃗ is the Pauli vector and ϕ is the angle between a⃗ and b⃗.

III. A REALISTIC HIDDEN VARIABLE
PROPOSITION

In the following we present a concrete HV theory. We
consider, following [3], the angle of polarisation of the

spin as our HV λ and the direction of the spin as λ⃗.
Now lets assume that if we measure a particle with λ
automatically the other detector will get λ + π, due to
the entanglement. Also we assume that the probability
distribution is uniform for all its domain [0, 2π).

Now lets assume that θ is the angle between a⃗ and λ⃗

(with b⃗ we use φ). If θ < π/2 then A = +1 and if θ > π/2
then A = −1, and correspondingly, B = −1 and B = +1.
The functions that suit these conditions are

A(λ⃗, a⃗) = sgn(⃗a · λ⃗)

B(λ⃗, b⃗) = −sgn(⃗b · λ⃗) (6)

ρ(λ) =
1

2π
. (7)

With sgn the sign function, sgn(x) = x/|x|. This choice
leads to four domain regions with results A = B = 1,
A = 1 and B = −1, A = −1 and B = 1, and A = B =
−1, see Fig. 1. From now on α and β are the angles of a⃗

and b⃗ respect to the x-axis, in this case,
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FIG. 2: Quantum mechanical and hidden variables prediction

for E(⃗a, b⃗) compared to the value measured experimentally
on the IBMq system. In all cases, α = 0, β ∈ [0, 2π] and
ϕ = |α− β|.

E(⃗a, b⃗) =
1

2π

∫ 2π

0

A(⃗a, λ)B(⃗b, λ)dλ

= −1 +
2(β − α)

π
. (8)

The equation (8) is for the particular case where β is
larger than α and both are less than π, thus we state some
symmetries. It must give us the same value if α > β, also
that E(|β − α|) = E(2π − |β − α|), in other words, the

result only depends on the angle between a⃗ and b⃗ [3, 7].
Hence taking ϕ = |β − α| with α, β ∈ [0, 2π) we do the
following changes

E(ϕ) =

 −1 + 2ϕ
π ϕ ≤ π

−1 + 2(2π−ϕ)
π ϕ > π

 (9)

In Fig. 2 we compare the QM and HV predictions with
experimental data obtained in the IBM-qe as explained
in Sect. I. The QM and HV give different predictions,
i.e. a cosine shape versus straight lines. The experimen-
tal results resemble the QM ones, but with a systematic
discrepancy on the amplitude of the cos(ϕ).

IV. BELL INEQUALITIES

It is not enough to compare both expectation values.
Bell went one step further and devised a way to discern
between QM and HV. In particular, he derived an in-
equality (10) assuming locality in the interaction between
the particles and the fact that they are far apart when
measured, [3, 6]∣∣∣E(⃗a, b⃗)− E(⃗a, c⃗)

∣∣∣ ≤ 1 + E(⃗b, c⃗). (10)

The second inequality (11) follows the same principles
as the previous one, with the difference that accepts a
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non perfect correlation between two arbitrary directions,
changing Bell’s postulate. It is presented as E(b, b′) =
1 − δ with 0 ≤ δ ≤ 1. That divides the domain of λ in
two regions that causes Λ± = {λ|A(⃗b′, λ) = ±B(⃗b, λ)}[2],∣∣∣E(⃗a, b⃗)− E(⃗a, c⃗)

∣∣∣ ≤ 2− E(⃗b′, b⃗)− E(⃗b′, c⃗). (11)

The third inequality (12) is commonly known as
the CHSH inequality, it was derived by Bell on 1971.
The only characteristic that differs from its relatives
is that it accepts the possibility of more HV that act
independently on every particle and make the experi-
ment more realistic. It is assumed that the results de-
tected are an averaged value of another HV Ā(⃗a, λ) =∫
P (µa)A(⃗a, λ, µa)dµa.Where µa is a HV that acts only

in the particle that interacts with the A detector. This
assumption makes the results less correlated [4],∣∣∣E(⃗a, b⃗)− E(⃗a, b⃗′) + E(⃗b, a⃗′) + E(⃗a′, b⃗′)

∣∣∣ ≤ 2. (12)

For conceptual ease we will call each inequality, in or-
der of appearance, BELL, CHSH and CHSHg. As the
last one is somehow a generalisation of the second one.
All of them make use of the expectation value computed
above in Eq. (9).

Substituting (5) on any of the inequalities we shall find
regions on the domain that violate them. Taking as an
example the CHSHg we proceed in the following way.
First using (5) and (12) we get

|cos(α+ β + γ)− cos(α)− cos(β)− cos(γ)| ≤ 2. (13)

Since it is a three dimensional function, and even
though we loose detail, we take γ = 45º and we take
α and β as the x axis and the y axis respectively. There-
fore we can plot the data (Fig. 3) showing that there is a
region where the equation is violated. We choose γ = 45º
because it goes through the absolute maximum which is
at γ = α = β. The left side of (12) gives 2

√
2 as a result.

V. QUANTUM GATES

In this work, we will compare the theoretical QM and
HV predictions outlined above with experimental results
using the IBM-qe. The latter provides online access to
a few qubits on a quantum computer. The idea is to
build the entangled state, Eq. (1), and then perform the
corresponding measurements entering in the inequalities
presented above. First we must introduce some aspects
of quantum computation. Lets consider a single qubit,
it has two possible states |0⟩ = |↑⟩ and |1⟩ = |↓⟩. What
differences from the bit of classical computation is the
superposition of both states,

|ψ⟩ = α |0⟩+ β |1⟩ . (14)

To measure the state of the qubit on any direction, the
following operator is necessary

Sn⃗ =
ℏ
2
σ⃗ · n⃗ =

ℏ
2

(
cos θ sin θe−iϕ

sin θeiϕ − cos θ

)
. (15)

FIG. 3: Left hand side of the equation (13) where α is the

angle between a⃗ and b⃗ and β is the angle between b⃗ and a⃗′.

Finally γ = 45º, which is the angle between a⃗′ and b⃗′ . The
region above two points is a violation of the inequality.

For simplicity, the constant is changed from ℏ
2 to 1 so we

can have the eigenvalues as ±1.
In order to predict the probabilities in the IBM quan-

tum computer and prove that the QM predictions agree
with the results, we need a series of single qubit gates
that allow us to manipulate qbits maintaining its nor-
malisation. The basic ones are the Pauli matrices,

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. (16)

Another useful one is the Hadamard gate, which creates
a superposition state,

H =
1√
2

(
1 1
1 −1

)
. (17)

From the Pauli matrices we can get the rotation operators
about the x̂, ŷ and ẑ axis, defined by the equations:

Rx(θ) ≡ e−iθX/2 =

(
cos θ/2 −i sin θ/2

−i sin θ/2 cos θ/2

)
(18)

Ry(θ) ≡ e−iθY/2 =

(
cos θ/2 sin θ/2
sin θ/2 cos θ/2

)
(19)

Rz(θ) ≡ e−iθZ/2 =

(
e−iθ/2 0

0 eiθ/2

)
(20)

Where θ is the angle of rotation around the axis. Fi-
nally, we need to introduce a two qubit gate, the CNOT.
It affects two qubits at the same time. One acts as the
control qubit and the other acts as the target. If the
control qubit is |1⟩ then the target qubit spin is flipped.
This gate will provide us the entanglement,

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (21)
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|0⟩ H Rx(θ)

|0⟩ Rx(φ)

FIG. 4: Circuit implemented in the IBM-qe. The first gates
produce the singlet state, then the rotations change the ori-
entation of the spin. Finally, the two qubits are measured on
the z basis. θ and φ are arbitrary angles.

VI. EXPERIMENTAL TEST ON THE IBM-QE

On the IBM-qe we built a circuit to produce the singlet
state (1) and then perform the measurements on the Z
basis to measure the products entering in the inequalities.
The circuit can be separated in three parts: production
of the single state, which is an entangled state, rotation
and measurement [9].
We start with both qubits on |0⟩ then we flip both

of them to |1⟩ with the gate NOT (in the quantum com-
puter acts as an X gate), after that we apply a Hadamard
gate to the first qubit to create superposition of states
1√
2
(|0⟩ − |1⟩) . Then we apply the CNOT gate with the

first qubit as a control and the second as the target. With
that we create the entangled state |Ψ⟩ = 1√

2
(|10⟩− |01⟩).

Up until here we get to the entanglement part. Now the
rotation part takes place,

|Φ⟩ = Rx(θ)⊗Rx(φ) |Ψ⟩ = (22)[
i sin

(
φ− θ

2

)
|00⟩ − |11⟩√

2
+ cos

(
φ− θ

2

)
|10⟩ − |01⟩√

2

]
.

Finally, we measure the state (22). To assure that we
have done the theory correctly, we check that the ex-
pected value is the same as (5). As expected, it is cor-
rect.

EQM ≡
〈
Sz

〉
= sin2(ϕ/2)− cos2(ϕ/2) = − cosϕ (23)

where ϕ = θ − φ acts as the angle between the two
orientations.

The IBM makes 20000 shots of the circuit and reg-
isters the frequency of the resulting states (|00⟩ , |10⟩,
|01⟩, |11⟩). How can we match the results extracted with
the theoretical expectation value? We can turn these fre-
quency shots into probabilities by dividing by the total of
shots Pij = Nij/Ntot and substitute the theoretical prob-
abilities that conform (23) with the experimental data.
Using (22), the math is the following〈

Sz

〉
= λ00P00 + λ10P10 + λ01P01 + λ11P11

= P00 − P10 − P01 + P11 (24)

=
1

2

[
sin2(ϕ/2)− cos2(ϕ/2)− cos2(ϕ/2) + sin2(ϕ/2)

]
.

(25)

Exp. QM D

BELL 1.26 ±0.03 1.5 0.47

CHSH 2.41 ±0.04 2.82 0.41

CHSHg 2.36 ±0.04 2.82 0.46

TABLE I: Comparison of the three inequalities at the point
where the violation is maximum. The first column corre-
sponds to the experimental data, the second column is the
QM prediction and the third one corresponds to the discrep-
ancy.

Where λij is the eigenvalue of each eigenstate, (24) is for
the experimental data and (25) it is what is deduced of
the theoretical probabilities.

VII. RESULTS

Now we shall discuss the results obtained. In order to
analyse the data we did the same as on Fig. 3. However,
instead of fixing only one angle, we leave one free. This
method gives us enough information to see the violations.
We take BELL and CHSH and we put all the expectation
values to the left of the equation. With the CHSHg there
is no need to change anything. Therefore, to plot the
theoretical HV or QM prediction, we just replace the
expectation value with (2) and (5) respectively.

We have a Binomial type distribution, due to the fact
that we counted the number of successes in a sequence
of independent experiments n with a yes-no question.
Therefore the error associated is σi =

√
npi(1− Pi). The

following expansion of the error of the expectation value
leads to δ = (σ00+σ01+σ10+σ11)/n. In conclusion, the
error oscillates between 0.02 and 0.04. As we see on the
graphical representations the discrepancies are> 3δ, thus
we must assume some systematic error that we cannot
control.

Notice that on Table I the statistical error on BELL
is less than the others, due to the fact that it has less
expectation values, although it is not significant because
they are so small.

To plot such representations we performed over 100
independent experiments on which we changed the angle
of measurement every time.

From a general standpoint, we can see that the QM
prediction matches, on a more accurate way, the be-
haviour of the experimental data. It does, indeed, violate
the inequality, whilst the HV prediction cannot predict
the behavior once surpassed the threshold stipulated by
the equations (10), (11) and (12). However, the HV plots
can show where the violation takes place, it remains con-
stant on the limit. On Figs. 6 and 7 the region where
the inequality is violated is better predicted with the HV
formalism.
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FIG. 5: Plot of the left side of the BELL inequality f(ϕ) =∣∣∣E(θa⃗,⃗b)− E(θa⃗,c⃗)
∣∣∣−E(θ⃗b,c⃗). Angle configuration: θa⃗,⃗b = 60,

θ⃗b,c⃗ = ϕ and θa⃗,c⃗ = ϕ + θa⃗,⃗b. Thirty-nine runs were made on
the computer.
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FIG. 6: Plot of the left side of the CHSH h(ϕ) =∣∣∣E(θa⃗,⃗b)− E(θa⃗,c⃗)
∣∣∣+ E(θ⃗b′ ,⃗b) + E(θ⃗b′,c⃗). Angle configuration

is: θa⃗,⃗b = 45, θ⃗b,⃗b′ = 225, θ⃗b′,c⃗ = ϕ and θa⃗,c⃗ = ϕ+270. Thirty-
seven runs were made on the computer.

VIII. SUMMARY AND CONCLUSIONS

In this work we have studied three of the Bell inequali-
ties and have tested tested on a quantum computer (IBM-
qe). We have simulated the disintegration of a zero spin
particle into two half-spin particles that are entangled.
This experiment is made to prove that local theories,
such as the HV proposition, lack of resources to predict
the quantum behaviour. With that said, we have proven
successfully that the IBM quantum computer behaves as
QM anticipates. Nevertheless, as we fail to separate both
qubits we can expect a HV pattern as they may influence
each other.
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FIG. 7: Plot of the left side of the CHSHg g(ϕ) =∣∣∣E(θa⃗,⃗b)− E(θa⃗,⃗b′) + E(θ⃗b,⃗a′) + E(θa⃗′ ,⃗b′)
∣∣∣. Angle configura-

tion: θa⃗,⃗b = θ⃗b,⃗a′ = 45, θa⃗′ ,⃗b′ = ϕ and θa⃗,⃗b′ = 90 + ϕ. Thirty-
seven runs were made on the computer.
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