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Abstract: In this work we use the Extreme Deconvolution algorithm to extract the underlying
distribution function from an heterogeneous and noisy star sample of 10,941 Red Clumps from the
GALAH+ DR3 survey. This algorithm allows us to describe the density probability function as a
sum of Gaussians that we can interpret as distinct Galactic components. We are able to clearly
distinguish the thin and thick disk components, and the hαmr group.

I. INTRODUCTION

Galactic Archaeology is the subfield of Galactic astron-
omy that aims at understanding the formation and evo-
lution of galaxies, in particular the Milky Way [1]. Ex-
plaining how the MilkyWay formed is one of the principal
goals of astrophysical research of recent years, and thanks
to the advent of the Gaia mission [2] it is beginning to
become within our reach.

In order to infer the chemo-dynamical history of the
Milky Way, it is necessary to collect and analyze millions
of stellar spectra across all Galactic components, from
the Galactic Centre to the halo. Thanks to large-scale
spectroscopic surveys, like RAVE [3], APOGEE [4] or
GALAH [5], the amount of spectroscopic data taken has
increased by several orders of magnitude in the last 15
years. The analysed dimensions have also increased, from
kinematics and metallicities to detailed 6D phase-space +
precise chemical abundances for several elements + ages.
This large amount of data also means that new machine-
learning techniques (supervised or unsupervised learning)
are necessary to make sense of the complex datasets and
to produce new scientific results.

In this work we explore a new technique in the context
of multi-dimensional abundance-space analysis: extreme-
deconvolution Gaussian Mixture Modelling [6]. In short,
this technique expands the classical two-dimensional
abundance analysis of the Tinsley-Wallerstein Diagram
([α/Fe] vs. [Fe/H]; [7]) to taking into account all avail-
able elemental abundances at the same time.

Our aim is to check if the method works well
with abundance data (using the high-quality dataset of
GALAH DR3 red-clump star catalogue) and if we are
able to reproduce meaningful results or find new chemi-
cally defined subgroups of stars.

II. DATA

We use the chemical abundances published in the the
third data release of the Galactic Archaeology with HER-
MES survey (GALAH DR3 [15]). The data release con-
tains 678,423 spectra from 588,571 mostly nearby stars

taken with the HERMES spectrograph, built into the
Anglo-Australian Telescope. The DR3 catalogue pro-
vides stellar atmospheric parameters and individual el-
emental abundances for up to 30 different elements.
In order to be able to work with very homogeneous

abundances and little systematic trends (e.g. with effec-
tive temperature), we select a sample of red-clump stars
(metal-rich red giant stars in the core He-burning phase;
[8]). The selection is achieved by applying some basic
cuts to the GALAH DR3 catalogue with the astronomi-
cal software TOPCAT [16]:

Red clump cuts =

 4500K < Teff < 5100K
2.3 < log(g) < 2.55
is redclump bstep > 0.5

(1)

After making some quality checks for reliably measured
abundances, we further reduce the sample size by requir-
ing flag sp = 0 & flag fe h = 0 & flag X fe for each
of the considered abundances. We end up with a sam-
ple of 10,941 red-clump stars with good-quality chemical
abundances of 24 elements: Fe, O, Na, Mg, Al, Si, K, Ca,
Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce,
Nd, Eu.

III. EXTREME DECONVOLUTION

There is a wide variety of methods to describe the
probability distribution function (PDF) of a data set.
The mathematical problem of finding an adequate PDF
is called density estimation. Another (related) problem
of general interest is to find and characterise fluctuations
or overdensities within the data. This is called clustering.
In many cases both problems can simultaneously be

solved by Gaussian Mixture Modelling (GMM), which
models the data as a sum of Gaussians that can some-
times be interpreted as subgroups. This is a parametric
method; unlike methods such as Kernel Density Estima-
tion (KDE) or Nearest Neighbors Density Estimation,
which do not specify a functional model to fit the
data on [9]. It is the most common mixture modelling
technique and often used to adjust probability densities
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FIG. 1: Result of the application of XDGMM on the RC sample of GALAH DR3, for the 24-dimensional abundance space.
For visibility we only show the 2D correlations of 5 of the considered elemental abundance ratios: [Fe/H], [O/Fe], [Na/Fe],
[Mg/Fe], [Al/Fe]. The panels below the diagonal shows the GALAH abundances as reported in the catalogue (i.e. before
applying XDGMM). The panels above the diagonal show the same abundance ratio diagrams, but now after XDGMM has been
applied (so that the axis labels for the plots above the diagonal have to be inverted). In each of the upper-diagonal panels we
overplot ellipses whose colours and line widths correspond to the found Gaussian clusters and their weights, respectively. The
diagonal panels shows the one-dimensional histograms of the respective abundance ratios (before applying XDGMM) as well
as the respective distribution of the five clusters.

to subpopulations from a more general population.

In a one-dimensional (1D) GMM, the probability den-
sity is modelled as [9]:

ρ(x) = N

M∑
j=1

αjN (µj , σj), (2)

where we sum over M Gaussians, each one with a
weight αj , average µj and a covariance matrix σj .

An advantage of mixture models is that they do not
require knowing which subpopulation each point belongs
to. They are unsupervised methods, so no prior infor-
mation is given on the data. Unsupervised clustering
techniques use all the available data to find the optimum
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number of classes. The only prior information needed is
the number of clusters (but even this can be optimised,
e.g. by minimising the Bayesian Information Criterion;
BIC [9]).

When the data set is subject to significant (and known)
measurement errors, we can use a generalised version of
GMM called ‘Extreme Deconvolution’ (XDGMM; [6]).
The algorithm takes into account the known data uncer-
tainties to deliver the deconvolved means and covariances
of each Gaussian. It basically assumes that the observed
value is given by a real value operated with a projection
matrix (computed by GMM), following this relation [9]:

xi = Rivi + ϵi, (3)

where xi and vi are the observed and the true val-
ues respectively, Ri is the projection matrix and ϵi the
known error of each measure. In this work we use the as-
troML [17] implementation of [9], in particular the func-
tion astroML.density estimation.XDGMM.

IV. RESULTS

A. Analysing abundance space

Figure 1 demonstrates how XDGMM works on chem-
ical abundance space data. It shows 2D projections for
five of the 24 abundances spanned by the GALAH DR3
red-clump sample. For example, the [Mg/Fe] vs [Fe/H]
plot (panel positions 4,1 and 1,4) is the typical [α/Fe]
vs [Fe/H] diagram in which we can, almost by eye even
before applying XDGMM, distinguish the two main local
disk components: thin and thick disk [10]. The panels
for [O/Fe] vs. [Fe/H] (O being another α element) also
show signs of a chemical bimodality.

The XDGMM analysis with 5 components (shown in
the panels above the diagonal in Fig. 1) clearly allows
us to detect and characterise these two disk components
(blue and green ellipses representing thin and thick disk
respectively) and to enhance the visibility of the gap
in abundance space that was partly blurred by obser-
vational uncertainties. We also clearly detect another
component that has emerged as a separate group in the
last 10 years: the high-α metal-rich (hαmr) stars discov-
ered by [11] are clearly picked up as a separate group by
XDGMM (yellow ellipses in Fig. 1).

The remaining two components (red and black) found
by XDGMM in Fig. 1 correspond to stars with larger
abundance uncertainties and thus can be considered as
noise (see also Table I).

B. Analysing kinematics space

After applying XDGMM, we may calculate the proba-
bility of each point to belong to each component [9]:

p(j | xi) =
αjN (µj , σj)∑M
j=1 αjN (µj , σj)

, (4)

and paint each star according to their highest member-
ship probability p(j|xi). We can now project the different
abundance groups in kinematics space.

FIG. 2: Galactic distribution (in Galactocentric cylindrical
coordinates) of the three main subgroups found by XDGMM
with 5 components (using the same colours as in Fig. 1). For
each group we show four iso-density contours; outliers are
shown as individual points.

To visualize the Galactic distribution of the sample, in
Fig. 2 we plot Galactocentric coordinates RGal vs. ZGal

for the three main groups found by XDGMM. While a
quantitative analysis is impossible due to the important
selection biases, we comment on some qualitative results.
The green (thick disc) and yellow (hαmr) components

concentrate closer to the inner disk, while the blue (local
thin disc) extends to larger Galactocentric radii; some
stars reach distances of RGal > 10 kpc. The green group
is more extended in vertical direction too, while the other
two components are flatter. Fig. 2 thus clearly justifies
the names we have attached to the blue and green com-
ponents based on their chemical abundances in Sect. A,
and confirms that the scale length of the thick disc is
shorter than that of the thin disc [12].
The yellow group is concentrated near the Sun and

does not extend as far into the outer disc as the blue
group. It is likely that a large part of the hαmr group
is made up of migrated stars that were born in the inner
disk and migrated to the solar environment.
Fig. 3 shows the kinematics of the three main chemical

groups in the GALAH RC sample in the classic Toomre
diagram. We see that most stars are co-rotating with the
Galactic disc; only 8 of them have retrograde orbits (v <
vGAL
ϕ = 0) and thus belong to the retrograde halo. Stars

with a total velocity vLSR > 180 km · s−1 are most likely
halo stars [13], which means that the green component
contains a number of halo stars; although we have seen
most of it is part of the thick disk (section IVA).
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In contrast, yellow and blue components are clear can-
didates for kinematically cold disk populations. Not
only have they an average velocity close to the Local
Standard of Rest but also the perpendicular component√
vR2 + vZ2 is quite low.

FIG. 3: Toomre diagram of the three main subgroups (us-
ing the same colours as in Fig. 1, in the same style as Fig.
2). The x axis shows the azimuthal velocity vϕ, while the
y axis shows the absolute velocity component perpendicu-
lar to vϕ. The dashed red line indicates a total velocity of
vLSR
T = 180 km · s−1 with respect to local standard of rest,
while the continuous red line indicates zero tangential veloc-
ity.

The Sun has an angular velocity of vGAL
ϕ ≈ 248 km ·

s−1, which combined with its peculiar motion with re-
spect to the local standard of rest (+11 km·s−1) means
that the average orbital velocity of the thin disk is around
237 km · s−1 [14]. We find mean velocities of 235.1
km · s−1, 221.6 km · s−1 and 194.6 km · s−1 for the blue,
yellow and green groups respectively, which reaffirms that
most of the stars from the first two groups kinematically
belong to the thin disk.

As in the previous Fig. 2, the Toomre diagram in Fig.
3 does not contain the red and black populations (noisy
abundance measurements) that would appear as very
scattered points.

Finally, Fig. 4 shows the orbit distribution (Zmax vs.
ecc in doubly logarithmic scale) of the three abundance
groups (as reported in the GALAH DR3 catalogue). We
see that the two quantities are correlated for all sub-
groups, albeit with significant scatter. We also see, in
accordance with Figs. 2 and 3, that the green (thick-
disc) population moves on more eccentric orbits that also
reach higher altitudes above the Galactic plane. The yel-
low population falls somewhat in-between the blue and
the green population in this diagram.

Kinematically, stars with ecc > 0.55 (log(ecc) >
−0.26) are on very radial orbits and cannot be considered
disk stars; so the top right of the diagram are candidates
for (kinematically defined) halo stars. We find that the
range of 0.5 < ecc < 0.7 (−0.25 < log(ecc) < −0.15)

FIG. 4: Orbit distribution. The colors of the components are
the same we used in Fig. 1. We show the relation beetween
the maximum height with respect to the Galactic plane and
the eccentricity (we made the logarithm of the two variables
for easier visualization).

is sparsely populated, possibly indicating a physical gap
between thick disk and halo stars.

C. Higher-order description of abundance space

Gaussian Mixture Models with few components are
commonly used for clustering. Increasing the number
of Gaussians is more useful for approximating the prob-
ability density function, at the expense of an increase in
the number of parameters. We have run XDGMM for
a higher number (up to 30) of Gaussian components to
describe the chemical-abundance space of the local disk
more accurately.

The results in the 24-dimensional GALAH DR3 abun-
dance space are, unfortunately, too complex to show
them here in the same style as in Fig. 1, so we exem-
plify them in tabular form in Table I. The first table of
I summarises and quantifies our findings from Sect. A:
the thin disk component (blue group) has higher mean
metallicity than the thick disk (green group). The en-
hancement of α elements in the thick disk is evident in
the abundance of [O/Fe] of the green component. The
table also lists the minimum abundance elements in each
group. For example, the low [Y/Fe] for yellow group
suggests that this group is probably old (no time for s-
process enhancement).

The bottom table of Table I shows the results for an
XDGMM analysis with 10 Gaussian components. With
higher number of components, the results become harder
to interpret, but possibly also more interesting, as it
should become possible to detect groups of outliers with
peculiar chemical composition.

Treball de Fi de Grau 4 Barcelona, January 2022



XDGMM of GALAH abundance space Aleix Cuevas Bullich

Component colour % in sample Mean [Fe/H] [Fe/H] dispersion Max.[X/Fe] Min.[X/Fe]

Black 11.6% -0.024 0.15 [V/Fe] [Ce/Fe]

Red 3.6% -0.309 0.19 [Ba/Fe] [Fe/H]

Yellow 37.1% -0.037 0.07 [V/Fe] [Y/Fe]

Green 21.1% -0.308 0.13 [O/Fe] [Fe/H]

Blue 26.6% -0.213 0.13 [Ba/Fe] [Fe/H]

Component colour % in sample Mean [Fe/H] [Fe/H] dispersion Max.[X/Fe] Min.[X/Fe]

Black 12.7% -0.159 0.10 [V/Fe] [Fe/H]

Red 19.9% -0.073 0.07 [Ba/Fe] [Ce/Fe]

Gold 16.2% 0.013 0.06 [V/Fe] [Y/Fe]

Green 10.0% -0.412 0.09 [O/Fe] [Fe/H]

Blue 2.8% 0.033 0.12 [Ba/Fe] [Ce/Fe]

Orange 7.4% -0.021 0.13 [Ba/Fe] [Fe/H]

Cyan 11.4% -0.305 0.10 [Ba/Fe] [Fe/H]

Lime 1.9% -0.332 0.17 [Ba/Fe] [Fe/H]

Magenta 15.9% -0.187 0.09 [O/Fe] [Fe/H]

Gold 1.7% -0.242 0.21 [V/Fe] [Fe/H]

TABLE I: Results of the 5-component XDGMM (top table) and 10-component XDGMM (bottom): Each row refers to an
abundance group. For each group, we show percentage, metallicity, metallicity spread, maximum and minimum abundance.

V. CONCLUSIONS

Extreme Deconvolution (XDGMM) is effective and
precise in finding and denoising overdensities in stellar
chemical abundance space. The algorithm allows us to
distinguish disk components for a low but arbitrary num-
ber of Gaussians. However, it does not scale favourably
with the size of the data set and the number of Gaussians.
The optimal number of components could be calculated,
e.g. by minimizing the BIC [9].

XDGMM is a promising way to describe the multi-

dimensional abundance-space PDF. Modeling the data
for a larger number of components should work well for
analysing the composition of the local disk environment,
perhaps even quantitatively.
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