
GRAU DE MATEMÀTIQUES

Treball final de grau

Markov chains and Markov chain
Monte Carlo methods

Autor: Ariadna Gómez del Pulgar Martínez

Director: Dr. Carles Rovira Escofet

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, 13 de juny de 2022





Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Discrete-time Markov chains 3
2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Defining properties of discrete-time Markov chains . . . . . . . . . . 6
2.3 n-step transition probabilities . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Recurrence, transience and communicating classes . . . . . . . . . . 13
2.5 Invariant distributions, detailed balance and convergence to equi-

librium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Ergodic theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Monte Carlo methods 33
3.1 Regular Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 When does Monte Carlo fail? . . . . . . . . . . . . . . . . . . . . . . . 36

4 Markov chain Monte Carlo methods 37
4.1 General basis of the algorithms . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The Metropolis algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 The Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . 40
4.4 The Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Determining the total number of iterations . . . . . . . . . . . . . . . 41
4.7 Thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Multidimensional MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9 Worked example: calculation of Γ(3/2) . . . . . . . . . . . . . . . . . 44

i



5 Conclusions 47

Bibliography 49

Appendix A: plots to illustrate the simulation of Γ(3/2) 51

Appendix B: code of the simulation 55



Abstract

The aim of this project is to thoroughly study the main properties of discrete-
time Markov chains with finite state spaces and one of its applications that finds
greatest usage, Markov chain Monte Carlo (MCMC) methods, which are simula-
tion tools to estimate integrals and sample from distributions. A brief description
of regular Monte Carlo is included to introduce and understand MCMC. Aside
from the theoretical description and algorithms, practical considerations to take
into account when implementing MCMC, such as the thermalization of chains
and determining the number of iterations, are included as well. A simple exam-
ple of the calculation of Γ(3/2) is executed so as to illustrate the functioning and
performance of MCMC.

2020 Mathematics Subject Classification. 11K45, 60J10, 60J20, 65C05, 65C40.
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Chapter 1

Introduction

This work presents a description of the properties and behavior of discrete-
time Markov chains of finite state space, and, as an application of these stochastic
processes, Markov chain Monte Carlo methods are presented.

Markov chains are stochastic processes described by an initial distribution and
a matrix that encodes the probabilities of the transitions between different states.
A distinguishing feature of these processes is that the probability of moving to a
certain state only depends on the current state, and not in past states. In Chap-
ter 2, a thorough study of the main results regarding Markov chains is presented,
including all the necessary theorems that ensure the adequate and desired behav-
ior of Markov chain Monte Carlo, such as the asymptotic convergence results and
the ergodic theorem. Only discrete-time Markov chains of finite state space are
described. This is due to the inner nature of simulations and computers. As simu-
lated chains will be updated after each time unit according to a certain algorithm,
they are discrete-time chains, and the finiteness of the quantity of numbers that a
computer can generate and work with implies that the state space will be finite.
However, this does not stop Markov chain Monte Carlo methods to be useful in
infinite-state problems, as we will see.

In Chapter 3, Monte Carlo methods are described as a short introduction to
understand Markov chain Monte Carlo. Monte Carlo methods are simulation
approaches to compute integrals or to sample probability distributions that other-
wise would be too difficult to compute or that would drive an unreliable result.
Both regular Monte Carlo and importance sampling are presented, as well as the
situations in which Monte Carlo fails and Markov chain Monte Carlo is the only
feasible strategy to assess certain problems.

In Chapter 4, Markov chain Monte Carlo methods are presented. The goal of
these methods is the same as regular Monte Carlo, although their nature makes
them appropriate to handle certain problems, especially those that include multi-
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2 Introduction

dimensional distributions. This chapter includes a description of their theoretical
background, the most used algorithms, practical considerations to take when run-
ning them and an illustrative case of the use of a Metropolis algorithm to compute
Γ(3/2) so as to exemplify the mentioned aspects. Multidimensional Markov chain
Monte Carlo are also commented on.

Finally, in Chapter 5 the conclusions of this thesis are exposed as a recapitula-
tion of the most important results that have been previously seen and proven.

As it is in Chapter 2 where the foundations of Markov chains are defined and
the theme of Chapters 3 and 4 is an application of Markov chains, the first chapter
has a much more theoretical and academic sense, including exhaustive proofs of
the results, whereas the last two chapters are notably descriptive.

Basic probability-related definitions, such as independent events, expectancy,
probability space, random variable..., are omitted because of their general knowl-
edge nature and so as to shorten the length of the work. Nonetheless, they can be
found in [1].



Chapter 2

Discrete-time Markov chains

This first chapter is mainly based on the first chapter of [2], and was comple-
mented with the second chapter of [3].

2.1 Basic definitions

Firstly, the basic definitions needed for the construction of the concept of
discrete-time Markov chains will be introduced.

Throughout the entirety of this thesis, we will be working with a probability
space (Ω,F , P).

The first necessary definition to start this work is that of stochastic process.

Definition 2.1. A stochastic process is a family {Xt, t ∈ T} of random variables Xt :
Ω −→ I defined in a common probability space and indexed by the set T.

T is called the index set. It stands for the concept of time and describes the
evolution of the process. If T is uncountable (for instance, T = R or T = [a, b] ⊂
R+), we say that the process evolves in continuous time. On the other hand, if T
is discrete (for instance, T = N), then we say that the process evolves in discrete
time. In that case, when T is increased by one, a unit of time passes. Discrete-time
Markov chains, which are the subject of interest of this work, are examples of the
latter.

The set I is called state-space, and every i ∈ I are called states. From now on,
I will be considered to be a countable set. If, additionally, I is finite, its states will
be labelled as 1, 2, . . . , N.

Definition 2.2. λ = (λi : i ∈ I) is a measure on I if 0 ≤ λi < ∞ for all i ∈ I. If,
additionally, the total mass ∑i∈I λi equals 1, λ is a distribution.

3



4 Discrete-time Markov chains

Distributions and measures can be thought of as row vectors whose compo-
nents are indexed by I.

An example of a distribution that will be recurrently used throughout this
work is the so-called unit mass at i, δi = (δij : j ∈ I), where

δij =

{
1 if i = j
0 otherwise.

Definition 2.3. A matrix P = (pij : i, j ∈ I) is a stochastic matrix if every row (pij : j ∈
I) is a distribution:

• pij ∈ [0, 1] for all i, j ∈ I;

• ∑j∈I pij = 1, for all i ∈ I.

If A = (aij : i, j ∈ I) and B = (bij : i, j ∈ I) are stochastic matrices, then
C = A× B, where C = (cij : i, j ∈ I) is defined as cij = ∑k∈I aikbkj, is a stochastic
matrix as well, since

∑
j∈I

cij = ∑
j∈I

(
∑
k∈I

aikbkj

)
= ∑

k∈I

(
∑
j∈I

aikbkj

)
= ∑

k∈I
aik

(
∑
j∈I

bkj

)
= ∑

k∈I
aik = 1.

Definition 2.4. (Xn)n≥0 is a homogenous Markov chain with initial distribution λ and
transition matrix P, or Markov(λ, P), if

1. X0 has distribution λ: P(X0 = i0) = λi0 ;

2. for n ≥ 0, conditional on Xn = i, Xn+1 has distribution (pij : j ∈ I) and is inde-
pendent of X0, . . . , Xn−1: P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P(Xn+1 =

in+1|Xn = in) = pinin+1 .

The last equality of the second property of Definition 2.4 stands for the ho-
mogeneity of the Markov chain, as it implies that probability does not depend on
time.

A simple way to describe discrete-time Markov chains and, especially, the con-
cept of transition matrices, is by diagrams. Diagrams represent the different states
of the state-space and the possible transitions between states after a unit of time,
as well as the probabilities of those transitions. An illustrative case to describe this
concept is depicted in Example 2.5.
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Example 2.5.

3

2

1

5

4

1/3

1/3

1/3

1/2

1/2 1/2

1/2

1

1

This diagram corresponds to a Markov chain with a state-space of 5 states: I =
{1, 2, 3, 4, 5}. According to the diagram, after a unit of time:

1. If the process is in state 1, the system will stay in state 1 or move to either
states 2 or 3 with a probability of 1/3.

2. If the process is in state 2, the system will move to either states 1 or 3 with a
probability of 1/2.

3. If the process is in state 3, the system will move to either states 4 or 5 with a
probability of 1/2.

4. If the process is in state 4, the system will stay in that state.

5. If the process is in state 5, the system will move to state 3.

The stochastic matrix that corresponds to this diagram is the following one:

P =


1/3 1/3 1/3 0 0
1/2 0 1/2 0 0

0 0 0 1/2 1/2
0 0 0 1 0
0 0 1 0 0


Note that pij ∈ [0, 1] for all i, j ∈ I and ∑j∈I pij = 1, for all i ∈ I, as described

before.

There exists a bijection between stochastic matrices and diagrams.



6 Discrete-time Markov chains

2.2 Defining properties of discrete-time Markov chains

In this section, the most defining properties of Markov chains are presented.

Theorem 2.6. A discrete-time random process (Xn)n≥0 is Markov(λ, P) if and only if
for all i0, . . . , in+1 ∈ I and n ≥ 0

P(X0 = i0, X1 = i1, . . . , Xn = in) = λi0 pi0i1 pi1i2 × · · · × pin−1in . (2.1)

Proof. Suppose that (Xn)n≥0 is Markov(λ, P). Then

P(X0 = i0, X1 = i1, . . . , Xn = in) =

= P(Xn = in|X0 = i0, . . . , Xn−1 = in−1)P(X0 = i0, . . . , Xn−1 = in−1)

= ... = P(Xn = in|X0 = i0, . . . , Xn−1 = in−1)×
×P(Xn−1 = in−1|X0 = i0, . . . , Xn−2 = in−2)× · · · ×P(X0 = i0)

= pin−1in pin−2in−1 · · · λi0 .

Here, the definition of conditional probability, P(A ∩ B) = P(A|B)P(B), was
used n− 1 times, and in the last equality the properties (1) and (2) of Definition 2.4
were used.

To prove the converse implication, we have to see that, if (Xn)n≥0 satisfies (2.1),
then it also satisfies properties (1) and (2) of Definition 2.4.

1. For n = 1, we have

P(X0 = i0, X1 = i1) = λi0 pi0i1 .

Therefore

P(X0 = i0) = ∑
i1∈I

P(X0 = i0, X1 = i1) = ∑
i1∈I

λi0 pi0i1 = λi0 ∑
i1∈I

pi0i1 = λi0 ,

since P is a stochastic matrix and each of its rows is a distribution.

2. By the definition of conditional probability,

P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) =

=
P(X0 = i0, . . . , Xn+1 = in+1)

P(X0 = i0, . . . , Xn = in)

=
λi0 pi0i1 × . . .× pin−1in pinin+1

λi0 pi0i1 × . . .× pin−1in

= pinin+1 .
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On the other hand,

P(Xn+1 = in+1|Xn = in) =

=
P(Xn = in, Xn+1 = in+1)

P(Xn = in)

=
∑i0∈I ... ∑in−1∈I P(X0 = i0, . . . , Xn−1 = in−1, Xn = in, Xn+1 = in+1)

P(Xn = in)

=
∑i0∈I ... ∑in−1∈I λi0 pi0i1 × · · · × pin−1in pinin+1

P(Xn = in)

=
pinin+1 ∑i0∈I ... ∑in−1∈I λi0 pi0i1 × · · · × pin−1in

P(Xn = in)

=
pinin+1 ∑i0∈I ... ∑in−1∈I P(X0 = i0, . . . , Xn−1 = in−1, Xn = in)

P(Xn = in)

=
pinin+1P(Xn = in)

P(Xn = in)

= pinin+1 .

Therefore, P(Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P(Xn+1 = in+1|Xn =

in) = pinin+1 , as we wanted to see.

The two following theorems reinforce the idea of the lack of memory of Markov
chains. One of them, the strong Markov property, requires an extra definition:
stopping times.

Theorem 2.7. (Markov property). Let (Xn)n≥0 be Markov(λ, P). Then, conditional
on Xm = i, (Xm+n)n≥0 is Markov(δi, P) and is independent of the random variables
X0, . . . , Xm.

Proof. Recall that, by definition, two events A and B are conditionally independent
if, given a third event C, P(A ∩ B|C) = P(A|C)P(B|C). We have to prove that, for
any event A determined by X0, . . . , Xm,

P({Xm = im, . . . , Xm+n = im+n} ∩ A|Xm = i) =

= P(Xm = im, . . . , Xm+n = im+n|Xm = i)P(A|Xm = i)

= δiim pimim+1 · · · pim+n−1im+1P(A|Xm = i),

and then the result follows from Theorem 2.6.
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First, consider the case of elementary events A = {X0 = i0, . . . , Xm = im}. In
that case

P({Xm = im, . . . , Xm+n = im+n} ∩ A|Xm = i) =

= P(X0 = i0, . . . , Xm+n = im+n|Xm = i)

=
P(X0 = i0, . . . , Xm+n = im+n, Xm = i)

P(Xm = i)

=
P(Xm = im, . . . , Xm+n = im+n, i = im)P(X0 = i0, . . . , Xm = im, i = im)

P(Xm = i)

= δiim pimim+1 · · · pim+n−1im+n P(X0 = i0, . . . , Xm = im|Xm = i)

= δiim pimim+1 · · · pim+n−1im+n P(A|Xm = i).

Here, the independency of Markov chains expressed in the second property of
Definition 2.4 and the equation (2.1) were used.

Generally, any event A determined by X0, . . . , Xm can be written as a countable
disjoint union of elementary events of the previous form:

A =
∞⋃

k=1

Ak.

Because of the σ-additivity of P, the expression holds:

P({Xm = im, . . . , Xm+m = im+n} ∩ A|Xm = i) =

= P({Xm = im, . . . , Xm+n = im+n} ∩
∞⋃

k=1

Ak|Xm = i)

=
∞

∑
k=1

P({Xm = im, . . . , Xm+n = im+n} ∩ Ak|Xm = i)

=
∞

∑
k=1

δiim pimim+1 · · · pim+n−1im+n P(Ak|Xm = i)

= δiim pimim+1 · · · pim+n−1im+n

∞

∑
k=1

P(Ak|Xm = i)

= δiim pimim+1 · · · pim+n−1im+n P(
∞⋃

k=1

Ak|Xm = i)

= δiim pimim+1 · · · pim+n−1im+n P(A|Xm = i).

Definition 2.8. A random variable T : Ω → {0, 1, . . .} ∪ {∞} is a stopping time if the
event {T = n} depends only on X0, . . . , Xn for n = 0, 1, 2, . . ..
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Figure 2.1: diagram that illustrates the concepts of the first rth passage times and
excursions to state 2 of a Markov chain.

Some examples of stopping times that will be frequently dealt with during this
work are the following:

• The first passage time, defined as

Ti(ω) = inf{n ≥ 1 : Xn(ω) = i},

where inf∅ = ∞. The rth passage time T(r)
i to state i can be defined induc-

tively by

T(0)
i (ω) = 0,

T(1)
i (ω) = Ti(ω),

T(r+1)
i (ω) = inf{n ≥ T(r)

i (ω) + 1 : Xn(ω) = i}, for r = 0, 1, 2, . . .

• The length of the rth excursion to i, S(r)
i , is defined as

S(r)
i =

{
T(r)

i − T(r−1)
i if T(r−1)

i < ∞
0 otherwise.

A simple illustration of these concepts is depicted in Figure 2.1.
From now on, the notation with subindex Pi(A) will be used to refer to the

conditional probability P(A|X0 = i). In a similar sense, when dealing with condi-
tional expectancies, they will be written as Ei(A).
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Theorem 2.9. (Strong Markov property). Let (Xn)n≥0 be Markov(λ, P) and let T
be a stopping time of (Xn)n≥0. Then, conditional on T < ∞ and XT = i, (XT+n)n≥0 is
Markov(δi, P) and independent of X0, . . . , XT.

Proof. Let B be and event determined by X0, . . . , XT. Once again, by the definition
of conditional independency, it has to be proven that

P({XT = j0, . . . , XT+n = jn} ∩ B|T < ∞, XT = i) =

= Pi(X0 = j0, . . . , Xn = jn)P(B|T < ∞, XT = i).

Note that, as T < ∞, it can be said that T = m. Then, B ∩ {T = m} is
determined by X0, . . . , Xm. Then by the Markov property at time T, (XT+n)n≥0 is
Markov(δi, P) and is independent of X0, . . . , XT. Therefore, it is independent of B
and T as well. Then,

P({XT = j0, . . . , XT+n = jT+n} ∩ B ∩ {T = m} ∩ {XT = i}) =
= Pi(X0 = j0, . . . , Xn = jn)P(B ∩ {T = m} ∩ {XT = i}).

(2.2)

If we sum over m = 0, 1, 2, . . . (that is, all the different possible values of T) and
then use the σ-additivity of P on the left-hand side of (2.2), we get that

∑
m≥0

P({XT = j0, . . . , XT+n = jT+n} ∩ B ∩ {T = m} ∩ {XT = i}) =

= P({XT = j0, . . . , XT+n = jT+n} ∩ B ∩
⋃

m≥0

{T = m} ∩ {XT = i})

= P({XT = j0, . . . , XT+n = jT+n} ∩ B ∩ {T < ∞} ∩ {XT = i}).

If we do so on the right-hand side of (2.2), we get

∑
m≥0

Pi(X0 = j0, . . . , Xn = jn)P(B ∩ {T = m} ∩ {XT = i})

= Pi(X0 = j0, . . . , Xn = jn) ∑
m≥0

P(B ∩ {T = m} ∩ {XT = i})

= Pi(X0 = j0, . . . , Xn = jn)P(B ∩
⋃

m≥0

{T = m} ∩ {XT = i})

= Pi(X0 = j0, . . . , Xn = jn)P(B ∩ {T < ∞} ∩ {XT = i}).

Thus, we get that

P({XT = j0, . . . , XT+n = jT+n} ∩ B ∩ {T < ∞} ∩ {XT = i}) =
= Pi(X0 = j0, . . . , Xn = jn)P(B ∩ {T < ∞} ∩ {XT = i}).

(2.3)
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Now, if we divide the left-hand side of (2.3) by P(T < ∞, XT = i) and use the
definition of conditional probability, we obtain that

P({XT = j0, . . . , XT+n = jT+n} ∩ B ∩ {T < ∞} ∩ {XT = i})
P(T < ∞, XT = i)

=

= P({XT = j0, . . . , XT+n = jT+n} ∩ B|{T < ∞} ∩ {XT = i}).

If we do so on the right-hand side of (2.3), we obtain

Pi(X0 = j0, . . . , Xn = jn)P(B ∩ {T < ∞} ∩ {XT = i})
P(T < ∞, XT = i)

= Pi(X0 = j0, . . . , Xn = jn)P(B|{T < ∞} ∩ {XT = i}).

Therefore, we can conclude that

P({XT = j0, . . . , XT+n = jT+n} ∩ B|{T < ∞} ∩ {XT = i}) =
= Pi(X0 = j0, . . . , Xn = jn)P(B|{T < ∞} ∩ {XT = i}),

as wanted.

2.3 n-step transition probabilities

In this section, we will talk about how to compute the probability of reaching
any state in a certain amount of time or number of steps.

Recall that a distribution λ can be thought of as a row vector, and if the state-
space I is finite then λ will be an N-vector. In that case, a stochastic matrix P will
be an N × N-matrix.

The multiplication of a row vector and a matrix, λP, is defined as

(λP)j = ∑
i∈I

λi pij,

and the matrix P2 = P× P is defined as

(P2)ij = ∑
j∈I

pij pjk.

By recursion of this last expression, we can define the n-th power of a matrix
P, Pn, as

(Pn)ij = ∑
i2∈I

. . . ∑
in−1∈I

pii2 pi2i3 · · · pin−2in−1 pin−1 j.

P0 is defined as the identity matrix, (Id)ij = δij.
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From now on, the (i, j) entry in Pn will be referred to as p(n)ij = (Pn)ij.
The probability that after n steps the Markov chain is in a given state j cor-

responds to (λPn)j, and the probability to reach state j from state i in n states is

given by p(n)ij . Both of this particularities are proven in the following theorem.

Theorem 2.10. Let (Xn)n≥0 be Markov(λ, P). Then, for all n, m ≥ 0,

1. P(Xn = j) = (λPn)j;

2. Pi(Xn = j) = P(Xn+m = j|Xm = i) = p(n)ij .

Proof. 1. We can compute the probability P(Xn = j) as

P(Xn = j) = ∑
i0∈I

. . . ∑
in−1∈I

P(X0 = i0, . . . , Xn−1 = in−1, Xn = j)

= ∑
i0∈I

. . . ∑
in−1∈I

λi0 pi0i1 × . . .× pin−1 j

= ∑
i0∈I

λi0 p(n)i0 j

= (λPn)j.

In the second equality, Theorem 2.6 was used.

2. By the Markov property, conditional on Xm = i, (Xm+n)n≥0 is Markov(δi, P).
If we take λ = δi in (1), we obtain

Pi(Xn = j) = (δiP)j = ∑
i∈I

δij p
(n)
ij = p(n)ij .

As Pn+m = PnPm, then

p(n+m)
ij = ∑

k∈i
p(n)ik p(m)

kj . (2.4)

This last result is known as the Chapman-Kolmogorov equation. It implies
that the probability of reaching the state j in n + m steps if we part from state
i equals the sum of the probabilities of all the different possible trajectories that
connect i and j in that same amount of steps.
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2.4 Recurrence, transience and communicating classes

Definition 2.11. Let (Xn)n≥0 be a Markov chain with transition matrix P, and let i, j be
states. We say that i leads to j, or i −→ j, if

Pi(Xn = j for some n ≥ 0) > 0.

We say that i communicates with j, or i←→ j, if both i −→ j and j −→ i

In other words, a state i leads to state j if it is possible to reach state j parting
from state i. If, additionally, it is possible to return to state i from state j, we say
that i communicates with j.

The following theorem gives several ways to identify wether or not one state
leads to another one.

Theorem 2.12. For distinct states i and j the following are equivalent:

• i −→ j;

• pi1i2 pi2i3 × · · · × pin−1in > 0 for some states i1, . . . , in with i1 = i, in = j;

• p(n)ij > 0 for some n ≥ 0.

Proof. First, note that, since by Theorem 2.10 p(n)ij = Pi(Xn = j),

p(n)ij ≤ Pi(Xn = j for some n ≥ 0).

Therefore, if p(n)ij > 0, then Pi(Xn = j for some n ≥ 0) > 0, which implies that
i −→ j. As a consequence, (3) =⇒ (1). Additionally, if i −→ j, then Pi(Xn =

j for some n ≥ 0), and therefore for that same n we have that Pi(Xn = j) = p(n)ij >

0. Thus, (1) =⇒ (3), and (1)⇐⇒ (3).
On the other hand, by the definition of the n-th power of a matrix P, we have

that
p(n)ij = ∑

i2∈I
. . . ∑

in−1∈I
pii2 pi2i3 × · · · × pin−1 j.

As a consequence, if p(n)ij > 0, then ∑i2∈I . . . ∑in−1∈I pii2 pi2i3 × · · · × pin−1 j > 0,
and thus one of the summands has to be positive. Therefore, there exist some
states i1, . . . , in with i1 = i, in = j such that pi1i2 pi2i3 × · · · × pin−1in > 0. Since in
this case we are dealing with an equality, the converse also holds. This proves that
(3)⇐⇒ (2).
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In the light of this last theorem,←→ defines an equivalence relation on I, since

• ←→ is transitive: if i −→ j, then pi1i2 × · · · × pin−1in > 0 for some states
i1, . . . , in with i1 = i, in = j, and if j −→ k, then pj1 j2 × · · · × pjm−1 jm > 0 for
some states j1, . . . , jm with j1 = j, jn = k. Therefore, pi1i2 × · · · × pin−1in pj1 j2 ×
· · · × pjm−1 jm > 0 for some states i1, . . . , in, j1, . . . , jm with i1 = i and jm = k,
and thus i −→ k. The same reasoning applies for k −→ j −→ i. As a
consequence, if i←→ j←→ k, then i←→ k;

• ←→ is reflexive: since, by Theorem 2.7, conditional on X0 = i, (Xn)n≥0 is
Markov(δi, P), Pi(X0 = i) = 1, and therefore P(Xn = i for some n ≥ 0) =

1 > 0. Thus, i −→ i, and this implies that i←→ i;

• ←→ is symmetric: if i←→ j, then i −→ j and j −→ i, and therefore j←→ i.

Since ←→ is an equivalence relation, it partitions I into equivalence classes,
which are denominated communicating classes.

Definition 2.13. Let C be a communicating class of a Markov chain. We say that C is
closed if

i ∈ C, i −→ j =⇒ j ∈ C.

This last definition means that a Markov chain will not escape a closed class:
once it visits a state in this communicating class, it will keep visiting states in that
same class.

Definition 2.14. We say that a state i is absorbing if {i} is a closed class.

Once a chain visits an absorbing state, it will remain in that state forever. In
Example 2.5, state 4 is an absorbing state.

Definition 2.15. An irreducible chain is a chain or transition matrix P where I is a single
class.

In an irreducible chain, each state is accessible from each one of the other
states. In this type of chains, features that are class properties affect all the states
in I.

Definition 2.16. Let (Xn)n≥0 be a Markov chain with transition matrix P. We say that
a state i is recurrent if

Pi(Xn = i for infinitely many n) = 1.

We say that a state i is transient if

Pi(Xn = i for infinitely many n) = 0.
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A recurrent state is a state that the Markov chain will keep visiting, whereas a
transient state is a state that the chain will eventually leave and not return to.

Each state in a Markov chain is either transient or recurrent, and, moreover,
recurrence and transience are class properties. This will be seen in Theorem 2.21
and Theorem 2.22. However, to prove that we first need two previous lemmas and
various definitions. The proofs of these lemmas are omitted because of their sim-
plicity. Among those, the rth passage time T(r)

i and the length of the rth excursion

to state i, S(r)
i , are used. Recall that they were presented as examples of stopping

times earlier in this work.

Lemma 2.17. For r = 2, 3, . . ., conditional on T(r−1)
i < ∞, S(r)

i is independent of {Xm :

m ≤ T(r−1)
i } and

P(S(r)
i = n|T(r−1)

i < ∞) = Pi(Ti = n).

Proof. Can be found in [2].

Recall that the indicator function 1{Xi=j} is the random variable defined as

1{Xi=j} =

{
1 if Xi = j
0 otherwise.

This variable will be recurrently used from now on, starting on the following
definition.

Definition 2.18. The number of visits to state i, Vi, is the random variable defined as

Vi =
∞

∑
n=0

1{Xn=i}.

By definition of the indicator function, each time that the chain visits state i we
will sum one unity to Vi, thus obtaining the total number of visits to that state.

Definition 2.19. The return probability to state i, fi, is defined as the probability, condi-
tional on X0 = i, that the first passage time is finite:

fi = Pi(Ti < ∞).

Lemma 2.20. For r = 0, 1, 2, . . ., we have Pi(Vi > r) = f r
i .

Proof. Can be found in [2].
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Although Lemma 2.17 and Lemma 2.20 might seem slightly cryptic, their
meaning is quite straightforward.

For Lemma 2.17, we have that, since S(r)
i = T(r)

i − T(r−1)
i , then it is first required

that T(r−1)
i is finite for S(r)

i to be finite. If that is fulfilled, the probability that the

length of the rth excursion S(r)
i is n equals the probability that the next passage

time to i after the (r− 1)th passage, T(r)
i , equals n. Because of the independency

on the past of Markov chains, this last probability is the same as the probability
that the first passage time happens at time n. This independency on the past also
introduces the idea that S(r)

i , which depends on T(r)
i and T(r−1)

i , is independent on

anything that happened before T(r−1)
i .

For Lemma 2.20, we have that, in order to have a visit to state i, then we must
have Ti < ∞. Thus, the probability that the number of visits to state i is, at least,
r, equals the probability that at least the first r passage times to state i are finite,
which, due to independency, corresponds to the multiplication, r times, of the
probability that Ti < ∞.

Theorem 2.21. The following dichotomy holds:

1. if Pi(Ti < ∞) = 1, then i is recurrent and ∑∞
n=0 p(n)ii = ∞;

2. if Pi(Ti < ∞) < 1, then i is transient and ∑∞
n=0 p(n)ii < ∞.

Proof. 1. If Pi(Ti < ∞) = 1, then, by definition of fi, fi = 1. As a consequence,
by Lemma 2.20

Pi(Vi = ∞) = lim
r→∞

Pi(Vi > r) = lim
r→∞

f r
i = lim

r→∞
1r = 1.

This implies that the state i is recurrent, as (Xn)n≥0 will visit i infinitely many
times with probability 1.

Now, note that the expected value of the number of visits Vi is

Ei(Vi) = Ei

(
∞

∑
n=0

1{Xn=i}

)
=

∞

∑
n=0

Ei
(
1{Xn=i}

)
=

∞

∑
n=0

Pi(Xn = i) =
∞

∑
n=0

p(n)ii .

Here, Theorem 2.10 was used to express Pi(Xn = i) as p(n)ii .

Ei(Vi) can also be computed as Ei(Vi) = ∑∞
n=0 nPi(Vi = n), and since

Pi(Vi = ∞) = 1, Ei(Vi) = ∞, and therefore ∑∞
n=0 p(n)ii = ∞, as we wanted to

see.
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2. If Pi(Ti < ∞) < 1, then fi < 1 and

∞

∑
n=0

p(n)ii = Ei(Vi) =
∞

∑
r=0

Pi(Vi > r) =
∞

∑
r=0

f r
i =

1
1− fi

< ∞,

as we wanted to see. The fact that fi < 1 ensures the convergence of the
geometric progression.

Additionally, Ei(Vi) < ∞ implies that Pi(Vi = ∞) = 0, which means that
(Xn)n≥0 will not visit the state i infinitely many times, and therefore i is
transient.

An important particularity arises from this last result: as Pi(Ti < ∞) is either
1 or smaller than 1, every state is either transient or recurrent.

Theorem 2.22. Let C be a communicating class. Then either all states in C are transient
or all are recurrent.

Proof. Let i, j be any pair of states in a communicating class C, and suppose that
i is transient. Since i ←→ j, then there exist n, m ≥ 0 such that p(n)ij > 0 and

p(m)
ji > 0. For all r,

p(n+r+m)
ii ≥ p(n)ij p(r)jj p(m)

ji ,

as p(n+r+m)
ii accounts for all the different routes that connect the state i with itself,

and not only those that have an incursion in state j. Thus

p(r)jj ≤
p(n+r+m)

ii

p(n)ij p(m)
ji

=⇒
∞

∑
r=0

p(r)jj ≤
∞

∑
r=0

p(n+r+m)
ii

p(n)ij p(m)
ji

=
1

p(n)ij p(m)
ji

∞

∑
r=0

p(n+r+m)
ii < ∞,

where the second result of Theorem 2.21 has been used. Once again by Theo-
rem 2.21, this implies that j is also a transient state.

The converse implies the recurrence class property.

Since recurrence and transience are class properties, if a chain is irreducible,
then it is entirely either transient or recurrent. If the second case holds, then, for
each pair of states i, j ∈ I Pi(Xn = j for some n ≥ 0) = 1; that is, we can reach state
j in n steps if we part from state i for a certain n ≥ 0, which implies that there
exists n ≥ 0 such that p(n)ij > 0.
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The following theorem is necessary to prove several forthcoming results, such
as the ergodic theorem. The proof will be omitted for simplicity reasons. Nonethe-
less, it shows a intuitable result: that if a chain is irreducible and recurrent, as we
will keep visiting each of the states, then the first passage time to all states from
any of the other states must be finite.

Theorem 2.23. Suppose P is irreducible and recurrent. Then, for all j ∈ I we have
P(Tj < ∞) = 1.

Proof. Can be found in [2].

2.5 Invariant distributions, detailed balance and convergence
to equilibrium

Definition 2.24. We say that a measure λ is invariant (also referred to as stationary or
equilibrium) for a matrix P if

λP = λ.

Note that an invariant measure corresponds to an eigenvector of eigenvalue 1
of the matrix P, if there exists such eigenvalue.

Furthermore, if λ is invariant for P, then λPn = λ for every n ≥ 2, as

λPn = (λP)Pn−1 = λPn−1 = (λP)Pn−2 = λPn−2 = . . . = λ.

This, together with Theorem 2.10, gives an idea of the meaning of an invariant
distribution. If we reach an invariant distribution at some point, from that time
on the distribution of states will be that same one: the probability of being in a
certain state will remain the same regardless the number of steps. Moreover, if the
initial distribution λ is invariant, after each step the probability distribution of the
states is always the same, and equal to the initial distribution. This explains the
term "invariant" used to refer to this type of distributions.

Definition 2.25. A stochastic matrix P and a measure λ are said to be in detailed balance
if

λi pij = λj pji for all i, j.

The distributions that are in detailed balance with P are invariant for P, as we
will see in the following lemma. This will be crucial to ensure the convergence of
Markov chain Monte Carlo methods.
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Lemma 2.26. If P and λ are in detailed balance, then λ is invariant for P.

Proof. For every i ∈ I, we have

(λP)i = ∑
j∈I

λj pji = ∑
j∈I

λi pij = λi ∑
j∈I

pij = λi,

as P is a stochastic matrix. Thus, λ = λP, and therefore λ is invariant for P, as
wanted.

Definition 2.27. If a state i ∈ I is recurrent, its expected return time, mi, is defined as
the expected value, conditional on X0 = i, of the first passage time to state i:

mi = Ei(Ti).

A stronger property than recurrence related to the expected return time is
positive recurrence.

Definition 2.28. A state i is positive recurrent if its expected return time is finite:

mi < ∞.

Otherwise, it is called null recurrent.

Note that, if a state is positive recurrent, it is, in particular, recurrent.
As happens with recurrence and transience as well, positive recurrence is a

class property. Furthermore, a relevant result about Markov chains is that, if
a chain is irreducible and positive recurrent, it has an invariant distribution, π,
which corresponds to πi = 1/mi. This result will be proven in Theorem 2.32.
However, to prove that we first need other theorems related to the expected time
spent in a certain state between visits to another state, which is presented in the
following definition.

Definition 2.29. For a fixed state k, the expected time spent in state i between visits to k
is defined as

γk
i = Ek

(
Tk−1

∑
n=0

1{Xn=i}

)
.

Once again, in this last definition the indicator function accounts for the num-
ber of times that the chains visits a state. In this case, it counts the number of
times that the chain visits a state i between times 0 and the first passage time to
state k parting from k.

Theorem 2.30. Let P be irreducible and recurrent. Then



20 Discrete-time Markov chains

1. γk
k = 1;

2. γk = (γk
i : i ∈ I) satisfies γkP = γk (that is, γk is invariant for P);

3. 0 < γk
i < ∞ for all i ∈ I.

Proof. 1. By definition, γk
k = Ek ∑Tk−1

n=0 1{Xn=k}. Since Tk is the first passage time
to state k, the chain will not visit this state until that moment, and therefore
1{Xn=k} = 0 except for n = 0. Thus, γk

k = 1.

2. For n = 1, 2, . . . the event {n ≤ Tk} depends only on X0, . . . Xn+1, as it is
only required that any of those variables is equal to k. Then, by the Markov
property at n− 1,

Pk(Xn−1 = i, Xn = j and n ≤ Tk) =

= Pk(Xn−1 = i and n ≤ Tk)Pi(X1 = j)

= Pk(Xn−1 = i and n ≤ Tk)pij.

As P is recurrent, by Theorem 2.23 we have that Pk(Tk < ∞) = 1. As a
consequence, under Pk, Tk < ∞ and, by definition of first passage time,
X0 = XTk = k with probability 1. Therefore

γk
j = Ek

(
Tk−1

∑
m=0

1{Xm=j}

)

= Ek

(
Tk

∑
n=1

1{Xn=j}

)

= Ek

(
∞

∑
n=1

1{Xn=j and n≤Tk}

)

=
∞

∑
n=1

Pk(Xn = j and n ≤ Tk)

=
∞

∑
n=1

∑
i∈I

Pk(Xn−1 = i, Xn = j and n ≤ Tk)

=
∞

∑
n=1

∑
i∈I

Pk(Xn−1 = i and n ≤ Tk)pij
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= ∑
i∈I

pij

∞

∑
n=1

Pk(Xn−1 = i and n ≤ Tk)

= ∑
i∈I

pij

∞

∑
m=0

Pk(Xm = i and m ≤ Tk − 1)

= ∑
i∈I

pijEk

(
∞

∑
m=0

1{Xm=i and m≤Tk−1}

)

= ∑
i∈I

pijEk

(
Tk−1

∑
m=0

1{Xm=i}

)
= ∑

i∈I
γk

i pij.

This implies that, by the definition of the multiplication of a matrix by a
vector, for every j ∈ I γk

j = (γkP)j, and therefore γk = γkP, as wanted.

In this development, two different changes of variable were used. Firstly,
n was substituted by m + 1. However, this variation only affects the limits
of the sum, and not the indicator function, since X0 = XTk = k 6= j with
probability 1. The second substitution was, again, changing m by n − 1,
which does affect both the limits of the sum and the considered states.

3. Since P is irreducible, for each state i ∈ I there exist n, m ≥ 0 such that
p(n)ik , p(m)

ki > 0. As it has just been proved, γk = γkP, and as a consequence
γk = γkPm. Therefore

γk
i = (γkPm)i = ∑

j∈I
γk

j p(m)
ji = γk

k p(m)
ki + ∑

j∈I,j 6=k
γk

j p(m)
ji = p(m)

ki + ∑
j∈I,j 6=k

γk
j p(m)

ji .

Since ∑j∈I,j 6=k γk
j p(m)

ji ≥ 0, we have that γk
i ≥ p(m)

ki , which, at the same time, is
greater than 0. This implies that 0 < γk

i , as wanted.

Additionally, using a similar argument, we have that

1 = γk
k = (γkPn)k = ∑

j∈I
γk

j p(n)jk = γk
i p(n)ik + ∑

j∈I,j 6=i
γk

j p(n)jk .

Since ∑j∈I,j 6=i γk
j p(n)jk ≥ 0, we have that 1 ≥ γk

i p(n)ik . As 1 ≥ p(n)ik > 0, γk
i has to

be finite, as wanted.

The third implication of this last theorem shows an interesting result: if a
Markov chain with transition matrix P is irreducible and recurrent, then the ex-
pected visits to any other state in between visits to a fixed state k will, surely, not
be 0.
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Theorem 2.31. Let P be irreducible and let λ be an invariant measure for P with λk = 1.
Then λ ≥ γk. The equality holds when, in addition, P is recurrent.

Proof. For each j ∈ I, since λ is an invariant measure, we have

λj = ∑
i1∈I

λi1 pi1 j

= ∑
i1 6=k

λi1 pi1 j + λk pkj

= ∑
i1 6=k

λi1 pi1 j + pkj

= ∑
i1 6=k

(
∑
i2∈I

λi2 pi2i1

)
p11 j + pkj

= ∑
i1,i2 6=k

λi2 pi2i1 p11 j + ∑
i1 6=k

λk pki1 pi1 j + pkj

= ∑
i1,i2 6=k

λi2 pi2i1 p11 j + ∑
i1 6=k

pki1 pi1 j + pkj

= . . . = ∑
i1,...,in= 6=k

λin pinin−1 · · · pi1 j +

+

(
pkj + ∑

i1 6=k
pki1 pi1 j + . . . + ∑

i1,...,in−1 6=k
pkin−1 · · · pi2i1 pi1 j

)
.

As ∑i1,...,in 6=k λin pinin−1 · · · pi1 j ≥ 0, for j 6= k we have

λj ≥ pkj + ∑
i1 6=k

pki1 pi1 j + . . . + ∑
i1,...,in−1 6=k

pkin−1 · · · pi2i1 pi1 j.

Each of the summands of this last expressions stands for the probability that,
parting from state j, the chain will not reach state k again until a certain step,
as they take into account every possible route that connect states j and k for the
first time in a certain amount of steps. In other words, for each m ≤ n − 1,
∑i1,...,im 6=k pkim · · · pi1 j = Pk(Xm = j and Tk ≥ m). Therefore

λj ≥
n−1

∑
m=1

Pk(Xm = j and Tk ≥ m)

−→
∞

∑
m=1

Pk(Xm = j and Tk ≥ m) = γk
j as n −→ ∞.

Here, it was used that γk
j = ∑∞

n=1 Pk(Xn = j and n ≤ Tk), as was observed in the
proof of Theorem 2.30.

Therefore, λ ≥ γk, as wanted.
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Now, suppose that P is additionally recurrent. Then, by Theorem 2.30, we
have that γkP = γk.

Now, let µ = λ− γk. µ is invariant for P, as µP = (λ− γk)P = λP− γkP =

λ− γk = µ. This also implies that µPn = µ for n ≥ 2. As it has just been proven,
λ ≥ γk, which implies that λ− γk = µ ≥ 0. Moreover, µk = λk − γk

k = 1− 1 = 0,
by Theorem 2.30.

Since P is recurrent, then, given i ∈ I, there exists n such that p(n)ik > 0. Then,

0 = µk = ∑j∈I µj p
(n)
jk = µi p

(n)
ik + ∑j 6=i µj p

(n)
jk ≥ µi p

(n)
ik . Since p(n)ik > 0, it must be

µi = 0. Thus, µ = 0, which implies that λ = γk, as wanted.

Theorem 2.32. Let P be irreducible. Then the following are equivalent:

1. every state is positive recurrent;

2. some state i is positive recurrent;

3. P has an invariant distribution, π say.

Moreover, when (3) holds we have mi =
1
πi

for all i.

Proof. (1) =⇒ (2) Obvious.
(2) =⇒ (3) If a state i is positive recurrent, in particular it is recurrent. There-

fore, as P is irreducible and recurrence is a class property, P is recurrent. Then, by
Theorem 2.30, γi is invariant for P.

Note that ∑j∈I γi
j = ∑j∈I Ei

[
∑Ti−1

n=0 1{Xn=j}

]
. Thus, ∑j∈I γi

j accounts for the
expected visits to all states between visits to i. Therefore, it stands for the expected
time between visits to i. Then

∑
j∈I

γi
j = Ei(Ti) = mi < ∞,

as i is positive recurrent.
Thus, πj = γi

j/mi is an invariant distribution for P, as

∑
j∈I

γi
j = mi =⇒

1
mi

∑
j∈I

γi
j = ∑

j∈I

γi
j

mi
= ∑

j∈I
πj = 1

and

(πP)j = ∑
k∈I

πk pkj = ∑
k∈I

γi
k

mi
pkj =

1
mi

∑
k∈I

γi
k pkj =

1
mi

γi
j = πj,

since γi is invariant for P.
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(3) =⇒ (1) Take any state k. As π is a distribution, ∑i∈I πi = 1, and therefore
there exists some state i such that πi > 0. For that same state i, as P is irreducible,
there exists n > 0 such that p(n)ik > 0. Additionally, since π is invariant, πPn = π.

Therefore, πk = ∑i∈I πi p
(n)
ik > 0 for some n.

Let λi = πi/πk. We have that

(λP)i = ∑
j∈I

λj pij = ∑
j∈I

πj

πk
pji =

1
πk

∑
j∈I

πj pji =
πi

πk
= λi,

and therefore λ is invariant for P. Besides, λk = πk/πk = 1. As a consequence, by
Theorem 2.31, λ ≥ γk. Hence

mk = ∑
i∈I

γk
i ≤∑

i∈I
λi = ∑

i∈I

πi

πk
=

1
πk

∑
i∈I

πi =
1

πk
< ∞,

since, by definition, πk = γi
k/mi, and, by Theorem 2.30, 0 < γk

i < ∞ for all i ∈ I.
As mk < ∞ for any state k, every state is positive recurrent, as wanted.
In addition to that, as P is positive recurrent, in particular it is recurrent, and

therefore by Theorem 2.31 λ = γk. Thus, for each i ∈ I, we have that

mk = ∑
i∈I

γk
i = ∑

i∈I
λi = ∑

i∈I

πi

πk
=

1
πk

∑
i∈I

πi =
1

πk
,

which gives the desired invariant distribution.

Definition 2.33. A state i is called aperiodic if p(n)ii > 0 for all sufficiently large n, or,
equivalently, if the set {n ≥ 0 : p(n)ii > 0} has no common divisor other than 1.

An aperiodic state is a state that the chain can always visit for a sufficiently
large n. If all states in a chain are aperiodic, then the chain can visit each one of
them, for a sufficiently large n.

Aperiodicity is a class property, as well as happens with transiency, recurrence
and positive recurrence.

Lemma 2.34. Suppose P is irreducible and has an aperiodic state i. Then, for all states
j and k, p(n)jk > 0 for all sufficiently large n. In particular, taking j = k, all states are
aperiodic.

Proof. Since P is irreducible, there exits r, s ≥ 0 such that p(r)ji , p(s)ik > 0. Then, for
all sufficiently large n

0 < p(r)ji p(n)ii p(s)ik ≤ p(r+n+s)
jk ,

as wanted. The inequalities hold because p(n+r+s)
jk accounts for all the possible

routes that connect states j and k in n + r + s steps, not only those that have an
incursion in state i.
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If a Markov chain is irreducible, recurrent and aperiodic, then it is usually
referred to as ergodic.

Generally, there is not a criterion to determine whether a stochastic matrix is
aperiodic or not, and it must be checked in each particular case. Nonetheless,
if all of its entries are positive, all transitions between states are permitted, and
therefore it will be aperiodic. The higher the number of non-zero entries a matrix
has, the higher the chances that it is aperiodic are.

The following theorem shows a key feature of irreducible and aperiodic chains
that have an invariant distribution: the fact that this distribution coincides with
the limiting distribution of the chain.

Theorem 2.35. (Convergence to equilibrium). Let P be irreducible and aperiodic, and
suppose that P has an invariant distribution π. Let λ be any distribution. Suppose that
(Xn)n≥0 is Markov(λ, P). Then

P(Xn = j) −→ πj as n −→ ∞ for all j.

In particular,
p(n)ij −→ πj as n −→ ∞ for all i, j.

Proof. The main argument of this proof is the coupling between two Markov
chains.

First, let (Yn)n≥0 be Markov(π, P) and independent of (Xn)n≥0. Fix a referent
state b and let T be the first time such that both Yn and Xn visit the state b:

T = inf{n ≥ 1 : Xn = Yn = b}.

Step 1 We first show that P(T < ∞) = 1.
Consider the process Wn = (Xn, Yn). It is a Markov chain on I × I with transi-

tion probabilities
p̃(i,k)(j,l) = pij pkl

and initial distribution
µ(i,k) = λiπk.

Since P is aperiodic, for all states i, j, k, l we have

p̃(n)
(i,k)(j,l) = p(n)ij p(n)kl > 0

for all sufficiently large n, so P̃ is aperiodic.
Also, P̃ has an invariant distribution

π̃(i,k) = πiπk
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Figure 2.2: diagram that illustrates the concept of the process Zn, with b = 6.

given that

(π̃P̃)(i,k) = ∑
j,l∈I

π̃(j,l) p̃(j,l),(i,k) = ∑
j,l∈I

πjπl pji plk =

(
∑
j∈I

πj pji

)(
∑
l∈I

πl plk

)
= πiπk = π̃(i,k).

As P̃ has an invariant distribution, by Theorem 2.32 it is positive recurrent,
and in particular it is recurrent. Note that T is the first passage time of the process
Wn to the state (b, b). Then, by Theorem 2.23, P(T < ∞) = 1.

Step 2 Consider the process

Zn =

{
Xn if n < T
Yn if n ≥ T

A diagram that exemplifies this process is presented in Figure 2.2.
Intuitively, Zn must be Markov(λ, P), as we part from Xn, which has initial

distribution λ and transition matrix P, and at time n = T it shifts to Yn, which has
transition matrix P as well. This aspect is going to be proven by using the Markov
chain Wn.

By applying the strong Markov property to (Wn)n≥0 at the stopping time T,
(XT+n, YT+n)n≥0 is Markov(δ(b,b), P̃). and independent of (X0, Y0), (X1, Y1), . . . , (XT, YT).
Analogously, the process (YT+n, XT+n)n≥0 is Markov(δ(b,b), P̃) and is independent
of (X0, Y0), (X1, Y1), . . . , (XT, YT). Hence W ′n = (Zn, Z′n) is Markov(µ, P̃), where

Z′n =

{
Yn if n < T
Xn if n ≥ T

as W ′n corresponds to Wn until n = T and to (YT+n, XT+n)n≥0 after n = T.
This implies, in particular, that (Zn)n≥0 is Markov(λ, P).
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Step 3. We have

P(Zn = j) = P(Xn = j and n < T) + P(Yn = j and n ≥ T),

that is, the process Zn will have an incursion in state j if either the chain Xn visits
that state in a time shorter than T or the chain Yn visits that state in a time longer
than T.

Recall that (Yn)n≥0 is Markov(π, P), and π is invariant for P, which implies
that πPn = π. Then, by Theorem 2.10, P(Yn = j) = (πPn)j = πj. Hence

|P(Xn = j)− πj| = |P(Zn = j)−P(Yn = j)|
= |P(Xn = j and n < T)−P(Yn = j and n < T)|
= |P(Xn = j)P(n < T)−P(Yn = j)P(n < T)|
= | [P(Xn = j)−P(Yn = j)]P(n < T)|
= |P(Xn = j)−P(Yn = j)||P(n < T)|
≤ P(n < T) −→ 0 as n −→ ∞,

since as time increases and P(T < ∞) = 1 it will be less likely that the chains Xn

and Yn have not coincided.
Thus, it has been proven that |P(Xn = j)−πj| −→ 0 as n −→ ∞, and therefore

P(Xn = j) −→ πj as n −→ ∞, as wanted.

To exemplify the concept of periodicity and its relevance to the previous theo-
rem and its proof, consider the following transition matrix:

P =

(
0 1
1 0

)
.

Note that

P2 =

(
1 0
0 1

)
= Id.

Thus, P2n = Id, and P2n+1 = P, for all n ≥ 0. This implies that any Markov
chain with this transition probability will alternately stay in one state and shift
to the other state. Therefore, it has no limiting distribution, since p(n)ij does not
converge. Furthermore, this chain is not aperiodic: it returns to each state after
every 2 time units, thus having period 2.

P has an invariant distribution π = (1/2 1/2), as

(1/2 1/2)

(
0 1
1 0

)
= (1/2 1/2) .
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However, this invariant distribution does not coincide with the limiting dis-
tribution, which does not exist. The reason for that is that, if we consider the
processes (Xn)n≥0 and (Yn)n≥0 that start, respectively, from states 0 and 1, the
chains will never coincide, which makes the proof of Theorem 2.35 fail.

An important remark about Theorem 2.35 is that the uniqueness of the limit
implies that the invariant distribution is unique.

Let us recapitulate and link the most important results seen up to this point
regarding invariant distributions. If a Markov chain with transition matrix P is
irreducible and aperiodic and it has an invariant distribution, the latter coincides
with the limiting distribution, thus guaranteeing the uniqueness of the invariant
distribution. Having an invariant distribution is ensured if P is, additionally, pos-
itive recurrent, which is a class property. Therefore, if P is irreducible, aperiodic
and positive recurrent, it has a unique invariant distribution πi = 1/Ei(Ti), which
also corresponds to the limiting distribution. Moreover, if under those conditions
there exists a distribution λ such that λ and P are in detailed balance, λ will coin-
cide as well with the invariant distribution and the limiting distribution. This last
feature, alongside the ergodic theorem, constitutes the basis of the Markov chain
Monte Carlo algorithms.

2.6 Ergodic theorem

The most relevant result concerning Markov chains for Markov chain Monte
Carlo methods is the ergodic theorem, which explains the behavior of averages
and, specifically, the average time spent in every state in the long run.

This theorem is a version of the strong law of large numbers for Markov chains.
To understand this law, the definitions of the expectancy of a random variable and
almost sure convergence are essential. Recall that the latter occurs when, given a
sequence of random variables {Xn, n ≥ 1}, there exists a random variable X such
that

lim
n→∞

Xn(ω) = X(ω),

except, possibly, for a subset N ∈ F of probability 0. We will write this as
P(Xn −→ X as n −→ ∞) = 1.

Theorem 2.36. (Strong law of large numbers). Let Y1, Y2, . . . be a sequence of inde-
pendent, identically distributed, non-negative random variables with E(Y1) = µ. Then

P

(
Y1 + . . . + Yn

n
−→ µ as n −→ ∞

)
= 1.
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The proof of this theorem can be found in [1].
The ergodic theorem involves the number of visits to a certain state before a

certain moment in time, which is included in the following definition.

Definition 2.37. The number of visits to i before n is defined as

Vi(n) =
n−1

∑
k=0

1{Xk=i}.

It is important to remark the difference between Vi(n) and Vi. While the former
counts the visits to state i only up to the moment n, the latter accounts for all the
visits to state i, up to ∞.

Additionally, observe that Vi(n)/n stands for the proportion of time before n
spent in state i. Consequently, since the ergodic theorem regards the average time
spent in every state in the long run, it must relate to Vi(n).

Theorem 2.38. (Ergodic theorem). Let P be irreducible and let λ be any distribution.
If (Xn)n≥0 is Markov(λ, P), then

P

[
Vi(n)

n
−→ 1

mi
as n −→ ∞

]
= 1

Moreover, in the positive recurrent case, for any bounded function f : I −→ R we have

P

[
1
n

n−1

∑
k=0

f (Xk) −→ f as n −→ ∞

]
= 1

where
f = ∑

i∈I
πi fi

and where (πi : i ∈ I) is the unique invariant distribution.

Proof. Firstly, let us consider the case in which P is transient. In that case, for every
state i ∈ I, Pi(Xn = i for infinitely manyn) = 0, and consequently the number of
visits to state i will be finite. Thus, Vi(n) ≤ Vi, which accounts for all the visits
to state i, not only those up to the moment n. Additionally, by Theorem 2.21, we
have that Pi(Ti < ∞) < 1, which implies that Pi(Ti = ∞) > 0. This suggests that
mi = Ei(Ti) = ∑∞

n=0 nPi(Ti = n) = ∞, and therefore 1/mi = 0. On the other hand,

0 ≤ Vi(n)
n
≤ Vi

n
−→ 0 as n −→ ∞.

Thus, Vi(n)/n −→ 1/mi, as wanted.
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Figure 2.3: diagram that illustrates the last passage time and excursion to a state i
before k and the first passage time and excursion to state i after k− 1, for an initial
distribution δi.

Now, suppose that P is irreducible. Fix a state i and let T = Ti. By Theo-
rem 2.21, we have that, since i is recurrent, Pi(Ti < ∞) = 1. Therefore, by the
strong Markov property at T, (XT+n)n≥0 is Markov(δi, P) and is independent of
X0, X1, . . . , XT. In the long run, as we will visit the state i infinitely many times
with probability 1, the time spent in state i will be the same for (Xn)n≥0 and for
(XT+n)n≥0. Thus, it suffices to prove the desired convergence for the initial distri-
bution λ = δi.

Recall that, by Lemma 2.17, the lengths of the rth excursions to state i, S(1)
i , S(2)

i , . . .

are independent and identically distributed with Ei[S
(r)
i ] = Ei(Ti) = mi. Addi-

tionally,

S(1)
i + . . . + S(V(n)

i −1)
i ≤ n− 1,

the left-hand side of the inequality being the time of the last visit to state i before
n, and

S(1)
i + . . . + S(V(n)

i )
i ≥ n,

the left-hand side of the inequality being the time of the first visit to state i after
n− 1. These concepts are illustrated in Figure 2.3.

Therefore,

S(1)
i + . . . + S(V(n)

i −1)
i

Vi(n)
≤ n

Vi(n)
≤

S(1)
i + . . . + S(V(n)

i )
i

Vi(n)
. (2.5)

By the strong law of large numbers,

P

[
S(1)

i + . . . + S(n)
i

n
−→ mi as n −→ ∞

]
= 1,
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and, since P is recurrent,

P[Vi(n) −→ ∞ as n −→ ∞] = 1.

Then, letting n −→ ∞ in (2.5), the left-hand side and the right-hand side of the
inequality will both converge to mi with probability 1, and therefore so will do the
term in the middle:

P

[
n

Vi(n)
−→ mi as n −→ ∞

]
= 1,

which implies that

P

[
Vi(n)

n
−→ 1

mi
as n −→ ∞

]
= 1,

as wanted.
Now, suppose that (Xn)n≥0 is positive recurrent, which, by Theorem 2.32, is

equivalent to having an invariant distribution πi = 1/mi. Let (πi : i ∈ I) be the
invariant distribution of (Xn)n≥0 and let f : I −→ R be a bounded function; that
is, | f | ≤ M, for some M < ∞. Without loss of generality, by dividing f by M, we
can assume that | f | ≤ 1. For any J ⊆ I, we have∣∣∣∣∣ 1n n−1

∑
k=0

f (Xk)− f

∣∣∣∣∣ =
∣∣∣∣∣∑i∈I

Vi(n)
n

fi −∑
i∈I

πi fi

∣∣∣∣∣
=

∣∣∣∣∣∑i∈I

[
Vi(n)

n
− πi

]
fi

∣∣∣∣∣
=

∣∣∣∣∣∑i∈J

[
Vi(n)

n
− πi

]
fi + ∑

i/∈J

[
Vi(n)

n
− πi

]
fi

∣∣∣∣∣
≤∑

i∈J

∣∣∣∣∣Vi(n)
n
− πi

∣∣∣∣∣∣∣∣ fi

∣∣∣+ ∑
i/∈J

∣∣∣∣∣Vi(n)
n
− πi

∣∣∣∣∣∣∣∣ fi

∣∣∣
≤∑

i∈J

∣∣∣∣∣Vi(n)
n
− πi

∣∣∣∣∣+ ∑
i/∈J

∣∣∣∣∣Vi(n)
n
− πi

∣∣∣∣∣
≤∑

i∈J

∣∣∣∣∣Vi(n)
n
− πi

∣∣∣∣∣+ ∑
i/∈J

Vi(n)
n

+ ∑
i/∈J

πi

≤ 2 ∑
i∈J

∣∣∣∣∣Vi(n)
n
− πi

∣∣∣∣∣+ 2 ∑
i/∈J

πi.

In this development, it was used that ∑n−1
k=0 f (Xk) = ∑i∈I Vi(n) fi, where fi = f (i),

as Vi(n) accounts for all the times before n that Xk = i. Additionally, the triangular
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inequality, |a± b| ≤ |a|+ |b|, alongside |a · b| = |a| · |b|, was used. Furthermore,
in the last inequality it was used that, since if we count the visits to all states in I
before n we will get that same n and π is a distribution, we have

∑
i∈I

Vi(n)
n

= 1 =⇒

∑
i/∈J

Vi(n)
n

= 1−∑
i∈J

Vi(n)
n

= ∑
i∈I

πi −∑
i∈J

Vi(n)
n

= ∑
i∈J

[
πi −

Vi(n)
n

]
+ ∑

i/∈J
πi ≤

≤∑
i∈J

∣∣∣∣∣πi −
Vi(n)

n

∣∣∣∣∣+ ∑
i/∈J

πi.

We proved above that

P

[
Vi(n)

n
−→ πi as n −→ ∞

]
= 1.

Given ε > 0, choose J finite so that

∑
i/∈J

πi <
ε

4

and N = N(ω) such that, for n ≥ N(ω),

∑
i∈I

∣∣∣∣∣Vi(n)
n
− πi

∣∣∣∣∣ < ε

4
.

Then, for n ≥ N(ω) ∣∣∣∣∣ 1n n−1

∑
k=0

f (Xk)− f

∣∣∣∣∣ < 2
ε

4
+ 2

ε

4
= ε,

thus ensuring the desired convergence.



Chapter 3

Monte Carlo methods

This chapter has been written following [4].
Monte Carlo methods are simulation tools to calculate integrals and estimate

probability distributions, especially those in higher dimensions or that do not have
an analytical solution, when numerical methods such as the Simpson rule fail or
have a substantially big variance.

The basic idea behind Monte Carlo is the following. Suppose that we want to
calculate a certain integral

I =
∫ b

a
f (x)dx. (3.1)

By multiplying and dividing (3.1) by (b− a), we get that

I = (b− a)
∫ b

a
f (x)

1
(b− a)

dx ⇐⇒ I
(b− a)

=
∫ b

a
f (x)

1
(b− a)

dx. (3.2)

The right-hand side of this last equality can be understood as the expectation
of f (x) under a uniform distribution X ∼ Uni f (a, b).

By the strong law of large numbers, presented in Theorem 2.36, we have that,
given n samples of the distribution X, then

P

[
f (X1) + . . . + f (Xn)

n
−→ µ as n −→ ∞

]
= 1,

where µ = E[ f (X)], which coincides with the right-hand side of (3.2).
By this method, (3.1) can be estimated as the arithmetic mean of f (x) given

a sufficiently big sample of a uniform random variable, and, following that, (3.2)
can be obtained by multiplying this result by (b− a).

33
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3.1 Regular Monte Carlo

More generally, following this last reasoning, in order to solve an integral of
the form

J =
∫

f (x)h(x)dx = Eh[ f (x)], (3.3)

one can use a sample (X1, . . . , Xn) generated from the density h and, by the almost
sure convergence that the strong law of large numbers guarantees, approximate
(3.3) as

Eh[ f (x)] = f (X) =
1
n

n

∑
i=1

f (Xi). (3.4)

Note that, in (3.3) and (3.4), the notation has a different meaning than before:
now, the subindex does not refer to an initial condition, but to the distribution
according to which the expectation is being calculated.

The error in Monte Carlo integration can be assessed through the variance, for
the variance of a quantity accounts for how far away the obtained outcome might
be from the factual result. The variance can be estimated either as

var[ f (X)] = var

[
1
n

n

∑
i=1

f (Xi)

]

=
1
n2

n

∑
i=1

var[ f (Xi)]

=
1
n2 n · var[ f (X1)]

=
1
n

Eh[( f (X)−Eh[ f (X)])2]

=
1
n

∫
{ f (x)−Eh[ f (X)]}2h(x)dx

or as the variance of the sample

σ2 =
1
n

n

∑
i=1

[
f (Xi)− f (X)

]2
,

which accounts for how dispersed the samples are from its mean value.
By taking the definition based on the sample, the central limit theorem can

be applied to construct bounds and confidence intervals of the variance when the
variance is finite, and to estimate the order of the variance.

The central limit theorem involves the definition of convergence in distribution.
Recall that this convergence happens when, given sequence of random variables
{Xn, n ≥ 1} and the sequence of respective probability density functions {Fn, n ≥
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1} , there exists a random variable X with probability density function F such that

lim
n→∞

Fn(x) = F(x),

for all x ∈ R where F is continuous.

Theorem 3.1. (Multidimensional central limit theorem). Let {Xn, n ≥ 1} be an
independent and identically distributed sequence of k-dimensional random vectors. Let
Sn = X1 + . . . + Xn. Suppose that each one of the components of X1 is square integrable
and let E(X1) = m, E[(X1 −m)(X1 −m)T] = Λ. Then

Sn − nm√
n

converges in distribution to a multidimensional normal random variable N(0, Λ).

The proof of this theorem can be found in [5].
In the particular case of one dimension, this result implies that, if {Xi, i =

1, . . . , n} is an iid sequence with mean µ = E(Xi) and variance σ2, then 1
σ
√

n ∑n
i=1(Xi−

µ) converges in distribution to a standard normal variable N(0, 1); that is,

lim
n→∞

P

[
a ≤ 1

σ
√

n

n

∑
i=1

(Xi − µ) ≤ b

]
=
∫ b

a

1√
2π

e−x2/2dx.

As a consequence, the exact result of (3.3) will be within the interval f (X) ±
σ/
√

n with a probability of 68%, or within the interval f (X) ± 1.96σ/
√

n with
a probability of 95%.

Theorem 3.1 also implies that, for n large, the error in the Monte Carlo es-
timate is of order 1/

√
n. This might seem apparently large, as other numerical

integration techniques such as the trapezoidal rule and the Simpson’s rule have
an error of order 1/n2 and 1/n4, respectively. However, the usefulness of the
Monte Carlo method relies in multidimensional integration, when these numeri-
cal approximation methods suffer the so-called curse of dimensionality: they have
an error of order 1/n2/d and 1/n4/d, respectively, where d is the number of di-
mensions, whereas the multidimensional central limit theorem still guarantees an
error of order 1/

√
n in the variance of Monte Carlo estimates.

Nonetheless, to obtain more accurate results, variance must be reduced. There
are several variance reduction techniques. The one that might arise naturally is to
increase the size of the sample. This, however, can be computationally and time
expensive, and therefore other methods may be preferably implemented, such as
using importance sampling.
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3.2 Importance sampling

The idea of importance sampling is to calculate (3.3) by generating samples
from a distribution that is easier to simulate or that represents a smaller variance
than h, since a certain integral is not tied to only one distribution. That is done by
considering

J = Eh[ f (x)] =
∫

f (x)h(x)dx =
∫

f (x)
h(x)
g(x)

g(x)dx. (3.5)

This equality is known as the importance sampling fundamental identity.
Then, a sample Xi, i = 1, . . . , n, can be generated from the distribution g and

Eh[ f (x)] can be approximated as

Eh[ f (x)] =
1
n

n

∑
i=1

h(Xi)

g(Xi)
f (Xi), (3.6)

as the strong law of large numbers guarantees the convergence of this estimate.

3.3 When does Monte Carlo fail?

Apart from when the variance is extremely large, Monte Carlo fails when it is
difficult to sample from the distribution of interest.

Either by regular Monte Carlo or by importance sampling, generating samples
from a certain distribution is mandatory. Nonetheless, this process can be difficult
in several dimensions unless the distribution can be expressed in a product form

h(X1, . . . , Xn) = ∏
i∈n

hi(Xi),

for a computer can only generate pseudo-random numbers and the state space
becomes exceptionally large. Thus, when multidimensional distributions cannot
be expressed as a product of univariate distributions, sampling from it can be re-
markably difficult. Therefore, an alternative approach must be chosen. A straight-
forward, prompt and low-variance process that resolves this difficulty is Markov
chain Monte Carlo. Often, it is the only way to address the product-form issue,
and, additionally, generating a Markov chain instead of simulating a distribution
can have computational and timing advantages.



Chapter 4

Markov chain Monte Carlo
methods

One of the most important applications of Markov chains to statistics and
physics are Markov chain Monte Carlo (MCMC) methods.

The aim of MCMC is to approximate integrals of the form of (3.3) by generating
a Markov chain (Xn)n≥0 with stationary distribution h. If the chain is irreducible
and positive recurrent, then by the ergodic theorem we have that, for any bounded
function f ,

1
n

n−1

∑
k=0

f (Xk) −→∑
i∈I

hi fi = Eh[ f (X)] as n −→ ∞

with probability 1.
By using this method, direct sampling from the distribution h is avoided,

which, as mentioned, can have enormous advantages.
This chapter has been written following the articles [6] and [7], as well as the

books [4] and [8] for the different versions of the algorithms and the first and
eighth chapters of [9] for how to determine the total number of iterations and the
burn-in iterations.

4.1 General basis of the algorithms

An irreducible and positive recurrent Markov chain (Xn)n≥0 with a desired
stationary distribution π has to be constructed. The irreducibility of the chain
needs to be assessed in each particular case. This can be done by drawing the
associated diagram if the state-space is not too large, or by checking that the tran-
sition probabilities between all states are positive for some n. Positive recurrence
is guaranteed by the fact that the chain has a stationary distribution, as was seen in

37
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Theorem 2.32. On the other hand, the convergence to the stationary distribution
is ensured by fulfilling the detailed balance equation

πi pij = πj pji,

where P is the probability transition matrix of the chain. This is accomplished by
defining P as

pij = qijαij, for i 6= j

pii = 1−∑
j 6=i

pij,

where Q = (qij : i, j ∈ I) is the transition matrix of an arbitrary irreducible Markov
chain with state space I and αij is defined as

αij =
sij

1 + πi
πj

qij
qji

,

where sij is a symmetric function of i and j such that 0 ≤ αij ≤ 1 for all i, j.
Note that, with this transition matrix, we have that

πi pij = πiqij
sij

1 + πi
πj

qij
qji

=
πiqijsij

πjqji+πiqij
πjqji

=
πjqjisji

πjqji+πiqij
πiqij

= πjqji
sji

1 + πj
πi

qji
qij

= πj pji.

Thus, the detailed balance equation is fulfilled and therefore, by Lemma 2.26,
π is invariant for P. Then, if P is irreducible, the ergodic theorem ensures the
desired expectation convergence.

The meaning of this definition of transition matrix P is that, if the chain is
in state i, a candidate to the next state j is chosen according to the transition
probabilities qij. Then, this candidate is accepted with probability αij. If j is not
accepted, then the following state is, once again, i.

To fulfill the condition 0 ≤ αij ≤ 1 for all i, j, sij can generally be defined as

sij = g
[

min
(

πiqij

πjqji
,

πjqji

πiqij

)]
,

where g(x) is a function such that 0 ≤ g(x) ≤ 1 + x for 0 ≤ x ≤ 1. Thus, 0 ≤ sij ≤
1 + min(πiqij/πjqji, πjqji/πiqij), ensuring that 0 ≤ αij ≤ 1. Generally, only choices
of sij that solely involve the quantity πjqji/πiqij and its inverse are used. This
quantity is known as the test ratio or acceptance ratio. The test ratio encodes how
probable the new proposed sample value is with respect to the current sample
value, according to π.

Since only the test ratio enters the simulation, the distribution π needs to be
known only up to a multiplicative constant beforehand. This is another advantage
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of MCMC methods in front of regular Monte Carlo. However, if the multiplicative
constant is different to 1 (that is, if we use a chain with stationary distribution π

and π0 + . . . + πS 6= 1, where S is the number of states in the state space), we are,
indeed, estimating the normalized expectation

E( f ) = ∑S
i=0 f (Xi)πi

∑S
i=0 πi

. (4.1)

If we want to estimate a normalized integral, as usually happens in statistical
physics, this comes handy.

Another advantage of only using the test ratio is that, then, continuous dis-
tributions can be used, and not only discrete ones. If we consider π(xi)dµ(xi),
p(xi, xj)dµ(xj) and q(xi, xj)dµ(xj) to be the probability elements for the continu-
ous distributions π, p and q, when entering them in the definition of α and p we
have that

αij =
sij

1 + π(xi)dµ(xi)q(xi ,xj)dµ(xj)

π(xj)dµ(xj)q(xj,xi)dµ(xi)

=
sij

1 + π(xi)q(xi ,xj)

π(xj)q(xj,xi)

,

p(xi, xj)dµ(xj) = q(xi, xj)dµ(xj)αij =⇒ p(xi, xj) = q(xi, xj)αij,

thus obtaining the same working mechanism that we had for discrete distribu-
tions.

However, it is notable that, because of working with computers, which can
only generate a finite quantity of numbers, we will never work with continuous
distributions, only with discrete approximations of such distributions.

Different variants of this generic algorithm can be implemented, depending on
the requirements and characteristics of the different problems to solve. The most
relevant of them are the Metropolis algorithm, the Metropolis-Hastings algorithm
and the Gibbs sampler.

4.2 The Metropolis algorithm

Nicholas Metropolis [6] was the first mathematician to think of and use MCMC
in the context of statistical physics, and Wilfred Hastings [7] later described the
mathematical reasoning behind the general algorithm.

For the Metropolis algorithm, the transition probabilities are symmetric, that
is, q(x|y) = q(y|x), and the function sij is

sij =

{
1 + πi

πj
if πj

πi
≥ 1

1 + πi
πj

otherwise.
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This implies that the probability of acceptance will have the form

α = min
[

1,
π(Yt)

π(Xt)

]
.

This procedure can be implemented in a conventional computer as follows:

1. Initialize the Markov chain by choosing any state X0 for t = 0.

2. Given Xt, repeat:

(a) Generate Yt ∼ q(·|Xt).

(b) Generate U ∼ Uni f (0, 1).

(c) Accept Yt with probability α(Xt, Yt), where

α(Xt, Yt) = min
[

1,
π(Yt)

π(Xt)

]
;

that is, if u ≤ α(Xt, Yt), then Xt+1 = Yt; otherwise, Xt+1 = Xt.

According to this algorithm, whenever we try to move to a point in a higher-
density region (that is, a more probable point than the current state), the move will
always be accepted. On the other hand, moving to lower density regions will not
always be accepted. In this way, the algorithm makes the chain remain in higher-
density regions of π, thus obtaining larger samples from these parts, while only
sporadically visiting the lower-density regions, performing an adequate sampling
of the distribution.

The choice of qij should be so that the transition probabilities are as easy to
simulate as possible. In that sense, normal distributions or uniform distributions
centered in Xt are commonly used. Different methods to simulate probability
distributions can be found in [1] and [8].

4.3 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is a generalization of the Metropolis algo-
rithm for the case in which the transition probabilities are not symmetric. Thus,
the acceptance probability is

α(Xt, Yt) = min
[

1,
π(Yt)q(Xt|Yt)

π(Xt)q(Yt|Xt)

]
.
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4.4 The Gibbs sampler

Gibbs sampling is a special case of the Metropolis-Hastings algorithm. It con-
cerns multidimensional random variables of the form X = (xi, . . . , xn), with a joint
distribution p(x1, . . . , xn), and is especially useful when it is difficult to simulate
the joint distribution of them, but not the conditional distribution.

The algorithm works as follows:

1. A starting value X(0) is defined.

2. To generate X(i+1) = (x(i+1)
1 , . . . , x(i+1)

n ), we sample each component from
the conditional distribution p(x(i+1)

j |x(i+1)
1 , . . . , x(i+1)

j−1 , x(i)j+1, . . . , x(i)n ).

In this algorithm, all samples are used, without discarding any of them, con-
trary to what happened in the Metropolis and Metropolis-Hastings algorithms.

4.5 Importance sampling

As happened with regular Monte Carlo, importance sampling can be imple-
mented. This can be done by considering another stationary distribution π′. Note
that (4.1) can be rewritten as

E( f ) =

∑S
i=0[ f (Xi)/π′i ]πi

∑S
i=0 π′i

∑S
i=0(πi/π′i)π

′
i

∑S
i=0 π′i

.

Thus, the integral of interest can be computed as

Eπ( f ) =
∑n

i=1[ f (Xi)πi/π′i ]/n
∑n

i=1(πi/π′i)/n
.

4.6 Determining the total number of iterations

As it has been previously mentioned, MCMC methods rely on asymptotic re-
sults, and therefore they require a large number of iterations. Instead of running
an unnecessarily overly long chain, the required number of iterations to ensure
the convergence of the chain to its stationary distribution can be assessed while
running the simulation.

A method to determine whether the chain has converged or not is to run sev-
eral chains with different starting points, which need to be sufficiently spaced from
each other. When the chains have "forgotten" the initial states and present a sim-
ilar behavior, convergence can be assumed. That can be evaluated by comparing
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the variance between the different sequences with the variance of each individual
sequence. When the former is smaller than the latter, approximate convergence
can be presumed, according to the own variability of the chains. This method is
known as the Gelman-Rubin convergence diagnostic. To see a thorough descrip-
tion of the method and the theoretical basis behind it in terms of underestimates
and unbiased overestimates, see [10].

Let us consider m Markov chains, m ≥ 2, each one with a different initial
state, the same transition matrix and the same number of iterations, n. In this
development, the subindex i will refer to the labelling of the different chains,
i = 1, . . . , m, whereas the subindex j will refer to the position of the states in a
single chain, j = 1, . . . , n.

With this notation, the variance between sequences can be computed as

B =
n

m− 1

m

∑
i=1

(Xi − X) =
n

m− 1

m

∑
i=1

[
1
n

n

∑
j=1

Xij −
1
m

m

∑
i=1

(
1
n

n

∑
j=1

Xij

)]
,

where Xi =
1
n ∑n

j=1 Xij is the average of a certain chain and X = 1
m ∑m

i=1 Xi is the
average of all chain averages.

Additionally, the variance within sequences is

W =
1
m

m

∑
i=1

s2
i =

1
m

m

∑
i=1

[
1

n− 1

n

∑
j=1

(Xij − Xi)
2

]
,

where s2
i = 1

n−1 ∑n
j=1(Xij − Xi)

2 is the variance of a single sequence. Thus, W
corresponds to the mean variance of all the different chains.

Incorporating these two variance components, we can compute the following
estimate of the variance of X:

var(X) =
n− 1

n
W +

1
n

B.

Now, let R be defined as

R =
var(X)

W
= 1− 1

n
+

1
n

B
W

.

As n −→ ∞, if B and W are indistinguishable, R will tend to 1. Note that the
fact that the fact that the between and within sequences variances become similar
implies that all the chains present such a resemblant behavior that they cannot
be discerned from each other. This happens they have reached their invariant
distribution.

Generally, values of R between 0.97 and 1.03 imply that the convergence of the
chains has been achieved, thus setting the number of required iterations.
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Furthermore, testing convergence is not only convenient to address the total
number of iterations. It is important to check for undiagnosed slow convergence.
If, for instance, we generated a single chain and it converged slowly or got trapped
in a region of high probability that does not correspond to the stationary distribu-
tion, it would be unnoticeable. Assessing convergence by running different chains
can help identify these difficulties too.

4.7 Thermalization

As it has already been discussed, when using MCMC we are referring to
asymptotic results: only the limiting distribution is of interest. For that reason,
it is common to discard the first iterations of the chain where it explores the state
space but still has not reached the stationary distribution. The consequence of this
procedure is that the average of f (Xn) will be a much more precise estimate of the
expectancy Eh[ f (x)]. This process is called thermalization or burn-in.

By discarding these first M iterations, if the total number of iterations is N,
then the average of f will be calculated as

1
N −M

N

∑
k=M+1

f (Xk).

To determine the number of burn-in iterations, the Gelman-Rubin convergence
diagnostic can be used as well, since it points out when the chains converge and
after that point all the samples will be of interest to us. Generally, the burn-in
iterations should represent 1% or 2% of the total iterations of the chain.

4.8 Multidimensional MCMC

As mentioned, avoiding sampling from a certain distribution finds its greatest
advantage when dealing with the multidimensional case. In that case, we have a
product state space of the form

I = ∏
m∈Λ

Sm,

where λ is a finite set and Sm are state spaces that can be arbitrarily large, thus
making I immensely large. When the distribution of interest cannot be expressed
as a product of univariate distributions, Markov chain Monte Carlo becomes the
only feasible strategy.

Suppose that the invariant distribution π is d-dimensional. Then, the simulated
Markov chain will have the form X(t) = (X1(t), . . . , Xd(t)). The usefulness of
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Markov chain Monte Carlo relies on the fact that every coordinate can evolve
separately from the others, even if the transition probabilities cannot be expressed
as a product form. Thus, one can either change all coordinates at a time, change
one coordinate selected at random, or change one coordinate selected following a
determinate sequence. In these last two cases, measures of the process need to be
made at time 0, d, 2d, . . ..

4.9 Worked example: calculation of Γ(3/2)

As an example of the implementation of Markov chain Monte Carlo, we used
a Metropolis algorithm to calculate the integral

Γ(3/2) =
∫ ∞

0
x1/2e−xdx =

√
π

2
≈ 0.886227. (4.2)

The graphics that are referred to in this section can be found in Appendix A.
The code that was run to obtain the results is included in Appendix B.

A plot of the function to integrate is presented in Figure 1. From this plot, it is
notable that the regions with a higher concentration of volume are for x < 5, and
therefore a Markov chain Monte Carlo method should concentrate the sampling
in this region.

By using an integral whose value is already known, we can compare the ob-
tained simulation result with the theoretical result and calculate the corresponding
relative error, which gives us an idea of how far the simulated result is from the
factual value. This is recommended for all Monte Carlo methods: to use the algo-
rithm first on a known result before confronting an unsolved problem to test its
accuracy.

To implement the Markov chain Monte Carlo method, the function f (x) =
√

x
was thought of as the function of interest, whereas h(x) = e−x was used as the
probability distribution according to which the expectation of f (x) is being calcu-
lated. Thus, h(x) will correspond to the invariant distribution of the chain. Note
that, in this case, h(x) corresponds to an exponential distribution of parameter
λ = 1, and therefore it is already normalized. On the contrary, if we were to use
an unnormalized distribution, the result of the algorithm would be normalized by
the normalization constant of the distribution.

To implement the algorithm, the transition probabilities q where defined as
q(Yt|Xt) = Xt + 0.25u, where u is a random number generated from a uniform
distribution Uni f (−0.5, 0.5). Thus, q is symmetric. Furthermore, q is easily imple-
mentable in a computer, which is its greatest attractive. Nonetheless, since only
positive values of x are of interest to us, we will only accept values of Yt that
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are positive. u was generated by using the drand48() function of C, which has a
period of 1014. This means that the sequence of pseudo-random numbers gener-
ated from this function will not repeat itself until the 1014th time that the function
is used. This should be large enough to support the generation of several long
Markov chains.

Note that, in our case, the transition probabilities correspond to a continuous
distribution and the state space is, theoretically, infinite. To use discrete transition
probabilities and a transition probability as the ones presented in Chapter 2, a dis-
cretization of the state space would be needed. However, it is not necessary, since
a computer can only simulate a finite number of states and therefore, in practice,
we are dealing with a finite state space and discrete transition probabilities.

In order to implement the Gelman-Rubin criterion, three different chains were
run, with initial states 0, 2 and 5, respectively. The condition 0.97 < R < 1.03
was fulfilled at the iteration 6332. Since the burn-in iterations should represent
around 1% of the total number of iterations, the latter was set to be 622300, and
the first 6332 iterations were discarded. A representation of the between-chains
variance, the within-chains variance and the parameter R is depicted in Figure 2.
From this plot, it is notable that as the number of iterations increases the different
variances of the chains decrease, which indicates the progressive convergence to
the stationary distribution.

The first 15000 states of the chains are represented in Figure 3. The totality
of the chains was not represented, as the number of iterations is extremely large
and for a number of iterations larger than 6332 the chains have already converged.
It is notable that, generally, many of the values of the chains are below 3, and
the majority of them is below 1.5. This indicates that the chains do a more thor-
ough exploration and take more values from that region, which is the region of
higher probability of the function

√
xe−x. To further exemplify this phenomenon,

an example of a chain with initial state X0 = 50 and 50000 iterations is plotted
in Figure 4. Here, it is clear that, although the chain started at a value of low
probability, it rapidly reaches lower values of x, where it remains exploring the
space state as it is a region of higher probability.

To prove the convergence of the chain to the desired stationary distribution,
e−x, a histogram of the values of the chain after the burn-in is presented in Fig-
ure 5. The chain had starting value X0 = 2 and runs for 50000 iterations. However,
the first 6332 iterations, corresponding to the burn-in, were discarded, since in that
interval of time the chain still had not converged to the stationary distribution.
Thus, only 43668 values were used. As can be undoubtedly seen in the plot, the
distribution of values in intervals adequately matches the expected exponential
distribution. This manifests the usefulness of Markov chain Monte Carlo methods
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not only to calculate integrals, but also to sample from probability distributions.
The evolution of

√
Xk =

1
k ∑i=k

i=0
√

Xi, which, by the ergodic theorem, converges
to the value of (4.2), is presented in Figure 6. The convergence to the expected
value of the integral of each one of the different chains as the number of iterations
increases is clear in the graphic, especially after the thermalization has ended.

The result of the integral by using the Markov chains is calculated as

√
X =

1
633200− 6332

i=633200

∑
i=6332

√
Xi.

By using this, the obtained values are 0.942024 for the chain with starting value
X0 = 0, 0.883861 for the chain with starting value X0 = 2 and 0.892217 for the
chain with starting value X0 = 5. These results are strongly similar, which con-
firms the independence of the result and the initial value of the chain. In addition,
they represent a relative error of 6.3%, 0.27% and 0.68%, respectively. Since the
relative errors are small, especially those of the starting values 2 and 5, we can
conclude that the implemented Markov chain Monte Carlo method has success-
fully computed (4.2), an otherwise not analytically solvable integral.



Chapter 5

Conclusions

The main goal of this work was to study the properties and behavior of discrete-
time Markov chains (Xn)n≥0 with a finite state-space I, and later, as an application
of these, to describe Markov chain Monte Carlo methods.

As it has been seen, discrete-time Markov chains with a finite state space can
be described by an initial distribution λ and a stochastic matrix P that stands for
the transition probabilities between states after a unit of time. A distinctive trait of
this type of stochastic processes is that the transitions from a state to the following
state only depend on the current state of the chain, and not on the states previous
to that. Moreover, the powers of the transition matrix represent the transition
probabilities between states in the number of states corresponding to the power,
and if we first multiply that by the initial distribution we obtain the probability
distribution of states.

The fact that the probability of transition between states in any number of steps
is positive establishes a recurrence relation in the state space, thus partitioning the
latter into communicating classes. Regarding communicating classes, the chains of
most interest are irreducible chains, which have only a communicating class that
englobes the entirety of the state-space, and thus all states are accessible from any
other state. Many properties of the states are class properties, such as recurrence,
transience, positive recurrence and aperiodicity. A recurrent state is a state that the
chain will always keep visiting, while a transient state is a state that the chain will
eventually not visit anymore. Each state in a chain is either recurrent or transient.
A positive recurrent state is a recurrent state that, additionally, presents a finite
expected return time. On the other hand, an aperiodic state is a state that can be
visited for all sufficiently large number of states.

Markov chains may have stationary distributions, that is, probability distribu-
tions of the state space that do not vary after a unit of time: λP = λ. If a chain
is irreducible, having a stationary distribution and being positive recurrent are

47
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equivalent. Additionally, if a distribution is in detailed balance with P, that is,
λi pij = λj pji for all i, j, then λ is stationary. One of the most important results
concerning stationary distributions regards the asymptotic convergence of chains:
if they are irreducible and aperiodic and have a stationary distribution, then the
probability distribution of the states tends to the stationary distribution when time
tends to ∞.

Another result regarding the asymptotic behavior of Markov chains is the er-
godic theorem, which ensures, amongst others, that, given any bounded function
f : i −→ R and an irreducible and positive recurrent chain, then 1

n ∑n−1
k=0 f (Xk)

converges to ∑i∈I πi fi as time tends to ∞. This theorem represent the basis for
Markov chain Monte Carlo methods.

In regular Monte Carlo methods, integrals of the form
∫

f (x)h(x)dh are esti-
mated as expectancies of functions according to a certain distribution, Eh[ f (X)].
A number of points are sampled from the distribution, and then the strong law of
large numbers ensures the convergence of the mean of the values to the desired
expectancy. This procedure, however, can become difficult in several dimensions
if the probability distribution from which we need to sample cannot be expressed
as a product of unidimensional distributions. It is then when Markov chain Monte
Carlo methods are most useful.

In Markov chain Monte Carlo methods, an irreducible and positive recurrent
chain with stationary distribution h is generated, and the ergodic theorem then
ensures the convergence of the mean value of f (X) to Eh[ f (X)], which estimates
the integral. In order to generate a chain with a certain probability distribution,
algorithms such as Metropolis-Hastings, Metropolis and the Gibbs sampler are
used. In this algorithms, the states of the Markov chain are generated so that the
chain does a thorough exploration of higher probability density regions of h and
sporadically visits regions of low probability. This procedure avoids direct sam-
pling from h, thus preventing the downsides of regular Monte Carlo. The number
of iterations needed for the chains can be determined by running several chains at
the same time and comparing the within-chains variance and the between-chains
variance: when they are indistinguishable, the chains have converged.

The calculation of Γ(3/2) via a Metropolis algorithm with transition probabil-
ities q(Yt|Xt) = Xt + 0.25u has shown the efficiency of the method, as it has arisen
satisfactory results in both computing the integral and sampling the distribution.

Because of the characteristics, reliability and computational advantages of Markov
chain Monte Carlo methods, they find their greatest application domains in Bayesian
statistics and statistical physics. Both of these fields usually involve integrals of
over hundreds of parameters: in the former, to estimate the posterior distributions
of parameters, and in the latter, to compute expectations of physical quantities.
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Appendix A: plots to illustrate the
simulation of Γ(3/2)

In this appendix, the different plots and graphics corresponding to the ob-
tained data from the calculation of Γ(3/2) by a Metropolis algorithm are included.

Figure 1: plot of the function
√

xe−x, for positive values of x.
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Figure 2: evolution of the different variances of interest with the number of itera-
tions. The iteration 6332, corresponding to the end of the burn-in, is highlighted.

Figure 3: Markov chains with transition probabilities q(Yt|Xt) = Xt + 0.25u, sta-
tionary distribution e−x and initial states (a) X0 = 0, (b) X0 = 2 and (c) X0 = 5.
The iteration 6332, corresponding to the end of the burn-in, is highlighted.
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Figure 4: Markov chain with transition probabilities q(Yt|Xt) = Xt + 0.25u, sta-
tionary distribution e−x and initial state X0 = 50.

Figure 5: histogram of the different values of a Markov chain with starting value
X0 = 2, after the burn-in has ended, for an amount of 43668 iterations. A plot of
the function e−x is included for comparison.
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Figure 6: evolution of
√

Xk = ∑i=k
i=0
√

Xi with the number of iterations. The itera-
tion 6332, corresponding to the end of the burn-in, is highlighted, as well as the
theoretical value of (4.2).



Appendix B: code of the
simulation

In this appendix, the code for the Metropolis algorithm that was used to cal-
culate the value of Γ(3/2) is presented. This code is written in C language. Slight
variations of this code, such as eliminating the part corresponding to the Gelman-
Rubin criterion and/or imposing a certain number of iterations, were used to
represent the different figures presented in Appendix A.

# inc lude <math . h>
# include <time . h>
# include < s t d i o . h>
# include < s t d l i b . h>

# def ine PI 4∗ atan ( 1 )

double fun ( double ) ;

double generate ( double ) ;

double alpha ( double , double ) ;

i n t main ( void ) {
i n t i , j , k , conv , num;
double aux , u , B , W, ∗∗cad , ∗mit ja , ∗mean1 , mean2 , ∗ s i 2 ;
FILE ∗cadenes , ∗mit janes , ∗ var iances ;
char nomcad [ 2 0 ] , nommit [ 2 0 ] , nomvar [ 2 0 ] ;

/∗Opening of the d i f f e r e n t f i l e s used to draw the p l o t s ∗/
p r i n t f ( "Name of the chains ’ f i l e : \n " ) ;
scanf ("% s " , nomcad ) ;
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cadenes = fopen ( nomcad , "w" ) ;

i f ( cadenes == NULL) {
p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}

p r i n t f ( "Name of the means ’ f i l e : \n " ) ;
scanf ("% s " , nommit ) ;

mi t janes = fopen ( nommit , "w" ) ;

i f ( mi t janes == NULL) {
p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}

p r i n t f ( "Name of the variances ’ f i l e : \n " ) ;
scanf ("% s " , nomvar ) ;

var iances = fopen ( nomvar , "w" ) ;

i f ( var iances == NULL) {
p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}

/∗Reading the number of chains to s imulate and t h e i r i n i t i a l s t a t e s ∗/
p r i n t f ( " Number of c h a i s to s imulate : \n " ) ;
scanf ("%d " , &num ) ;

cad = ( double ∗∗ ) malloc (num∗ s i z e o f ( double ∗ ) ) ;

i f ( cad == NULL) {
p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}
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f o r ( i = 0 ; i < num; i ++) {
cad [ i ] = ( double ∗ ) malloc (5000000∗ s i z e o f ( double ) ) ;
i f ( cad [ i ] == NULL) {

p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}
}

m i t j a = ( double ∗ ) malloc (num∗ s i z e o f ( double ) ) ;

i f ( m i t j a == NULL) {
p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}

mean1 = ( double ∗ ) malloc (num∗ s i z e o f ( double ) ) ;

i f ( mean1 == NULL) {
p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}

s i 2 = ( double ∗ ) malloc (num∗ s i z e o f ( double ) ) ;

i f ( s i 2 == NULL) {
p r i n t f ( " Error . \n " ) ;
e x i t ( 1 ) ;

}

f o r ( i = 0 ; i < num; i ++) {
p r i n t f ( " I n i t i a l s t a t e of the chain n . %d : \n " , i + 1 ) ;
scanf ("% l e " , &cad [ i ] [ 0 ] ) ;

}

/∗ I n i t i a l i z i n g the d i f f e r e n t v a r i a b l e s ∗/
f o r ( i = 0 ; i < num; i ++) {

f o r ( j = 1 ; j < 5000000 ; j ++) {
cad [ i ] [ j ] = 0 ;

}
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}

f o r ( i = 0 ; i < num; i ++) {
m i t j a [ i ] = 0 ;
f p r i n t f ( mit janes , "% l e \ t " , m i t j a [ i ] ) ;

}

f p r i n t f ( mit janes , "\n " ) ;

f o r ( i = 0 ; i < num; i ++) {
mean1 [ i ] = cad [ i ] [ 0 ] ;

}

i = 0 ;

/∗Gelman−Rubin convergence d i a g n o s t i c ∗/
do {

B = 0 ;

W = 0 ;

mean2 = 0 ;

f o r ( j = 0 ; j < num; j ++) {
s i 2 [ j ] = 0 ;

}

f o r ( j = 0 ; j < num; j ++) {
f p r i n t f ( cadenes , "% l e \ t " , cad [ j ] [ i ] ) ;

/∗A candidate i s generated∗/
aux = generate ( cad [ j ] [ i ] ) ;

u = drand48 ( ) ;

/∗The candidate i s accepted or r e j e c t e d ∗/
i f ( u < alpha ( cad [ j ] [ i ] , aux ) ) {

cad [ j ] [ i + 1 ] = aux ;
} e l s e {
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cad [ j ] [ i + 1 ] = cad [ j ] [ i ] ;
}

}

/∗Mean value of every chain∗/
f o r ( j = 0 ; j < num; j ++) {

mean1 [ j ] = mean1 [ j ] + cad [ j ] [ i + 1 ] ;
}

/∗Mean of the means of the chains∗/
f o r ( j = 0 ; j < num; j ++) {

mean2 = mean2 + mean1 [ j ] / ( i + 1 ) ;
}

mean2 = mean2/num;

/∗Variance between chains∗/
f o r ( j = 0 ; j < num; j ++) {

B = B + ( mean1 [ j ] / ( i + 1) − mean2 )∗
( mean1 [ j ] / ( i + 1) − mean2 ) ;

}

B = B∗ ( i + 1 )/ (num − 1 ) ;

/∗Variance of every chain∗/
f o r ( j = 0 ; j < num; j ++) {

f o r ( k = 0 ; k < i + 1 ; k++) {
s i 2 [ j ] = s i 2 [ j ] + ( cad [ j ] [ k ] − mean1 [ j ] / ( i + 1 ) )∗

( cad [ j ] [ k ] − mean1 [ j ] / ( i + 1 ) ) ;
}
s i 2 [ j ] = s i 2 [ j ] / ( i + 1 ) ;

}

/∗Variance within chains∗/
f o r ( j = 0 ; j < num; j ++) {

W = W + s i 2 [ j ] ;
}

W = W/num;
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f p r i n t f ( var iances , "% l e \ t %l e \ t %l e \n " , B , W,
1 − 1/( i + 1) + B/(W∗ ( i + 1 ) ) ) ;

i = i + 1 ;

} while ( ( 1 − 1/ i + B/(W∗ i ) ) > 1 . 0 3 || (1 − 1/ i + B/(W∗ i ) ) < 0 . 9 7 ) ;

p r i n t f ( " The chains have converged at the i t e r a t i o n %d \n " , i ) ;

conv = i ∗100 ;

/∗Proper chain s imulat ion∗/
f o r ( i = conv /100; i < conv ; i ++) {

f o r ( j = 0 ; j < num; j ++) {
f p r i n t f ( cadenes , "% l e \ t " , cad [ j ] [ i ] ) ;

/∗A candidate i s generated∗/
aux = generate ( cad [ j ] [ i ] ) ;

u = drand48 ( ) ;

/∗The candidate i s accpented with p r o b a b i l i t y alpha∗/
i f ( u < alpha ( cad [ j ] [ i ] , aux ) ) {

cad [ j ] [ i + 1 ] = aux ;
} e l s e {

cad [ j ] [ i + 1 ] = cad [ j ] [ i ] ;
}

/∗Updating of the mean value∗/
m i t j a [ j ] = m i t j a [ j ] + s q r t ( cad [ j ] [ i + 1 ] ) ;

f p r i n t f ( mit janes , "% l e \ t " , m i t j a [ j ] / ( i + 1 − conv / 1 0 0 ) ) ;
}

f p r i n t f ( cadenes , "\n " ) ;

f p r i n t f ( mit janes , "\n " ) ;
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}

p r i n t f ( " Expected r e s u l t : %l e \n " , s q r t ( PI ) / 2 ) ;

f o r ( i = 0 ; i < num; i ++) {
p r i n t f ( " Mean of the chain n . %d : %l e \n " ,

i + 1 , m i t j a [ i ] / ( conv − conv / 1 0 0 ) ) ;
}

f o r ( i = 0 ; i < num; i ++) {
p r i n t f ( " R e l a t i v e e r r o r of the chain n . %d : %l e per cent \n " ,

i + 1 , fabs ( m i t j a [ i ] / ( conv − conv /100) −
s q r t ( PI ) / 2 ) / ( s q r t ( PI ) / 2 )∗1 0 0 ) ;

}

f c l o s e ( cadenes ) ;

f c l o s e ( mi t janes ) ;

f c l o s e ( var iances ) ;

f o r ( i = 0 ; i < num; i ++) {
f r e e ( cad [ i ] ) ;

}

f r e e ( cad ) ;

f r e e ( m i t j a ) ;

f r e e ( mean1 ) ;

f r e e ( s i 2 ) ;

re turn 0 ;

}
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/∗Function t h a t c a l c u l a t e s the exponent ia l of a value∗/
double fun ( double x ) {

re turn exp(−x ) ;

}

/∗Function t h a t generates p o s i t i v e candidates according to
the t r a n s i t i o n p r o b a b i l i t i e s ∗/
double generate ( double xt ) {

double au ;

au = −1;

while ( au < 0) {
au = xt + 0 . 2 5∗ ( drand48 ( ) − 0 . 5 ) ;

}

re turn au ;

}

/∗Function t h a t c a l c u l a t e s alpha∗/
double alpha ( double xt , double yt ) {

i f (1 < fun ( yt )/ fun ( xt ) ) {
re turn 1 ;

} e l s e {
re turn fun ( yt )/ fun ( xt ) ;

}
}


