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Abstract: There are different mathematical models to describe the behavior of neurons, and with
different levels of accuracy. In this study, we explored two major models, the biologically realistic
Izhikevich model and the less realistic but convenient Kuramoto oscillator. We compared them to
investigate whether it is correct to use Kuramoto oscillators to describe collective dynamics, such as
synchronization, in large populations of realistic Izhikevich neuronal networks. We show that this is
indeed the case when the number of Izhikevich neurons is large, which is demonstrated by coupling
5 groups of Izhikevich 1000 neurons each and showing that the whole system can be simplified as
the sum of 5 coupled Kuramoto oscillators.

I. INTRODUCTION

The neuron is the basic building block for the process-
ing of information in the nervous system of animals. Neu-
rons coupled together shape neuronal circuits of high in-
tricacy, where even the nervous system of the worm C. el-
egans (300 neurons) is able to perform complex tasks and
fine interaction with the environment. Highly evolved
neuronal networks, such as the human brain (1011 neu-
rons) are organized as thousands of specialized micro-
circuits that carry out specific functions that are then
put together to understand the world and interact with
it. Thus, the human brain could be viewed as a set
of thousands of coarse–grained ‘worm neuronal circuits’
that interact to one another. Interestingly, one of the
most fascinating challenges of present neuroscience is to
understand, and model, how neuronal circuits operate at
different scales, and whether one could approach a ‘worm
circuit’ by a simple model, to later study the interaction
of this circuit with others, somehow ignoring the details
of the neurons within the circuit itself [1].

Of course, scientist would prefer to model neurons ex-
actly. However, neurons are non–linear systems whose
main observable is the membrane potential, which in-
creases or decreases according to inputs from other neu-
rons. When the membrane potential reaches a threshold,
it activates an avalanche of processes that lead to the
generation of a pulse that becomes the input of other
neurons. The accurate modeling of all processes involved
is extremely difficult.

Indeed, the neuron’s membrane potential gets gener-
ated by a difference in the concentration of charged ions,
and can be described using elaborate mathematical mod-
els. When the potential sudden rises from the resting
value to a threshold potential we have a spike, i.e., we say
that the neuron has fired. The action potential is then
transmitted along the axon of the neuron and through
the synapse to other neurons of the network [2].

One of the most detailed mathematical models for a
neuron is the Hodgkin–Huxley model which provides a
highly accurate biophysical description, and that led to
the Nobel prize for its authors in 1963. The problem
with this model is that it is computationally prohibitive.

Instead, the Izhikevich model [3] is a simplification of
Hodgkin–Huxley and can be solved with an ordinary per-
sonal computer. This model has become a favorite to
model networks of few thousand neurons without diffi-
culties.

Both the Hodgkin–Huxley and the Izhikevich are mod-
els for single neurons. In the quest for providing models
that represent a large group of neurons, scientists ob-
served that some neuronal circuits show collective be-
havior in the form of synchronous oscillations and that
can be treated as harmonic oscillators, in which the aver-
age activity (spikes per unit time) oscillate up and down
as the circuit receives and processes information. This
observation led to the Kuramoto model [4], in which a
neuronal circuit is just approach with an oscillator with
a characteristic frequency and phase and that interacts
with other circuits.

In the present study we want to investigate whether it
is possible to bridge the Izhikevich and Kuramoto mod-
els. The idea is to explore whether simulations made
with Kuramoto oscillators are suitable to describe the dy-
namics of interconnected spiking Izhikevich neurons. The
question we want to address is: are few hundred coupled
Izhikevich neurons behaving as a single Kuramoto?

Understanding the dynamics of neural networks is rel-
evant to the comprehension of the brain function, both
to understand how it processes information and to un-
derstand different diseases of the nervous system such as
Parkinson or Alzheimer, which appear to be related to
abnormal synchronization of brain cells or with a lack of
connection between them [5] [6].

II. METHODS

Here we describe the two used models. Their codes
have been obtained from the literature, adapted for the
present study and programmed in Matlab [3] [7].
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A. Izhikevich

Developed in 2003, this model of spiking neurons al-
lows to describe the behavior of different types of cortical
neurons, determined by four parameters, giving rise to
the following coupled differential equations that have to
be solved:

v̇ = 0.04v2 + 5v + 140− u+ I, (1)

u̇ = a(bv − u), (2)

if v ≥ 30mV, then

{
v ← c,

u← u+ d.
(3)

Here, v and u are the membrane and recovery poten-
tials, respectively, and I is the synaptic current, which
accounts for the number of inputs that a neuron receives,
so the potential v depends on the number of firings of the
neurons in the network. When the potential v exceeds
the threshold potential of 30 mV, the neuron fires and
the membrane potential resets to its state at rest [3].
The parameters a, b, c, and d govern neuronal dynamics
and allow to model different kinds of neurons: a is the
time scale of the recovery variable, u; b is the sensitivity
of u; c is the reset value of the membrane potential,v;
and d is the reset value of u.
Since neurons are interconnected, the characteristics

of the input current I depend on the connectivity of the
network, i.e., the matrix S of synaptic connections. S
gives the connection weights between neurons according
to their type. Each simulation generates random val-
ues between (0, 0.5) for excitatory neurons and between
(−1, 0) for inhibitory neurons. We note that excitatory
neurons increase the membrane potential, while the in-
hibitory neurons reduce it. Izhikevich’s original code is
shown below:

% Created by Eugene M. Izhikevich,
% February 25, 2003
% Excitatory neurons Inhibitory neurons
Ne=800; Ni=200;
re=rand(Ne,1); ri=rand(Ni,1);
a=[0.02*ones(Ne,1); 0.02+0.08*ri];
b=[0.2*ones(Ne,1); 0.25-0.05*ri];
c=[-65+15*re.^2; -65*ones(Ni,1)];
d=[8-6*re.^2; 2*ones(Ni,1)];
S=[0.5*rand(Ne+Ni,Ne), -rand(Ne+Ni,Ni)];

v=-65*ones(Ne+Ni,1); % Initial values of v
u=b.*v; % Initial values of u
firings=[]; % spike timings

for t=1:1000 % simulation of 1000 ms
I=[5*randn(Ne,1);2*randn(Ni,1)];% thalamic

% input
fired=find(v>=30); % indices of spikes
firings=[firings; t+0*fired,fired];

v(fired)=c(fired);
u(fired)=u(fired)+d(fired);
I=I+sum(S(:,fired),2);
v=v+0.5*(0.04*v.^2+5*v+140-u+I);% step 0.5 ms
v=v+0.5*(0.04*v.^2+5*v+140-u+I);% for numerical
u=u+a.*(b.*v-u); % stability
end;
plot(firings(:,1),firings(:,2),’.’);

B. Kuramoto

Yoshiki Kurmaoto describes the systems of many limit
cycle oscillators as systems that can be represented with
simple elements called rings, their phase is defined by
taking a point that circulates bound to it, when rings
interact they adjust their phases and frequencies and can
eventually synchronize [4].Kuramoto’s equation is given
by:

θ̇i = ωi +
K

N

N∑
m̸=i

sin(θm − θi). (4)

Each of the oscillators is considered to have a phase θi
and its own intrinsic natural frequency ωi. The total
N oscillators in the system modify the phase of the ith–
oscillator with a coupling strength equal toK, when K =
0 there are independent oscillators. K is the same for all
oscillators, , i.e. they are coupled together in the same
way.
We used the Matlab function ode45.m to solve the sys-

tem of N differential equations of Eq. (4). The result is a
column vector with the steps of time and a matrix whose
columns represent the temporal evolution of each oscilla-
tor’s phase.
In neuroscience, networks of coupled oscillators provide

models for systems governed by interacting periodic pro-
cesses. Individual oscillators could be viewed as a small
group of neurons shaping a microcircuit or neural masses
(∼ 106 neurons) on a more macroscopic level [8].
The importance of noise in Kuramoto’s model:

Neural activity measured in electrophysiological studies
typically shows stochastic fluctuations, even when the
brain is at rest. Moreover, there is evidence that un-
der certain conditions noise in neural networks promotes
the exchange of signals between neurons through spike
trains [9]. If the noise has such an important role in neu-
ral networks, it is appropriate to add some type of per-
turbation to the Kuramoto’s model to simulate neural
noise. The part of code shown below is the implemen-
tation of the noise in our simulation of the Kuramoto’s
oscillators. It consists of the following:

• For each iteration in solving the Kuramoto’s differ-
ential equations, we add 1 to the counter i until it
is equal to the variable time noise.
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• 50 neurons are randomly selected and their intrin-
sic frequency omega(n i) is increased by a random
value in the range [0, 1].

• Then the counter i returns to 0 and the process is
repeated.

Therefore, the higher the value of time noise, the lower
the intensity of the noise (to perform the simulation with-
out noise, we give to the variable time noise a negative
value).

% omega are real column vectors
% of length n.
% n are real scalar, total number
% of neurons.
% i is a counter
% more timenoise -> less noise,
if the value is negative, there is no noise
i = i+1;
if i ==time_noise

% it choice randomly 50 neurons
[n_i] = randi(n,50,1);
% the chosen neuron suffers a
% increase / decrease of omega
%(intrinsic frequency)
omega(n_i) = omega(n_i)+randn(1,1);
i=0;

end

III. RESULTS AND DISCUSSION

A. Neurons as Izhikevich units

The Izhikevich model allows us to model different types
of neurons by changing the parameters a, ...d. As shown
in the table below, We can shape two types of inhibitory
neurons, FT and LTS, and two types of excitatory neu-
rons, RS and CH.

Neouron Type a b c d

Regluar spiking (RS) 0.02 0.2 -65 8

Chattering (CH) 0.02 0.2 -50 2

Fast spiking (FS) 0.1 0.2 -65 2

Low-threshold spiking (LTS) 0.02 0.25 -65 2

Excitatory neurons favor neurons to activate, but too
much excitation exhausts the neurons and blocks them
to fire again for some time. For this reason inhibitory
neurons are necessary. Indeed, when a neuron receives
an inhibitory stimulus its membrane potential decreases,
preventing the membrane potential to go to high too
quickly. The combination of excitatory and inhibitory
neurons is what makes the Izhikevich model so powerful,
approaching the complex behavior and biological reality
of the mammalian cortex [11].

To test the simulations, we have first simulated a net-
work of 1000 excitatory, RS type (regular spiking) neu-
rons by using the appropriate parameters (Fig. 1A). Neu-
rons are coupled through the matrix S. Neurons activate
synchronously but, since need a lot of time to recover,
the interval between consecutive activations is large. In
a second simulation, we have added inhibitory neurons
(Fig. 1B), with a ratio 1/4 of inhibitory to excitatory,
as in actual brains [10]. In this simulation, activity is
much richer since inhibition facilitates neurons to fire less
strongly and recover faster.

FIG. 1: Simulation of 1000 neurons using the Izhikevich
model. (A) Just regular spiking neurons. (B) Combination
of excitatory and inhibitory neurons.

B. Neurons as Kuramoto oscillators

We considered now a simulation of 1000 coupled Ku-
ramoto oscillators. When we had the solutions of the
differential equations, we accumulated in a vector the
number of times each oscillator i has completed a cycle,
to then graph the activation of oscillator i in each step of
time. As shown in Fig. 2A, a point in the plot is a firing
neuron. Next, we considered the above Kuramoto code
with noise addition, as explained in the methods section,
and repeated the simulations (Fig. 2B).

C. Comparison of the two models

In both simulations, and for the simplest approaches
(Figs. 1A and 2A) we can appreciate vertical bands cor-
responding to the moments when most neurons fire to-
gether, followed by periods of relative silence. For the
most complex scenarios, with inhibition for Izhikevich
and noise for Kuramoto (Figs. 1B and 2B), we observe
some similitudes.
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FIG. 2: Simulation of 1000 Kuramoto oscillators with K=0.9
and initial ωi between (2π6, 2π8). (A) Kuramoto without per-
turbation. (B) Kuramoto with neural noise, time noise=450.

For Izhikevich, on the one hand, the inclusion of inhibi-
tion reveals a richer dynamics, with more activity and not
so sharp vertical bands. Kuramoto, on the other hand,
shows how the added noise causes the system to have
stages where there is synchronization and stages where
noise predominates, similar to what we see in Izhikevich.
Thus, it could be concluded that the implementation of
noise in Kuramoto has a similar effect to incorporating
inhibitory neurons to the network.

D. Neural masses and Kuramoto oscillators

For the above Izhikevich simulations (Figura 1B), it
is interesting to represent in a histogram the number of
neurons activating in a given time window. As shown
in (Fig. 3A) a periodic behavior can be observed. With
a Fourier analysis of this histogram (Fig. 3B) we can
analyze the frequency of the peaks, providing about 0.008
ms−1.
Thus, for coupled Izhikevich, the peaks where most of

the neurons fire are repeating with a specific frequency,
a result that can be approximated by just a single oscil-
latory movement.

After seeing this result, an interesting question that
arises is whether connecting five Izhikevich neuronal net-
works is analogous to coupling five Kuramoto oscilla-
tors with intrinsic frequencies within (0.007, 0.009) ms−1.
Thus, using a connectivity matrix, see (Fig. 4A), we cre-
ated 5 groups of 1000 interconnected neurons, and where
each group was connected with another with just 1.5% of
connections. To do that, we randomly filled a 5000×5000
matrix with decimal numbers from 0 to 1. Above 0.015,
we replaced them with 0 and the rest with 1. On the diag-
onal of the matrix we built the 1000×1000 sub–matrices
that represent the 5 groups. Neurons within each group

FIG. 3: (A) Histogram corresponding to Figure 1B. of the
number of neurons that are activated as a function of time.
(B) Fourier analysis of the predominant frequencies in the
histogram.

where strongly connected. The resulting matrix is mul-
tiplied element by element by the S matrix, related to
synaptic interactions, so we have some neurons sending
and receiving synaptic impulses between networks.
The simulations with 5000 neurons are shown in

Fig. 4B. From these simulation we also made the his-
togram to know the total number of neurons that fired
in any of the networks and compare it with the sum of 5
Kuramoto oscillators. The results are shown in Fig. 4B.
In Figure 4B we can distinguish the different networks by
their behavior, each one represented by a different color.
What the histogram in Figure 4C shows is that despite
having a differentiated behavior in each network, they
show certain synchrony between them. When trying to
fit the histogram of the 5 networks with the sinusoidal
that results from the sum of 5 Kuramoto oscillators, we
see that they adjust quite well.

IV. CONCLUSIONS

Firstly, it has been found that it is plausible to use
Kuramoto oscillators to model the dynamics of intercon-
nected neurons, whether we consider individual neurons
as coupled oscillators or large masses of neurons as a sin-
gle oscillator that alternate periods of high activity with
periods of partial relaxation.
This leads to the conclusion that, for large systems

such as neuronal networks in the human brain, it is possi-
ble to use Kuramoto oscillators to study large–scale phe-
nomena, related to collective behaviors, for instance syn-
chronization. This ‘Kuramoto approach’ saves resources
associated to doing simulations with all the components
of the system, effectively dividing ∼ 106 − 109 neurons
into 102 − 103 groups, where each group would be a
Kuramoto oscillator interacting with others through a
mean–field description.
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FIG. 4: (A) Matrix of 5 network groups strongly connected within the group itself and weakly connecting with neurons in other
groups. The black dots are synaptic connections. (B) Corresponding simulations, showing 5 network groups of 1000 neurons
each with 1.5% connections between groups, and where each color identifies the neurons that belong to a specific group. (C)
Histogram of the total number of neurons that activated in the whole system. The dashed line shows the equivalent of using 5
coupled oscillators sin(θi).
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