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Abstract: An study of the Ξ−-nucleus interaction is done for the purpose of expanding the
knowledge on how strangeness S = −2 hyperons interact with nuclear media. Our work is based on
some recent two-body capture events

(
Ξ−p → ΛΛ

)
on 12C and 14N nuclei measured at KEK and

J-PARC in which a pair of single-Λ hypernuclei are formed. By developing an algorithm, based on
Numerov’s method, able to resolve numerically the radial Schrödinger’s equation with a potential
composed by a finite-size Coulomb potential and a nuclear potential shaped as a Woods-Saxon
function, we conclude that this capture events occur from 1pΞ− nuclear states with a corresponding
potential depth of V0 ∼ 14−17 MeV. Developing a program able to find the Ξ-nuclear energy levels
and their dependence on V0, which is at the same time easy to adapt to other interacting particles
or nuclei, is part of our intention here too.

I. INTRODUCTION

The Ξ baryons, historically called cascade particles be-
cause of their tendency in decaying rapidly into lighter
particles, are a family of baryons which consist of one
up or down quark and two other, more massive quarks:
strange, charm or bottom. The main cascade baryon for
our study is Ξ−, which is made of one down and two
strange quarks (dss). Interest in the nuclear interaction
of Ξ− hyperons has been recently increased, as result of
the latest Ξ−p correlation studies measured by ALICE
[1–4] in pp and p-Pb ultra-relativistic collisions.

Some work has already been done aiming to un-
derstand nuclear strong interaction in the strangeness
S = −2 sector. Old emulsion experiments, where the
Ξ− is captured in the emulsion and the decay prod-
ucts are observed, suggested an attractive Ξ-nuclear po-
tential of VΞ ∼ 21 − 24 MeV [5]. However, dedi-
cated (K−,K+) counter experiments, driven by K−p →
K+Ξ−strangeness exchange on protons, where the pro-
duced Ξ− hyperons populate predominantly the quasi-
free continuum region, with less than 1% of events cor-
responding to Ξ−-nuclear bound states, give shallower
potentials of around VΞ ∼ 15 MeV [6–9].

Recent light-emulsion CNO nuclei experiments at KEK
[11] and J-PARC [12] may bring a glimmer of enlight-
enment to this discrepancy, as they provide a complete
identification of the final decay products after the Ξ−

capture. Particularly interesting are the events in which
a pair of single-Λ hypernuclei are produced in the final

state, namely Ξ− + AZ → A′

Λ Z ′ +
A′′

Λ Z ′′. This is because
the two Λ particles must be in a 1s2Λ state, so that in
the capture process, Ξ−p → ΛΛ, the Ξ− must satisfy
lΞ− = lp. Since the 12C, 14N and 16O components of
the emulsion are all p-shell nuclear targets, the choice
lΞ− = 1 is favored in these events.

In Table I we show the binding energies BΞ− re-
ported by the two experiments. We note that the values
are about 1 MeV, significantly higher than the purely-
Coulomb atomic 2P binding energies. A recent theoreti-

Experiment AZ
A′

Λ Z′ +
A′′

Λ Z′′ BΞ− (MeV)

KEK E176 [11] 12C 4
ΛH + 9

ΛBe 0.82±0.17

J-PARC E07 [12] 14N 5
ΛHe+ 10

Λ Be 1.27±0.21

TABLE I: Reported two-body Ξ− capture events

Ξ− + AZ → A′

Λ Z ′ +
A′′

Λ Z ′′ in light-emulsion nuclei to a
pair of single-Λ hypernuclei.

cal analysis of these pair of Λ-hypernuclei events has been
done [10], reaching the conclusion that the Ξ-nucleus well
potential depth is of VΞ ≈ 24 MeV. The strength of
this Ξ-nuclear potential is determined by requiring that
it reproduces the 1pΞ− nuclear state in 12C bound by
0.82± 0.17 MeV.
The former study is the backbone of this paper. In-

deed, in the present work we aim at carrying out a sim-
ilar analysis on the basis of a simpler potential model.
Our desire is to find how Ξ− atomic and nuclear bound
states depend on the nuclear potential well depth and
to develop a program capable of finding accurately the
Ξ-nuclear energy levels, which is easy to adapt to other
potential functions, interacting particles or nuclei.

II. FORMALISM

A. Schrödinger’s equation

Our goal is to resolve the Ξ−-nucleus system, finding
the energy levels and their dependence on the nuclear
well depth potential. We have consideredMΞ− = 1321.31
MeV/c2 and MN = A·Mp where Mp = 938.27 MeV/c2 is
the proton mass and A is the mass number. The model
used is based on solving the radial Schrödinger’s equa-
tion:

d2Pnl(r)

dr2
+

(
2µ

ℏ2
(E − V (r))− l(l + 1)

r2

)
Pnl(r) = 0 (1)
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Pnl(r) = rRnl(r) , (2)

where Pnl(r) is the reduced radial function, µ is the re-
duced mass of the two-body system and ℏ is the reduced
Planck constant.

B. Potentials

The potential V (r) will be the sum of a Coulomb po-
tential Vc(r) -to which we have implemented the nucleus
finite-size corrections- and a nuclear potential VWS(r)
modelled as a Woods-Saxon function:

Vc(r) =


−Ze2

RN

(
3
2 − r2

2R2
N

)
if r ≤ RN

−Ze2

r if r > RN

(3)

VWS(r) = − V0

1 + e
r−RN

a

, (4)

where a = 0.5 fm is the surface thickness of the nucleus,
V0 is the potential well depth and RN = r0(A)A1/3 is
the nucleus radius. The function r0(A) is taken from the
parametrization of Ref. [19]:

r0(A) = 1.128 + 0.439A−2/3 (5)

The former potentials are depicted in Fig.1.

FIG. 1: Finite-size Coulomb potential (red line) and
nuclear Woods-Saxon potential (blue lines) with
V0 = 10, 20, 30 MeV for 16

8 O. The radius of the nucleus,
RN = 3.016 fm, is marked by a vertical dotted line.

C. Numerical solution

Equation (1) is a second order differential equation
which has no analytical solution, i.e. should be solved

numerically. We have utilized Numerov’s algorithm [17],
which resolves generic second order differential equations
of the type:

d2u(r)

dr2
= −g(r)u(r) + s(r) (6)

Comparing (1) and (6), one can easily identify:

g(r) =

(
2µ

ℏ2
(E − V (r))− l(l + 1)

r2

)

s(r) = 0 u(r) = Pnl(r)

The Numerov’s method consists of discretizing equa-
tion (6), where the solution u(r) is expanded up to the
fourth order. The resulting Numerov’s formula is:

un+1 =
(12− 10fn)un − fn−1un−1

fn+1
(7)

where:

fn ≡ 1 + gn
(∆r)2

12
(8)

and ∆r is the discretization step.

D. Methodology

1. Atomic states

Solving Schrödinger’s equation (1) is an eigenvalue
problem. The idea here is to numerically integrate (1)
forward -from r = 0 to r = rmatch- and backwards -from
infinity to r = rmatch- and request to the solutions u(r)
to fulfill some continuity conditions at rmatch.
For bound atomic levels, the matching point rmatch is

chosen to be the classical turning point of the particle,
i.e. where the energy of the particle equals the potential
energy:

rt =
aµ
Z

[
n2 +

√
n4 − n2l(l + 1)

]
. (9)

In order to use Numerov’s method we have to give the
first two points -or the last two in backwards integration-
of the mesh. So, we must set the boundary conditions:
u(0) = 0 and u(∞) = 0. Moreover, by analogy to the
wave functions of the hydrogen atoms, we should expect
the following behaviours:

u(r) −−−→
r→0

rl+1 (10)

u(r) −−−→
r→∞

exp(−Zr/naµ) (11)

We defined the “numerical” infinity as 200RN .
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2. Nuclear states

In the case of nuclear states, the wave function is much
closer to nucleus. The matching point is set to be the
nuclear radius RN , given by Eq. (5). The behaviour in
the boundaries is consider to be [13]:

u(r) −−−→
r→0

rl+1 (12)

u(r) −−−→
r→∞

exp(−r/RN ) (13)

We defined the “numerically” infinity as 30RN .

3. Bisection method and continuity requests

For the purpose of finding the eigenvalues E and eigen-
functions Pnl(r) that resolve Eq. (1), we use the bisec-
tion method, which, though primitive, is a powerful tech-
nique. So, we feed our program with two energies and it
will numerically integrate forward and backwards to the
matching point for both energies. We must impose to
our solutions an smooth continuity in rt, i.e they must
satisfy:

1

u
(F )
m

du(F )

dx

∣∣∣∣
rmatch

− 1

ũ
(B)
m

dũ(B)

dx

∣∣∣∣
rmatch

= 0 (14)

Where u(F ) and ũ(B) stands for the forward and back-
ward integration, respectively; and um = u(rmatch).

If the wave functions found do not sort out (14) for any
value of the two chosen energies, the bisection algorithm
will change these values, calculating their eigenfunctions
by Numerov’s, until it finds an energy linked to a wave
function that correctly accomplish the continuity request.
That will correspond to an energy level of the Ξ−atom.
It must be clarified that the wave function found is not
yet the correct one, as it has to be modified by an overall

factor α = u
(F )
m /ũ

(B)
m :

u(B)(r) = αũ(B)(r) (15)

In Fig. 2 the lowest Ξ− states for a nuclear potential
well depth of V0 =10 MeV in 12C are shown.

III. RESULTS

We have focused our studies on the interaction of Ξ−

with 12C, 14N and 16O. The program developed is able to
find the ground and excited states for a specific L value.
As we are currently interested in the lowest atomic states,
Table II shows the lowest Ξ− energy levels of L = 0 and
L = 1 in different atoms. The greater the potential well
depth V0 is, the more attractive the energy levels become.
Obviously, this effect is more pronounced in the lowest

FIG. 2: From left to right, up to down: wave functions
of the lowest Ξ− states (1S, 2S, 2P, 3P) in 12C for a
nuclear potential depth V0 =10 MeV. Radial functions
Rnl(r) are shown in blue and reduced radial functions
Pnl(r) in red.

(MeV) Coulomb V0 = 10MeV V0 = 20MeV V0 = 30MeV

12C

(1S) -0.950 -4.475 -10.920 -18.414

(2S) -0.259 -0.413 -0.507 -0.734

(2P) -0.283 -0.338 -2.059 -6.789

(3P) -0.126 -0.144 -0.238 -0.2659

14N

(1S) -1.243 -5.330 -12.157 -19.924

(2S) -0.392 -0.539 -0.679 -1.163

(2P) -0.391 -0.567 -3.265 -8.618

(3P) -0.174 -0.224 -0.326 -0.353

16O

(1S) -1.554 -6.128 -13.263 -21.250

(2S) -0.477 -0.676 -0.884 -1.772

(2P) -0.515 -0.929 -4.437 -10.270

(3P) -0.229 -0.321 -0.424 -0.460

TABLE II: Energy levels (in MeV) of the lowest Ξ−

atomic levels in 12C, 14N and 16O, modelled by different
well potentials depths.

energy levels (1S, 2P). Furthermore, the more nucleons
the atom has, the deeper will the energies be.
Fig. 3, Fig. 4 and Fig. 5 present the evolution of the

lowest portion of the nuclear/atomic spectrum of Ξ− in
12C, 14N and 16O, where all behave the same way. En-
ergy levels start at V0 = 0 MeV as purely atomic 1S,
2P, 2S, 3P states from bottom up. With the increase of
the nuclear potential well depth, the 1S state dives down
in energy quickly, overlapping with the nuclear core and
becoming indistinguishable from a nuclear 1s state. The
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12C+ Ξ−

FIG. 3: Lowest Ξ− energy levels (in MeV) for L = 0
(1S,2S) and L = 1 (2P,3P) in 12C as a function of V0.
The dashed an dotted horizontal lines indicate the
binding energy BΞ− =0.82±0.15 MeV from TABLE I

.

14N+ Ξ−

FIG. 4: Lowest Ξ− energy levels (in MeV) for L = 0
(1S,2S) and L = 1 (2P,3P) in 14N as a function of
V0.The dashed an dotted horizontal lines indicate the
binding energy BΞ− =1.27±0.21 MeV from TABLE I.

next atomic state to decline sharply to the nuclear spec-
trum is 2P, for V0

>∼ 15 MeV in 12C, V0
>∼ 10 MeV in

14N and V0
>∼ 7.5 MeV in 16O. While the 2P atomic

state becomes the nuclear 1p state, the 2S and 3P ones
slowly decrease their energies in order to rearrange the
spectrum, becoming the 1S and 2P atomic states, respec-

16O+ Ξ−

FIG. 5: Lowest Ξ− energy levels (in MeV) for L = 0
(1S,2S) and L = 1 (2P,3P) in 16O as a function of V0.

tively [14].
Considering the experimental values of the binding en-

ergies and their errors, marked by straight lines in Fig.
3 and Fig. 4, we propose that both events -KEK E176
and J-PARC E07- listed in Table I are compatible with
a 1pΞ− nuclear state -evolved from an atomic 2P one- re-
lated to a nuclear potential depth of V0 ∼ 14− 17 MeV.
This result differs from the Ξ-nuclear potential of VΞ ≈24
MeV conclude in [10].
On our purpose to understand the mismatch between

the potential well depth our outcomes suggest and the
one conclude in [10], we have studied how some param-
eters, as the surface thickness a and the nucleus radius
RN , from the nuclear potential used (4), affect the re-
sults we obtain. Also, one may think that this discrep-
ancy may be caused by using different nuclear potential
expressions. In [10] an optical potential is applied and
spin and isospin degrees of freedom are taken in account.
However, the imaginary part is too small to make both
results differ that much, as it contributes just as the 3%
of the full optical potential.

IV. CONCLUSION

We have shown how sensitive the Ξ− nuclear bound
states are to the potential well depth V0 of a Woods-
Saxon shaped potential (4) and how, while it increases,
the original atomic 1S and 2P states evolve to 1s and 1p
nuclear states, hence rearranging the energy spectrum.
Furthermore, the code programmed has allowed us to
resolve the Schrödinger’s equation (1) effectively and to
obtain the precisely energy levels of Ξ− atom for a given
V0.
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We have demonstrated that both two-body Ξ− capture
events in light-emulsion nuclei reported in KEK [11] and
J-PARC [12], producing a pair of single-Λ hypernuclei
from Table I, matches with a 1pΞ− nuclear state with a
Ξ-nuclear potential depth of V0 ∼ 14 − 17 MeV. Earlier
predicted by [10], their work reaches a quite different
value of VΞ ≈ 24 MeV and some considerations has been
taken in account in order to justify the gap between both
studies. Unfortunately, no overall definitive conclusion
about this discrepancy has been drawn.

We have successfully compared the energy levels ob-
tained from our program with the ones displayed on dif-
ferent works as [15], [20] and [21]. So, it is fair to say that
a simple and easy to adapt method has been developed.
Our algorithm could be useful in future trials with new
results as J-PARC E05 and E70 (K−,K+) experiments
on 12C[18].

Studying Ξ-nuclear interaction is vital to gain knowl-
edge about how strangeness S = −2 hyperons relate with

nuclear media. Understanding how they interact with the
environment they are embedded, e.g. light-emulsions ex-
periments like the ones commented in the introduction
[11, 12], could allow us improve in solving the Hyperon
Puzzle, which addresses the fate of hyperons in dense
neutron-star matter [16], and in advancing in knowledge
of strange hadronic matter and they role in the universe.
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