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Abstract
During storage, premium extra virgin olive oils (PEVOO), which are oils of exceptional sensory quality, may lose the 
organoleptic characteristics that define them. This study assessed the effect of applying modified atmospheres and low 
temperatures (refrigeration and freezing) on the quality of 4 PEVOO for 24 months. Also, the effect of two freezing meth‑
ods was studied (in the freezer at − 20 °C and in a bath of liquid nitrogen), along with the impact of freezing on the quality 
of the oils after thawing and storing at room temperature. Official quality parameters, organoleptic assessment, phenolic 
compounds, volatile compounds and oxidative stability index were measured periodically. While no significant effect of 
headspace composition was found, the oils stored at − 20 °C maintained their initial quality better than the oils stored at 
room temperature. Physicochemical quality parameters remained unchanged throughout the 24 months at − 20 °C. Polar 
phenolic and volatile compounds associated with green and fruity aromas were better preserved at − 20 °C, which translated 
into a minimum change in the sensory profile of the oils. While no significant difference was observed regarding oxidative 
parameters, freezing at − 20 °C maintained the initial volatile and sensory profile of the oils better than freezing with liquid 
nitrogen. Lastly, quality of thawed oils showed no significant differences compared to control oils during storage at room 
temperature. In conclusion, storage at − 20 °C maintains the quality of PEVOO, especially their sensory profile, and does 
not compromise their quality after thawing.

Keywords Premium EVOO · Storage conditions · Freezing · Sensory quality · Oxidative stability · Secondary sensory 
attributes

Introduction

Extra virgin olive oils (EVOO) with exceptional sensory qual‑
ity are currently labeled as “premium” (PEVOO). The high 
demand for such outstanding product makes that they retail 

at high prices and currently account for 20% of EVOO mar‑
ket [1]. The decrease of quality during storage is especially 
critical for PEVOO, since it negatively impacts their distinc‑
tive sensory features. Although storage between one harvest 
to another does not usually cause EVOO to decline to lower 

 * Stefania Vichi 
 stefaniavichi@ub.edu

 Anna Díez‑Betriu 
 annadiez@ub.edu

 Agustí Romero 
 agusti.romero@irta.cat

 Antonia Ninot 
 antonia.ninot@irta.cat

 Alba Tres 
 atres@ub.edu

 Francesc Guardiola 
 fguardiola@ub.edu

1 Departament de Nutrició, Ciències de l’Alimentació i 
Gastronomia, Campus de l’Alimentació de Torribera, 
Facultat de Farmàcia i Ciències de l’Alimentació, Universitat 
de Barcelona, 08921 Santa Coloma de Gramenet, Spain

2 Institut de Recerca en Nutrició i Seguretat Alimentària 
(INSA‑UB), Universitat de Barcelona (UB), 
08921 Santa Coloma de Gramenet, Spain

3 Institute of Agrifood Research and Technology (IRTA)–Mas 
Bové, Ctra. Reus‑El Morell km 3.8, 43120 Constantí, Spain

http://orcid.org/0000-0002-4318-2348
http://orcid.org/0000-0001-5932-7719
http://orcid.org/0000-0001-5244-7101
http://orcid.org/0000-0003-3626-8511
http://orcid.org/0000-0001-7859-7087
http://orcid.org/0000-0002-8624-8749
http://crossmark.crossref.org/dialog/?doi=10.1007/s00217-022-04078-9&domain=pdf


 European Food Research and Technology

1 3

grades, it may be enough to lose the distinctive characteris‑
tics of PEVOO [2], limiting their availability to the first few 
months after harvest season. A proper control of the storage 
conditions is crucial to maintain for longer the quality of 
PEVOO [3] and to enhance their commercialization.

Although several studies have evaluated the effect of light, 
temperature, and oxygen availability on EVOO quality dur‑
ing storage, most of them aimed to reproduce the actual stor‑
age conditions, i.e., room temperature (RT) [4–7]. As the 
higher value of PEVOO compared to standard EVOO could 
justify higher storage costs, the benefits of applying condi‑
tions that are not common in the olive oil sector, such as con‑
trolled atmosphere and cold storage, deserve to be evaluated. 
A positive effect of cold storage on EVOO quality has been 
reported at refrigeration [8–10] and freezing [11–14] tempera‑
tures, but more research is needed to endorse its suitability for 
PEVOO quality preservation. For instance, previous studies 
have reported contradictory information on whether the par‑
tial crystallization of oils during the phase transition at low 
temperatures affects their oxidation rates [15–17]. Assessing 
freezing methods at different freezing speeds (i.e., speed of 
phase transition) would allow clarifying this issue. On the 
other hand, Cerretani et al. [11] hypothesized that freezing 
and thawing olive oil may induce a partial precipitation of 
phenols and the consequent reduction of its oxidative resist‑
ance, with a negative effect on shelf life. This would question 
the appropriateness of storing at freezing temperatures, but 
studies on the evolution of EVOO quality at RT after thawing 
are necessary to elucidate this fact.

Moreover, previous studies mainly focused on EVOO phys‑
icochemical trade parameters [18–22] or on the appearance of 
sensory defects [4, 7, 8], according to EEC Regulation [23]. 
Only few reports concern secondary attributes during stor‑
age [24, 25]. Since sensory quality is the distinctive trait of 
PEVOO, the evolution of secondary attributes contributing to 
the outstanding profile of PEVOO is crucial.

Our aim was to evaluate the effect of oxygen availability, 
cold storage (4 °C and − 20 °C versus RT), and freezing speed 
on the overall quality of 4 different PEVOO during 24 months 
of storage. We monitored the overall sensory profile, phys‑
icochemical and compositional data (trade quality param‑
eters, phenolic and volatile compounds, Oxidation Stability 
Index—OSI), which are essential to guarantee the preservation 
of PEVOO distinctive features during storage. Moreover, the 
effect of thawing and storing at RT after 12 months of frozen 
storage was evaluated.

Materials and methods

Samples

With the aim of including different phenolic, volatile and 
sensory profiles in the study, four PEVOO produced dur‑
ing 2016/17, two of the Picual cultivar and two of the 
Arbequina cultivar, were obtained in 25 L bottles from 
Castillo de Canena (Canena, Jaén, Spain) and La Grama‑
nosa (Avinyonet del Penedès, Barcelona, Spain), respec‑
tively. For each cultivar, a sample was produced at the 
beginning and another at the end of the harvest.

Storage conditions

Even if the four oils were clear and apparently homo‑
geneous, the bottles were vigorously shaken to ensure 
homogeneity and then aliquots of 100 mL were placed in 
130 mL glass bottles (23% headspace) with high density 
polypropylene caps from Scharlau (Sentmenat, Spain). A 
factorial design was applied to evaluate headspace com‑
position, storage temperature and freezing method over 
24 months of storage in the dark. For each oil, half of the 
samples were submitted to a nitrogen stream before being 
closed, obtaining a low oxygen headspace (N), while the 
headspace of the other half contained air (O). For each 
headspace condition (O and N), samples were stored at 
three different temperatures: 20–25 °C (RT), 4 °C (R) 
and − 20 °C. The samples stored at − 20 °C were frozen 
by two different methods: a slow‑freezing method (S), by 
putting the samples directly in the freezer at − 20 °C, and 
a fast‑freezing method (F), by immersing the samples in 
a bath of liquid nitrogen. The samples were analyzed at 
time 6, 12 and 24 months. Moreover, a characterization 
of the 4 oils was carried out at the beginning of the study. 
Altogether, 100 samples were analyzed, that is, 4 at time 0 
and 96 during the conservation study: 4 oils × 2 headspace 
compositions (O, N) × 4 storage temperatures and freez‑
ing methods (RT, R, S and F) × 3 storage times (6, 12, 24) 
(Supplementary information, S1).

In addition, at 12 months, samples of each frozen con‑
dition were thawed at room temperature for approximately 
10 h (ST or slow‑freezing and thawed and FT or fast‑freezing 
and thawed). The samples were analyzed right after thawing 
and after 6 months of storage at RT and were compared with 
the same samples analyzed at the beginning of the conser‑
vation study and after 6 months of storage at RT (control 
samples). In total, 24 samples were analyzed at the initial 
time and after 6 months at RT, corresponding to 4 oils × 2 
headspace compositions (O, N) × 3 treatments (control, ST, 
FT) (Supplementary information, S2).



European Food Research and Technology 

1 3

For each oil, storage condition and point of analysis 8 
aliquots were prepared, so that the parameters more sus‑
ceptible to change once the bottle is open (PV, extinction 
coefficients, volatile compounds and sensory profile) could 
be determined from a newly opened bottle. Globally, 992 
bottles were prepared.

Analytical methods

Trade quality indices

Determinations of peroxide value (PV), extinction coeffi‑
cients  (K232 and  K268) and acidity were carried out follow‑
ing the analytical methods described in the EEC Regulation 
2568/91 [23]. The sensory analysis was performed according 
to the same regulation by the Official Tasting Panel of Vir‑
gin Olive Oils of Catalunya (panel made of 8–12 panelists). 
Intensity of sensory defects and positive attributes were 
assessed and expressed as median of the panelists’ scores. 
Moreover, the presence of secondary sensory attributes was 
determined by the percent of panelists able to perceive each 
odor note using an open generic profile [26].

Moisture and volatile matter

Moisture content and volatile matter were determined by the 
vacuum oven method following the AOCS official method 
Ca 2d‑25 [27].

Oxidative stability

OSI was measured at 120 °C with an air flow rate of 20L/h 
using a 892 Professional Rancimat (Metrohm, Herisau, 
Switzerland) and following the AOCS official method Cd 
12b‑92 [28].

Fatty acids (FA)

For the determination of the FA composition, FA methyl 
esters were prepared by a double methylation and separated 
by GC‑FID following the method described by Varona et al. 
[29]. In brief, 1 μL of the FAME extract was injected into 
an Agilent 4890D gas chromatograph (Agilent Technolo‑
gies, Santa Clara, CA, USA), equipped with a split–split‑
less injector and a flame ionization detector (FID). Separa‑
tion was carried out with a SP‑2380 column from Supelco 
Ltd, Bellefonte, PA, USA (60 m × 0.25 mm and 0.2 μm film 
thickness). The oven temperature was as follows: 1 min at 
150 °C, from 150 to 180 °C at 1.5ºC/min, 0.5 min at 180 °C, 
from 180 to 220 °C at 14.5 °C/min, 3 min at 220 °C, from 
220 to 250 °C at 9.9ºC/min and 9 min at 205 °C. The carrier 
gas was hydrogen at 25 psi and the split ratio 1:30. Injector 
temperature was 270 °C and detector 300 °C.

Lipophilic and polar phenolic compounds

Tocopherols were evaluated following the AOCS official 
method Ce 8‑89 [30] with some modifications. The sam‑
ple (1.5 g) was diluted with hexane in a 10 mL volumetric 
flask. Then, 20 μL of the solution were injected into an Agi‑
lent 1100 series HPLC (Agilent Technologies, Santa Clara, 
CA, USA) coupled to a Hewlett‑Packard 1046A fluorescent 
detector. Separation was carried out using a 4 × 3.0 mm 
precolumn (Phenomenex Security Guard Cartridge Silica) 
and a Luna silica column (150 × 4.6 mm i.d., 3 μm parti‑
cle size and 100 Å pore size) from Phenomenex (Torrance, 
CA, USA). Elution was performed using hexane/1,4‑dioxane 
(95/5%, v/v).

Polar phenolic compounds were extracted according to 
Vichi et al. [31] and analyzed by UHPLC‑DAD, adapting the 
chromatographic conditions of the IOC method COI/T.29/
Doc No 29 [32] to an UHPLC system, as described by 
Nenadis et al. [33]. Briefly, 15 μL of the phenolic extract 
was injected into an Acquity‑UPLC (Waters, Milford, MA, 
USA) coupled to a PDA 2996 detector (Waters, Milford, 
MA, USA). Separation was carried by a Halo C18 Fused‑
Core column (100 × 2.1 mm i.d., 2.7 μm particle size) from 
Advanced Materials Technology (Wilmington, DE, USA). 
Elution was performed at a 0.4 mL/min flow rate and 30 °C, 
using as mobile phase ultrapure water (Milli‑Q Millipore 
Corporation, Billerica, MA, USA)/formic acid (98:2, v/v) 
(solvent A), and methanol/acetonitrile (50:50, v/v) (solvent 
B). The solvent gradient changed as follows: from 96% 
(A)–4% (B), to 20% (B) at 5 min, to 45% (B) at 28 min, to 
100% (B) at 30 min, 5 min maintenance until 35 min, then 
96% (A)–4% (B) at 36 min, 5 min of equilibration. Detection 
was performed simultaneously at 335 nm and 280 nm. Iden‑
tification was carried out according to COI/T.29/Doc No 29 
[32] and to Mateos et al. [34], and confirmed by high‑resolu‑
tion mass spectrometry, using a Q‑Exactive hybrid Orbitrap 
(Thermo Fisher Scientific, Bremen, Germany), under the 
described chromatographic conditions. Ion source and spec‑
trometer conditions were as described by Vichi et al. [31].

The following secoiridoids (SEC) were not quantified 
by UHPLC‑DAD due to coelution: the aldehydic form of 
ligstroside aglycone and one of the oxidized aldehyde and 
hydroxylic forms of oleuropein aglycone.

Quantification was made using as internal standards (IS) 
o‑coumaric acid (for flavones) and p‑hydroxyphenylacetic 
acid (for the rest of the phenolic polar compounds) and the 
response factors from Mateos et al. [34]. The results were 
expressed in mg/kg.

Volatile compounds

The extraction of the volatile compounds was carried out 
by headspace solid‑phase microextraction (HS‑SPME) 
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according to Vichi et al. [35] with some modifications: the 
sample (2 g) was conditioned during 10 min in a silicone 
bath at 40 °C under magnetic stirring. The analysis was 
performed by GC–MS on an Agilent GC 6890 N equipped 
with a split–splitless injector, coupled to a quadrupole 
mass spectrometer 5973 (Agilent Technology, Palo Alto, 
USA). The separation of compounds was performed by a 
column Supelcowax‑10 (60 m × 0.25 mm i.d., 0.25 μm film 
thickness), from Supelco Ltd (Bellefonte, PA, USA). The 
GC oven temperature was held at 40 °C for 10 min, then 
increased to 150 °C at 3 °C/min, then to 250 °C at 15 °C/
min, holding 5 min at 250 °C. The carrier gas was helium, 
with a flow rate of 1.5 mL/min. Ion source and transfer line 
temperatures were 200 °C and 275 °C, respectively. Electron 
impact mass spectra were recorded at 70 eV in the m/z range 
35–300, 2 scan/s. Volatile compounds were identified by 
comparing their mass spectral data with those of the Wiley 
6 mass spectra library and by comparison with reference 
compounds. Semi‑quantification was done by spiking the 
samples with 10 μL of IS (4‑methyl‑2‑pentanol, 0.2 mg in 
1 mL sunflower oil). The results were expressed as mg of 
4‑methyl‑2‑pentanol (IS) per kg of oil.

Statistical analysis

To assess the effect of the studied storage conditions on the 
measured parameters, a three‑way ANOVA (n = 96) was 
applied. To make analytical data comparable, the values 
of phenolic compounds, volatile compounds and sensory 
attributes were percent normalized. Normalization of each 
parameter was done using as a base value the maximum 
value among all the samples of each oil. To evaluate the 
impact of freezing on the quality of the oils after thawing 
and storing at RT, the evolution of the measured parameters 
was expressed as the difference between their values at 0 and 
6 months and a two‑way ANOVA (n = 24) was carried out.

In all the cases, SPPS Statistics (v 25, IBM, Armonk, 
NY, USA) was used. p‑Values lower or equal to 0.05 were 
considered significant and Scheffé test was applied to evalu‑
ate statistical differences between the mean values when the 
effect of the main factors was significant.

Results and discussion

The results of the initial characterization of the oils showed 
that the 4 oils belonged to the EVOO category according to 
EU regulations (Supplementary material S3). Indeed, the 
values of the trade quality parameters were notably above 
(median of positive attributes) or below (acidity, PV and 
extinction coefficients) the limits established for EVOO, 
showing that the oils were of the highest quality (premium) 
and, thus, fit for the research.

As expected, the values of FA composition, OSI, phenolic 
and volatile compounds, as well as the sensory profile, var‑
ied among the oils according to variety and olive maturation, 
which is in agreement with the previous knowledge [36–41].

Effect of headspace composition

The headspace composition (air, that is O, vs N) showed 
no influence on any of the studied parameters (Table 1 and 
Supplementary material S4). This was an unexpected result 
in disagreement with previous knowledge. As stated in 
the Materials and Methods section, the free oxygen head‑
space (N samples) was achieved by streaming nitrogen gas 
before capping the bottles. A hypothesis that would explain 
the observed lack of significant differences between the 
two headspace compositions, especially regarding oxida‑
tion parameters, could be that a certain amount of residual 
oxygen remained in the headspace or dissolved in the oil 
after applying the stream of nitrogen. This could be enough 
so that the oxidation rate of the oils would be independent 
of the oxygen concentration, as reported in the literature 
[42]. Thus, it would be necessary to evaluate other meth‑
ods to modify the headspace composition while suitable for 
their application under the current conditions of industrial 
production.

Effect of storage temperature

Trade quality indices

Acidity (FFA%) values slightly increased during storage, 
being significantly higher in the RT oils (Table 1), showing 
that storage at low temperatures (R, S and F) reduces TAG 
hydrolysis. These results agree with previous similar stud‑
ies [12, 13] and can be explained by the low water content 
of the oils used in this study, which ranged between 0.056 
and 0.071 (Supplementary material S3). Low water content 
limits hydrolysis reactions and makes acidity not a critical 
parameter during storage of filtered oils.

PV and  K232 values increased according to the tempera‑
ture, showing a progressive increment of the primary oxida‑
tion. Significant differences were found between the three 
storage temperatures (Table 1): as expected, RT oils showed 
the highest values, followed by R oils, and lastly by the oils 
stored at − 20 °C (S and F oils). At RT, PV and  K232 values 
linearly increased, exceeding in less than 24 months the limit 
fixed by EU legislation for EVOO (Fig. 1).

Storage temperature also affected  K268 values (Table 1); 
while storage at low temperatures (R, S, F) maintained the 
initial values, storage at RT resulted in an increment of  K268 
up to the upper limit for EVOO category (Fig. 1). These 
results confirm the effect of low storage temperature (R 
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Table 1  Effect of headspace composition, storage temperature, freezing method and storage time on the quality and composition parameters of 4 
premium EVOO

s.e. standard error, O air, N nitrogen, RT oils stored at room temperature, R oils stored at 4 °C, S oils frozen at − 20 °C and stored at − 20 °C, 
F oils frozen with liquid nitrogen and stored at − 20 °C, FFA free fatty acids, PV peroxide value, SEC secoiridoid derivatives, OL oleuropein 
derivatives, LIG ligstroside derivatives, Hty hydroxytyrosol, Ty tyrosol, OSI oxidative stability index, LOX lipoxygenase pathway, PD pentene 
dimer, ∑OX products, sum of volatile oxidation products (octane, 1‑octene, pentanal, hexanal, heptanal, 1‑pentanol, octanal, 2‑heptenal, nona‑

Fresha Headspace composi‑
tion

Temperature and freezing method Time (months)

Ob Nb s.e. RTb Rb Sb Fb s.e. 6b 12b 24b s.e.

FFA%c 0.080 0.089 0.087 0.001 0.100a 0.085b 0.083b 0.084b 0.002 0.084b 0.091a 0.090a 0.002
PV (meq  O2/kg) 3.6 8.7 8.5 0.470 18.0a 7.7b 4.3c 4.4c 0.665 6.1b 7.7b 12.1a 0.576
K232 1.57 2.17 2.15 0.068 3.34a 1.99b 1.67b 1.64b 0.096 1.89b 2.05b 2.54a 0.083
K268 0.13 0.14 0.14 0.002 0.18a 0.13b 0.12c 0.12c 0.002 0.13b 0.13b 0.15a 0.002
Phenolic compounds
α‑Tocopherol (%)d 100.0 53.6 53.6 0.613 48.2b 54.4a 54.1a 56.1a 0.867 60.62a 50.9b 48.1c 0.751
∑SEC (%) 99.1 67.1 68.4 1.519 58.8b 72.2a 70.4a 69.7a 2.148 86.5a 67.0b 49.8c 1.860
∑OL (%) 99.0 64.1 65.6 1.638 52.9b 68.7a 70.2a 67.6a 2.316 84.1a 64.1b 46.3c 2.006
∑LIG (%) 97.6 70.7 71.6 1.377 67.0b 76.5a 69.5a,b 71.9a,b 1.948 88.6a 70.4b 54.5c 1.687
SEC hydrolysis (%) 24.6 38.5 37.5 0.935 61.1a 34.0b 24.5c 32.3c 1.323 26.6c 35.5b 51.9a 1.146
HTy (%) 74.4 63.3 61.6 1.311 84.0a 64.4b 41.2c 60.1b 1.853 62.0a,b 65.7a 59.5b 1.605
Ty (%) 56.5 60.3 59.5 1.442 84.5a 57.1b 45.3c 52.8b,c 2.039 58.4 59.6 61.7 1.766
SEC oxidation (%) 3.9 17.6 17.3 0.639 49.5a 9.4b 5.2c 5.6c 0.903 7.2c 12.9b 32.2a 0.782
OSI (h) 17.8 15.6 15.6 1.002 9.8b 15.6a,b 18.5a 18.5a 1.418 ‑ 16.5 14.6 1.002
Volatile compounds
LOX compounds
∑PD (%) 73.8 81.6 81.2 0.987 79.2b 79.3b 78.7b 88.3a 1.395 78.4b 78.3b 87.5a 1.208
1‑Penten‑3‑ol (%) 74.3 80.8 80.2 1.514 86.6a 85.8a 74.2b 75.3b 2.141 81.3a,b 83.7a 76.5b 1.854
trans‑2‑Pentenol (%) 78.4 81.2 80.5 1.036 77.9b 81.9a,b 79.0a,b 84.5a 1.465 76.8b 88.0a 77.8b 1.269
cis‑2‑Pentenol (%) 75.4 86.9 86.4 0.804 83.1b 88.6a 86.0a,b 89.0a 1.137 84.4b 89.1a 86.5a,b 0.984
1‑Penten‑3‑one (%) 81.0 79.6 78.5 0.817 70.4c 85.9a 77.8b 82.2a,b 1.156 82.1b 87.7a 67.3c 1.001
Hexanal (%) 31.7 41.6 41.3 1.376 62.2a 34.1b 31.6b 38.0b 1.946 33.6b 36.0b 54.9a 1.685
cis‑3‑Hexenal (%) 91.9 66.3 66.5 1.224 38.6 d 61.8c 89.4a 75.9b 1.731 77.7a 65.5b 56.1c 1.499
trans‑2‑Hexenal (%) 82.9 83.4 83.0 1.164 76.8b 82.7a,b 84.8a 88.4a 1.646 83.1a,b 87.5a 79.0b 1.425
1‑Hexanol (%) 74.6 84.6 84.5 1.088 82.7b 83.6b 81.9b 90.0a 1.539 81.3b 85.7a,b 86.8a 1.333
cis‑3‑Hexenol (%) 77.8 85.2 84.9 0.967 81.9b 85.3a,b 83.3b 89.8a 1.368 83.9 87.4 83.9 1.185
trans‑2‑Hexenol (%) 52.9 68.2 67.6 2.529 76.8a 64.5a,b 61.6b 68.7a,b 3.577 59.7b 67.3a,b 76.8a 3.098
Hexyl acetate (%) 66.4 76.0 75.1 1.558 71.3b 74.0b 72.6b 84.3a 2.203 68.9b 74.0b 83.8a 1.908
cis‑3‑Hexenyl acetate (%) 67.3 79.1 78.2 1.353 76.1b 76.5b 75.5b 86.5a 1.914 72.1c 78.2b 85.7a 1.658
∑OX products (%) 23.4 34.4 34.1 0.628 57.8a 27.8b 23.2c 28.3b 0.888 26.0c 29.5b 47.3a 0.769
Sensory analysis
Positive attributese

Fruity (%) 98.1 89.5 89.0 0.838 85.8b 90.6a,b 93.1a 87.3b 1.186 93.5a 88.7b 85.4b 1.027
Bitter (%) 83.1 86.5 86.9 0.622 81.9b 88.4a 89.6a 86.9a 0.880 93.5a 84.6b 82.0b 0.762
Pungent (%) 88.5 90.7 90.5 0.469 88.1b 90.9a 93.1a 90.5a,b 0.664 95.9a 91.0b 85.1c 0.575
Green (%) 94.4 85.3 84.4 1.022 81.2b 86.6a,b 88.1a 83.5a,b 1.445 90.4a 84.6b 79.6c 1.251
Astringency (%) 83.2 81.5 81.5 1.146 76.1b 83.4a 85.5a 81.1a,b 1.621 92.5a 79.9b 72.2c 1.404
Almond (%) 83.4 81.1 82.6 1.489 78.1b 81.9a,b 86.7a 80.8a,b 2.106 86.2a 80.6a,b 78.8b 1.823
Secondary sensory attributesf

Green fruity (%) 91.6 89.5 89.6 1.677 82.0b 93.0a,b 93.5a 89.7a,b 2.372 94.9a 86.9b 86.8b 2.054
Ripe fruity (%) 41.0 40.2 45.8 3.178 57.3a 35.7b 32.0b 47.0a,b 4.494 29.4b 48.4a 51.2a 3.892
Tomato leaf (%) 64.0 55.0 58.7 3.066 45.2a 62.6a 61.0a 58.8a 4.335 74.7a 40.4b 55.5c 3.755
Artichoke (%) 67.7 74.9 73.2 2.285 59.1b 82.7a 80.2a 74.1a 3.232 73.2 76.1 72.8 2.799
Ripe banana (%) 35.9 43.3 42.6 3.009 37.8a 48.9a 37.9a 47.2a 4.255 24.9b 49.7a 54.3a 3.685
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nal, 2,4‑heptadienal, compound not identified 1)
a Mean values of the 4 oils at the beginning of the study
b Pooled means from three‑way ANOVA (n = 96 corresponding to 2 headspace compositions × 4 temperature and freezing methods × 3 storage 
times × 4 different oils), except for OSI (n = 64 corresponding to 2 headspace compositions × 4 temperature and freezing methods × 2 storage 
times × 4 different oils)
c The means within each row for each factor, labeled by different letters, are significantly different (p ≤ 0.05). The interaction between time and 
temperature and freezing method is statistically significant (p ≤ 0.05) in all the studied parameters except for OSI, 1‑penten‑3‑ol, trans‑2‑hexenal, 
trans‑2‑pentenol, trans‑2‑hexenol, almond, green fruity, tomato leaf and ripe banana
d The values of α‑tocopherol, polar phenolic compounds, volatile compounds and sensory attributes are percent normalized, using as a base value 
the maximum value among all the samples of each oil
e Measured as the median of intensity (0–10 scale), then percent normalized
f Measured as the % of panelists perceiving the attribute, then percent normalized

Table 1  (continued)

Fig. 1  Interaction plot between the factor time and the factor stor‑
age temperature and freezing method for peroxide value (a),  K232 
(b),  K268 (c), α‑tocopherol content (d) and secoiridoid derivatives 
content (∑SEC, e). Error bars correspond to the standard deviation. 

α‑Tocopherol content and secoiridoid derivatives content values are 
percent normalized. The dotted line signals the established limit for 
the EVOO category according to EC Regulations
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and − 20 °C) on the reduction of the lipid oxidation rate, as 
reported in previous studies [13, 14].

Phenolic compounds

The effect of storage temperature on the main lipophilic 
(α‑tocopherol) and polar (SEC) phenolic compounds was 
similar, with a significantly higher loss of these compounds 
in RT oils (Table 1). It is worth noting that their content 
decreased during the first 12 months regardless of storage 
temperature (Fig. 1). Then, frozen (S and F) oils maintained 
their content while the decrease continued in the RT oils 
and, to a lesser extent, in the R oils. This reduction was more 
pronounced in SEC than in α‑tocopherol (Fig. 1), likely due 
to the greater contribution of oleuropein derivatives (OL) to 
oxidative stability of oils compared to α‑tocopherol [43, 44]. 
The decrease of SEC at RT and 4 °C was, to a greater extent, 
due to a loss of OL, as shown by the lower values of OL in 
contrast to ligstroside derivatives (LIG) in these two condi‑
tions (Table 1). This result highlights the greater antioxidant 
power of OL compared to LIG [45].

During storage, SEC content may decrease due to both 
their antioxidant role and hydrolysis reactions, which 
increase the levels of hydroxytyrosol (HTy) and tyrosol (Ty) 
[19, 46–48]. SEC hydrolysis (calculated as the % of HTy 
and Ty on the total SEC, including the oxidized SEC) and 
oxidation rate (calculated as the % of oxidized forms on the 
total SEC) were significantly greater in RT oils, followed 
by R oils, while oils stored at − 20 °C presented the lowest 
values for both rates (Table 1). In view of these results, it 
can be concluded that SEC are better preserved under cold 
storage, particularly at − 20 °C, which slows down oxidation 
and hydrolytic reactions.

Oxidative stability index (OSI)

The OSI was also affected by storage temperature. RT oils 
showed the greatest decrease in this parameter (Table 1), 
which can be explained by the accumulation of peroxides, 
which are prooxidant, and the decrease of antioxidants 
(α‑tocopherol and SEC) in these oils.

Volatile compounds

Storage temperature influenced all the volatile compounds 
generated through the lipoxygenase (LOX) pathway 
(Table 1). These compounds, which represented between 
82.2% and 91.7% of the initial volatile fraction of the 
PEVOO samples (Supplementary material S3), are associ‑
ated with EVOO positive aroma [49].

An increment of hexanal, 1‑penten‑3‑ol and trans‑2‑hex‑
enol was observed as the storage temperature increased 
(Table 1). These compounds have already been related to 

storage temperature: an increment of 1‑penten‑3‑ol has been 
observed in an accelerated storage study [35], an increase 
of trans‑2‑hexenol has been reported during storage at RT 
[20], while it is well known that hexanal can be formed not 
only through the LOX pathway but also by autoxidation 
[50]. Volatile oxidation products not related to LOX also 
increased over time, being significantly influenced by stor‑
age temperature (Table 1), as expected. This trend agreed 
with the results of the oxidation parameters PV,  K232 and 
 K268 (Fig. 1). The behavior of single oxidation compounds 
is available in Supplementary material S4.

Conversely, the content of trans‑2‑hexenal, 1‑penten‑3‑
one and cis‑3‑hexenal decreased as the temperature storage 
increased (Table 1). These compounds are of special interest 
because they are considered the main contributors of the 
positive aroma of EVOO [3, 39]. trans‑2‑Hexenal, which 
is related to the positive sensory characteristics of almond 
and green olive fruits [51], was the most abundant LOX 
compound in the Arbequina oils (Supplementary material 
S3) and showed a slight decrease over time, which was more 
marked at RT (Table 1). This result agrees with previous 
studies [20, 22, 25]. 1‑Penten‑3‑one, a compound related 
to green attributes and with a very low odor threshold [52, 
53], showed a similar trend (Table 1). Its content was main‑
tained throughout cold storage (R, S, F), whereas RT oils 
experienced a loss of 28.7% at 24 months (Fig. 2). In the 
case of cis‑3‑hexenal, the effect of storage temperature was 
more pronounced, as shown by the results of the Scheffé test, 
which differentiated each storage temperature and even the 
two freezing methods (Table 1). This compound, related to 
green attributes, has a great impact on EVOO aroma due to 
its especially low odor threshold [52, 53]. After 24 months 
of RT storage, its content was reduced by 67.7%, while 
only 2.4% was lost by S oils (Fig. 2). This behavior was 
also observed in the two isomers of 2,4‑hexadienal (Sup‑
plementary material S4), which are related to green aromas 
such as artichoke and cut grass [24, 39, 54]. Although these 
compounds could be originated by both the LOX pathway 
and autoxidation [55], they have been associated with high‑
quality EVOO by several studies [56–58].

These results show that the compounds that contribute 
the most to the positive aroma of olive oils are the most 
susceptible to storage temperature, being storage at − 20 °C 
the best condition to preserve their initial levels, hence the 
sensory quality of PEVOO.

Sensory assessment

Sensory defect was only perceived in 3 samples out of the 96 
studied along the conservation assay, corresponding to RT 
oils stored for 24 months, which presented a certain amount 
of rancid defect.
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In agreement with the behavior of volatile compounds, 
most of the positive sensory attributes were affected by 
storage temperature (Table 1). RT oils showed the big‑
gest decrease in the intensity of these attributes, in agree‑
ment with other studies [4, 25], while oils stored at low 
temperatures (R, S, F) presented a slight decrease, which 
was almost negligible in the case of S oils. This result 
suggests that cold storage could effectively maintain the 
distinctive sensory quality of PEVOO. The decrease of bit‑
terness, astringency and pungency could be ascribed to the 
observed loss of some polar phenolic compounds (Table 1, 
Fig. 1), since previous literature has linked their presence 

to these attributes [59–61]. The reduction of intensity of 
the attributes fruity and green could be mainly explained 
by the observed reduction in the content of the volatile 
compounds cis‑3‑hexenal and 1‑penten‑3‑one (Table 1, 
Fig. 2), evidencing the important role of these two volatile 
compounds in the positive aroma of EVOO.

Regarding secondary sensory attributes, from the 21 
descriptors used by the panelists in the open generic pro‑
file method, only 5 showed an effect of temperature and 
freezing speed and/or its interaction with time (Table 1). 
RT oils showed a significant decrease in the perception of 
green fruity and artichoke, which had been perceived by 

Fig. 2  Interaction plot between the factor time and the factor storage 
temperature and freezing method for cis‑3‑hexenal (a), 1‑penten‑
3‑one (b), the sensory attributes fruity (c) and green (d), and  the 

secondary sensory note ripe fruity (e). Error bars correspond to the 
standard deviation. All values are percent normalized
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most of the panelists at the beginning of the study (Supple‑
mentary material S3). Thus, the main green secondary notes 
that initially characterized the oils were largely lost at RT, 
while cold storage preserved to a greater extent the original 
sensory profile. On the other hand, ripe fruity showed a sig‑
nificant increase influenced by time and storage temperature 
(Table 1). The greatest increase was in the RT oils, espe‑
cially after 24 months of storage (Fig. 2). This is in agree‑
ment with Sinesio et al. [24], who suggested that an increase 
of ripe fruity could be a consequence of the decrease of 
other attributes or that it could be pointing the beginning of 
the oil’s deterioration. Besides, the same authors linked this 
odor note to the presence of  C5 and  C6 alcohols, especially 
trans‑2‑hexenol and 1‑pentanol, two compounds that signifi‑
cantly increased at RT in our study (Table 1, Supplementary 
material S4).

In the open generic profile method, panelists use their 
own list of terms for the sensory description of the oils. 
Since there was not a consensus vocabulary among the pan‑
elists, a variability in the use of descriptors related to green 
and ripe aromas was observed. Thus, to avoid any bias in the 
statistical analysis and to better visualize the effect of the 
studied conditions on the secondary sensory profile of the 
oils, these attributes were classified into two groups: green 
and ripe notes. Figure 3 shows the full profile of secondary 
sensory attributes of the Arbequina and Picual oils at the 
beginning and at the end of the study at RT, R, S and F. A 
green and a red color palette were used for the green and 
ripe attributes, respectively. The remaining attributes were 

assigned different colors. At RT, a decrease of the perception 
(% of panelists) of the main initial green notes was accom‑
panied by an increase of the ripe notes as well as by the % of 
panelists perceiving them. This shift from green to ripe aro‑
mas was less marked in the Picual oils than in the Arbequina 
oils. Conversely, a minor change was observed in R and F 
oils, while S oils presented the least altered sensory profile. 
In summary, storage at lower temperatures slowed down the 
shift from green to ripe notes observed at RT, preserving the 
secondary sensory profile of PEVOO.

Effect of freezing speed

Results showed that the two freezing speeds did not influ‑
ence most of the quality and oxidative parameters (Table 1). 
That is, the F oils, in which the phase transition from liquid 
to solid occurred very rapidly, did not show an improvement 
in their oxidative quality compared to the S oils, in which the 
phase transition took place at a slower pace. In this sense, 
the results are in disagreement with those of Calligaris et al. 
[16], where an increase of the lipid oxidation rate during the 
phase transition was observed, explained by an increase of 
unsaturated FA and a decrease of polyphenols in the liquid 
phase, generated by the selective crystallization of TAG. 
Thus, the results of the present study indicate that, at least 
at the evaluated freezing speeds, the selective crystallization 
of TAG that takes place during the phase transition does not 
translate into a higher lipid oxidation rate. This is in agree‑
ment with Jansen and Birch [17], who concluded that the 
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Fig. 3  Full profile of secondary sensory attributes of the Arbe‑
quina and Picual oils at the beginning of the study (fresh) and after 
24 months at room temperature (RT), 4 °C (R), and − 20 °C (S, fro‑
zen at −  20  °C; F, frozen with liquid nitrogen). Secondary sensory 

attributes are expressed as % of panelists perceiving the attribute. The 
green and the red color palette correspond to attributes associated 
with green and ripe notes, respectively
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liquid fraction of partially crystallized olive oils is not more 
susceptible to oxidation.

On the other hand, an effect of freezing speed was 
observed on some volatiles and sensory attributes. 
Although F oils experienced a significant increase in some 
LOX volatiles (Table 1), it did not translate into a better 
sensory profile than the S oils. In fact, the intensity of 
some positive attributes, such as fruity, was significantly 
lower in the F oils (Table 1). Lastly, a great and unex‑
pected increase of 6‑methyl‑5‑hepten‑2‑one was observed 
in the F oils (Supplementary material S4). This compound, 
which is related to fruity and apple aromas [62], has been 
reported to increase in particular during RT storage [25, 
63]. This increase was also observed in the present study 
in the RT and R oils, but it was greater in the F oils (Sup‑
plementary material S4), suggesting that the fast‑freezing 
process played a key role in its formation.

These results indicate that fast‑freezing does not 
improve the preservation of PEVOO quality during stor‑
age compared to a slower freezing, but rather worsens the 
sensory profile. The mechanisms underlying this phenom‑
enon need to be elucidated by further research.

Impact of freezing on the quality of PEVOO 
after thawing and storing at RT

Results of the ANOVA test comparing the evolution of the 
main parameters in the thawed (ST, oils frozen at − 20 °C, 
stored at − 20 °C for 12 months and thawed; FT, oils frozen 
with liquid nitrogen, stored at − 20 °C for 12 months and 
thawed) and control oils (oils at the beginning of the study, 
time 0, not frozen nor thawed) after 6 months of RT stor‑
age are shown in Supplementary material S5. There was 
no significant difference regarding the physicochemical 
quality parameters. Control oils showed a greater signifi‑
cant loss of α‑tocopherol, which can be explained by the 
fact that this compound decreased around 40% regardless 
of the storage temperature during the first 6 months of 
storage and then its level stabilized (Fig. 1). The content 
of OL and LIG slightly increased in the thawed oils, while 
it decreased in the control oils (Supplementary material 
S5). However, the levels of these compounds were similar 
in all the oils (Supplementary material S6). Moreover, the 
similar increase in Hty, Ty, and oxidized forms of OL and 
LIG in both oils indicates that a similar level of hydrolysis 
and oxidation of these compounds occurred. Also, no sig‑
nificant difference regarding volatile compounds related to 
oxidation was found. Likewise, the absence of significant 
differences regarding LOX compounds as well as the main 
positive sensory attributes denotes that the evolution of 
the sensory quality was similar in thawed and control oils.

Overall, these findings clearly indicate that thawing 
PEVOO did not induce any increment in oxidative degra‑
dation nor in sensory deterioration during subsequent RT 
storage.

Conclusions

The application of a nitrogen stream to reduce the oxygen 
in the headspace did not have a significant effect on the 
quality of PEVOO during storage. Thus, other methods 
to create oxygen free conditions need to be assessed. On 
the other hand, almost all tested parameters were signifi‑
cantly affected by storage temperature. While its effect was 
almost negligible on FFA%, a decrease of the lipid oxida‑
tion rate as the storage temperature decreased occurred, 
which translated in a maintenance of the quality param‑
eters related to oxidation (PV,  K232 and  K268) in the oils 
stored at − 20 °C. This lower oxidation rate at low tem‑
peratures had an influence on the main antioxidants: at the 
end of the study, α‑tocopherol and SEC content was higher 
in the oils stored at − 20 °C and 4 °C. Consequently, and 
also due to their low PV, PEVOO stored at − 20 °C main‑
tained their OSI values throughout storage. Regarding sen‑
sory quality, cold storage (4 and − 20 °C) showed a better 
maintenance of all the positive attributes and the content 
of some volatile compounds associated with fruity and 
green sensory notes, such as cis‑3‑hexenal and 1‑penten‑
3‑one. This translated into a longer preservation of the 
distinctive secondary sensory notes of the oils, by slowing 
down the shift from green to ripe notes observed at RT.

Overall, we can conclude that cold storage significantly 
improved the maintenance of compositional and sen‑
sory characteristics of premium EVOO, offering a valid 
option for the conservation of EVOO with outstanding 
features and high value. In particular, storage at − 20 °C 
maintains the initial quality of PEVOO, especially their 
sensory profile, which would otherwise degrade at RT. 
Moreover, we can conclude that fast‑freezing with liquid 
nitrogen does not preserve better the quality of PEVOO 
than slow‑freezing at − 20 °C, and that freezing storage 
does not compromise PEVOO quality after thawing and 
storing at RT. Lastly, storage at 4 °C would be a less costly 
option to maintain the sensory quality of PEVOO, since 
the difference observed in some parameters compared to 
storage at − 20 °C did not have a significant effect at the 
sensory level.
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