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1 Introduction

When, however, it is proposed to imbue in the mind of a crowd with ideas and beliefs [...]
leaders have recourse to different expedients. The principal of them are three in number

and clearly defined - affirmation, repetition and contagion. Their action
is somewhat slow, but its effects, once produced, are very lasting.

— Gustave le Bon, The Crowd: A Study of the Popular Mind

People follow the wisdom of crowds. Consumers are more inclined to buy popular brands because
they believe that popularity is an indicator of better quality. A New York Times best-selling book is more
likely to remain on the list - and obtain good reviews from readers. A small number of people deciding
to withdraw their money might be sufficient to trigger a huge bank run. Because some people do believe
that a crowd knows best, manipulating herd behavior is the goal of some other people - marketers, digital
influencers, and financial advisors, to name a few.

This study examines crowd manipulation through dynamic information disclosure. In other words,
how “to imbue in the mind of a crowd with ideas and beliefs”. The setting and the results shed light
on interesting questions, such as: To what extent should an information designer care about the future
crowd effects of his current public releases? Should he publicly leak critical information to induce (or
avoid) herd behavior from the outset or should he withhold decisive releases for a later time?

I consider a standard model of observational learning with a binary action space, and I add an
information designer with selfish interests. Specifically, an infinite sequence of myopic agents wish to
match actions with an unknown state of the world. They rely both on public observation of past actions
and current private information coming from independently and identically distributed signals to guide
them. As long as it is believed that past agents had chosen according to their private information, the
action history helps current agents to infer the state before deciding which action to take.

They also rely on the public observation of designer’s past and current messages1. This designer
is informed about the state, but not about the private information of the agents. I assume that he is
patient and only cares about the discounted number of agents taking his preferred action. He chooses a
public information policy consisting of a message space and an information rule - a map from states and
public histories to a distribution over messages.

Because the designer is more informed than agents, his messages might influence agents’ beliefs and,
consequently, agents’ actions. However, this influence is sometimes limited: some agent can obtain more
informative private data than the one given by designer’s communication; sufficiently informative to drive
her choice in the opposite direction of the designer’s intention. Since past messages are publicly observed,
future agents will know that someone has got a good reason to not follow the designer’s advice, making
persuasion harder than before. Thus, the designer must choose between allowing agents to follow their
own private information (thereby allowing future agents to learn from past actions) or shutting down
the observational learning process through by sufficiently revealing public disclosure.

The features of agents’ private information structure determine when it is optimal for the principal
to persuade society into a herd from the start - the single disclosure case - and when it is optimal to
encourage some social learning dynamics, that is, letting agents choose according to their own private
information and public observation of past decisions. For a well-known class of private belief distributions
generated by private signals - the log-concave class, I characterize when social learning is valuable to a
selfish principal.

1The fact that agents observe the realization of past messages is not crucial to my results, as long as the principal can
commit to a sequence of experiments and agents know such experiments. I show that public communication does not loose
generality in section 5.
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Specifically, when agents cannot perfectly learn from private information (that is, private beliefs are
bounded), I show that single disclosure is optimal if and only if private information unfavorable to the
principal’s most preferred action is sufficiently frequent (Theorem 1). With unbounded private beliefs, I
show that this possibility can never be too significant, so single disclosure is never optimal.

I also prove that social learning is less appealing to a more patient principal, regardless of the structure
of private information agents might have. In the limiting case, that is, as the designer’s discount factor
goes to one, the optimal policy has the same value as a policy that discloses in the first period sufficiently
revealing information to induce herd behavior (Theorem 2). This means that whenever the designer does
not heavily discount current payoffs from persuasion, avoiding agents from learning through observation
of past actions might be his best interest.

This paper brings together two research topics from the dynamic games literature. The first one
deals with dynamic information disclosure. I consider a persuasion problem similar to the ones in Ely
(2017) and Renault, Solan, and Vieille (2017), but I have a fixed state of the world and I allow agents
to obtain private information. This generates an evolving public belief process, even if the state does
not change over time. As in those papers, I show in section 4 that it is possible to reformulate the
designer’s problem as a Markov decision problem in which (i) the state space is the space of agents’
public beliefs; (ii) transition functions are governing the public belief process; (iii) the action space is
the set of information rules; (iv) the constraint set over the action space is the set of distributions of
posteriors that are mean-preserving spreads of any given prior. By reformulating the problem, I show
that the dynamic concavification algorithm is used to solve it.

Unlike those studies, there are multiple laws of motion governing the belief process - one for each
agent’s action. Together with the private information assumption, this happens because the designer in
my model cannot censor information; that is, he cannot avoid current agents from observing past actions.
Moreover, the designer’s messages influence the probability of having each law of motion governing the
transition from the current to the next period’s public belief, because it influences the probability of
taking each action. In this sense, my model deals with a stochastic dynamic concavification algorithm.

Because agents are privately informed, my model also joins the literature on private persuasion as
well. Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017) and Inostroza and Pavan (2017) are seminal
references, although both deal with a static persuasion problem. In the first reference, both agents and
the designer have utilities that are linear functions of the private information, because the designer has
a payoff that is a weighted combination of his preferred action and the utility of agents. Additionally,
the state of the world is the realization of a continuous distribution. I consider a simpler environment:
one with a binary state space and the designer’s payoff depending only on actions. However, as in that
paper, I also seek to characterize the designer’s optimal policy in terms of the distribution of the private
information, and my characterization also comes from insights from Quah and Strulovici (2012) about
the aggregation of single-crossing functions.

Even though Inostroza and Pavan (2017) studied persuasion applied to global games of regime change,
their results are related to mine, mostly the finding about the optimality of the information policy
coordinating market participants in the same course of action. I show that when the interaction is
dynamic, this single disclosure policy is sometimes optimal, but not always. However, as the designer
becomes infinitely patient, the once-and-for-all coordination policy becomes more appealing.

Au (2015) studies dynamic information disclosure with a privately informed receiver. His environment
is different from mine because the receiver has her private information being realized once and for
all. Thus, she cannot learn from observations of past actions. Moreover, she is patient and takes an
irreversible action that might depend on the designer’s communication strategy. Therefore, the agent’s
problem is an optimal stopping one, in the sense that she must choose when to end the sender-receiver’s
dynamic interaction. Nevertheless, such paper provides conditions under which the designer discloses
no further information beyond the first period, that is, the designer chooses the single disclosure policy.
Among other things, it proves that if full disclosure is not optimal in the one-shot interaction, the optimal
mechanism sequentially discloses informative messages.
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In my model, as long as agents do not have private access to perfectly informative signals, full
disclosure is never optimal. Furthermore, even if it is optimal to disclose information in the static
environment in a way that beliefs are outside cascade sets (public belief sets under which agents choose
no matter their private signals), for a very patient designer, a single disclosure policy (one placing beliefs
inside cascade sets) is always optimal.

Observational learning is the second research topic from the dynamic games literature that my paper
mainly deals with. In section 2, I present an illustrative example using the simple symmetric binary
private signal case from Bikhchandani, Hirshleifer, and Welch (1998). In section 3, I briefly present
the standard observational learning model and discuss major findings from this literature that I seek to
study under the additional assumption of an information designer. The references for the model and the
findings come from Banerjee (1992), Bikhchandani et al. (1998), Smith and Sørensen (2000), Cao, Han,
and Hirshleifer (2011) and Herrera and Hörner (2012). Rosenberg and Vieille (2019) also provides an
excellent summary of results in the literature.

An important takeaway from those studies is the following. Agents eventually settle down on a
correct herd with probability one, and they fully learn the true state if and only if private signals are
boundedly informative. In my model, conditional on the state that favors the designer’s preferred action,
with bounded private signals, a correct herd starts with probability one, but the belief process does not
converge to one of the extremes. Conditional on the other state, there is always a possibility of a wrong
herd and with some probability the belief process converges to one of the extremes. Therefore, even with
bounded private information, learning is partially correct (correct with certainty at least conditioned in
one state) and partially complete (agents fully learn with positive probability, at least conditioned in one
state). This implies that society benefits from obtaining information from the principal relative to the
social learning model without an information designer.

Smith, Sørensen, and Tian (2021) discusses optimal persuasion mechanisms in the same observational
learning environment, but with a benevolent social planner. Specifically, an information designer has
the power to choose a map from private signals to action recommendations, to maximize the discounted
sum of receivers’ payoffs. That paper shows that (i) cascade sets strictly shrink in the discount factor
and collapse to extreme points in the perfect patience limit; (ii) for any discount factor, the social
planner always encourages agents to rely more on private signals, so that past actions are always more
informative.

With a non-benevolent designer, without the possibility of eliciting agents’ private information, under
a binary action space, I prove that the cascade set toward his least preferred action is always a singleton,
while the cascade set of his most preferred action does not change. This partial reduction in cascade sets
does not depend on the discount factor. I also prove that, even though the designer does not care about
letting information flow through agents, sometimes - but not always - it is optimal for him to encourage
agents to rely on private signals.

This is not the first study to investigate observational learning with a non-benevolent planner. Sgroi
(2002) considers an uninformed planner with the power to censor information in the market. His problem
is then choosing the number of agents to decide using only their private signal after letting others have
access to a history of past actions. I adopt a different approach. My planner is informed about the state,
but cam commit ex-ante to an experiment. He cannot censor the observation of past actions. His choice
is then to fine-tune his disclosure policy to be clear or vague in his communication. Nikiforov (2015)
considers an informed manipulator with the power to costly influence only one agent along the sequence,
in a symmetric binary private signal environment. I allow the manipulator to persuade as many agents
as he wants, taking into consideration a general private information structure.

The remainder of this paper is organized as follows. Section 2 introduces a illustrative example to
walk through the main results. Section 3 presents the benchmark model without an information designer.
Section 4 describes the social learning problem as an information design problem. It then discusses belief
dynamics; when social learning is valuable to the principal; and the role of patience in designing the
policy. Section 5 considers private disclosure of information and section 6 concludes the paper. All
proofs of lemmas and claims are in appendix A and all calculations for examples are in appendix B.
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2 Illustrative example

Let me introduce a illustrative example as a way of walking through belief dynamics and the main results
of this paper. Imagine that a financial advisor wishes to persuade his clients to buy a certain asset of
an unknown return. These clients only care about their current gains from investing and they arrive
sequentially at the advisor’s office. If the asset yields a high return, clients obtain a payoff of 1 from
investing and incur an opportunity cost of -1 from not doing so. If the asset yields a low return, payoffs
are reversed. Every current client is partially informed: she observes a private signal about the asset’s
quality and the history of decisions. If the asset yields a high (low) return, she observes the signal s̄ (s)
with probability σ ∈ (.5, 1). The prior belief about the asset yielding a high return is .5.

Although clients do not observe the history of private signals, they can infer it from the history of
actions. To understand this, consider the decision of the first client. Starting with a flat prior about the
asset’s quality, she will update her Bayesian belief to σ if she observes signal s̄ and 1− σ if she observes
signal s. Given her payoffs, she will invest if and only if the posterior is at least half 2 3. This means
that she will invest if and only if she receives signal s̄.

The second client, after observing the first client’s decision, will know what private signal she received.
Thus, the second client’s public belief (inference from past action) will be either σ from observing
investment or (1−σ) otherwise. Suppose it is σ. If this second client observes s̄, her total belief (inference

from past action and current private signal) will be σ2

(1−σ)2+σ2 , which exceeds her belief threshold .5; if

she observes s, her total belief goes back to .5, which also implies that she will invest. It follows that she
will invest, regardless of her private signal. The third client will not be able to determine what private
signal the second client received and will have an interim belief of σ, exactly like the second client. In
other words, if the first client invests, all future clients will, independent of the realization of private
signals.

Suppose that the second client has public belief 1 − σ. On the one hand, if she observes signal s as

well, her posterior belief will be (1−σ)2

(1−σ)2+σ2 , which is below her belief threshold .5. Thus, she will choose

not to invest. The third client will observe two consecutive decisions of no investment and will choose
not to invest as well, regardless of her private signal. On the other hand, if the second client observes s̄,
her posterior belief will return to .5, implying that she will invest. The third client will be able to infer
that the second client received a good signal, which offsets the bad signal s from the first client, and the
analysis continues as if this third client does not have any additional information (i.e., as if she was the
first client).

In the dynamics I have described so far, I have not said anything yet about the advisor’s role, so
think of it for a moment as a non-intervention benchmark. Assume that he receives 1 every time a client
invests, and 0 otherwise. The first client will invest if and only if she receives the private signal s̄, which
occurs with probability σ if the asset yields a high return and 1− σ otherwise. Since the advisor is also
ignorant about the asset’s quality, the expected payoff from the first client coincides with the expected
investment probability, which is .5.

If the first client invests, the second and every subsequent clients will invest for sure, so the advisor
will receive 1 forever. If the first client does not invest, the second client will if and only if she receives
signal s̄, which continues to occur at a probability of σ if the asset has a high return, and a probability of
1− σ if the asset has a low return. However, because the public belief for the second client is 1− σ, the
expected investment probability for the second client (and advisor’s expected payoff) is 2σ(1−σ), which
is lower than .5. If the first client does not invest, the second client will dictate whether the advisor
is dammed to a zero payoff forever. If the second client invests, the third client will have an expected
investment probability equal to the first client, but if the second client does not invest, the third and
every subsequent client will not invest, as no private signal can generate a belief in favor of investment.

2There is an underlying assumption that if the posterior is exactly .5, she will choose to invest. Breaking indifference
towards the advisor’s most preferred action in the Bayesian persuasion literature is common.

3All computations for the illustrative example are in appendix B.
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To simplify the exposition, I present a visualization of the public belief dynamics and advisor’s
expected payoffs over time, as shown in figure 1(a). I also present the probability of clients choosing each
action ignoring their private signals for each period in figure 1(b) - a phenomenon called informational
cascade, assuming σ = .8. In figure 1(a), the blue line represents the change in public beliefs when
investment is observed, and the red line represents the change when a non-investment decision is observed.
The black dots represent the possible realizations of public beliefs, and the numbers above these points
represent the associated expected investment probabilities at every belief. In figure 1(b), the x marks are
the probabilities of clients taking investment decisions regardless of their private signals in each period,
and the triangle marks are the probabilities of clients taking non-investment decisions with certainty. The
blue line is the long-run probability of public beliefs hitting σ, the threshold over which an information
cascade towards investment occurs. Similarly, the red line is the limiting probability of public beliefs
hitting a value below 1− σ, the threshold below which an information cascade towards non-investment
occurs. Note that as time goes by the probability of an information cascade towards investment or
non-investment equals 1.
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Figure 1: Dynamics without intervention, for σ = .8. Blue lines represent outcomes related to investment
decisions, and red lines represent outcomes related to non-investment decisions. Figure 1(a) shows the possible
realizations of public beliefs over time with numbers representing the designer’s expected payoff at every belief.
Figure 1(b) shows the probability of a cascade starting in each action (x marks correspond to an investment
cascade; triangle marks to a non-investment cascade). Colored lines represent the long-run probability of each
cascade.

The advisor can use his expertise to investigate whether the asset will yield a high or low return, but
is legally obliged to report the outcome of this investigation. Specifically, this advisor will design ex-ante
a contract specifying a set of messages and a probability distribution over messages conditional on what
he knows at every period, that is, past messages and actions, as well as the true quality of the asset. I
will refer to this contract as a public information policy and assume that every client knows the chosen
policy. At the beginning of every period, the advisor sends some advice and a new inference about the
asset’s return is made.

Can the advisor perform better than the no-intervention benchmark? Unsurprisingly, he can. Con-
sider the following policy. The messages are either Aaa (an investment with the lowest risk) or Caa (a
junk with highest risk). The first client will observe Aaa for sure if the return is high and with probability
1−σ
σ if the return is low. In this way, after observing Aaa (Caa), the first client will have an induced belief

of σ (0) and will invest (not invest) no matter private signals. The second client will have public beliefs
of either σ (as she saw that the first client invested and the message was Aaa) or 0 (as she saw that the
second client did not invest and the message was Caa). Therefore, after the first client, there is no room
for intervention: if the first client invested, it suffices to send uninformative messages forever; if the first
client did not invest, no message could refrain the second client from choosing not to invest. For this
reason, I will refer to this policy as the single disclosure policy. With it, advisor uses his informational
power to persuade society into cascades from the outset and no client learns from past actions.
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The expected investment probability of such a rule at prior .5 equals the unconditional probability of
message Aaa, which is 1

2σ . This is higher than the value obtained without intervention. This is also the
limiting probability of having an investment cascade, which is higher than that without any intervention.
Figure 2(a) and 2(b) represent the public belief dynamics and the probabilities over cascades under this
information policy. The solid black dots in figure 2(a) represent the possible public beliefs (pt). The
white dots represent are the induced beliefs (ρt).
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Figure 2: Dynamics with single disclosure. Blue lines represent outcomes related to investment, and red lines
represent outcomes related to non-investment. Figure 2(a) shows the possible realizations of public (black dots)
and induced (white dots) beliefs over time, with numbers representing the designer’s expected payoff at every
public belief. Figure 2(b) shows the probability of a cascade starting in each action (x marks correspond to an
investment cascade; triangle marks to a non-investment cascade). Colored lines represent the long-run probability
of each cascade.

Another policy is worth discussing. The message space now contains an intermediate message Baa.
This message represents an investment with medium risk. Consider the set consisting of the null history
at t = 1 and all history of actions that are repetitions of the pair “not invest/invest”. After observing
every history in this set, the public posterior is exactly the prior. At every such history, the advisor
sends Aaa with probability σ if the asset has a high return and with probability 1− σ if the asset has a
low return. Therefore, if the current public history of actions leads to a public belief of .5, the advisor
sends both Aaa and Baa with the same unconditional probability, although message Aaa is more likely
if the return is high and Baa is more likely if the return is low. Note that the message Aaa induces belief
σ and message Baa induces belief 1− σ.

After observing Aaa, the first client will invest no matter private signals. After observing Baa, the
first client will invest if and only if she receives a private signal s̄. If such signal occurs, the second
client will start the period with public belief exactly like the prior, and the algorithm discussed in the
previous paragraph applies. However, if the first client receives a private signal s, the second client will
hold unfavorable beliefs to investment, unless the advisor does something. In that case, the advisor
communicates Baa for sure if the asset yields a high return and with probability 1−σ

σ otherwise. The

alternative to Baa is Caa. This ensures that if the public belief is (1−σ)2

(1−σ)2+σ2 , clients will have induced

beliefs of 1 − σ under message Baa and 0 under message Caa. Medium-grade Baa works as an advice
for clients to follow their private signals; Aaa and Baa work as recommendations to choose irrespective
of private information. With this alternative rule, the advisor allows some clients to learn from their
predecessors. The probability of investment at the prior is (0.5)[1 + 2σ(1 − σ)], which again is higher
than in the case without intervention. There is now a positive probability of investment, even when
two non-investment decisions are observed. This probability is equal to the unconditional probability of

sending message Baa under public belief (1−σ)2

(1−σ)2+σ2 times the investment probability when public belief

is 1− σ. This was not possible in the case without intervention.
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Figure 3(a) and 3(b) represent the belief dynamics and the probabilities over cascades under this
information rule, respectively. Note that the probability of having cascades equals one as time goes by,
but the belief convergence is not immediate.
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Figure 3: Dynamics with the alternative policy. Blue lines represent outcomes related to investment, and red
lines represent outcomes related to non-investment. Figure 3(a) shows the possible realizations of public (black
dots) and induced (white dots) beliefs over time, with numbers representing the designer’s expected payoff at
every public belief. Figure 3(b) shows the probability of a cascade starting in each action (x marks correspond
to an investment cascade; triangle marks correspond to a non-investment cascade). Colored lines represent the
long-run probability of each cascade.

Which policy is better for the advisor? Inspecting investment probabilities, one can see that if there is
only one client, the second rule yields a higher value as long as private signals are sufficiently informative,
that is, as long as σ ≥ 1√

2
. This is the case for σ = .8: the first client’s investment probability with

the single disclosure rule is .63 versus .66 with the alternative rule. In a repeated interaction with a
very patient advisor, both policies would look the same to him, because both lead to the same long-run
probability of having a cascade toward investment. For non-extreme discount factors, the analysis is not
straightforward. For instance, if the advisor is impatient, it might be that he prefers to increase the
probability of investment in every period and sacrifice the speed of belief convergence towards cascades.
But every time he discloses additional information, he also gives away part of his informational advantage
to future clients, as messages are public. Additionally, private signals can make future clients less easily
to be persuaded. Moreover, both policies considered here are stationary in public beliefs and do not
depend on advisor’s discount factor. Is there a more complex policy that improves upon these two?

Perhaps surprisingly, I will show that single disclosure will be optimal in this example if and only if
σ ≤ 1√

2
, regardless of the discount δ ∈ (0, 1). Although this threshold is specific to this example, I will

show that for a broader class of private information structures, there is a simple test to verify optimality
of single disclosure. This test depends on how informative private signals can be. As in the example, I
will prove that if private signals are very revealing, then some social learning is always valuable to the
advisor.

For σ > 1√
2
, the illustrative example is sufficiently manageable to characterize the related optimal

policy. It is the alternative policy presented here, indeed. This is the policy that minimizes the amount of
information given at every public belief, subject to the expected investment probability being maximal.
Note that this leads to the same long-run cascade probabilities. As such, no matter the parameter σ,
social learning is less appealing the more patient the advisor is. I will prove that this observation holds
for every private information structure. Finally, note that both rules benefit society relative to the non-
intervention case. This happens because the selfish advisor always discloses information to move clients
away from the public belief set (0, 1 − σ]. Without him, belief dynamics would be forever trapped in
there. This observation also generalizes.
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3 A model of crowds

This section discusses how the wisdom of a crowd evolves without any intervention. Thus, it serves as
a no-policy benchmark. I will present a standard model of observational learning and add a long-lived
principal (“he”) who derives instantaneous payoffs from actions taken by a sequence of identical short-
lived agents t ∈ N (each one referred to as “she”). Then, I will emphasize some relevant results from
the observational learning literature for the optimal information design that I seek to characterize in the
next section.

At the beginning of the interaction between the principal and the agents, Nature draws a state: either
H or L. No player observes this realization of Nature, but everyone shares a flat common prior belief
that it is H: p1 = 1/2. Every agent t must choose an action a ∈ {h, `} to obtain either u(a,H) or u(a, L)
as instantaneous payoffs. It is assumed that u(h,H) = u(`, L) = 1 and u(`,H) = u(h, L) = 0. This
means that agents want to match actions with the unknown state. It also means that any agent with
some belief r ∈ [0, 1] about the state H will find action h optimal if and only if r ≥ 1/2. Every time an
agent chooses h, the principal receives 1 regardless of the state; otherwise, he receives nothing4.

Whenever possible, agents compute beliefs using two sources of information. The first one comes
from the observation of a private signal5. Conditional on the state, the signals are independently and
identically distributed. Combining signals with the common prior, agents compute private beliefs {q̃t}t∈N
about the state being L 6. Because private signals are conditionally i.i.d., the private belief process will
have the same feature. Let G represent the unconditional distribution function for private beliefs. I
assume that G is absolutely continuous with density g. Note that G := (1/2)[GH + GL] where GH

and GL denote the distribution functions over private beliefs conditional on the states. Thus, assuming
absolute continuity of G is equivalent to assuming absolute continuity of GH and GL. It also ensures that
no observation of private beliefs perfectly reveals the state and that both distributions share a common
support.

The second source of information comes from the public observation of action histories. Since past
private signals are non-observable, but past actions might be taken conditional on specific realizations of
such signals, the action history might help inference about the state. A strategy for each agent t is a map
from the set of private signals and the set of public action histories up to t − 1 to a choice over {h, `}.
A strategy profile for the agents is a collection of each map. A strategy profile, the private information
structure, and the prior belief generate a probability distribution over the set of outcomes of the game.

Agents’ rationality is common knowledge, so they can compute probabilities for every possible history
of actions. Let p̃t represent the conditional probability of the state being H, given the observation of
some action history up to t − 1. Likewise, let {p̃t}t∈N be a stochastic process of the public beliefs. If
agent t obtains a realization qt of a private belief and a realization pt of the public belief, she will have
a Bayesian total belief rt and choose action h if and only if

rt =
(1− qt)pt

(1− qt)pt + qt(1− pt)
≥ 1/2 ⇔ pt ≥ qt. (1)

4I also assume that at belief r = 1/2, agents choose h, that is, principal’s preferred choice, but this will be innocuous,
because I will consider only continuous distributions over private beliefs, such that points of indifference will have zero
measure. I will discuss private belief distributions later.

5Each signal st takes value on space S and its domain is the sample set of a probability space capturing all exogenous
uncertainty in the interaction. Appendix A provides a more detailed description of this space.

6Throughout the text, I will identify a random variable by a tilde superscript and a value it can assume by its symbol.
Additionally, the subscript t will represent a random variable with index t in a stochastic process, and the symbol indexed
by t a realization of such variable. Thus, each q̃t is a random variable taking values in [0, 1] and qt is a realization of q̃t.
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Let q be the infimum value of q ∈ [0, 1] such that G(q) > 0 and q̄ be the supremum value of q ∈ [0, 1]
such that G(q) < 1. I will impose q < 1/2 < q̄ to avoid uninteresting situations in which public beliefs
converge from the start. When [q, q̄] = [0, 1], I will say that private beliefs are bounded, and when

[q, q̄] ⊂ [0, 1], I will say they are unbounded7. The agent’s strategy is now a function of the private and
the public beliefs. As qt is not observed, principal conditionally and unconditionally expect that action
h is taken at t according to the probabilities below.

αH(pt) := GH(pt) and αL(pt) := GL(pt) (2)

α(pt) := ptG
H(pt) + (1− pt)GL(pt). (3)

One can show8 that αL(p) ≤ α(p) ≤ αH(p) with strict inequalities for every p ∈ (q, q̄). Moreover,
α(p) = 0 for p ≤ q, α(p) = 1 for p ≥ q̄ and α(p) strictly increases in p for p ∈ (q, q̄). Intuitively, if Ms. t
is very convinced that state is H by looking at past actions, she needs a very high private belief about
the state being L to make her choose action `.

Because agent t+ 1 is a rational Bayesian player, after observing some history (a, at−1), she can infer
that t had public belief pt and can compute the probability of her choosing action a under any state.
This is exactly the probability that agent t had a private belief that led her to choose a under pt in any
state, that is, probabilities described by equations 2 and 3. Thus, agent ’s t + 1 inference from public
history will lead to a public belief update:

pt+1 = ϕa(pt) :=



[
αH(pt)
α(pt)

]
pt if at = h,

[
1−αH(pt)
1−α(pt)

]
pt if at = `.

(4)

One can show9 for every p ∈ (q, q̄), ϕ`(p) < min{p, 1/2} and ϕh(p) > max{p, 1/2}. Therefore, for
public beliefs in such set, (i) agents will choose actions according to private beliefs; therefore, past actions
convey valuable information; (ii) observing action ` is always perceived as “bad news” about state being
H (thus reducing the public belief) and observing action h is always “good news” (thus increasing it).

However, depending on how convinced an agent is about the state being H, her private inference
might not change her choice of action at all. That is, she chooses according to her public information,
regardless of the private information she receives. The next agent will infer that observing her action
conveys no additional information about the state and will find optimal as well to choose the same action
regardless of possible private beliefs. This process will go on infinitely, and there will be no more learning
from the observation of past actions. To better describe this phenomenon, first consider C` := [0, q] and
Ch := [q̄, 1]. Whenever pt ∈ Ca, agent t chooses action a without considering private signals, so the belief
dynamics stop in the next period and no further belief updating occurs. Second, note that the public
belief process {p̃t}t∈N is a martingale. Indeed, consider any public history at = (a, at−1) that leads to a
public belief pt after the observation of at−1. From equation 4,

E[p̃t+1|at] = α(pt)

[
αH(pt)

α(pt)

]
pt + (1− α(pt))

[
1− αH(pt)

1− α(pt)

]
pt = pt.

7I will focus on these two symmetric cases. Note that [q, q̄] is the support of the distribution G. Indeed, because G is
absolutely continuous, it is continuous. As such, its support is an interval.

8See claim 1 in Appendix A or Lemma 1 in Smith and Sørensen (1996).
9See claim 2 in Appendix A or Lemma 7 in Smith and Sørensen (1996).
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Being a martingale, a well-known theorem ensures that it converges to a random variable p̃∞ almost
surely. Moreover, it is possible to show that every realization of this random variable must belong to
C` ∪ Ch. Intuitively, the stationary public belief process must reach an absorbing set, one for which no
further update takes place; otherwise, public beliefs keep changing infinitely often, contradicting almost
sure convergence10.

What does this convergence imply for the non-interventionist principal? If he discounts future payoffs
according to the discount factor δ ∈ (0, 1), his welfare is the expectation of the discounted number of
agents taking action h. Let Pnp be the probability measure over action histories without any intervention
from the principal. The “np” abbreviation stands for “no policy.” This non-interventionist principal
obtains:

V npδ =
∑
t∈N

(1− δ)δt−1Pnp[at = h].

Let {λnpt }t∈N be a sequence of probability measures over the belief space representing, at each t, the
probability of the public belief process belonging to some subset of the Borel σ-algebra of [0, 1]. Note
that at each t, the probability of agent t taking action h is the expected value of α with respect to λt.
Because the public belief process converges almost surely to p̃∞, the sequence of probability measures
must converge weakly to the limiting measure λnp∞ . Because α(·) is a continuous function, the sequence
of the expected values of α with respect to each λt must converge to the expected value of α with respect
to λnp∞ . However, λ∞ must place positive probability only on events that intersect the cascade sets and
principal receives a positive payoff only on points that belong to Ch. Thus, the limiting expected value
of α under λnp∞ must be λnp∞ (Ch).

One can show11 that, as the principal becomes very patient, his long-run value of the no-policy
interaction must approach the stationary probability of having the public belief process trapped in Ch:

lim
δ→1

V npδ = lim
t→∞

Eλnpt [α̃] = λnp∞ (Ch).

Because the state of the world is fixed throughout the dynamics, I can split the unconditional measure
λnp∞ into the conditional measures λH,np∞ and λL,np∞ , such that λnp∞ = (1/2)(λH,np∞ + λL,np∞ ). Say that
learning is correct if λH,np∞ (Ch) = λL,np∞ (C`) = 1; that is, agents eventually settle down on the correct
actions. In addition, say that learning is complete if λH,np∞ ({1}) = λL,np∞ ({0}) = 1; that is, agents learn
the true state. If learning is complete, it is correct, but the converse is not necessarily true.

When private beliefs are unbounded, learning is complete - thus, correct. In this case, the principal’s
only hope of getting some positive payoff infinitely often is the state of world being H; otherwise, he
gets nothing as the dynamic interaction proceeds. Thus, for a very patient principal, the value of a no-
policy interaction is 1/2. When private beliefs are bounded, learning is both incomplete and incorrect.
It is incomplete because there are no perfectly informative private beliefs that drive the belief process
to either zero or one, by assumption. It is incorrect because there is always a positive probability of
society settling down on incorrect actions, conditional on the true state. Thus, even if the state is L, the
principal can obtain a positive payoff infinitely often.

Let me summarize all the primitives of the model and the relevant lessons from the observational
learning literature. The principal takes as given the (common) private information structure of each
agent. As discussed, it is sufficient to describe this information structure in terms of the unconditional
distribution of private beliefs G and the associated support [q, q̄]. Agents would like to act according to
the states of the world; principal only cares about one of the actions.

10See claim 3 in Appendix A or Theorem 1 in Smith and Sørensen (1996).
11See claim 4 in the Appendix A or Lemma 1 in Cao et al. (2011).
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Each agent observes past actions and current signals; the total inference about the state comes from
a combination of a private and a public beliefs. The public belief process follows a martingale and
converges to a random variable whose support belongs to cascade sets. A very patient principal that
does not intervene in the public belief process expects to earn a positive payoff with same probability of
the limiting probability of the process reaching cascade set Ch.

4 Persuading crowds

This section assumes away the inability of the principal to intervene in the dynamic interaction and
addresses the question of optimal public information provision from his point of view. Now he can
commit to any information policy before the realization of the state of the world. In practical terms,
think of the principal as being responsible for designing an experiment to learn the value of the state
and is legally required to report its outcomes, even though the structure of the report and the timing of
the releases are principal’s decision.

Each agent still has access to private beliefs and past history of actions as sources of information,
but a strategic communicator now provides a third source. The commitment assumption gives him more
persuasion power because agents can infer something about the state of the world without worrying
whether the principal deviates from his communication strategy. However, the public (past messages are
not erased from public histories) and transparent (the principal cannot censor past records of actions
as well, so he conditions messages on the same public history that agents observe) communication
restrictions might increase or reduce this power.

An information policy π consists of a message space M and two information rules µH , µL. These rules
specify conditional probabilities on the set of probability measures over the message space, given public
histories, that is, µH : ∪t∈NXt → ∆(M) and Xt := (A×M)t−1 for each t (the set of public histories at
t = 1 is the null history). The rule µL is similarly defined. This policy is chosen before the realization of
the state and agents know unambiguously know how to interpret what the principal is communicating
in each period. Figure 4 below describes the timing of the events.

Principal chooses
an info policy
π = (M,µH , µL)

0
Nature draws
state H or L

Agent t observes
a public history
xt ∈ (A×M)t−1

t
Principal sends
message mt ∈M

Agent t gets private
belief qt ∈ [0, 1]

Agent t takes action
at ∈ {h, `}

Agent t+1 observes
the public history
xt+1 = (xt, at,mt)

t+ 1

Figure 4: Timing of events.

Along with agents’ strategies and the prior belief, the policy generates a probability measure Pπ over
the set of outcomes. Thus, principal’s value from the information policy π is

V πδ :=
∑
t∈N

(1− δ)δt−1Pπ[at = h].

Upon observing some history xt, Ms. t will have a public belief pt about the state being H. However,
because the principal’s message at t might provide some information about the state, agent t will also
have a Bayesian induced belief ρt. The expected value of induced beliefs ρ̃t conditional on the information
obtained in t must equal the public belief process obtained from that information. Formally,

Eπ[ρ̃t|xt] = Eπ[Eπ[1H |mt, xt]|xt] = Eπ[1H |xt] = pt,
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where Eπ is the expectation operator over outcomes with respect to Pπ. Ms. t then combines this
induced belief with some realization of the private belief to choose which action to take. Thus, t chooses
h upon observing ρt and q if and only if ρt ≥ qt. The (conditional and unconditional) probabilities of
taking action h are computed according to equations 2 and 3, but using ρt instead of pt. Agent t+ 1 can
compute these probabilities, so she starts the period with an interim belief pt+1 according to equation
4, but uses ρt instead of pt.

The results so far shows that any information policy generates stochastic processes {ρ̃t}t∈N and
{p̃t}t∈N. They are they connected in the following sense. First, for every realization pt, the conditional
law of the induced beliefs ρ̃t equals pt in expectation. This follows from agents updating induced beliefs
after the principal’s message according to Bayes rule. Second, for every realization ρt, there exists some
action a taken with positive probability such that pt+1 = ϕa(ρt). This happens from agents updating
induced beliefs after the observation of the history of actions (but not private beliefs). Lemma 1 below12

shows that the converse also holds.

Lemma 1. Consider any stochastic processes {ρ̃t}t∈N and {p̃t}t∈N, with initial prior belief p1 given,
such that (i) for every realization of a public belief pt, the law of the induced belief ρ̃t conditional on
pt equals pt in expectation; (ii) for every realization of an induced belief ρt, there exists some action a
taken with positive probability such that the next’s period public belief is pt+1 = ϕa(ρt). These processes
can be generated by an information policy for which the message space is the belief space [0, 1], and the
information rules depend only on the current public belief.

The principal’s problem is now greatly simplified. He chooses stochastic processes {ρ̃t}t∈N and
{p̃t}t∈N, satisfying the requirements of Lemma 1. If Ms. t enters the period with belief pt, the principal
tells her that her induced belief should be some ρt ∈ supp(τ), where τ is a probability measure over
induced beliefs whose expected value equals pt. Let S(pt) be the set of all such probability measures. The
public belief in the next period will be either ϕ`(ρt) with probability 1−α(ρt) or ϕh(ρt) with probability
α(ρt). Therefore, if V opδ is the principal’s value function from an optimal policy, then conditional on each
pt, the continuation value can be written as

V opδ (pt) := sup
τ∈S(pt)

Eτ
[
(1− δ)α(ρ̃t) + δ

(
(1− α(ρ̃t))V

op
δ (ϕ`(ρ̃t)) + α(ρt)V

op
δ (ϕh(ρ̃t))

)]
. (5)

One can show that the right-hand side of the above equation is a contraction. As such, a unique
value function exists as a fixed point. Moreover, this function is continuous. This, in turn, implies that
there exists a probability measure τ ∈ S(pt) that generates V opδ (pt). Therefore, the supremum is the
maximum and there exists an optimal stationary policy. Finally, one can show that the optimal value
function must be concave in public beliefs and that an optimal policy needs to generate at most two
induced beliefs with positive probability, for any given realization of a public belief13.

The above equation shows the trade-off principal faces. On the one hand, he can avoid agents following
private beliefs by inducing posteriors on cascade sets. This leads to the maximum value of the expected
continuation value - the term multiplied by δ, because V opδ is concave. However, unless the maximum
current payoff Eτ [α̃] is achieved by splitting beliefs over C` and Ch, maximizing tomorrow’s value of
information implies that the maximum value of information today is not obtained. On the other hand,
the principal can minimize the information he shares today to maximize his current payoff. However, if
this implies letting Ms. t follow private beliefs to some extent, he might be receiving a lower future value
of information than what he could get by inducing future agents into cascades.

12The proof of this lemma is an almost exact reproduction of the proof of the obfuscation principle in Ely (2017).
13All those claims are proved in Appendix A.
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The optimal policy for the illustrative example

To fix ideas, let us reexamine the illustrative example14. The private signal space is S = {s, s̄}, and
the probability distributions are fH(s̄) = fL(s) = σ, for σ ∈ (1/2, 1). Therefore, the belief space is
{1 − σ, σ} with unconditional probability g(1 − σ) = g(σ) = 1/2. The cascade sets are C` = [0, 1 − σ)
and Ch = [σ, 1]. The conditional and unconditional probabilities of action h (investment) given p are

αH(p) =


0 if p ∈ C`,
σ if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

αL(p) =


0 if p ∈ C`,
(1− σ) if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

α(p) =


0 if p ∈ C`,
pσ + (1− p)(1− σ) if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

The system moves to another public belief according to the transition functions

ϕh(p) :=

{
p if p ∈ C`,

σp
pσ+(1−p)(1−σ) if p /∈ C` ∪ Ch.

ϕ`(p) :=

{
p if p ∈ Ch,

(1−σ)p
p(1−σ)+(1−p)σ if p /∈ C` ∪ Ch.

The figures on the right and on the left below present the transition functions and the principal’s
expected payoff for σ = .8, respectively. Observe that as long as p < 1/2 (p ≥ 1/2), a single observation
of action ` (h) brings the posterior to the cascade set C` (Ch). So for p1 = 1/2, if the first agent chooses
investment because she receives a good signal, all subsequent agents will do the same, as the public belief
for the second agent will be at the boundary of cascade h. However, if the first agent chooses not to
invest due to an observation of a bad signal, the public belief for the second agent will be such that she
still gets to follow her private signal, even if she is at the threshold of cascade `.

0 1− σ p1 σ 1
0

1− σ

1/2

σ

1
ϕh(·)

ϕ`(·)

pt

p
t+

1

Transition functions

0 1− σ σ 1
0

1

p

α
(p

)

Principal’s payoff

(a) (b)

Figure 5: Analysis of the transition functions and principal’s expected payoff of the illustrative example. Figure
5(a) represents the law of motion over public beliefs (the blue line corresponds to the one for the investment
decision and the red line corresponds to the one for the non-investment decision). Figure 5(b) represents the
expected investment probability for each public belief. The figures assume σ = .8.

14Even though I present the theory assuming a continuous private information structure, so far, there is no reason not
to use it to analyze an example with a discrete information structure.
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The value of the Bayes plausible distribution over beliefs that maximizes the investment probability
α at p is called the concave closure of α at p (Aumann, Maschler, and Stearns, 1995). I refer to this
value as cav[α]. Direct computation shows that

cav[α](p) =

{
p
σ if p 6∈ Ch,
1 if p ∈ Ch.

for
1

2
< σ ≤ 1√

2
;

cav[α](p) =


2σp if p ∈ C`,[

(1−σ)2+σ2

2σ−1

]
p+

[
2σ2−1
2σ−1

]
(1− σ) if p 6∈ C` ∪ Ch,

1 if p ∈ Ch.

for
1√
2
< σ < 1.

The figures below present the concave closures cav[α] of α for σ = .6 and σ = .8, respectively.

1
0

1

1− σ σ

p

ca
v
[α

](
p
)

an
d
α

(p
)

Values for σ = .6

1
0

1

1− σ σ

p

Values for σ = .8

(a) (b)

Figure 6: Values of selected functions for different values of σs in the illustrative example. The yellow function
is the value of the one-shot concavification and the blue one is the advisor’s expected investment probability.

In the repeated interaction, if 1/2 < σ ≤ 1/
√

2, it is straightforward to see from equation 5 that no
trade-off arises between maximizing current payoffs and maximizing belief convergence toward cascade
set Ch. Indeed, the one-shot optimal splitting of p1 refrains all future agents from learning from past
actions, so a single informative disclosure suffices to reach the value of an optimal policy. This value is
V sdδ (p1) = cav[α](p1) = 1/(2σ).

If 1/
√

2 < σ < 1, the single disclosure strategy does not maximize the advisor’s current payoff.
Applying the algorithm in equation 5, it is possible to check graphically that inducing belief convergence
from the outset cannot be optimal when the precision of the private belief is sufficiently high. Indeed,
consider the candidate value function V sd(p), where

V sd(p) =

{
p
σ if p 6∈ Ch,
1 if p ∈ Ch.

The candidate value function generates other two other value functions: V sd(ϕ`(p)) and V sd(ϕh(p)).
These values and the expected continuation value - V̄ sd(p) := α(p)V sd(ϕh(p)) + (1− α(p))V sd(ϕ`(p)) -
are
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V sd(ϕ`(p)) =

{
p
σ if p ∈ C`,
ϕ`(p)
σ if p ∈ [1− σ, σ);

V sd(ϕh(p)) =

{
ϕh(p)
σ if p ∈ [1− σ, 1/2),

1 if p ∈ [1/2, 1];

V̄ sd(p) =


p
σ if p ∈ [0, 1/2),

p
[

1−2σ(1−σ)
σ

]
+ (1− σ) if p ∈ [1/2, σ),

1 if p ∈ Ch.

I represent the compositions below in figure 7(a) below, for σ = .8. In figure 7(b), I also represent
the convex combination between the investment probability α and the candidate function V sd using
(1− δ) = .5 and δ = .5 as weights respectively - call it Zsdδ . If V sd is the value of an optimal policy, this
candidate must be the fixed point of equation 5; that is, it must be cav[Zsdδ ](p) = V sd(p) for every p.
The concavification of Zsdδ is the dashed line in figure 7(c). From this figure, it can be seen that cav[Zsdδ ]
and V sd differ outside Ch.

0 1− σ σ 1
0

1
V sd(ϕh(·))

V sd(ϕ`(·))

V̄ sd(·)

Compositions

0 1− σ σ 1
0

1

α(·)
Zsdδ (·)

V̄ sd(·)

Convex Combination

0 1− σ σ 1
0

1

V sd(·)

Zsdδ (·)

Concavification

(a) (b) (c)

Figure 7: Testing the optimality of a single disclosure policy for the illustrative example. The values of the
parameters are σ = .8 and δ = .5. Figure 7(a) on the left shows the compositions of V sd with the laws of motion
ϕ` (red line) and ϕh (blue line). It also represents the convex combination of V sd(ϕ`(·)) and V sd(ϕh(·)) using
weights 1 − α(·) and α(·), respectively (the olive line). The figure 7(b) in the middle represents Zsdδ (·) - the
convex combination of α(·) and V̄ sd(·) using 1 − δ and δ as weights, respectively (the violet line). Figure 7(c)
represents the concave closure of the composition Zsdδ (the dashed line) and contrasts with the candidate value
function V sd (the orange line). It can be observed that cav[Zsdδ ](p) 6= V sd(p) for p 6∈ Ch.

What is the optimal value function for the illustrative example? As Proposition 1 shows - whose proof
is in Appendix B, it is the value function arising from minimizing the information disclosed to maximize
the expected current payoff at every realization of the public belief process. In other words, for every
pt, the principal induces posteriors according to the probability τ ∈ S(pt) that maximizes Eτ(pt)[α]. At
p1 = 1/2, this leads to the values of an optimal policy below. For uninformative private information,
the greedy and the single disclosure policies coincide; for informative private information, it is optimal
to induce some investors to follow their private signals.

Proposition 1. In the illustrative example, the value of an optimal policy for σ > 1√
2

is

Vδ(p) =


p
(

σ(2−δ)
1−δ+δσ2

)
if p ∈ C`,

p
(

1−δ+δσ2−σ(1−σ)(2−δ)
(2σ−1)(1−δ+δσ2)

)
+ (1− σ)

(
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

)
if p 6∈ C` ∪ Ch,

1 if p ∈ Ch.
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This value function is achieved through a greedy policy, that is, a policy that induces posterior beliefs
to generate cav[α](p) at every public belief p. This means that whenever p < 1− σ, the principal induces
posteriors 0 and 1 − σ, and whenever p ∈ (1 − σ, σ), the principal induces posteriors 1 − σ and σ. For
beliefs p ≥ σ, principal does not disclose any additional information.

4.1 Belief dynamics

In the illustrative example, for any value of the private signal’s precision, it is always optimal not to
change disclose any additional information for p ≥ σ, the lower bound of the cascade set on the principal’s
most preferred action. For any private information structure, whenever pt ∈ Ch, it is optimal to the
principal not to release any additional information. Indeed, without any disclosure, agent t will take
action h, regardless of private beliefs. Therefore, Ms. t + 1 will not learn anything new from the
observation of the agent’s t action and will choose action h as well. Releasing additional information in
this case can only potentially harm the principal. To see this, consider any p ∈ Ch and any τ ∈ S(p).
Let 1p be the probability measure that assigns probability one to ρ = p. Because V opδ is concave and α
is at most 1,

1− δ + δV opδ (p) = E1p [Zopδ ] ≥ Eτ [Zopδ ] .

This means that V opδ (p) = 1 for every p ∈ Ch. Note that there are no conflicting effects, that is,
the principal maximizes his current expected payoff without sacrificing the continuation value or drifting
society away from action h.

In addition, in the illustrative example, for any value of σ, the principal always splits beliefs p < 1−σ,
into 0 and other belief outside C`. This also generalizes to any private information structure. To drive
the public belief process away from this cascade set with some probability, the principal must induce a
higher belief ρ+ > p that makes action h at least considerable - and a lower belief ρ− < p that does not
change the decision to choose ` no matter the private belief. Proposition 2 shows that, to recommend
agent t to choose action ` irrespective of private beliefs, the principal must partially avoid any release of
future information, by setting ρ− = 0.

Proposition 2. Suppose that private beliefs are bounded. For any positive public belief p > 0 belonging
to the principal’s cascade set on the least preferred action C`, it is optimal to induce beliefs ρ− = 0 and
ρ+ outside C`.

Proof. If private beliefs are unbounded, C` = {0} and there is nothing else to release. Suppose then C`
is a proper interval and pick any p > 0 ∈ C`. Assume by way of contradiction that any policy leading
to the optimal value function splits p into at most two points ρ− and ρ+, both within C` and such that
0 < ρ− ≤ p ≤ ρ+ ≤ q. This leads to V opδ (p) = 0. Indeed, because V opδ is concave, any optimal strategy
yields

V opδ (p) ≤ δV opδ (p).

This means that V opδ (p) = δV opδ (p) = 0, for δ < 1. Now take ρ− > ε > 0 small enough and define
ε′ := min{ρ−−ε, q−ρ++ε}. Note that ε′ > 0. Consider two points: ρ̂− = ρ−−ε′ and ρ̂+ := ρ++ε′. Note

that 0 < ρ̂− < ρ− and ρ̂+ > q. As such, ρ̂− < ρ̂+. Consider the probability distribution τ̂ := (β̂, 1− β̂),
where
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β̂ =
p− ρ̂−

ρ̂+ − ρ̂−
.

The distribution τ̂ belongs to S(p). However, this contradicts the split placing both posteriors in C`
being optimal, because

Eτ̂ [Zopδ ] = β̂[(1− δ)α(ρ̂+) + δV̄ opδ (ρ̂+)] + (1− β̂)[δV̄ opδ (ρ̂−)],

> δEτ̂
[
V̄ opδ

]
,

≥ 0.

Note that there might be conflicting effects when p ∈ C`. The principal wants to drift society
away from action ` and to do so he must disclose additional information. He could provide sufficient
information to make all future agents take action h no matter the private beliefs, by inducing ρ+ ∈ Ch.
However, depending on the distribution of private beliefs, this could lead to a lower ex-ante probability
of agent t choosing h, because the principal can only induce a higher ρ+ by recommending h less often
when the state is L. Alternatively, he could minimize the information released to maximize the ex ante
probability of agent t choosing h, by inducing ρ+ 6∈ C` ∪ Ch that maximizes (1/ρ+)α(ρ+). However,
because agent t will choose according to her private beliefs, agent t + 1 might learn something beyond
what was disclosed to agent t and this might reduce the principal’s expected continuation value. I will
investigate this trade-off in deeper later sections.

The discussion thus far leads to the following corollary. Define Cop` := {p : α(ρ) = 0 ∀ρ ∈
supp(τop(p))] and Coph := {p : α(ρ) = 1; ∀ρ ∈ supp(τop(p))}, where each τop(p) ∈ S(p) is a probability
measure that leads to the optimal continuation value at p. Note that Copa ⊆ Ca for every a ∈ {h, `}.
That is, the principal can only shrink the cascade sets. Under any optimal policy, Cop` is always minimal
and Coph is maximal. Intuitively, a non-degenerate cascade set C` has no value to the principal: he can
always persuade society out of it if p ∈ C`, provided that persuasion is at least possible - that is, if p > 0.

Corollary 1. Under any optimal policy, the principal always induces the minimal cascade set on the
least preferred action ` and the maximal on his most preferred action h: Cop` = {0} and Coph = Ch.

Although manipulated, the public belief process {p̃t}t∈N continues to be a martingale. To see this,
consider any public history xt - recall that xt = {aτ , ρτ}t−1

τ=1 - that leads to a public belief of pt. Consider
any information policy π with the associated τ ∈ S(pt). From equation 4,

Eπ[p̃t+1|xt] = Eτ
[
α(ρ̃t)

(
αH(ρ̃t)

α(ρ̃t)

)
ρ̃t + (1− α(ρ̃t))

(
1− αH(ρ̃t)

1− α(ρ̃t)

)
ρ̃t

]
= Eβ [ρ̃t] = pt.

Being a martingale, the process almost surely converges to p̃∞. Similar to the no-policy case, every
realization of this random variable must belong to the absorbing sets. However, these sets are now
Cop` = {0} and Coph = Ch, as I show in the next proposition.

Proposition 3. Under any optimal policy, the public belief process almost surely converges to the induced
cascade sets Cop` = {0} and Coph = Ch.

Proof. First, note that the induced belief process {ρ̃t}t∈N is a martingale as well. Indeed, fix an optimal
policy π. Because Eπ[p̃t+1|xt, ρt] = ρt and Eπ[ρ̃t+1|xt+1] = pt+1, the law of total expectation implies
that
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Eπ[ρ̃t+1|xt+1] = pt+1 ⇒ Eπ[ρ̃t+1|xt, ρt] = Eπ[Eπ[ρ̃t+1|x̃t+1]|xt, ρt] = Eπ[p̃t+1|xt, ρt] = ρt.

Because the process is a martingale, it converges almost surely to a random variable ρ̃∞. Considering
this, assume by way of contradiction that there exists some p∞ in the support of p̃∞ that does not belong
to {0} ∪ Ch. Let τ ∈ S(p∞) be the associated optimal Bayes plausibility measure for p∞. There must
exist some ρ in the support of τ such that q < ρ < q̄. So consider an open interval I around ρ such
that I ⊂ (q, q̄). It is possible to find some ε > 0 with the following property. For every ρ′ ∈ I, either
(i) α(ρ′) > ε and |ϕh(ρ′)− ρ′| > ε or (ii) α(ρ′) < 1− ε and |ϕ`(ρ′)− ρ′| > ε. This follows from α being
continuous as well as from 0 < αL(ρ′) < αH(ρ′) < 1. Claim 3 from Appendix A implies that I does
not contain any induced beliefs in the support of ρ̃∞. This is turn proves the existence of an open set
I ′ containing ρ with measure zero with respect to the law of ρ̃∞. However, because p∞ belongs to the
support of p̃∞, this is only possible if I ′ also has measure with respect to τ , contradicting ρ ∈ supp(τ).

As an implication of Proposition 3, learning will be partially complete and correct under bounded
private beliefs15. To see this, suppose the true state is H. Because the public belief process converges, the
stationary public belief must place positive probability on points in Ch and/or in {0}. However, because
the belief process is a martingale, agents cannot be dead wrong about the state, that is, they cannot hold
belief 0 in equilibrium. Therefore, all beliefs must belong to the correct cascade set. However, this process
cannot jump to the extreme belief 1. Thus, when the state is H, learning is correct, but not complete.
Suppose now that the true state is L. Learning can be incorrect with positive probability if private beliefs
are boundedly informative. However, learning can also be complete with positive probability, because
the cascade set on action ` is degenerate. Corollary 2 summarizes these observations.

Corollary 2. Assume that the private beliefs are bounded. Under any optimal policy, learning is always
correct but incomplete if the true state is H. Conversely, learning can be incorrect, but it can also be
complete, if the true state is L.

Comparing the learning outcomes with the no-policy case, one sees that the selfish principal actually
makes society better off. This occurs because one set in which no additional information is generated
(the set C`) shrinks to a singleton. Thus, the principal eliminates one set of informational inefficiencies.
When the true state is H, only a correct, good herd can arise. When the state is L, unlike the belief
dynamics without intervention, there is a probability of complete learning even with bounded private
beliefs.

4.2 Valuable social learning

Going back to the illustrative example, with a binary and symmetric private information structure,
the principal optimally allows agents to learn from past actions if and only if private signals are very
revealing. Does this observation generalize to a broader class of private information structures? This
section addresses such inquiry. For log-concave private belief densities, I will show that single disclosure
is optimal if and only if the right tail of such density is quite fat. One interpretation of this result is that
social learning is valuable to the advisor if and only if private information unfavorable to investment
is rare or contrarian behavior on high public beliefs is unlikely. For unbounded private beliefs, single
disclosure will never be optimal.

15Recall that, with unbounded private information, learning is always complete - thus correct.
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Before proceeding, let me return to the trade-off between maximizing the value of information today
and the value of information tomorrow. Recall that the optimal value function V opδ must be concave
in public beliefs. Let τop be an associated optimal probability measure over posteriors, for any public
belief. Because Bayes plausibility is required, the value of the dynamic interaction is bounded above by
the value of the static interaction:

V opδ (p) = (1− δ)Eτop(p)[α] + δEτop(p)

[
V̄ opδ

]
,

≤ (1− δ)cav[α](p) + δV opδ (p),

∴ V opδ (p) ≤ cav[α](p).

For p ∈ Ch, this upper bound is achieved. This is just another way of seeing that social learning does
not impose conflicting effects when beliefs are in the cascade set Ch. Now recall that, for every p > 0
and p 6∈ Ch, the single disclosure splitting induces beliefs ρ− = 0 and ρ+ = q̄ with probabilities 1− p/q̄
and p/q̄, respectively. Because the optimal value function is a fixed point of the contraction algorithm
in equation 5, it is also true that the value of information outside Ch is bounded below by the value of
shutting down learning. Formally,

V opδ (p) ≥ p

q̄
[(1− δ)1 + δV opδ (q̄)] +

(
1− p

q̄

)
[(1− δ)0 + δV opδ (0)] = V sd(p).

Since V sd ≤ V opδ ≤ cav[α], whenever V sd = cav[α] it is the case that V sd = V opδ . In other words, if
the maximization of the static value of information implies inducing posteriors in the extreme points of
cascade sets, then shutting down learning from the outset is feasible and desirable from the principal’s
viewpoint. In fact, it is easier to check whether the single disclosure strategy is optimal: just comparing
α and V sd. The next proposition proves that this effectively characterizes when social learning has no
value to the principal.

Proposition 4. Single disclosure is optimal if and only α(p) ≤ V sd(p) for every p ∈ (q, q̄).

Proof. Suppose first that α ≤ V sd. Because V sd is an affine function majorizing α, it must be that

cav[α](p) := inf{f(p) s.t. f ∈ R[0,1] affine and f ≥ α} ≤ V sd(p).

This implies that single disclosure is optimal for every public belief, because V sd ≤ V op ≤ cav[α].
Suppose now that there exists some p 6∈ Ch such that α(p) > V sd(p). Because V opδ (p) ≥ Zopδ (p) - the
value of not disclosing anything at p and resorting to the optimal policy next period, it follows that

V opδ (p) ≥ (1− δ)α(p) + δ [α(p)V opδ (ϕh(p)) + (1− α(p))V opδ (ϕ`(p))] ,

> (1− δ)V sd(p) + δ
[
α(p)V sd(ϕh(p)) + (1− α(p))V sd(ϕ`(p))

]
,

≥ α(p)V sd(ϕh(p)) + (1− α(p))V sd(ϕ`(p)).

The second inequality follows from α(p) > V sd(p) and V opδ ≥ V sd. The third inequality follows from
V sd being concave and E[p̃′|p] = p. There are two cases to consider. In the first case, ϕh(p) 6∈ Ch. Then,
V sd(ϕa(p)) = ϕa(p)/q̄ for a ∈ {h, `}. This implies that V opδ (p) > V sd(p). In the second case, ϕh(p) ∈ Ch.
Then,
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α(p)V sd(ϕh(p)) + (1− α(p))V sd(ϕ`(p)) = α(p)1 + (1− α(p))V sd(ϕ`(p)) > V sd(p).

This again implies that V opδ (p) > V sd(p); that is, it is not optimal to shut down social learning at
p.

At this point, some further assumptions are necessary to derive new insights. From now on, I restrict
the analysis to a rich class of probability densities: the log-concave class. I will also impose a technical
condition - differentiability - to simplify the exposition. Assuming the unconditional g to be log-concave
over (q, q̄) means that ln g is a concave function over (q, q̄). Equivalently, this means that the ratio
g′/g is non-increasing in its domain. Many distributions commonly used in economics have log-concave
densities: uniform, normal and exponential, to name a few. An (1998) and Bagnoli and Bergstrom (2005)
are excellent surveys of nice properties of log-concave densities16. Log-concavity here will be useful for
generating regularity in the expected probability α.

Assumption 1. The private belief density g is log-concave and differentiable on (q, q̄).

The differentiability of g implies that α is twice differentiable over (q, q̄). By doing so and simplifying
the result, the following expression is obtained:

−α′′(p) = 4p(1− p)g(p)

[
3

2

(
2p− 1

p(1− p)

)
− g′(p)

g(p)

]
. (6)

The term multiplying 3/2 has a single-crossing property, that is, it crosses the horizontal axis only
once and from below17. If −α′′ inherits the same property on (q, q̄), then the ex ante expected probability
α will be convex up to a point and concave after it. Because the concave closure of α in C` is linear,
the static problem then will be to find the maximum inclination ι such that ιp touches α(p) at some
point ρ+. In other words, the static persuasion problem breaks down to maximize α(ρ)/ρ. Note that the
point ρ+ must be at least higher than the inflection point. Moreover, the single disclosure policy will be
optimal if and only if ρ+ = q̄.

Quah and Strulovici (2012) proved that a linear combination of two single-crossing functions has the
single-crossing property if and only if they satisfy what they called signed-ratio monotonicity. Briefly,
if a form of monotonicity of the ratio of those functions holds even when the signs of the functions are
different18. Hence, for −α′′ to have the single-crossing property, −g′(q)/g(q) would have to have the
single-crossing property as well. Moreover, −(ln q(1 − q))′ and (ln g(q))′ must satisfy the signed-ratio
monotonicity. This will be the case for g log-concave, as Lemma 2 demonstrates.

Lemma 2. If the private belief density g is log-concave, then α is convex-concave on (q, q̄).

Profiting from Lemma 2, Theorem 1 characterizes the optimality of the single disclosure policy in
terms of the private information structure solely, provided that the private belief density is log-concave.
Specifically, social learning is not valuable to the principal if and only if there is a high mass concentration
of belief at the right tail of the density.

16Log-concavity of the private density does not imply neither is implied by log-concavity of private signals. I will have
nothing to say about the general conditions for which distributions over private signals generate unconditional log-concave
densities, but Roesler (2014) offers some insights about this. Recall, however, that the boundedness of private signals does
translates it into the boundedness of private beliefs. Moreover, discrete signal distributions cannot be log-concave, as they
are not atomless.

17A function f satisfies this if f(s′) ≥ 0⇒ f(s′′) ≥ 0 whenever s′′ > s′ and f(s′) > 0⇒ f(s′) > 0 whenever s′′ > s′.
18As Quah and Strulovici (2012) defines it, two functions f and f̂ satisfy the signed-ratio monotonicity if (i) at any

r′ : f̂(r′) < 0 and f(r′) > 0, (−f̂(r′)/f(r′)) ≥ (−f̂(r′′)/f(r′′)) whenever r′′ > r′; (ii) at any r′ : f(r′) < 0 and f̂(r′) > 0,

(−f(r′)/f̂(r′)) ≥ (−f(r′′)/f̂(r′′)) whenever r′′ > r′.
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Here is the intuition for this result. Suppose that the private information structure is boundedly
revealing. Recall that private beliefs close to q̄ mean higher beliefs about the state being L. If higher
private beliefs are likely, this acts against the principal’s interest. If he allows agents to follow private
beliefs, even if he induces a high posterior belief, a private realization of q near q̄ could drive down the
public belief process. Thus, outside Ch, the ex-ante expected probability α is higher under the single
disclosure policy than under any other policy. Note that single disclosure achieves the highest value
cav[α] in this case.

However, if higher private beliefs about the state being L are not likely, then the principal can expect
that agents will follow a recommendation to choose action h with a high probability. Behavior contrary
to the principal’s recommendation is possible, but relatively unexpected. Thus, outside Ch, there is a
strategy that leads to a higher expected probability α than the single disclosure one.

Theorem 1. Assume that private beliefs are bounded and that the density of private beliefs is log-concave
in (q, q̄). Single disclosure is optimal if and only if the right tail of the private belief density is sufficiently
fat. Formally, for any δ ∈ (0, 1),

V opδ (p) = V sd(p)⇔ lim
q↑q̄

g(q) ≥ 1

4(1− q̄)q̄2
∀p < q̄.

Proof. Suppose that single disclosure is optimal, that is, α ≤ p/q̄ for every p < q̄. Then

1

q̄
≤ 1− α(p)

q̄ − p
.

Taking the left limit of the right side of the inequality at q̄ - the limit exists because α is concave near
q̄ - leads to α′(q̄−) ≥ 1/q̄. In Appendix A, I show that this left limit equals 4q̄(1− q̄)g(q̄−). Rearranging
the inequality, it follows that

g(q̄−) ≥ 1

4(1− q̄)q̄ 2
.

Now assume that the above inequality is reversed. I need to show that this leads to single disclosure
not being optimal. From the computation of α′(·), one can show that α′(q̄−) < 1/q̄. Because α is concave
on an interval near q̄, there exists some p close enough to q̄ (but below q̄) such that α′(q̄−) ≤ α′(p) < 1/q̄.
Also, it must be that

α(p) + α′(p)(p′ − p) ≥ α(p′) ∀p′.

In particular, for p′ = q̄, 1−α(p)
q̄−p ≤ α′(p). Therefore,

1− α(p)

q̄ − p
<

1

q̄
or α(p) >

p

q̄
.
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One final remark regarding the log-concavity assumption is that log-concave densities have exponen-
tial tails (An, 1997; Cule and Samworth, 2010). This means that the right tail goes to zero fast as q goes
to 1 and the threshold inequality for single disclosure being optimal does not hold. Therefore, for the
log-concave class, single disclosure will never be optimal when private beliefs are unbounded, as corollary
3 evidences.

Corollary 3. Assume that private beliefs are unbounded and that the density of private beliefs is log-
concave in (0, 1). Single disclosure is never optimal: there is always some public belief above which
V op > V sd.

Collecting results, social learning has some value to the principal whenever the expected investment
probability at some public belief near his preferred cascade set is higher than the expected investment
probability from single disclosure. If this is the case, the principal can come up with a better split at
this public belief to maximize α and resort to single disclosure at a later time. With log-concave private
belief density, this condition can be characterized in terms of the right tail of g only. Social learning is
valuable if and only if private beliefs unfavorable to action h are rare. With unbounded private beliefs,
this is always the case because, although private information can be fully revealing, the probability of a
contrarian agent in public beliefs near 1 is small.

An example with log-concave private belief density

Discrete private belief distributions cannot be log-concave, so the illustrative example fails to capture
the results in this section. Let me introduce then another example to fix ideas19. Let q := (1/2)(1− σ)
and q̄ := (1/2)(1 + σ) where σ ∈ [0, 1]. As in the first example, the parameter σ controls to which
extent the private beliefs can be unbounded. The unconditional density is uniform over [q, q̄]. Under this
uniform density, I compute the the expected probability of taking action h and the transition functions
in Appendix B. Here, I provide a visual representation of these functions as well as the single disclosure
policy in figure 8, for different values of σ. Specifically, the first line shows the functions for σ = .4 and
the second line shows the functions for σ = 8.

In this example, the single disclosure strategy is optimal whenever σ ≤ σ∗ ≈ 0.54. In this case,
depicted in the figures of the first line, the value of a one-shot concavification and the single disclosure
policy coincide, so at p1 = 1/2, V opδ = 1/(2σ). Whenever σ > σ∗, one can see that α(p) > p/q̄ for any
p < q̄ above a threshold p∗, represented in the graphs. Therefore, at p1, it is safe to say that V opδ > V sd,
that is, some social learning is valuable to the principal.

19This example comes from Herrera and Hörner (2012).
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Figure 8: Expected probability vs. single disclosure value function for different values of σ. Figures 8(a) and
8(b) represent relevant functions with σ = .4, and figures 8(c) and 8(d) show the same functions with σ = .8.
The blue lines in figures 8(b) and 8(d) show the investment probabilities, and the orange lines show the value of
a single disclosure policy.

4.3 The role of patience

In the case that single disclosure is not the optimal policy for the second example, then what policy is?
The greedy one? It turns out that an explicit computation of the value function for continuous private
signals is a daunting task. This is most often true whenever α is concave or convex outside CH or when
there is only one law of motion that is exogenous to agents’ action. However,, with multiple laws and
expected investment probability being convex-concave, it will not necessarily be the case. Nevertheless,
I will have a few things to say about the long-run value of information.

As the principal becomes infinitely patient, the optimal value function converges pointwise to the
single disclosure value function. This does not depend on the private information structure - and it
can be seen from the policy derived in the illustrative example. The result follows mainly from the
stationarity of the optimal policy. Intuitively, the more patient he is, the more he cares about the
stationary probability of herds. As he always has informational power to induce herd behavior, the
short-run value of social learning is less important to him. Thus, for high values of δ, the simplest
strategy - not caring about social learning - might be reasonably close the highest possible payoff the
principal can receive in the long run.

Let me present this result formally. Any optimal policy π - given the initial prior - induces a sequence
of probability measures {λ̂πt }t∈N over the induced belief space. Therefore, I can write the principal’s value
from an optimal policy as a function of the induced belief process:

24



V opδ =
∑
t∈N

(1− δ)δt−1Eλ̂πt [α].

Moreover, because the public belief process converges to the new cascade sets (from Proposition 3), so
does the induced one. This means that informative communication must eventually settle down. Indeed,
if p = 0 with positive probability in the long-run, the principal cannot split beliefs further; if p ∈ Ch,
there is no reason to split beliefs. Therefore, in the limiting case (that is, as the discount factor goes to

1), I can interchangeably talk about either the laws of induced beliefs {λ̂πt }t∈N or public beliefs {λπt }t∈N.
Lemma 3 then follows.

Lemma 3. Let π be an optimal policy. The associated value function must converge to the stationary
value of the public belief process hitting Ch under π. Precisely,

lim
δ→1

V opδ = lim
t→∞

Eλ̂πt [α] = λπ∞(Ch).

Define now the belief ρπ+ = Eλπ∞ [p|p ∈ Ch]. Because the public belief process is a martingale and
Cπ` = {0}, it must be that ρπ+λ

π
∞(Ch) = p1. Clearly, the split of p1 in ρπ+ with probability λπ∞(Ch) and

0 with probability 1 − λπ∞(Ch) is Bayes plausible at t = 1. Moreover, it places posteriors at cascade
sets from the outset, undermining any necessity of disclosing additional information at t = 2. Note that
this strategy yields the same long-run value limδ→1 V

op
δ . Moreover, it has to give principal a lower value

than the single disclosure strategy, because the latter is the best strategy among those that disclose
informative messages only at the beginning. Thus limδ→1 V

op
δ ≤ V sd. Reverse inequality must also be

true. Indeed, by definition, V opδ ≥ V sd for every discount factor δ < 1; in particular, it must hold for δ
close to one. In summary, I have proved the following theorem.

Theorem 2. The value of an optimal policy approaches the value of the single disclosure one, as principal
becomes increasingly patient:

lim
δ→1

V opδ = V sd.

5 Private communication

Suppose the principal still can publicly commit to an information policy, but now can restrain current
agents from observing past realizations of messages. In this sense, communication is private. Because
agents’ strategy will only depend on the observation of the action history - not message histories and
current messages, it is without loss to consider information rules that are maps from action histories to a
distribution over messages. As in the previous sections, along with agents’ strategies and the prior belief,
the policy generates a probability measure over the set of public outcomes (the set of action histories).

For a given information policy and a given strategy for the agents, upon the observation of a history
at, Ms. t + 1 will have an interim belief pt+1 about the state being H. However, because she does not
observe what message Ms. t received, she needs to average out all possible realizations of induced beliefs
ρt that led t to take the observed action at, given that t observed history at−1. Therefore - and by law
of total expectation - it is conditionally and unconditionally expected that t takes action h with the
probabilities below, respectively.
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α̂θ(pt, τt) := EτHt (pt)[α(ρt)] for θ ∈ {H,L}; (7)

α̂(pt, τt) := ptα̂
H(pt, τt) + (1− pt)α̂L(pt, τt). (8)

After observing action at = a, agent t+ 1 updates her public belief according to

p̃t+1 = ϕ̂a(pt, τt) =


[
α̂H(pt,τt)
α̂(pt,τt)

]
pt if a = h,

[
1−α̂H(pt,τt)
1−α̂(pt,τt)

]
pt if a = `.

(9)

The simplifications discussed in previous subsections still hold here. Specifically, it is without loss
to focus on direct (the message space is the belief space and principal tells agents exactly what their
beliefs should be) and Markov (information rule only depends on public history through the realization of
interim beliefs) information policies. Because these simplifications hold, I can reformulate the principal’s
problem in terms of Markov decision problem, same way as before. However, the realization of a current
public belief does not have a direct effect on the next period’s belief. The principal must consider the
average effect a given current distribution over messages will have on the next agent’s inference about
the state of the world. Thus, the value of an optimal policy must satisfy

V opδ (p) = max
τ∈S(p)

[
(1− δ)α̂(p, τ) + δ

(
α̂(p, τ)V opδ (ϕ̂h(p, τ)) + (1− α̂(p, τ))V opδ (ϕ̂`(p, τ))

)]
∀ p ∈ [0, 1].

(10)

The equation above still is an operator and satisfies Blackwell’s sufficient conditions for a contraction.
However, the fact that the value function is still concave is not straightforward, as this is not a dynamic
concavification operator the same way as in previous sections. Nevertheless, Lemma 4 below proves that
concavity is preserved in a private persuasion mechanism.

Lemma 4. With private communication, the function V opδ is concave in (0, 1).

Lemma 4 implies that one of the crucial features of the results in the previous sections is preserved
under a private communication mechanism. Namely, the concavity of the value function. Recall that
concavity ensures that the principal’s expectation of future continuation values is weakly lower than his
continuation value under the expected value of future beliefs. The second crucial feature - principal’s
best prediction of the next public belief given a current p is exactly p - also holds. Under private
communication, the public belief process evolves according to a new transition kernel that still equals
p on average, for every p. As such, the public belief process continues to converge almost surely to the
same (induced) cascade sets as before. All the results from the previous section are valid.
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6 Conclusion

People rely on the wisdom of the crowds to make decisions. Because they do, using information disclosure
to induce or avoid herd behavior is the goal of many professionals and institutions. This study investigates
the optimal ways to persuade crowds. Specifically, I consider an observational learning model and add a
non-benevolent information designer who can commit to an information disclosure strategy, but cannot
censor public information in society nor observe each agent’s private information. The designer’s problem
then is basically when to be strategically vague - thus letting agents follow their own signals to some
extent - and when to be strategically clear - thus triggering informational cascades.

This study has two main results. First, the features of agents’ private information structure determine
when it is optimal to persuade a single agent - single disclosure case - and when it is optimal to allow some
social learning dynamics. For a well-known class of private belief distributions - the log-concave class, I
give a characterization in terms of one of the tails of the unconditional private belief density (theorem
1). Some social learning is optimal if and only if private information unfavorable to the principal’s most
preferred action is sufficiently rare. With unbounded private beliefs, this possibility can never be too
significant, so single disclosure is never optimal.

Second, social learning is less valuable to a more patient principal. In the limiting case - that is, as
the designer’s discount factor goes to one - the optimal policy has the same value as the single disclosure
policy (Theorem 2). This means that whenever designer does not heavily discount current payoffs from
persuasion, avoiding agents from learning through actions might be in his best interest.

An auxiliary result is worth mentioning. For bounded private beliefs, under any optimal policy,
conditional on the state being high, there can be no herds toward the worst action for agents. Without an
information intermediary, there is also a chance of society getting trapped in the bad herd. Conditional on
state being low, complete learning occurs with positive probability. Again, this could not happen without
intervention. Thus, the information policy from the selfish designer benefits society, as it eliminates
informationally inefficient outcomes.

As an extension, I also prove that allowing the principal to censor past messages to current agents
does not provide him with any additional benefit. This happens because agents know the information
rule in every period, even though they might not be sure about the realization of past messages. As
such, the public belief process is still a martingale and the principal’s value function is still concave in
those beliefs.
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Appendix A Technical details and omitted proofs

A model of crowds

This subsection reproduces key results about private beliefs and the public belief process in a standard
observational learning model, for the sake of completeness. All claims are adaptations from results that
have already appeared in the literature. Claims 1, 2 and 3 are taken from Smith and Sørensen (1996)
and Rosenberg and Vieille (2019). Claim 4 is taken from Cao et al. (2011).

I have said that private beliefs come from the observation of a private signal, but I have remained silent
about what those signals might be. Let me give now a detailed description of the private inference process
and let me explain why it is sufficient to impose assumptions directly on the unconditional distribution of
private beliefs. First, let me summarize all possible outcomes from this repeated interaction by the sample
space Ω := Θ× (A×S)N. The S is a space of private signals. Agent t’s set of public histories is At−1; the
first agent’s public history is the null set. A strategy profile for the agents and the common prior belief
over the states generates a probability measure P over F , the σ-algebra generated by Ω. The sample
space admits the partition ΩH := {H}×(A×S)N and ΩL := {L}×(A×S)N with P(ΩH) = P(ΩL) = 1/2.
I also refer to Pθ as the conditional probability measure over (Ω,F) given θ.

Every agent observes the realization of a measurable function s̃t : (Ω,F) → (S,S). The conditional
law of s̃t is thus Fθt = Pθ ◦ s̃−1

t for θ ∈ {H,L}. The assumption of signals being conditionally i.i.d. means
that Fθt = Fθ for every t ∈ N. To ensure that no private signal perfectly reveals the state, I impose FH
and FL to be mutually absolutely continuous. This means that every subset of S has measure zero under
FH if and only if it has measure zero under FL. The Radon-Nikodym theorem ensures the existence of a
non-negative measurable function ζ such that FH = ζFL. This function is almost surely unique, positive
and finite. For every agent t, consider now the measurable function q̃t : (S,S)→ ((0, 1],B) such that

q̃t(s) :=
1

1 + ζ(s)
,

where B is the Borel σ-algebra of the unit interval. Note that q̃t is the conditional probability of
θ = L given the (σ-algebra generated by the) private signals. That is why I refer to q̃t as the private
belief variable. Because {s̃t}t∈N is conditionally i.i.d., so it will be {q̃t}t∈N. The associated conditional
measures are Gθ = Fθ◦q̃−1. Because FH and FL are mutually absolutely continuous, GH and GL will also
have this property. Therefore, there exists a non-negative measurable function η such that GL = ηGH .
Observe that

GL(B) =

∫
q̃−1(B)

dFL =

∫
q̃−1(B)

1

ζ
dFH =

∫
B

[
q

1− q

]
dGH .

This means that the density η equals q/(1−q) almost surely. In particular, it is true for the conditional
cumulative distribution functions GH and GL. This is called the no introspection condition in Smith
and Sørensen (1996). Now, consider only the assumptions that private signals are conditionally i.i.d
and that the unconditional distribution over private beliefs G is absolutely continuous with density g.
Then GH and GL will be mutually absolutely continuous with each other and will have densities gH and
gL respectively. If it holds that gL/gH = q/(1 − q) almost surely, then the whole private information
structure is determined by g. This is so because I can set gH(q) := 2(1 − q)g(q); gL(q) := 2qg(q) and
define conditionally i.i.d. distributions of private signals that generates G: just set F θ = Gθ for every
θ ∈ {H,L}.

Let me show that gL/gH = q/(1− q) indeed. Set η = gL/gH . If an agent could see directly a private
belief q, her inference about state L would be

29



q̃(q) =
gL(q)

gL(q) + gH(q)
=

η(q)

1 + η(q)
.

But q̃(s) = E[1θ̃=L|s]. It follows that q̃(q) = E[1θ̃=L|q] = E[E[1θ̃=L|s]|q] = E[q̃ = q] = q. Thus,

η(q) =
q

1− q
.

Claim 1. The difference αL(p) − αH(p) is non-decreasing in p ∈ [1/2, 1] and strictly increasing in
p ∈ (1/2, q̄). Likewise, it is non-increasing in p ≤ [0, 1/2] and strictly decreasing in p ∈ (q, 1/2).

Moreover, αH(p) > αL(p) for every p ∈ (q, q̄).

Proof. Recall that it is possible to rewrite conditional densities in terms of g only: gH(q) = 2(1− q)g(q)
and gL(q) = 2qg(q). Integrating by parts, I can rewrite αH(pt) and αL(pt) as

αH(pt) = 2

[
(1− pt)G(pt) +

∫ pt

q

G(q)dq

]
,

αL(pt) = 2

[
ptG(pt)−

∫ pt

q

G(q)dq

]
,

The difference between αL and αH is

αL(pt)− αH(pt) = 2

[
(2pt − 1)G(pt)− 2

∫ pt

q

G(q)dq

]
.

Suppose pt ≥ 1/2. Take any p′t > pt. Because G(q) ≤ G(p′t) for every q ∈ (pt, p
′
t], it follows that

(αL(p′t)− αH(p′t))− (αL(pt)− αH(pt)) = 2

[
2(p′t − pt)G(p′t) + (G(p′t)−G(pt))(2pt − 1)− 2

∫ p′t

pt

G(q)dq

]
,

≥ [G(p′t)−G(pt)](2pt − 1),

≥ 0.

This means that the difference αL−αH is non-decreasing for beliefs above 1/2. The difference is strict
if q̄ > pt > 1/2, because G is strictly increasing in its support (recall that G is continuous). Suppose
now that pt ≤ 1/2. Take any p′t < pt. It follows that

(αL(pt)− αH(pt))− (αL(p′t)− αH(p′t)) = 2

[
2(pt − p′t)G(pt) + (G(p′t)−G(pt))(1− 2pt)− 2

∫ pt

p′t

G(q)dq

]
,

≤ [G(p′t)−G(pt)](1− 2pt),

≤ 0.
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This means that the difference αL−αH is non-increasing for beliefs above 1/2. Again, the difference
is strict if q < pt < 1/2. Let me now show that αL stochastically dominates αH . From the difference

αL − αH , it is possible to see that this is certainly true for pt ≤ 1/2. Suppose now pt ≥ 1/2. Because

q̄ − 1/2 =
∫ q̄
q
G(q)dq =

∫ p
q
G(q)dq +

∫ q̄
p
G(q)dq, another way of writing the difference is

αL(pt)− αH(pt) = 2

[
(2pt − 1)G(pt) + 1− 2q̄ + 2

∫ q̄

p

G(q)dq

]
.

Because G(q) ≤ G(q̄) = 1, it follows that

αL(p)− αH(p) ≤ 2

[
(2p− 1)G(p) + 1− 2p

]
,

= 2(1− 2p)(1−G(p)),

≤ 0.

Note that whenever p ≤ q, αH(p) = αL(p) = 0; whenever p ≥ q̄, αH(p) = αL(p) = 1. This proves

that αL(p) < αH(p) for every p ∈ (q, q̄).

Claim 2. For every p ∈ (q, q̄), the laws of motion ϕh(p) and ϕ`(p) for public beliefs given the past
observation of actions satisfy ϕh(p) > max{1/2, p} and ϕ`(p) < min{1/2, p}.

Proof. That ϕh(p) > p and ϕ`(p) < p for every p ∈ (q, q̄) follows from claim 1. Let me show that

ϕh(p) > 1/2 > ϕ`(p) as well. Since (gL/gH) = q/(1 − q) and q/(1 − q) is a strictly increasing function,
it follows that

αL(p) = 2

∫ p

q

gL(q)dq =

∫ p

q

(
q

1− q

)
gHdq <

(
p

1− p

)∫ p

q

gHdq =

(
p

1− p

)
αH(p).

This implies that ϕh(p) > 1/2, because

ϕh(p) =
αH(p)p

αH(p)p+ αL(p)(1− p)
=

1

1 + αL(p)
αH(p)

1−p
p

>
1

2
.

Similarly,

1− αL(p) = 2

∫ 1

p

gL(q)dq =

∫ 1

p

(
q

1− q

)
gHdq >

(
p

1− p

)∫ 1

p

gHdq =

(
p

1− p

)
(1− αH(p)).

Implying that ϕ`(p) < 1/2, because

ϕ`(p) =
(1− αH(p))p

(1− αH(p))p+ (1− αL(p))(1− p)
=

1

1 + 1−αL(p)
1−αH(p)

1−p
p

<
1

2
.
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To proceed, let me formally argue that the public belief process is a martingale. Recall that each
public belief is a random variable p̃t : Ω → [0, 1] measurable with respect to F . Let At be the sigma-
algebra generated by At−1, for every t (at t = 1, agent 1 does not observe any history). Each p̃t is
measurable with respect to At and (At)t∈N is an increasing family of sub-σ-algebras of F . Thus, (p̃t)t∈N
is adapted. Moreover, because it is a version of the conditional probability of ΩH given events in At
and At ⊂ At+1, it follows that E[p̃t+1|At] = E[E[1θ=H |At+1]At] = E[1θ=H |At] = p̃t almost surely. The
belief process is a martingale indeed.

Being a martingale, it must converge almost surely to a random variable p̃∞ (see for instance Williams,
1991, section 11.5). The proof here - an almost exact reproduction of theorem B.1 and B.2 in Smith and
Sørensen (1996) - relies on α(·) and ϕa(·) being continuous functions outside cascade sets, but this is not
crucial, as it can be see in the proofs of the theorems in the referred paper.

Claim 3. The limiting public belief p̃∞ has all points of its support belonging to cascade sets.

Proof. First, I need to prove the following. If an open interval I ⊂ [0, 1] has the property that there
exists a number ε > 0 such that, ∀ p ∈ I, either (i) α(p) > ε and |ϕh(p) − p| > ε or (i) α(p) < 1 − ε
and |ϕ`(p) − p| > ε, then I cannot contain any point in the support of p̃∞. Indeed, assume by way
of contradiction that this is not the case. Consider any point p∗∞ ∈ I ∩ supp(p̃∞) and define the set
I ′ := (p∗∞ − ε/2, p∗∞ + ε/2) ∩ I. For any p in I ′, either (i) α(p) > ε and ϕh(p) 6∈ I ′ or (ii) α(p) < 1 − ε
and ϕ`(p) 6∈ I ′. On the one hand, p∗∞ ∈ supp(p̃∞), so it must be that there is a positive probability
that the event {p̃t ∈ I ′} occurs for infinitely many t. On the other hand, conditional on the event
{p̃t ∈ I ′}, the event {p̃t+1 6∈ I ′} has probability at least ε. Thus,

∑
t∈N P[p̃t+1 6∈ I ′|p̃t ∈ I ′] = ∞. The

(conditional) second Borel-Cantelli lemma (see for instance Williams, 1991, section 12.15) implies then
that {p̃t+1 6∈ I ′} happens infinitely often, conditional on {p̃t ∈ I ′} infinitely often. But then probability
of the event {p̃t ∈ I ′} happening for infinitely many t is zero, a contradiction.

With the above claim, I can continue with the proof that the support of p̃∞ contains only points
in C` ∪ Ch. Assume by way of contradiction that there exists some point in the support of p̃∞ - say,
p∗∞ - such that p∗∞ 6∈ C` ∪ Ch. Then there exists ε > 0 s.t. either α(p∗∞) > ε and |ϕh(p∗∞) − p∗∞| > ε
or α(p∗∞) < 1 − ε and |ϕ`(p∗∞) − p∗∞| > ε. Without loss, suppose the first case holds. Because α(·)
is continuous at p∗∞, there exists an open neighborhood around p∗∞ - call it I - such that α(p) > ε
and |ϕh(p) − p| > ε for every p ∈ I. But then I cannot contain any point in the support of p̃∞, a
contradiction.

To prove the last claim in this subsection, let {λnpt }t∈N be a sequence of probability measures, each
t giving the probability of the public belief process belonging to any event at t. Because {p̃t}t∈N con-
verges almost surely to p̃∞, it must be the case that Eλnpt [f ] converges almost surely to Eλnp∞ [f ], for
every bounded, continuous function f . Because supp(p̃∞) ⊆ C` ∪ Ch, it must also be the case that
supp(λnp∞ ) ⊆ C` ∪ Ch. The function α is continuous, so limt→∞ Eλnpt [α] = λnp∞ (Ch). It remains to show
that limδ→1 V

np
δ = limt→∞ Eλnpt [α].

Claim 4. limδ→1 V
np
δ = limt→∞ Eλnpt [α].

Proof. Let V ∗ = limt→∞ Eλnpt [α]. Because Eλnpt [α] → V ∗, for all (ε/2) > 0, there exists some N ∈ N
such that for t ≥ N , |Eλnpt [α]− V ∗| ≤ ε/2. This leads to

|V npδ − V ∗| =

∣∣∣∣∣∑
t∈N

(1− δ)δt−1(Eλnpt [α]− V ∗)

∣∣∣∣∣ ,
≤
∑
t<N

(1− δ)δt−1|Eλnpt [α]− V ∗|+ δN−1ε/2.

Now consider V̄ :=
∑
t<N |Eλnpt [α]− V ∗| and δ̄ := 1− ε/(2V̄ ). Then, for any 1 > δ′ > δ̄,
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∑
t<N

(1− δ′)δ′t−1|Eλnpt [α]− V ∗|+ δ′
N−1

ε/2 ≤ ε/2 + ε/2 = ε.

As the choice of ε was arbitrary, this means that limδ→1 V
np
δ = limt→∞ Eλnpt [α].

Persuading crowds

In this subsection, the set of all possible outcomes of the infinite interaction is Ω = Θ× (A× S ×M)N.
To simplify notation, I set X := A×M . A strategy profile for the agents, the common prior belief over
the states, the prior information structure and the information policy generate a probability measure
over F , the σ-algebra generated by Ω.

Lemma 1. Consider any stochastic processes {ρ̃t}t∈N and {p̃t}t∈N - with initial prior belief p1 given -
such that (i) for every realization of a public belief pt, the law of the induced belief ρ̃t conditional on
pt equals pt in expectation; (ii) for every realization of an induced belief ρt, there exists some action a
taken with positive probability such that next period’s public belief is pt+1 = ϕa(ρt). Therese processes
can be generated by an information policy for which the message space is the belief space [0, 1] and the
information rules depend only on the current public belief.

Proof. Consider any stochastic processes {ρ̃t}t∈N and {p̃t}t∈N s.t. the expected value of the conditional
law of ρ̃t given a realization pt equals pt, for each t. Call this conditional law τ(·; pt). Let the message
space be M = [0, 1] and let the associated σ-algebra be the Borel σ-algebra B of M . Consider the
M-measurable mappings:

κH(m, pt) :=

{
m
pt

if pt ∈ (0, 1),

1 if pt ∈ {0, 1};
κL(m, pt) :=

{
1−m
1−pt if pt ∈ (0, 1),

1 if pt ∈ {0, 1}.

Consider as well the following set functions on M,

µH(B; pt) :=

∫
m∈B

κH(m, pt)τ(dm; pt), µL(B; pt) :=

∫
m∈B

κL(m, pt)τ(dm; pt).

I claim that they are probability measures, given pt. Suppose that pt ∈ (0, 1) (otherwise this is
trivially true). That they are non-negative is immediate. Moreover, µθ(M ; pt) = 1. Finally, they are
σ-additive. Indeed, for any sequence (Bn)n∈N of pairwise disjoint subsets of M with B = ∪n∈NBn,

µθ(B; pt) =

∫
m∈∪n∈NBn

κθ(m, pt)τ(dm; pt),

=

∫
M

[∑
n∈N

κθ(m, pt) · 1Bn(m)

]
τ(dm; pt),

=
∑
n∈N

[ ∫
M

κθ(m, pt) · 1Bn(m)τ(dm; pt)

]
,

=
∑
n∈N

µθ(Bn; pt).
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The value 1Bn(m) above represents an indicator function, equal to one whenever m ∈ Bn and zero
otherwise. Observe that, from the point of agent t that does not know θ but observes the information
policy and the realization pt ∈ (0, 1) (again, if pt ∈ {0, 1} the proof is trivial), the probability of any
B ∈M is given by

µ(B; pt) = ptµ
H(B; pt) + (1− pt)µL(B; pt),

= pt

∫
B

m

pt
τ(dm; pt) + (1− pt)

∫
B

1−m
1− pt

τ(dm; pt),

= τ(B; pt).

The information policy generates the same conditional probability measure over induced posteriors.
Let me now show that under this policy, the realization of posterior beliefs coincide with the posterior
beliefs ρt ∈ supp(τ(pt)). To do so, suppose first that pt ∈ (0, 1). If the principal sends ρt to the agent,
her posterior belief is

ρ̃(ρt; pt) :=
ptκ

H(ρt; pt)

ptκH(ρt; pt) + (1− pt)κL(ρt; pt)
= ρt.

If pt = 0, then E[ρ̃t|pt] = 0 implies that the only possible ρ̃t is 0. Then trivially ρ̃(B; pt) induces 0 for
any message B that has positive probability. Similar analysis holds for pt = 1. Note as well that under
this information policy the expected value of induced beliefs conditional on the realization of belief pt
equals pt:

E[ρ̃t|pt] =

∫
ρtµ(dρt; pt) =

∫
ρtτ(dρt; pt) = pt.

In what follows, it will be convenient to review some results about the concave closure of a bounded
function f : X → Y , with X ⊆ R convex and Y ⊆ R. This is given by

cav[f ](x) = sup{y : (x, y) ∈ co(hyp(f))},

where co(hyp(f)) is the convex hull of the hypograph of f . The concave closure of a bounded
function is concave. Indeed, let hyp(cav[f ]) be the hypograph of cav[f ]. Take any (x, t), (x′, t′) in
it. There exists probability weights τ and τ ′, both over X, such that Eτ [x̃] = x and Eτ ′ [x̃] = x′

as well as Eτ [f(x̃)] = t and Eτ ′ [f(x̃)] = t′ ≤ f(x′). Consider now an arbitrary λ ∈ [0, 1]. Define
x′′ := λx + (1 − λ)x′ as well as τ ′′ := λτ + (1 − λ)τ ′. There exists probability weights such that
Eτ ′′ [x̃] = x′′, Eτ ′′ [f(x̃)] = λt + (1 − λ)t′ := t′′ ≤ cav[f ](x′′). That implies hyp(cav[f ]) is convex and
cav[f ] is concave.

It will be convenient as well to recast the problem in terms of a Markov chain over the belief space.
Define a transition probability P : [0, 1]× B → [0, 1] such that for every p ∈ [0, 1] and every B ∈ B,

P (p,B) = 1{ϕh(p) ∈ B}α(p) + 1{ϕ`(p) ∈ B}(1− α(p)).
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Note that, for every p, the expected value of P (p) is exactly p:

∫
p′P (p, dp′) = α(p)ϕh(p) + (1− α(p))ϕ`(p) = p

Associated with it, there is a transformation mapping the space of bounded functions f on the belief
space to the same space, defined as below. This is the expected value of a function f given that the
current belief is p.

∫
f(p′)P (p, dp′) = α(p)f(ϕh(p)) + (1− α(p))f(ϕ`(p)).

Associated with this operator, there is an adjoint operator P ∗ mapping the space of probability
measures ν over the belief space to this same space, defined as below. This is the probability of next
belief belonging to B if the current belief is drawn according to ν.

(P ∗ν)(B) :=

∫
P (p,B)ν(dp).

One can show20 that P and P ∗ are connected trough the following relation:

∫
(Pf)(p)ν(dp) =

∫
f(p′)(P ∗ν)(dp′).

Using the above notation, I can define another transformation T from the space of bounded functions
V to itself. This transformation is the concave closure of the function (1 − α)(p) + δ(PV )(p). The
transformation is given below. From it, a series of claims follow.

(TV )(p) := sup
τ∈S(p)

Eτ
[
(1− δ)α(ρ̃) + δ(PV )(ρ̃)

]
= sup
τ∈S(p)

{
(1− δ)Eβ [α(ρ̃)] + δ

∫
V (p′)(P ∗τ )(dp′)

}
,

Claim 5. For every p and every bounded, continuous function V , there exists a solution τ ∈ S(p) to the
problem:

sup
τ∈S(p)

Eτ
[
(1− δ)α(ρ̃) + δ(PV )(ρ̃)

]

Proof. The assumption of an absolutely continuous unconditional distribution of private beliefs imply
that both α and PV will be bounded and continuous, if V is bounded and continuous. In particular, the
expression in brackets will be upper semi-continuous, so its hypograph is convex. Therefore, any element
on the convex hull of the hypograph of will be attainable, and I can interchange the sup by the max.

20See for instance Stokey (1989), theorem 8.3.
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Claim 6. For every every bounded function V , the transformation function TV is concave in beliefs.

Proof. TV is the concave closure of a bounded function. From previous discussion, the concave closure
of a bounded function is concave.

Claim 7. The transformation T is a contraction.

Proof. First note that (TV )(p) is equivalent to cav[(1 − δ)α + δ(PV )](p). From Blackwell sufficient
conditions, to show that the operator is a contraction, it suffices to show that it satisfies continuity21 and
discounting22. Continuity follows from (PV ′) ≥ PV ′′ for every V ′ ≥ V ′′ and cav being itself a operator
that satisfies continuity. Discounting follows from (Pf+d)(p) = (Pf)(p)+d and cav[f+d](p) = cav[f ]+d.
Therefore, (Tf + d)(p) = (Tf)(p) + δd.

Claim 8. The optimal value function V opδ (p) is continuous in beliefs.

Proof. The transformation T maps the space of bounded functions to itself. Because it is a contraction,
it suffices to observe that for every continuous function, the image of the operator will be continuous as
well.

Claim 9. For every p, any optimal policy with associated optimal probability measure over posteriors at
p places positive probability on at most two induced beliefs ρ−, ρ+ s.t. ρ− ≤ p ≤ ρ+.

Proof. This is a straightforward application of Carathéodory’s theorem on any point of the convex hull
of graph of Zopδ : [0, 1] → R+ with Zopδ (p) := (1 − δ)α(p) + δ(PV opδ )(p). See for instance Rockafellar,
1970, corollary, 17.1.5.

Valuable social learning

Lemma 2. If the private belief density g is log-concave, then α is convex-concave on (q, q̄).

Proof. The function c1(q) := −(ln q(1−q))′ satisfies the single-crossing property. Likewise, if the density g
is log-concave, then c2(q) = −(ln g(q))′ satisfies it as well: the log-concavity implies that c2 monotonically

increases in (q, q̄). Following Quah and Strulovici (2012), say that two functions f and f̂ satisfy signed-

ratio monotonicity if (i) at any r′ : f̂(r′) < 0 and f(r′) > 0, (−f̂(r′)/f(r′)) ≥ (−f̂(r′′)/f(r′′)) whenever

r′′ > r′; (ii) at any r′ : f(r′) < 0 and f̂(r′) > 0, (−f(r′)/f̂(r′)) ≥ (−f(r′′)/f̂(r′′)) whenever r′′ > r′. Let
me show that c1 and c2 satisfy the signed-ratio monotonicity.

Pick any q′ : c2(q′) < 0 and c1(q′) > 0. As remarked, c2 is monotonically increasing because g is
log-concave, so −c2(q′) ≥ −c2(q′′) whenever q′′ > q′. Likewise, because the function c1 is increasing,
1/c1(q′) ≥ 1/c1(q′′) whenever q′′ > q′. Therefore, (−c2(q′)/c1(q′)) ≥ (−c2(q′′)/c1(q′′)) whenever q′′ >
q′, as required. Now pick any q′ : c1(q) < 0 and c2(q′) > 0. Because c1 is increasing, −c1(q′) ≥
c1(q′′) whenever q′′ > q′. Similarly, because c2 is decreasing, (1/c2(q′)) ≥ (1/c2(q′′) whenever q′′ > q′.
Therefore, (−c1(q′)/c2(q′)) ≥ (−c1(q′′)/c2(q′′)) whenever q′′ > q′, as required.

Because those functions satisfy the signed-ratio monotonicity, I can apply proposition 1 from Quah
and Strulovici (2012) to conclude that −α′′ satisfies the single-crossing property as well. That means
there exists a value m ∈ (q, q̄) such that α(p) is convex for p < m and concave for p > m.

21That is, for any V ′, V ′′ in the space of bounded functions and s.t. V ′ ≤ V ′′, (TV ′) ≤ (TV ′′).
22That is, there exists a discount factor γ ∈ (0, 1) such that (TV + d)(p) ≤ (TV )(p) + γd for every d ≥ 0.
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The role of patience

Lemma 3. Let π be an optimal policy. The value of the optimal value function must converge to the
stationary value of the public belief process hitting Ch under π. Precisely,

lim
δ→1

V opδ = lim
t→∞

Eλ̂πt [α] = λπ∞(Ch).

Proof. Because informative communication eventually stops, λ̂t converges to λt as t goes to infinity.
Claim 3 then implies

lim
δ→1

V opδ = lim
t→∞

Eλπt [α].

Because the public belief process converges almost surely to the new cascade sets, the above limiting
expected probability must equal

lim
t→∞

Eλπt [α] = λπ∞(Ch).

Private communication

Lemma 4. With private communication, the function V opδ is concave in (0, 1).

Proof. Because we have a contraction algorithm, it suffices to show that equation 10 is concave for any
function V concave. To do so, pick any belief p ∈ (0, 1), any two interior beliefs p′ < p′′ and any value
ξ ∈ (0, 1) such that p = ξp′′+(1−ξ)p′. Consider τξ := ξτ ′′+(1−ξ)τ ′ where τ ′′ (τ ′) is the Bayes plausible
distribution solving equation 10 at p′′ (p′) for V . Moreover, consider τHξ (B) =

∫
B

(ρ/p)τξ(dρ) if state is

H as well as τLξ =
∫
B

[(1− ρ)/(1− p)]τξ(dρ) if state is L, for any B ⊆ [0, 1]. This splitting satisfies Bayes

plausibility and τξ = pτHξ + (1−p)τLξ . Observe that under τξ, the laws of motion as in equation 9 satisfy

ϕ̂h(p, τξ) =
α̂H(p, τξ)p

α̂(p, τξ)
,

= ξ

[
α̂H(p′′, τ ′′)

α̂(p, τξ)

]
p′′ + (1− ξ)

[
α̂H(p′, τ ′)

α̂(p, τξ)

]
p′,

= ξ

[
α̂(p′′, τ ′′)

α̂(p, τξ)

]
ϕ̂h(p′′, τ ′′) + (1− ξ)

[
α̂(p′, τ ′)

α̂(p, τξ)

]
ϕ̂h(p′, τ ′);

ϕ̂`(p, τξ) :=

[
1− α̂H(p, τξ)

1− α̂(p, τξ)

]
p,

= ξ

[
1− α̂H(p′′, τ ′′)

1− α̂(p, τξ)

]
p′′ + (1− ξ)

[
1− α̂H(p′, τ ′)

1− α̂(p, τξ)

]
p′,

= ξ

[
1− α̂(p′′, τ ′′)

1− α̂(p, τξ)

]
ϕ̂`(p

′′, τ ′′) + (1− ξ)
[

1− α̂(p′, τ ′)

1− α̂(p, τξ)

]
ϕ̂`(p

′, τ ′).
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Because V is concave, it follows that

α̂(p, τξ)V (ϕ̂h(p, τξ)) ≥ ξα(p′′, τ ′′)V (ϕ̂h(p′′, τ ′′)) + (1− ξ)α̂(p′, τ ′)V (ϕ̂h(p′, τ ′)),

(1− α̂(p, τξ))V (ϕ̂`(p, τξ)) ≥ ξ(1− α̂(p′′, τ ′′))V (ϕ̂`(p
′′, τ ′′)) + (1− ξ)(1− α̂(p′, τ ′))V (ϕ̂`(p

′, τ ′)).

Combining the above results with the fact that α̂(p, τξ) = α̂(p′′, τ ′′)ξ + α̂(p′, τ ′)(1− ξ), we get

max
τ∈S(p)

[
(1− δ)α̂(p, τ) + δ

(
α̂(p, τ)V (ϕ̂h(p, τ)) + (1− α̂(p, τ))V (ϕ̂`(p, τ))

)]
≥ (1− δ)α̂(p, τξ) + δ

(
α̂(p, τξ)V (ϕ̂h(p, τξ)) + (1− α̂(p, τξ))V (ϕ̂`(p, τξ))

)
,

≥ ξ
[
(1− δ)α̂(p′′, τ ′′) + δ

(
α̂(p′′, τ ′′)V (ϕh(p′′)) + (1− α(p′′))V (ϕ`(p

′′))

)]
+

+ (1− ξ)
[
(1− δ)α(p′) + δ

(
α(p′)V (ϕh(p′)) + (1− α(p′))V (ϕ`(p

′))

)]
,

= ξ max
τ∈S(p′′)

[
(1− δ)α̂(p′′, τ) + δ

(
α̂(p′′, τ)V (ϕ̂h(p′′, τ)) + (1− α̂(p′′, τ))V (ϕ̂`(p

′′, τ))

)]
+

+ (1− ξ) max
τ∈S(p′)

[
(1− δ)α̂(p′, τ) + δ

(
α̂(p′, τ)V (ϕ̂h(p′, τ)) + (1− α̂(p′, τ))V (ϕ̂`(p

′, τ))

)]
.
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Appendix B Calculations for the examples

Illustrative example

Recall that the private signal space is S = {s, s̄} and the probability distributions are fH(s̄) = fL(s) = σ,
for σ ∈ (1/2, 1). Therefore, the belief space is {1−σ, σ} with unconditional prob. g(1−σ) = g(σ) = 1/2.
The cascade sets are C` = [0, 1− σ) and Ch = [σ, 1]. The conditional and unconditional probabilities of
action h (investment) given p are

αH(p) =


0 if p ∈ C`,
σ if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

αL(p) =


0 if p ∈ C`,
(1− σ) if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

α(p) =


0 if p ∈ C`,
pσ + (1− p)(1− σ) if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

The system moves to another public belief according to the transition functions

ϕh(p) :=

{
p if p ∈ C`,

σp
pσ+(1−p)(1−σ) if p /∈ C` ∪ Ch.

ϕ`(p) :=

{
p if p ∈ Ch,

(1−σ)p
p(1−σ)+(1−p)σ if p /∈ C` ∪ Ch.

Let me compute the probability measures (λnpt )t∈N over public beliefs in each period in this example.
Recall that P (p,B) refers to the transition kernel from p to a public belief within B. At t = 1, λnp1 (1/2) =
1. At t = 2, there are two possible public beliefs 1− σ and σ. Their probabilities are

λnp2 (1− σ) = P (1/2, 1− σ) = 1− α(1/2) = 1/2,

λnp2 (σ) = P (1/2, σ) = α(1/2) = 1/2.

At t = 3, there are three possible public beliefs: ϕ`(1− σ), 1/2 and σ, because ϕh(1− σ) = 1/2. The
probabilities over beliefs are

λnp3 (ϕ`(1− σ)) = P (1− σ, ϕ`(1− σ))λnp2 (1− σ) = (1/2)(1− α(1− σ)) = (1/2)[(1− σ)2 + σ2],

λnp3 (1/2) = P (1− σ, 1/2)λnp2 (1− σ) = (1/2)α(1− σ) = σ(1− σ),

λnp3 (σ) = P (σ, σ)λnp2 (σ) = 1/2.

At t = 4, there are three possible beliefs : ϕ`(1− σ), 1− σ and σ with probabilities

λnp4 (ϕ`(1− σ)) = λnp3 (ϕ`(1− σ)) = (1/2)[(1− σ)2 + σ2],

λnp4 (1− σ) = P (1/2, 1− σ)λnp3 (1/2) = (1/2)σ(1− σ),

λnp4 (σ) = P (1/2, σ)λnp3 (1/2) + λnp3 (σ) = 1/2[1 + σ(1− σ)].
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At t = 5, there are three possible beliefs: ϕ`(1− σ), 1/2 and σ with probabilities

λnp5 (ϕ`(1− σ)) = P (1− σ, ϕ`(1− σ))λnp4 (1− σ) + λnp4 (ϕ`(1− σ)) = (1/2)[(1− σ)2 + σ2](1 + σ(1− σ)),

λnp5 (1/2) = P (1− σ, 1/2)λnp4 (1− σ) = σ2(1− σ)2,

λnp5 (σ) = λnp4 (σ) = 1/2[1 + σ(1− σ)].

By now a pattern is clear. For t > 2 even, there are three possible public beliefs: ϕ`(1 − σ), 1 − σ
and σ with probabilities

λnpt (ϕ`(1− σ)) = λnpt−1(ϕ`(1− σ)) = (1/2)[(1− σ)2 + σ2]

t−2
2
−1∑

τ=0

στ (1− τ)τ =
1

2

[
(1− σ)2 + σ2

(1− σ)2 + σ

]
(1− σ

t−2
2 (1− σ)

t−2
2 ),

λnpt (1− σ) = P (1/2, 1− σ)λnpt−1(1/2) = (1/2)σ
t−2

2 (1− σ)
t−2

2 ,

λnpt (σ) = P (1/2, σ)λnpt−1(1/2) + λnpt−1(σ) = (1/2)

t−2
2∑

τ=0

στ (1− σ)τ =
1

2

[
1− σ

t
2 (1− σ)

t
2

(1− σ)2 + σ

]
.

For t > 1 odd, there are three possible beliefs: ϕ`(1− σ), 1/2 and σ with probabilities

λnpt (ϕ`(1− σ)) = K(1− σ, ϕ`(1− σ))λnpt−1(1− σ) + λnpt−1(ϕ`(1− σ)) =
1

2

[
(1− σ)2 + σ2

(1− σ)2 + σ

]
(1− σ

t−1
2 (1− σ)

t−1
2 ),

λnpt (1/2) = K(1− σ, 1/2)λnpt−1(1− σ) = σ
t−1

2 (1− σ)
t−1

2 ,

λnpt (σ) = λnpt−1(σ) = (1/2)

t−1
2
−1∑

τ=0

στ (1− σ)τ =
1

2

[
1− σ

t−1
2 (1− σ)

t−1
2

(1− σ)2 + σ

]
.

The probabilities λnpt (σ) and λnpt (ϕ`(1−σ)) for each period t are represented in figure 1(b) for σ = .8,
together with the limiting probability measures (red and blue lines). Figure 1(a) represents the possible
interim beliefs in each period together with the values α(pt) for each pt. Let me compute principal’s
average discounted payoff without any information policy. Let λnpδ (p′) =

∑
t∈N(1 − δ)δt−1λt(p

′), for
p′ ∈ {ϕ`(1− σ), 1/2, σ}. The value V npδ satisfies

V npδ = α(ϕ`(1− δ))λnpδ (ϕ`(1− σ)) + α(1/2)λnpδ (1/2) + α(σ)λnpδ (σ).

Note that limδ→1 V
np
δ = limt→∞ Eλnpt [α] = λnp∞ (Ch) = (1/2)/[(1 − σ)2 + σ]. Let me now compute

the value of greedy policy V gpδ . Suppose first that 1/2 < σ ≤ 1/
√

2. Then whenever p < σ, principal
splits posteriors between 0 and σ with probabilities 1 − (p/σ) and p/σ respectively; otherwise, he does
not disclose any additional information. Suppose now 1 > σ > 1/

√
2. Whenever p ∈ [0, 1− σ), principal

splits posterior between 0 and 1 − σ and places weight p/(1 − σ) on 1 − σ. Whenever p ∈ [1 − σ, σ),
principal splits posterior between 1− σ and σ and places weight (p− (1− σ))/(2σ− 1) on σ. Therefore,
the concave closure of α is
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cav[α](p) =

{
p
σ if p 6∈ Ch,
1 if p ∈ Ch.

for
1

2
< σ ≤ 1√

2
;

cav[α](p) =


2σp if p ∈ C`,[

(1−σ)2+σ2

2σ−1

]
p+

[
2σ2−1
2σ−1

]
(1− σ) if p 6∈ C` ∪ Ch,

1 if p ∈ Ch.

for
1√
2
< σ < 1.

If 1/2 < σ ≤ 1/
√

2, the greedy policy dictates that the principal should induce beliefs on the extreme
of the cascade sets for every initial belief p1 6∈ C`∪Ch and he should not say anything for p1 ∈ Ch. Thus,
the value of a greedy policy and the value of a one-shot concavification coincide for every initial prior:
V gpδ (p) = cav[α](p). As this is actually the upper bound of every optimal policy, the greedy strategy
reaches the optimal value.

If 1/
√

2 < σ < 1, it is not immediate to observe that the greedy policy is optimal, for every initial
prior belief p1. I prove this is the case in the next proposition. Letting p1 = 1/2 leads to the value
function given in proposition 1 in the the persuading crowds section.

Proposition 1. In the illustrative example, the value of an optimal policy for σ > 1√
2

is

Vδ(p) =


p
(

σ(2−δ)
1−δ+δσ2

)
if p ∈ C`,

p
(

1−δ+δσ2−σ(1−σ)(2−δ)
(2σ−1)(1−δ+δσ2)

)
+ (1− σ)

(
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

)
if p 6∈ C` ∪ Ch,

1 if p ∈ Ch.

This value function is achieved through a greedy policy, that is, a policy that induces posteriors beliefs
to generate cav[α](p) at every public belief p. This means that whenever p < 1 − σ, principal induces
posteriors 0 and 1− σ and whenever p ∈ (1− σ, σ), principal induces posteriors 1− σ and σ. For beliefs
p ≥ σ, principal does not disclose any additional information.

Proof. First note that this value function is concave. Second, I need to show that the the greedy strategy
actually leads to Vδ or Eτgp(p)[Zδ] = Vδ(p) for every p, where Zδ is defined below.

Zδ(p) = (1− δ)α(p) + δ

[
α(p)Vδ(ϕh(p)) + (1− α(p))Vδ(ϕ`(p))

]
.

To do so, let me define two compositions of the value function:

Vδ(ϕ`(p)) =


p
(

σ(2−δ)
1−δ+δσ2

)
if p ∈ C`,

ϕ`(p)
(

σ(2−δ)
1−δ+δσ2

)
if p ∈ [1− σ, 1/2),

ϕ`(p)
(

1−δ+δσ2−σ(1−σ)(2−δ)
(2σ−1)(1−δ+δσ2)

)
+ (1− σ)

(
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

)
if p ∈ [1/2, σ),

Vδ(ϕh(p)) =

{
ϕh(p)

(
1−δ+δσ2−σ(1−σ)(2−δ)

(2σ−1)(1−δ+δσ2)

)
+ (1− σ)

(
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

)
if p ∈ [1− σ, 1/2),

1 if p ∈ [1/2, 1],
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and the expected continuation value:

Z̄δ(p) =



p
(

σ(2−δ)
1−δ+δσ2

)
if p ∈ C`,

p
[(

σ(1−σ)(2−δ)
1−δ+δσ2

)
+ σ

(
1−δ+δσ2−σ(1−σ)(2−δ)

(2σ−1)(1−δ+δσ2)

)]
+ α(p)(1− σ)

[
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

]
if p ∈ [1− σ, 1/2),

p(1− σ)
(

1−δ+δσ2−σ(1−σ)(2−δ)
(2σ−1)(1−δ+δσ2)

)
+ (1− α(p))(1− σ)

[
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

]
+ α(p) if p ∈ [1/2, σ),

1 if p ∈ Ch.

Let me rearrange this expression to evidence the terms multiplying p:

Z̄δ(p) =



p
(

σ(2−δ)
1−δ+δσ2

)
if p ∈ C`,

p
[(

σ(1−σ)(2−δ)
1−δ+δσ2

)
+ σ

(
1−δ+δσ2−σ(1−σ)(2−δ)

(2σ−1)(1−δ+δσ2)

)
+ (1− σ)

(
σ2(2−δ)−(1−δ+δσ2)

1−δ+δσ2

)]
+

+
(1−σ)2[σ2(2−δ)−(1−δ+δσ2)]

(2σ−1)(1−δ+δσ2)
if p ∈ [1− σ, 1/2),

p
[
(1− σ)

(
1−δ+δσ2−σ(1−σ)(2−δ)

(2σ−1)(1−δ+δσ2)

)
− (1− σ)

(
σ2(2−δ)−(1−δ+δσ2)

1−δ+δσ2

)
+ 2σ − 1

]
+

+σ(1− σ)
[
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

]
+ 1− σ if p ∈ [1/2, σ),

1 if p ∈ Ch.

Finally, Zδ(p) is given by

Zδ(p) =



p
(
σδ(2−δ)
1−δ+δσ2

)
if p ∈ C`,

p
[(

δσ(1−σ)(2−δ)
1−δ+δσ2

)
+ δσ

(
1−δ+δσ2−σ(1−σ)(2−δ)

(2σ−1)(1−δ+δσ2)

)
+ (1− σ)δ

(
σ2(2−δ)−(1−δ+δσ2)

1−δ+δσ2

)
+ (2σ − 1)(1− δ)

]
+(1− δ)(1− σ) +

δ(1−σ)2[σ2(2−δ)−(1−δ+δσ2)]

(2σ−1)(1−δ+δσ2)
if p ∈ [1− σ, 1/2),

p
[
δ(1− σ)

(
1−δ+δσ2−σ(1−σ)(2−δ)

(2σ−1)(1−δ+δσ2)

)
− δ(1− σ)

(
σ2(2−δ)−(1−δ+δσ2)

1−δ+δσ2

)
+ (2σ − 1)

]
+

(1− σ) + δσ(1− σ)
[
σ2(2−δ)−(1−δ+δσ2)

(2σ−1)(1−δ+δσ2)

]
if p ∈ [1/2, σ),

1 if p ∈ Ch.

Consider first p ∈ C`. The greedy splitting implies inducing beliefs 0 and 1 − σ with probabilities
1− p/(1− σ) and p/(1− σ), respectively. Because Zδ(0) = 0, this leads to (pZδ(1− σ))/(1− σ) = Vδ(p)
and consequently Eτgp(p)[Zδ(p)] = Vδ(p). Indeed,

Zδ(1− σ)

1− σ
=

(
δσ(1− σ)(2− δ)

1− δ + δσ2

)
+ σδ

(
1− δ + δσ2 − σ(1− σ)(2− δ)

(2σ − 1)(1− δ + δσ2)

)
+ (1− σ)δ

(
σ2(2− δ)− (1− δ + δσ2)

(1− δ + δσ2)

)
+

+ (2σ − 1)(1− δ) + (1− δ) +
δ(1− σ)[σ2(2− δ)− (1− δ + δσ2)]

(2σ − 1)(1− δ + δσ2)
,

= (1− δ)2σ − δ(1− σ) + δ +
δσ(1− σ2)(2− δ)

1− δ + δσ2
,

=
σ(2− δ)

1− δ + δσ2
.

Similar analysis holds for p ≥ 1−σ. This shows that the greedy strategy generates Vδ(p). It remains
to show that the greedy policy leads to the concave closure of Zδ or cav[Zδ](p) = Vδ((p). Again, suppose
first that p ∈ C`. Principal could either set ρ+ = 1−σ, ρ+ = 1/2 or ρ+ = σ (those are the possible kinks
of the optimal value function). He would choose ρ+ to maximize Zδ(ρ

+)/ρ+. Each ones leads to
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Zδ(1− σ)

1− σ
=

σ(2− δ)
1− δ + δσ2

,

Zδ(1/2)

1/2
= (1− σ)

(
(2σ − 1− δσ)(1− δ + δσ2) + δσ3(2− δ)

2(2σ − 1)(1− δ + δσ2)

)
+

+

(
2(1− δ + δσ2)[2σ(1− σ)δ + (2σ − 1)2]− 2(2− δ)δσ(1− σ)(1− 2σ + 2σ2)

2(2σ − 1)(1− δ + δσ2)

)
,

Zδ(σ)

σ
=

1

σ
.

With some algebra, it follows that

Zδ(1− σ)

1− σ
− Zδ(σ)

σ
≥ 0⇔ 2σ2 ≥ 1.

Zδ(σ)

σ
− Zδ(1/2)

1/2
≥ 0⇒ σ3(1 + 2δ)− σ2(1 + 2δ) + 3σ − 1 ≥ 0.

The first inequality is true by assumption; the second is true for every δ because σ ≥ 1/2. Therefore,
whenever p ∈ C`, it is optimal to split beliefs according to the greedy strategy. Now suppose that
p ∈ [1 − σ, 1/2). Principal could set ρ− = 0, ρ+ = 1/2, ρ− = 0, ρ+ = σ, ρ− = 1 − σ, ρ+ = 1/2 or
ρ− = 1− σ, ρ+ = σ. The splitting between ρ− = 1− σ and ρ+ = σ is better than the splitting between
ρ− = 0 and ρ+ = σ, because

(1− σ)

[
σ − p
2σ − 1

]
Zδ(1− σ)

1− σ
+ σ

[
p− (1− σ)

2σ − 1

]
Zδ(σ)

σ
≥
(

(1− σ)

[
σ − p
2σ − 1

]
+ σ

[
p− (1− σ)

2σ − 1

])
Zδ(σ)

σ
,

= p
Zδ(σ)

σ
.

Because Zδ(σ)/σ ≥ Zδ(1/2)/(1/2), the splitting between ρ− = 1 − σ and ρ+ is also better than the
splitting between ρ− = 0 and ρ+ = 1/2. Moreover, the splitting between ρ− = 1 − σ and ρ+ = σ is
better than the splitting between ρ− = 1− σ and ρ+ = 1/2, because

[
1− 2p

2σ − 1

]
Zδ(1− σ) + 2

[
p− (1− σ)

2σ − 1

]
Zδ(1/2) ≤ 1

2

[
σ − p
2σ − 1

]
Zδ(1− σ) + σ

[
p− (1− σ)

2σ − 1

]
Zδ(σ),

≤ σEτgp(p)[Zδ],

≤ Eτgp(p)[Zδ].

Finally, suppose p ∈ [1/2, σ). In this case, principal could set ρ− = 1− σ, ρ+ = σ; ρ− = 1/2, ρ+ = σ
or ρ− = 0, ρ+ = σ. I have already showed that the splitting between ρ− = 1 − σ and ρ+ = σ is better
than the splitting between ρ− = 0 and ρ+ = σ. It remains to show that is also better than the splitting
between ρ− = 1/2 and ρ+ = σ. Indeed,

2

[
σ − p
2σ − 1

]
Zδ(1/2) +

[
2p− 1

2σ − 1

]
Zδ(σ) ≤ (1− σ)

[
σ − p
2σ − 1

]
Zδ(1− σ) +

1

2

[
p− (1− σ)

2σ − 1

]
Zδ(σ),

≤ 1

2
Eτgp(p)[Zδ],

≤ Eτgp(p)[Zδ].
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Finally, let me compute the stationary distribution of public beliefs under the greedy strategy and
p1 = 1/2. At t = 1, principal induces two posteriors σ and 1−σ with probabilities τgp(1−σ; 1/2) = 1/2
and τgp(σ; 1/2) = 1/2. Thus, τgp(σ; 1/2) is the probability of a cascade towards action 2 starts by t = 1.

At t = 2, there are two possible interim beliefs: ϕ`(1− σ), 1/2 and σ with probabilities

λgp2 (ϕ`(1− σ)) = P (1− σ, ϕ1(1− σ))τgp(1− σ; 1/2) = (1/2)[(1− σ)2 + σ2],

λgp2 (1/2) = P (1− σ, 1/2)τgp(1− σ; 1/2) = σ(1− σ),

λgp2 (σ) = P (σ, σ)τgp(σ; 1/2) = 1/2.

Principal induces possible beliefs 0, 1− σ and σ with probabilities:

λ̂gp2 (0) = τgp(0;ϕ1(1− σ))λgp2 (ϕ`(1− σ)) = (1/2)σ[2σ − 1],

λ̂gp2 (1− σ) = τgp(1− σ;ϕ`(1− σ))λgp2 (ϕ`(1− σ)) + τgp(1− σ; 1/2)λgp2 (1/2) = (1/2)(1− σ2),

λ̂gp2 (σ) = τgp(σ;σ)λgp2 (σ) + τgp(σ; 1/2)λgp2 (1/2) = (1/2)[1 + σ(1− σ)].

If agent 2 has interim belief σ, she will take action 2 no matter the private signal. All other agents
will do the same. Thus, λ̂gp2 (σ) is the probability of a cascade towards action 2 has started at t = 2.
Same reasoning leads to λgp2 (0) being the probability of a cascade towards action 1 starts by t = 2.

Are t = 3, there are three possible interim beliefs: 0, ϕ`(1− σ) and 1/2, σ with probabilities

λgp3 (0) = P (0, 0)λ̂gp2 (0) = (1/2)σ(2σ − 1),

λgp3 (ϕ`(1− σ)) = P (1− σ, ϕ1(1− σ))λ̂gp2 (1− σ) = (1/2)[(1− σ)2 + σ2](1− σ2),

λgp3 (1/2) = P (1− σ, 1/2)λ̂gp2 (1− σ) = σ(1− σ)(1− σ2),

λgp3 (σ) = λ̂gp2 (σ) = (1/2)[1 + σ(1− σ)].

Principal induces beliefs 0, 1− σ and σ with probabilities

λ̂gp3 (0) = λgp3 (0) + τgp(0;ϕ1(1− σ))λgp3 (ϕ`(1− σ)) = (1/2)σ(2σ − 1)[1 + (1− σ2)],

λ̂gp3 (1− σ) = τgp(1− σ;ϕ1(1− σ))λgp3 (ϕ1(1− σ)) + τgp(1− σ; 1/2)λgp3 (1/2) = (1/2)(1− σ2)2,

λ̂gp3 (σ) = τgp(σ, σ)λgp3 (σ) + τgp(σ; 1/2)λgp3 (1/2) = (1/2)[1 + σ(1− σ) + σ(1− σ)(1− σ2)].

If agent t = 3 has induced belief σ, she will take action 2 no matter the private signal and other all
agents will do so as well. So λ̂gp3 (σ) is the probability of a cascade towards action 2 has started by t = 3.

Same reasoning holds for λ̂gp3 (0) being the probability of a cascade towards action 1 has started by t = 3.

At t = 4, the possible interim beliefs are 0, ϕ`(1− σ), 1/2, σ with probabilities

λgp4 (0) = P (0, 0)λ̂gp3 (0) = (1/2)σ(2σ − 1)[1 + (1− σ2)],

λgp4 (ϕ`(1− σ)) = P (1− σ, ϕ1(1− σ))λ̂gp3 (1− σ) = (1/2)[(1− σ)2 + σ2](1− σ2)2,

λgp4 (1/2) = P (1− σ, 1/2)λ̂gp3 (1− σ) = σ(1− σ)(1− σ2)2,

λgp4 (σ) = λ̂gp3 (σ) = (1/2)[1 + σ(1− σ) + σ(1− σ)(1− σ2)].

44



Principal then induces beliefs in 0, 1− σ and σ with probabilities

λ̂gp4 (0) = λgp4 (0) + τgp(0;ϕ1(1− σ))λgp4 (ϕ1(1− σ)) = (1/2)σ(2σ − 1)[1 + (1− σ2) + (1− σ2)2],

λ̂gp4 (1− σ) = τgp(1− σ;ϕ1(1− σ))λgp4 (ϕ1(1− σ)) + τgp(1− σ; 1/2)λgp4 (1/2) = (1/2)(1− σ2)3,

λ̂gp4 (σ) = τgp(σ, σ)λgp4 (σ) + τgp(σ; 1/2)λgp4 (1/2) = (1/2)[1 + σ(1− σ)[1 + (1− σ2) + (1− σ2)2].

By now a pattern is clear. At t ≥ 1, principal induces beliefs 0, 1− σ and σ with probabilities

λ̂gpt (0) = (1/2)σ(2σ − 1)

t−2∑
τ=0

(1− σ2)τ =
1

2

[
2σ − 1

σ

]
(1− (1− σ2)t−1),

λ̂gpt (1− σ) = (1/2)(1− σ2)t−1,

λ̂gpt (σ) = (1/2)[1 + σ(1− σ)

t−2∑
τ=0

(1− σ2)τ ] =
1

2

[
1 + (1− σ)

(
1− (1− σ2)t−1

σ

)]
.

The probabilities λ̂gpt (0) and λ̂gpt (σ) represent the probabilities of a cascade towards action 1 and
action 2 starting by t, respectively. The probabilities of interim beliefs at t+ 1 are

λgpt+1(0) =
1

2

[
2σ − 1

σ

]
(1− (1− σ2)t−1),

λgpt+1(ϕ1(1− σ)) = (1/2)[(1− σ)2 + σ2](1− σ2)t−1,

λgpt+1(1/2) = σ(1− σ)(1− σ2)t−1,

λgpt+1(σ) =
1

2

[
1 + (1− σ)

(
1− (1− σ2)t−1

σ

)]
.

Note that the limiting probability of having a cascade towards action 2 is given by λ̂gp∞(σ) =

limt→∞ λ̂gpt (σ) = 1/(2σ). Likewise, the limiting probability of having a cascade towards action 1 is

given by λ̂gp∞(0) = limt→∞ λ̂gpt (0) = (1/2)[(2σ − 1)/σ].

Example with uniform distribution

The private belief space is [q, q̄] where q := (1/2)(1 − σ) and q̄ := (1/2)(1 + σ). The parameter σ thus
governs how revealing private information can be, just as it was the case in the illustrative example. The
unconditional density is g(q) = 1/σ for q ∈ [q, q̄]; the conditional densities are gh = 2(1 − q)(1/σ) and

gL = 2q(1/σ). The cascade sets are C` = [0, 1
2 (1−σ)) and Ch = [ 1

2 (1+σ), 1]. That leads to the following
expected probabilities of action h:
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αH(p) =


0 if p ∈ C`,
1
σ

[
2p− p2 − (2q − q2)

]
if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

αL(p) =


0 if p ∈ C`,
1
σ

[
p2 − q2

]
if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

α(p) =


0 if p ∈ C`,
p
σ [2p− p2 − (2q − q2)] + 1−p

σ [p2 − q2] if p /∈ C` ∪ Ch,

1 if p ∈ Ch.

The system moves to another public belief according to the transition functions

ϕh(p) :=

p if p ∈ Ch,
p(2p−p2−2q+q2)

p(2p−p2−2q+q2)+(1−p)(p2−q2) if p /∈ C` ∪ Ch.

ϕ`(p) :=

p if p ∈ C`,
p[1− 1

σ (2p−p2−2q+q2)]
p[1− 1

σ (2p−p2−2q+q2)]+(1−p)[1− 1
σ (p2−q2)]

if p /∈ C` ∪ Ch.

From theorem 1, single disclosure is optimal if and only if 4(1− q̄)q̄2g(q̄) ≥ 1. When the distribution
is uniform, this comes down to

q̄ − q ≤ 4(1− q̄)q̄2.

Because q̄ − q = σ and q̄ = (1/2)(1 + σ) in this example, single disclosure will be optimal iff

σ ≤ (1− σ)(1 + σ)2 ⇔ σ ≤ σ∗ ≈ 0.54.

The cut-off p∗ above which α > V sd is given by

p∗ =
1

2
− σ

4
+

√
16
σ+1 + σ2 − 8

4
.
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