1 Title: BRENTUXIMAB VEDOTIN IN THE TREATMENT OF CUTANEOUS T-CELL 2 LYMPHOMAS: data from the Spanish Primary Cutaneous Lymphoma Registry. 3 4 **Keywords:** Brentuximab vedotin, cutaneous T-cell lymphoma, treatment, side-effects 5 6 Manuscript word: 1976 7 Table count: 1 8 Figure count: 2 9 C. Muniesa, ^{1,2¶} F. Gallardo, ^{3¶} I. García-Doval, ⁴ MT. Estrach, ⁵ A. Combalia, ⁵ M. Morillo-10 Andújar, ⁶ F. De la Cruz-Vicente, ⁷ S. Machan, ⁸ C. Moya-Martínez, ⁸ R. Rovira, ³ B. Sanchez-11 Gonzalez, ⁹ E. Acebo, ¹⁰ E. Amutio, ¹¹ Y. Peñate, 12 MC. Losada-Castillo, ¹³ MP. García-12 Muret, ¹⁴ H. Iznardo, ¹⁴ C. Román-Curto, ¹⁵ J. Cañueto, ¹⁵ R. Fernández-de-Misa, ¹⁶ A. 13 Flórez, ¹⁷ R. Izu, ¹⁸ I. Torres-Navarro, ¹⁹ A. Zayas, ²⁰ G. Pérez-Paredes, ²¹ M. Blanes, ²² J.I. 14 Yanguas, ²³ A. Pérez-Ferriols, ²⁴ M. Callejas-Charavia, ²⁵ PL. Ortiz-Romero, ²⁶ A. Pérez-15 Gil,²⁷ L. Prieto-Torres,²⁸ E. González-Barca,²⁹ O. Servitje¹ 16 ¶ both authors equally contributed to this work 17 ¹ Department of Dermatology, Hospital Universitari de Bellvitge, Universitat de 18 19 Barcelona, IDIBELL, L'Hospitalet de Llobregat, Barcelona 20 ² Department of Dermatology, Hospital de Viladecans, Viladecans, Barcelona 21 ³ Department of Dermatology, Hospital del Mar, IMAS-IMIM, Barcelona 22 ⁴ Research Unit, Fundación Piel Sana AEDV, Madrid 23 ⁵ Department of Dermatology, Hospital Clínic, Universitat de Barcelona, IDIBAPS, 24 Barcelona

⁶ Department of Dermatology, Hospital Universitario Vírgen del Rocío, Sevilla

25

- ⁷ Department of Hematology, Hospital Universitario Vírgen del Rocío. Instituto de
- 27 Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla. Sevilla
- 28 Bepartment of Dermatology, Fundación Jiménez Díaz, Madrid
- ⁹ Department of Hematology, Hospital del Mar, IMAS-IMIM, Barcelona
- 30 ¹⁰ Department of Dermatology, Hospital Universitario de Cruces, Barakaldo, Bizkaia
- 31 ¹¹ Department of Hematology, Hospital Universitario de Cruces, Barakaldo, Bizkaia
- 32 12 Department of Dermatology, Complejo Hospitalario Universitario Insular Materno-
- 33 Infantil, Las Palmas de Gran Canaria, Las Palmas
- 34 ¹³ Department of Hematology, Complejo Hospitalario Universitario Insular Materno-
- 35 Infantil, Las Palmas de Gran Canaria, Las Palmas
- 36 ¹⁴ Department of Dermatology, Hospital Santa Creu i Sant Pau, Barcelona
- 37 ¹⁵ Department of Dermatology, Hospital Universitario de Salamanca, Salamanca
- 38 ¹⁶ Department of Dermatology, Hospital Universitario Nuestra Señora de Candelaria,
- 39 Santa Cruz de Tenerife
- 40 ¹⁷ Department of Dermatology, Complejo Hospitalario Universitario de Pontevedra,
- 41 Pontevedra
- 42 ¹⁸ Department of Dermatology, Hospital de Basurto, Bilbao
- 43 ¹⁹ Department of Dermatology, Hospital Universitario La Fe, Valencia
- 44 ²⁰ Department of Dermatology, Hospital Universitario Dr Peset, Valencia
- 45 ²¹ Department of Dermatology, Hospital Universitario Marqués de Valdecilla,
- 46 Santander
- 47 ²² Department of Dermatology, Hospital General Universitario de Alicante, Instituto de
- 48 Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante
- 49 ²³ Department of Dermatology, Hospital Universitario de Navarra, Pamplona, Navarra
- 50 ²⁴ Department of Dermatology, Hospital General Universitario de Valencia, Valencia

51	²⁵ Department of Hematology, Hospital Príncipe de Asturias, Madrid
52	²⁶ Department of Dermatology, Hospital Universitario 12 de
53	Octubre, Institute I+12 Research Institute, Universidad Complutense, Madrid
54	²⁷ Department of Dermatology, Hospital Universitario Vírgen de Valme, Sevilla
55	²⁸ Department of Dermatology, Hospital Universitario Lozano Blesa, Zaragoza
56	$^{\rm 29}$ Department of Hematology, Institut Català d´Oncologia, Hospital Duran i Reynals,
57	IDIBELL, L'Hospitalet de LLobregat, Barcelona
58	
59	Corresponding author:
60	Octavio Servitje, MD, PhD
51	Dermatology Department. Hospital Universitari de Bellvitge. IDIBELL
52	c/Feixa Llarga s/n, 08907-L´Hospitalet de Llobregat, Barcelona. Spain
53	Unidad de Investigación. Fundación Piel Sana. AEDV. Ferraz 100, 1º izda. 28008
54	Madrid.
65	Tel: +34933357011. Fax number: +34932607844
56	Email: oservitje@bellvitgehospital.cat
67	
58	Funding sources: The Spanish Primary Cutaneous Lymphoma Registry (RELCP) is
59	promoted by the Fundación Piel Sana Academia Española
70	de Dermatología y Venereología, which received an unrestricted grant support from
71	$\label{thm:continuous} \mbox{Kyowa Kirin. Collaborating pharmaceutical company was not involved in the: design}$
72	and conducting of the study; collection, management, analysis, and interpretation of
73	data; preparation, review, or approval of the manuscript; decision to submit the
74	manuscript for publication.
75	

77	ABSTRACT
78	Background: Brentuximab vedotin (BV) has been approved for CD30-expressing
79	cutaneous T-cell lymphoma (CTCL) after at least one previous systemic treatment.
80	However, real clinical practice is still limited.
81	Objectives: To evaluate the response and tolerance of BV in a cohort of patients
82	with CTCL.
83	Methods: We analyzed CTCL patients treated with BV from the Spanish Primary
84	Cutaneous Lymphoma Registry (RELCP).
85	Results: Sixty-seven patients were included. There were 26 females and the mean age
86	at diagnosis was 59 years. Forty-eight were mycosis fungoides (MF),
87	7 Sézary syndrome (SS)and 12 CD30+ lymphoproliferative disorders (CD30 LPD).
88	Mean follow-up was 18 months. Thirty patients (45%) showed at least 10% of CD30+
89	cells among the total lymphocytic infiltrate. The median number of BV infusions
90	received was 7. The overall response rate (ORR) was 67% (63% in MF, 71% in SS and
91	84% in CD30 LPD). Ten of 14 patients with folliculotropic MF (FMF) achieved complete
92	or partial response (ORR 71%). The median time to response was 2.8 months. During
93	follow-up, 36 cases (54%) experienced cutaneous relapse or progression. The
94	median progression free survival (PFS) was 10.3 months. The most frequent adverse
95	event was peripheral neuropathy (PN) (57%), in most patients (85%), grade 1 or 2.
96	Conclusions: These results confirm the efficacy and safety of BV in patients with
97	advanced-stage MF, and CD30 LPD. In addition, patients with FMF and SS also showed
98	a favorable response. Our data suggest that BV retreatment is effective in a proportion
99	of cases.
100	
101	
102	
103	
104	

106	Brentuximab vedotin (BV), a humanized anti-CD30 antibody conjugated with the		
L07	antimitotic agent monomethyl-auristatin E, has recently been approved for the		
108	treatment of CD30 expressing cutaneous T-cell lymphomas (CTCL), after a previous		
109	systemic therapy ¹⁻³ . Due to the low frequency of these lymphomas, there is		
10	limited real clinical practice on the use of BV in this setting. In fact, there are still		
111	important issues to be addressed, as its efficacy in the mycosis fungoides (MF) variants		
12	and Sézary syndrome (SS), its effectiveness in retreatment and the management of the		
13	peripheral neuropathy frequently associated with its use.		
L 14	The aim of this study is to evaluate the clinical response and tolerance of BV in a		
15	cohort of patients with CTCL from the Spanish Primary Cutaneous Lymphoma Registry		
16	(RELCP).		
17	MATERIALS AND METHODS		
L17	MATERIALS AND METHODS		
118	Patient selection		
119	The RELCP is an ongoing prospective registry of patients with primary cutaneous		
20	lymphoma (PCL) in Spain. Participating centers prospectively collected data from all		
L 21	consecutive patients with PCL, including diagnosis, therapies, and updated status. For		
122	this study, we analyzed all patients with CTCL treated with		
123	BV from 01/10/2018 to 02/10/2021. One cycle of BV typically involves 1.8mg/Kg $$		
L24	being administered intravenously once every 3 weeks. The study was approved by the		
125	Ethics Committee (Hospital Universitari Bellvitge, in Barcelona, LIN-BRE-2021-01).		
L26	Patients were classified according to the World Health Organization (WHO)-European		
L 2 7	Organization of Research and Treatment of Cancer (EORTC) classification criteria ⁴ .		
L28	TNM stage was defined according to the International Society for Cutaneous		
129	Lymphomas (ISCL) and the Cutaneous Lymphoma Task Force of the EORTC ^{5,6} .		
L30	Response criteria and end points		
L 31	Response to treatment was evaluated according to the following standard definitions:		
L32	complete remission (CR) is defined as no clinical lymphoma lesions; partial remission		
133	(PR), clearance of at least 50% of skin lesions from baseline; stable disease (SD), from		

INTRODUCTION

134	25% to <50% decrease of skin lesions; and progressive disease (PD), \geq 25% increase in		
135	skin disease from baseline or detection of new lesions after CR is achieved. In SS		
136	cases, blood and global responses were evaluated following the criteria proposed by		
137	ISCL/EORTC ⁷ .		
138	The endpoints were considered as follow ⁷ : overall response rate (ORR), percentage of		
139	patients achieving CR or PR; progression free survival (PFS), was defined as the time		
140	elapsed from first objective response to the relapse/progression or death because		
141	of any cause (in patients with disease progression) or until last control (in patients		
142	without relapse/progression).		
143	Safety		
144	Patients were monitored for adverse events (AEs) per routine clinical practice.		
145	Peripheral neuropathy (PN) was graded as follows according to the WHO rating scale:		
146	grade 1 (mild paresthesia and/or decreased tendon reflexes), grade 2		
147	(moderate paresthesia and/or mild weakness), grade 3		
148	(severe paresthesia limiting daily life common activities), grade 4 (life-threatening		
149	consequences, urgent intervention indicated).		
150	Statistical analysis		
151	We performed a descriptive analysis presenting medians or means and associated		
152	distribution measures, depending on distribution symmetry. Categorical variables were		
153	expressed as absolute numbers and percentages. Differences between main		
154	parameters and type of lymphoma were compared using parametric or non-		
155	parametric hypothesis tests as appropriate.		
156	RESULTS		
157	Sixty-seven patients were included. The patient's characteristics, clinical responses and		
158	adverse events are summarized in Table 1. There were 26 females and the mean age a		
159	diagnosis was 59 years [range, 24-92]. Forty-eight were MF (14 of		
160	them folliculotropic MF (FMF), 7 SS and 12 CD30+ lymphoproliferative disorders (CD30		
161	LPD), including 10 primary cutaneous anaplastic large-cell lymphomas (pcALCL) and		
162	2 lymphomatoid papulosis (LyP). The mean follow-up was 18 months. The mean time		

163	between diagnosis and BV therapy was 5.7 years with a mean number of previous		
164	systemic treatments of 4 [range, 1-11]. Thirty patients (45%) showed at least 10% of		
165	CD30 positive cells among the total lymphocytic infiltrate in skin biopsies. The		
166	median number of BV infusions received was 7 [range, 1-20].		
167	Considering the whole group, ORR was 67% (63% in MF, 71% in SS and 84% in CD30		
168	LPD). Twenty-five patients (37%) achieved a CR, 20 (30%) showed a PR, 15 (22%) a SD		
169	and 7 (11%) had PD. ORR according to stages were as follow: in the group of MF/SS;		
170	stage IIB, 26/35 (74%), stage III, 0/5 (0%) and stage IV, 9/15 (60%); In SS patients 2/7		
171	had CR in skin and blood and 3/7 showed PR in skin and blood. In the group of CD30		
172	LPD; stage T1, 1/1 (100%), T2, 3/4 (75%), T3, 6/7 (86%). According to CD30 expression,		
173	ORR was 58% in patients with < 10% and 70% in those with > 10%. In patients with		
174	FMF, ORR was 71% with 50% (7/14) achieving CR.		
175	The median time to response was 2.8 months (p25:2.0, p75:4.8) and the		
176	median number of BV cycles to achieve the maximum response was 7 (p25:4,		
177	p75:12). The median PFS for the whole group was 10.3 months and for the CD30 LPD		
178	group was 23.2 months. This difference did not reach statistical significance. (Fig 1).		
179	Median PFS in patients with < 10% of CD30 expression was 8.2 months and 10.3		
180	months for those with > 10% CD30 expression. During follow-up, 36cases (54%)		
181	experienced cutaneous relapse or progression. Thirteen of them were treated again		
182	with BV, with a median of 3 additional infusions. The ORR to retreatment was 54%		
183	(23% achieved CR). Eight patients (5MF, 2SS and 1 CD30 LPD) received		
184	a hematopoietic stem cell transplantation (HSCT) after treatment with BV. Five of		
185	them remained in CR at the end of follow-up. In 3 patients a relapse of the disease was		
186	observed. One of these patients responded again to BV treatment. One patient died		
187	because of disease progression.		
188	The most frequent adverse event was PN, observed in 38/67 patients (57%) with 34		
189	cases showing grade 1-2 and 4 cases having grade 3 neuropathy. The median number		
190	of BV infusions before the first symptom of PN appeared was 4. Patients		
191	developing PN received a significantly higher number of BV infusions (mean 9.6) when $$		
192	compared with those without neuropathic symptoms (mean 5.9) (p=0.003, t-		
193	test). Dose adjustment was needed in 12 patients and 4 discontinued BV due to		

194	PN. There was no association between PN and type of lymphoma (p=0.83, Fisher)		
195	or percentage of CD30 expression (p=0.37, Fisher).		
196	In 27 patients (40%) other adverse events were observed during the treatment with		
197	BV. Thirteen of them were considered as serious adverse events and are summarized		
198	in Table 1. One patient died due to sepsis.		
199	After a median follow-up of 18 months, 16 (24%) patients were free of cutaneous		
200	lymphoma lesions and 37 (55%) cases showed active disease. Eleven (16%) patients		
201	died due to disease progression.		
202	DISCUSSION		
203	CTCL are a heterogeneous group of extranodal non-Hodgkin lymphomas with different		
204	clinical presentation and prognosis. MF, SS and CD30 LPD are the most common types, $$		
205	accounting for more than 70% of cases ⁴ . Initial stages of MF are usually well controlled		
206	with skin-directed therapies for years or decades, but advanced MF and SS are		
207	aggressive diseases with no curative treatment so far. These		
208	patients use to suffer severe pruritus, low quality of life and reduced survival due to		
209	disease progression, immunosuppression and side effects related to multiple lines of		
210	therapy.		
211	Recently BV has been approved for the treatment of CD30-expressing CTCL patients ¹⁻		
212	³ . In the ALCANZA study, a phase III randomized, controlled, multicentric clinical		
213	trial, BV showed a superior objective response rate when compared with physician's		
214	choice (bexarotene or methotrexate) in patients with CD30-expressing MF or pcALCL.		
215	Moreover, a significant improvement in PFS with BV (median 16.7 months)		
216	with respect to the group with conventional therapy (3.5 months) was observed ¹ .		
217	In this paper we describe the results in a series of 67 CTCL cases treated with BV from		
218	the RELCP in Spain ⁸ . RELPC is a prospective database including uniform information		
219	about diagnosis, treatments, and outcomes so we believe these results to represent		
220	the real practice in our country.		
221	Considering the whole group, our results showed an ORR of 67% and a median PFS		
222	of 10.2 months. This is in contrast with the results in the ALCANZA trial showing a		

223	global PFS of 16.7 months. We believe that the lower PFS could be explained by the		
224	fact that whereas in the ALCANZA, a proportion of MF cases had IA-IB initial stages, in		
225	our cohort all MF patients had advanced stages (IIB-IVA2). As the ORR in these cases		
226	was 63%, our data strength the notion that BV is an effective treatment in patients		
227	with tumoral or more advanced stages of MF ¹ .		
228	In our hands, the clinical response does not seem to be influenced by the level of CD30		
229	expression by the lymphoma cells. These data are consistent with recent studies and		
230	suggests that BV may be a therapeutic option even in those cases with low or even		
231	no expression of CD30 ^{1,9-12} . However, median PFS was slightly longer in patients with		
232	higher expression of CD30. This observation agrees with the results coming from		
233	Gosmann et al. and suggests that duration of response can be longer in patients with		
234	high CD 30 expression ¹³ .		
235	In addition, we observed a high rate of CR in patients with FMF (Fig. 2a-d), a variant of		
236	MF that due to the deep location of the infiltrate, is considered particularly resistant to		
237	skin-directed therapies. Although in the ALCANZA trial no specific information about		
238	this MF variant was given ¹ , our results agree with recent observations and suggest that		
239	BV may be an effective option in FMF ^{9,} ¹⁴ .		
240	Looking at the CD30 LPD, in this study we included 10 pcALCL and		
241	2 LyP. Eight of the 10 pcALCL patients had advanced stages with extracutaneous		
242	involvement. The ORR in this setting was 84% with a 42% of CR rate. Most patients in		
243	this group showed a quick and durable response to BV with a median PFS of 23.2		
244	months. Although not statistically significant, the differences in PFS in the CD30 LPD		
245	group in comparison with the total group are striking and may reflect the better		
246	behavior and clinical prognosis of this group of lymphomas. Although only two cases		
247	of LyP were included, both cases experimented CR to BV. In a phase II open-label		
248	study, Lewis et al reported an ORR of 100% and a CR rate of 75% in patients		
249	with LyP treated with BV 15 . These authors suggested that BV could be		
250	an alternative treatment for patients with severe forms, resistant to conventional		
251	therapy. We believe that more studies are needed to determine		
252	the right BV regime in LyP, a process characterized by a chronic and indolent		
253	course, with the aim of minimizing the risks of PN.		

254	Regarding the SS, there were 7 patients in our study showing an ORR of 71%,			
255	including 2 CR. Given that patients with SS were not included in the ALCANZA study,			
256	the indication of BV in this form of CTCL has been a matter of discussion ¹ . In			
257	a recent series of 13 SS patients, an ORR of 38% was observed after 6 cycles of BV. The			
258	authors concluded that there appear to be no advantages over other forms of			
259	conventional treatment and suggested that this may be due to the lower expression of			
260	CD30 in SS ¹⁶ . These data are in contrast with those recently published by Papadavid et			
261	al. showing no differences in ORR or PFS between patients with SS and MF ⁹ .			
262	Although more studies focusing SS are necessary, we believe that our results			
263	agree with those of Papadavid et al. and suggest that BV may be an effective option in			
264	patients with SS.			
265	Eight patients achieving CR after BV, underwent successful HSCT. Therefore, in			
266	selected cases BV may facilitate bridging to a successful HSCT ^{17,18} .			
267	Regarding BV retreatment, there is limited information so far. Engelina et al. reported			
268	a second course of BV in 2 patients with 1 PR after 2 cycles and 1 SD after 10			
269	cycles ¹⁹ . Papadavid et al. reported 3 cases retreated with BV but information about			
270	clinical response was not given ⁹ . André et al. described a clinical response to BV			
271	retreatment in 2 patients with transformed MF relapsing after ${\sf HSCT}^{\sf 18}$. In our			
272	series, 13 patients received a second course of therapy showing an ORR of			
273	54%. Although further studies are needed, our results suggest that a significant			
274	proportion of patients may achieve clinical benefits after BV retreatment.			
275	In general, BV was well tolerated. As expected, PN was the most frequently observed			
276	AEs in our patients, affecting 57% of them. In agreement with data from the phase II			
277	and phase III clinical trials, most patients had mild to moderate symptoms and only a			
278	minority of them needed dose adjustment or treatment discontinuation $^{1\cdot 3}.$ In			
279	our series, PN was clearly related to the accumulative dose with most patients			
280	initiating symptoms after 5-6 BV infusions. Also, in agreement with recently published			
281	data from ALCANZA subanalysis, in our series no association between the PN and the			
282	type of lymphoma or level of CD30 expression was found ²⁰ . At the end of follow-up, 2			
283	patients presented complete resolution of PN, 2 patients had PN grade 3 and the rest			
284	of the cases continued with mild or moderate symptoms (grade 1 or 2).			

285	In conclusion, this study represents the second largest series of CTCL patients treated $$		
286	with BV in real clinical practice published to date. Our results confirm the data		
287	reported in ALCANZA and previous real world published data. In addition, this study		
288	adds new information supporting the role of BV in the treatment of the advanced		
289	forms of MF, FMF, and SS. Data coming from our patients also suggests that a BV		
290	retreatment could be effective. A limitation of this study is the low number of patients		
291	in some subgroups.		
292			
293			
294			
295			
296			
297			
298			
299			
300			
301			
302			
303			
304			
305			
306			
307			
308			
309			

310 REFERENCES

- 311 1. Prince HM, Kim YH, Horwitz SM, et al. Brentuximab vedotin or physician's choice in
- 312 CD30-positive cutaneous T-cell lymphoma (ALCANZA): an international, open-label,
- randomized, phase 3, multicentre trial. *Lancet* 2017; **390**:556-566.
- 314 2. Kim YH, Tavallaee M, Sundram U et al. Phase II investigator-initiated study of
- 315 brentuximab vedotin in mycosis fungoides and Sezary syndrome with variable CD30
- 316 expression level: a multiinstitution collaborative project. J Clin Oncol2015;33:3750–
- 317 3758.
- 318 3 Duvic M, Tetzlaff MT, Gangar P et al. Results of a phase II trial of
- 319 brentuximab vedotin for CD30+ Cutaneous T-cell lymphoma
- and lymphomatoid papulosis. *J Clin Oncol*2015;**33**:3759–3765.
- 4. Willemze R, Cerroni L, Kempf W, et al. The 2018 update of the WHO-EORTC
- classification for primary cutaneous lymphomas. *Blood*2019;**133**:1703-1714.
- 323 5. Kim YH, Willemze R, Pimpinelli N, et al. TNM classification system for primary
- 324 cutaneous lymphomas other than mycosis fungoides and Sezary syndrome: a proposal
- 325 of the International Society for Cutaneous Lymphomas (ISCL) and the Cutaneous
- 326 Lymphoma Task Force of the European Organization of Research and Treatment of
- 327 Cancer (EORTC). *Blood*2007;**110**:479-484.
- 6. Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification
- of mycosis fungoides and Se´zary syndrome: a proposal of the International Society for
- 330 Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European
- Organization of Research and Treatment of Cancer (EORTC). *Blood*2007;**110**:1713-
- 332 1722.
- 7. Olsen EA, Whittaker S, Willemze R, *et al*. Primary Cutaneous Lymphoma:
- 334 Recommendations for Clinical Trial Design and Staging Update from the ISCL, USCLC,
- 335 and EORTC. Blood2021;10.
- 336 8. Peñate Y, Servitje O, Machan S, et al. The First Year of the AEVD Primary Cutaneous
- 337 Lymphoma Registry. Actas Dermosifiliogr2018;109:610-616.

Comentado [OSB1]: Si pones el nombre de la revista en cursiva, también tiene que ir así la numeración y paginas. Hay que corregir los espacios entre el titulo y después del; en todas las referencias

EJ: Lancet 2017; 390:556-566

339	shows efficacy of brentuximab vedotin in patients who have mycosis fungoides			
340	and Sézarysyndrome with variable CD30 positivity. Br J Dermatol2021; 185 :1035-1044.			
341	10. Geller S, Myskowski PL, Kim YH et al. The optimal regimen of			
342	brentuximab vedotin for CD30+ cutaneous lymphoma: are we there yet? Br J			
343	Dermato/2018; 178 :571.			
344	11. Mahevas T, Ram-Wolff C, Battistella M et al. Dramatic response to			
345	brentuximab vedotin in refractory nontransformed CD30- mycosis fungoides allowing			
346	allogeneic stem cell transplant and long-term complete remission. Br J			
347	Dermato/2019; 180 :1517–1520.			
348	12. Zhang C, Chairatchaneeboon M, Haun P et al. Treatment of CD30- negative			
349	refractory mycosis fungoides with brentuximab vedotin. JAMA			
350	Dermatol2018; 154 :109–110.			
351	13. Gosmann J, Stadler R. Long term survival, time to next treatment and CD30			
352	expression in patients with advanced CD30+ cutaneous T-cell lymphoma treated with			
353	Brentuximab vedotin – A monocentric retrospective analysis of twelve patients. J Dtsch			
354	Dermatol Ges2022; 20 :514-517.			
355	14. Henderson MH, Davison K, Popradi G. Real-world effectiveness of			
356	brentuximab vedotin in the treatment of CD30-positive cutaneous T-			
357	cell lymphoma:a single-centreretrospective review. <i>Br J Dermatol</i> 2022; 186 :379-381.			
358	15. Lewis DJ, Talpur R, Huen AO, Tetzlaff MT, Duvic M. Brentuximab Vedotin for			
359	Patients With Refractory Lymphomatoid Papulosis: An Analysis of Phase 2			
360				
	Results. <i>JAMA Dermatol</i> 2017; 153 :1302-1306.			
361	Results. <i>JAMA Dermatol</i> 2017; 153 :1302-1306. 16. Lewis DJ, Haun PL, Samimi SS, <i>et al</i> . Brentuximab Vedotin for Relapsed or			
361 362				
	16. Lewis DJ, Haun PL, Samimi SS, et al. Brentuximab Vedotin for Relapsed or			
362	16. Lewis DJ, Haun PL, Samimi SS, <i>et al</i> . Brentuximab Vedotin for Relapsed or Refractory Sezary Syndrome. <i>JAMA Dermatol</i> 2021; 157 :317-321.			

Marrow Transplantation. *Bone Marrow Transplant*2021;**56**:1391–1401.

9. Papadavid E, Kapniari E, Pappa V, et al. Multicentric EORTC retrospective study

338

366

367	18. Andre R, Ram-Wolff C, Battistella M et al. Effectiveness of	
368	brentuximab vedotin before and after allogeneic stem-cell transplantation in the	
369	management of transformed mycosis fungoides. <i>Br J Dermatol2020</i> ; 182 :1503–1504.	
370	19. Engelina S, Saggu M, Yoo J, et al. Brentuximab a novel antibody therapy: real-world	
371	use confirms efficacy and tolerability for CD30-positive cutaneous lymphoma. Br J	
372	Dermatol2020; 182 :788-818.	
373	20. Kim YH, Prince HM, Whittaker S <i>et al</i> . Response to brentuximab vedotin versus	
374	physician's choice by CD30 expression and large cell transformation status in patients	
375	with mycosis fungoides: an ALCANZA sub-analysis. Eur J Cancer 2021; 148 :411–421.	
376		
3/0		
377	Figure legend	
378	Figure 1. Kaplan-Meier curve for progression free survival in patients with mycosis	
379	fungoides, Sézary syndrome and CD30+ lymphoproliferative disorders treated with	
380	Brentuximab Vedotin.	
381	Figure 2. Patients with folliculotropic mycosis fungoides treated with	
382	Brentuximab Vedotin.	
383	Figure 2 (a). A 70-year-old patient presented with infiltrated erythematous plaques	
384	and tumors in the face.	Eliminado:
205		Eliminado: facial area
385	Figure 2 (b). The patient achieved complete remission after 6 cycles of	
386	Brentuximab Vedotin.	
387	Figure 2 (c). A 92-year-old patient presented with rapidly growing ulcerated tumor	
388	lesions in the face.	Eliminado: on
1 389	Figure 2(d). The picture shows complete response after 7 cycles of treatment.	
390		
391	Table legend	
392	Table 1. Clinical characteristics, <u>responses</u> , and adverse events <u>in cutaneous T-cell</u>	Eliminado: responses Eliminado: of
393	lymphoma patients treated with Brentuximab Vedotin.	