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ALTERNATING CATALAN NUMBERS AND CURVES WITH TRIPLE RAMIFICATION

GAVRIL FARKAS, RICCARDO MOSCHETTI, JUAN CARLOS NARANJO, AND GIAN PIETRO PIROLA

ABSTRACT. We determine the number of minimal degree covers of odd ramification for a general curve.

1. INTRODUCTION

The Catalan numbers Cn := 1
n+1

�2n
n

�
form one of the most ubiquitous sequence in classical com-

binatorics. Stanley’s book [St] lists 66 different manifestations of these numbers in various counting
problems. In the theory of algebraic curves, the Catalan number Cn counts the covers C → P1 of
minimal degree n + 1 from a general curve C of genus 2n . Each such cover has simple ramifica-
tion and its monodromy group equals Sn+1. By degenerating C to a rational g -nodal curve, it was
already known to Castelnuovo [C] that the number of such covers coincides with the degree of the
Grassmannian G (2, n +2) in its Plücker embedding, which is well-known to equal Cn .

It has been shown by Guralnick and Magaard [GM] (see also [GS]) that for a general curve C of
genus g > 3, the monodromy group M f of each cover f : C → P1 is either the symmetric or the
alternating group. For g ≤ 3 several other groups do occur. The aim of this paper is to determine
the number of covers f : C → P1 with alternating monodromy having as source a general curve C

of genus g and such that deg( f ) is minimal (among covers with this property). The most natural
case is when the local monodromy around each branch point is given by a 3-cycle. We refer to f as
being an odd cover. A moduli count indicates that f has 3g branch points and that deg( f ) = 2g +1.
Writing D = 2(x1+ · · ·+x3g ) for the ramification divisor of f , from the Hurwitz formula it follows that
ϑ := OC (D )⊗ f ∗OP1 (−1) is a theta characteristic on C . These coverings and their relation with spin
structures have already been studied in [S1], [S2] and [F1]. We denote byH odd

g the Hurwitz space

parametrizing odd covers f : C → P1 of degree 2g + 1 with local monodromy at each branch point
being given by a 3-cycle. Fried showed in [F1] thatH odd

g has two connected components depending
on the parity of ϑ. The forgetful map

ϕ :H odd
g −→Mg , ϕ

�
[C → P1]
�

:= [C ]

is a map between varieties of the same dimension 3g−3. Using an inductive argument, it is shown in
[MV] thatϕ exists, hence ϕ is generically finite. Our aim is to determine its degree Ag := deg(ϕ). By
analogy with the case of the symmetric group, we refer to Ag as the g th alternating Catalan number.

Theorem 1.1. The number of odd covers of degree 2g +1 of a general curve of genus g ≥ 3 equals

Ag = 16g

g∑

i=0

(−2)i
�

g

i

�
C2g−i .

Unlike the classical Catalan numbers, their alternating counterparts Ag do not admit a closed
formula. Instead, we determine their generating series.

Theorem 1.2. The generating series of the alternating Catalan numbers is the algebraic function

∑

g≥0

Ag w 2g+1 =
2w

p
1+64w 2 +16w

p
16w 2+1+
p

1+64w 2 −16w
p

16w 2+1
.
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An elementary calculation shows that the convergence radius of the algebraic function appearing

in Theorem 1.2 equals
p

2
16 . Using [FS] Theorem IV.7, we can thus determine the exponential growth

rate of the numbers Ag and we have

Ag =
� 16p

2

�2g+1
χ (g ), where lim sup

g→∞
2g+1
Æ
χ (g ) = 1.

The proof of Theorem 1.2 relies on applying the Lagrange Inversion Theorem to the series of
expressions computed in Theorem 1.1. Theorem 1.1 is proved by degenerating a general curve of
genus g to a flag curve C consisting of a smooth rational spine having g elliptic tails attached to gen-
eral points of the spine. One can explicitly exhibit all odd admissible covers of degree 2g +1 having
a source stably equivalent to C . This is carried out in Section 3. The formula appearing in Theorem
1.1 depends on two initial values N4 and N5 which are related to the existence of certain odd maps
of degrees 4 and 5 respectively on a general pointed elliptic curve [E , P ] ∈M1,1. Precisely N5 counts

the covers E
5:1→ P1, which are totally ramified at P and have three further triple ramification points.

Similarly, N4 is the number of degree 4 covers E
4:1→ P1 having triple ramification at P and at three

further unassigned points. A significant part of the paper is devoted to proving that N4 = N5 = 16,
see Theorems 4.1 and 4.8. We present two independent proofs of this fact. The first, uses the theory
of elliptic functions. Inspired by a method from [AP] we study the existence of such odd maps by
counting the solutions of a certain differential equation on an elliptic curve. A Chern class calcula-
tion shows that N4, N5 ≤ 16. Then we show for a particular elliptic curve that the number of solutions
is exactly 16. The second proof of the equality N4 =N5 = 16, is carried out in Section 5, see Theorems
5.1 and 5.2 respectively. It relies on degeneration to a nodal elliptic curve and involves rather subtle
intersection-theoretic calculations on moduli stacks of odd admissible covers.

Soon after the appearance of this paper, Lian’s related work [Li] was posted on arXiv. He consid-
ers more general enumerative problems for pencils on curves than we do, though in the specific
situation described in this paper his results are less explicit.

Acknowledgments: We are grateful to both M. Fried and D. Oprea for very useful discussions related
to this circle of ideas.
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Project Moduli spaces and Lie theory (2017) and by MIUR: Dipartimenti di Eccellenza Program (2018-2022) -
Dept. of Math. Univ. of Pavia. Farkas was supported by the DFG Grant Syzygien und Moduli.

2. PRELIMINARIES

We collect a few things that will be used throughout the paper.

2.1. Monodromy of coverings and Hurwitz spaces of odd covers. Let f : C → P1 be a finite cover
of degree d and denote by B := {P1, . . . , Pn} its branch locus. For a point Q ∈ P1 \B , let

ρ f :π1(P
1 \B ,Q )→ Sd

be its monodromy representation. We denote by M f := Im(ρ f ) the monodromy group of f . The
local monodromy of f around a branch point Pi ∈ B is given by τi := ρ f ([γi ]) ∈ Sd , where γi is a
simple loop around Pi based at Q . The cover f is said to be alternating if M f ⊆ Ad . We shall often
consider alternating covers f : C → P1, such that each local monodromy τi is given by an odd cycle.
We refer to such an f as being an odd cover.

We denote by H odd
g the Hurwitz space parametrizing odd covers f : C → P1 of degree 2g + 1

branched at 3g points. We require that the local monodromy around each branch point of f be
given by a 3-cycle. Such a cover is endowed with a theta characteristics ϑ := OC (D )⊗ f ∗(OP1 (−1)),
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where D is the half of the ramification divisor R f . As proved by Mumford (see [Mu]), the parity of
the spin structure ϑ is a deformation invariant. Two odd covers f1 : C1 → P1 and f2 : C2 → P1 are
identified as points inH ord

g when there exists an isomorphism τ : C1 → C2 and an automorphism

τ̄ : P1→ P1 such that f2 ◦τ = τ̄ ◦ f1. We denote by [ f : C → P1] ∈H ord
g the moduli point of the cover

f .

LetH odd
g be the compactification ofH odd

g by admissible A2g+1-covers. By [ACV], the stackH odd
g

is isomorphic to the stack of balanced twisted stable maps into the classifying stackBA2g+1, that is,

H odd
g :=M 0,3g

�
BA2g+1

�
/S3g ,

where the action of the symmetric group S3g is given by permuting the branch points. For details

concerning the construction of the space of admissible covers we refer to [ACV]. Note thatH odd
g is

the normalization of the spaceHM odd
g of Harris-Mumford admissible covers introduced in [HM].

Points ofH odd
g are odd admissible coverings [ f : X → Γ , P1 + · · ·+P3g ], where X and Γ are nodal

curves of genus g and 0 respectively, f is a finite map of degree 2g + 1 with f −1(Γsing) = Xsing and
P1, . . . , P3g ∈ Γreg are the branch points of f . The local monodromy of f around Pi ∈ Γ is given by
a 3-cycle τi ∈ A2g+1, for i = 1, . . . , 3g . The local monodromy of f at both branches of X at a node
p ∈ Xsing is given by an alternate permutation, which is not necessarily a 3-cycle. We denote by

ϕ :H odd
g →M g

the map associating to an admissible cover [ f : X → Γ , P1 + · · ·+ P3g ] the stable model st(X ) of its
source. As discussed in the Introduction, ϕ is a generically finite map.

We discuss the local structure of the space of admissible covers following [HM] p.62. We fix a
point ξ := [ f : X → Γ , P1 + · · ·+ P3g ] as above and assume Γsing = {u1, . . . , ur }. For i = 1, . . . , r , set
f −1(ui ) = {Qi ,1, . . . ,Qi ,ℓi

} ⊆ Xsing. The (non-normalized) spaceHM odd
g is described by its local ring

(1) Ôξ,HM odd
g
=C
��

t1, . . . , t3g−3, si ,1, . . . , si ,ℓi
, i = 1, . . . , r
��
/s
µi ,1

i ,1 = · · ·= s
µi ,ℓi
i ,ℓi
= ti , i = 1, . . . , r,

where ti is the local corresponding to smoothing the node ui ∈ Γ and (µi ,1, . . . ,µi ,ℓi
) describes the

ramification profile of f −1(ui ). In particular,HM odd
g (and henceH odd

g ) is smooth at t whenever
over each node ui with i = 1, . . . , r there exist at most one ramification point, that is, at most one
index j ∈ {1, . . . ,ℓi }with µi , j > 1.

2.2. Schubert cycles with respect to osculating flags to rational normal curves. We recall the def-
inition of Schubert cycles in the Grassmannian of linesG :=G (2, V ), where V ∼=Cn . After choosing
a flag F• : V = Vn ⊃ Vn−1 ⊃ . . . ⊃ V0 = 0, for a decreasing sequence of positive integers µ := (α1 ≥ α0)

we introduce the Schubert cycle

σµ =σµ(F•) :=
�
Λ ∈G :Λ⊆ Vn−α0

, Λ∩Vn−α1−1 6= 0
	

.

When the meaning of the flag F• is clear from the context, we shall drop it from the notation of the
corresponding Schubert cycle. Note that codim(σµ,G) = |µ|=α0+α1.

When counting admissible covers we often use non-generic flags defined in terms of a rational
normal curve R ⊆ Pn−1 embedded by V := H 0(P1,OP1(n − 1)). For a point P ∈ R , let F•(P ) be the

osculating flag of R at P , thus Vi :=H 0
�
P1,OP1 (n − 1)
�
−(n − i )P
��

for i = 0, . . . , n − 1. The osculating
flags to R enjoy two very desirable transversality properties:

(i) For any number of distinct points P1, . . . , Ps ∈ R and any partitions µ1, . . . ,µs , the intersec-
tion∩s

i=1σµi

�
F•(Pi )
�

has the expected dimension 2(n−2)−|µ1|−· · ·−|µs |, see [EH1], Theorem
2.3.
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(ii) If all the points Pi are inP1(R)and |µ1|+· · ·+|µs |= 2(n−2), then the intersection∩s
i=1σµi

�
F•(Pi )
�

is a reduced union of real points, see [MTV].

2.3. Odd covers and differential equations on elliptic curves. Let E be a complex elliptic curve
and fix a point P ∈ E . We consider the group structure on E having the point P ∈ E as origin. We
have E ∼= C/Λ, where Λ is a lattice generated by 1 and τ, where Im(τ) > 0. Let π : C → E be the
universal covering, so that π(0) = P and we denote byσ : E → E the involution fixing P , which can
be thought as the involution associated to the hyperelliptic linear series |2P |, which induces a map
h : E → P1. We write D := P +Q +R +S for the ramification divisor of h , thus Q , R and S are the
point of order two on E . The function h is determined explicitly by the Weierstrass function ℘ (see
[AMS] and [La]), which is given by

℘(z ) =
1

z 2
+

1

20
g2z 2 +

1

28
g3z 4+O (z 6),

where g2 and g3 depend on the choice of the lattice Λ. Consider the image of the half period

e1 :=℘
�1

2

�
, e2 :=℘
�τ

2

�
, e3 :=℘
�
1+
τ

2

�
.

We record the following relations between ℘ and its derivatives

℘′(z )2 = 4℘(z )3 − g2℘(z )− g3 = 4(℘(z )− e1)(℘(z )− e2)(℘(z )− e3),(2)

℘′′(z ) = 6℘(z )2 − 1

2
g2.(3)

The Weierstrass form of E is given by y 2 = 4x 3 − g2x − g3 = 4(x − e1)(x − e2)(x − e3) and the j -
invariant of E is computed by the well-known formula

jE = 1728
g 3

2

g 3
2 −27g 2

3

.

The field of the rational function C(E ) is isomorphic to the subfield C(℘,℘′) of the complex mero-
morphic functions generated by ℘ and ℘′, see [La].

As described in the Introduction, an odd map f : E → P1 comes equipped with a spin structure
ϑ = OE (D )⊗ f ∗OP1 (−1) ∈ Pic0(E ), where D := 1

2 R f is half of the ramification divisor R f of f . Hence
there are four possibilities, meaning

ϑ =OE , ϑ =OE (P −Q ), ϑ =OE (P −R ), ϑ =OE (P −S ).

We fix a non-trivial holomorphic form d z in the space of holomorphic differentials H 0(E ,ωE ).
We may assume that h , viewed as a meromorphic function, has a second order pole at P and a sec-
ond order zero atQ . The next proposition allows us to translate the computation of the quantities N4

and N5, essential in proving Theorem 1.1 into finding the solutions of certain differential equations
on E .

Proposition 2.1. Let ϑ ∈ Pic0(E )[2]. A meromorphic function f corresponds to an odd cover f : E →
P1 with associated spin structure ϑ if and only if there exists a meromorphic function s on E with

(4) d f = s 2ω,

whereω= d z if ϑ ∼=OE , andω= hd z if ϑ ∼=OE (P −Q ) respectively.

Proof. Assume f : E → P1 is an odd function with trivial spin structure ϑ ∼= OE . Let A := f ∗(∞) be
the divisor of poles of f . Since D − A is a principal divisor, there exists a meromorphic function
s ∈C(E )with

div(s ) =D −A.
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Then, div(s 2) = 2D − 2A = R f − 2A, which is precisely the divisor of d f . Up to modifying s by a
constant, the equation d f = s 2d z is satisfied. In the opposite direction, if f satisfies equation (4),
then by taking local coordinates it is clear that f is odd.

The case when the associated spin structure ϑ is even is similar. With the same notation we have
that D −A is linearly equivalent to Q −P , hence there exists s ∈C(E ) with

div(s ) =D −A+P −Q .

Therefore, div(s 2h ) =R f −2A, since div(h ) = 2Q −2P . As above, after rescaling we may assume that
d f = s 2hd z . Assuming conversely that f satisfies this equation, a simple local analysis shows that
f is an odd function.

Remark 2.2. Proposition 2.1 is valid for odd covers of arbitrary genus. Consider a curve C of genus g

and a theta characteristicϑ on C . Then a cover f : C → P1 of degree 2g+1 is odd with associated spin
structure ϑ if and only if there exists a divisor A of degree 2g +1 such that d f = s 2 ∈H 0

�
C ,ωC (2A)
�
,

for s ∈H 0(C ,ϑ(A)).

In Section 4 we shall study the solutions of the equation (4) when deg( f ) = 4 and f has a triple
ramification point at P and when deg( f ) = 5 and P is a point of total ramification of f respectively.

3. ODD ADMISSIBLE COVERS ON FLAG CURVES OF GENUS g

In this section we apply degeneration methods in order to prove the formula (3.2) below. This is
an intermediate step in the proof of the main Theorem (1.1). We recall that for a pencil ℓ ∈ G 1

d
(C )

on a smooth curve C , for a point P ∈C we denote by a ℓ(P ) =
�
a ℓ0(P )< a ℓ1(P )
�

its vanishing sequence
at P and by αℓ(P ) = (αℓ0(P ) = a ℓ0 (P ),α

ℓ
1(P ) = a ℓ1 (P )− 1) its ramification sequence. We fix a general

pointed elliptic curve [E , P ] ∈M1,1 and we introduce two loci. Firstly,

G 1
4,tr(E , P ) :=
¦
ℓ ∈G 1

4 (E ) : a ℓ1 (P )≥ 3, there exist distinct points Pi ∈ E \{P }with a ℓ1 (Pi )≥ 3, i = 1, 2, 3
©

.

A pencil ℓ ∈G 1
4,tr(E , p ) corresponds to a cover f : E → P1 of degree 4 ramified triply at P, P1, P2, P3 and

having no further ramification points. Secondly, we define the locus

G 1
5,tr(E , P ) :=
¦
ℓ ∈G 1

5 (E ) : a ℓ1 (P )≥ 5, there exist distinct points Pi ∈ E \{P }with a ℓ1 (Pi )≥ 3, i = 1, 2, 3
©

.

A pencil ℓ ∈ G 1
5,tr(E , P ) corresponds to a cover f : E → P1 totally ramified at P , triply ramified at Pi

for i = 1, 2, 3 and having no further ramification points.

A parameter count yields that both G 1
4,tr(E , P ) and G 1

5,tr(E , P ) are 0-dimensional and we denote

N4 := |G 1
4,tr(E , P )| and N5 := |G 1

5,tr(E , P )|
respectively, their cardinalities. We shall later prove that both G 1

4,tr(E , P ) and G 1
5,tr(E , P ) are reduced,

but for now we do not need that.

We fix once and for all a flag curve

[C :=R ∪Q1
E1 ∪ . . .∪Qg

Eg ]∈M g

consisting of a smooth rational curve R and g elliptic tails Ei meeting the spine R at the point Q j

for j = 1, . . . , g . We require that [E j ,Q j ] ∈M1,1 are general, which in practice means that E j is not
isomorphic to the Fermat cubic. The use of such flag curves in proving the classical Brill-Noether
Theorem is well documented, see [EH2].

Theorem 3.1. The fibre of the morphism ϕ :H odd
g →M g over the point [C ] can be described as

ϕ−1
�
[C ]
�
=
⋃

J⊆{1,...,g }

�∏

j∈J

G 1
4,tr(E j ,Q j )×
∏

i∈J c

G 1
5,tr(Ei ,Qi )
�
×
�⋂

j∈J

σ3,1

�
F•(Q j )
�
∩
⋂

i∈J c

σ4,0

�
F•(Qi )
��

.
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Futhermore, if the points Qi ∈R are chosen generically, the above cycle is 0-dimensional and reduced.

An immediate consequence of Theorem 3.1 is the following formula for the alternating Catalan
number Ag := deg(ϕ).

Theorem 3.2. The number of odd coverings of degree 2g +1 in a generic curve of genus g ≥ 3 is

Ag =
�
N4 σ4,0+N5 σ3,1

�g
∈H top
�
G (2, 2g +2),Z
�
.

Proof. In the statement of Theorem 3.1, we sum over k := |J | ≤ g to obtain

Ag =

g∑

k=0

�
g

k

�
N k

4 N
g−k

5 σk
3,1 ·σ

g−k
4,0 =
�
N4 σ4,0+N5 σ3,1

�g
∈H top
�
G (2, 2g +2),Z
�
.

Proof of Theorem 3.1. We start with an odd admissible cover
�

f : X → Γ , P1+ · · ·+P3g

�
of degree 2g +1,

having as source a nodal curve X stably equivalent to C . For i = 1, . . . , 3g , we denote by xi ∈ f −1(Pi )

the unique odd ramification point lying over the branch point Pi . We fix an index j ∈ {1, . . . , g } and

consider the restriction f j = f|E j
: E j → P1, where P1 is one of the components of Γ . Let a = a

f j

1 (Q j )

be the vanishing index of the point of attachment Q j and note that away from Q j , the ramification
points of f j are precisely those points xi with i = 1, . . . , 3g which lie on E j . Set d j := deg( f j ).

We claim that at least three of the odd ramification points of f lie on E j . Indeed, assume first that,
on the contrary, at most one such point lies on E j . By the Hurwitz formula, then 2d j = deg(R f j

) =

a − 1+ 2 = a + 1 ≤ d j + 1, hence d j = 1, which is impossible. If two odd ramification points lie on
E j \{Q j }, then by the same reasoning 2d j = a −1+2+2≤ d j +3, hence d j = 3. But then f j : E j → P1

is a degree 3 cover having three total ramification points, which forces E j to be isomorphic to the
Fermat cubic, in particular to have j -invariant zero, contradicting the generality of E j . Thus at least
three of the points x1, . . . , x3g specialize on each tail E j . Since there are precisely g elliptic tails,
this implies that precisely three ramification points lie on each of E1, . . . , Eg , whereas the spine R

contains no ramification points.

Applying once more the Hurwitz formula to f j , we get 2d j −2= a −1+6 ≤ d j +5. If d j = 5, then
a = 5 and the pencil corresponding to f j belongs to G 1

5,tr(E j ,Q j ), in particular there are N5 choices
for f j . If, on the other hand, d j = 4, then a = 3 and the pencil corresponding to f j gives rise to a point
in G 1

4,tr(E j ,Q j ). Let J ⊆ {1, . . . , g } be the set of labels for the elliptic curves E j with d j = 4, in which
case J c contains the labels for those elliptic tails E j having d j = 5. Set |J | =: k ≤ g . For each j ∈ J ,
writing f −1

j ( f j (Q j )) = {Q j ,Q ′j }, it follows that there exists a rational component R ′j of X meeting E j

at Q ′j and such that f (R ′j ) = f (R ). In fact deg( f|R ′j ) = 1. It follows that the degree of the restriction

fR = f|R : R → P1 is then at most 2g + 1− |J | = 2g + 1− k . Since the ramification indices at Q j on
the two branches of R and E j must agree for j = 1, . . . , g , it follows that fR corresponds to a pencil

ℓR ∈G 1
d
(R ) having vanishing a

ℓR

1 (Qi ) ≥ 5, for i ∈ J c and a
ℓR

1 (Q j ) ≥ 3 for j ∈ J . The Hurwitz formula
applied to fR implies that d ≥ 2g +1−k , hence d = 2g +1−k . Equivalently, the pencil

ℓ := ℓR

�∑

j∈J

Q j

�
∈G 1

2g+1(R )

obtained from ℓR by adding base points at all points with labels from J satisfies a ℓ(Q j ) ≥ (1, 4) for
j ∈ J and a ℓ(Qi )≥ (0, 5) for all i ∈ J c .

Write ℓ=
�
OP1 (2g +1), V
�
, for a subspace of sections V ∈G

�
2, H 0(P1,OP1(2g +1))

�
=G (2, 2g +2). We

regard R as a rational normal curve in P2g+1 embedded each point by H 0(R ,OR (2g +1)) and denote
by F•(Q j ) the osculating flag at Q j . Then for each vanshing sequence (a0 < a1) the condition a ℓ(Q j )≥
(a0, a1) is equivalent to V ∈σa1−1,a0

�
F•(Q j )), which establishes the Theorem set-theoretically.
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Observe that all covers [ f ] ∈ ϕ−1
�
[C ]
�

correspond to smooth points of H odd
g . Indeed the ratio-

nal target curve Γ = f (X ) has g + 1 components, namely f (R ) and f (E j ) where j = 1, . . . , g . Over
each node f (Q j ) ∈ Γsing lies a single ramification point, which using the local description (1) implies

thatH odd
g is smooth at [ f ]. Furthermore, the fibre ϕ−1

�
[C ]
�

is scheme-theoretically isomorphic to
disjoint unions of copies of the intersection of Schubert cycles

�⋂

j∈J

σ3,1

�
F•(Q j )
�
∩
⋂

i∈J c

σ4,0

�
F•(Qi )
��

.

Following [MTV] this intersection is transverse when the points Q j ∈ R are general, which finishes
the proof.

�

4. COUNTING ODD COVERS OF ELLIPTIC CURVES I: AN APPROACH VIA DIFFERENTIAL EQUATIONS

The goal of this Section is to determine the quantities N4 and N5 appearing in Theorem 3.2. Thanks
to Proposition 2.1, these two problems can be reformulated in terms of differential equations of type
(4). The result will follow by combining the upper bound provided by Proposition 4.5 and the lower
bound provided by Proposition 4.7.

4.1. Odd covers of degree 4 on an elliptic curve. We will ultimately prove the following result:

Theorem 4.1. The number N4 of odd maps f : E → P1 of degree 4 from a general pointed elliptic curve

[E , P ] ∈M1,1 is equal to 16.

We shall use the same terminology of Subsection 2.3. The origin P of the elliptic curve E may be
assumed to be one of the ramification points, hence the odd function f we are looking for belongs
to H 0(E ,OE (3P + x )), for some point x ∈ E . Assume first x 6=P . By considering the local expression
of f around P and x and taking derivatives, we obtain that d f has a pole of order 4 at P and a pole
of order 2 at x , that is, d f ∈H 0

�
E ,OE (4P +2x )

�
. Differentiation provides a linear map

δx : H 0
�
E ,OE (3P + x )
�
→H 0
�
E ,ωE (4P +2x )

�∼=H 0
�
E ,OE (4P +2x )

�
.

This analysis also works when x = P . Then H 0
�
E ,OE (4P +2x )
�
=H 0
�
E ,OE (6P )
�
; the function f has

a pole of order 4 at P and so d f has there a pole of order 5 at P and d f ∈H 0
�
E ,OE (5P )
�
, which lies

inside H 0
�
E ,OE (6P )
�
.

Consider now a meromorphic function s satisfying equation (4). If the associated theta charac-
teristic ϑ is trivial, we have s ∈H 0

�
E ,OE (2P + x )
�
, and we can consider the (non-linear) map

αx : H 0
�
E ,OE (2P + x )
�
→H 0
�
E ,OE (4P +2x )

�

s 7→ s 2d z .

If ϑ ∼=OE (P −Q ), we consider a similar map αx : H 0
�
E ,OE (P +Q + x )

�
→H 0
�
E ,OE (4P +2x )
�

defined
by αx (s ) := s 2hd z . The following corollary relates the maps δx and αx .

Corollary 4.2. The solutions of equation (4) coincides with the intersection of the images of the maps

δx and αx , as x ∈ E varies.

Proof. This follows directly from the proof of Proposition 2.1. The map δx correspond to the left
hand side of Equation (4), while the map αx correspond to the right hand side.

In order to exploit this result, notice that the map δx is linear, so in order to intersect its image
with the one of αx it is convenient to look at the kernel of the following composition

H 0
�
E ,OE (2P + x )
� αx−→H 0
�
E ,OE (4P +2x )

�
→

H 0
�
E ,OE (4P +2x )

�

δx

�
H 0(E ,OE (3P + x ))

� .



8 G. FARKAS, R. MOSCHETTI, J.C. NARANJO, AND G.P. PIROLA

We regard these maps globally by moving the point x ∈ E . To that end, we consider the pro-
jections πi : E × E → E for i = 1, 2 and the diagonal ∆ ⊆ E × E . For a point x ∈ E , define Ex as
E ×{x } :=π∗2(x ). For an effective divisor A =

∑
ni Pi on E , we set EA :=

∑
ni EPi

.

Definition 4.3. For an integer m and an effective divisor A on E , we define the vector bundle Dm ,A :=
π1∗
�
OE×E (m∆+ EA)

�
on E .

Observe that G :=D1,3P ,F :=D1,2P andU :=D2,4P are the vector bundles we mentioned before.
We have the natural identifications for the respective fibres

G (x )∼=H 0
�
E ,OE (3P + x )
�
, F (x )∼=H 0
�
E ,OE (2P + x )
�

and U (x )∼=H 0
�
E ,OE (4P +2x )

�
.

The map δx correspond to a sheaf morphism δ :G →U : start by considering the differential

d :OE×E →Ω1
E×E =π

∗
1OE ⊕π∗2OE

∼=O ⊕2
E×E .

From the effective divisor A =
∑

ni Pi , let us define the augmented divisor Aa :=
∑
(ni + 1)Pi . The

differential d induces a map of sheaves on E × E by just taking derivatives of sections with poles
along the divisors∆ and EPi

:

OE×E (m∆+ EA )→Ω1
E×E ((m +1)∆+ EAa )∼= (OE×E ((m +1)∆+ EAa ))

⊕2.

By projecting to the first summand and applying the functor π1∗ we get the map of sheaves δ :G →
U , which glues the maps δx .

The upper bound given by Proposition 4.5 comes from the computation of the Chern classes of
the sheaves involved in the picture above. Let us begin this final computation with the following:

Lemma 4.4. For all m ≥ 0 and for all effective divisors A, we have that c1(Dm ,A) =m ·deg(A).

Proof. We first check the formula for n = 0, in which case A = 0. Consider the short exact sequence

(5) 0−→OE×E ((m −1)∆)−→OE×E (m∆)−→O∆(∆)−→ 0.

By the adjunction formula O∆(∆) is trivial. If m ≥ 1, then R 1π1∗OE×E ((m − 1)∆) = 0 and we get
immediately that c1(Dm ,0) = c1(Dm−1,0). For m = 0 we have

c1(D0,0) = c1(π1∗OE×E ) = c1(OE ) = 0.

Therefore, c1(Dm ,0) = 0 for all m ≥ 0.

Assume now n > 0. After tensoring the short exact sequence (5) with OE×E (EA), we apply the
functorπ1∗. Since n > 0, we have R 1π1∗OE×E

�
(m−1)∆+EA

�
= 0 for any m ≥ 1, therefore the following

sequence is exact
0−→Dm−1,n −→Dm ,n −→π1∗O∆(EA)−→ 0.

The first Chern class of π1∗O∆(EA) equals c1(OE (A)) = deg(A) = n . Then c1(Dm ,n ) = n + c1(Dm−1,n ) for
n > 0. We can repeat this procedure until we get c1(Dm ,n ) =m ·n + c1(D0,n ).

It remains to take care of the case m = 0 and n > 0. Let P be a point in the support of A and set
A0 = A \ {P }. Similarly to the previous cases, one finds for n ≥ 2 the following short exact sequence

0−→D0,A0
−→D0,A −→π1∗OEP

(EA)−→ 0.

Since c1

�
π1∗OEP

(EA)
�
= c1

�
OP (A)
�
= 0, one gets c1(D0,A) = c1(D0,A0

). To conclude, we need to show
that c1(D0,P ) = 0 for any point P ∈ E . Indeed we have

0−→D0,0 −→D0,P −→π1∗OEP
(EP )−→ R 1π1∗OE×E −→ 0,

which gives that c1(D0,P ) = c1(R
1π1∗OE×E ). By Grothendieck-Verdier duality R 1π1∗OE×E

∼= OE and
the result follows.

Proposition 4.5. Equation (4) has at most 16 distinct solutions in degree 4.
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Proof. By Lemma 4.4 we have

c1(G ) = c1(D3,1) = 3,

c1(F ) = c1(D2,1) = 2,

c1(U ) = c1(D4,2) = 8.

Let us denote the quotientU /G byV , we have c1(V ) = c1(U )−c1(G ) = 5. By following Grothendieck’s

notation of [H], we consider the projective bundle P := P
�
F ∨
� q−→ E ofF . Note that dim(P) = 3. De-

note the class of the line bundle OP(1) by ε. The map f → f 2ωd z mod δ(G ) can be viewed globally
as a morphism of vector bundles on P

φ :OP(−2)→ q ∗V ,

that is, as an element of H 0
�
P, q ∗V (2)
�
. Recalling that ε3−q ∗c1(F ∨)ε2 = 0, we find ε3 = q ∗c1(F ∨)ε2 =

−q ∗c1(F )ε2 =−c1(F ) =−2. If we denote by A, B and C the Chern roots of the rank 3 vector bundles
V , we use the splitting principle to compute:

c3(q
∗V (2)) = (A+2ε)(B +2ε)(C +2ε)

= AB C +2ε(AB +B C +C A) +4ε2(A+B +C ) +8ε3

= 4ε2c1(V ) +8ε3 = 4
�
c1(V ) +2ε3
�
= 4(5−2×2) = 4.

This happens for each of the 4 spin structures on E , thus the equation (4) has at most 16 solutions.

Now we prove the existence of exactly 16 solutions of equation (4) for a particular elliptic curve.
The argument is independent of a fixed theta characteristic ϑ on E . Let g be a solution of equation
(4). Remember that we defined σ : E → E to be the involution that fixes the origin P of the elliptic
curve. The function gσ := g ◦σ is then another odd degree 4 cover triply ramified at P . Recall that
Q , R and S denote the non-trivial 2-torsion points on E .

Lemma 4.6. The solutions g and gσ are different.

Proof. Assume gσ =±g . The unique point in g −1
�
g (P )
�
\{P } is then fixed byσ and we may assume

this point to be Q . Moreover, σ acts on the other triple ramification points of g , which we denote
by x , y and z . Since σ is an involution, there must be at least one fixed point and we may assume
x = R . Consider x ′ to be the remaining point in the fibre of R , that is g −1(g (R )) = 3R + x ′. Then x ′

is also fixed byσ and so x ′ = S . Summarizing, we have g ∗(∞) = 3P +Q and g ∗(0) = 3R +S .

Let v1, v2 and v3 inC be the half periods of E =C/Λ and set ei :=℘(vi ). We consider the equation
(2) and (3) from the preliminaries. In particular, e1+e2+e3 = 0. Recall that℘ has a pole of order 2 at
0 and ℘′ has a pole of order 3 at 0 and on the vi . Consider the function G :C→C defined by

G (z ) :=℘′(z )
℘(z )− e2

℘(z )− e1
.

The function G (z ) has a pole of order 3 at the points 0 and v1, and a zero of order 3 at the point
v2. The half period v1 corresponds to the point Q and, similarly, v2 corresponds to R . We have that
G (−z ) =−G (z ). The attached meromorphic function g0 on E satisfies

div(g0) = 3P +Q −3R −S .

Hence up to a constant, g0 = g . In particular, G has to be an odd function. To impose this we
compute the derivative of G , then we study the vanishing locus of its discriminant. To simplify
calculations, we set

ϕ(z ) :=
℘(z )− e2

℘(z )− e1
,
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in such a way that G (z ) =ϕ(z )℘′(z ). We have

ϕ′(z ) =℘′(z )
e2− e1

(℘(z )− e1)2
.

We proceed with the computation of G ′(z ) by using the properties of ℘ given in equation (2):

G ′(z ) =℘′′(z )ϕ(z ) +℘′(z )ϕ′(z ) =℘′′(z )ϕ(z ) +℘′(z )2
e2− e1

(℘(z )− e1)2

=℘′′(z )ϕ(z ) +4(℘(z )− e1)(℘(z )− e2)(℘(z )− e3)
e2− e1

(℘(z )− e1)2

=℘′′(z )ϕ(z ) +ϕ(z )
�
4(℘(z )− e3)(e2− e1)

�
=ϕ(z )
�
℘′′(z ) +4(e2− e1)(℘(z )− e3)

�
.

To understand the ramification of G , we study the zeroes of

℘′′(z ) +4(e2− e1)(℘(z )− e3) = 6℘(z )2− 1

2
g2+4(e2− e1)(℘(z )− e3).

Set v :=℘(z ), and recall that from (3) that

(6) g2 =−4 (e1e2+ e3(e1+ e2)) = 4(e 2
1 + e1e2+ e 2

2 ).

By using (6) and that e3 =−e1− e2, we finally get the the equation

2
�
3v 2+2(e2− e1)v + (−3e 2

1 − e1e2+ e 2
2 )
�
= 0,

which has discriminant∆(τ) = 16∆0(τ), where∆0(τ) = 10e 2
1 −2e 2

2 +e1e2. Now we focus on the elliptic
curve corresponding to τ = i . For this curve one has g3 = e1e2e3 = 0 and g2 6= 0. Therefore, one and
only one of the values ei is zero. If e1 = 0, then ∆0(i ) = −2e 2

2 6= 0. If e2 = 0, then ∆0(i ) = 10e 2
1 6= 0.

Finally if e3 = 0, then e2 =−e1 and∆0(i ) = 8e 2
1 6= 0. We obtain that g 6= gσ as desired.

Observe that the elliptic curve E we are considering also has an automorphism j such that j 2 =σ.
Then g j is a new function with odd ramification. Moreover, g j = g would imply

gσ = g j ◦ j = g j ◦ j = g ◦ j = g j = g ,

a contradiction. With a similar argument one can prove that g j 6= gσ and that all the solutions g ,
g j , gσ, g jσ are different.

Proposition 4.7. Equation (4) has at least 16 distinct solutions in degree 4.

Proof. For two of the possible theta characteristics, namely the trivial and one of the even ones, we
can assume that j ∗(ϑ) ∼= ϑ. It follows there are exactly 4 solutions in each case: g , g j , gσ = g j 2

and
g jσ = g j 3

. To show that this is so also for the remaining theta characteristics, we use a monodromy
argument. Let us consider the 1-dimensional spin moduli space

S +1,1 =
�
[E , p ,ϑ] : [E , p ]∈M1,1,ϑ2 ∼=OE , ϑ �OE

	

which is known to be connected with a forgetful mapS +1,1→M1,1 of degree 3. We have shown that
there are 4 odd meromorphic functions corresponding to a general [E , p ,ϑ]∈S +1,1. It follows that for
a generic elliptic curve there are 12 solutions attached to even theta characteristics. The conclusion
is that we can find at least 16 solutions of Equation (4) for a generic elliptic curve.

4.2. Odd covers of degree 5 on an elliptic curve. We establish the following result:

Theorem 4.8. The number N5 of odd maps of degree 5 computed in the case of a general elliptic curve

is equal to 16.

Proof. Thanks to Proposition 2.1, this problem is equivalent to finding the number of solutions of
equation (4). The result is proved by combining the upper bound provided by Proposition 4.9 and
the lower bound provided by Proposition 4.11.
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This situation is simpler than the one considered in Theorem 4.1, since one of the fibres of the
map f : E → P1 is 5P and there is no freedom for a new pole. Fix P to be the origin of the curve E .
We count the solutions of equation (4) for a given spin structure ϑ. Assume f has a pole of order
5 at P and a zero of order 3 at Q , as well as two other ramification points of index 3. By looking at
the local expression of f at P and taking derivatives, we obtain that d f has a pole of order 6 at P .
Derivation induces a map

δ : H 0
�
E ,OE (5P )
�
→H 0
�
E ,ωE (6P )
�∼=H 0
�
E ,OE (6P )
�
.

Since the kernel is formed by the constants the image of δ is 4-dimensional. On the one hand, when
ϑ ∼=OE , we have to consider the map:

α : H 0
�
E ,OE (3P )
�
→H 0
�
E ,OE (6P )
�
, α(s ) := s 2d z .

On the other hand, when ϑ is even, the map α has to be defined by

α : H 0
�
E ,OE (2P +Q )
�
→H 0
�
E ,OE (6P )
�
, s 7→ s 2hd z ,

where div(h ) = 2P −2Q .

Proposition 4.9. Equation (4) has at most 16 distinct solutions in degree 5.

Proof. The result of Corollary 4.2 still holds: the solutions of Equation (4) lies in the intersection of
the images of the maps δ and α, up to constants. Hence, we have to look at the kernel of the map

H 0
�
E ,OE (3P )
�
→H 0
�
E ,OE (6P )
�
→

H 0
�
E ,OE (6P )
�

δ
�
H 0(E ,OE (5P ))
� .

By projectivizing, this amounts to considering inside P
�
H 0(E ,OE (6P ))
� ∼= P5 the intersection of the

3-plane P
�
Im(δ)
�

with the image P
�
H 0 (E ,OE (3P ))
�

of α, which is a Veronese surface. Counting with
multiplicities, there are 4 solutions when ϑ is trivial. The same argument works also when ϑ � OE .
Putting everything together, we obtain N5 ≤ 16.

Now we prove the existence of exactly 16 distinct solutions of equation (4) for a particular elliptic
curve. We follow the same strategy as in the previous section. We fix a meromorphic function g

inducing an odd map of degree 5 with a pole at P of order 5 and three additional triple ramification
points x , y and z . Let σ be the automorphism of E fixing P . Then, gσ is another meromorphic
function on E with the same properties. Assume gσ = ±g . Then one of the ramification points
must be one of the points Q , R ,S . We may assume this point to be x =Q and that g (Q ) = 0.

Lemma 4.10. Let g be a meromorphic function as described above with gσ =±g and g (Q ) = 0. Then

g ∗(0) = 3Q +R +S.

Proof. Assume u ∈ E is a zero of g which is not fixed by σ. Then σ(u ) must be another zero of g .
Therefore we get div(g ) = 3Q + u +σ(u )− 5P. Let now consider eG (z ) := ℘′(z )(℘(z )− e1); it is easy to
check that the divisor of the meromorphic function eg induced on E by eG is div(eg ) = 3Q +R +S−5P .
Then, the divisor of g

eg is u +σ(u )−R −S . Hence u +σ(u ) ∼ R +S . Since u +σ(u ) ∼ 2R , we obtain
that R and S are linearly equivalent, which is impossible.

From Lemma 4.10, the functions g and eg have the same attached divisor, hence they only differ
by a constant and we may assume that g = eg .

Proposition 4.11. Equation (4) has at least 16 solutions in degree 5.

Proof. Now we impose the existence of other odd ramification points for eg . We can use the explicit
expression of eG and the properties of the derivatives of ℘. It is easy to check that

eG ′(z ) = (℘(z )− e1)
�
6℘(z )2−2(e 2

1 + e1e2+ e 2
2 ) +4(℘(z )− e2)(℘(z )− e3)

�
.
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The discriminant of the quadratic part is

∆(τ) = 16(5e 2
1 +6e 2

2 + e 2
3 +5e1e2−8e2e3).

As in the computation of N4 it turns out that ∆(i ) 6= 0 and then gσ 6= g . Moreover, we can use the
involution j with j 2 =σ and then there are 4 different meromorphic functions with the prescribed
ramification and the same theta characteristic ϑ with j ∗(ϑ) ∼= ϑ. Then we can apply the same mon-
odromy argument we used in the previous section to finish the proof.

5. COUNTING ODD COVERS OF ELLIPTIC CURVES II: AN APPROACH VIA DEGENERATION

In this section we present a second proof of Theorems 4.1 and 4.8. The proof relies on counting
the number of odd admissible covers from a curve stably equivalent to a rational nodal curve, that
is, an elliptic curve with j -invariant∞.

5.1. Odd degree 5 covers of elliptic curves. We denote byH ord
1,5 the 1-dimensional Hurwitz space

parametrizing odd admissible covers
�

f : X → Γ , P, x , y , z
�
, where X (respectively Γ ) is a connected

nodal curve of arithmetic genus one (respectively zero), f is a finite map of degree 5 which is totally
ramified at the point P ∈ X and triply ramified at the mutually distinct points x , y , z ∈ Xreg\{P }. The

symmetric group S3 acts onH ord
1,5 by permuting the ramification points x , y and z and we denote

the quotient by

H 1,5 :=H ord
1,5 /S3.

Letσ5 :H 1,5→M 1,1 be the map associating to a cover
�

f : X → Γ , P, x + y + z
�

the stabilization of

the source curve, that is, [st(X ), P ] ∈ M 1,1. We shall determine the degree of the generically finite
morphism σ5.

We denote by [R , P,U , V ] ∈M 0,3 a fixed 3-pointed smooth rational curve and set

[E∞, P ] :=
�
R/U ∼ V , P ] ∈M 1,1

to be the pointed elliptic curve with j -invariant∞. In what follows we explicitly describe the cycle
σ∗5
�
[E∞, P ]
�
. We shall count (with appropriate multiplicities) the admissible covers inH 5 having as

source a nodal curve stably equivalent to [E∞, P ].

Theorem 5.1. We have that length σ∗5
�
[E∞, P ]
�
= deg(σ5) = 16. It follows once more that N5 = 16.

Proof. Let ξ :=
�

f : X
5:1→ Γ , P, x , y , z
�
∈ H ord

1,5 be an admissible cover such that the stabilization of

[X , P ] is [E∞, P ]. In particular f −1(Γsing) = Xsing, which implies that R appears as an irreducible
component of X and f (U ) = f (V ) =: B ∈ Γsing. Indeed, if f (U ) 6= f (V ), then necessarily f −1 f (R )

contains another (rational) component of X different from R , which is impossible for if we denote
fR := f|R , then deg( fR ) = deg( f ) = 5 because fR is fully ramified at P . We denote by R1 the subcurve
of X meeting R at the points U and V . Since the arithmetic genus of X is equal to one, it follows
that R ∩R1 = {U , V }. We set f (R ) =: P1 and f (R1) =: P1

1, thus P1 ∩P1
1 = {B }.

We claim that the degree of the restriction f1 := f|R1
is at most 4 and that precisely two of the

ramification points x , y , z lie on R1, whereas the remaining point lies on R . Indeed, else, regarding
B = f (U ) = f (V ) as a smooth point of P1 = f (R ), we have f ∗R (B ) =α ·U + (5−α) ·V , where 1≤ α≤ 4.
Applying the Hurwitz formula to fR : R → P1, we obtain that apart from U , V and P , the cover fR

has precisely one ramification point contributing with multiplicity one to the ramification divisor
of fR , which is impossible, for f is an odd map. It follows that the fibre f −1

R (B ) contains a third point
U ′ ∈R \ {U , V }.

We now turn our attention to the cover f1 : R1→ P1
1. We have seen that deg( f1) ≤ 4. If the degree

of f1 is two or three, then the Hurwitz formula implies that f1 has a simple ramification point in
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R1 \ {U , V }, which is impossible. Thus deg( f1) = 4 and we write f ∗1 (B ) = α ·U + (4−α) · V , where
1≤α≤ 3. It follows that the map fR is unramified at U ′ and that

f ∗R (B ) =α ·U + (4−α) ·V +U ′ ∈Div(R ).

Assume x ∈ R \{U , V , P } is the triple ramification point of f lying on R , whereas {y , z } ∈R1 \{U , V }
are the triple ramification point of f lying on R1. Note that the curve X consists of a further rational
component R2 mapping isomorphically onto f (R1) and meeting R at the point U ′.

We distinguish two cases depending on whether α ∈ {1, 3}, or α= 2.

(i) Assume α= 1, that is, f ∗R (B ) =U +3 ·V +U ′ and f ∗1 (B ) =U +3 ·V ∈Div(R1). We claim that up to
the P G L(2)-action on the base, there exists a unique such cover fR : R → P1. We may indeed assume
P =∞∈ R , U = 1 and V = 0 ∈ R . Then the function

fR (t ) = t 3(t −1)(t − b ),

where b ∈ C has a pole of order five at P . Imposing the condition that f have triple ramification
at a further point x ∈ R \ {P,U , V }, we obtain that 4b 2 − 7b + 4 = 0, thus there are two choices for
fR . Observe that these two covers lead to genuinely different points inH 1,5 (in particular also in

H ord
1,5 ), for fR has no non-trivial automorphisms. Indeed such an automorphism τR ∈ Aut(R ) fixes

the point P of total ramification, the unique triple ramification point x of fR , as well as the point
U ′ ∈ f −1(B ) \ {U , V }. Thus τR = IdR .

We now consider the R1-side and assume U = 1, V =∞ ∈ R1 and y = 0 ∈ R1. We may write

f1(t ) =
t 3(t+a )

t−1 . Imposing the condition that f1 have a further triple ramification point z , we find

(7) f1(t ) =
t 3(t −4)

t −1
,

and f ∗1 (0) = 3 · 0+ 1 · 4 ∈ Div(R1) and f ∗1 (−16) = 3 · 2+ 1 · (−2) ∈ Div(R1). In particular, z = 2 is also a
triple ramification point of f1.

Observe now that f1 has an automorphism τ1 of order 2 that fixes the points U and V and inter-
changes the ramification points y and z . Using (7), we find τ1(t ) = 2− t . This implies that the map

H ord
1,5 →H 1,5 is ramified with order 2 at such a point ξ=

�
f : X → Γ , P, x , y , z

�
∈H ord

1,5 .

The following local statement is essential in the proof of both Theorems 5.1 and 5.2.

Claim: The mapH ord
1,5 →M 1,1 is ramified with order 4= ordU ( f ) +ordV ( f ) at the point ξ ∈H ord

1,5 .

Assuming this fact for a moment, we conclude that the contribution to the cycleσ∗5
�
[E∞, P ]
�

com-

ing from the case α = 1 is equal to 4= 2× 4× 1
2 = 4: We multiply by 2 for the two choices of fR , by 4

because of the ramification of the mapH ord
1,5 →M 1,1 at each of the pointsξ and divide by 2 because

of the existence of the automorphism of f which is trivial along R and R2, while being equal to τ1

along R1. The case α = 3 is identical (one switches the role of u and v ). Summarizing the discus-
sion so far, we have identified a subcycle of length 8 = 4+ 4 of σ∗5

�
[E∞, P ]
�

coming from the cases
α ∈ {1, 3}.
Proof of the claim. We show thatH ord

1,5 →M 1,1 is ramified with order 4 at the point ξ. Let

(8) F :X →P

be the universal degree 5 admissible cover overH ord
1,5 . One has a finite mapb :H ord

1,5 →M 0,4 associat-

ing to an admissible cover [ f : X → Γ , P, x , y , z ] the point [Γ , f (P ), f (x ), f (y ), f (z )] ∈M 0,4. According

to the local description (1) of the local ring ofH ord
1,5 at the point ξ, we have that

Ô
ξ,H ord

1,5

∼=C
��

s1, s2

��
/s 3

1 = s2 = t ,
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where t is the local parameter onM 0,4 corresponding to the boundary pointb(ξ). Around the points
(ξ, V ) and (ξ,U ) ∈X , the cover F considered in (8) has the following local expression:

X around (ξ, V ) : v1v2 = s1, P around F (ξ, V ) : γ1γ2 = s 3
1 , the map F : γ1 = v 3

1 ,γ2 = v 3
2 ,

respectively

X around (ξ,U ) : u1u2 = s1, P around F (ξ,U ) : γ1γ2 = s1, the map F : γ1 = u1,γ2 = u2.

We consider the map Spec C[[t ]]→Ô
ξ,H ord

1,5
given by sending t 7→ (s1 = t , s2 = t 3). The induced family

of curvesX ×H ord
1,5

Spec C[[t ]]→ SpecC[[t ]] has local equation v1v2 = t around the point (ξ, V ), and

u1u2 = t 3 around the point (ξ,U ) respectively. The fibre over 0 consists of the nodal genus one
curve X =R ∪R1∪R2. We first blow-down the (−1)-curve R2 and then R1. The resulting curveX ′→
Spec C[[t ]] is the family of curves induced by base-change from F under the mapH ord

1,5 →M 1,1. Its
central fibre is [E∞, P ] and the local equation ofX ′ around the unique node of the central fibre is

v1v2 = t · t 3 = t 4,

which finishes the proof of the claim.

We now proceed with the proof of the remaining cases of Theorem 5.1.

(ii) Assume now α= 2, thus f ∗R (B ) = 2 ·U + 2 ·V +U ′ ∈Div(R ) and f ∗1 (B ) = 2 ·U + 2 ·V ∈Div(R1). In
order to count the number of such maps fR , assume again P =∞∈R , U = 1 and V = 0∈ R . Writing
fR (t ) = t 2(t − 1)2(t − b ), the condition that fR has a triple ramification point x ∈ R \ {0, 1,∞} leads
to the equation 16b 2 −16b +9= 0, thus to two choices for fR . The same argument as in the case (i)
shows that fR has no automorphism, nor are the found maps equivalent under the P G L(2)-action.
We now consider the R1-side and set U = 1, V = 0 ∈ R1 and y =∞∈ R1. Up to the P G L(2)-action
on the base P1

1 of the map f1 : R1→ P1
1 we find two solutions, namely

(9) f1(t ) =
48
p

3t 2(t −1)2
�
−2t +1+

p
3
��p

3+6t −3
�3 and f̃1(t ) =

t 2(t −1)2

t − 1
2 −
p

3
4

.

Neither f1 nor f̃1 have non-trivial automorphisms. Denote by τ1 : R1→ R1 the automorphism fixing
0 and 1 and such that

τ1(∞) =
1

2
+

p
3

6
and τ1

�1
2
−
p

3

6

�
=∞.

Then f̃1 ◦ τ1 = f1. Via the automorphism τ ∈ Aut(X ) such that τR = IdR and τ|R1
= τ1, it follows

that f1 and f̃1 lead to the same point ofH ord
1,5 . An argument identical to the one in the claim shows

that around each such point ξ, the mapH ord
1,5 →M 1,1 is ramified with order 4. Summarizing, the

contribution to the cycle σ∗5
�
[E∞, P ]
�

coming from case (ii) is equal to 2×4= 8.

None of the points ξ ∈ H ord
1,5 found in this proof carry an automorphism fixing all the branch

points, hence they all correspond to smooth points ofH ord
1,5 . Putting cases (i) and (ii) together, we

conclude that the degree of the mapσ5 equals 16= 8+8, which finishes the proof.

5.2. Odd degree 4 covers of elliptic curves. We denote byH ord
1,4 the 1-dimensional Hurwitz space

parametrizing odd admissible covers
�

f : X → Γ , P, x , y , z
�
, where X (respectively Γ ) is a connected

nodal curve of arithmetic genus one (respectively zero), f is a finite map of degree 4 which is triply
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ramified at the point P ∈ X and at the pairwise distinct points x , y , z ∈ Xreg \ {P }. The symmetric

group S3 acts onH ord
1,4 by permuting x , y and z . Let

H 1,4 :=H ord
1,4 /S3

be the quotient and letσ4 :H 1,4→M 1,1 be the map associating to a cover
�

f : X → Γ , P, x + y + z
�

the stabilization of the source curve.

Theorem 5.2. We have that length σ∗4
�
[E∞, P ]
�
= deg(σ4) = 16. It follows once more that N4 = 16.

Proof. We proceed along the lines of the proof of Theorem 5.1, highlighting the things that are differ-

ent. We start with an admissible cover ξ :=
�

f : X
4:1→ Γ , P, x , y , z
�
∈H ord

1,4 such that the stabilization
of [X , P ] is [E∞, P ]. As before, R appears as an irreducible component of X and f (U ) = f (V ) =:
B ∈ Γsing. We denote by R1 the subcurve of X meeting R precisely at the points U and V . We set
fR := f|R : R → P1 and f1 := f|R1

: R1→ P1
1, where Γ = P1 ∪B P

1
1.

There are three types of admissible covers possible forξ. First, we could have deg( fR ) = deg( f1) = 4
and f ∗R (B ) = α ·U + (4−α) ·V ∈Div(R ) and f ∗1 (B ) = α ·U + (4−α) ·V ∈Div(R1). Let x ∈ R \ {P,U , V }
be the remaining triple ramification point of fR and we denote by {y , z } ⊆R1\{U , V } the remaining
triple ramification points of f1.

(i) α= 1. Setting P = 0,U = 1, V =∞∈ R , we find a unique solution for fR , the one given by (7)

fR (t ) =
t 3(t −4)

t −1
.

The cover fR has no automorphism, for such an automorphismτR would have to fix both the marked
point P , as well as U an V , hence τR = IdR . On the R1-side, setting U = 1, V =∞∈ R1 and y = 0,
we have a unique choice for f1 given by the same formula (7). However, in this case, as in the proof
of Theorem 5.1, f1 does have an automorphism τ1 ∈ Aut(R1) which fixes both points U and V and

interchanges the ramification points y and z . The mapH ord
1,4 →M 1,1 is ramified with order 4 at the

point ξ. All in all, one gets a contribution of 4 = 2× 4× 1
2 to the cycle σ∗4

�
[E∞, P ]
�

coming from the

case when α ∈ {1, 3}. The factor 1
2 is explained by the simple ramification of the mapH ord

1,4 →H 1,4

at the point ξ.

(ii) α = 2. Setting U = 0, V = 1 ∈ R1 and y =∞ ∈ R1, following (9) we find two solutions for f1,
which are related via the P G L(2)-action on R1. On the R -side, we set also U = 0, V = 1 ∈ R and
P =∞∈ R , by using once more (9) we find two solutions for fR , which this time are not equivalent
to one another, for an automorphism τR has to fix U , V , as well as P , hence τR = IdR . All in all, we
get a contribution of 2× 4 = 8 to the cycle σ∗4

�
[E∞, P ]
�
, where the factor 4 equals the ramification

index of the mapH ord
1,4 →M 1,1 at each of the points ξ considered.

(iii) This is the situation which has no equivalent in the proof of Theorem 5.1. In this case deg( fR ) = 3
and deg( f1) = 3. The components R and R1 meet at the points U and V and f −1(B ) = {U , V ,U ′, V ′},
where {U ′}=R ∩R3 and {V ′}=R1∩R2. Here R2 and R3 are smooth rational curves mapping isomor-
phically onto P1 = f (R ) and P1

1 = f (R1) respectively. Thus f −1(P1) is the disjoint union of R and R2,
whereas f −1(P1

1) is the disjoint union of R1 and R3. Note that f is unramified over the node B of Γ .

Modulo the P G L(2)-action, there are two choices for a map fR : R → P1 of degree 3 triply ramified
at P and at a further unspecified point x ∈ R \ {P } and satisfying fR (U ) = fR (V ). In coordinates, if
we set P =∞, U = 1 and V = 0, then the two choices are

fR (t ) =
�
t − 1

2
+ i

p
3

6

�3
and f̃R (t ) =−

�
t − 1

2
− i

p
3

6

�3
.
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Observe that if τR ∈ Aut(R ) is the automorphism given by τR (t ) = 1− t , thus τR (U ) = V , τR (V ) =U

and τR (P ) = P , then f̃R = fR ◦τR . The same applies for the component R1 of X . There are two ways,
say f1 and f̃1 of choosing a degree 3 map triply ramified at both y and z and having U and V in the
same fibre. The maps f1 and f̃1 are related by an automorphism τ1 of R1 which interchanges U and
V and fixes y . We find that in total there are there are two points inH 1,4 of this type inσ−1

4

�
[E∞, P ]
�
.

A similar calculation like in the Claim in the proof of Theorem 5.1 shows that the mapH ord
1,4 →

M 1,1 is ramified to order 2 at both these points. All in all, we have a contribution of 4= 2×2 to the
cycle σ−1

4

�
[E∞, P ]
�

coming from case (iii).

Summarizing cases (i), (ii), (iii), we find that length σ∗4
�
[E∞, P ]
�
= 4+ 8+ 4 = 16, which finishes

the proof.

6. THE GENERATING SERIES OF ALTERNATING CATALAN NUMBERS

In this Section we explain how using basic facts from Schubert calculus coupled with the Lagrange
Inversion formula one can derive from Theorem 3.2 both Theorems 1.1 and 1.2.

We fix V := C2g+2 and set G := G (2, V ). Recall the notation σα1,α0
for the Schubert cycle in G.

We write σα := σαa ,0 for each α ≥ 1. It is well-known that σ1 is a hyperplane section of G in its

Plücker embedding. In particular, C2g =σ
2g
1 = deg(G) = 1

2g+1

�4g
2g

�
. We also recall Giambelli’s formula

σα1,α0
=σα1

·σα0
−σα1+1 ·σα0−1 ∈H ∗(G,Z).

It is also known that H ∗(G,Z) is generated by the classesσ1 andσ2 and the top intersection prod-
ucts involving these two classes are given by the following formula, see e.g. [O] Remark 3.4

(10) σ2m
1 σ

2g−2m
2 =

2g−m∑

i=0

(−1)i
�

2g −m

i

�
C2g−i .

We are now in a position to prove Theorem 1.1:

Proof of Theorem 1.1. Since we have shown that N4 =N5 = 16, Theorem 3.2 can be rewritten as

Ag = 16g
�
σ4+σ3,1

�g
.

We are going to rewrite this expression in terms involving only the products appearing in (10). Firstly,
Giambelli’s formula yields σ4 +σ3,1 = σ1σ3. Applying Giambelli’s formula once more, we obtain
σ3 =σ1σ2 −σ2,1 =σ1(σ2 −σ1,1, where for the last equality we have used Pieri’s formula. One final
application of Giambelli’s formula yieldsσ1,1 =σ

2
1 −σ2, implyingσ3 = 2σ1σ2−σ3

1. Thus

σ
g
1σ

g
3 =σ

2g
1 (2σ2 −σ2

1)
g =

g∑

k=0

g−k∑

i=0

(−1)k+i 2g−k

�
g

k

��
g −k

i

�
C2g−i

=

g∑

i=0

(−1)i
�g−k∑

k=0

(−1)k 2g−k

�
g

k

��
g −k

i

��
C2g−i =

g∑

i=0

(−1)i 2i

�
g

i

�
C2g−i ,

where we have used the identity
∑g−i

k=0(−1)k 2g−k
�g

k

��
g−k

i

�
=
�

g
i

�
2i . This brings the proof to an end. �

6.1. Lagrange inversion for alternating Catalan numbers. In order to determine the generating
function of the alternating Catalan numbers we use Lagrange inversion. The help of D. Oprea in
this section is gratefully acknowledged.

For a power series f (w ) =
∑

n≥0 an w n ∈ Q[[w ]], we denote its coefficients by [w n ] f (w ) := an .
Suppose one can find two power series ψ(z ) and φ(z ) with [z 0]φ(z ) 6= 0, such that the function
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f (w ) =
∑

n≥0 an w n can be written as

(11) f (w ) =
∑

n≥0

w n
�
[z n ](ψ(z )φn (z ))

�
.

Then there exists a unique power series u = u (w ) such that u (w ) =wφ
�
u (w )
�
. Moreover one has

(12) f (w ) =
ψ(u )

φ(u )
· d u

d w
=

ψ(u )

1−wφ′(u )
,

where we refer to [GJ] 1.2.4 for further details and examples.

We shall now bring the generating function of the alternating Catalan numbers to the form (11).
To that end, for any a ∈Rwe introduce the symbol

�
a

n

�
:=

a (a −1) · · · (a −n +1)

n !
,

thus we have (1+z )a =
∑

n≥0

�
a
n

�
z a . With this notation, we observe that the Catalan numbers Cn can

be rewritten as

Cn =
1

n +1

�
2n

n

�
= (−1)n 22n+1

� 1
2

n +1

�
.

Using the expression of the alternating Catalan numbers from Theorem 1.1, we then have

Ag = 16g

g∑

s=0

(−2)s
�

g

s

�
C2g−s =

g∑

s=0

28g−s+1

�
g

s

�� 1
2

2g − s +1

�

= [z 2g+1] 28g+1
�
1+

z

2

�g �
1+ z
� 1

2
.

We can now complete the proof of Theorem 1.2.

Proof of Theorem 1.2. We introduce the auxiliary functions

φ(z ) = 16
�
1+

z

2

� 1
2 and ψ(z ) =

1

8

�
1+ z
� 1

2
�
1+

z

2

�− 1
2 ,

then form the function f (w ) =
∑

n≥0 w n [z n ]
�
φn (z )ψ(z )
�
. Then the function h (w ) := 1

2

�
f (w ) −

f (−w )
�

retaining only the odd coefficients of f can be rewritten as

h (w ) =
∑

g≥0

w 2g+1[z 2g+1]
�
1+

z

2

�g �
1+

z

2

�− 1
2 ·24(2g+1)−3 =
∑

g≥0

Ag w 2g+1,

that is, h (w ) is the generating function of all alternating Catalan numbers. In order to apply (12), we
introduce the function u = u (w ) such that u =wφ(u ), from which we find

(13) w =
u

16
Æ

1+ u
2

, or equivalently u = 16
�
4w +
p

16w 2 +1
�
.

We compute d w
d u =

u+4
32(u+2)

p
1+ u

2

, hence the Lagrange inversion formula (12) leads to

f (w ) =

q�
1+u
� �

1+ u
2

�

2(u +4)
,

or equivalently

(14) f (w ) =

p
64w 2 +1+16w

p
16w 2+1

8
p

16w 2 +1
,

which leads to the claimed formula for h (w ) = 1
2

�
f (w )− f (−w )
�
. �
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