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Abstract: Drug-loaded nanocarriers (NCs) are new systems that can greatly improve the delivery
and targeting of drugs to specific tissues and organs. In our work, a PPAR-γ agonist loaded into
polymeric NCs was prepared, stabilized by spray-drying, and tested in vitro, ex vivo, and in vivo
(animal models) to provide a safe formulation for optical anti-inflammatory treatments. The NCs were
shown to be well tolerated, and no signs of irritancy or alterations of the eye properties were detected
by the in vitro HET-CAM test and in vivo Draize test. Furthermore, no signs of cytotoxicity were
found in the NC formulations on retinoblastoma cells (Y-79) analyzed using the alamarBlue assay,
and the transmittance experiments evidenced good corneal transparency with the formulations tested.
The ocular anti-inflammatory study confirmed the significant prevention efficacy using the NCs,
and these systems did not affect the corneal tissue structure. Moreover, the animal corneal structure
treated with the NCs was analyzed using X-ray diffraction using synchrotron light. Small-angle
X-ray scattering (SAXS) analysis did not show a significant difference in corneal collagen interfibrillar
spacing after the treatment with freshly prepared NCs or NCs after the drying process compared
to the corresponding negative control when inflammation was induced. Considering these results,
the PPAR-γ agonist NCs could be a safe and effective alternative for the treatment of inflammatory
ocular processes.

Keywords: PPAR-γ agonist; polymeric nanocarriers; eye inflammation; ocular efficacy; corneal tissue

1. Introduction

The human cornea consists of five layers: the epithelium, Bowman’s layer, stroma,
Descemet’s layer, and endothelium, with the stroma constituting about 90% of the thickness
of the cornea. The stroma consists mainly of collagen and cells, and it is responsible for
the transparency of the cornea. However, in 2013, a sixth layer was discovered, which was
named Dua’s layer [1]. This layer is a well-defined, tough acellular lining, only 10 µm to
15 µm thick, sandwiched between the corneal stroma and Descemet’s membrane [2].

If the ordered collagen structure of the cornea is disrupted, such as in the case of
inflammation, caused by injury or disease, the cornea becomes opaque, and the normal
visual function is put at risk. Therefore, it is very important to find medical agents that are
capable of recovering the normal structure of the cornea [3,4].

The mechanical strength of the cornea, together with its refractive index and trans-
parency, is directly related to the collagen arrangement in its lamellar structure, which
contains long collagen fibrils of uniform diameter. Small-angle X-ray scattering (SAXS) and
wide-angle X-ray scattering (WAXS) techniques have been widely used to study collagen
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ultrastructure in the cornea and to observe differences between healthy and diseased tissue.
They have been proven valuable tools in evaluating structural changes in the tissue [5].
SAXS allows the measurement of the average fibril center-to-center spacing (interfibrillar
spacing) and fibril diameter [6]. WAXS allows the calculation of the collagen intermolecular
spacing and the orientation of corneal collagen fibrils [7–9].

Pioglitazone (PZ) is a drug used to treat type 2 diabetes by enhancing insulin sen-
sitivity [10], acting as an agonist of peroxisome proliferator-activated receptor gamma
(PPAR-γ), a nuclear receptor that regulates glucose homeostasis, lipid metabolism, and
inflammation [11]. Therefore, PZ has been investigated beyond its primary use, and
studies are looking into it as an anti-inflammatory, anti-arteriosclerotic, antifibrotic, or
neovascularization agent [12–16].

This drug belongs to class II in the Biopharmaceutic Classification System (BCS) [17],
which has poor aqueous solubility and high permeability. These factors could reduce the
absorption of the drug and decrease the dissolution rate, adversely affecting the levels of
the drug in blood and consequently decreasing the pharmacological activity. Different
approaches have been explored to deal with the limitations of low water solubility to
improve its transport [18–22].

Polymeric nanocarriers (NCs) have been developed to improve drug targeting to
tissues and organs and to increase drug bioavailability across biological membranes.
Poly(lactic-co-glycolic) acid (PLGA) is a polymer approved by the FDA for its use in
humans [23], and it is the most widely used vehicle in drug delivery research and therapeu-
tic devices, due to its biodegradability and biocompatibility. PLGA must be able to deliver
its payload with appropriate duration, biodistribution, and concentration for the intended
therapeutic effect, loading hydrophilic and hydrophobic molecules. To promote the stability
of the nanomaterials and increase the circulation time because of the ‘stealth’ effect on the
macrophages, polyethylene glycol (PEG) is used in association with PLGA [24–26].

Polymeric NCs are obtained mainly as aqueous suspensions, which present stability
problems during their storage, such as aggregation, hydrolysis, or drug leakage. Spray-
drying technology is an alternative used for the rapid elimination of water in the fields of
chemical materials, cosmetics, food, and flavor, as well as the pharmaceutical industry [27],
at both laboratory and industrial scale. The dry powder obtained in dehydrating nanosus-
pensions, before being resuspended for use, must maintain the physicochemical properties
and efficacy.

Classical ocular drug delivery systems often fail to combat diseases due to poor
ocular bioavailability and low ocular residence time. Therefore, the use of polymeric
nanosystems has generated interest for ophthalmic drug delivery. Recently published
reviews [28–30] concerning the use of nanotherapeutic systems for the treatment of ocular
diseases demonstrated that these systems improve the efficacy of drugs by increasing their
penetration into the cornea. Usually, in clinical practice, ocular inflammatory disorders are
treated with corticosteroids, and the field of nanoparticles is being explored as there is a
need to enhance the bioavailability of these drugs [31,32]. In addition, the encapsulation
of nonsteroidal anti-inflammatory drugs (NSAIDs) into nanoparticles for ocular route
delivery has been investigated [33,34]. Topical application of drug solutions (eye drops)
is the preferred route of administration for the treatment of eye disorders [35]. These
conventional dosage forms must be sterile, stable, and isotonic, and they must not create
irritation or vision problems.

In previous studies, PLGA-PEG-PZ NCs were formulated, optimized and character-
ized physiochemically, and stabilized using the spray-drying technique [36] in order to
be used in ocular diseases, but no studies have been conducted to assess the performance
and safety of these NCs. A variety of techniques were used in the present study, including
tolerability assays, cell toxicity, in vivo anti-inflammation assays, histological visualization,
synchrotron SAXS analysis, and corneal transparency, to determine the ocular safety of
these systems.
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2. Results and Discussion
2.1. Physicochemical Characterization of PZ-NCs

In our previous studies, PZ-NCs of PLGA-PEG were optimized and characterized
physiochemically and biopharmaceutically as a new delivery system suitable for the oc-
ular route [36,37]. PZ-NCs were previously synthesized using the solvent displacement
technique, showing a particle size of 247.22 ± 2.77 nm with polydispersity index (PI) val-
ues lower than 0.2 (0.17 ± 0.03) and a negative charge with zeta potential (ZP) values of
−3.34 ± 0.42 mV. Moreover, the percentage of PZ encapsulated (EE) was 90.12% ± 1.15%.
To stabilize the PZ-NCs, a spray-drying process was carried out. After that, the NCs were
resuspended in water, and the values found were a particle size of 271.31 ± 2.78 nm, PI
of approximately 0.24 ± 0.00, ZP of −7.57 ± 1.53 mV, and EE of 89.13% ± 2.21%. These
physiochemical parameters before and after the spray-drying process were considered
suitable for ocular delivery [36,37]. These parameters are in concordance with other authors
for the use of polymeric systems in ocular therapies [18,28,38,39].

2.2. In Vitro HET-CAM Test

In order to evaluate the ocular tolerability of the developed formulation, the hen’s
egg test with a chorioallantoic membrane (HET-CAM) was carried out. The potential
irritancy of compounds may be detected by observing adverse changes that occur in the
CAM of the egg after exposure to test chemicals [40]. The HET-CAM test is based on the
direct application of the sample into the chorioallantoic membrane and the observation of
reactions such as hemorrhage, intravasal coagulation, or lysis of blood vessels. The results
of the assay showed that the positive control (NaOH 0.1 M) caused severe hemorrhage, lysis,
and coagulation, increasing after 5 min to become a strongly irritating solution. However,
the NC formulations did not irritate the chorioallantoic membrane within 5 min of the
assay (score 0), thus revealing optimal ocular tolerance (Figure S1).

2.3. In Vivo Ocular Tolerance (Draize Test)

The in vivo Draize test [41] was performed to confirm the results obtained by the
HET-CAM assay. In the present work, the irritancy of the developed PZ-NCs formulations
was evaluated in New Zealand white rabbits. No signs of ocular irritancy or damage were
detected after PZ-NCs instillation at the studied times, with zero scores in all cases for both
formulations, i.e., freshly prepared or resuspended after spray-drying (image not shown).
Moreover, these results agree with previous studies developed using PLGA-NCs [42,43]
and also are in concordance with the HET-CAM test confirming the nonirritant potential of
PZ-loaded polymeric nanoparticles [42,43].

2.4. In Vivo Efficacy Assay: Anti-Inflammatory and Histological Studies

One method of evaluating the ocular anti-inflammatory efficacy of PZ-NCs formula-
tions consists of administering the samples to rabbits 30 min before inducing inflammation
with sodium arachidonate (SA). In this study, the PZ-NC formulations showed significant
differences in the prevention profile in comparison to the positive control at all times tested
(p < 0.05) with a higher decrease in scores over time (Figure 1). They significantly reduced
the degree of conjunctival inflammation and iris hyperemia (Figure 2). Moreover, the
polymer used to prepare the NCs was PLGA-PEG, which affects the ocular bioavailability
of drugs due to its special behavior that facilitates drug–mucin interactions, including
mucoadhesive and mucus-penetrating properties [44–48]. According to another study,
mucoadhesivity in the PLGA-PEG NCs can be related to the PEG corona as it allows a
better and longer interaction between the particles and the eye [49]. Furthermore, the PEG
surface increases nanoparticle permeability and influences the anti-inflammatory effect
when compared with formulations with only PLGA [48,50]. This result fits in with that of
other authors regarding the efficacy of using these systems [51–53].
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Regarding histological studies, it is possible to observe the corneal structure in Figure 3.
The pictures confirm that the tissue and structure were preserved using both formulations
of NCs. The epithelium (1) and the own laminate (3) are separated by a thin layer called the
Bowman membrane (2). As can be seen in images B and C, the corneal structure was not
affected, and the epithelium (1) cells were not altered by any of the formulations tested.
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Figure 3. Corneal histological structure: (A) negative control (cornea without treatment); (B) cornea
treated with PZ-NCs; (C) cornea treated with PZ-NCs dryer. 1: Stratified flat keratinized epithelium;
2: Bowman’s membrane; 3: own laminate. All images were observed at 400×.

2.5. Toxicity Assay (Cell Culture Cell Line Y-79)

The extent of cell growth inhibition was measured using a Y-79 cell model at 24 h
and 48 h with the alamarBlue™ assay. Different concentrations of PZ were either added
in solution (Free-PZ) or encapsulated (PZ-NCs and PZ-NCs dryer) to the wells with the
medium as a control in the Y-79 cell line. The cell viability after treatment with various
concentrations of the different formulations is shown in Figure 4. The formulations were
tested in the presence of polyvinyl alcohol (PVA), which is widely used as a stabilizer in
nanoparticle synthesis [39] and cryoprotectant in freeze-drying processes [54].
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Figure 4. Evaluation of in vitro toxicity using the resazurin assay (alamarBlue™ assay). Variation of
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It was observed that, even at the higher concentration (100 µg/mL) of PZ, the via-
bility remained at 90% at 48 h. These data corroborate previous results, confirming that
polymeric nanosystems are nontoxic in different cell models [51,55,56] and in ocular cell
models [31,57].

2.6. SAXS Analysis

The tolerance and efficacy in vivo assays were performed with rabbits, which are
one of the most commonly used species in ophthalmology-related studies for their ready
availability, as well as their acute inflammatory response [58–60]. However, the study of the
cornea ultrastructure with synchrotron X-ray diffraction was performed with pigs, which
are used for surgery practices in the Faculty of Medicine of the University of Barcelona,
for species correlation. The reason for using porcine eyes for this research is the similarity



Int. J. Mol. Sci. 2022, 23, 11184 6 of 16

between pig and human eye morphology and tear film [61]. One of the most remarkable
characteristics of the pig eye is the thickness of the cornea, which is around 1500 µm in the
center, compared with that of humans, which measures around 500 µm.

Each cut of the cornea (four cuts per group) provided six scatter patterns from the
anterior to the posterior part. For each position, the values of fibrillar diameter (FD)
and interfibrillar spacing (IFS) were averaged; therefore, each value includes the variabil-
ity between different animals. Tables 1 and 2 summarize the fibrillar diameter and the
interfibrillar distance, respectively. These values are represented graphically in Figure 5.

Table 1. Fibrillar diameter (nm). Data are expressed as the mean ± SD (n = 4).

Position * No Treatment Positive Control PZ-NCs
Treatment

PZ-NCs Dryer
Treatment

1 34.3 ± 0.5 35.3 ± 2.1 35.5 ± 1.8 33.5 ± 0.3
2 35.3 ± 0.3 35.0 ± 1.9 35.0 ± 1.3 33.4 ± 0.3
3 35.3 ± 0.3 35.2 ± 1.6 34.6 ± 0.8 33.6 ± 0.3
4 34.9 ± 0.1 34.7 ± 0.8 34.0 ± 0.3 33.6 ± 0.3
5 34.5 ± 0.3 34.2 ± 0.7 33.9 ± 0.7 33.8 ± 0.6
6 34.4 ± 1.2 32.7 ± 0.6 33.7 ± 1.0 33.5 ± 0.4

* Position: from 1 (epithelium) to 6 (endothelium).

Table 2. Interfibrillar spacing (nm). Data are expressed as the mean ± SD (n = 4).

Position * No Treatment Positive Control PZ-NCs
Treatment

PZ-NCs Dryer
Treatment

1 59.8 ± 0.8 45.6 ± 9.9 53.5 ± 4.0 40.9 ± 9.8
2 52.3 ± 4.7 44.4 ± 8.1 55.6 ± 3.4 45.6 ± 10.4
3 51.0 ± 3.3 44.0 ± 7.9 54.6 ± 4.2 42.8 ± 10.9
4 49.4 ± 3.2 42.9 ± 6.1 51.5 ± 3.0 47.4 ± 11.1
5 50.0 ± 1.9 41.9 ± 5.5 51.0 ± 3.6 51.2 ± 19.1
6 51.3 ± 1.8 42.2 ± 5.7 48.5 ± 4.0 51.5 ± 16.3

* Position: from 1 (epithelium) to 6 (endothelium).
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Figure 5. Series of data obtained from epithelium to endothelium in the center of the cornea (animal
group, n = 4). Fibrillar diameter and interfibrillar spacing results using a box plot graph. Box: median,
quartiles, and extreme values. Error bars: 95% confidence interval of the mean. (A) Fibrillar diameter;
* p < 0.05 negative control vs. PZ-NCs dryer. (B) Interfibrillar spacing; * p < 0.05 positive control vs.
PZ-NCs, # p < 0.05 positive control vs. negative control. (C) Image of the cornea positioned in the
sample holder; the circle indicates the position of the beam.
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The results reveal a small decrease in the interfibrillar distance from the anterior to the
posterior part of the cornea (Table 2), except for the group treated with PZ-NCs dried and
resuspended (PZ-NCs dryer), as well as a more uniform fibril diameter across the explored
data (Table 1). The results agree with the existing literature [62,63].

The ANOVA nonparametric test indicated that the differences found in fibrillar di-
ameter were not significant between groups (p > 0.05) except for the negative control (no
treatment) and treatment with PZ-NCs after spray-drying (p < 0.05) (Figure 5A). These
results for fibril diameter agree with the literature data, indicating that this parameter is less
affected by injury, inflammation, etc. [6]. As no significant difference was found between
the positive and negative controls, the fibrillar diameter average was not appropriate to dif-
ferentiate if the treatment with PZ-NCs damaged or recovered the cornea. The differences
in the positions nearer to the endothelium were less significant between groups, which can
be attributed to the fact that the inflammation was caused in the cornea periphery.

The interfibrillar spacing differences were significant when comparing the positive
control versus the negative control, and the positive control versus treatment with PZ-
NCs (p < 0.05) (Figure 5B). The large dispersion of the data obtained in the group of
animals treated with PZ-NCs dryer could be the reason for no significant difference being
found in this group versus the positive control group as was expected. The box plot in
Figure 5B shows this phenomenon more clearly. This could be explained by the fact that,
after damaging the cornea (via inflammation in our study), a first reaction was shrinkage,
causing a decrease in the interfibrillar spacing (positive control). Moreover, when the PZ-
NC formulation was instilled to avoid the inflammation, the interfibrillar spacing did not
differ significantly between the negative control (no treatment) and the treatment groups
PZ-NCs (p > 0.05) and PZ-NCs dryer (p > 0.05), thus providing a protective effect against
inflammation. In addition, these results could indicate that fresh PZ-NCs recovered the
corneal structure after the inflammation faster, but animals treated with stabilized PZ-NCs
reacted more slowly (variability of values found). Therefore, it could not be concluded
that the NC stabilization process succeeded in preserving the properties of the original
formulation from the point of view of the SAXS results. The variability found in values
of IFS of animals treated with dried NCs could be due to the slight increase in particle
size and polydispersity of the NCs after the drying process. Future investigation related
to stabilizing the PZ-NCs by freeze-drying should be carried out and evaluated, as the
process is easier to control with respect to spray drying and is more widely used in the
pharmaceutical industry [64,65]. Moreover, the number of animals used for SAX analysis
should be increased to reduce variability, mainly in treated animals.

The intensity of the first-order collagen scatters decreased with the irradiation expo-
sure time, which confirms the damage caused by the irradiation (Figure 6). With continuous
irradiation, the collagen structure was damaged over time, and diffraction patterns were
weaker. This means that there was a disorder in the tissue. The intensity of the peak de-
creased from approximately 3.5 × 107 to 2 × 107 (from 0 s to 600 s, respectively) (Figure S2).
However, during the first irradiations, there was no significant decrease in intensity, indi-
cating that the degree of order in the fibrillar array did not change.

2.7. Corneal Transparency

Loss of or reduction in corneal transparency could occur if the nano-based drug
delivery systems damage the cornea [66]; therefore, light transmission was measured
after ex vivo corneal formulation contact. In Figure 7, the absorbance values are shown
as a function of the wavelength for differently treated corneas in the range of visible
light. As expected, the positive control group showed lower transmittance values than the
untreated cornea (negative control). On one hand, corneas exposed to PZ-NCs dryer almost
recovered the clearness of the negative control, especially in the range of 500–780 nm. In
addition, corneas exposed directly to the fresh PZ-NCs showed slightly lower values than
the negative control. Transmittance experiments evidenced that the NC formulations did
not alter the corneal transparency, and the lower transmittance values obtained with the
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fresh nanoparticle solution (PZ-NCs) could have been due to dispersion of light attributable
to the presence of non-absorbed nanoparticles on the cornea surface, whereas PZ-NCs
dryer fully penetrated the cornea. Further investigation can productively focus on how
nanoparticle size affects the dispersion of light when intact absorbed nanoparticles remain
on the cornea surface.
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3. Materials and Methods
3.1. Materials

Diblock copolymer PLGA-PEG (Resomer® Select 50:50 DLG mPEG 5000–5 wt.% PEG)
was obtained from Evonik Corporation (Birmingham, AL, USA), Mw 95 kDa. The PZ was
obtained from Capot Chemical (Hangzhou, China). Acetone, dimethylsulfoxide (DMSO),
and polyvinyl alcohol (PVA) Mw 30–70 kDa, 87–90% hydrolyzed, were purchased from
Sigma-Aldrich (Saint Louis, MO, USA). Reagents and chemicals for performing efficacy
assays were purchased from Sigma-Aldrich and Thermo Scientific (Waltham, MA, USA).
Milli-Q water (Millipore-Sigma, Saint Louis, MO, USA) was used for all experiments, and
the reagents were of analytical grade.

3.2. Nanocarrier Synthesis and Stabilization Process

PZ-NCs were prepared using the nanoprecipitation technique first described by
Fessi et al. [67]. The organic phase consisted of PLGA-PEG at a final concentration of
0.9 mg/mL and PZ at a final concentration of 1.0 mg/mL; beforehand, the drug was
solubilized in 0.5 mL DMSO, and then mixed with the PLGA-PEG dissolved in 5 mL of
acetone. This organic phase was added dropwise under magnetic stirring (700 rpm) into
10 mL of an aqueous solution of PVA 2.5% adjusted to pH = 4.5 with HCl 0.1 M. Then,
acetone was evaporated under reduced pressure in a rotary evaporator Büchi B-480 (Büchi,
Fawil, Switzerland). This formulation was optimized and characterized physiochemically
beforehand [36].

Once the PZ-NCs were in suspension, the formulation was stabilized using a Nano
Spray Dryer B-90 (Büchi Labortechnik AG, Fawil, Switzerland) to improve their long-
term stability. Moreover, this instrument carries out the spray-drying process using a
piezoelectric-driven ultrasonic atomizer to generate droplets, and the dried particles are
collected using an electrostatic collector [68,69]. In our study, a spray mesh of 5.5 µm was
used, the airflow rate was set to 140–150 L/min, and the spray rate was 75%; the outlet
temperature was in the range of 25–30 ◦C [36].

The resuspension of the formulation was prepared by mixing the PZ-NC powder
with Milli-Q water in a proportion of 1 mg/mL and vortex mixing for 1 min to ensure the
deagglomeration procedure. Moreover, in our previous study both suspensions obtained
were shown to be stable in the fridge for at least 6 weeks [36].

In all experiments, a comparative study was performed using both NCs (before and
after the spray-drying process) to evaluate if the spray-drying process interfered with
the drug efficacy. PZ-NCs were denoted for the initial formulation, pre-stabilization, and
PZ-NCs dryer for the NCs after the spray-drying and resuspended process.

3.3. In Vitro Ocular Irritation Test (HET-CAM)

Fertilized hen’s eggs obtained from a farm (GALL S.A., Tarragona, Spain) were main-
tained at a temperature of 12 ± 1 ◦C for at least 24 h before placing them in the incubator
with a controlled temperature (37.8 ◦C) and humidity (50–60%) for 9 days. Six chicken
eggs were used for each formulation, and two eggs were used as controls (NaOH 0.1 M as
positive control and NaCl 0.9% as negative control).

The shell was cut just above the marked line of the air cell. The inner membrane
directly in contact with the CAM was moistened with 1 mL of 0.9% saline solution added
with a pipette and incubated for a maximum of 30 min. Then, the saline solution was
decanted, and the inner membrane was carefully removed using forceps, without causing
injury to the blood vessels, to make visible the chorioallantoic membrane underneath. The
test solutions (300 µL of PZ-NCs and PZ-NCs dryer) were then added directly into the
CAM using a pipette and left in contact for 5 min.

Any vascular lysis, hemorrhage, and/or coagulation at different times, over a 5 min
period after application of the test solution, was documented, and any effect was noted and
compared with the controls: saline (negative) and sodium hydroxide (positive) solutions.
The scores were recorded according to the scoring schemes described by Luepke [40]
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and the ocular irritation index (OII) was calculated using the expression formulated in
INVITTOX protocol 1992 [70]. The following classification was used: OII ≤ 0.9 slightly
irritating; 0.9 < OII ≤ 4.9 moderately irritating, 4.9 < OII ≤ 8.9 irritating, and 8.9 < OII ≤ 21
severely irritating.

3.4. In Vivo Draize Test

New Zealand white rabbits with no signs of abnormalities or ocular inflammation and
weighing 1.8–2.2 kg were used. All experiments were performed in compliance with the
standards of the ARVO (Association for Research in Vision and Ophthalmology) resolution
for the use of animals in research, and the corresponding protocols were approved by the
Ethics Committee for Animal Experimentation of the University of Barcelona.

Rabbits (n = 6/group) were used to assess the irritancy of the PZ-NCs by applying
the methods described by Draize and Kay et al. [41,71]. A single instillation of 50 µL of
the PZ-NCs and PZ-NCs dryer was placed in the conjunctival sac of the right eye, using
an untreated contralateral eye as a control. The level of irritation was evaluated 1 h after
application of the formulation, then after 1, 2, 3, 4, and 7 days. The analysis of ocular
lesions in the cornea, iris (opacity), and conjunctiva (inflammation, congestion, chemosis,
and discharge) was performed by applying the ocular irritation score by visual assessment
of any changes in the cornea, conjunctiva, and iris [41,72].

3.5. In Vivo Efficacy Assay: Anti-Inflammatory and Histological Studies

To assess inflammation prevention, PZ-NCs was tested in rabbits (n = 3/group) from
the animal facility of the Faculty of Pharmacy, protocol 326/19, approved 13 May 2021 (ac-
cording to Catalan Government Decret 214/97 of 30 July), by the Animal Experimentation
Ethics Committee (CEEA) of the University of Barcelona.

The anti-inflammatory efficacy of the PZ formulations was assessed using the method
described by Spampinato et al. [73]. Firstly, 50 µL of a single dose of fresh PZ-NCs, PZ-
NCs dryer, or 0.9% (w/v) isotonic saline solution (negative control) was instilled in the
conjunctival sac of the right eye. The contralateral eye was used as an untreated control.
After 30 min, ocular inflammation in the right eye was induced by administering 50 µL of
sodium arachidonate (SA) 0.5% (w/v) dissolved in phosphate buffer solution (pH = 7.4).
The inflammation was measured 30, 60, 90, 120, 150, and 180 min after the instillation of
SA. The level of inflammation was quantified through ocular changes, which are shown
as the sum of the inflammation score according to a modified Draize scoring system [72]
expressed as the average ± SD of three replicates.

After the in vivo experiment, the animals were sacrificed by an intravenous over-
dose of sodium thiopental, and the eyes were collected and fixed overnight (ON) in 4%
paraformaldehyde (PFA) in 20 mM phosphate-buffered saline (PBS), pH 7.4. Furthermore,
samples were paraffin-embedded onto cassettes, and vertical histological sections were
obtained, stained with hematoxylin and eosin, and mounted on microscope slides to be
viewed at 400× with a Leica DMD 108 optical microscope.

3.6. Assessment of Cytotoxicity

The cytotoxicity of PZ-NCs and PZ-NCs dryer in comparison to the Free-PZ not en-
capsulated was determined in the Y-79 cell line (human retinoblastoma cell line; Cell Lines
Service CLS, Eppelheim, Germany), exposed to different concentrations of PZ ranging from
2 µg/mL to 100 µg/mL, using the AlamarBlue™ assay (AB). AB (resazurin) is a sensitive
oxidation–reduction metabolic indicator; after entering the cells and in the presence of
metabolic reducing equivalent molecules (originating from cell metabolism), it fluoresces
and changes coloration from blue to rose, thus leading to a shift in the absorbance spectrum.

The Y-79 cells were maintained in RPMI-1640 medium, supplemented with 10% (v/v)
fetal bovine serum (FBS), 2 mM L-glutamine, and antibiotics (100 U/mL penicillin and
100 µg/mL of streptomycin), in an atmosphere of 5% CO2 in air at 37 ◦C. The cells were
centrifuged, resuspended in a culture medium, counted, and seeded, after appropriate
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dilution, at 1 × 105 cells/mL in poly-L-lysine pre-coated 96-well plates (100 µg/well) for
adherence, which was achieved in about 24 h. After adherence, the culture medium was
replaced by the test solutions.

The PZ-NCs, PZ-NCs dryer, and Free-PZ (firstly prepared by dissolving the drug
in DMSO) were diluted with an FBS-free culture medium to achieve the desired final
concentrations (test solutions) and then added to cells (100 µL/well). Microplates were
placed in the incubator, and cells were exposed to test solutions for 24 h and 48 h. After the
exposure time, the media containing the NCs, Free-PZ, and the control (culture medium)
were removed and replaced by an FBS-free medium supplemented with 10% (v/v) AB
and incubated. The absorbance readings were performed about 4–5 h after AB addition,
at 570 nm (reduced form) and 620 nm (oxidized form) using a Multiskan EX microplate
reader (MTX Lab Systems, Vienna, Austria; Virginia, VA, USA). Wells with culture medium
without cells, containing 10% (v/v) AB, were used as negative controls, necessary for the
calculation. Untreated cells were used as a control with 100% viability. The cell viability
was calculated by the percentage of AB reduction, using equations as indicated by AB
manufacturers and as described before [74].

3.7. Synchrotron Small Angle X-ray Diffraction (SAXS)
3.7.1. Sample Preparation

Ocular specimens were obtained under veterinary supervision from pigs used in
surgical University practices at the Faculty of Medicine, according to the Ethics Committee
of Animals Experimentation at the University of Barcelona. Four groups of animals were
obtained: (1) the negative control treated with saline solution 0.09% (w/v) (blank sample),
(2) the positive control inflammation treated with sodium arachidonate (SA), (3) treatment
with PZ-NCs, and (4) treatment with PZ-NCs dryer. Ocular inflammation was induced by
administering 50 µL of SA 0.5% (w/v) dissolved in phosphate-buffered solution, pH 7.4.
All samples of NCs treated groups were instilled after 30 min of the ocular inflammation.
The animals were then sacrificed after 4 h of NCs application.

Pigs (male, weight 30–40 kg) were anesthetized with intramuscular administration of
ketamine hydrochloride (3 mg/kg), xylazine (2.5 mg/kg), and midazolam (0.17 mg/kg).
Once sedated, the propofol (3 mg/kg) was administered via the auricular vein, and, im-
mediately afterward, they were intubated and maintained under anesthesia using inhaled
isoflurane. After chirurgical experimentation, the animals were euthanized (250 mg/kg
of sodium pentobarbital was administered through the auricular ear vein under deep
anesthesia), and the eyes were immediately extracted and transported to the laboratory in
dry ice. The whole corneas with a surrounding sclera rim were preserved in 4% formalin
until they were used for the SAXS experiments (Figure S3).

3.7.2. Data Collection

SAXS data were collected on the BL11-NCD-SWEET beamline at the ALBA Syn-
chrotron Light Source (Cerdanyola del Vallès, Barcelona, Spain). Each pattern was gener-
ated from an X-ray beam with an energy of 12.4 keV and the sample to detector distance
was 7.67 m. All small-angle X-ray scatter patterns were calibrated against AgBh (with a
standard periodicity of 58.38 Å).

A thin strip of tissue, measuring approximately 1–2 mm wide, was dissected from the
center of each cornea in the superior/inferior direction covering from limbus to limbus.
After dissection, the corneas were wrapped in a plastic membrane to prevent dehydration,
mounted in a sealed Perspex/Mylar chamber, and positioned ready for X-ray scattering
data collection (Figure S4). The strips of swine corneas were positioned so that their cut
edge was perpendicular to the incident beam direction, and SAXS patterns were obtained
from the center of the corneas and from the anterior to the posterior part (Figure 8). Two
experiments were performed.
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obtained in the Pilatus detector.

Experiment 1. SAXS patterns were obtained at 250 µm intervals throughout the
thickness of the tissue with an exposure time of 5 s, with four cornea cuts for each animal
group. Six images per cornea cut were obtained covering the area between the epithelium
to the endothelium.

Experiment 2 (radiation damage study). The cornea treated with PZ-NCs was irra-
diated 300 times at the same point with an exposure time of 2 s. The objective of the
experiment was to study the effect of irradiation on the structure of the collagen during the
experiments.

The data obtained (Tables 1 and 2, and Figure 5) are averages from collagen fibrils of
the different animals, along with the thickness of the cornea through which the X-rays pass;
thus, they are highly representative of the tissue as a whole.

Data analysis for SAXS experiments was performed using the program SAXS4COLL [75,76],
which was developed for the analysis of collagen-based tissues (Figure S5).

3.8. Corneal Transparency

Ex vivo swine corneas were obtained from pigs used in surgical practices at the
Faculty of Medicine (University of Barcelona). The corneas were set out in the receptor
compartment of Franz Cells with PBS (phosphate-buffered saline) in the chamber, and the
temperature was kept at 32 ◦C. Four different corneas were treated with 1 mL of solution
as follows: the positive control (using ethanol to damage the cornea), the negative control
(saline solution), PZ-NCs, and PZ-NCs dryer. For 1.5 h, two drops of saline solution were
added to each cornea every 10 min to simulate the natural clearing of the eye.

The transmittance through each sample was analyzed using a Nanodrop® spectropho-
tometer TM 2000 (Thermo Fisher Scientific; Waltham, MA, USA). Briefly, samples were
cleaned with saline solution to eliminate any contaminants and dried carefully under a N2
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stream. Samples were mounted directly to the base of the instrument, and transmittance
was measured in the range of 190–850 nm in at least three different regions of the cornea
close to its center.

3.9. Statistics

Graphics and statistics were carried out using Windows-based programs: GraphPad
Prism version 8 software package (GraphPad Software Inc., San Diego, CA, USA) and Excel
Office 16 (Microsoft, Reading, Berkshire, UK).

Student’s unpaired t-test was used for two-group comparisons, and differences were
taken as statistically significant when the p-value was below 0.05. All of the data are
presented as the average ± SD.

For X-ray scattering, a one-way ANOVA test was performed between all groups, and,
when significant differences were found, Dunn’s multiple-comparison test was used to
analyze differences between pairs of groups, with the null hypothesis rejected at the 95%
confidence interval.

4. Conclusions

In the current study, PZ-NCs were used as a nanotherapeutic system; they were
developed to achieve their safe use in an ocular animal model before and after the spray-
drying stabilization process. Moreover, with the administration of both formulations
(PZ-NCs and PZ-NC dryer), it was possible to observe the effectiveness of the thera-
peutic prevention (significant decrease in the level of inflammation). In addition, the
corneal structure was not affected, and the epithelium and cells were not altered by any
NCs formulations.

Our study represents the first detailed description of the corneal ultrastructure (stroma)
of pigs treated with PZ formulated in nanocarriers, analyzed by X-ray diffraction with
synchrotron light, and the results demonstrated that the treatment did not appear to
contribute to damage to or disorder of the cornea ultrastructure.

In summary, through different analyses and techniques, this study indicated that
PZ-NC formulations did not cause any corneal damage within a 180 min time window of
testing, and that these systems are safe and effective for the prevention of ocular inflamma-
tory processes.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms231911184/s1.
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