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13.3 Modelos electrostáticos para la kinesina-1 . . . . . . . . . . . . . . 287

13.4 Publicaciones y preprints . . . . . . . . . . . . . . . . . . . . . . . 299

Bibliography 300

iv



Acknowledgments

This work was funded by the Ministerio de Educación y Ciencia (Spain) under

Project No. FIS2006-11452-C03-01 and Grant No. BES-2004-3208. I would like

to thank my supervisor, J.M. Sancho. I’m also grateful to A.M. Lacasta and

G.P. Tsironis, which have participated in the elaboration of Parts I and III,

respectively.

v



vi



1

Introduction: motor systems at the nanoscale

The discovery of molecular motors was not a single and isolated event but a set

of gradual approaches from microscopic to nanoscopic systems. For example, the

knowledge of the activity of muscle cells is pretty old, and even though the first

myosin was identified about a century ago, it was not until 1986 when actin fil-

aments were visualized under a microscope [1]. But until 1995 [2] the first single

molecule measurement was not performed. Among other technical problems, to

deal with such small objects implied thermal noise detection, that couldn’t be

distinguished from the desired signal. Microscopic techniques were developed in

order to decrease the background noise allowing a progressive improving in image

resolution. However, some years before, optical trapping techniques allowed mea-

surement of individual kinesin motion [3]. In this text we will not cover a rigorous

survey on the history of single molecule experiments. For a general survey on this

topic we recommend Ref. [4].

Here we will introduce some of the most studied motor nano-systems. We

will emphasize only some general features that are well established and that will

be important for our theoretical work as experimental input. A more detailed

survey can be found in Ref.[5]. We will introduce motor systems, not just motor

proteins, because we assume that a linear motor and its track (or a rotor and its

stator) are intimately related. However, sometimes a track can hold more than one

protein type motion, as it is the case of the microtubule, which can hold kinesin

1



1. INTRODUCTION: MOTOR SYSTEMS AT THE NANOSCALE 2

and dynein stepping. Then, we will introduce linear motors and their tracks as

separated subsections but they shouldn’t be considered separately when trying to

understand their behaviour. Now we will proceed to the biochemical description

of several molecular motor systems.

1.1 Microtubule based motion

1.1.1 Microtubules

Microtubules are a set of cylindrical structures that constitute the first type of

the cytoskeleton filaments. The other two types are actin filaments and interme-

diate filaments. While the functions of the latter remain unclear, the two first

types have both structural and regulating functions. Structurally, they form the

skeleton that provides consistency to the cell, while at the same time they are

the network that makes possible all the intracellular traffic. We will focus on this

latter property, which is related to the activity of motor proteins.

Structurally, a microtubule is a polymer of tubulin dimers, also called αβ het-

erodimers as they are built by two monomers α and β. The dimer has a length

of ≃ 8.2nm [6] and it is able to bind other dimers to form different arrays. The

most stable is the A-lattice, which is the standard arrangement of the micro-

tubule, see Fig.1.1. It consists on 13 linear polymers (protofilaments) of tubulin

dimers which are laterally bound in such a way that they form a closed cylinder

of ∼ 24nm diameter. However, in a protofilament each tubulin does not match

exactly with their neighbours in adjacent protofilaments but there is an axial

shift of ∼ 0.92nm. According to this, the microtubule has supertwisting prop-

erties with a period of ∼ 12nm, which is 1.5 times the size of the dimer. Thus,

after the whole supertwist an α monomer supertwist is followed by a β monomer

supertwist and viceversa.

Microtubules are polar structures, i.e. their ends can be distinguished. Based

on the rate of polymerization we say that there is a plus-end or fast growing

end (the α → β arrow) and a minus-end or slow growing end (β → α). This

is a consequence of the asymmetric properties of the tubulin dimers. The lateral
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Figure 1.1: Three dimensional scheme of a microtubule. a) Lateral view
with the fast growing end pointing to the right and the slow growing end pointing
to the left. We can appreciate every tubulin dimer as composed of a gray sphere (α
subunit) and a dark sphere (β subunit). The α−α or β−β distance is 8.2nm. In
this array there are 13 parallel protofilaments which have a lateral shit of 0.92nm
which induces a supertwist that is patent at the edges of the microtubule. A
complete turn of the supertwist produces 12.3nm along the symmetry axis, which
corresponds to a length of three tubulin subunits. b) The microtubule seen from
the plus end to the minus end with a small tilt on the vertical axis. Protofilaments
are numbered clockwise. We can appreciate that the diameter is about 24nm and
that the approximate distance between two consecutive protofilaments is about
5.8nm.

distance between two consecutive protofilaments can be extracted by dividing the

perimeter of the microtubule’s surface by 13, which gives 5.8nm. In Figure 1.1

we can see all these parameters.

1.1.2 Kinesins

Kinesin motors actually constitute a numerous superfamily of motile proteins.

However all of them share some common properties. They are essentially pro-

teins that are able to generate motion and force while they interact with a mi-

crotubule. The conventional kinesin, the first that was identified and that will be

one of the main targets of this thesis, consists of two 120-kDa heavy chains and

two 64-kDa light chains [5]. It has on one edge two globular heads of 10nm of

diameter, connected by a neck, which is connected to the stalk, of about 80nm

long. At the end of the stalk there is a fan-like end where a cargo, like a vesicle

or a small organelle is attached. Essentially, kinesin uses both heads as if they
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were a bipedal, so maybe they should be called feet instead. We will keep calling

them heads only not to be confusing. Kinesin-1, the family at which conventional

kinesin belongs, walk along a microtubule following a path which is parallel to

a protofilament [6]. Moreover, the motion of the two heads is coordinated in an

asymmetric hand-over-hand fashion [7]. A single kinesin-1 can walk processively

along ∼ 100nm [8], although the run length, i.e. the covered distance without

detaching from the microtubule, is variable and mutations on the neck region

can modify this value significantly [8].

Kinesin performs 8.2nm steps and it consumes a single ATP per step [9] reaching

a maximum velocity of about 800nm/s. Each of the heads is able to catalyze an

ATP molecule and the role of them is exchanged after every whole cycle. The size

of the step is not by chance, as it coincides with the tubulin periodicity of the

microtubule. Experimentally, the maximum forces that a kinesin-1 can produce

are of the order of 5− 7pN .

There are, however, other type of kinesins that are not processive, i.e. they

are able to produce only a single step and after this they detach from the mi-

crotubule. In such cases there is need for cooperation between a certain quantity

of these proteins in order to achieve an effective transport of a cargo. In the N-2

family, kinesin have four heads divided in two motor domains. Then they are able

to bind two microtubules simultaneously, one at each edge of the stalk. They are

essential in mitotic process, as they contribute to the formation and the dynamic

evolution of the mitotic spindle.

A key feature of kinesins is that they are able to read the polarity of the mi-

crotubule in order to walk only to the plus-end (conventional kinesin) or towards

the minus end (NCD kinesin). This is called the directionality of kinesin, and it

seems to be directly related with the neck region [10]. In figure 1.2 we show two

versions of a crystal structure in order to illustrate the main parts of the motor

core and some typical distances.

1.1.3 Dyneins

Dyneins are minus-end directed motors that are involved not only on transport

and mitosis processes but also in the assembly and motility of cilia and flagella [5].
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Figure 1.2: Pymol renderings of a NCD kinesin from 1N6M file of the
Protein Data Bank. a) Cartoon representation. We can see the two head do-
mains connected by the neck. The stalk begins at the neck linker, even if does
not appear complete in the figure. In black there is a bound ADP on each head,
illustrating the enzymatic character of these domains. b) A surface representation
where a head to head distance and a neck-stalk scale is shown.

They have from one to three heavy chains (HC) that exhibit motor and ATP-ase

activity. The rest of the structure is composed of several intermediate and light

chains see Fig.1.3. We can distinguish between flagellar/ciliar and cytoplasmic

dynein. While the former can have from 1 to 3 HC, the latter has two. In com-

parison with kinesin, the size of a dynein is much larger. Only the heavy chain is

composed of three distinguishable regions that exceed the size of a whole kinesin.

The heavy chain is attached to the other domains through the N-terminus, which

is followed by a ring of seven domains, AAA− i with i ∈ [1, 6] and a C-domain.

Only AAA − 1 has ATPase activity, but is the one which is furthest from the

microtubule, which is connected to the ring through a flexible stalk and a MT-

binding domain [11, 5].

Concerning the ATP-dependent dynamics, we can say that ATP binding at

AAA − 1 induces microtubule releasing. Then, ADP and Pi releases from the

pocket are highly accelerated in the presence of MT. Both facts indicate a direct

communication between microtubules and AAA− 1, which are more than 20nm

distant.
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Figure 1.3: Illustration of cytoplasmic dynein (modified from Ref.[11]). a)
Illustration of the whole structure. At the bottom we can see the light chains and
the intermediate chains. There they bind the cargo that has to be transported.
The light chains connect with the N-term (amino terminal, labelled as N in the
figure) of the heavy chains, which are two in the case of cytoplasmic dynein but
can be from 1 to 3 in other type of flagellar/ciliar dynein. HC have ATP-ase
activity, which is the mechanism to obtain the energy in order to achieve motor
activity. The C-term (up, attached to the MT ) of each HC is composed of a
stalk (∼ 10nm, the region from the 4-5 AAA sites to the MT domain region)
and a microtubule binding domain. b) A heavy chain domain in more detail. We
can appreciate the seven globular subdomains, forming a ring of AAA sites of
∼ 13.5nm (labelled with numbers from 1 to 6 and an additional C). AAA-1 is
the only domain with ATPase activity.

Dyneins generate forces of about ∼ 5pN and move along MT’s with a step

size equal to the tubulin periodicity ≃ 8nm. There is evidence for processive mo-

tion and consequently for coordination between different heavy chains. However,

dyneins don’t seem to follow paths that are parallel to protofilament direction

but they move across the microtubule surface [12].

Dyneins are directly related with male fertility and the development of the

left-right axis of the embryo, as they are responsible for the motion of cilia and

flagella [13, 14].
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Figure 1.4: Scheme of an actin filament. a) Actin filament seen from the
minus to the plus-end. Following the left-handed interpretation, each monomer is
located at a place which is rotated ≃ 166o with respect to the previous monomer.
b) With the right handed interpretation we can consider two protofilaments,
marked with numbers 1 and 2. The maximum diameter of the filament at a given
axial position is about 7nm. c) A lateral view where we can appreciate the 72nm
period length and the 5.5nm distance between consecutive monomers in a given
protofilament.

1.2 Actin based motion

1.2.1 Actin filaments

Actin is a globular ∼ 45kDa protein that polymerizes into actin filaments, which

are mainly involved in two functions. On the one hand they serve as part of

the cytoskeleton and on the other hand they act as contractile structure when

crosslinked with myosin fibers. The former property is common to all eukaryotic

cells, while the latter belongs to muscle cells. Actin filaments participate also in

cell motility, cell division, cytokinesis, cell signaling and vesicle-organelle trans-

port among others. Concerning motor activity they are the tracks for myosin mo-

tors, which we will introduce now. These filaments are polar, like microtubules.

The plus-end is distinguished because it polymerizes faster than the minus or

slow-growing-end.
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1.2.2 Myosins

Even though myosins are classically known to be responsible of muscle contrac-

tion, they are also involved in many biological processes, like motility, adhesion,

endocytosis, cytoplasmic streaming, neuron growth, structural maintenance and

polarization [5]. They also transport organelles and other cellular components.

They normally use ATP as the energy carrier, like kinesin and dynein. Struc-

turally, they have 1 or 2 heavy chains and 1 or 2 light chains. Myosin V, for

example, has two heavy chains and walks processively along an actin filament

in a hand-over-hand fashion, recalling kinesin’s motion. Other types, like muscle

Myosin II, have one heavy chain and have a non processive action. In any case,

myosin motor domains are reasonably greater than the corresponding motor do-

mains in kinesins. Actually, they are more than double in size.

There are 14 families of myosins. Family I is related with cell motility, vesi-

cle transport, endocytosis among other functions. Family II is where the con-

ventional muscle myosin belongs to. They are also related with cytokinesis or

morphogenesis. Family III is basically related to cell structure and signal trans-

duction. More details can be found at [5]. Our focus of attention is towards family

V and VI, where myosins are dimeric and processive. Family IXb is processive

but monomeric. Myosins I and V move towards the plus end of actin filaments.

Other myosins like VI and IX move towards the minus-end. This is important

concerning cellular transport since actin filament usually have their plus end ori-

ented towards the cell periphery. Then, plus ended myosins transport materials

to the periphery while minus ended do the opposite. Processive V myosins per-

form 36nm steps, which corresponds to the pseudo periodicity of actin filaments,

i.e. the periodicity obtained when projecting the actin structure into a 2D plane.

They stall at forces of ∼ 2pN.

In Figure 1.5 we can see a crystal structure of one of the two heavy chains

of a V myosin and part of a light chain. We can notice the localization of the

ADP nucleotide and that the size of the domain is considerably bigger than the

corresponding for kinesin. In Figure 1.6 we can see 14 images of a V myosin in

different conformations [15]. They suggest a mechanical cycle based in hand-over-

hand motion. We can appreciate the two motor domains, that seem to be quite

flexible. The rising action seems quite vertical as well, which doesn’t allow to
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Figure 1.5: Pymol representation of a V-myosin from 1W7J.pdb We can
appreciate a single heavy chain and part of a light chain of a V-myosin crystal
structure. The rod accounts for a size measurement of 12.3nm, which is con-
siderably larger than kinesin’s motor domain. In black there is an bound ADP
nucleotide.

differentiate between symmetric and asymmetric hand-over-hand motion.

1.3 DNA-RNA based motion

1.3.1 DNA and RNA

DNA and RNA are nucleotide polymers that are related with genetic information.

However, from the motile point of view, they are the tracks that some enzymes as

DNA and RNA polymerases (DNAp and RNAp) or ribosomes use to walk along

DNA and RNA, respectively. The internal structure of DNA and RNA is very

similar, as they are polymers of four nucleotides. Of these four different bases,

three of them are shared by DNA and RNA and they are Cytosine (C), Guanine
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Figure 1.6: Images from different V-myosin conformations, adapted from
Ref.[15]. We can see 14 averaged stained images from a V-myosin in different
conformations. The resolution is 2nm. The order of the images is built upon
considering a hand-over-hand motion, even though there is no direct observation
of the dynamics.

(G) and Adenine (A). However, the fourth base is different in the two tracks.

While we have Thymine (T) for DNA, we have Uracile (U) for RNA. In any

case, we can forget the differences between bases for now as the motors we will

introduce are able to walk along all the bases, although not indifferently.

DNA tracks are normally folded in a two stranded double helix, in the B-DNA

conformation, but when a DNAp motor is walking along, during replication, for

example, only one strand is used as a track. RNAp, however, use both strands

as support for motion. The periodicity of these polymers is characterized by a

very small period compared to the periods in the tracks introduced before. We

know that a base pair (bp) is ≃ 0.33nm long. The width of the double helix is

between 2.2 and 2.6nm, but this is not a static value as the motor action exerts

bending effect on the polymer. Concerning polarity, DNA and RNA are polar

tracks, as they are differentiated by the two different terminus. One terminus is

5’ corresponding to the free phosphate group while the 3’ terminus corresponds

to the free sugar end. In a double helix conformation, the strands are oriented in

an antiparallel way.

In Figure 1.7 we can see a crystal structure of a B-DNA. We can appreciate

the antiparallel orientations of the strands, marked in black and white. In general,

these polymers can adopt very different 3D structures, specially in the case of

RNA chains. However the motor that walks along it has to temporarily unfold

the local structure in order to slide along the chain. Unlike microtubule or actin



11 1.3. DNA-RNA BASED MOTION

Figure 1.7: Pymol representation of a B-DNA from Ref.[17] In black we
see the 5’-3’ strand while 3’-5’ is shown in light gray. We can see the base pair
distance (≃ 0.33nm) and the approximated width of the helix (∼ 2nm).

based motion, the tracks of DNA and RNA have encoded information. There

is, however, a proposal of quantum information on microtubules [16] but it is

still a very open question and it does not necessary imply that motors read this

information, while DNAp and RNAp read it.

1.3.2 RNA and DNA polymerases

DNA polymerases are molecular motors that use a single strand of DNA in order

to replicate it. They walk along DNA in the 3’-5’ direction performing 0.34nm

steps and generating forces up to 35pN . As the process can be continued by an-

other DNAp, the processivity of this motor is not high. On the other hand, RNAp

are motors that use both strands of DNA as tracks, even though they read from

3’-5’ strand to perform the transcription process, which produces RNA strands

in the order 5’-3’. They perform steps of the size as DNAp, i.e. bp steps, but

they generate forces that don’t overcome 25pN . The energy source is not only
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Figure 1.8: Scheme of transcription We can see a RNA polymerase sliding
along a double helix DNA in the direction marked by the arrow. Even though the
RNAp uses both strands as tracks, it reads 3’-5’ information, i.e. the information
from the template strand. (Image from public domain).

ATP but also the other four nucleotides: UTP, TTP, CTP and GTP, abbreviated

under the general term NTP. UTP is specific of RNAp and TTP is specific of

DNAp, being CTP, GTP and ATP common to both type of devices.

These motors do not only walk along their tracks but also they recognize

track sequences and synthesize polymers that will be tracks of other motors.

They are motors that transcribe and replicate the tracks. After all, a kind of this

action is needed in order to preserve the track molecules. On the other hand, the

constituents of the track are the residues of the energetic fuel. In Figure 1.8 we

can see a scheme of transcription performed by a RNAp. We can see how the

motor reads the 3’-5’ DNA while building a 5’-3’ RNA.

1.3.3 Ribosomes

Ribosomes are big and complex structures made of ribosomal RNA (65%) and

ribosomal proteins (35%). Their main function is to read the mRNA and attach

the matching tRNA for every messenger triplet. The aminoacids of the transfer

RNA are bound by the ribosome and they constitute the protein that mRNA

was encoding. We are not concerned on the complex details of this machine but

on the properties related with motor activity. Ribosomes walk along mRNA in

the 5’-3’ direction, even though the huge volume and subsequent friction may

produce a motion of the track in the laboratory frame.

These 20nm−diameter machines are the last piece of a self sustained motor

system: they walk along tracks in order to produce, among other things, molecular

motors. As tracks were synthesized by DNAp and RNAp, motors are synthesized
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Figure 1.9: Polysomes A stretched DNA of E. coli read by RNA polymerases
that produce mRNA. The messenger RNA strands are read by Polysomes, i.e. by
more than one ribosome at the same time. (Adapted from Ref.[18])

by ribosomes. These machines allow the biological motor systems to be self-

reproduced and maintained.

In Figure 1.9 we can see how different ribosomes can simultaneously walk

along mRNA which is simultaneously being produced from a DNA by a RNAp.

This picture reflects that the biological steps are not strictly disjunctive.

1.4 Rotatory systems

1.4.1 Bacterial Flagellar Motor

Most bacteria swim thanks to the rotation of bacterial flagella coated on their

external surface. This motion is passive, as bacterial flagella are rigid helices that

are propelled by a rotatory machine which is embedded in the cytoplasmic mem-

brane. We call to this machine Bacterial Flagellar Motor (BFM) [19]. They are

devices that use the electrochemical potential due to different ionic concentration

at both sides of the membrane. Specifically, it uses the ion flux from one side of

the membrane to the other to extract the energy used for the rotation. The cross-

ing ions define two types of BFM: one of them uses proton flux and we call to the

force that they produce proton motive force (pmf) while there are Na+ powered

BFM which produce sodium motive force (smf). Usually the flux is directed from

the exterior to the interior of the bacteria, as the internal ion concentration is
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lower. Typically there is a 150mV effective potential with respect to the exterior.

Under normal conditions BFM can rotate with a frequency up to 1000Hz.

Structurally, the Bacterial Flagellar Motor is divided into the rotor and the

stator. In Figure 1.10 we can see an electron cryotomography image of a BFM

[20]. We can appreciate the stator and the rotor as well as the C-ring. The sta-

tor has a diameter of ∼ 60nm [20]. The rotor has a variable number of torque

generating units, from 8 to 16, and it is bound to the flagella via a hook. These

torque generating units work independently as they can be activated or inhibited

as the total frequency seems to be enhanced or decreased an increment of velocity

that corresponds to the quotient between the total velocity and the number of

torque generating units [21, 22]. In each of the torque generating units there is an

independent flux of ions, and the interaction between the stator and the rotor,

which has to produce the torque, seems to be of electrostatic nature [23].

The rotational steps have been measured in Ref.[24] and kinetic measurements

are available in [25, 26]. In [24] they measure steps of 13.7o, which corresponds

to 26 steps per revolution. This is in agreement with the structural periodicity

of the FliG protein in the rotor place where the torque is generated. However,

there is evidence that ∼ 1000 Na+ ions [25] or ∼ 1200 protons [24] are required

to complete a revolution. This indicates that more than one single ion is involved

in the production of a single step. On the other hand, the periodicity of ∼ 10

torque generating units is not fitting the step size in a direct way. Much work is

needed to clarify the stechiometry of this motor.

Eventually, a BFM can reverse its direction [27]. It is known that in E. coli,

even if almost all the flagella rotate counter-clockwise, it is found that it can ap-

pear a flagella that starts to rotate clockwise. This helps to change the swimming

direction. There are also BFM that are able to switch between action and rest in

order to allow the bacteria to optimize its search for food.



15 1.4. ROTATORY SYSTEMS

Figure 1.10: Bacterial Flagellar Motor stator-rotor structure adapted
from Ref.[20] Electron cryotomography of a BFM where the rotor and the
stator can be differentiated except in the interaction domains, where they appear
as the same structure. The diameter of the C-ring, ≃ 60nm, gives the scale to
the figure.

1.4.2 FO − F1 ATP synthethase

The FO − F1 ATP synthase is a device that is found at the inner membrane of

the mitochondria, at the thylakoid membrane of chloroplasts and at the plasma

membrane of bacteria [5]. It is in fact a set of two motors which operate in com-

petition. The FO part rotates embedded in the membrane while F1 is located

outside the membrane and connected to the FO by a shaft, called the γ domain.

The stator also connects both parts (see Figure 1.11).

The FO part is a rotatory motor that uses the ion gradient at both sides of

the membrane to obtain the energy required for the rotation. It can remind the

Bacterial Flagellar Motor, but some differences arise. In the BFM there were

several torque generating units working in parallel, while in the FO there is only

one. In any case, the torque seems generated, as in BFM, by electrostatic inter-

actions between the rotor and the stator [28]. The FO is divided into a variable

number of sections, which goes from 10 to 14. Each of these cavities is negatively

charged and when an ion enters the cavity the whole charge is compensated and
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then the cavity can move inside the membrane, which is hydrophobic. We have

to imagine all the cavities neutralized except the one passing through the stator

region, which releases the ion and is affected by the stator charge. Then, in this

motor, an ion is tightly coupled to a discrete rotation of the FO unit.

When looking from the FO to the F1 perspective, the natural, non-forced mo-

tion of the FO is clockwise, while the natural motion of F1 is counterclockwise.

They are generating opposing torques and under physiological conditions it is the

FO which is winning. The connection between both units is the γ shaft, which acts

as a mechanical axis. This means that FO is forced to rotate against its natural

direction. This leads to the main feature of the ATP synthase. While an isolated

F1 hydrolyzes ATP as a mechanoenzyme, when forced, it is able to synthesize it.

Thus we are in front of a reversible machine. In fact, almost all the ATP in the

cell is produced due to the action of this enzyme.

Structurally, F1 can be divided into six domains, three α and three β re-

gions, which are alternated forming a ring. The β domains have catalytic and

synthezising properties. The rest state of the system is when we have an empty

β, an ADP-Pi-bound β and an ATP-bound β. Depending on the resulting global

torque, the ATP is hydrolyzed or the ADP −Pi is converted into ATP. As there

are three active sites, the measured angle steps are of 120o, even if each step is

divided into 90o and 30o substeps, thought to be related with ATP binding and

ADP −Pi release, respectively [?]. When free from the FO forcing, F1 can rotate

from 0.2 to 10Hz, depending on the ATP concentration.

From the theoretical point of view, the ATP synthase is probably the most

challenging device, as it is composed of two very different subdevices that are

forcing to each other being both reversible and mechanically coupled. In Figures

1.11 and 1.12 we see some representations of the ATP synthase with the different

domains marked and with some typical distances.
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Figure 1.11: Pymol representation of an ATP-synthase from 1QO1.pdb.
In this lateral view we can see the 20nm height of the whole device. We can
appreciate the γ shaft as the connecting part between the two rotating structures.
We have sketched the stator domain, which serves as ion crossing region and also
connects both rotating machines. In grey, there is the membrane-hydrophobic
zone so ions can only cross through the stator channel.

Figure 1.12: Pymol representation of an ATP-synthase from 1QO1.pdb.
a) Seen from FO to F1 we can appreciate the 4.5nm diameter of the FO ring with
ten subunits. b) Seen from F1 to FO we can see the top of the F1 unit, which is
a ring of three α and three β units. The diameter is about 10nm.
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1.5 Summary

In this introduction we have presented the most typical motor systems. Some of

them will be the objects of our further analysis. But among all the examples, it

is the kinesin-microtubule system the main target of this thesis. First of all, we

will proceed with a collection of ratchet-based models that will allow us to intro-

duce kinetic and energetic aspects. After this, a more detailed chemical kinetic

description is provided in order to understand how the mechanical forces affect

the chemical rates. Finally, and focusing on kinesin motors, we will present, on

the one hand, an electrostatic model for tubulin and kinesin. On the other hand,

we will introduce a phenomenological model for the interactions between tubulin

heterodimers and the different nucleotide states of kinesin heavy domains, which

have been studied in recent experiments.



Part I

Ratchet-based models
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2

Introduction

2.1 Brownian motion and Langevin equations

In 1827, Robert Brown observed at his microscope how a pollen particle sus-

pended on water exhibited an irregular motion [29]. He thought that maybe such

a motion could be related with the basis of life, but he proved that it wasn’t.

Almost a century passed until A. Einstein, in 1905, was able to provide an ex-

planation for this phenomena and used it to proof the atomic nature of matter.

In a few words, brownian motion can be understood as the trace of a particle

which is small enough to be affected by the smallest particle impacts and big

enough to be tracked by a microscope. The irregular motion is a reflection of

the local fluctuations of momentum in the bath. Einstein related brownian mo-

tion with temperature and diffusion, fact that took the attention of physicists

and chemists, as these were magnitudes that were macroscopic and then could be

used to measure microscopic properties and specially the bridge quantity between

the macroscopic and microscopic worlds: the Avogadro number NA.

In the last years of the XXth century, experimental techniques were already

able to track particles small enough to be visibly affected by thermal fluctuations.

With the arrival of single molecule techniques, the relevance of brownian motion

in biological molecules has been put out of question. As long as the behavior

of a protein is to be understood, the presence of brownian motion cannot be

21
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neglected. Sometimes, a proposed mechanism may be robust under thermal fluc-

tuations, while other models use these fluctuations as a part of the mechanism.

Thus such an erratic motion needs to be mathematically described. In this sec-

tion we will provide an intuitive view of the quantitative properties of brownian

motion and other aspects related with it.

We will make use of the two main results due to Einstein [30]. First of all,

the displacement vector ~r that the big particle performs after every ∆t can be

decomposed into cartesian coordinates and then each coordinate can be treated

as a one dimensional brownian motion. The key point is that the motion has

zero mean and a mean square displacement equal to 〈∆r2〉 ∼ 2dDt, where d is

the dimensionality of the system and D is the diffusion coefficient, which can be

interpreted as D = kBT
λ

where λ is the translational drag coefficient . This is a

fluctuation-dissipation relation and it establishes the connection between micro-

scopic fluctuations and macroscopic diffusion. The relation for the mean square

displacement and the connection of the diffusion coefficient with the drag coeffi-

cient together with temperature are the two main results found by Einstein.

Thus a brownian particle is an erratic object wandering through the media

with zero neat displacement but with a finite and growing-with-time variance

that is proportional to temperature and inversely proportional to friction. These

properties are very important in nanometric systems because even if on aver-

age these motions are compensated, the brownian jiggling affects appreciably the

state of every nano particle like a protein. This means that every state which is

not bound with an energy larger than several times the thermal energy cannot

be stable.

We can calculate how effective is diffusion for intracellular transport by in-

troducing biological numbers in the fluctuation-dissipation relation. Let’s use the

Stokes formula for the friction of a spherical object

λ = 6πηR, (2.1)

where η is the viscosity of water η ≃ 10−9pN ·s/nm2. We apply to a nanoparticle
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of radius ∼ 25nm. Thermal energy is expressed as kBT = 4.1pN · nm so then

D =
kBT

λ
=

kBT

6πηR
≃ 9 · 106nm2/s. (2.2)

Then, this brownian particle will explore a radius a given by
√

6Dt in three di-

mensions. If we consider a cell of being 5µm long, the 25nm particle will last

a time t = a2/6D ≃ 0.1s in order to explore the whole cell. For a 1mm-long

bacteria, this time is greater than 5 hours. For more examples, see [14]. The time

to explore a certain distance by diffusion grows proportionally to the square of

this distance. This means that even if for low distances the time can be relatively

short, for greater distances it increases parabolically. Moreover, this exploration

time grows linearly with the size of the brownian particle. It is interesting to

note that small particles can rapidly be spread along the whole cell, while other

bigger structures may need an active transport. Surprisingly, a kinesin can pull

a 25nm-radius-vesicle at a velocity of about 1µm/s, which means that such an

active transport is more than 50 times slower than the passive diffusion! In fact,

the active and passive times do not equal until we evaluate distances of 54µm.

This is a point where we have to remark the importance of directionality. Some

substances are not needed everywhere in the cell but in some specific locations,

so then, active transport is more effective even if sometimes is slower. It is worth

mentioning that the viscosity in the cytoplasm may be considerably higher than

the corresponding to the water, and that sometimes the distances needed to travel

can reach a whole meter in the case of some nerve cells. In this latter case the

active transport is much rapid than passive diffusion. We can also notice that

sometimes the cargo of a motor protein is not so tiny as having a 25-nm radius

but a 5µm radius in the case of some big mitochondria. With such a size, the

diffusing time is incredibly long, while a kinesin can still carry it at ∼ 1µm/s.

See more details in Fig.2.1.

Mathematically, there are several ways to deal with brownian motion, but

maybe the most direct and intuitive is the use of Langevin equations, which are

no more than Newton’s dynamical equation where a stochastic force is added.
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Figure 2.1: Passive and active transport. In a) we can see 0.16s of a brow-
nian particle simulation in 2D where grey indicates brownian motion and black
a motor trajectory. The parameters are kBT = 4.1pN · nm, λ = 10−6pNs/nm.
The mean velocity for the motor is v = 1µ/s in the direction y = x. It is clear
that at this time diffusion has explored further places. However, if the desired
target would be at negative y, a directed motion would have been more effec-
tive since the erratic exploration has been poor on this zone. In b) we can see a
critical situation where t = 16.4s. This value comes from the consideration that
the exploration radius (mean square displacement) is equal to the net displace-
ment of the motor. Then t = 4kBT/λv2 = 16.4s. In the figure it is clear that
active transport explores a similar distance from the origin than thermal diffu-
sion. And what’s more important: at larger times, active transport goes beyond
than diffusion.
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We have Newton’s second law for a particle

mẍ =
∑

i

fi. (2.3)

Now we can split the force terms into four characteristic forces that will constantly

appear in the formalism: the drag −λẋ, the potential gradient −dV (x, t)/dx, the

external fext(t) and the stochastic force ξ(t), leading to

mẍ = −λẋ− dV (x, t)

dx
+ fext(t) + ξ(t), (2.4)

where possible time dependences are indicated. We can show now that the second

derivative can be neglected in a nanoscopic environment as Reynolds number Re1

is extremely low, ∼ 10−5 for a 1µm-long vesicle. For all the purposes, inertia can

be neglected, then, and we can reduce our dynamical equation to what we is

usually called an overdamped equation, with the general form

λẋ = −dV (x, t)

dx
+ fext(t) + ξ(t). (2.5)

It is remarkable how, in the absence of thermal noise or in cases where the ob-

servable magnitude is not affected by a zero-mean-value noise, the velocity of

the particle is proportional to the force, as Aristotle already stated. It is worth

mentioning that Aristotle took his conclusion from an experiment where damping

produced a terminal velocity. Thus we will deal with Aristotle dynamics where

a stochastic force is added by hand. Such a force, in order to reproduce the fluc-

tuations due to temperature, must hold some statistical properties. Specifically,

ξ(t) is a thermal force [31] if

〈ξ(t)〉 = 0 (2.6)

and

〈ξ(t)ξ(t′)〉 = 2λkBTδ(t− t′), (2.7)

which means that the noise has zero mean and is delta-correlated in time.

Such a correlation relates the thermal force with the specific drag coefficient and

the temperature. This is called a fluctuation-dissipation theorem.

1Re = ρLv

η
, where ρ is the density of the liquid, L the characteristic length of the system,

v the velocity and η the viscosity.
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In order to implement the thermal force in an algorithm, there is a subtlety

relying the integration of motion. The non-stochastic forces can be integrated at

first order following simple Euler’s rule,

x = x0 +
∆t

λ

∑

i

~fi. (2.8)

However, the thermal force obeys a different integration rule. From eq (2.7) one

can agree with, for a finite time step,

〈ξ(t)ξ(t + ∆t)〉 =
2λkBT

∆t
(2.9)

where we have used that

lim
∆t→0

1

∆t
= δ(∆t). (2.10)

Then we can write in the limit of very small ∆t

〈ξ2(t)〉 =
2λkBT

∆t
. (2.11)

If we want to integrate the thermal force in an equation like λẋ = ξ(t), we will

use

x = x0 +
∆t

λ

√

〈ξ2(t)〉N(0; 1) (2.12)

where N(0; 1) is a gaussian random number with zero average and variance equal

to unity. This random number guarantees the statistical properties of the thermal

force. Then

x = x0 +

√

2kBT∆t

λ
N(0; 1). (2.13)

We can see how, while other forces are integrated with a direct proportionality

to ∆t, the thermal force is proportional to the square root of this increment.

Thus with the equation λẋ = ξ(t) we simply obtain a pure brownian motion,

which can be applied to free diffusing molecules in the environment. We can use

Langevin dynamics to describe the effects of a potential or an external force. It

is of special importance the case of a brownian particle trapped in an harmonic

potential V (x) = 1
2
kx2, where k is the harmonic stiffness. The corresponding
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Langevin equation is

λẋ = −kx + ξ(t). (2.14)

It can be shown that the mean value 〈x〉 = 0 while

〈x2〉 =
kBT

k
, (2.15)

according with the Energy Equipartition Theorem. The latter expression com-

pares the elastic energy with the thermal energy,

1

2
k〈x2〉 ∼ kBT

2
. (2.16)

This is a useful expression, since whenever we have a noisy signal from, for ex-

ample, an optical tweezer, we can calculate the variance of the signal and obtain

the stiffness of the trap, see Fig.2.2 and 2.3. Notice, however, that if the signal is

already filtered to improve a step-finder accuracy or a similar trajectory analysis,

then the information concerning thermal fluctuations is already lost.

2.2 Energetic considerations on overdamped mo-

tors

In this section we will discuss some general aspects concerning overdamped mo-

tors, like work, heat, first and second law of thermodynamics, dissipated heat,

efficiencies, etc. A motor performs a useful work only if there is a force that is

opposing the motion. This force can be conservative, as in the case of an electric

field or an harmonic potential (as it is the case when we use optical tweezers), or

it can be non-conservative, as in the case of friction. If we only have friction and

the motive force fm of the motor we can write

λẋ = fm. (2.17)

We have to notice that in such overdamped systems we are always at mechanical

equilibrium, as friction compensates any other forces in the system. In this case,

the work performed by the motor W along a one-dimensional path x : 0 → L

is 0 because there are no conservative external forces. However, there is a non-
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Figure 2.2: Thermal fluctuations of a nano-particle under an harmonic
potential. Langevin simulations of a brownian particle under an harmonic po-
tential of stiffness k in a one-dimensional space. We perform the simulation with
three different k. In a) k = 1pN/nm, in b) k = 5pN/nm and in c) k = 20pN/nm.
If they were experimental trajectories from an optical tweezer or other single
molecule technique, we could guess the stiffness of the potential from the standard
deviation of the trajectory. From the simulation we can perform the mean and
standard deviation computation obtaining σa

x = 2.040; σb
x = 0.920; σc

x = 0.478nm,
where the upper-case index accounts for the three different realizations. Knowing

that σx ≃
√

kBT
k

we obtain ka = 0.985; kb = 4.844; kc = 17.944pN/nm which are

in a reasonable good agreement with the real values.
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Figure 2.3: Distribution of the thermal fluctuations under an harmonic
potential On the three figures we show normalized histograms of the realizations
shown in 2.2. As we can see, the distribution is clearly gaussian with zero mean
and σ = 2.028; 0.914; 0.483nm for a), b) and c), respectively.

conservative force applied to the motor: friction. The dissipated heat Q is the

work performed by the drag force −λẋ,

Q =

∫ L

0

λẋdx. (2.18)

It is defined positive because it is the heat produced from the motor. But the

force produced by the motor cannot come from nowhere. Thus there is the need

for an external force fext which produces a useful work W . Then, the first law of

thermodynamics states for the energy generated by the motor E,

E = W + Q, (2.19)

where Q is the heat release. The efficiency η can be defined as

η =
W

E
=

W

W + Q
, (2.20)
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where

W = −
∫ L

0

fextdx E =

∫ L

0

fmdx. (2.21)

In general, it is clear that η < 1 as Q > 0. In an overdamped system, the

limit η → 1 can only be reached when ẋ→ 0. The energy conservation in (2.19)

can be reformulated in terms of a dynamical equation,

λẋ = fm + fext (2.22)

where fext must be ≤ 0. Otherwise it would be an assisting force. It is interesting

to consider the case where both fm and fext are constants because the heat is

simply Q = λvL and we can write

η =
−fextL

−fextL + λvL
=

−fext

−fext + λv
=

1

1− λv
fext

. (2.23)

Now, using the dynamical equation, we know that

ẋ ≡ v =
1

λ
(fm + fext), (2.24)

so then

η =
−fext

fm
. (2.25)

It is clear that η goes to zero if fext is null. It is also evident that η → 1 if

fext/fm → −1 or in other words, fext + fm → 0. This means that if we pull the

motor with exactly the same force as the motive force but opposing to the motion,

then we reach the maximum efficiency. . . even if there is no motion! The reason

is clear, because if there is no motion there is no dissipation and consequently

there are no heat losses.

At this point we have not discussed the role of the thermal noise in these expres-

sions yet. Thermal fluctuations can be considered, from the point of view of the

motor, as an external force. Sometimes this force can be opposing and sometimes

assisting, with the condition that the probability of these two cases has to be

equal. As the thermal noise is essentially the thermal bath, we include its work
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as interchange of heat with the bath, so the definition of the heat is modified as

Q =

∫ L

0

[λv − ξ(t)]dx. (2.26)

Another interesting quantity to analyze in overdamped motors is the power

P , defined as the negative time derivative of useful work,

P ≡ −dW

dt
. (2.27)

As the motor is moving with an average velocity v, we can write

P = −fext
dx

dt
= −fextv. (2.28)

This is in fact a definition for the average power, but it is still a useful quantity

as it can provide a characteristic power curve P vs fext. The external force is

increased and the response is a decay in the velocity, so we will encounter an

external force that produces a maximum power in the motor. But before going

into a quantitative expression we need a force-velocity relation for a motor. As it

is too soon in this thesis to write a proper and accurate expression, we can take

from (2.24) that the velocity can be written as

v = vmax
fm + fext

fm
, (2.29)

with vmax = fm

λ
.

We can check that at fext = 0 the motor moves at its maximum velocity.

On the other limit, when fext + fm = 0, the velocity vanishes, see Fig. 2.4. This

specific value of fext is usually called the stall force. However, in this thesis we will

call it the mechanical stall force, as we will show that there are other, not directly

mechanical ways to stall the motor. Equation (2.29) is a linear relation that even

if it’s not the most accurate, it is still useful for many levels of description. We will

go back to this topic many times, as the force-velocity curve is one of the most

crucial characterizations of a motor. Substituting (2.29) into (2.28) we obtain the

power output,

P = −fextvmax
fm + fext

fm

(2.30)
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region of negative fext where the load is extracting useful work from the motor.
The concept of vmax here is the velocity at fext = 0, because at assisting loads
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Figure 2.5: Power and efficiency as a function of fext. We show, only for
opposing forces, the power (solid line) and the efficiency (dashed line). We can see
the parabolic behavior of P with its maximum at fext = −fm/2. The efficiency
increases linearly as the modulus of the external force grows.
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which can be arranged as

P = −f 2
ext

vmax

fm
− fextvmax. (2.31)

As the second derivative d2P/df 2
ext0 is negative and constant, we can notice that

the parabolic power reaches a maximum at fmax = −fm/2, see Fig.2.5.
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3

A first mechanical model

Now it is time to start modelling some general aspects of a motor protein. We start

with kinesin-1, which was measured with optical traps in [9] with enough accuracy

to clearly observe individual steps as well as to obtain curves for the mean velocity

as a function of the two main control variables: the ATP concentration, [ATP],

and the external force fext. It was not the first time that these magnitudes were

measured, but completeness of the data and its precision promoted the appearing

of the first theoretical and quantitative models. The analysis we will present now

is mainly inspired by a previous work of M. Bier [32]. The main goal of the

section is to give an introductory survey on the mechanical aspects of kinesin

and its relation with the chemical ATP hydrolysis that is tightly coupled with

the mechanical cycle. It also provides a framework from which next models can

be an improvement.

3.1 The simplest model

The most remarkable thing that several experimental groups [3, 33, 34] observed

in their optical tweezers experiments was that kinesin performs discrete steps.

Four years later, the group of S. M. Block observed that such steps were cou-

pled with the process of ATP hydrolysis [35]. Today we now that every kinesin

performs a ∼ 8nm step per ATP hydrolysis. That is, the mechanics is directly,

tightly coupled with chemistry. With this simple but crucial experimental fact we

35
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can relate the rate of ATP hydrolysis, rATP with the mean velocity of the motor

〈v〉 by simply multiplying the distance covered by the motor every step,

〈v〉 = LrATP , (3.1)

where for kinesin, L ≃ 8nm. Under this strong coupling, we only need a chem-

ical model for the rate of catalysis of the nucleotide and then the mechanics is

straightforwardly obtained. And even though this simple assumption is not gen-

erally accurate, the amount of useful information that can provide is remarkable.

Let’s consider, as in the experiments, that at constant load conditions, the

motor mean velocity is constant. This would mean that the rate of ATP hydrolysis

is constant as well. We call ∆GATP to the energy provided by a single nucleotide

(we suppose for now that all the energy is used). As this energy is spent after a

L forward step, we can write

∆GATP =

∫ L

0

fm(x)dx, (3.2)

where we recall that fm is the motive force of the motor. The simplest assumption

that can be made is that fm is constant during the step. Then we can write

fm(x) = fm =
−dV (x)

dx
(3.3)

and then

V (x) = −fmx =
−∆GATP

L
x, (3.4)

where V (x) is the tilted potential associated to the motive force. This potential

must satisfy the condition

∆GATP = V (x = 0)− V (x = L). (3.5)

Now we can write the corresponding Langevin equation for this oversimplified

model of a kinesin motor,

λẋ =
−dV (x)

dx
+ ξ(t) = fm + fext + ξ(t), (3.6)
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where λ is the drag coefficient and ξ(t) the thermal gaussian-white noise as usual.

The reduction to a 1-dimensional model is justified experimentally, because ki-

nesin walks along microtubules parallel to the protofilament’s axis direction [6].

Moreover, we can calculate the mean square displacement in order to obtain

information about the fluctuations. We define the randomness parameter r (di-

mensionless) as

r ≡ lim
t→∞

〈∆x(t)2〉
L〈x(t)〉 (3.7)

where L is the step size of the motor. 〈x〉 is the average position for N different

motor runs, 〈x〉 = 1
N

∑

i xi. On the other hand,

〈∆x(t)2〉 = 〈(x(t)− x(0))2〉 − 〈x(t)〉2. (3.8)

In order to calculate this quantity from the different realizations or trajectories

we sum

〈∆x(t)2〉 =
1

N

∑

i

(xi(t)− xi(0))2 − (
1

N

∑

i

xi(t))
2. (3.9)

The mean value 〈x(t)〉 is easily obtained by integrating the Langevin equation,

x(t) = x(0) +
fm + fext

λ
t +

∫ t

0

ξ(τ)dτ, (3.10)

where we set now x(0) = 0. Averaging, we obtain

〈x(t)〉 =
fm + fext

λ
t⇒ 〈v〉 =

fm + fext

λ
, (3.11)

where 〈
∫ t

0
ξ(τ)dτ〉 =

∫ t

0
〈ξ(τ)〉dτ = 0, see Fig.3.1. Now we can calculate the mean

square displacement by performing x(t)x(t′). Averaging and subtracting 〈x(t)〉2
we obtain that

〈x(t)2〉 − 〈x(t)〉2 =
2kBT

λ
t. (3.12)

Then, substituting (3.11) and (3.12) into (3.7) we can write for the randomness

r =
2kBT

L(fm + fext)
. (3.13)

We can notice that the randomness parameter does not depend on the drag

coefficient, which makes this parameter very useful as the friction coefficient is
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not easy to obtain from experiments. Note also that r diverges (see Fig.3.1) as

fext + fm → 0, which is a theoretical prediction that is reasonably confirmed by

experiments [9, 36], although near the stall force value measurements are highly

subjected to statistical errors and whether the randomness diverges or not at this

point is not very clear yet.
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Figure 3.1: Mean velocity versus the external force. As the motion is continuous,
the decay of the velocity with the force is linear.

The efficiency η can be computed by assuming that for each L increment

along x we spend an energy ∆GATP . Then

η =
−fextL

∆GATP

. (3.14)

This efficiency is maximum at stalling conditions, but not because at these con-

ditions the motor is doing the most useful job but because the dissipation is

minimized. Again such an efficiency does not provide an intuitive description of

how effective the motor is acting. In order to improve this concept we can think

of the efficiency after some steps instead on focusing on a single step. To achieve

this we have to introduce a new and crucial quantity: the coupling ratio c, which

is the ratio of the useful events (steps) respect to the total number of consumed

ATP molecules. From [35] we know that a kinesin has a coupling ratio equal to

unity, at least far from the stall force values. However, other motors may have
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Figure 3.2: Randomness versus the external force. At low loads the randomness is
within a reasonably constant regime, while it diverges near the stall force. Exper-
iments show, in contrast with this figure, that the stable value of the randomness
at low loads and high [ATP] is approximately 0.5.

other type of coupling ratio values and it is worth introducing this concept into

the efficiency. If, after N ATP molecules are hydrolyzed, only a fraction of this,

cN is converted into steps, the efficiency becomes

ηg =
−LfextcN

N∆GATP
=
−cLfext

∆GATP
. (3.15)

We can see how the global perception of the efficiency becomes more intuitive as

it is now multiplied by the coupling ratio. The question now is: what’s the value

of c and what are their dependencies? The answer is that it depends very much on

the specific properties of each model. In this simple model we are introducing the

coupling ratio is intrinsically equal to one as the energy consumption is tightly

coupled to motion through the linear potential. However, we can add this concept

by hand with simple and reasonable assumptions. We can accept that the coupling

ratio is equal to one when there is no external load, c→ 1 when fext → 0. On the

other hand, near to the stall force value, even if the motor does not move, it can

still trying to perform steps and wasting ATP. Then we can suppose that c→ 0



3. A FIRST MECHANICAL MODEL 40

as fext → −fm. We then obtain

c(fext) = 1 +
fext

fm
. (3.16)

With this oversimplified version of the load dependence of the coupling ratio,

which has no other purpose that introducing the concept at first order, we can

write for the global efficiency

ηg = (1 +
fext

fm

)
Lfext

∆GATP

. (3.17)

Now the efficiency has a parabolic shape similar to the corresponding for the

power (see Fig.3.3) and it also reaches a maximum at −fm/2, and not the linear

dependence of Figure 2.5, see Fig.3.1.
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Figure 3.3: Power output versus the external force. The parabolic shape reminds
the power-force curves of mesoscopic motors.

Now there is another useful concept that we can introduce with this oversim-

plified version of the tilted potential model. We know that the drag force for a

0.5µm-radius silica bead in water is about λ ≃ 10−6pNs/nm. However, we can

recall that the maximum velocity of kinesin-1 is about 800nm/s [9]. Using our

model we know that

〈v〉 =
fm + fext

λ
, (3.18)
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Figure 3.4: Dotted line shows the efficiency as defined in (3.15). It is maximum
when the motor does not move and the dissipation rate is null. The dashed line
represents a simple version of the coupling ratio which decays linearly with the
load. This ratio allows the plot, in solid line, of the global efficiency of eq.(3.17).
This redefinition of the efficiency is more intuitive and accounts not only for
dissipation but also for ATP wasting.

so then, supposing that 〈v〉max is acquired when fext = 0, we can write

〈v〉max =
fm

λ
. (3.19)

Using 〈v〉max ≃ 800nm/s and fm ≃= 6pN , we obtain that λeff ≃ 7.5 ·
10−3pNs/nm, which is a value 7500 times bigger than the expected for the drag

coefficient in water. How can we explain such a discrepancy? First of all, let’s

recall the effective drag

λeff ≡
fm

〈v〉max
, (3.20)

from in eq(3.19). This effective value is consistent with a brownian particle which

is undergoing thermal fluctuations and is subjected to the potential V (x) =

−fmx. In such a picture, the motion of the motor-particle is smooth, as long as

thermal fluctuations can be considered smooth. In other words, if we look at the

trajectory x− t of the particle we would see a straight line with slope fm/λ when

there is no load. In this context, the motor moves continuously along its track

with a constant velocity and constant motive force. Under this simplified picture,
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the effective friction appears to be extremely larger than what is expected from

Stokes friction coefficient. The explanation of this effect comes when one tries to

zoom in into a motor trajectory and realizes that the motion of the motor is not

smooth at all, but it has a step-like form, like a staircase, see Fig.3.5. The motor

steps and rests. During some time, it produces a motive force and advances a

distance L, but then it stops during a certain dwell or waiting time until the

next step is produced. Such behaviour may seem weird at first sight, but since

it was measured experimentally [3] the frequency at which staircase trajectories

appear, not only at the molecular motors field but at many others, is astonishing.

The appearing of what we will call steps from now on establishes the limitation

of this very simple model and motivates the introduction of more sophistication.
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Figure 3.5: Simulated trajectory of the model with the values used in [37]. In the
upper figure we can see a longer range of distance and notice that the stepping
appearance is hardly visible. In the lower figure there is an magnification where
the steps are clearly visible. The upper figure suggests that a high friction model
with no steps can predict the mean velocity properties, which is the virtue and
the defect of this model.
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3.2 [ATP] and load dependent barriers: a step-

ping model

A first model introducing steps that are coupled with the energy consumption [32]

was based on a tilted potential like the one introduced in the previous sections

but with a peculiarity: the potential contained periodically flat zones with no

potential gradient. This was added with the intention of modeling the dwell times

where the motor is not advancing but waiting for the next step. The simulated

brownian particle simply falls slope down and then diffuses until the next slope

zone is found. With this potential, the resulting trajectories are already step-like

as in the experimental results. It is quite simple to estimate the resulting mean

velocity of the model. We know that each cycle has a length L, and α is the

fraction of this length that is occupied by the flat zone. Then, the motor falls

down along (1−α)L and diffuses along a segment of length αL. The falling time

is

t1 = (1− α)L/b (3.21)

where b is the slope in absolute value.

On the other hand, the time to explore the whole flat segment is [32]

t2 ∼
λα2L2

2kBT
, (3.22)

where Einstein’s fluctuation-dissipation relation has been used. The total length

L divided by total time of the cycle gives the mean velocity,

〈v〉 =
L

t1 + t2
=

1
(1−α)

b
+ λα2L

2kBT

. (3.23)

We can interpret now the slope b to be equal to fm/λ, and then

〈v〉 =
1/λ

(1−α)
fm

+ α2L
2kBT

. (3.24)

This model is quite appealing as it is able to describe the stepping phe-

nomenology without entering into mathematical complications. However, it is

not enough. The first and main objection against the model comes from the
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Figure 3.6: Scheme of the potential used in [32]. There are power stroke regions
followed by free diffusing plateaus, which modulate the dwell times.

following calculation. From Eq.(3.24) we can substitute realistic values in the

zero-load case and expect to obtain a velocity of around 800nm/s. This has to be

accomplished within the boundaries for the α parameter: α ∈ [0, 1]. When doing

this, we see that there is no solution for α from which the global time can be

0.01s, which is the value for 〈v〉 = 800nm/s and L = 8nm. In fact, one obtains

α ∼ 35.5, which indicates that in the model there is a need for more obstacles

than a simple plateau to diffuse along.

This is the main reason to introduce a potential barrier instead of the plateau

region. This potential barrier will have an activation energy EA and we will study

how this energy has to depend on the two main-experimental control variables: the

external load and the ATP concentration. Now the two pieces of every potential

cycle will be distinguished as the activation region (positive slope) and power-

stroke region (negative slope, Figure 3.7). The mathematical details are expressed

as

V (x) =











EA

L(1−α)
x, 0 < x ≤ L(1− α)

− (∆Gu+E)
αL

x + EA+(1−α)∆Gu

α
, L(1− α) < x ≤ L,

(3.25)

where ∆Gu is the used free energy in the ATP hydrolysis. This potential is a
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tilted ratchet potential. The reason not to write the whole-available free energy

from a single nucleotide is discussed later.
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∆G
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αL(1−α)L
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Figure 3.7: Scheme of the potential used in the complete model. The barrier is
affected by the two control variables, [ATP] and fext.

Before entering into more technical details we can perform the same analysis

as before in order to see how the total global time of the cycle is splitted into two

times, one to cross the barrier and the other to perform the power-stroke. The

total time is again 0.01s as before, so then

0.01s = t0e
EA/kBT +

λαL

fm
, (3.26)

where we have used a Kramers-like crossing barrier time, which we will discuss

right now. What is important in this previous equation is that, even setting the

greatest possible value to α, which is the case of α → 1, we obtain that the

second term is ∼ 1.3 · 10−6s, which is ∼ 0.1% of the total time. With this simple

estimation we can guess that the time to cross the barrier has to be predominant

over the power stroke time. In other words, the motor spends most if its time

resting, and performs the steps so quickly that the contribution of the step time

is not very relevant concerning the mean velocity. This is one of the first strong

conclusions of our analysis: the mean velocity of a molecular motor, and in par-

ticular kinesin-1, is mainly governed by the dwell times, and not by the time used
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to perform the L-displacement.

So then we are interested in the time for a brownian particle to cross an acti-

vation barrier. For energy walls which are considerably higher than the thermal

energy kBT , the Kramers approximation states that the crossing time obeys

t = t0e
EA/kBT , (3.27)

where t0 is a prefactor which specific dependencies on the drag coefficient and

the shape of the potential. However, once t0 is fixed, the total time is changed

only by the height of the potential in an exponential way. This is what we are

going to do. We will have an activation energy that will depend on the control

variables in a way that a change on these variables will produce a change in the

barrier and by extension to the waiting time.
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Figure 3.8: Plots of (3.28) for two different values of EA = 52, 64 which approxi-
mately emulate the two different [ATP] values of [9], [ATP ] = 2mM and 5µM ,
respectively. The experimental data is not shown explicitly, but it is clear that
the agreement is not quantitatively good but qualitatively reasonable.

In the Appendix A1 we see how using Smoluchowski’s equation and our poten-
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tial we can arrive to an analytical expression for the mean velocity (see Fig.3.8),

〈v〉 =
(EA + ∆Gu + fextL)2

λLkBT
e
− EA

kBT (1− e
−(∆Gu+fextL)

kBT ). (3.28)

Additionally it is very interesting to perform the ratio of the two velocities v1

and v2. We can define rr as the ratio of the backward/forward rates, and

rr = e
−∆Gu
kBT , (3.29)

or

rr(fext) = e
−(∆Gu+fextL)

kBT (3.30)

for load-dependent situations.

This is a fundamental property of the kinetic processes where backward tran-

sitions occurs with an appreciable frequency, as is the case in molecular motors.

Moreover, this result does not depend on the specific shape of the potential as

long as the energetic gaps are maintained. The ratio rr can be used to obtain

measurements of free energy differences. If we are able to measure rr from a

model we can directly obtain the free energy associated to the process.

It is worth calculating the randomness parameter r for the value of the mean

velocity of eq.(3.28),

r =
2(kBT )2

(EA + ∆Gu + fextL)2

eEA/kBT

1− e−(∆G+fextL)/kBT
. (3.31)

We know that for kinesin-1 the randomness at zero load is approximately 0.5,

which suggests that the value for EA is close to 17pNnm when ∆G ≃ 50pNnm.

For stalling values of the force the randomness diverges as it was predicted also

by the previous approximation.

Even though we have provided algebraic expressions for the mean velocity,

there are certainly approximations and not exact results. For faithful quantities

of the mean velocity of brownian particles under a periodic potential we can use
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the following quadratures, taken from Ref.[38, 39],

〈v〉 = LkBT

λ

(

1− e−(∆Gu+fextL)/kBT
)

∫ L

0
dxI+(x)

, (3.32)

D =
kBTL2

λ

∫ L

0
dxI2

+(x)I−(x)
[

∫ L

0
dxI+(x)

]3 , (3.33)

where

I±(x) = ±λe∓U(x)/kBT

kBT

∫ x±L

x

dye±U(y)/kBT , (3.34)

and

U(x) = V (x)− fextx. (3.35)

Before going into a quantitative comparison with experimental data we finish our

theoretical description with the influence of the substrate concentration, [ATP ]

for the case of kinesin-1. Even though the enzymatic kinetics is a topic that

belongs essentially to the next chapter in this thesis and there we will analyze with

detail the Michaelis-Menten systems, we need to introduce now the Michaelis-

Menten equation, written as

〈v〉 = vmax
[ATP ]

kM + [ATP ]
, (3.36)

where vmax is the velocity when the substrate concentration is very large and

kM , the Michaelis constant, is a quantity inversely related with the affinity of the

substrate to the motor, i.e. the greater kM the lower affinity of ATP for kinesin-1.

If we relate this expression with eq.(3.28) we can write

vmax
[ATP ]

kM + [ATP ]
=

(EA + ∆Gu + fextL)2

λLkBT
e
− EA

kBT (1− e
−(∆Gu+fextL)

kBT ), (3.37)

as plotted in Fig.3.9. The idea is to give an effective value of EA as a function

of the external force and the substrate concentration. However, as this equation

does not allow to isolate EA we cannot write this dependence explicitly.
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Parameter fext = 1.05pN fext = 3.59pN fext = 5.63pN
vmax(nm/s) 813± 28 715± 19 404± 32
kM(µM) 88± 7 140± 6 312± 49

Table 3.1: Values of the michaelian parameters obtained in [9].

3.3 Results and discussion

We can simulate a brownian particle travelling through one dimension under the

influence of the tilted ratchet potential (3.25). Some trajectories are shown in

Fig.3.10.
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Figure 3.9: Mean velocity as a function of the activation barrier. The values are
obtained by simulating the model at the values of the parameters shown in Table
3.2.

For this analysis we focus our attention to the experimental data of Ref.[9].

There are three velocity-[ATP] sets of data (see Fig.3.11), each one for a different

load. All these curves fit Michaelis-Menten equation but the two kinetic parame-

ters vmax and kM differ from one case to the other. It may be intuitive that vmax

decays with the load, but it is more unexpected the fact that kM grows with the

load, which means that at high loading the affinity of the ATP for the kinesin

heads is lower than at zero load conditions. The different values for vmax, kM are

written in Table 3.1.

We also have two force-velocity curves, one at high [ATP ](= 2mM) and
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Figure 3.10: Two numerical trajectories at different [ATP] in order to illustrate
how the waiting times grow with the nucleotide concentration. Notice as well the
size of the steps, which always correspond to 8.2nm.
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Figure 3.11: Experimental data [9] for the mean velocity as a function of the ATP
concentration. There are three curves at different load conditions, fext = 1.05,
3.59 and 5.63 pN for filled circles, open circles and diamonds, respectively. All the
three curves fit Michaelis Menten equation with different values for the kinetic
parameters, shown in Table 3.1.
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the other at low [ATP ](= 5µM). It can be seen that the maximum velocity is

∼ 800nm/s, while the maximum or stall force is at an absolute value of ∼ 6.5pN .

There are also measurements of the stall force at different values of [ATP] (see

Fig.3.12) showing, with considerable dispersion, that the stall force increases with

increasing loads. In any case, if we estimate a mean value of stall force around

6pN, which other and more modern experiments seem to confirm with no [ATP]-

dependence [40], we can do the following consideration. If the energy of an ATP

molecule is taken as 25kBT [41], then, 6pN of force along 8.2nm implies a total

amount of work equal to 12kBT , which is about the half of the available energy.

We don’t have to worry about the energy dissipated by friction, as it does not

reach 1pNnm if we consider the step to be performed in ∼ 100µs. For a better

estimation of the free energy available in an ATP molecule we have to write

∆G = ∆G0 + kBT ln (
[ATP ]

[ADP ][Pi]
), (3.38)

where ADP and Pi are the products of the reaction. ∆G0 is the equilibrium

value and at standard conditions is ≃ 55pNnm. The product concentrations are

∼ 10nM [7], so then

∆G = (55 + 4.1 ln [104[ATP ]])pNnm, (3.39)

where kBT ≃ 4.1pNnm and the [ATP] is measured in µM . For the low [ATP]

case, [ATP ] = 5µM , ∆G ≃ 100pNnm, and for the high [ATP ] ≃ 2mM ,

∆G ≃ 120pNnm. These two values of the free energy divided by the step size

give an interval of [12, 15] pN, which are forces considerably higher than the stall

forces of kinesin. Curiosly, experiments show that the stall force is about the half

of these values. One possible interpretation of this fact comes from the entropic

term of the free energy. Once the ATP molecule has entered into the pocket,

the nucleotide is isolated from the rest of the solution and the entropic barriers

become strongly reduced. The relative orientation of the ATP with the molecule

of water of the hydrolysis is not random anymore but specific to optimize the

reactivity. Moreover, inside the pocket, the definition of a temperature may be

put into question. As a global effect, the entropic energy is lowered by the en-

zyme while the enthalpic part is still 50pNnm. If we only consider this enthalpic

contribution we obtain a force of 6pN with no [ATP ]-dependence. This is in good
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Parameter Value
λ 0.008pNs/nm
E0 1pNnm
kM 1020µM
α 0.97(dimensionless)

Table 3.2: Values of the parameters used in [37].

agreement with last experimental data [40], but in the context of this model we

simply will take the used free energy

∆Gu =
1

2
∆G, (3.40)

which gives a good approximation and keeps an [ATP]-dependence of the stall

force, which at least is consistent with the data of [9].

Once the model is well defined it is time to search for a set of parameters

that can be in a reasonable agreement with the experimental data. In order to

do this, we first consider the case fext = 0. Then, we make the assumption that

in eq.(3.37) both sides have the same prefactor, which means that the prefactor

on the right side does not depend on EA, i.e.

EA + ∆Gu

λLkBT
→ vmax. (3.41)

Furthermore, if ∆Gu ≫ kBT ,

e
−(∆Gu)

kBT → 0, (3.42)

so we obtain

EA = E0 + E([ATP ]) = kBT ln (1 +
kM

[ATP ]
). (3.43)

E0 is the remaining barrier when [ATP ] is infinite.

In Table 3.2 we show a set of values of the parameters for which there is a

reasonable agreement between the theoretical predictions and the experimental

data. We can see how λ ∼ 10−2 pNs/nm is much greater than the corresponding

drag coefficient for the bead in water. We already know that this discrepancy is

due to the fact that here λ is an effective friction that reduces the overall mean

velocity when in fact the velocity is decreased due to long waiting times. The
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Figure 3.12: Stall force versus ATP concentration. We can see how the stall force
increases with [ATP] although a saturation at high concentrations could be in-
terpreted as well. In any case, the error of the data is too big to analyze this
magnitude accurately. Solid line is the theoretical plot of (3.39), divided by L.
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Figure 3.13: Mean velocity versus [ATP] with the same experimental points as in
3.11. Lines are predictions of the model, solid, dashed and dotted for fext = 1.05,
3.59 and 5.63 pN respectively . The agreement is qualitatively good, although
not very accurate.
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Figure 3.14: Mean velocity versus the external force for two different [ATP ] =
5µM and 2mM for solid, dashed (theoretical predictions) and triangles, circles for
experimental points, respectively. Again, the agreement is qualitatively appeal-
ing, although the curvature at high ATP concentration is lacking in the model
prediction.
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Figure 3.15: Randomness versus load for [ATP ] = 2mM . We can see how the
model (solid line) systematically underestimates the experimental values (points).
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Figure 3.16: Randomness versus [ATP ] for the three different values of the load
given in 3.13.

other parameters, E0 = 1 pNnm, kM = 1020µM and α = 0.97 do not need to be

realistic as they have a strong effective character. It is interesting to notice that

in fact the barrier E0 becomes useless, as the results do not differ very much if

we set E0 = 0. The reason for this is that friction is estimated in such a way

that under saturating ATP concentration and under no load, it provides a good

agreement with the experimental velocity. In other words, this model consider the

ATP saturating and zero load trajectories as straight lines with no stepping, i.e.

a continuous motion, and then, we have fixed the correspondent friction to such

a non-stopping motion. In the limit of α → 1 and E0 → 0 we recover the ideal

case of a straight single tilted line. This has sense as long as we do not decrease

appreciably the [ATP] or increase the external force, as these factors would imply

the appearance of an effective barrier. We conclude that, for [ATP ]→∞ and/or

fext → 0, the ideal case is the most practical approach.

In Figure 3.12 we can see the predictions for the stall force as a function

of [ATP]. The [ATP]-dependence of this stall force is, as we already mentioned,

controversial. First, because the data of the figure [9] has a reasonable variance.

But most of all because more recent measurements [40] seem to conclude the

opposite, i.e. that the stall force does not depend on the ATP concentration. In
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the context of this approach, we have considered a simple assumption: if the stall

force depends on the available free energy and this free energy depends on [ATP]

concentration (it grows with it), then it is natural, mathematically speaking, to

think that the stall force grows with [ATP]. However, in a single kinesin, there

is a single ATP molecule, not an ensemble, and the canonical way of calculating

the Gibbs energy may not be applicable to a single enzyme. Under our point

of view, neither the experiments nor the theory is very clear on the nucleotide-

concentration dependence of the stall force and the available energy.

In Figure 3.13 we can see the theoretical predictions for the mean velocity-

[ATP] curves once the parameters have been fitted. Although the agreement is

reasonably good, one has to admit that separated Michaelis-Menten fits for ev-

ery curve give better agreement, and we will take advantage of this fact in the

next chapter. In Figure 3.14 we can see the predictions and experimental data

for the force-velocity curves. It is clear that the agreement is not optimal but

qualitatively consistent. The force-velocity curves don’t have the proper curva-

ture. Furthermore, in Figure 3.15, where we show the load dependence of the

randomness at high [ATP], we can see how the randomness is systematically un-

derestimated. As the proposed value for the friction is considerably higher than

the physical drag coefficient derived from Stokes we know we are working in a

situation where the physical steps are not performed very quickly. Finally, in Fig-

ure 3.16 we can see theoretical predictions for the randomness as a function of

ATP concentration. Neither quantitatively nor qualitatively these results agree

with experimental data. Clearly, the randomness variable discerns the limits of

our model.

The main results of this work are published in Ref.[37]. Even though it is

a first approach and there are some assumptions that have to be refined, it is

interesting to see how the need for a formalism combining mechanics and chem-

istry becomes patent. Our approach is essentially mechanical, and we have added

chemical information by modulating the activation barrier. Perhaps we should

have introduced a load dependence on the barrier as well, because it is experi-

mentally shown that dwell times are strongly affected by the load. In any case,

our model represents a significant step forward after the work of M. Bier [32]
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and it provides interesting clues for future models. Retrospectively, we could be

more severe in our criticism. The experimental data that is used in the model is

essentially kinetic, though load-dependent. Thus it is better to begin with a more

kinetic-type model and introduce the load afterwards, as it will be seen in next

chapter. Mechanical models are very interesting for kinesin, but they are focused

on other non kinetic aspects as directionality or the mechanism of the step itself.



3. A FIRST MECHANICAL MODEL 58



4

The inchworm model

In the previous section, the molecular motor itself was coarse-grained as it was

considered a point brownian particle under the influence of the potential induced

by the motor-track interaction. In this next modelling we will focus on the motor

with deeper detail. Specifically, we will model a conformational change, which is

an internal morphological motion that a motor performs every cycle. The idea is

that such a change in its conformation drives the motion of the motor when it is

coupled with the track. In the previous tilted-potential model the force produced

by the motor was introduced by hand through the potential, but the question of

how the motor decides its directionality arises. We know that the tracks are polar

structures, but for every track different motors have different directionalities, i.e.

some of them move towards one end of the track and others move in the opposite

direction. In this next way of modelling we will discuss these aspects in an explicit

way.

Another important aspect of the conformational changes in a molecular motor

is related with the energetics. As the energy provided by an ATP molecule is

finite, not all the conformational changes are allowed but only those that require

less energy than ∆GATP . Controlling and analyzing the energy input and output

is one of the main goals of this model. We will also measure through numerical

simulations quantities like the coupling ratio.

59
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4.1 Motivation and previous modelling.

The inchworm mechanism was originally introduced in the context of molecu-

lar motors in [42]. This way of motion was one of the three classical candidates

when speculating about the true mechanism used by processive kinesin-1 walking

along the microtubule. In fact, this discussion appears when trying to describe

the choreography performed by a dimer walking along a linear track. Apart from

the inchworm, the other two mechanisms were symmetric and asymmetric hand-

over-hand. While an inchworm motor moves, as its name indicates, as a succession

of stretching and contracting movements, in a way that the leading head is al-

ways leading and the trailing head is systematically behind. On the other hand,

a hand-over-hand motion alternates the role of the two heads of the dimer. At

every cycle their roles permutate. The feet of a walking man are considered to

move in a hand-over-hand fashion. The distinction between the symmetric and

the asymmetric cases comes from a second order detail. A hand-over-hand mech-

anism implies a rotation around a certain axis. In the case of a walking man, there

is a rotation of the hip in every step. We say that the mechanism is asymmetric

if every cycle implies a change in the sense of the rotation in a way that the

axis of rotation does not accumulate a net angle of rotation. In the symmetric

case the rotation is always clockwise or counter-clockwise, and if we would walk

in this fashion we’d become easily queasy. It’s not common to find examples of

symmetric hand-over-hand motion, however. An interesting remark is that both

symmetric and asymmetric are not distinguishable when the rotation is around

the axis that defines the lateral direction of the motion. In this case a reversal

in rotation would imply a reversal in the direction of motion, and that is why

the distinction is referred to the rotation around the vertical direction. Graphical

details of these mechanisms are sketched in Fig.4.1

For some years the actual mechanism of kinesin-1 was discussed and there

seemed to be experimental support for all the possibilities. However, in [7] the

true mechanism was found to be the asymmetric hand-over-hand, even though

the existence of symmetric events cannot be discarded. Such a discovery may

decrease the interest in inchworms mechanisms, but it cannot be discarded to

find examples, natural o synthetic, of inchworm-like molecular devices. In further
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Figure 4.1: The three classical stepping mechanisms proposed for processive con-
ventional kinesins in a footprint scheme. a) The inchworm mechanism consists
in a cycle of stretching-contracting regimes. The leading and trailing feet don’t
exchange their roles. b) In the symmetric hand-over-hand mechanism there is
an alternation of the leading and trailing roles, accompanied by a rotation of
the whole body. c) The asymmetric hand-over-hand mechanism alternates lead-
ing and trailing roles and also alternate the direction of rotation. If one step is
clockwise, next is counter-clockwise.
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sections we will analyze with deep detail some realistic scenarios for kinesin and

inchworm proposals will be ruled out. However, it is still a very interesting mech-

anism which can help us to understand many features of molecular motors.

In [42] a dimer composed of two brownian particles coupled by an harmonic

linear spring was introduced as a modelling of a molecular motor, see Fig. 4.2

The spring represented the internal degree of freedom that allowed to perform

conformational changes. It is the extreme reduction of a protein, but still is a

powerful tool. This object is not still a motor until we consider the track where it

has to move along. This track is simply a ratchet potential with no tilting. Such

a track introduces polarity, periodicity and directional motion.

Figure 4.2: A dimer composed of two equal particles connected by a linear spring
and subjected to a ratchet potential.

We can define the parameters of the model in the following way, see Figure

4.2. We call k to the stiffness of the spring, l to the equilibrium length of the

spring. x1, x2 are the positions of the trailing and leading heads, respectively.

The track is characterized by a period L, a barrier V0 and an asymmetry factor

α that splits the potential into regions αL, (1− α)L with positive and negative

slope, respectively. It is important to distinguish between l, the rest length of the

spring, and L, the period of the track.

The dynamics of the model consists on the following: We will suppose that

l = n(t)L, where n(t) switches from 1 to 2 and viceversa. The mechanism is

then quite simple. We have the dimer with the heads resting at consecutive min-

imums. Suddenly, l switches from L to 2L. Then, the spring will relax to its

new rest state and the dimer will be elongated. As the ratchet potential is asym-

metric the response of the to heads will be different. We can distinguish two cases:
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Forward motion: If the stiffness of the spring is relatively low, the elastic

force in response to the change in l is not very high. In this case, the forces

produced by the potential are of the order or higher than the elastic force. This

implies that during the elongating relaxation, the head pushing along the softest

wall, with slope V0/αL as α is supposed to be greater than 1/2, can move for-

ward and overcome the barrier more rapidly than the other head, which is under

a harder slope, V0/(1 − α)L. After some relaxation, the rest state will be the

following. The leading head is on the minimum next to the one that occupied

before the conformational change. However, the trailing head is exactly at the

same location as before. This is the first part of the mechanism, see Fig. 4.3b).

Now the second part needs another change in l, which turns back from 2L to

L. Now the leading head, during the shortening relaxation, cannot overcome the

hard slope while the trailing head can move forward very easily and overcome the

barrier V0. Once the relaxation is complete, the whole dimer is displaced exactly

a period L, see Fig. 4.3c). There is a coupling between the conformational cycle

of the motor with the performance of a single step, as it is the case in many real

molecular motors. This aspect is only one of the many appealing features of this

model. It provides a simple but very clear idea of how a conformational change

which has no polarity preference can be rectified by a polar track in order to

produce a step. The whole cycle is shown if Fig. 4.3.

Backward motion: As it shown in Fig. 4.4, we discuss now the case where

the stiffness is so high that the elastic forces in response to the changes in the

equilibrium length are much higher than the forces induced by the ratchet po-

tential. In this case, when the dimer is elongating, the trailing head overcomes

the barrier first, as it is closer, (1− α)L to the minimum than in the case of the

leading head, αL. When the first relaxation is completed, is the trailing head the

one that has promoted a period while the leading head has stayed, see Fig.4.4b).

Then the second transition occurs and it is clear that now the leading head will

perform a transition in a way that the whole dimer will be displaced a period

in the opposite direction than in the previous case, see Fig. 4.4c). We have seen,

then, how the stiffness k is a parameter that can reverse the motion of the motor.

This fact, added to the experimental knowledge that conventional kinesin and
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Figure 4.3: The first mechanism (forward motion). The dimer has a low stiffness
and the elastic forces are smaller or comparable with the ratchet induced forces.
Then , after a dwell time in its rest state (a) there is a stretching stage where the
right-head can overcome the barrier before than the left-head, even if this barrier
is located further from its initial position (b). At the relaxing stage, the left-head
can overcome the barrier and complete a step (c).
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ncd move to the plus-end and minus-end of the microtubule, respectively and

that they seem to have different properties on their necks give support to the

hypothesis that the neck, or the properties of the connecting parts between the

two heads, can actually be responsible of the directionality of the motor.

Figure 4.4: The second mechanism. The dimer has a high stiffness and the elastic
forces are greater than the ratchet induced forces. Then, after a dwell time in its
rest state (a) there is a stretching stage where the left-head can overcome the
barrier before than the right-head, because this barrier is located further from
its initial position (b). At the relaxing stage, the right-head can overcome the
barrier and complete a step (c).

As it surely has been noticed, the proposed mechanism in [42] that we are now

reproducing does not need thermal noise in order to work. It is a perfectly new-

tonian device that contrasts the wide noise-inspired literature in the molecular

motors field. In the presence of noise, however, the mechanism can still work with

no substantial changes, which makes the system quite robust under fluctuations.

However there are some properties that are not so well defined and that can be

improved. Here we expose some criticism to the model with the aim to improve it.

One can calculate the energy required to perform the two transitions of the

mechanical cycle. After the transition l : L→ 2L, there is a contribution of elastic
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energy ∆Eel

∆Eel =
1

2
kL2. (4.1)

During the second transition, l : 2L→ L, there is another input of energy of the

same value, so then we need a free energy input

∆G = 2∆Eel = kL2. (4.2)

In the case of kinesin, L ≃ 8nm, so then ∆G ≃ 64k pNnm. We know that the

available free energy of ATP is approximately 100pNnm, which means that the

maximum stiffness we can achieve is ∼ 1.6pN/nm. In [42] we enter into the back-

ward motion regime when k ∼ 8pN/nm, but this would imply huge free energy

inputs, so we cannot accept this regime at this quantitative level. Nevertheless, the

model can be generalized to a compass model where the conformational change

is magnified by an arm level, as in Fig. 4.5. We can imagine a compass with arms

of length C. By Pythagoras’ theorem, the height of the compass H is

H =

√

C2 − (
x2 − x1

2
)2. (4.3)

If we now locate the conformational change at a vertical distance h from the

upper vertex of the compass where the spring follows

fel = −k(∆s− s0), (4.4)

where

∆s =
h

H
∆x s0 =

h

H
l0, (4.5)

so then it is equivalent to have the spring at any level of the compass than to

have it at the level of the track if we redefine the effective stiffness as

keff =
h

H
k. (4.6)

Thus with this lever arm assumption we can perform the whole cycle with a

energy input of

∆G = kL2(
h

H
)2. (4.7)

In a kinesin-1, we can accept that H ∼ 3nm and if we suppose that the elongation
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Figure 4.5: Due to lever arm effect, a small stretching on the spring can induce
large conformational changes in the dimer. Notice, however, that the energy is
applied away from the particles. In the figure, C is the length of the arm, H the
vertical distance from the x-axis to the upper vertex that joins the two arms. The
axis defined by the spring is written as the s-axis.

occurs at ∼ 1nm far from the neck linker, then we obtain

∆G ∼ k

9
64pNnm, (4.8)

which allows to reach regimes until k ∼ 14pN/nm. However we have to comment

that the heads are usually the enzymes of the motor and the energy is localized

on them. The hypothesis of the compass would be in accordance with a motor

that concentrates the energy near the point of rotation, as is the case in some

myosins which are thought to work with arm lever power-stroke.

Other missing points of the model are the frequency of the energy arrival or

the justification of a change in an elastic property. In [42] a constant frequency

of conformational changes is used. It is known that the arrival of ATP to the

motor is random following Poisson distributed times [7]. Furthermore, when the

motor is working on a conformational change, it shouldn’t be able to accept a

new ATP molecule. Thus the way of introducing the hydrolysis rate should be

improved in order to obtain substrate concentrations dependences. On the other

hand, it is not clear whether the motor can exhibit spontaneous changes in its

elastic properties. Instead of a change in the rest length of the spring it is more
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convenient to introduce time dependent motive forces that allow the control of

the energy input and to relate it with fuel consumption.

4.2 The improved inchworm model

In order to improve all the aspects commented in the previous section we will

introduce the following dynamic scheme: The dimer is, as before, resting with

l = L. When a fuel molecule is attached to the dimer, a stretching force fs

appears. This stretching force acts to produce an elongation to the spring until

x2 − x1 = 2L. In this situation, where the elongation is 2L, the stretching force

disappears and the spring relaxes by itself until the initial configuration (with

elongation L). Fuel binding is not allowed while stretching, but it is not forbidden

at the relaxing stage. With this modification we can control the input of energy

and then measure quantities like the global efficiency or the coupling ratio. The

dynamic scheme is shown in Fig. 4.6,

Figure 4.6: Scheme of the improved inchworm model. Two spring coupled particles
are subjected to the periodic ratchet potential V (x), which has height V0, period
L and asymmetry factor α. i) The spring is relaxed and each particle matches a
potential minimum because the rest length of the spring is equal to the period
of the potential. In ii) an stretching force appears in such a way that the leading
head x2 is pulled to the right and the trailing head x1 is pulled to the left. The
force disappears when the elongation doubles the rest length. Then, the spring
relaxes and the step is completed with a L displacement, as shown in iii)
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and the equations of motion are the following,

λẋ1 = −V ′(x1)− k(x1 − x2 − L)− fs(t)−
F

2
+ ξ1(t), (4.9)

λẋ2 = −V ′(x2) + k(x1 − x2 − L) + fs(t)−
F

2
+ ξ2(t). (4.10)

The positions x1, x2 correspond to the trailing and leading heads, respectively.

λ is the drag coefficient, F = −fext is the external force and ξi(t) are the thermal

noises.

First of all, we can perform some useful calculations in some limiting cases.

When there is no temperature and the asymmetry factor α is equal to 1, we

can calculate the time of the mechanical cycle in the two cases (low and high

stiffness). The stretching process consists on the raising of the leading head, x2

along the slope V0/L and against the elastic force, giving

dx2

dt
=

1

λ
(
E − V0

L
− kx2), (4.11)

where the stretching force is the energy of a fuel molecule, E, divided by the step

size, L. In the limit of t→∞ gives

x2 =
E − V0

kL
. (4.12)

This imposes a boundary for the parameters in order to work in a newtonian

regime. As x2 should be greater than L in order to overcome the barrier,

E − V0 > kL2, (4.13)

which implies that E − V0 should be greater than the energy input of the model

of Ref.[42].

For the relaxation process, we can write the following equation for the trailing

head,
dx1

dt
=

1

λ
(k(L− x1)−

V0

L
), (4.14)
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which at infinite times gives

x1 = L− V0

kL
, (4.15)

which imposes another boundary in order to achieve the total relaxation in the

newtonian regime,

L− V0

kL
> L, (4.16)

which is impossible to achieve as V0 > 0. We see that in the total asymmetry

limit, α = 1, the newtonian regime cannot work as the spring by itself does not

have the power to overcome the barrier. We can introduce now similar equations

for α < 1. Then, the equation for the condition of the leading head becomes,

dx2

dt
=

1

λ
(
E − V0/α

L
− kx2), (4.17)

which gives, in the steady state,

x2 =
E − V0/α

kL
, (4.18)

and gives the condition

E − V0

α
> αkL2, (4.19)

or, in other words,

k <
E − V0/α

αL2
. (4.20)

For the trailing head we write

dx1

dt
=

1

λ
(k(L− x1)−

V0

αL
), (4.21)

which gives

x1 = L− V0

αkL
, (4.22)

and imposing x1 > αL,

k >
V0

α(1− α)L2
. (4.23)

This imposes strong conditions on the parameters. Joining eqs.(4.20) and (4.23)

we arrive to
V0

α(1− α)L2
< k <

E − V0/α

αL2
. (4.24)
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If we want to have a window of real k holding these conditions we must satisfy

V0

α(1− α)L2
<

E − V0/α

αL2
, (4.25)

or in other words

E >
V0

α(1− α)
. (4.26)

We can appreciate that this condition is quite restrictive. If E ≃ 100pNnm, cor-

responding to an ATP molecule, then V0 must be always lower than 16pNnm for

α = 0.8.

The main conclusion of these calculations is that although the newtonian

regime can be achieved, it is too restrictive for the values of the parameters. The

presence of thermal noise helps to overcome the barriers and then relaxes the pre-

vious conditions. In the relaxation stage, the noise is particularly useful because

when the spring is not stiff enough to overcome the barrier with its own elastic

force, the thermal noise facilitates the transition with high efficiency.

The values of the parameters have been chosen in a nano scale to mimic some

molecular motors such the kinesin, even if this model is purely theoretical. This

choice is worthy since it allows quantitative comparison with a real motor. The

periodicity of the potential L is taken to be the periodicity of microtubules, 8nm.

If we take the asymmetric factor α = 0.8 and V0 = 50pNnm the efficiency of

our model is optimized as it is checked numerically. E = 100pNnm corresponds

to good approximation of the accepted value for the energy of hydrolysis of an

ATP. The thermal energy is kBT = 4.1pNnm, corresponding to the environmen-

tal temperature. The stiffness of the motor is chosen k = 1pN/nm in order to

have stretching forces that perform works within the available energy. Finally,

the drag force λ = 2 · 10−4pNs/nm. The reason to choose this parameter at the

end is simple: we don’t have precise information about it and since it defines a

timescale in the problem, its value can help to tune the order of magnitude that

we wish for the mean velocity. Using these values, and for very high ATP con-

centrations we obtain in numerical simulations a maximum velocity of 667nm/s,

which is already in the scale of kinesin-1.
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4.3 The ATP hydrolysis

The dependence with ATP concentration is introduced in this model as a proba-

bility p of catching an ATP molecule. When the motor is free from ATP, p ∈ (0, 1)

is the uniform probability per time step ∆t of binding one molecule. When it

occurs, more ATP binding is forbidden and stretching takes place until the elon-

gation is 2L. Then, the stretching force disappears and the spring relaxes. When

x2 − x1 is again L, one cycle is completed and ATP binding is allowed. In the

absence of external load, this mechano-chemical cycle induces a L displacement

of the motor towards one end of the potential. On the other hand, our approach

controls how much energy ET is applied to the system by simply multiplying

E by the number n of ATP consumed: ET = nE. The mean velocity of the

motor, when the ATP concentration is saturating and fext = 0, is maximum

and dependent only on the intrinsic properties of the motor and by E. Let ton

be the time spent to perform a single step, i.e. the stretching plus the relaxing

time. Thus, Vmax = L/ton. Using the given values of the parameters, simulations

show that ton ∼ 0.012s, which gives Vmax ∼ 667nm/s. However, the global speed

〈v〉 will be slowed down when the ATP concentration decreases. Typically, the

[ATP ]-dependence on 〈v〉 is given by the Michaelis-Menten relation [43]. In our

model, we have previously defined p as the uniform probability to get an ATP

per time step ∆t and with p = 0 while the motor stretches and relaxes. It can be

accepted that, as the reaction frequency is proportional to [ATP ], then [ATP ] is

proportional to p.

Then, we have

〈v〉 = Vmax
p

kM + p
, (4.27)

where kM is the Michaelis constant for the probability. It is important to remark

how p depends on the temporal increment ∆t that we use. Specifically, p is the

probability binding per time step. If ∆t decreases we can achieve a greater rate of

ATP binding. In the case of p = 1, every ∆t a new nucleotide is bound. However,

this does not mean that [ATP] is infinite. The time step defines a maximum

concentration, which is [ATP ]max. Then,

p =
[ATP ]

[ATP ]max
. (4.28)
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On the other hand we know that

kbinding = A[ATP ], (4.29)

where A is a constant of proportionality. If [ATP ] = [ATP ]max, we have

kmax
binding = A[ATP ]max =

1

∆t
, (4.30)

where it is clear that 1/∆t is the maximum available rate. We obtain

[ATP ]max =
1

A∆t
(4.31)

and then

p = A∆t[ATP ], (4.32)

which is the most useful relation. When we substitute this expression into the

Michaelis Menten equation we can have p instead of [ATP ], but we have to take

into account that the Michaelis constant is not the real constant kreal
M that we

would measure in an experiment, but

kreal
M = A∆tkM . (4.33)

From now on, we will deal with p and not with [ATP ]. Fig.4.7 shows how the

michaelian behavior fits well the simulated values of the mean velocity. However,

for finite values of fext, both kinetic parameters Vmax and KM change. In Ref.[43]

it is shown that the effect of the external load in kinesin can be interpreted as

an inhibition process, and this is one of the main topics of the second chapter.

For now it is enough to write the equations for the fext-dependence on the two

kinetic parameters, and the justification will be clarified and developed in the

next chapter. The expressions, which are introduced in (7.8) and (7.9) are

Vmax(fext) =
Vmax(fext = 0)

1 + 1
Kiu(1−fm/fext)

(4.34)

and

kM(fext) = kM(fext = 0)
1 + 1

Kic(1−fm/fext)

1 + 1
Kiu(1−fm/fext)

. (4.35)
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and they allow to express the velocity of the motor as a function of the two con-

trol variables p and fext.

4.4 Results and discussion1

There are five parameters to fit, which are fm, Vmax(fext = 0), kM(fext = 0), Kic

and Kiu. The methodology to obtain their numerical values is the following. First

we need at least three 〈v〉−p curves as in Fig.4.7 from the numerical simulations

of Fig. 4.8 and extract the michaelian parameters of each of them.

1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1
p (dimensionless parameter)

10
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1000

<
v>

 (
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/s
)

F=0 pN

F=1 pN

F=3 pN

Figure 4.7: Mean velocity versus p for three different values of the load, where F ≡
−fext. The three curves are michaelian and two kinetic parameters are extracted
from each of them. Lines are michaelian fits and points are simulation data.
Circles, squares and triangles correspond to fext = 0,−1,−4pN , respectively.

Then we obtain three pairs of values for Vmax and KM which we show in Table

4.1.

Once we have these parameters we fit the three values for Vmax following

eq.(4.34) as shown in Fig. 4.9. This allows to obtain fm, Vmax(fext = 0) and Kiu.

The next step is to fit eq.(4.35) and to obtain kM(fext = 0) and Kic.

In our simulations, fm ∼ 5.25pN. Kiu and Kic are the uncompetitive and

competitive inhibition constants, respectively, and are a quantitative measure of

1This section uses information derived in Part II
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Figure 4.8: Simulated trajectory for the trailing (gray) and the leading (black)
head. Note the stepping fashion of the motion.

fext(pN) −0 −1 −3
Vmax(nm/s) 663.5 400.3 122.9
kM/106(dimensionless) 8.88 5.99 2.87

Table 4.1: Values of the michaelian parameters obtained in the simulations (see
Fig.4.9).
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Figure 4.9: Left image: The three points are the values of Vmax obtained from the
fits of fig. 4.7. The curve is the fit of eq.(4.34). Right image: The same procedure
for the Michaelis constant kM . We fit the equation (4.35).
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how F affects the motor when it is free from nucleotide (Kic) or when it has an

ATP (Kiu)
2. From values of Table 4.1 we have fitted the values of the inhibition

constants obtaining Kiu ∼ 0.338 · 10−6 and Kic ∼ 2.131 · 10−6. As they are disso-

ciation constants, the effect of the load on the ATP-bound state is greater than

in the ATP-free configuration. This means that the force acts as an uncompeti-

tive mixed inhibitor, while in Ref.[43] it is shown that kinesin is also mixed but

competitive. This difference is responsible of the curvature on 〈v〉 − fext curves

at high ATP concentration. Figure 4.10 shows these curves with the simulation

data and the predictions of the analytical expression with an excellent agreement.
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Figure 4.10: Mean velocity-force curves for p = 1 (circles) and 10−5(triangles).
The solid lines are plots of (4.27) where the load dependence on the kinetic
parameters has been already introduced. The agreement is excellent.

It is interesting to use the definitions of efficiency shown in the previous sec-

tion. The coupling ratio c can be written as

c =
xCM

nL
, (4.36)

where xCM is the the position of the center of mass of the dimer,

xCM =
1

2
(x1 + x2) (4.37)

2See next chapter for a better description of the kinetic processes
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(we consider both particles of equal mass and drag), and n is the number of

consumed ATP’s. The global efficiency can be written

ηG =
W

nE
, (4.38)

where W is the useful work, that can be written also like W = −fextxCM . We

can then join the expressions for c and ηG and write

η =
−cfextL

E
(4.39)

This means that the global efficiency is simply the efficiency in a single step

multiplied by the coupling ratio. We can go further if we consider the fact that

Vmax is proportional to c, and then,

c =
1

1 + 1
Kiu(1−fm/fext)

η =
L

E

−fext

(1 + fext

Kiu(fm−fext)
)
. (4.40)

Fig.4.11 shows the simulated data for c(fext) and η(fext) as well as the theoretical

predictions. It is interesting to remark that the maximum efficiency is slightly

below 0.15.

We have seen how a very simple theoretical device is able to exhibit a lot of

features that are characteristic of a motor, like force-velocity curves or substrate

concentration dependence. This model is an improvement of the one presented

in [42], as it incorporates a control on the energetics of the process and allows to

quantify useful work, efficiency, coupling ratio, etc. Moreover, a generic formal-

ism is introduced to characterize the kinetics of the motor without considering

microscopic details. Even though this type of formalism will be developed in the

next chapter, we have seen how simple inhibition theory can be straightforwardly

applied to molecular motors in order to obtain analytical expressions for the sub-

strate concentration and load dependence of the mean velocity. So, summarizing,

the work developed here is a useful example to show how to characterize a molec-

ular motor and how some experimental features can be described by very simple

mechanisms.
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Figure 4.11: a) Coupling ratio versus the load. In the previous section we made
a linear hypothesis of this magnitude and here we see that this motor exhibits a
non-linear relation. Qualitatively, however, the discrepancy is not dramatic. We
see how this coupling quotient decreases with the load. Notice that at zero load
is never equal to one. Near the stall force, all the fuel is wasted. b) The global
efficiency versus the load exhibits a maximum at ∼ 3pN , with a value of ∼ 0.15.
It is interesting to note that both magnitudes suffer more fluctuations at high
loads. This corresponds to an increase of the randomness.
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Rotatory ratchet nano-devices

5.1 Generalities

Rotatory machines can also be studied under a mechanical way of modelling.

Even if the true nature of these motors seem to be electrostatic, elastic deforma-

tions of the rotor can be used in order to emulate directed motion. The philosophy

is exactly the same as in the previous linear inchworm model. Here we also have

inchworm mechanism but in a closed-circular structure that is under the effect

of a periodic ratchet potential. As we will point it out right now, there are some

similarities and differences with respect to the linear case.

First, as we have already mentioned, the rotatory devices we are going to

introduce are inchworm systems, i.e. a set of nano-particles coupled with nearest

neighbours by linear springs. Whenever some energy is available it is transformed

into a stretching work between two consecutive particles. This stretching elon-

gates the spring until a value equal to the double of the equilibrium angular

length of the spring. After this, the power stroke disappears and the system re-

laxes again. In such a cycle, the whole system advances, or rotates, one period of

the potential, even if several times this process is in vain and the energy is wasted.

Even though these rotatory machines are also nano-devices, they are not dif-

fusing on the cytoplasm but embedded into a membrane. Specifically, is the stator

79
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what is embedded in the membrane, so the rotation can be done under a drag of

the membrane with the stator and another drag of the stator with rotor or simply

a drag of the rotor with the membrane, depending on how the stator surrounds

the rotor. The viscosity of this membrane can be considered approximately a

thousand times greater than the one for the cytoplasm (considered similar to the

water). We need, however, a value for the drag force of each rotor-particle. Let r

be the radius of the particles and R the radius of the rotor. If γt = 6πηr is the

translational drag coefficient and γr the rotational one, we can write

γt
dl

dt
= fS, (5.1)

where dl is the longitudinal displacement after a rotation dθ = dl/R and fS is

the stretching force, which is applied tangentially. We can also write

γr
dθ

dt
= τS, (5.2)

where τS = RfS is the stretching torque. Changing l by θ in (5.1) and doing some

algebra we arrive to

γtR
2dθ

dt
= τS, (5.3)

which compared with (5.2) gives

γr = γtR
2 = 6πηrR2. (5.4)

This means that the drag coefficient that we will use in our rotational equations

should be the same as in the previous model (∼ 2 · 10−4pNs/nm) but multiplied

by the square of the rotor radius. This radius is of the order of 25nm in the two

cases that we inspire our analysis: the FO of the ATP synthase and the Bacterial

Flagellar Motor (BFM) [5]. This leads to a value of γr ∼ 0.1pN · nm · s/rad.

The properties of the ratchet potential are very similar to the linear case. The

asymmetric factor α is chosen equal to 0.9, slightly greater than the 0.8 value of

the linear case. The reason is simply that the closer α to unity the better the

effectiveness of the mechanism, even though the minimum of the potential be-

comes more narrow and the simulation requires a lower time step. The height of

the barrier is chosen with the following criterion: too high values of V0 make very
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improbable noise transitions and then the thermal fluctuations cannot help the

mechanism. Very low values, on the other hand, produce too many noise induced

transitions and what is more important: the forces induced by the potential are

too low compared with the stretching and elastic ones, so the mechanism does

not work. Summarizing, V0 has to be at least more than 5 times kBT and lower

than ∆G. The specific value is chosen to be that maximizing the value of the

mean velocity.

The energy input is not ATP based this time. Most rotatory machines work

with ion flux across the membrane where they are embedded. We have to write

some typical values for the total membrane free energy and discuss the stechiom-

etry if the system. First, is basic to say that a membrane potential has two main

contributions: the gradient of ions ∆µ and the electrostatic potential ∆Ψ and

that is the reason why we called it an electrochemical potential. We write

∆G = ∆µ + ∆Ψ. (5.5)

The value of ∆Ψ is considered to be of the order of 150mV , which in our usual

units is

∆Ψ ≃ 24pNnm. (5.6)

For the chemical contribution we write

∆µ = kBT ln (
[ion]ext

[ion]int

), (5.7)

where [ion]int and [ion]ext are the ionic concentrations inside and outside the

membrane, respectively. Rotatory devices use proton or sodium ions, so [ion] can

be read as [H+] or [Na+] depending on the case. We know that the thermal

energy is kBT = 4.1pNnm and the values of the specific ionic concentrations,

even though depend on the lab conditions, will be taken from Ref.[25]. Then,

[ion]int = 30mM and [ion]ext is a control variable that varies in a [5, 100]mM

range. This implies a ∆µ contribution from −7 to 5pNnm. Added to the electro-

static contribution (also called membrane potential), the spectrum of available

free energy is (17− 29)pNnm, depending on the value of [ion]ext. This is the free

energy available for every single crossing ion. In this point is relevant to discuss
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the stechiometry of these motors. While ATP-driven motors seem to have a well

defined stechiometry of one nucleotide for every step, in the case of ion driven

machines this number is not so clear and even the integer nature of this number

remains obscure. What is clear is that the motion of the FO of the ATP-synthase

is the power that produces F1 rotation and ATP synthesis. To add complication

to this subject, the FO can be found with 10 to 14 subunits. The rotation of the

FO produces a rotation of the F1, which has three subunits. Everytime the F1

rotates 2π/3rad, an ATP is synthesized. This implies that the FO needs 3.33 to

4.67 rotation of their subunits in order to produce a single subunit step on the

FO. From an energetic point of view, the energy required to synthesize an ATP

is at least 120pNnm. Then, a minimum of 4 ions are required to contribute to

this amount of free energy.

While FO has a single torque generating unit, BFM has about 8-10, while it

has 26 structural subunits. It is known [25] that about 1000 ions are required to

a complete revolution of the motor. This means that every step of the subunit

requires about 38 ions to be performed. However, there are 8 to 10 torque gener-

ating units and this means that every of these units should use about 4 ions per

step, as in the previous case of FO.

We have to discuss how are we going to implement the energy input in this

model. The Nerst equation tells us that the free energy has two contributions, i.e.

the chemical and the membrane potential. While the latter can be considered as

a constant, the former has more subtleties. This statistichal contribution comes

from the fact that ions can cross in both directions and that the power stroke can

eventually be applied backwards. However, in our modelling the polarity of the

ratchet is fixed and does not change with the specific transition of the ion. Thus,

even if the device can rotate clock and counterclockwise due to thermal noise, the

power stroke can be applied only in one of the orientations. In a kinesin, there

is some finite (and low) probability that an ADP and a Pi are joined in a single

ATP in a catalytic site of a kinesin, but this would not imply a step backward

of the protein. In the case of a BFM, the backward transition of an ion implies

a backward motion of the motor, and that is why the entropic term has to be

added to the free energy. However, our model is strongly limited to these features
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TORQUE GENERATING UNIT.

and we will consider the case of a motor with no backward stroke. Thus, only

∆Ψ will contribute to the free energy that is used to perform the step. This latter

assumption implies that the total free energy available is ∆Ψ ∼ 24pNnm. This

will be the available energy for a single event in our FO-like model while for our

BFM inspired device we will use 100pNnm, which is approximately four times

∆Ψ, according with the approximation of 4 ions per event. This simplification,

although unrealistic, allows to use independently the binding probability param-

eter p and the energy available for the power stroke E.

We have to distinguish between two limiting cases: the low and high coupling

regimes. The coupling strength is determined by the stiffness. We don’t have to

confuse this coupling with the coupling ratio, which has another meaning. When

the stiffness is low, the system is poorly coupled and we are close to the case of

the linear dimer presented in the previous chapter. However, a single event in a

single spring is supposed to rotate the whole system. When a dimer is stretched,

the response of the rest of the system is not very high, so the current stretching

dimer can move as if it were independent from the rest of the particles. As the

next-consecutive spring will perform the same cycle later, it will move as well in

a quasi-independent way, and so on. This case has double inchworm character,

because each spring movement is followed by its consecutive partner. The second-

highly coupled regime corresponds to high values of the stiffness. In this case, the

response of the system under a stretching event is strong, so then the stretching

dimer cannot advance if it does not perform its job with energy enough to force the

whole system rotation. What we see is that this regime requires high stretching

torques in order to be achieved. In next sections we apply all these ideas to some

specific modellings and we will see how to avoid the low coupled regime for the

case of FO and BFM, as both structures are relatively rigid and there are many

reasons to expect that they perform a high coupled rotation.

5.2 A preliminary rotatory device model with a

single torque generating unit.

Inspired from the FO unit of the ATP synthase we build a rotatory device model

that performs a stretching event every time an ion crosses the membrane. As
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there is only one single channel, the number of torque generating units is equal

to one, as seen in Fig.5.1. In the simulation algorithm, the stretching events

will occur successively in consecutive springs. Let θi be the coordinate for every

particle and k the stiffness of the springs, which are all equal. Let N = 10 be

the total number of particles, so then the angle difference between subunits is

∆θ = 2π/N ≃ 0.63rad.

The available free energy per event is, as we have already mentioned, ∼
25pNnm. With this energy and having 10 particles to surmount an energetic

wall of V0 ≃ 25pNnm (this value optimizes the velocity of the motor), the sys-

tem cannot have a high coupling in order to achieve some motion. We simulate

the following equations:

λrθ̇i = −V ′(θi)+
τext

N
+τelR(θi, θi−1)+τelL(θi, θi+1)+τsRi(t)+τsLi(t)+ξi(t), (5.8)

where τext is the external torque, N = 10 is the number of particles, τelR, τelL

are the two elastic components of the torque (L accounts for a left-handed or

counterclockwise torque and R for the opposite sense), τsLi, τsRi are the two com-

ponents of the stretching torque and ξi(t) are the thermal forces (gaussian white

noise). The elastic torque is calculated following

τel(θi, θi+1) = −k(θi+1 − θi −∆θ), (5.9)

where

∆θ =
2π

N
. (5.10)

The stretching torque is simply the available energy E divided by ∆θ. The

ratchet potential induces a torque

τV 1 =
V0

∆θα
θ ∈ (0, α∆θ) (5.11)

and

τV 2 =
V0

∆θ(1− α)
θ ∈ (α∆θ, ∆θ), (5.12)

considering that moreover we have periodic boundary conditions V (0) = V (2π).
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The equations of motion are also the following index and boundary conditions,

i ∈ (1, N) θ0 = θN θN+1 = θ1. (5.13)

To compute the mean angular velocity 〈ω〉 we calculate the mean value of θ,

〈θ〉 ≡ 1

N

N
∑

i=1

θi. (5.14)

In Figure 5.2 we can see individual trajectories for each particle.

Figure 5.1: Scheme of the rotating system: The outer circle represents the
stator with N = 10 coupled particles. Each particle is linearly coupled to their
two neighbours by a spring of stiffness k. The black solid circle is the only torque
generating unit if the system, i.e. only the spring beside this unit is able to stretch
due to ion crossing. The inner circle shows the angular potential, which is flat
except near the torque generating unit. Specifically, it is non-zero in the torque
generating unit and the next unit beside, in order to rectify the motion when the
spring stretches and shrinks. R is the radius of the rotor while r is the radius of
the particles of this rotor.

In this model, the mechanism is very similar to the one presented in the

previous chapter. The spring which is under the ratchet (non-zero) potential is

stretched until it is elongated twice its natural angle. Then the stretching torque

disappears and the spring relaxes. In our algorithm we forbid new stretching
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events to occur until the spring has recovered its initial relaxed configuration.

This allows the system not to begin the stretching of the neighboring spring,

which reduces the efficiency of the whole mechanism. What we do is to wait

until the cycle is completed, no matter if it has successfully produced a step or

not. Then we allow the neighboring spring to wait for an event. This mechanism

implies that the non-zero section of the potential is translated an angle ∆θ after

every event. However, since this angle is precisely the period of the potential and

since the two particles connected by the spring are relaxed around the minima,

we can be sure that we are not adding neither extracting energy to the system.

If we would translate the potential just after stretching completion, we would

be adding energy and our calculations should take this fact into account. In the

trajectories, as most of the particles are under no potential, they don’t exhibit

step-like trajectories. However, there are some regions that sequentially appear

to move in discrete steps, corresponding to the time when they are close to the

torque generating unit.

Figure 5.2: Trajectories of the N = 10 units. We can see the trajectories for
each of the 10 particles of the rotor. As only the ones near the torque generating
unit are under a non-zero potential, we can see the stepping appearance only at
some given intervals of time in each particle. These step-like intervals jump from
one pair of consecutive particles to the next in a sequential way, as it can be
appreciated in the figure.

In the simulations, we are using a thermal energy of kBT = 4.1pNnm, a

time integration step ∆t = 10−6s, a stiffness k = 10pN/nm, V0 = 25pNnm and

α = 0.9. These values may seem quite arbitrary, but they can be justified with
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τext(pNnm) 0 −5 −10
ωmax(rad/s) 8.72 6.76 4.92
kM/10−5(dimensionless) 4.52 6.40 8.74

Table 5.1: Values of the michaelian parameters obtained in the simulations.

the following reasons. First of all, it is interesting to work with values that are

reasonably within biological thresholds. Secondly, once some of the parameters

are chosen, like the thermal energy or the available energies for the power stroke,

the spectrum of values for the rest of the parameters is strongly reduced. Only

a tedious set of simulation trials can give an idea of these narrow windows and

furthermore it provides the set of values that are maximizing the angular velocity

of the motor.

Once the simulation is completed, the two control variables, p and τext can

be moved in order to characterize the response of the motor under forcing and

under lack of substrate. We will try to proceed with a similar analysis as in the

previous section with the linear and dimeric case. First of all, we perform three

sets of simulations, each with a different load. Specifically, we will work with the

cases τext = 0,−5,−10pNnm. For each of these cases we will perform a scan for

different values of the binding probability p. We can see the results in Figure 5.3.

We can see how the curves are Michaelian, at least for p > 10−5. Now we fit each

of these curves following the M-M equation

ω = ωmax
p

p + kM
, (5.15)

where ωmax and kM are load dependent kinetic parameters. We obtain the values

shown in Table 5.1. Notice however how for very low p the agreement is not very

good, specially for high loads, where it is quite difficult to have simulation data.

Once we have obtained these parameters we try to apply the same theory

presented in the previous section. We can write now

ωmax =
ωmax(0)

1− τext

kiu(τm+τext)

(5.16)
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Figure 5.3: Mean velocity 〈ω〉 versus the binding probability p. The points
are simulation data from three different conditions: circles, triangles and squares
correspond to τext = 0,−5,−10pNnm, respectively. In the same order, solid,
dashed and dotted lines correspond to the Michaelis-Menten fit for every set of
points.

and

kM = kM(0)
1− τext

kic(τm+τext)

1− τext

kiu(τm+τext)

, (5.17)

where τm is the motive torque. Notice that we use τext with negative values for

the useful work regime, while in some figures we plot the load as a positive

quantity. The reason is that sometimes it seems easier to think the load as a

positive quantity and sometimes is more intuitive to think it as a negative torque

opposing to the motion. In addition, we can find both criteria in literature, so we

don’t adopt a single convention as it should produce no confussion.

Once the fit process (see Fig.5.4) is completed we can summarize the values

of the parameters, which are shown in Table 5.2. We can see how the maximum

angular (zero load) velocity is 8.72rad/s and kM(0) = 4.41 · 10−5. Later we see

that the motive torque τm is ≃ 25pNnm, which is precisely the value of the

free energy that is available in every event. On the other hand we can see how

kiu = 0.86, the uncompetitive inhibition constant, is greater than kic = 0.27, the

competitive inhibition constant. This means that this motor acts as a competitive

mixed inhibitor. However, both quantities are quite similar, and that is the reason
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Figure 5.4: Fit of the parameters. On the left figure, the three different ωmax

obtained from the curves of Fig.5.3 versus the corresponding load. The solid line
is a fit of eq.(5.16). On the right side we have the three different values of kM

obtained from the fitting process and the curve is the fit from the eq.(5.17). The
resulting parameters are shown in Table 5.2.

parameter ωmax(0) kM(0) kiu kic τm

value 8.72rad/s 4.41 · 10−5 0.86 0.27 25.04pNnm

Table 5.2: Values of the model parameters. The parameters without explicit given
unit are dimensionless.

why the force-velocity curves are almost linear.

With the set of parameters given in Table 5.2 we can plot the mean angular

velocity as a function of the load and see if it agrees with the simulation data. The

results are shown in Figure 5.5. At high p, we see how the agreement is excellent

(the solid line is in perfect agreement with the circles). However, at low values of

the binding probability, the agreement is worse than poor (the dotted line with

respect to the squares). There is no surprise in the plots as the theory applied

considers that the motive torque must be independent of p. However, simulations

show that the maximum torque does depend on the concentration (see Fig.5.5),

even if we have not taken into account the entropic term of the free energy. In

the figure, the dashed line is simply a linear regression of the data, giving

〈ω〉 ≃ 1.76 + 0.21τextpNnm, (5.18)
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which gives τm ≃ 8.5pNnm. In principle, it seems counterintuitive to find this

result, as we didn’t include the entropic term of the free energy, which has the

substrate concentration dependence in an explicit way. The reason has to be

thought in terms of some kinetic considerations. In Appendix A2 we show some

calculations that are devoted to analyze such a dependence.

Summarizing, we have analyzed a simple rotatory model with a single torque

generating unit within a nano-biological scale. The available energies suggest

that such an inchworm mechanism is not very efficient in this case. However,

we have observed force-velocity curves and quasi Michaelian substrate-velocity

dependences. We have also provided an interesting clue to the fact that different

substrate concentrations can produce different stall torque values without taking

into account entropic contributions in the free energy. This could be also applied

to kinesin [ATP]-dependence on the stall force, but in this case the motor is

tightly bound to the microtubule while there is no power stroke acting, so the

applicability is not straightforward.
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Figure 5.5: Load-velocity curves for two different values of p. Circles and
squares correspond to simulation data for p = 0.01 and p = 10−5, respectively.
Solid line is the plot of the equation (5.15), so we see how the prediction agrees
with the simulated data. However, dotted line is the prediction for the other,
lower-p, case. We see how the disagreement is complete. While the prediction de-
cays until a stalling value which is the same as in the high-p case, the simulations
show that the decay occurs much faster. Dashed line is simply a linear regression
fitting the simulation data.
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In Figure 5.6 we can see the data for the global efficiency and the coupling

ratio. What is most remarkable is that the efficiencies are extremely low. The max-

imum values achieved do not reach 10−2, which contrasts with the claims that

ATP synthase can be close to efficiency one. The reason for the low efficiency is

directly measured through the coupling ratio, which is clearly away from a tight

coupling mechanism. In this mechanism, most of the crossing ions are wasted,

even at zero load conditions. We think that the available energy, 25pNnm for a

single event is too low to satisfactorily move the whole system. There is also the

possibility that we could have overestimated the value of the drag coefficient. We

have used values for the friction that are 3 orders of magnitude higher than in

the linear case.
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Figure 5.6: Efficiency and coupling ratio versus the load. In the upper
figure we can see simulation data for the efficiency versus the external torque
(here written as negative). Lines are only guides between points, while circles and
squares correspond to p = 0.01 and p = 10−5, respectively. We observe typical
parabolic-like shapes even though they are not symmetric. Maximum efficiencies
are really small as they rarely reach 5 · 10−3. It is relevant that at low values of p
the efficiency reaches negative values at lower loads. On the lower figure we plot
the data for the coupling ratio, with the same correspondence of symbols with
the simulation conditions. The coupling ratio decays from an initial value slightly
above 0.25 and it reaches the zero in an equivalent way as the efficiency does.
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Appendix A1

Let us perform the calculation of the Kramers formula for the overcoming of a

barrier built with linear pieces. We begin with Smoluchowski’s equation

∂f(x, t)

∂t
=

1

λ
(

∂

∂x
(V ′(x)) +

kBT∂

∂x
)f(x, t) (5.19)

where f(x, t) is the probability density function. An equivalent expression is

∂f(x, t)

∂t
= − ∂

∂x
j(x, t), (5.20)

where j(x, t) is the probability current. Considering a stationary state, ∂f(x,t)
∂t

= 0,

so j(x, t) will be a constant. Then

j = −V ′(x)f(X, T )

λ
− kBT

λ

∂f

∂x
(5.21)

and, rearranging some terms, gives

∂f(x)

∂x
+

V ′(x)f(x)

kBT
= − jλ

kBT
(5.22)

We can rewrite last expression as

d

dx
[f(x)e

V (x)
kBT ] = − jλ

kBT
e

V (x)
kBT (5.23)

where we have used

e
R V ′(x)

kBT
dx

= e
V (x)
kBT (5.24)

We integrate from x = 0 (corresponding to a first potential minimum) to x = B

(corresponding to the second potential minimum, where V = 0). Here we derive
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in general, for any potential. Later we will use the one presented before. Thus

[f(x)e
V (x)
kBT ]B0 = − jλ

kBT

∫ B

0

e
V (x)
kBT dx. (5.25)

It’s reasonable to suppose f(B) = 0 (no particles at the maximum), so then we

can solve j

j =
kBT

λ

f(0)e
V (0)
kBT

∫ B

0
dxe

V (x)
kBT

(5.26)

It’s also reasonable to suppose that j is very small around x = 0, so, from (eq)5.22

∂f

∂x
= −V ′(x)

kBT
f(x) (5.27)

Integrating between x = 0 and a point x of the ’bell’, we obtain

f(x) = f(0)e
−V (x)+V (0)

kBT . (5.28)

Proceeding like this, the diffusive particles’ population around the minimum is

given by

na =

∫ x2

x1

f(x)dx (5.29)

where x1 and x2 are two points around x = 0. We arrive at last to the expression

for the frequency of escape k across the barrier, which is the ratio between the

current crossing and the non-succeeding population.

k =
j

na
. (5.30)

We obtain the expression we wanted to arrive, k as a function of V (x)

k = (
kBT

λ
)

1
∫∞
−∞ dxe

V (x)
kBT

∫∞
−∞ dxe

−V (x)
kBT

, (5.31)

where we have extended the integration limits to infinity because the integration

is realized over a local expansion of the potential. We call I1 to the left integral

and I2 to the right one. This is a well known result and from it one can arrive to

Arrhenius’ law taking expansions around the minimum and the maximum. We
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will do it but without expanding it because with our potential the integral can

be performed analytically, obtaining a theoretical expression for the rate of the

reaction as a function of the parameters discussed before.

We will first call V1(x), V2(x), V3(x) to the three pieces , respectively, of the

potential presented in eq.(3.25). We have to integrate

I2 =

∫ ∞

−∞
dxe

−V (x)
kBT , (5.32)

where V (x) is the potential around the minimum at x = 0. So we can perform

the integral in two parts,

∫ ∞

−∞
dxe

−V (x)
kBT =

∫ 0

−∞
dxe

−V1(x)
kBT +

∫ ∞

0

dxe
−V2(x)

kBT . (5.33)

We obtain an analytical result for the potential. The expression for V (x) is

V (x) =











− (∆Gu+EA)
αL

x if −Lα < x < 0
EA

L(1−α)
x if 0 < x < L(1− α)

− (∆Gu+EA)
αL

x + EA + 1−α
α

(∆Gu + EA) if L(1− α) < x < L

so then,
∫ ∞

−∞
dxe

−V (x)
kBT = kBT l0(

α

∆G + EA
+

1− α

EA
). (5.34)

If we do the same around the maximum in

I1 =

∫ ∞

−∞
dxe

V (x)
kBT , (5.35)

where
∫ ∞

−∞
dxe

V (x)
kBT =

∫ 0

−∞
dxe

V2(x)
kBT +

∫ ∞

0

dxe
V3(x)
kBT , (5.36)

we obtain
∫ ∞

−∞
e

V (x)
kBT = kBTLe

EA
kBT (

α

∆Gu + EA
+

1− α

EA
). (5.37)

Because

k =
kBT

λI1I2
, (5.38)
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we can join the results and stay that

k =
1

λL2kBTβ2
e
− EA

kBT (5.39)

where we have defined

β0 =
α

∆Gu + EA
+

1− α

EA
. (5.40)

Thus we obtain for the mean velocity

〈v〉 =
1

λLkBTβ2
0

e
− EA

kBT . (5.41)

Let’s perform an idealistic estimation of the magnitude of EA. With the

usual value for the kinesin parameters and setting the limit where α → 1 and

∆Gu ∼ 50pNnm (half of the typical ATP hydrolysis energy, as discussed in

[41, 37]) we obtain, when setting 〈v〉 ≃ 800nm/s, that EA ∼ 53pNnm, i.e. of

the same order of magnitude that ∆Gu. When moving the asymmetry parameter

α the value for EA only decreases to 49pNnm when α → 0.5. If we would use

∆Gu ≃ 100pNnm the values for the activation barrier would only be increased

by ∼ 5pNnm. With these clues we can obtain a first calibration to enter into the

kinesin experimental scale of Ref.[9].

When the external force is applied, the total potential affecting the motor is

modified in a way that an opposing load reduces the global slope of the effective

potential. In the limit case of the stall force, the total potential has no net slope

and then there is no directed motion. Nevertheless, we don’t know yet how the

external force is affecting the activation barrier. If we are able to calculate the

fext-dependence of EA we can obtain an estimation of the mean velocity by means

of a Kramers rate. If we apply the external force fext the two energies EA and ∆Gu

are substituted by EA− fextL(1−α) and ∆Gu + fextL. With these substitutions

we obtain a load-dependent velocity

〈v〉 =
1

λLkBTβ2
f

e
−EA−fextL(1−α)

kBT , (5.42)
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with

βf =
α

∆Gu + fextL + EA − fext(1− α)
+

1− α

EA − fextL(1− α)
. (5.43)

If we analyze the limit of fext → −∆Gu

L
then βf → 1

EA
. We obtain the following

velocity

〈v〉 =
(EA + ∆Gu(1− α))2

λLkBT
e
− (EA+∆Gu(1−α)))

kBT . (5.44)

We can work in the approximation α→ 1 to write

〈v〉 =
E2

A

λLkBT
e
− EA

kBT . (5.45)

This is the velocity of the particles travelling from left to right. Now we can

write a similar expression for the particles travelling backward, applying the same

concepts derived in previous expressions. We call now to the left-to-right velocity

v1 and the right-to-left velocity v2. Then, for fext = 0,

〈v1〉 =
(EA + ∆Gu)

2

λLkBT
e
− EA

kBT (5.46)

and

〈v2〉 =
(EA + ∆Gu)

2

λLkBT
e
− (EA+∆Gu)

kBT . (5.47)

In order to have a proper definition of total mean velocity is important to take

into account the backward processes, and that is why we redefine 〈v〉 as

〈v〉 = 〈v1〉 − 〈v2〉, (5.48)

and then

〈v〉 =
(EA + ∆Gu)

2

λLkBT
e
− EA

kBT (1− e
−∆Gu
kBT ). (5.49)

The correction respect to the previous expression does not seem important at zero

load, but it gains relevance as we increase the strength of the external forcing.

Specifically, when fext = −∆Gu/L, 〈v〉 is strictly zero. We can write in general

〈v〉 =
(EA + ∆Gu + fextL)2

λLkBT
e
− EA

kBT (1− e
−(∆Gu+fextL)

kBT ). (5.50)
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Appendix A2

When there is no stretching event acting on the system, the potential barrier is

V0 and the load is τext, if we consider a tightly coupled system. Then we have the

following rate of forwards events

r→ ∝ e
−V0−τextα∆θ

kBT (5.51)

and the backwards rate

r← ∝ e
−V0+τext(1−α)∆θ

kBT . (5.52)

In absence of power stroke events, the total backward/forward transition quotient

is r = r←/r→,

r = e
τext∆θ(2α−1)

kBT . (5.53)

Now, when the free energy coming from the crossing ion is present, the energy

profile is different. We will consider that there is a free energy difference E between

two consecutive minima. Then, the modified rates r′i are

r′→ ∝ e
−V0−τextα∆θ−E

kBT , (5.54)

r′← ∝ e
−V0+τext(1−α)∆θ+E

kBT , (5.55)

and

r′ =
r′←
r′→

= e
2E+τext∆θ(2α−1)

kBT . (5.56)

The point is now to consider that during a dwell or waiting time we have to

consider r to be the current rate while during the power stroke event (during

ton), the rate has to be like r′. At a single event, 〈ton〉/〈tev〉 is the fraction of time

that the motor is at the r′ state. The free energy difference while there is no E
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acting can be written as

∆G =
τext∆θ(2α− 1)

kBT
, (5.57)

while in the other case there is a free energy

∆G′ =
2E + τext∆θ(2α− 1)

kBT
. (5.58)

In the whole process, the system is under these two values of free energy, so we

can calculate the average value ∆̂G,

∆̂G =
p

p + kM
∆G′ + (1− p

p + kM
)∆G, (5.59)

where it is easy to show that

ton

tev
=

p

p + kM
. (5.60)

We obtain

∆̂G =
p

p + kM

2E + τext∆θ(2α− 1)

kBT
+ (1− p

p + kM
)
τext∆θ(2α− 1)

kBT
. (5.61)

As we are interested in the stall torque value, we set ∆̂G = 0 and then

τm =
2E

(2α− 1)∆θ

p

p + kM
. (5.62)

This means that the stall torque value has a michaelian response with kM . If

p = 0, then the stall torque is zero as well as there are no power stroke events.

However, kM is extremely low, which makes this effect difficult to see if we are not

measuring data on a regime p < kM . In the rotatory model we have presented,

p = 10−5 is clearly under kM , so then τm is strongly reduced.

We see then how the effective free energy is modified as a function of the

substrate concentration without the need to introduce the entropic term in the

free energy. As τm is supposed to be ≃ ∆GT /∆θ, we have provided a reason

of why the stall torque depends on the binding probability p. But maybe there
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are other important factors contributing to this effect. The angular potential is

zero everywhere except close to the torque generating unit. However, the external

torque is applied everywhere, in each particle of the rotor. Then, for the parti-

cles which are not under a non-zero ratchet potential, is very easy to be dragged

by the external torque. This produces a backward motion that the torque gen-

erating unit can hardly compensate when the rate of crossing ions is low. It is

true that we have incorporated the external torque in a quite arbitrary way. The

assumption that the whole load is shared by all the particles is not necessarily

true neither realistic. Maybe the whole load should be applied to the stretching

particles. From an experimental point of view, maybe a conservative load has no

sense since what is usually used is a non-conservative load introduced through

different rotation drags. But in this model we have been inspired by how the F1 of

the ATP synthase may transfer the torque to the FO through the shaft. We think

it is reasonable to think that the load is shared by all the rotor in FO, although

this question is far from being clarified.
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Part II

Chemical kinetic models

103





6

Introduction

Even though every molecular motor exhibits different structural properties and

probably different mechanical features, there is a realm where all the protein de-

vices can be understood under general and well defined magnitudes. Chemical

kinetics of molecular machines is a wide field well supported by experimental

data, as almost all the measurements are based on the variables that this disci-

pline imposes. Reaction rates, dwell times, binding affinities. . . are some of the

most common parameters to characterize the chemical processes inside a motor

protein. From the point of view of the modelling this level of description is es-

sentially phenomenological as the whole motor is considered to be a black box

with some specific features. This fact allows to establish quantitative compari-

son between very different machines, which sometimes can have similar kinetic

properties. Thus in this chapter we are not going to analyze molecular motors

in a very fundamental way, but to introduce chemical kinetic models that are in

agreement with experimental data. These models are very useful to biochemical

analysis and they are the basis to address more fundamental levels of description.

From now on, we will consider molecular motors as simple enzymes, and then

the mechanical velocities will be obtained by multiplying the velocity of the re-

action by the displacement that the motor performs every cycle. Additionally,

it should be multiplied as well by the coupling ratio, since not all the chemical

cycles are successfully converted into mechanical steps. But in some cases we will
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find that the chemical equations can take the coupling ratio into account, so in

principle we can deal with chemical enzymes and after this to obtain physical

magnitudes. In this chapter we are not interested in more fundamental details,

but this kinetic phenomenology cannot be enough without a parallel and more

microscopic understanding of the underlying mechanism of the nano devices.

One of the main problems and at the same time one of the most interesting fea-

tures of the molecular motors topic is the following: when building a mechanical

model it is not clear how to introduce the chemical components; when describing

the chemical scheme it is not clear how to introduce the mechanical part. But

molecular motors are mechano-enzymes, so consequently we have to deal with

these two disciplines simultaneously. In this chapter we are going to focus our at-

tention into a chemical-based approach but incorporating the mechanical forces

as virtual or effective substances that depend all the time on the actual value of

the mechanical force. We will discuss a new way to incorporate such ingredient

in a Michaelis Menten formalism obtaining good agreements with experimental

data.

In order to begin, we have to recall the fundamental ingredient of any kinetic

model: the law of mass action. Given a reaction like

A + B
k1 // C + D (6.1)

the law of mass action establishes that the rate of reaction is proportional to the

product of concentrations of the reactants, i.e.

d[C]

dt
=

d[D]

dt
∝ [A][B]. (6.2)

In a more general form we can introduce the stechiometric coefficients λi as

λaA + λbB
k1 // C + D , (6.3)

where now
d[C]

dt
=

d[D]

dt
∝ [A]λ1 [B]λb . (6.4)

In the Appendix B1 of this chapter we provide some simple calculations to illus-
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trate the basis of the proportionality between the reaction rate and the reactant

concentration.

Nevertheless, the reaction are not usually unidirectional, but arrows in the

two senses are allowed,

A
k1

))
B

k−1

ii . (6.5)

Then, following the law of mass action, we could write

d[B]

dt
=
−d[A]

dt
= k1[A]− k−1[B]. (6.6)

If we impose an equilibrium condition, then d[B]/dt = 0 and

k−1

k1
=

[A]eq
[B]eq

≡ k0, (6.7)

which defines the equilibrium concentrations [A]eq and [B]eq, at which there is

no net change in the population of the species A and B. We have also defined

k0 as the equilibrium constant of this reaction. From Kramers rate theory we

can relate this rates to the free energy concepts. We can agree that the ratio of

backwards/forwards rates gives

k−1[B]

k1[A]
= e−∆G/kBT , (6.8)

so then

∆G = −kBT ln (
[B]

[A]
) + kBT ln (k0). (6.9)

We define

∆G0 ≡ kBT ln (k0), (6.10)

which is the equilibrium free energy, while the concentrations dependent term

is the entropic free energy. It is clear, then, how to relate kinetic rates in the

chemical equation with the free energies associated with them. This latter case is

intimally related with the free energy across a membrane due to the concentration

gradient, supposing there is no mediator of the reaction. The role of the media-

tor is, however, so common that is difficult to find biological reactions without

intermediate molecules regulating the kinetics of the process. The paradigmatic
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kinetic equations describing the effect of these mediators or enzymes are the so

called Michaelis-Menten (M-M) equations.

6.1 Michaelis Menten formalism and Hill expo-

nent

Let’s consider the following reaction

S + E
k1

++
SE

k−1

mm
k2 // P + E , (6.11)

where S is the substrate, E the enzyme, P the product and SE the complex

enzyme-substrate. From now on we adopt the following notation:

s = [S] e = [E] p = [P ] x = [SE]. (6.12)

We can write then for the velocity of reaction r (the production of P )

r = k2x. (6.13)

We can also assume the hypothesis of

dx

dt
= 0, (6.14)

which implies

k1(e− x)s− k−1x + k2x = 0. (6.15)

This allows to write x as

x =
es

s + k−1+k2

k1

. (6.16)

We now define the Michaelis constant kM as

kM ≡
k−1 + k2

k1

(6.17)
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and the maximum velocity of reaction rmax

rmax = k2e. (6.18)

It is clear that as e is the total enzyme concentration, k2e represents the maximum

possible rate, which corresponds to the case where all the enzymes are at work.

On the other hand, kM represents the affinity of the substrate for the enzyme. If

ka ≫ k−1 then kM is big and the substrate has a high affinity for the enzyme.

We can write then

r = rmax
s

s + kM
, (6.19)

which is the standard way of writing the M-M equation. These two parameters are

the necessary numbers in order to characterize a simple enzyme which is acting

with a single binding site and without external forcing. If the enzyme would have

several binding sites, let’s say n, the reaction could be written in the form

nS + E
k1

,,
SnE

k−1

mm
k2 // nP + E , (6.20)

and then

x =
sne

sn + kM
. (6.21)

We can write then the generalized M-M equation, which now it is usually called

Hill’s equation,

r = nrmax
sn

sn + kM
. (6.22)

This equation can also be interpreted as the description of a system where there

are several enzymes which can cooperate. If n = 1 we could say that the enzymes

are independent and there is no cooperation. If n > 1 the cooperation is positive,

and there is a synergy, while n < 1 produces a negative effect respect to the

independent case. We call to n the Hill exponent, which is a useful quantity when

we want to measure the degree of cooperativity of different enzymes.
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6.2 Kinetic inhibition

An inhibitor is a factor that decreases the rate of the global reaction, while an

activator has the opposite effect: it enhances the reaction velocity. However, there

are many ways of activate or inhibit a reaction. These factors are so important

that they can be considered the responsible of almost all the regulation processes

in genetic networks. Furthermore, almost all the drugs are chemical inhibitors.

Moreover, and in relation with the topic of this thesis, the mechanical forces

applied to a motor can be considered as inhibitors of the reaction. This is the

main reason to introduce here the inhibition formalism.

6.2.1 Classification

The inhibitors can be classified into two main groups: reversible and irreversible.

Irreversible inhibition consists on inhibitors that after affecting the mechanism of

the enzyme for the first time there is no chance for the enzyme to be free again

from the inhibitor. They are also called inactivators. In the case of a covalently

bound irreversible inhibitor we say that we have a suicide inhibitor.

On the other hand, a reversible inhibitor can bind or force the enzyme but even-

tually can unbind it or allow the enzyme free behaviour path. We will focus in

this type of inhibitors, because when a mechanical forcing is stopped the motors

are able to recover their initial velocity.

Another main classification is based on the total percentage that the inhibitor

can reduce from the non-inhibited rate. If the inhibitor can completely stop the

reaction we say is a full inhibitor. Otherwise is a partial inhibitor. In experiments

with molecular motors it has been seen that an external forcing can completely

stall the motor, so we are dealing with full inhibitors. Moreover, some motors can

be reversed at superstall forces, but this will require a more complicated formal-

ism that will be introduced later.

Once we have classified molecular motors as reversible and full inhibitors we

can distinguish some subclassification depending on how the two kinetic param-

eters kM and rmax are affected when the inhibitor concentration increases. We

present now the canonical cases, which are the competitive, uncompetitive, mixed

and non-competitive inhibitions.
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6.2.2 Competitive inhibition

We can now enter into the discussion of the case where there is a second substrate

in the system that is able to compete with S. Specifically, we are interested in

the cases where this second substrate inhibits the reaction. For now, it is enough

to consider this substrate as a substance, but we will see later how a mechanical

force can be considered an inhibitor. First, we consider the case of a competitive

inhibitor, with the scheme

E + S

I
		

k1
++
ES

k−1

mm
k2 // E + P

EI

kic

II , (6.23)

where we have simplified the reaction

E + I
k3

++
EI

k−3

mm , (6.24)

with

kic =
k−3

k3
. (6.25)

kic is the competitive inhibition constant, which is, furthermore, a dissociation

constant as it increases when the dissociated state increases its relative strength.

We adopt

y = [EI] i = [I] , (6.26)

and we can still write

r = k2x, (6.27)

but now we have to solve for x and y, for which we assume there are no variations

in time,
dx

dt
=

dy

dt
= 0. (6.28)

We obtain the following equations

k1s(e− x− y) = (k−1 + k2)x (6.29)
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and

kicy = (e− x− y)i. (6.30)

We obtain for the EI complex

y =
e− x

1 + kic

i

, (6.31)

and then, after a little tedious algebra, we find

x =
es

s + kM(1 + i
kic

)
. (6.32)

Finally,

r = rmax
s

s + kM(1 + i
kic

)
. (6.33)

What we find is that we obtain a Michaelian expression but redefining

kM(i) = kM(i = 0)(1 +
i

kic
). (6.34)

Then, as the inhibitor concentration increases, kM increases as well.

This is the response of a competitive inhibitor: whenever it competes with

substrate binding, the Michaelis constant is affected and then the binding affinity

is slowed down as i > 0. Note that rmax is not affected, and only for i→∞ the

velocity of the reaction goes to zero, i.e. only when binding is forbidden. This type

of inhibition can be also called an entropic or effusive inhibition as it enhances

the entropic barrier that the substrate has to surmount in order to enter into

the enzymatic cavity. In fact, we can write explicitly how the entropic barrier

depends on the inhibitor concentration. If we have the simple scheme

E + S
k1

++
ES

k−1

mm , (6.35)

we can calculate the forward rate r→ as

r→ = k1s(e− x) (6.36)
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and the backward rate r ←
r← = k−1x. (6.37)

Following Kramers kinetics already used in the previous chapter we can write

r ←
r→

= e−∆G/kBT . (6.38)

Then, the free energy can be written as

∆G = −kBT ln (
k−1x

k1s(e− x)
). (6.39)

If we add the inhibition as

E + S

k2

		

k1
++
ES

k−1

mm

EI

k−2

II , (6.40)

we obtain for the backward/forward ratio

r ←
r→

=
k−1x

k1s(e− x)
(1 +

i

kic

). (6.41)

Then

∆G = −kBT ln (
k−1x

k1s(e− x)
(1 +

i

kic
)). (6.42)

We can compare this expression with the non-inhibited case (6.39) and conclude

that

∆GI = −kBT ln (1 +
i

kic
) (6.43)

is the inhibitor contribution to the entropic barrier.
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6.2.3 Uncompetitive inhibition

Instead of binding the free enzyme, we can consider an inhibitor that binds the

enzyme-substrate complex in the form

E + S
k1

++
ES

k−1

mm

I
		

k2 // E + P

ESI

kiu

II , (6.44)

Then we define

y ≡ [ESI] kiu ≡ k−3

k3
, (6.45)

and assume
dy

dt
= 0. (6.46)

As a consequence we can write

y =
i

kiu
x, (6.47)

and assuming again that x does not change in time,

k1(e− x− y)s = (k−1 + k2)x, (6.48)

we solve the system to obtain r = k2x,

r = rmax
s

s(1 + i
kiu

) + kM

. (6.49)

This is equivalent to write

r = rmax(i)
s

s + kM(i)
, (6.50)

where

rmax(i) =
rmax(0)

(1 + i
kiu

)
(6.51)

and

kM(i) =
kM(0)

(1 + i
kiu

)
. (6.52)
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Thus for the uncompetitive cases both kM and rmax change with i. Specifically,

they both decrease when the inhibition increases. Again we can study how the

inhibitor concentration distorts the reversible kinetics between e and x = [ES].

We remind that for i = 0
r←
r→

=
k−1

k1

(e0 − e)

es
, (6.53)

where now we have performed the following changes: If we had e for the total

enzyme concentration now we write e0, and by e here we mean the free enzyme,

i.e. e = e0 − e − ei. Following this temporary conversion we can write for the

inhibited case
r←
r→

=
k−1

k1

(e0 − e)

es(1 + i
kiu

)
, (6.54)

which clearly produces the following free energy contribution

∆GI = kBT ln (1 +
i

kiu
). (6.55)

6.2.4 Mixed inhibition

The most general of these canonical examples is the mixed scheme, which is the

sum of the two previous cases. Now the inhibitor can bind the free enzyme with

a constant kic and at the same time it can bind the complex enzyme-substrate

with constant kiu. We have the scheme

E + S
k1

++

I
		

ES
k−1

mm

I
		

k2 // E + P

EI

kic

II

ESI

kiu

II , (6.56)

Considering that now

z ≡ [ESI] y ≡ [EI] , (6.57)

and that the hypothesis here are the sum of the hypothesis of the two previous

cases, we can write the equations

z =
i

kiu
x, (6.58)
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e− x− y − z =
kic

i
y ⇒ y =

e− x− y

1 + kic

i

(6.59)

and

k1(e− x− y − z)s = (k−1 + k2)x. (6.60)

Again we have the global rate expressed as

r = k2x, (6.61)

so we solve for x and after some algebra we can write

r = rmax
s

s(1 + i
kiu

) + kM(1 + i
kic

)
, (6.62)

which is clearly a superposition of the competitive and uncompetitive cases. In

order to write the Michaelian equation we redefine

rmax(i) =
rmax(0)

(1 + i
kiu

)
(6.63)

and

kM(i) = kM(0)
(1 + i

kic
)

(1 + i
kiu

)
, (6.64)

so then we can write again

r = rmax(i)
s

s + kM(i)
(6.65)

and deal the system as a parameter-variable Michaelis-Menten equation.

Following the perspective of considering the mixed case as the superposition

of the competitive and uncompetitive cases we can subdivide the mixed type

into two subtypes depending on the relative substraction of the two inhibition

constants. If the competitive inhibition constant kic is greater than the uncompet-

itive inhibition constant, kiu we have a mixed uncompetitive case, while kic < kiu

implies a mixed competitive cases. The reason to characterize the system with

the lower inhibition constant is that they are dissociation constants and the lower

the ki the stronger the effect it has on the enzyme.
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It is worth working again with the free energy contribution in order to evaluate

how the mixed case modifies the free energy between e and x. We adopt the same

variable convention of the latter uncompetitive case and defining

ex ≡ [ES] ey ≡ [EI] ez ≡ [ESI] , (6.66)

we can write

ey = e
i

kic

, (6.67)

and

k3(e0 − e− ey − ez)i = k−3ez (6.68)

which can be expressed as

ez =
e0 − e(1 + i

kic
)

1 + kiu

i

. (6.69)

Then the forward/backward rates are

r→ = k1es (6.70)

and

r← = k−1(e0 − e− ey − ez). (6.71)

The ratio between them becomes

r←
r→

=
k−1

k1es

(e0 − e(1 + i
kic

))

(1 + i
kiu

)
. (6.72)

As the ratio for the i = 0 case is simply

r←
r→

=
k−1(e− e0)

k1es
, (6.73)

the contribution to the free energy of the inhibitor concentration is

∆GI = −kBT ln (
(e0 − e(1 + i

kic
))

(e0 − e)(1 + i
kiu

)
). (6.74)

In this case we cannot easily separate the free energy contribution from the en-
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zyme concentration. We have to consider again the hypothesis d(e0−e−ey−ez)
dt

= 0

to obtain

k1es = (k−1 + k2)(e0 − e− ey − ez) (6.75)

and consequently we isolate e/e0 as

e

e0
=

1

(1 + i
kiu

)( s
kM

) + (1 + i
kic

)
. (6.76)

We can substitute rewrite eq.(6.74) as

∆GI = −kBT ln (
(1− e

e0
(1 + i

kic
))

(1− e
e0

)(1 + i
kiu

)
) (6.77)

and arrange it into

∆GI = −kBT ln (
( e0

e
− (1 + i

kic
))

( e0

e
− 1)(1 + i

kiu
)
). (6.78)

Then we substitute eq.(6.76) obtaining, after some algebra,

∆GI = kBT ln (1 + i(
1

kiu
− kM

kics
)). (6.79)

We can see how for s≫ kM or s→∞ we recover the uncompetitive case.

6.2.5 Non-competitive inhibition

The last canonical case is the non-competitive inhibition which is a particular

case of mixed inhibition where both inhibition constants have the same value.

Then, the inhibitor has the same affinity for the two states of the enzyme. The

scheme is simply

E + S
k1

++

I
		

ES
k−1

mm

I
		

k2 // E + P

EI

ki

II

ESI

ki

II , (6.80)

where

ki ≡ kic = kiu . (6.81)
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It is easy to see that the kinetic M-M equation becomes

r =
rmax

(1 + i
ki

)

s

s + kM
, (6.82)

so in this case we have to consider a variable rmax while kM is maintained as a

constant. The contribution to the free energy is, using the general mixed case

and using ki = kiu = kic,

∆GI = kBT ln (1 +
i

ki

(1− kM

S
)). (6.83)

Interestingly, for s = kM the free energy contribution is equal to zero. As the

Michaelis constant has the meaning of the concentration at which the enzyme is

50% occupied, it is reasonable to see that the inhibition affects exactly the same

to the free and occupied enzyme so the balance between the two populations is

unaffected.
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7

The external load as an inhibitor in kinesin’s

motion

7.1 Introduction

In this section it is shown how the formalism of kinetic inhibition can be straight-

forwardly applied to the case of mechanical loading of molecular motors [43]. Even

though in the previous chapter the formalism was already applied to describe the

behaviour of a theoretical device, here we introduce all the detailed steps but ap-

plied to a real molecular motor: the kinesin-1 or conventional kinesin, using the

experimental data from [9]. The main goal is to achieve an analytical expression

for the mean velocity of the motor as a function of the two control variables: the

ATP concentration, [ATP], and the external load F .

The usual way to introduce the mechanical force in chemical process is based

on the mechanical work that the external force exerts along the two chemi-

cal states [44]. Let’s suppose the reaction coordinate has a certain projection

along the axis of motion in such a way that the whole reaction implies an

x−displacement of xA → xB. Then the force fext produces a work

W = fext(xB − xA). (7.1)

121
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The whole free energy can be written as [41]

∆G(fext) = ∆G0 + fext(xB − xA) + kBT ln
[B]

[A]
. (7.2)

At equilibrium, ∆G = 0,

∆G0 + fext(xB − xA) = −kBT ln Keq, (7.3)

or, isolating Keq,

Keq(fext) = e
−∆G0

kBT
− fext(xB−xA)

kBT . (7.4)

In other words, the mechanical force alters the equilibrium constant with an

exponential dependence. Now we could use the calculation of ∆GI for the most

general case, which is the mixed case. If the free energy of the inhibitor has to be

equivalent to the work performed by the external force, then

∆GI = fext(xB − xA), (7.5)

so then, using 6.79 we obtain

i =
e

−fext(xB−xA)

kBT − 1
1

kiu
− kM

skic

. (7.6)

This rude identification leads to a strong-exponential increase of i with increasing

loads. This implies that the reaction rate decays exponentially with this load, but

this is not in agreement with the experimental data. From [9, 36] we know that

the force-velocity curves do not decay in this exponential way but with the oppo-

site curvature, i.e. at low loads the decrease of the velocity is not very strong, but

near the stall force value the velocity decays very rapidly. One has to make use

of a two or more states model in order to achieve this behaviour, like in Ref.[45].

In this work, the kinesin data is in agreement with a 2-state model where one

barrier can be located at x = 0 and the other at x = 1.8nm. This is interesting as

in Ref. [40] there seem to be a ∼ 2nm displacement and then another of ∼ 6nm

long. However, the time spent at this stage is so small that cannot significantly

contribute to the global mean velocity. What we want is to give a simple formal-

ism that can be able to describe the mean velocity as a function of the load and
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the ATP concentration without the need to introduce potential profiles that do

not correspond to proper trajectories. For now we will focus on a more simple

and chemically based way of describing the kinetics of kinesin. Our approach is

based on inhibition theory and does not need to suppose a split of the step into

two displacements.

7.2 Analysis and results

Following the classification of inhibitors described before, we can consider ki-

nesin as a full-reversible-mixed-competitive inhibitor. Full because the load is

able to completely stall the motor. Reversible because when the load is not

applied anymore the velocity is recovered. Mixed because both vmax and kM

change with the load. Finally, it is competitive because the effect of kic is stronger

that the effect of kiu. In other words, kic < kiu. The idea of relating inhibition

theory with the effect of kinesin loading comes from a very simple fact. From

experimental data of Ref.[9] we can see how the velocity−[ATP ] curves agree

with Michaelis-Menten equation. Specifically there are three curves, loaded with

1.05, 3.58, 5.63pN , respectively. In Figure 7.1 we can see these curves with their

corresponding Michaelian fit. We already showed in the previous chapter in Table

3.1 the results of the M-M fit of the previous curves.

Figure 7.1: Mean velocity versus ATP concentration. We can see how kM

is increased with higher loads while vmax decreases.
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Thus, having different and well defined M-M curves each having its corre-

sponding set of kinetic parameters, it is a temptation to apply inhibition theory,

which is classically developed to deal with variable kM , vmax scenario but still

within M-M schemes. The only point in order to establish a bridge between this

well known chemical kinetic theory and kinesin loading is to connect the mechan-

ical force, fext or simply −F with the corresponding and in this case effective

inhibitor concentration i ≡ [I]. We say it is an effective concentration because it

is not a real substance diffusing in the media, but a mechanical variable. How-

ever, we can write an equation that relates F with i, and then the application of

inhibition theory will be straightforward.

First, it is worth analyzing the limits of the desired F − i relation. We shall

agree that for F = 0 we should recover i = 0, i.e. if the motor is not loaded

we have a null inhibitor concentration. On the other hand, the motor stalls at

F = FS, the stall force value. At this point, the velocity has to vanish, and the

only way to achieve it through an inhibitor is strictly having an infinite inhibitor

concentration. It is true that this implies an infinite ∆GI as it can be seen from

the expressions in the previous section. But there is a reasonable explanation

to consider it as a valid assumption. In the scheme (6.56) we can see how the

arrow marked with the constant k2 has no returning partner as in the case of the

arrows k1, k−1. This means that we are considering the process ES → E + P as

irreversible. In other words, the free energy between these two states is considered

as infinite. Naturally, it is an approximation, but a good one: the probability that

an ADP molecule and a phosphate group Pi meet in a kinesin binding pocket

and that they form an ATP is extremely low. So to consider this process as

irreversible even when this implies an infinite free energy difference is reasonable.

Consequently, in order to stop the motion it is reasonable as well to consider a

infinite ∆GI given by i → ∞. The question now is how to explicitly write the

i − F relation. One can write the most simple equation that satisfies the two

limiting cases as

i =
1

FS

F
− 1

. (7.7)

We easily check that i→ 0 if F → 0 and i→∞ if F → FS. Then, the application

of inhibition is straightforward now. We only have to apply this relation in order

to substitute i by F and then proceed with the analysis of the experimental data.
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We will expose now a simple methodology to obtain the values of the parameters

from the curves of Ref.[9]. This method was previously used in the first chapter in

order to characterize the force-velocity curves in the theoretical inchworm model,

but now it is the proper place to understand where all those formulae comes from.

There are five parameters: first, the zero-load or natural kM and vmax. Then, the

two inhibition constants kic and kiu. And finally, the stall force value, FS. All of

them are far from being meaningless numbers but significant quantities that are

well defined and that provide useful information.

The first step of the analysis consists in fitting the different values of the

apparent rmax as a function of F . We simply substitute (7.7) into

rmax(i) =
rmax(0)

(1 + i
kiu

)
(7.8)

and perform a nonlinear fit with the three data points. We show the results in

Figure 7.2.

Figure 7.2: vmax versus the load. Points are experimental data and the line cor-
responds to the fit of the data following eqs(6.63) and (7.7).

The reason to begin with the fit of rmax data and not with kM is simple: vmax

depends only in one of the inhibition constants, the uncompetitive kiu, while kM

depends on both kiu and kic. Thus we fit the data and obtain that kiu ≃ 8.04µM

and FS ≃ 6.3pN . Furthermore, the zero-load vmax is ≃ 833.26nm/s.

Note that now we are using vmax instead of rmax. The reason is that we have
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transformed the velocity of the reaction into a physical velocity. This can be done

thanks to the tight coupling ([9]) between the mechanical step and the chemical

cycle. We will discuss its validity further in this section.

The next step of the method is to proceed similarly with the data for kM .

Now we can use the values obtained in the previous step in order not to have so

many parameters for a three point set of data. We use

kM(i) = kM(0)
(1 + i

kic
)

(1 + i
kiu

)
, (7.9)

obtaining the two remaining quantities: kM(F = 0) = 76.10µM and kic =

1.15µM . As we already anticipated by the increasing of kM and decreasing of

vmax with increasing loads, the inhibitor is mixed competitive, i.e. kic < kiu. We

show the fit for kM in Figure 7.3 and summarize the values of the parameters in

Table 7.1.

Figure 7.3: kM versus the load. Points are experimental data and the line corre-
sponds to the fit of the data following eqs(7.9) and (7.7).

At this point we can already write the full expression for the mean velocity

as a function of the load and [ATP ], which was the main goal of this section,

v = vmax(i)
s

s + kM(i)
. (7.10)

We simply use the M-M equation with the variable kinetic parameters that

now instead of depending on an inhibitor concentration they depend on a me-
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Parameter Value
vmax(nm/s) 833.26
kM(µM) 76.10
kic(µM) 1.15
kiu(µM) 8.04
FS (pN) 6.3

Table 7.1: Values of the parameters obtained after the methodology based in
mechanical inhibition.

chanical force. We then plot this equation for two different ATP concentrations,

5 and 2000µM (the ones used in the experiment) and see how the agreement is

good enough to validate our approach. The curves and the experimental data are

shown in Figure 7.4.

Figure 7.4: Force-velocity curves for [ATP ] = 5, 2000µM . Points are experimental
data from Ref.[9] and the line corresponds to the plot of the analytical expression
7.10 obtained in our analysis.

To complete our set of results we focus on two additional aspects. First, it has

been measured [36] that using an optical tweezer to assist the motion of kinesin

instead of opposing it the velocity does not diverge but saturates not much above

vmax(F = 0). Within our approach, an assisting load gives i < 0, which is not

an intuitive value for an inhibitor concentration. The same happens at superstall

forces, i.e. when F > FS, also performed in [40]. The limit for high superstall

forces and for high assisting forces is i → −1, which means that the effect of

inhibition saturates. It seems that we should have added by hand something like

i = 0 when f < 0, so then the velocity would immediately saturate after entering

into the assisting regime. However, experimentally it is found that there is some
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increasing in the velocity, and our approach is able to qualitatively reproduce this

effect. In the next section a quantitative treatment will be applied and it will be

seen how, in fact, at zero load there is still a remaining amount of inhibitor that

is the responsible for the increase of the velocity at assisting forces. In the context

of this approach we restrict ourselves to a theoretical plot of the mean velocity

at assisting regimes, as there is no available data in [9]. In the next section we

will deal with more complete data in order to compare quantitatively this effect.

We show the plot in Figure 7.5. The last feature that we are going to analyze is

Figure 7.5: Force-velocity curves for opposing and assisting regimes. We can ap-
preciate how the mean velocity saturates at assisting loads.

the randomness parameter, which was defined in eq.(3.7) Interpreting the second

moment as a diffusion process we can write

r ≃ 2D

L〈v〉 , (7.11)

where L = 8nm is the length of kinesin step. In this relation we see how we only

have to fit D in order to obtain a good agreement with the data measured at high

ATP concentrations as seen in Figure 7.6. The obtained diffusion constant value

is D ≃ 1350nm2/s. It is not very useful to consider D = kBT/λ in this case as we

would obtain very high values for the drag coefficient λ and this would be due to

reasons previously discussed in the first part of this thesis. What is interesting to

see is that for the low [ATP ] = 5µM case, this approach does not agree with the

experimental data (not shown). At high [ATP ] and low loads, the randomness

is approx. 0.4, which indicates that there are approximately three rate-limiting



129 7.3. DISCUSSION

Figure 7.6: Randomness versus force for [ATP ] = 2mM . We can notice how
the randomness is almost constant until the load approaches the stall force value.

states (maybe diffusive ATP-binding, hydrolysis and phosphate-releasing), while,

for high opposing forces and low [ATP], r increases, showing that a single factor

becomes the only limiting rate (load and ATP-binding respectively). The r pa-

rameter is also related with the mechano-chemical coupling, that is the relation

between the full cycle’s rate and the physical velocity. As long as the randomness

is constant for different loads, the coupling ratio also remains constant. In [9], the

value of the coupling ratio was measured as being close to unity, which means

that the maximum physical velocity, vmax, can be obtained by multiplying the

maximum kinetic rate, rmax , by the size of the step (8nm). However, at high

loads, the randomness cannot be considered constant anymore, because of the

measured values. Furthermore, r is also interpreted to be inversely proportional

to the mean velocity (that decreases with F ).

7.3 Discussion

Beyond the simplicity of this approach and its agreement with experimental data,

the chemical kinetic scheme proposed here can provide more information concern-

ing kinesin motion. The fact that the load acts as a mixed inhibitor allows us to

obtain two quantities that act on different parts of the mechano-chemical cycle.

Thus, we can quantify how strong the external force affects the different states of

the motor. Specifically, the inverse of kic quantifies the susceptibility of kinesin
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to obtain a new ATP, while 1/kiu measures how strong the load acts on ATP

hydrolysis and the mechanical power stroke. We see very clearly that is precisely

the process of ATP binding what is most affected by the load. In the next section

we will interpret this fact as an increase of the entropic barrier that the nucleotide

has to surmount in order to reach the binding pocket. This is explained by con-

sidering that the cavity is less opened when the load is applied, so the effusion

rate in order to pass through the hole is reduced as F increases. What is impor-

tant now is that we have been able to reproduce the experimental data without

drawing a chemical reaction coordinate, so consequently we do not have to deal

with the inconvenience of not knowing the isomorphism that transforms the re-

action coordinate into the real spatial coordinate that kinesin uses to move along.

We can define again the coupling ratio c in the following way:

c ≡ vmax

Lrmax
. (7.12)

If we suppose that c = 1 at F = 0 and rmax as load-independent, we can interpret,

using 7.8, that

c =
1

1 + i
kiu

, (7.13)

which would be an evaluation of the load dependence of the coupling ratio. This

function is monotonically decreasing and goes to zero when i→∞. At low loads,

however, there is a plateau of an almost constant c while near the stall force c

decays very rapidly. Within this interpretation the coupling ratio would almost

never be equal to unity but would decrease with increasing loads. It has sense,

since after the ATP hydrolysis the trailing head of kinesin is raised in order to

reach its next binding site. This process can be strongly affected by the load

in such a way that the travelling head cannot reach its target and binds again

to its initial microtubule binding site. In such a situation the ATP hydrolysis is

performed while the step is not. Thus the coupling ratio, even if maybe decays

with the load in a different way that the one we have interpreted here, cannot

be equal to unity near the stall force. Moreover, the fact that at superstall forces

kinesin steps back while it still continues hydrolyzing ATP indicates that at the

stall force regime the coupling ratio must be exactly equal to zero, as ATP hy-

drolysis is allowed but no net motion is achieved due to the compensation of the
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external and the motive forces. This conclusion will be more clear after the devel-

oping of the next section, where a more sophisticated approach of this problem

is performed.
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8

A unified approach

8.1 Introduction

In this section we present a unified phenomenological kinetic framework that

describes the load dependence of the different sub–processes contained in the

mechano-chemical cycle of a motor protein (either linear or rotatory). It is a

double generalization of the formalism shown in the previous section. First, be-

cause it can be dealt with a quantitative description of assisting loading regimes

and backstepping, and other many features. Secondly, because it is applied to

other motors apart from kinesin. This formalism allows us to analyze how the

characteristic time of each sub–process is modified due to the presence of an ex-

ternal forcing. Internal, mechanical as well as dwell times are taken into account

and joined together in a full-cycle-time where effusion and diffusion rates, vis-

coelastic friction and overdamped motion are considered. This approach allows

the characterization and prediction of the wide variety of force-velocity curves

that literature exhibits. We apply our analysis to three real molecular motors

for which a complete set of experimental data is available: the bacterial flagellar

motor (BFM) [25], conventional kinesin (Kinesin-1) [36] and a RNA polymerase

(RNAp) [46]. Moreover, the mechanism of stalling is revised and split into two dif-

ferent concepts that shed light to the understanding of backstepping in Kinesin-1.

Several molecular functions such as directional transport of chemical sub-

133
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stances, active motion, cell division, genetic transcription, etc. are performed

by molecular engines. These machines operate as mechanical nanomotors trans-

forming chemical (i.e. nucleotide hydrolysis) or electrochemical potential (ion

flux) into mechanical work. Mechanical observables are now experimentally ac-

cessible being the mean velocity, linear or angular, the better studied quantity

[25, 36, 46, 24, 9, 40, 26]. The behavior of this velocity is evaluated as a func-

tion of different and well controlled variables, such as the external load or the

concentration of the specific substrate. The obtained force–velocity curves are

very useful to analyze biochemical and mechanical properties and are a major

criterion for evaluating different theoretical modellings. Several approaches have

been proposed such as Kramers rates [44], master equations for chemical steps

[45], ratchet-like Langevin equations [47], etc. Kramers–like rates are based in

the kinetics to overcome energetic barriers [44, 48, 45]. The reaction coordinate

is identified with the direction of motion, or with a projection on this direction,

in such a way that when an external force is applied, the barrier increases with

the force. In the master equation approach a set of transition probabilities for

a set of assumed different chemical steps are proposed. Within this last scheme,

mechanical variables such forces and spatial steps are difficult to incorporate

and some important assumptions have to be made [45, 43]. On the other hand

ratchet–like models are more mechanical but chemical ingredients, such as ATP–

hydrolysis, are no so simple to incorporate in this modelling. Nevertheless, it is

clear that molecular motors involve chemical and mechanical aspects that cannot

be separated and have to be worked together in any modelling.

However, the above mentioned modellings are not the only possible way to

study such type of devices. We know that a molecular motor operates in a succes-

sion of cycles where each cycle is composed of different subprocesses. Not all of

them are necessarily mediated by energetic barriers. There can be entropic bar-

riers [49] or other type of processes that are not directly coupled to displacement

of the center of mass of the motor.

In this approach we will focus on the different sub–process that can be rele-

vant in this problem, determining which are dominant and which are less relevant.

Our approach has enough generality to be applied to three very different devices:

a rotatory motor such as the bacterial flagellar motor (BFM) [25], and two linear

motors: a conventional kinesin (Kinesin-1) [36] and a RNA polymerase (RNAp)



135 8.1. INTRODUCTION

[46].

Specifically we postulate that the most relevant quantity is the characteristic

time of each subprocess, from which the contribution to the mean velocity can

always been obtained. Let tj be the time (often stochastic) of a subprocess in

the motor cycle with a fixed L or ∆θ (linear or angular) step displacements per

cycle, respectively. Then, if this cycle is composed of the subprocesses 1, 2 . . . n,

acting in succession, the average total time 〈t〉 of the cycle can be expressed as

〈t〉 = 〈t1〉+ 〈t2〉+ . . . + 〈tn〉, (8.1)

and the mean velocity 〈v〉 or the angular velocity 〈ω〉 are,

〈v〉 =
L

〈t〉 〈ω〉 = ∆θ

〈t〉 . (8.2)

Note that these expressions are strictly valid only when the transitions between

the subprocesses are irreversible. However, in a protein motor it is reasonable to

suppose such an irreversibility, since the chemical-potential differences are con-

siderably bigger than the thermal energy. And even if some backward transitions

can be observed experimentally, they don’t affect substantially to the mean ve-

locity value. In fact, there is some difference between rotatory motors like FO or

BFM and mechano enzymes like kinesin or RNAp. For the latter type of motors

it is quite reasonable to suppose that the products will not meet together inside

the pocket and form the product by chance. The probability for this to happen

is so small that the irreversibility assumption is well justified, even if this means

to use infinite free energies for such a transition. In the rotatory cases, there are

mechanical transitions are reversible indeed. But we do take into account such

reversibility by using motive forces that instead of being constant they depend

on the products and reactants concentration.

From now on we will work with time averages, even though we don’t write

them explicitly. Since we will assume that both L and ∆θ are fixed or known

from experimental data, we only have to concern about the subprocess times.

The study of fluctuations is a second order improvement not considered in this

work in an explicit way, although the effect of temperature is considered in the



8. A UNIFIED APPROACH 136

process of diffusion. Moreover, without the temperature the free energies that

define the motive torque in the rotatory cases would not be justified. This does

not mean that higher momenta in the velocity distribution are not important,

but a global understanding of the mean value is already lacking, so we will focus

on this leaving a more refined description for further work.

We will consider three dominant types of subprocesses, although certainly

there are more that may correspond to a second order or more refined descrip-

tion. First, we suppose that there is always a time scale for the motor to perform

internal tasks that do not depend either on the external force fext or the sub-

strate concentration [S]. An example of this could be the rate of ADP release

in kinesin-1 after ATP binding in the attached head. We call this the internal

time ti. The other two subprocesses will be load dependent. On the one hand, the

motor needs some time to displace or to rotate in the fluid media. We call it the

mechanical time tm which can be evaluated using overdamped dynamics. On the

other hand the energetic substrate, i.e. the nucleotides or the ions, employ some

time to diffuse and bind the motor. Here diffusion and effusion play an important

role, and classical kinetic theory provide theoretical tools to evaluate it. We call

this the waiting time tw. All these three characteristic times operate successively

in every cycle and are of different nature. We will find the load dependence of

these two later times. In particular, the load dependence of the waiting time is the

actual core of this work as it allows to describe some crucial questions concerning

motor proteins. First, it explains the reason for the increase of dwell times when

the load is applied. And secondly, it allows the split of the concept of stall force

into two quantities that are different in general. Such difference, as we will see,

is the responsible for the existence of a backstepping regime.

Before ending this introduction some comments are in order. Two types of

forcing are used in the experiments: conservative and non-conservative. From the

three motors that we will analyze in this work, two of them use a conservative

force (kinesin and RNAp) and one uses a non-conservative force (BFM). When

utilizing optical tweezers (kinesin, RNAp), the applied force is directly a momen-

tum transfer to the bead and, by extension, to the motor. Thus one can obtain

the work performed by the motor by simply multiplying the value of the force

by the total displacement. In the non-conservative case, the forcing is introduced
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through different bead sizes and its corresponding non conservative Stokes fric-

tion forces. The substrate that attaches molecular motors is quite different from

motor to motor. In BFM is a flux of ions forced by an electrochemical potential,

while in kinesin of RNAp are NTP–like nucleotides.

8.2 Theoretical approach

In this subsection we present a detailed analysis of the three main time scales

already introduced. Each characteristic time will be treated separately in order

to address its specific processes involved.

Mechanical and internal times

Molecular motors move in a viscous media where inertia is suppressed by the

friction. As a result, the dynamics is governed by the second Newton’s law without

the acceleration term. At lowest order, thermal fluctuations are not required to

obtain explicit predictions for the motor mean velocity. For an overdamped motor

which is able to exert a constant motive force fm along a single direction, the

mean velocity can be written as

〈v〉 =
1

γt

(fm + fext) (8.3)

where fext is the external load and γt the translational drag coefficient. A negative

value of fext signifies useful work from from the motor. Note that in previous

sections we have used both F and fext in order to describe the load. We think it

is useful to think is as a positive quantity when we think it is a load, but when

we think it as a external force opposed to motion then it is more natural to think

it as a negative quantity. However, from now on we deal with assisting, opposing

and backstepping regimes, so we cannot be ambiguous anymore. We will always

use fext and we recall that fext < 0 represents the regime of useful work, while a

positive value is for assisting loads. We also have to mention that now we cannot

neither be ambiguous with the value of the stall force. As now there will be two

different type of stalling we simply write fm as the motive force, and occasionally

we can have fm + fext = 0, but as this is not the only way to do 〈v〉 = 0 we

cannot write fS instead of fm. In previous modeling there were only a single
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interpretation of the stall force and then the identification fm = fS was justified,

but in fact this quantity is actually representing the motive force of the motor

and not the value at which the motor is stalled. We will see how in kinesin-1

there is a regime where fm + fext < 0 and motion is still allowed (backwards).

The reason, that will be clarified later on, is that the entropic stall force is not

reached yet. From eq.(8.3) we can get the expression of the mechanical time,

tm =
γtL

fm + fext

, (8.4)

where the mechanical stall force is found at fm + fext = 0.

In the case of a rotatory motor (with no conservative forces) we have instead,

(γr + γext)ω = τm, (8.5)

where γr is the rotational drag coefficient of the motor, γext if the friction of the

bead attached to the motor and τm the motive torque. The mechanical time is

obtained as in eq.(8.4).

From equations (8.3) and (8.5) one can define the maximum physical velocities

in the absence of a load,

〈v〉m =
1

γt
fm, ; 〈ω〉m =

1

γr
τm. (8.6)

It is worth mentioning that the above analysis is obviously incomplete and

we need to consider additional types of subprocesses in the cycle. Indeed, the

mechanical time alone cannot be responsible for the mean velocity values ob-

served experimentally for linear motors, while for rotatory motors it is better

to use a more sophisticated expression such as in Ref. [25]. Let us start with a

simple analysis of this problem. First we take that the viscosity of the water is

η = 10−9pNs/nm2, and the translational drag coefficient is γt = 6πηR, where R

is the radius of the molecule. Using these data we can estimate approximately

the maximum velocity expected in kinesin-1 or in RNAp. Silica beads in these

cases have typically R ∼ 0.5µm. In kinesin experiments, typical motive forces

are of the order of 5pN if one consider similar to stall force values, and as a

results we expect 〈v〉max ∼ 500µ/s, which is a value more than 500 times the

experimentally measured maximum velocity. For the RNAp, typical forces are
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approximately 25pN . We can then make an estimation of 〈v〉max ∼ 2500µ/s, a

value that is about 5 · 105 times the experimental velocity. From the above cal-

culations it follows that other times scales are involved in the cycle.

The next simple correction to the mechanical time is to assume the existence

of an internal time. In fact, every motor needs a time to perform internal jobs

that are not necessarily force or substrate-dependent. During this time, internal

processes are performed.

For example, in kinesin-1 the rate of phosphate release in the microtubule-

attached head or the rate for ADP release in the other head may be candidates

for such type of processes. In BFM, the time for the ion to cross the membrane

does not necessarily depends on the potential difference between both sides. In

general, if there were no such processes, at zero load (or at high assisting forces)

and at very high substrate concentrations, the mean velocity would not saturate

to a finite value. In this saturating regime, the maximum velocity is approxi-

mately proportional to the inverse of these internal times. Then, we denote this

time by ti and we assume it takes a constant value specific of each motor. As a

result, the total mean time 〈t〉 for a cycle is 〈t〉 = ti + tm, while the mean velocity

(8.2) becomes,

〈v〉 =
L

ti + γtL
fm+fext

. (8.7)

In Figure 8.1 we plot force-velocity curves where the influence of the internal

time is manifested in reducing the final velocity.

Waiting times: the pocket model approach

Checking the experimental data of any molecular motor it becomes clear that

both mechanical and internal times are not enough. We have to consider that

there is a certain time used to wait for the substrate which is diffusing in the

media. Experimentally, it has been found that the waiting times follow Poisson

distribution with, for example, a mean time of about 50ms in the case of highly

loaded kinesin [7, 40]. If the substrate concentration is low, these times will in-

crease, while for a very high concentration are reduced, but never this time goes

to zero.

After substrate binding, some chemical sub–processes take place. The kinetics
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Figure 8.1: Mean velocity 〈v〉 versus an external force fext. Dashed line for a
process with only mechanical time. Continuous line for a process with mechanical
and internal time. For the sake of simplicity, we have chosen L = 1nm, γt =
1pNs/nm, fm = 1pN and ti = 1s.

of these steps is described by the so-called Michaelis-Menten equation, which

states that the velocity of reaction involves two different time scales where the

substrate binding follows the mass action law.

Moreover it has been observed that this waiting time increases with an op-

posing load [9]. This is quite a surprising fact. If the load is applied to the motor

without affecting the substrate conditions, why does the substrate take longer to

reach the motor when the load is applied? Some explanations have been proposed

[45, 43] and the most used was to consider that a barrier has to be surmounted

by the substrate in order to reach the binding site. Consequently this barrier has

to depend on the position and has to be modified by the external force. However,

the justification of an energetic wall is not clear, as it does not provide a micro-

scopic explanation. We think that it is more appropriate in this case to assume

an entropic barrier as in Ref. [49] , without needing to assume a displacement

of the center of mass of the motor associated to such process. Maybe it would

be more complete to include energetic or enthalpic terms, but we will see how

the entropic contribution is enough to describe the data at least in a first order

approach. Essentially, we don’t want to incorporate but the minimum necessary

ingredients. Basically, an entropic barrier is usually related with effusion-like pro-

cesses. While the energetic barrier concept is introduced to describe the rate at
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which thermal fluctuations help a particle to surmount an energetic obstacle like

advancing against an external field, the entropic case is introduced to describe

the rates for the same particle to have a specific position and velocity. For exam-

ple, the rate of escaping through a hole or the rate of entering into a cavity can

be understood in terms of entropic barriers, even if the particle inside or outside

the cavity has the same enthalpic energy. Consequently, we think that the time

that the substrate spends finding and entering into the pocket is a quantity that

should be described in terms of entropic walls.

Thus, let’s consider that the binding site is a cavity where the substrate has

to enter (Fig. 8.2), as it was claimed in [50]. Then, under the influence of an op-

posing load, the cavity may be strained and thus less accessible to the substrate.

This means that the binding process can be interpreted as an effusion process

where the load controls the area of the hole to enter the substrate. Then, a differ-

ent stall force (here entropic) can be defined, as the force that completely closes

the pocket and accordingly the waiting time becomes infinite. This concept of

entropic stalling is different from the mechanical stall force, where the opposing

load equilibrates the motive force of the motor. Our analysis thus predicts that

the motor can be stalled by two different mechanisms.

To implement analytically this idea we propose the simple mechanism shown

in Figure 8.2.

In order to give an expression for the rate of the substrate entering into the

pocket we shall consider a pocket which has a hole of area, aδx, where a is

the width and δx = δx(fext) is the load dependent aperture of the hole. Then

the effusion time for a small diffusing particle to enter into the hole is inversely

proportional to the substrate concentration and to the opening area of the cavity,

i.e. ∝ 1
a[S]δx

. Note also that the size of the substrate is comparable with the

opening of the pocket, so there is a certain orientation for the molecule to match

the cavity (as illustrated in Figure 8.2). This is the effect of final adhesion to

the pocket, which is supposed at first approximation to be dependent on the

accessible surface but independent on the substrate concentration. Consequently

we have to include this effect as a constant contribution ∼ 1/δx. Adding these
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Figure 8.2: Scheme for a simple linear pocket model, given by a box with an
opening door that depends on the external load. In 0) we have the pocket with-
out load, and it has a certain natural opening. In +1) we can see the extreme
case for an assisting load, where the pocket is totally opened and the substrate,
represented here by an ATP molecule, can easily bind the cavity. Finally, in −1)
we can see the effect of a large opposing force. For fext = −f0 the cavity becomes
completely closed.

two time scales and grouping the free parameters, the waiting time is ,

tw =
1

δx
(A +

B

[S]
), (8.8)

where A and B are two constants to determine. This is no more than a quite

general expression for the mass action law. Notice that the independent term,

proportional to A, is substrate shape dependent but [S]-independent. To illus-

trate this idea, we can consider the case of Uracile base in RNAp. For a given

pocket, four different substrates can bind it, and all of them have different binding

rates. Despite their molar mass and Graham’s law effects, the Uracile nucleotide

UTP has a very low rate considering that it is a relatively light nucleotide. It

has an addition rate about three times slower than CTP, which is very similar in

molecular weight. Surely this is due to orientation and steric contributions near

the pocket. In the Appendix B1 we justify the explicit form of eq.(8.8) by estab-

lishing an equivalence between this waiting time and a mixed inhibition scheme in

enzymatic theory. Using 8.8 we arrive to the formalism presented in the previous

section, so such an equivalence provides consistency to this form of the waiting
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time.

The point now is to guess how this time has to depend on the external force.

We can assume, following Fig.8.2, that the pocket has an elastic opening that is

stressed when the load is applied. Assuming a linear spring we can propose the

dependence,

δx =
f0 + fext

k
. (8.9)

where k is the effective stiffness and f0 corresponds to the entropic stall force:

when fext = −f0 the hole is closed. For fext = 0 we have the natural opening,

and for fext > 0 the hole has more accessible surface.

In Figure 8.3 we show plots of the mean velocity when internal and wait-

ing times are joined. We show force-velocity curves for three different substrate

concentrations. One can note that the curvature of the plots strongly depend on

the concentration. The reason for the plateau in the high concentration case is

that the substrate binding is not rate limiting, as it was experimentally observed

[36, 9].
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Figure 8.3: Mean velocity versus external force when we have an internal time
plus a waiting time, i.e. 〈t〉 = ti + C

[S](fext+f0)
. We set ti = 1s, f0 = 1pN and

C = 1s · pN · µM . Continuous, dashed and dash-dotted lines correspond to
[S] = 10, 1, 0.1µM , respectively.

Although the linear spring pocket model is very useful to illustrate the idea of
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the pocket kinetics, it is convenient to introduce a more sophisticated version of

the model in order to have more accurate predictions. However, the philosophy

remains exactly the same. Instead of a linear spring response it is more realistic

to consider a nonlinear response of the pocket that is still linear at low forces and

bound at extreme loads. This is achieved by using a sigmoidal function,

δx =
lx
2

[1 + tanh (
2

klx
(f0 + fext)− 1)], (8.10)

where lx is the longitudinal size of the pocket. We can see how we recover the

linear case for tanhx ∼ x. Then, we still can talk of a stiffness of the pocket. The

price is the introduction of a new parameter, lx.

In Figure 8.4 we plot the dependence of δx under an external load. The main

difference between the linear and the sigmoidal cases is that in the latter case the

pocket never closes completely.
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Figure 8.4: Opening of the pocket as a function of the external load. Solid line
corresponds to the sigmoidal version, while dashed corresponds to the linear case.
All the parameters are set equal to unity.

The generic formula

Once we have all the times involved in a single cycle, we can write down the

whole expression (8.1)–(8.2) for the velocity of a linear motor as a function of [S]
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and fext,

〈v〉 =
L

ti + γtL
fm+fext

+ 1
δx

(

A + B
[S]

) , (8.11)

with δx given by expressions either (8.9) or (8.10). For a rotatory motor we can

write the equivalent expression as,

〈ω〉 = ∆θ

ti + ∆θ(γr+γext)
τm

+ 1
δx

(

A + B
[S]

) , (8.12)

where δx will be considered a constant for the case of BFM analyzed in this

work. These last two equations are the main result in this paper. We will start

now analyzing the consequences and properties of these formulas.

As we have predicted before, there are two possible values of the external force

that can stall the motor, i.e. f0 and fm. When fext equals one of these values

with opposite sign, then the motor stalls either entropically or mechanically,

respectively. If fext + f0 = 0, then tw → ∞ and the velocity vanishes because

no substrate can bind the pocket. If fext + fm = 0, tm → ∞ and then the

motive force cannot drive the motor anymore. This scenario is interesting since

the experimental definition of stall force fS is unique, that is, the force at which

the motor stops.

Let’s analyze the three possible cases. If fm = f0, both stall forces are the

same. When, fm > f0, the first limiting factor would be entropic. This means

that even if the motor could exert more force, no substrate can bind the pocket

and no motion is produced. The last case occurs when fm < f0. This is the

most interesting, because when the motor is mechanically stalled, it still can

bind substrate. Moreover if we apply now a load such that fext + fm < 0 but

fext + f0 > 0, then the motor will tend to move backwards but still consuming

the energy of the substrate. To characterize analytically this backstepping we

write expression (8.11) as,

〈v〉 =
L

ti + γtL
fm+fext

+ A
δx

+ B
δx[S]

sign[fm + fext] f0 + fext > 0, (8.13)

where the sign of the resulting balance force is taken into account. With this

simple modification, we can see what are the conditions for backstepping to occur,



8. A UNIFIED APPROACH 146

remarking that for the sigmoidal response of the pocket this condition holds for

a broader spectrum of opposing forces. In Figure 8.5 we show plots for the three

cases discussed above.

As we can see, the concept of stalling can be split into two different ways of
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Figure 8.5: Mean velocity versus the external force for a linear response of δx
under a load. Now we have internal, mechanical and waiting times. We set all
the parameters fixed and equal to unity except fm and f0. Continuous line corre-
sponds to a fm = f0 = 1pN case. Dashed line corresponds to fm = 1, f0 = 2pN .
Dotted line corresponds to fm = 2,f0 = 1pN . Note that all the continuous path
holds also for dashed-line values. Both solid and dotted don’t have values below
−1pN . Note the negative velocity section for the dashed-line.

stopping the motor by applying an external force. In Ref.[40] backstepping in

kinesin-1 is observed when loaded with very large and negative forces. Despite the

reversibility of the motors like the FO-F1-Synthase, kinesin-1 does not hydrolyze

ATP when walking backwards but it keeps on consuming the energy from the

nucleotide. In such a situation, the external mechanical force is greater than the

motive force, but the cycle of ATP consumption is not stalled yet. This is the main

reason to make such discrimination. We think that the mentioned experiment

shows that in kinesin-1 the mechanical stall force is considerably lower than the

force required to stop the ATP hydrolysis cycle, i.e. −f0.
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8.3 Results

Our aim now is to use the experimental data of velocity versus substrate concen-

tration and load of a particular motor to fit our formula and get the values of the

free adjustable parameters. With this information we can guess which features

are specific of a particular motor or which ones are common between two or all of

them. It is expected that kinesin and RNAp will exhibit a considerable amount

of similarities as both are mechanical enzymes powered by nucleotides.

8.3.1 A non-conservative force: the bacterial flagellar mo-

tor (BFM)

The bacterial flagellar motor is a rotatory device that performs a torque on an

helical flagella to propel the cell. It uses the electrochemical potential across the

cytoplasmic membrane to perform the work. This type of engine works with a

flux of protons in Escherichia Coli and Na+ ions in alkalophiles and marine

Vibrio species. Several experiments have been able to track their rotation by

different techniques [25, 26] but only very recently [24] discrete steps have been

observed. We will focus our attention toward Ref.[25] because they provide a wide

and complete set of measurements that can be incorporated in our theoretical

framework. In this experiment, a silica bead is attached to the flagellar filament.

Then, rotating frequency of this bead is measured through a quadrant photodiode.

The applied load is modulated through different sizes of the bead, thus the forcing

is simply friction, and then the load is not conservative.

The substrate of this particular motor is the sodium Na+ ion density gradient,

which crosses the cytoplasmic membrane of the cell producing the rotation of

the flagellar motor. Across the membrane, there is an electrochemical potential,

which is the responsible for the smf (Sodium motive force), which we will write

like τm.

We now proceed to calculate all the values for the different free parameters of

the model. First, we need to know which is the step angle ∆θ for each crossing ion,

if there is a tight coupling between them. It is known [21] that BFM have different

and independent torque generating units. The number of the units, depending

on the particular device, can be from 5 to 9 in alkalophilic Bacillus, 5 to 8 in
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V. alginolyticus [25] and at least 11 in Escherichia coli [21]. It is also known that

about 1000 Na+ ions [25] or 1200 protons [24] are required to perform a whole

revolution of the motor. Focusing on sodium ions data, we can estimate the angle

per ion,

∆θ ∼ 2π

1000
∼ 0.006rad/Na+. (8.14)

The chemical free energy due to the concentration difference between both sides

of the membrane can be written as

∆Gchem = −kBT ln
[Na+]ext

[Na+]int
, (8.15)

where kBT ≃ 4.1pNnm is the thermal energy, [Na+]int = 30mM the ion concen-

tration inside the membrane, and [Na+]ext is the external concentration, which is

modulated in the experiment. The concentration gradient between [Na+]int and

[Na+]ext imposes an electrostatic gradient as well. The free energy for this effect

is given by the membrane potential ∆Ψ, which is about −150mV . The total free

energy is then

∆G = −kBT ln
[Na+]ext

[Na+]int

+ ∆Ψ. (8.16)

We choose to use energy units in pN.nm. We have then, 1mV = 0.16pN.nm/e

and ∆Ψ = −24pN.nm/e. We substitute the previous values of the parameters to

obtain

∆G =
[

−10.055− 4.1 ln [Na+]ext

]

pN.nm. (8.17)

Now we can write the motive torque τm as

τm =
−∆G

∆θ
. (8.18)

As the value we already have for ∆θ is not precise yet, we can obtain another

estimation and compare it with the previous one. From the experimental data we

know that for different Na+ concentrations we have values for the torque which

can be fitted from the experimental data in Ref. [25],

τm ∼ C1 + C2 ln [Na+]ext (8.19)
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where C1 = 1464 pN.nm and C2 = 586 pN.nm. We can see how these values

correspond to different estimations of ∆θ. As the thermal energy is well known,

C2 is used to give ∆θ = 7·10−3, in a good agreement with our previous estimation.

On the other hand, the independent term can be used to give a more precise value

for the membrane potential, ∆Ψ = −151.2 mV , which is agreement with the value

given in the Ref.[25].

We can now write down the frequency ν of the motor as a function of the

external sodium concentration and of the external torque, which is no more than

Eq. (8.12) divided by 2π,

ν =
∆θ/2π

a0 + a1

[Na+]λext

+ γr∆θ2

10.245+4.1 ln [Na+]ext−∆θτext

. (8.20)

We recall that in the case of BFM motor we consider δx as a constant. There are

some reasons to justify it. First, ions are considerably smaller than nucleotides,

and they don’t need a specific binding orientation, so a possible small decrease in

the cross section of the cavity should not appreciably affect the rate on entrance.

Secondly, in this motor the torque is transmitted through the torsion of the

connecting axis which is faraway from the cavities, which are not necessarily

deformed then. But the main reason is that this non-conservative force is not

active when the motor is not rotating, i.e. the bead does not perform a torque: it is

resistant to it. Consequently we cannot exactly know whether a conservative force

experiment would show that waiting times are appreciably affected by the load.

On the one hand a0 accounts for the sum of internal and for the adhesion time,

put together since they do not depend on the load here. Then, a0 = ti +A/δx. On

the other hand a1 modulates the influence of the effusive part of the waiting time,

a1 = B. Here λ is the exponent of the law of mass action, which is not necessarily

1 when there is more than one torque generating units. When different active sites

are in cooperation the Michaelis-Menten equation is transformed by powering the

substrate concentration to a quantity called the Hill exponent λ. In fact, we will

use λ = 0.8 which clearly fits better the frequency-concentration curves as seen in

Figure 8.6 for very low ion concentrations. This suggests that the different torque

generating units of the motor are in negative cooperation. In this motor we have

not assumed that the waiting time depends on the external torque but only on

the ion concentration. This is consistent with a picture where the ions don’t have
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any difficulty to enter into the cavity.
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Figure 8.6: Mean rotation rate versus [Na+]ext concentration. Open circles, filled
squares and crosses correspond to beads of diameter 0.60, 0.85 and 1.08 µM
respectively. Dotted lines are standard M-M fits. Solid lines correspond to a
generalized interpretation of the law mass action, i.e. the rate of a reaction is
proportional to [S]λ, where if λ = 1 we recover the classical version. For solid
lines we use λ = 0.8, which is in more agreement with the data at low substrate
concentrations.

In Figure 8.7 we plot the frequency-torque curves for the fitted values of Table

8.1. There are three cases which correspond to different ion concentrations. Note

that in this case, it is found in the literature plots of the torque versus frequency.

We only invert the expression to plot the data as it is presented in the original

reference. The overall agreement is reasonably good considering the error that is

introduced by the considerable technical difficulties of the experiment.

Parameter Value
∆θ 7 · 10−3rad
γr 0.1pNnms/rad
a0 1.2 · 10−6s
a1 7.5 · 10−6smMλ

λ 0.8 (dimensionless)

Table 8.1: Values of the parameters for the flagellar motor obtained by fitting Eq.
(8.20) to the experimental data of Ref. [25].
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Figure 8.7: Frequency versus the generated torque for the flagellar motor. Here-
after, points are always experimental data and lines are predictions. Circles, tri-
angles and squares correspond to 50,10 and 3mM sodium concentrations respec-
tively. Notice how the stall torque is [Na+]ext dependent.

8.3.2 A conservative force: kinesin-1 and RNAp

In this section we will simultaneously deal with two examples of molecular motors:

the kinesin-1 and the RNAp, whose physical properties can be measured exper-

imentally with optical trapping [36, 46]. These motors have a certain amount of

similarities and differences that our approach can discriminate extracting relevant

information and interesting conclusions.

Both machines are linear motors walking along unidimensional and polar

tracks. They hydrolyze nucleotides in well localized pockets, and most impor-

tant for our purposes: both motors have waiting times that strongly depend on

the load. As the external force is conservative we can also study the case of as-

sisting loads, so we can obtain a wider response spectrum of the motor in the

presence of a variety of forcing.

We start using the well known facts: kinesin performs 8nm steps and stalls

with forces of approximately ∼ 5pN , while RNAp performs 0.37nm steps and

stalls with forces of ∼ 25pN . While kinesin hydrolyzes ATP, RNAp can consume

the four types of nucleotides ATP, GTP, CTP and UTP, generally expressed as

NTP’s. In the experiment for RNAp, NTP concentrations are chosen in such a

way that all the nucleotides bind the pocket with same rate. This set of relative
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concentrations is called [NTP ]eq.

First we will focus our attention to kinesin-1, using the experimental data of

Refs.[9, 36]. The expression derived in (8.11) can be rewritten in a Michaelis–

Menten form (identifying [S] = [ATP ]),

〈v〉 = vmax[ATP ]

kM + [ATP ]
, (8.21)

where,

vmax =
L

A
δx

+ ti + γtL
fm+fext

(8.22)

and

kM =
B

A + δx
(

ti + γtL
fm+fext

) . (8.23)

As both kM and vmax are affected by the external load, we can interpret the

effect as a mixed inhibition, as reported in Ref.[43]. We provide the proof in the

Appendix B2. Now we proceed to fit this expression with the experimental data

to get the free parameters. One first interesting result is that γt is very small and

consequently it implies that the mechanical characteristic time which is much

lower than the other times. Thus setting γt = 0, the equation for the velocity is,

〈v〉 =
L

ti + A′

1+tanh (C′(f0+fext)−1)

[ATP ]

[ATP ] + B′

A′+ti tanh (C′(f0+fext)−1)

. (8.24)

where

A′ ≡ 2A

lx
, B′ ≡ 2B

lx
, C ′ ≡ 2

klx
, (8.25)

and the sigmoidal response of δx has been used. We show in Table 8.2 the values

that fit better the experimental data. It is important to remark that we haven’t

found a constant value for f0. Specifically, we have found that it depends on ATP

concentration in a way that we have approximated as logarithmic. This can be

interpreted as the effect of the entropic contribution in the total free energy,

∆G = ∆G0 + kBT ln
[ATP ]

[ADP ][Pi]
. (8.26)

Some additional information can be extracted from the value of C ′. If we
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Parameter Kinesin RNAp
γt ∼ 0pNs/nm ∼ 0pNs/nm
ti 0.003s 0.034s
A′ 0.0178s 0.016s
B′ 1.27µMs 1.5µMs
C ′ 0.45pN−1 0.04pN−1

f0 3.6 + 0.28 ln [ATP ]pN 13.53pN

Table 8.2: Values of the parameters for kinesin and RNAp motors.

consider that lx is of the order of ATP size, ∼ 15Å. Then k ∼ 2/(1.5 · 0.45) ∼
3pN/nm, which gives an idea of how stiff is the pocket. In Figure 8.8 we can see

how our calculations and the experimental data fit together.
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Figure 8.8: Mean velocity versus the external force for the kinesin. Left vertical
labels, solid lines and open circles(O) correspond to [ATP ] = 1.6mM , while right
vertical labels, dashed lines and open squares(�) correspond to [ATP ] = 4.2µM .
In the inset, we can see the mean velocity versus ATP concentration in the absence
of external load. Lines are plots of eq.(8.11) using data from Table 8.2 .

Now we perform a similar analysis to the RNAp motor. Again we obtain that

we can neglect the mechanical time. Now L = 0.37nm and [S] = [NTP ]. In

Table 2 we show the best fitted values values of the free parameters which can be

compared with the kinesin ones. In Figure 8.9 we can compare our calculations

using Eq. (8.11), with the tabulated parameters, versus the experimental results

of Ref. [46] for four different NTP concentrations.
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8.4 Conclusions and discussion

In BFM, our theory reveals that there is no need for a load-dependent waiting

time, as the sodium ions diffuse rapidly into the motor. Maybe extremely low ionic

concentrations would require the introduction of such dependence, but it was not

needed in the scale of the experiment of Ref.[25]. It is stated in Ref.[51] that every

model for BFM must include the soft linkage between the motor and the viscous

load. This assumption is based on the compliance of the hook, which is measured

in [52]. However, we don’t need to use such fact to justify the existence of the

plateau region of the motor torque-speed curve. This plateau, which is nothing

but a rapid decay of the velocity at high loads, can be explained by considering

that the mechanical time slightly increases at low loads while it diverges near the

stall torque, and consequently it is not necessary to consider two straight lines

to fit the data as in [51]. The concept of knee velocity point discussed in that

reference can be understood as the torque value from which the mechanical time

begins to dominate over the other processes, but it is not a kind of singular point

in the curve.

Moreover, the coupling ratio in the BFM is probably 1, i.e. a single ion is

tightly coupled with the rotation, but there is not conclusive evidence for such
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an assumption. In Ref. [24] they measure 0.24 rad steps, which correspond to

26 steps per revolution. This is precisely the periodicity of the FliG protein in

the structure. However the existence of a smaller periodicity in the steps is not

discarded yet. It is estimated that around 1000 ions are needed to complete a

revolution, so there is a possibility that an accumulation of several ions is needed

to perform a step, but maybe this step can be decomposed in several substeps,

each one corresponding to an ion transition. If the numbers above are confirmed,

about 40 ions would be needed for a torque generating unit to complete its power-

stroke cycle. Our approach allows another way to look at the coupling ratio in

BFM. Looking at equation (8.20) we see how the rmax is not load dependent, but

the total kM is. This is the case of a competitive inhibitor, which is the case for

this motor. Following the interpretation that has done previously in the previous

chapter where rmax is supposed load independent but vmax load dependent in or-

der to obtain an expression for the coupling ratio we can see how if the vmax does

not depend on the load means that the coupling ratio is constant for any value

of the external torque. Then, at least within this interpretation of the coupling

ratio, we can explain why this quantity is constant in BFM.

For the BFM we can conclude that our approach is able to deal and fit the

experimental data within a reasonable wide range of parameters values. The dif-

ficulties of the experiment make a finer approach unavoidable for now. No pocket

assumption has been made, so the waiting time is not appreciably affected by the

load.

In the case of NTP-driven motors, we can appreciate some differences and

similarities between them. First, it is remarkable that the internal time for the

RNAp, ti = 0.034s is an order of magnitude longer than for kinesin, ti = 0.003s.

This is consistent with a motor that, apart from transcriptional pauses, which

are removed from the data, performs a more sophisticated task every cycle [53].

Concerning the substrate-dependence of the stall force, our model suggests that

in RNAp the stall force does not depend on the load, f0 = 13.53pN while in

kinesin it does, f0 = 3.6 + 0.28 ln [ATP ]pN . This dependence was observed in

[9] even though more recent measurements [40] suggests that the stall force is

[ATP]-independent. However we are trying to fit data where the stall force does
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depend on [ATP], even if it is an artefact of the setup. In any case, this is an

open question that more refined experiments should clarify. It is interesting to

note that in the latter reference the external forces can be up to −15pN , which

clearly indicates that f0 should have a stronger value. However the data provided

in that reference lacks more realizations to perform a detailed quantitative anal-

ysis of the mean velocity in the high-load regime. Additionally, we can see how

C ′ is about ten times greater in the case of kinesin, C ′ = 0.45pN−1 than in the

case of RNAp, C ′ = 0.04pN−1. Since both mechanoenzymes bind similar-size nu-

cleotides it is reasonable to suppose that lx is similar as well in both motors. So

then, as the stiffness is inversely proportional to the parameter C ′, the stiffness of

the pocket in RNAp has to be considerably higher than in kinesin (of the order of

ten times). This may be the reason why the value of f0 for RNAp does not seem to

depend on the substrate concentration. If the pocket is stiffer, it hardly changes

its natural, load-free conformation. It is remarkable as well that A′ and B′ are

very similar in both mechano enzymes (A′ = 0.0178s, B′ = 1.27µMs for kinesin-

1, A′ = 0.016s, B′ = 1.5µMs for RNAp) which reflects that binding times of the

nucleotides do not appreciably differ between them. Mechanical time is negligible

in kinesin and RNAp, which means that the power stroke mechanism occurs in

a time scale which is much lower than other processes in agreement with the

observed step-like trajectories. We expect other [NTP ] motors as mysions and

dyneins to have this feature as well, since the forces and the frictions involved

in their motions imply physical velocities much greater than their corresponding

chemical rates.

Concerning the type of inhibition that these mechanoenzymes hold we confirm the

result of [43] that establishes the mixed character of kinesin-1. Moreover, RNAp

is also mixed. This implies that the maximum velocity depends on fext and we

already know that this can be interpreted as a load dependence of the coupling

ratio. In these two motors the coupling ratio would decrease with the load, would

vanish when fm + fext = 0 and would change its sign when fm + fext < 0.

We thus conclude that the chemical kinetics of kinesin and RNAp is regulated

by very similar processes, even though some of them are quantitatively different.

Nevertheless, experimental data from both devices can be understood under the

same conceptual framework.
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Summarizing, in this work we have analyzed the chemical kinetics of three

different molecular motors with the intention of providing a general framework

to deal with mechano-chemical engines, which can be connected to an expanded

inhibition theory as shown in Appendix B2. The three examples we have chosen

are an appropriated set because all of them have been accurately measured in

single molecule experiments. Even though each individual motor has very specific

properties that should be taken into account to provide more refined models, we

have shown here a unified approach to quantitatively describe the overall kinetic

properties.
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Appendix B1: Law of mass action

We show here a derivation for the substrate dependence of the reaction rates

given in the law of mass action. We can consider the reaction

A + B
k1 // C , (8.27)

and write
d[C]

dt
=
−d[B]

dt

−d[A]

dt
= k1[A][B]. (8.28)

Here k1 is the reaction constant. We can use a simple scenario to illustrate the

internal mechanism of this description. Let’s imagine that B is a single enzyme

fixed and located at x = 0 in a one-dimensional space. On the other hand, A is a

set of free diffusing particles that can eventually reach B and bind it. Let’s focus

from now on the x > 0 side. The probability to have a binding event during a

time interval ∆t is given by the function p(x, t) in the following way:

p(0, t + ∆t) =

∫ L

0

p(x, t)p(∆x ≤ x)dx, (8.29)

where [0 : L] are the boundaries of the system and p(∆x < x) means the prob-

ability of A jumping a displacement equal or lower than x. In fact, due to the

properties of the thermal noise,

p(∆x ≤ x)dx =

∫ ∞

x

1√
2πσ

e−
x′2

2σ dx′dx, (8.30)

where

σ =
2kBT∆t

λ
. (8.31)

159
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Here kBT is the thermal energy and λ the drag coefficient. We can rewrite the

previous probability as

p(∆x ≤ x)dx =
1

2
erfc(x), (8.32)

where we have used the complementary error function, which can be written in

this case as

erfc(x) =
2√
π

∫ ∞

x

e−(x/
√

2σ)2d(
x√
2σ

). (8.33)

On the other hand we can write

p(x, t) = p(x, 0) (8.34)

without loss of generality. We can then find and expression for p(x, 0). We have

in our x > 0 system a total of n particles of A, which have a molecular width lA.

Then, we find that
n

L
lA (8.35)

is the occupation ratio in the system. In order to transform the ratio n/L into

concentration we simply use the Avogadro Number NA,

n

L
lA = [A]NAlA. (8.36)

We find then how the lineal proportionality (exponent=1) of the concentration

comes from the hypothesis of a uniform density profile of the reactant. We can

rewrite now eq (8.29) for x ∈ [−L : L] as

p(0, ∆t) = lANA[A]

∫ L

0

erfc(x)dx. (8.37)

Considering that
∫ ∞

0

erfc(x)dx =
1√
π

, (8.38)

we obtain

p(0, ∆t) = lANA[A]
√

π. (8.39)
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Now to transform this probability into a rate we simply have to consider that

r =
p

∆t
. (8.40)

So then,

r =
lAnA[A]√

π∆t
. (8.41)

Note that we have the ratio lA
∆t

, which can be interpreted as an approximation

of the mean velocity at which particles of A travel in the media. Using Maxwell-

Boltzmann distribution we can write

lA
∆t
∼ 〈v〉 =

√

8kBT

m
, (8.42)

where m is the mass of the particle of type A. We can obtain for the rate

r ∼
√

8kBT

m

NA

π
[A]. (8.43)

What is interesting is that we have arrived to

r ∝
√

kBT [A], (8.44)

which indicates that reaction rates are proportional to the reactant concentration

and to the square root of the thermal energy. It is important to recall that if we

would use a reactant A distributed with a non constant density function ρA(x)

then the law of mass action would be dependent of this profile. For example, ATP

nucleotides under a strong electric field may migrate due to their intrinsic charge

in a way that the binding probability could not be considered as uniform.
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Appendix B2: Connection of the unified

approach with inhibition theory

In this appendix it is shown that the formalism presented in this work can be

interpreted in the context of an inhibited-enzymatic scheme where the inhibitor

concentration depends on the external mechanical load, as reported in Ref.[43].

The load as a competitive inhibitor.

Here we show the equivalence between a load-dependent waiting time that simply

follows the law of mass action and the presence of an effective inhibitor. Let’s

consider the usual M-M scheme

E + S
k1

++
ES

k−1

mm
k2 // E + P (8.45)

The average time for this reaction is given by the MM relation

t0 =
[S] + kM

kmax[S]
(8.46)

where kmax and kM are the two classic MM coefficients. If we suppose that the

external force only acts now to the free enzyme,

E + S

I
		

k1
++
ES

k−1

mm
k2 // E + P

EI

kic

II (8.47)
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then we have a competitive inhibition, where

t =
[S] + kM(1 + [I]

kic
)

kmax[S]
. (8.48)

[I](= i) is the inhibitor concentration and kic the competitive inhibition constant.

Then, the time difference ∆t between the two cases is

∆t = t− t0 =
kM

kmaxkic

[I]

[S]
. (8.49)

Recalling that we have the case where the waiting time only follows the simple

law mass action

tw =
B

δx[S]
. (8.50)

and considering that ∆t ∼ tw, we obtain

[I] ∝ 1

δx
, (8.51)

which for the linear pocket model gives

[I] ∝ 1

fext + f0

. (8.52)

In Ref. [43] it is proposed that

[I] ∝ fext

fext + f0

. (8.53)

Consider the case fext = 0. Then, there is a minimum amount of inhibitor

[I]0 ∝
1

f0
(8.54)

and a variable part which is written as

[I]− [I]0 ∝
fext

fext + f0
. (8.55)

This is the case of BFM, because the load is altering only the kM parameter.

We have shown how the effect of a linear pocket combined with a simple law
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mass action for the waiting time is equivalent to have an effective competitive

inhibitor concentration. Furthermore, it is interesting to note that this formalism

requires that even in the absence of the external force we still have an inhibition

effect. This is important concerning assisting loads, as they are able to increase

the mean velocity as long as they remove the effect of this remaining inhibitor.

The load as mixed inhibitor.

We now consider the more complete form of the waiting time written in eq. (8.8),

i.e.

tw =
A

δx
+

B

δx[S]
. (8.56)

Let us take the following scheme of a mixed inhibition catalysis,

E + S

I
		

k1
++
ES

I
		

k−1

mm
k2 // E + P

EI

kic

II

ESI

kiu

II (8.57)

The time expended in a M-M reaction with a mixed inhibitor is

t =
1

[S]kmax
([S](1 +

[I]

kiu
) + kM(1 +

[I]

kic
)), (8.58)

where kiu is the uncompetitive inhibition constant. Now ∆t is

∆t =
[I]

kmax

(
1

kiu

+
kM

kic[S]
) (8.59)

and if we match ∆t ∼ tw as before, we obtain

A

δx
+

B

δx[S]
∼ [I]

kmax

(
1

kiu

+
kM

kic[S]
). (8.60)

We can identify the terms as

A

δx
∼ [I]

kmaxkiu
(8.61)
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and
B

δx[S]
∼ [I]kM

kmaxkic[S]
. (8.62)

So again we obtain

[I] ∝ δx. (8.63)

Now, in addition, as [I] must be the same in both identifications, we can state

that
A

B
=

kic

kiukM
(8.64)

recalling that A/B = A′/B′. This establishes a connection between inhibition

formalism and the parameters A and B. Both RNAp and kinesin-1 follow this

scheme.

In [43] the relation between [I] and the load was given by hand, being con-

sistent with the extreme cases but with no fundamental reasons justifying the

explicit form of the equation. In this latter work we have shown that that ex-

pression comes from considering a simple elastic pocket with a linear response

to the load. However a sigmoidal type of response is more convenient in order

not to have undesirable situations like a pocket with negative or infinite binding

surface.



Part III

Deepening into the mechanics of

kinesin
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So far we have already discussed about many aspects of molecular motors,

like energetics, stall forces, mean velocities, etc. . . But in all those modellings a

physical picture of the actual motor mechanism was lacking. In other words, the

interactions that we used are highly phenomenological, as we have not explicitly

said where they come from.

Specifically, we can clearly discard nuclear and gravitational forces as the

sources of energy, which implies that it is the electromagnetic force that drives

molecular motors along their paths. But when we reffer to electromagnetic fields

we have to be more explicit, as all the chemical reactions are in fact consequences

of electromagnetic properties of their components. Then, it is not the same for

practical purposes to consider the Coulomb interaction between two point charges

than to deal with quantum mechanics to analyze the coupling of several electronic

wavefunctions. For example, an ATP molecule is composed of three phosphate

subunits each of them being negatively charged. Nevertheless, at physiological

conditions the three phosphate groups remain bound with a high activation ener-

getic barrier that prevents the dissociation. One of the accepted explanations for

such an attraction (called phosphoanhydride bonds) is resonance stabilization,

which indicates that there is much more than Coulomb forces when we approach

the scale of orbital clouds.

On the other hand, there is another complication concerning electromagnetic

fields. The cytoplasm is full of ions, both positively and negatively charged which

converts the media in a plasma, or more specifically in an electrolyte. These ions

tend to dump Coulomb forces in an exponential way, which is an effect known

as Debye screening or shielding [54]. In addition to the high relative permittivity

of water, it seems that the regime of Coulomb interaction as known from more

classical physics cannot be applied to scales greater than the molecule size (due

to Debye screening) neither to small size components due to quantum effects.

However, for lengths of the order of a motor size (∼ 5nm) none of the former

limits are clearly applicable. At nanometric distances the relevance of quantum

orbitals effects concerning molecular motor motion is not absolutely clear. On

the other hand, the Debye-Hückel theory is not clearly applicable as well. Such

a theory is formulated for continuous media and not for discrete bodies as it is
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the case of motor proteins. Moreover, spherically symmetric shielding, dilute so-

lutions and uniform (or even definable) dielectric permittivity are conditions that

don’t necessarily hold. Moreover the excluded volume that the proteins occupy

does not allow shielding to occur inside the protein body.

In this chapter we will try to show how most kinesin features can be explained

by considering Coulomb-like interactions between different parts of the motor and

the microtubule as well as with ATP or ADP molecules. Even if we can add some

Debye shielding, the qualitative picture is not strongly affected. We will see how

the whole mechanism of kinesin walking can be a consequence of the electrostatic

communications between ATP, kinesin and the protofilaments of the track. After

all, they are charged structures and as far as shielding theories are still obscure

in such nano-systems we have the intuition that all these charges are there for

something more than to be screened. Then, we will first introduce our modelling

without considering any shielding and later on we will take this topic into account

in order quantify its effects. As far as the consequences of our hypothesis will agree

with experiments there will be reasons to take such hypothesis more into account.

Actually, we are going to see that kinesin motion can be explained in an easy and

elegant way if we consider that Debye shielding is not so strong as it is supposed,

at least near the microtubule surface or at distances of the same order than the

biomolecules involved.

In the next section we will progressively proceed with the study of kinesin

motors with scenarios of increasing complexity. First, we will present a collection

of modellings that have their target in explaining kinesin motion using electro-

static interactions. We will see how, on the one hand, these interactions allow

us to explain most of the experimental observables. But on the other hand, the

existence of ionic screening is deeply rooted in intermolecular forces literature.

Such an screening is supposed to strongly restrict the range of electrostatic inter-

actions in electrolyte solutions. This is the reason why in the last chapter of this

thesis we will expose our point of view concerning the edges of the applicability

of Debye-Hückel theory in protein systems as kinesin-microtubule arrays. In the

meantime, and after exposing our electrostatic model, we will introduce an anal-

ysis of the interactions between kinesin heavy chains, tubulin heterodimers and

the different arrangements of nucleotide components such ATP, ADP or ADP.
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This model, based on the hypothesis of a kinesin commutator, sheds light into

very recent measurements [55, 56].
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9

Mechanics of kinesin step explained by

electrostatic interactions

9.1 Introduction

As we have seen in previous sections, kinesin molecular motor is a protein that

is able to convert chemical energy from ATP into mechanical work while step-

ping along microtubules. Until now, how this conversion is produced and how the

stepping mechanism acts has been a mystery. Several experiments and theoretical

works have been made without satisfactorily answering these essential questions.

Even the explanation of the different directionalities that different motors exhibit

has not been understood. The reason for this is that the experiments using optical

tweezers or fiber-glass rods don’t have enough temporal and spatial resolution.

Only very recently these resolutions have been improved leading to controversial

results about substeps.

In this work we provide clues to understand the role of ATP-hydrolysis, the

physical mechanism of the motor and consequently an explanation for its direc-

tionality and processivity. Such results are achieved performing calculations on

microtubule-kinesin systems, not considering all the details of the structures but

trying not to skip the most fundamental properties of the motor. This micro-

scopic but still very phenomenological approach allows us to understand which

is the role of every considered element. Mainly, we take into account the electro-

173



9. MECHANICS OF KINESIN STEP EXPLAINED BY ELECTROSTATIC
INTERACTIONS 174

static of the structures and its geometry, showing their relevance to explain the

known experimental behaviour. This will an effective model, but in comparison

with other works based on ratchet potentials [32, 47, 37] it can be considered as

a microscopically physical approach. All the symmetry breaking that we add to

the system, like the polarity of tubulin and the stalk, is well justified in the litera-

ture. The interactions are no more effective potentials but Coulomb’s electrostatic

forces complemented with Debye screening terms. And finally, the structure of

the motor that we consider is in agreement with the crystalline figures obtained

in some crystallographic experiments. The chemical cycle will also be considered,

although the relation between chemistry and the electrostatic properties will not

be clarified until next chapter. We will see how it is the chemistry that conditions

the electrostatic of the systems. This is our main concept: chemistry regulates

electrostatics. The rest is Coulomb’s physics in the range of kinesin size. There

are no global conformational changes, but relatively long-range repulsions and

attractions. What kind of forces, if not, can induce such a deterministic motion?

Thermal forces are also present and, although smaller than microtubule-kinesin

forces, are comparable in magnitude. However, these forces are so uncorrelated

that cannot provide mechanical work. It is amazing how, even the most recent

literature, we can find concepts like ”diffusional search” concerning the travel

that the free head performs. Always such a search will prefer to reach the head in

the initial site than to travel 16 nm along the protofilament. In addition, there are

tubulin sites in the microtubule that are also closer than the target site, like in

the two first neighbours in adjacents protofilaments. There is a clear electrostatic

polarization along the protofilament and it is a nonsense to consider that the

fluctuations, which are not supposed to depend on the electric fields, will drive

the head to travel deterministically to the less probable site. Then, the hypoth-

esis of diffusional search will not be considered. There has to be a deterministic

mechanism with deterministic forces that drive the motion. Fluctuations only

perturb the system and can eventually modify it due to the finiteness of energy

differences, but never direct it by themselves.

A lot of experiments have been performed on kinesin. First, minus-directed

kinesin were discovered, being the ncd the paradigmatic example of this type.

The main difference between wild-type and ncd are the neck linkers and specially
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the different orientation of the stalk respect the motor core. Later, a mutant of

ncd with a single modification in the neck showed to lose its directionality. These

are clues to consider that the key for directionality is located in the neck. Also

the processivity is related with this, because minus-ended motors don’t seem to

be processive at all, and there is evidence that changes in the neck of processive

plus-ended motors modify the directionality [8].

In 1999, a proposed model could travel in both directions without changing

the microtubule (See Ref.[42]). The ATP was supposed to induce large conforma-

tional changes, stretching and contracting a spring that could displace the motor

along the track. This model has been recalled and redone several times [57], and

we have discussed it with detail in the first part of this thesis. However, there are

no evidences for such large conformational changes. The neck linkers are known to

be quite rigid and that is why some authors think that only thermal fluctuations

drive the movement. We can express the problem of the power stroke in a differ-

ent way. It is known that the head that hydrolyzes ATP is the one that performs

the step. Then, the energy of the hydrolysis is localized in this head, which is not

the pivotal one. This is an argument against the global conformational change

hypothesis. Normally, for a rotation, the energy is applied in the axis of rotation,

i.e. the attached head and not in the rotating. This argument would discard the

arm level amplification hypothesis for kinesin, while it may hold for myosins.

We have structured this work following an increasing-difficulty order. The

essential ingredients are added successively in a series of generalizations that will

drive us until a relatively realistic model.

9.2 Tubulin, protofilaments and microtubules

Here we introduce the structural properties of the components that will be in-

volved in our modelling. Such a description is tightly related with the electrostatic

properties from which we will base our proposals.
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Figure 9.1: Structure of two tubulin heterodimers. Left is plus-end while right
is minus-end. The upper side represents the microtubule surface side. We can
distinguish the α and β subunits not only by their position with respect to the
ends of the microtubule but also because β subunits have a bound GDP while α
subunits have bound GTP nucleotides.

The tubulin heterodimer

The dimeric protein called tubulin is the fundamental unit of the microtubules.

Its structure can be separated into two subunits, the α− and the β−subunit, hav-

ing both very similar structural properties. Every subunit is by itself a globular

protein of 50 kDa. This globular part has been crystallized in several occasions

showing the structure of Fig. 9.1. However, in each of the subunits there is a

C-termini tail that cannot been crystallized due its flexibility. In Fig.9.2 we can

see these tails, which have been added by hand [58].

Protofilaments and microtubules

When a collection of tubulin units is arranged in a chain lattice we say that this

structure is a protofilament. This new structure has an overall polarity due to

the individual polar properties of tubulin. One end will be β or plus-end and

the other α or minus-end, in reference to the polymerization rates that each part

exhibits at the growing stages of the protofilament. The protofilaments have never
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Figure 9.2: Structure of two tubulin heterodimers with their C-termini tails, which
are the vertical protuberances. We can see two dimers each one seen from a
different side, as it is indicated by the identification of the α and β subunits.

been found alone. They are part of superstructures like microtubules or tubulin-

sheets. The microtubules are essentially a collection of protofilaments arranged

in a cylindrical way, where the protofilaments can be parallel to the symmetry

axis of the cylinder or performing a supertwist around it[41]. The tubulin sheets

are flat arrangements of parallel protofilaments that are artificially prepared for

experimental purposes. In all cases, no matter how the lattice is organized, kinesin

motors seem to run parallel to the protofilaments geometry, although it is not

known if the motor uses only one or more rails to advance. In any case, the motor

remains faithfull to the direction of the protofilaments, at least on average [6].

Microtubule polarity

What has been observed in several experiments is that wild-type kinesins move

always towards the plus-end of the microtubules, while the chimeras called ncd

walk to the opposite end. In single-molecule experiments with optical traps it has

been seen that the probability of performing backward steps is very low if the

external load is not high. What it means is that the mechanism of the kinesin has

to be deterministic even in presence of relatively strong fluctuations. And such a

mechanism requires that the microtubule has to exhibit a broken symmetry along

the direction of movement. In the literature, one can read that the microtubule

is a polar structure, but they always refer to the difference in growing rates at
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different ends. In order to have a deterministic motion along the microtubule,

there has to be another polarity that can interact with the kinesin motors, even

though the polymerization rates difference is a property related with this fact.

In Ref. [58] one can find support for a physical polarity in the microtubule.

Although in vacuum the tubulin protein is negatively charged, in the presence

of water it becomes polarized, as seen in Fig.9.3. Molecular Dynamics (MD)

simulations have been calculated the direction and the approximated magnitude

of the polarization vector. This vector is essentially perpendicular to the surface

of the microtubule, in according to the well-known negatively charged surface

of the structure. However, just below this negative surface, it exists a positive

layer that gives to the electric field new and polar properties. The main result of

these simulations is that the projection of the polarization vector along the axis

parallel to the microtubule is non-zero, which converts the microtubule in a kind

of biological ferroelectric material. This is the basic point from where we will

build up all of our theory. The results of the calculations of the tubulin dipole

Figure 9.3: a) Tubulin without surrounding water is essentially negative (dark
gray). Notice that the β−subunit is on the left. b) In the presence of water, a
polarization appears, with a positively charged zone (light gray). This polariza-
tion has a non-zero projection along the direction of motion. c) Seen from the
symmetry axis perspective, the polarization has a non-null lateral projection as
well.

moment are shown in Table 9.1 and Figure 9.3.

Tubulin models

The β−model From this MD data we can build a first and very simple model

for a single protofilament. We neglect other details of the tubulin keeping only



179 9.2. TUBULIN, PROTOFILAMENTS AND MICROTUBULES

Magnitude Value (Debyes)
Total charge: -54e
Total dipole moment: 4850
x-component: 700
y-component: 4800
z-component: 200

Table 9.1: MD values from [58]. The tubulin properties are calculated for the case
of GTP-bound states. The dipole moment unit is the Debye. The x-direction is
along the symmetry axis and positive values of x points to the minus-end. The
y-direction is radial towards the center of the cylinder and the z-direction is the
perpendicular to the other two.

the fact that it is an electric dipole in the direction given in Table 9.1. In Fig.

Figure 9.4: β−model for a protofilament. The polarization of every tubulin dimer
allows to differentiate the plus from the minus end. The periodicity of the struc-
tures is the same as kinesin’s step size ≃ 8nm. Notice that charges on the surface
(upper row) are negative (dark gray) while inner charges are positive (light gray).
The positive charges are located at a distance d from their negative partner and
with an angle ω with respect to the vertical direction.

9.4 we can see four tubulin units within the context of this model. We need two

parameters, the tilting ω and the dipole distance d. From the values of Table

9.1 we can estimate that ω = arcsin 700
4850
∼ 8.3o. The parameter d can also be

estimated as d ∼ 8nm. A third parameter is needed for the relative values of the

charges negative/positive (if one wants to keep the whole dipole global charge

as negative). However, this is not strictly necessary now and we assume a dipole
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with zero global charge. This model is a coarse-graining of the whole tubulin

unit and is not supposed to give extremely fine details. We call this scenario the

β-model because in kinesin-decoration experiments like in Ref. [59] it has been

shown that the heads of the motor attach essentially to the β subunits.

The αβ model A more detailed description of the tubulin unit has to take into

account the polarization of each subunit separately. In Ref. [60] it is reported that

the polarization of the α subunit is smaller, and the direction is slightly different.

This fact implies that this subunit is less negative than the β, so the heads

don’t attach on them with the same frequency as they bind the β-subunits.

Consequently, to take this into account we need four parameters, αα, dα, and

αβ,dβ, for the α and β subunits, respectively. (See Fig. 9.5) The models presented

Figure 9.5: αβ−model for a protofilament. This figure is similar to the previous
figure, but now we have added the structure of the α subunits, each one with a
dipole that has its own length dα and tilting angle ωα, while for the β subunits
we have dβ and ωβ. Although the periodicity is still ≃ 8nm, now we can find a
negative surface charge every ≃ 4nm.

here are the basis for the modelling of kinesin in next sections. It will be important

to realize that tubulin and kinesin act together, and one cannot understand the

motion of kinesin without an understanding of mutual MT-kinesin interactions.

For us is important to build a detailed model for the track and not only for

kinesin, since it is the relation between them what causes the actual motion.
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9.3 The ATP hydrolysis

The Adenosine Triphosphate nucleotide (ATP) is an organic molecule that is used

in uncountable biochemical processes as energetic supplier. It is composed of an

adenine base which is bound to a pentose sugar (called ribose) and three phos-

phate groups, called Pα, Pβ and Pγ. In Fig. 9.6 we can see a pymol representation

of this nucleotide.

Figure 9.6: Pymol representation of an ATP molecule. We can distinguish the
two rings from the adenine, the ribose and the three phosphate groups, indexed
by the three first greek letters

In the presence of water, it can hydrolyze following the reaction

ATP + H2O → ADP + H2PO3. (9.1)

This simplified scheme hides one aspect of the maximum importance. When ATP

is hydrolyzed, the γ phosphate that breaks its bond with the rest of the nucleotide

remains unreleased a certain time. After this time, the phosphate group detaches

completely. The presence of the phosphate group is crucial because it can form

chemical bonds with other structures. As we will see later, the role of Pi is crucial

to understand the interactions of different nucleotide states of kinesin heads with
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tubulin. To emphasize this, we should write the following,

ATP → ADPPi → ADP + Pi. (9.2)

Every transition (in the left-to-right direction) has a typical frequency of 250s−1

(Ref. [61]). Here we don’t consider reverse rates. About the energy, it is typically

considered that under physiological conditions one ATP can provide 25kBT =

100pNnm of energy. The whole free energy is strictly

∆G = ∆G0 + kBT ln
[ATP ]

[ADP ][Pi
(9.3)

However, as we have already seen in this thesis, the trials to fit the data in

theoretical frames (one example is Ref. [43]) suggest that maybe kinesin does not

use but the half of the whole value. Or maybe the available energy is not what

we expect from eq.(9.3).

Electrostatics of ATP hydrolysis

Until now, one of the biggest misteries about kinesin motion is how the chemical

energy of the ATP is translated into mechanical work. We think that in order to

clarify this question we have to consider the electrostatic charges involved in the

reaction, which in absence of Magnesium are

ATP 4− + OH1− → ADP 3− + H2PO2−
3 . (9.4)

The ATP molecule is strongly negative (-4e) and when it is bound to a kinesin’s

head, it will modify the electrostatic properties of the head. It has been reported

that the ATP binding pocket is positively charged and it attracts the nucleotide

by electrostatic attraction (Ref. [62]). On the one hand, we know that when a

head is free from ATP it binds strongly to the β subunits in the microtubule

(clearly negative, specially the C-termini tails). When it captures an ATP, this

interaction becomes unstable and after some time (when Pi releases) the head

detaches from the microtubule. On the other hand, we know that the head free

from ATP is less negative than with it. In fact, it is very reasonable that the

head without ATP will be positively charged, and this would be the reason for

the microtubule binding of kinesin heads when they are nucleotide free. After
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ATP binding, we suppose that the head switches the sign of the charge and then

it is repelled from the microtubule’s surface. As we can see, the chemical and

electrostatic schemes agree mutually in a very appealing way.

While it is true that the ATP hydrolysis involves some charge variations, positive-

free ions are able to bind the nucleotides in order to decrease the global charge

of ATP and ADP. Specifically, Magnesium ions Mg2+ usually bind ATP in such

a way that we should write

MgATP 2− + OH1− →MgADP 1− + H2PO2−
3 . (9.5)

But still we have a charge variation of two electronic charges upon the release of

the γ-phosphate group.

ATP binding pocket: the local conformational change

The energy of the hydrolysis has to be used to perform a step. The scenario

described until now is not enough. Only with those considerations, the mutual

repulsion of the ATP molecule and the microtubule’s surface will be enough to

take the ATP or the ADP away leaving the head in the same position. What is

necessary is that when this repulsion is executed, the ATP molecule will take the

head with it dragging the whole motor domain. How can it be possible? In several

occasions ([61, 62]) it has been reported that after ATP hydrolysis (sometimes

they say after ATP binding, others after phosphate release) a local conformational

change in the ATP binding pocket occurs. The fact that this pocket closes and

traps the nucleotide inside is essential to understand that an electrical repulsion

will make move the whole head away from the microtubule.

Then, what is the role of the ATP hydrolysis? Several times this question has

been asked and the most frequent answers talk about uncertain conformational

changes that the different chemical states induce. From our new point of view,

the only necessary conformational change is the local closing of the ATP binding

pocket. If this is the case, the rest of the motion, the so-called global conforma-

tional change, is no more than electrostatic repulsion. One can ask about the use

of the hydrolysis energy. This energy is used to close the pocket and nothing more.

So, surprisingly, the role of the ATP is to take the system motor-microtubule out

from the equilibrium closing the ATP binding pockets. The movement of the
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power stroke is driven from the electrostatic field of the microtubule.

9.4 Kinesin mechanical 2D model

As we have stated in the previous chapter, the binding and detaching processes

of kinesin heads are governed by their chemical, i.e. electrostatic state. As a

simplification we will consider that a head with ATP or ADP will have a net

charge of −4e and −3e, respectively, while without ATP or ADP the net charge

will be +2e. (We still don’t take into account the effects of Mg ions).

The model

The most simple way one can build a model in this frame is considering the ki-

nesin as a rod with a point charge in each of the terminals. We then let this model

to interact with a protofilament of the β−model. Because we deal with only one

protofilament it is important to restrict temporarily the problem to 2 dimen-

sions. In Fig. 9.7 we can see the main elements of the movement. Note that the

Figure 9.7: Mechanism of the rigid rod model. a) When the free-tethered head is
negative, the motor is on its parked state or equilibrium configuration. But when
this head suffers ADP release it becomes positive again and will be attracted to
the microtubule surface. Now the question is whether the head will fall toward
the plus (b) or the minus end (b’), even though the parked state is tilted toward
the plus end.
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only relevant variable is the angle θ because the rod is rigid. We keep one of the

heads positive and then it remains attached to the tubulin. But the other, as it is

negative, will rapidly reach the equilibrium value of θ, θeq. This is the ”parked”

configuration, in which the motor remains more or less time depending on the

ATP concentration. Our hypothesis is that when the attached head receives an

ATP, the closed binding pocket configuration of the other head becomes unsta-

ble (maybe due to the electrostatic change that the new ATP produces, which

increments the radial strain in the rod, although this is an obscure point) and

the negative head switches the charge. While the attached head needs a small

amount of time to hydrolyze the ATP and eliminate the phosphate group, the

free-leading head, now positive, will fall to the surface of the microtubule again.

Once this head is on a tubulin site, the other head rises out from the surface look-

ing again for the θeq. But let’s focus our attention into the falling regime now.

From this mechanism, two crucial questions appear. First of all, the time for the

attached head to perform the hydrolysis and the losing of Pi is in competition

with the falling time of the free head to the microtubule. Such a competition

can provide interesting clues concerning processivity that we will develop in next

chapters. The second question is: after the switch of the free head’s charge, does

the head goes to the next tubulin unit or falls back to the previous one? This is

equivalent to ask: does the motor walks to the plus-end or it just make random

displacements. This is the key point for motor directionality.

Parameters and equations of the model For the electrostatic distribution

of microtubules we assign negative surface charge q = −27e per tubulin subunit

while include a positive charge distribution in the interior leading to dipole mo-

ment magnitude of p = 5000D ≃ 100Cnm[63], or d ≃ 4nm (p = qd). Finally, we

use a dipolar tilt with length and angle values equal to dα ≃ 2nm, ωα ≃ 0.07rad

and dβ ≃ 4nm, ωβ ≃ 0.14rad, for the α and β subunits respectively.

The microtubule-induced kinesin interaction potential is given by

V (~ri) =
−1

4πǫ0ǫr(1 + ka)

N
∑

j=1

qiqj

|~ri − ~rj|
ek(a−|~ri−~rj |), (9.6)

where ~ri is the position vector labeling the charges on kinesin (i = 1, 2, 3), while

~rj is the location of the N microtubule charges qj on the α and β subunits. k is
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the inverse of the Debye length, which we take around ∼ 3.5nm, and a ∼ 1nm is

the excluding volume radius as described in Ref. [64]. A regime with a greater a

and lower Debye length lD is also operative. We considered a single protofilament

as we are still in the 2D model, so then N = 5, which means that we consider

two first neighbour interactions. We have the following overdamped equation of

motion for kinesin:

λθ̇ = − 1

L

dV (~r)

dθ
+ ξθ(t) (9.7)

where λ is the drag coefficient, L the head-to-head distance and V (~r) the to-

tal microtubule electrostatic potential of Eq. (9.6) at the Cartesian location ~r.

The environment is simulated through the thermal forces ξθ(t); for each we have

〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2λkBTδ(t − t′). In order to integrate Eq.(9.7) we

need to perform at each instant of time the Cartesian-to-polar transformation

θ = θ(~r, L). For the rotation we consider the attached head to coincide with the

origin of the coordinate system; the latter is shifted by 8nm each time a step is

completed. The simple Larmor-like rotation of the protein for γ = π becomes a

more complex rigid body rotation for γ < π.

To analyze such an important aspect as directionality one has to analyze the

interaction motor-microtubule in the range θ ∈ (0, π). Because the rod is, in

principle, rigid, only forces that are perpendicular to the rod contribute to the

angular velocity θ = dθ
dt

. Calculating the the potential as a function of θ, V (θ), one

obtains that the shape is concave with a minimum in θ = θeq. There is no surprise

in this. As long as the free head is in the parked state, i.e. negatively charged,

the angle θ will remain close to θeq, slightly disturbed by thermal fluctuations.

Now one can ask: which are the values for θeq? The answer is that it depends

on the polarization angle ω. If ω is zero, then the protofilament is a perfectly

symmetrical lattice with a potential that will clearly drive the free head to a

vertical state, i.e. θeq = π
2
. However, we know that ω is not zero, so θeq will move

away from the verticality in the form shown in Fig. 9.8. From this figure, one

can see how for positive values of ω, the case we think is the real, the parked

position is oriented forward. Does it mean that after converting the charge of

the head into positive, the motor will come back to the appropriate position?

The answer is, surprisingly, no. As we will see in this model, the value of θeq

does not determine the directionality of the motor. Let’s think about it in terms

of the potential. If at the parked state the free head is in the minimum of the
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Figure 9.8: θeq versus ω for two different values of d. We take positive α when
the positive charge is closer to the minus-end than the negative, i.e. the case of
Ref.[58].
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potential’s well, when we change the sign of the charge, this minimum will be

converted into a maximum and, in general, all the potential will simply switch the

concavity leading to a mirror image of the previous potential. Of course the head

will fall because it is not stable to remain in the maximum, but the falling side,

forward or backward, will be determined only by thermal fluctuations. Then, the

probability to go backward or forward is simply the 50%. In Fig. 9.9 we can see

the impossibility of deterministic motion in this model. We conclude, then, that

Figure 9.9: Potential for the free head before and after switching the charge for the
cases of ω = 0o and 10o. We can see that none of the cases gives a deterministic
motion because θmin = θmax in both cases. Q is the charge of the free head.

the rigid head model, with no more ingredients, is not enough to produce active

motion, although it illustrates the way how chemistry is related with mechanics.

What we need to produce directed motion is that the minimum of the potential

in the parked state will be shifted to increasing θ respect to the maximum of the

convex potential. In such a case, the free head will clearly fall to the next tubulin

unit.
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Can elasticity give directionality? How can we shift laterally the two po-

tentials, concave and convex? We have seen how using only the θ variable is not

possible. However, we can abandon the rigidity of the model to have some free-

dom in the radial variable as shown in Figure 9.10. This fact can be justified with

two explanations. First, it is reasonable to consider that the motor itself has a

certain compliance to stretch. Second, it is known from [65] that the attached

heads normally bind to the C-termini of the β-tubulin. These C-termini tails are

very flexible and can also justify the variation of the effective radius L in the

model. This fact opens a second dynamical equation that has to be added to

Eq.(9.7),

λrṙ = Fr + ξ(t), (9.8)

where Fr is the radial projection of the total force acting on the moving head.

In the Fig. 9.10 we can see how when the free head is negative, L is bigger,

Figure 9.10: Mechanism of the flexible case of the heads model. From a) to b) the
free head falls to the microtubule, while from b) to c) the previously attached head
raises to reach the next parked state. Notice how while raising occurs (c), there
is a stretching in the motor’s length, which allows to surmount the symmetry of
the rigid case and gives directionality to the motor.

and after charge switching, becomes smaller. A simulation of this system shows

that then the motor can perform deterministic steps. What is happening with
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the potentials? Are they shifted? The answer is yes. In Fig. 9.11 we can see this

effect by observing how θeq changes with the radius L. When the charge in the

free head changes, the motor experiments a contraction that will be traduced in

a change of θeq. It is very interesting how the directionality of the motor depends

on the difference in radius between the stretched and contracted state. If θeq de-

creases in the contraction, the maximum of the potential will be shifted to the

decreasing θ, so the motor will be plus-ended. If it increases, the motor will be

minus-ended. Note however that the stretched motor could be more than 10 nm

long and stretch so much that the global result will be a decrease of θeq and the

motor will result to be plus-ended.

However, we will see in next sections how directionality is better achieved by

other mechanisms. The reason is that this flexibility causes a variation of the γ

angle defined by the heads and the neck. It will be clear how this angle has to be

very close to 180o. For this reason, we don’t continue considering flexibility as a

real way of achieving directionality.

Figure 9.11: θeq(rad) as a function of L(nm). Notice that arrows indicate the
contraction induced by the switch negative to positive in the free head. Depending
on the initial value of L, which is greater when the motor is more elastic and
depending on how it shrinks after the change of the charge induced by ADP
release, the motor can be plus-directed or minus-ended.
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Stepping and sliding We shall comment one experimental fact that has been

observed in Ref. [66]. Marking one of the heads of the motor and following the

trajectory traced by it, it was observed that the heads don’t only perform steps

but also they slide along the protofilament. This fact is consistent with two things.

First of all, the crystalline structures of the kinesin (Ref. [67]) don’t seem to give

separations between the heads bigger than 6-6.5 nm, so when the falling head

approaches to the new binding site cannot reach it until the attached head de-

taches from the microtubule. Second, our minimal model predicts this behaviour

very well. When the falling head arrives to the microtubule’s surface, it has to

wait a very small time pointing to the new binding site. After the other head

detaches, the positive charged head will slide until its new position. If the motor

has enough flexibility, this position can be reached faster.

The problem is that data from [66] has not been contrasted due to the diffi-

culties of measuring single steps without coarse-graining the whole kinesin into

a single dot. Moreover, stepping and sliding can overlap and in fact no one how

disjunctive are these two regimes.

The central charge model

In this paragraph we continue the philosophy of the previous model but adding

a new and important feature that the kinesin motors are shown to have. We will

see how the electrostatic interaction with the neck domain will be crucial for di-

rectionality purposes.

Kinesin motors have three distinguishable domains, i.e. the tail, the stalk and

the motor core. The tail is the domain where the beads or natural organelles are

attached to be transported. The stalk is a α−coiled-coil structure which lengths

from 300 to 900 aminoacids. However, a minimum number of 379 residues is

needed in order to have a dimeric kinesin (Ref. [59]). Finally, we have the motor

core, where the heads and the ATP binding pockets are. Still there is a small but

crucial fourth domain called the neck, which is the connector of the stalk and the

motor core. In Fig. 9.12 we illustrate these concepts. As we can see, sometimes

the neck and motor core are at the carboxile terminal (ncd) of the stalk and

sometimes at the amino terminal (wild-type kinesin). Also we can see that this
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Figure 9.12: Different domains of the motor. Notice how the motor core can be
at any of the ends of the stalk, giving very different properties. For the case of
kinesin, the motor core is attached to the positive (amino) terminal of the stalk
(left), while the ncd motor is bound to the negative (carboxile) terminal (left).

apparently trivial difference makes the motor very distinct, because one is a wild-

type kinesin and the other a ncd. Why is this fact so important? The answer is

that the stalk structure is a polar structure, as all the aminoacids are. The word

aminoacid already expresses this polarity, because it makes reference to the two

parts of its structure. One is the acid or carboxile part, a group COOH−. The

other is an amino group, NH+
2 . It is very clear that this electrical polarity is the

essential key for the production of aminoacidic chains. But at the ends of these

chains, always an amino or an acid group remains free. In Fig. 9.13 we present a

simple scheme of this polarity.

As we saw in Fig. 9.12, the wild-type and ncd (non-claret disjunctional) ki-

nesins have the motor core and the neck at different parts of the stalk domain. It is

well known that wild-type kinesins are plus-ended while the ncd is minus-ended.

From all the superfamily of kinesin, natural and mutants, we can see that some

of them walk in one direction and others in the other. If one tries to correlate

the directionality with the position of the stalk at which the motor core and neck

are attached, we can arrive to a very promising conclusion. Most of the times,

plus-ended kinesins have the neck linker at the amino terminal of the stalk, while

minus-ended proteins have it at the carboxile or acid end. And the differences

don’t finish here. Another property of these motors seems to be correlated in the

same way: the processivity. A motor is processive if it is able to perform some

consecutive steps without detaching from the microtubules. Of course, no kinesin

is infinitely processive, but while wild-type can perform more than twenty steps,

the ncd typically performs only one. This property is again correlated with the

polarity of the stalk. The minus-ended motor tend to be non-processive while the
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Figure 9.13: Schematic structure of the stalk. The amino terminal indicates a
positive charge while the carboxile terminal is negative. This polarity is a direct
consequence of the polarity of every single aminoacid. As every aminoacid is a
small electric dipole, the stalk has a global dipole moment which is the sum over
all the small dipoles.

plus ended are normally processive. It has to be said that not all of the motors

hold this correlation, specially in the mutant families. A very special mutant was

discovered not to have any directional preference, so it performs steps in both

directions, probably decided by fluctuations each time (See Ref. [10]). Addition-

ally, changes in the neck can strongly modify the mean run length [8].

With these experimental facts we will try to understand the relationship be-

tween the polarity and directionality (and maybe processivity) using a simple

model that is no more than an expansion of the rigid heads model of the previous

chapter. We consider again the β−model for tubulin and a rigid rod for the ki-

nesin. This rod will have a charge in each terminus and one additional charge in

the middle of the rod (neck). This latter charge is intended to take into account

the terminal properties of the stalk. When the terminal will be the amino, we

will put this charge positive (case of the wild-type), while it will be negative if

we are in the ncd case. We can see a complete scheme of the model in Fig. 9.14,

even with a third dimensional axis that will be considered in short.

This model has again one single and simple equation. In each head we calculate

the force of interaction with the microtubule. Because we only deal with tangential
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Figure 9.14: a) Microtubule electrostatic model with arrows indicating local dipole
moments. The α tubulin subunits (dark gray) have smaller dipole moment that
the β units (light gray). b) Electrostatic configuration of kinesin and tubulin made
protofilament prior to ATP hydrolysis. Angle θ is polar while ϕ is azimuthal. The
central-neck charge sign depends on the type of molecular protein while the head
charges depend on the ATP hydrolysis circle. Dipolar lengths dα, dβ and dipolar
angles ωα, ωβ are different in α and β subunits respectively.
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Figure 9.15: Electrostatics driven motor walk: Wild-type kinesin (+ states) and
ncd (- states) stepping process (left column) and numerically determined binding
protein-microtubule electrostatic potential as a function of local polar angle θ
(right column). (0) Before ATP hydrolysis, both kinesin (positive neck) and ncd
motors (negative neck) are in parked configuration pointing in opposite direc-
tions due to the difference in the central charge. The corresponding equilibrium
angles are determined for the minimum potentials. (+1) ATP entry in the ki-
nesin (attached) head pocket, with an accompanying charge change while the
ADP at the other (tethered) head becomes unstable. (+2) The reversal and shift
of the interaction potential of the previous state leads to falling of the tethered
head deterministically towards the plus end. Since the length of the motor is not
sufficient for reaching the next tubulin subunit we have (+3) a detachment and
rising of the trailing head in such a way that allows the other head to slide to
the next binding site. The ncd motor protein cycle proceeds similarly (- states)
but the parked state is tilted towards the minus-end. Moreover, the negative-
central charge induces a potential shift which is opposite to the plus-ended case.
The falling of ncd motors is slower than positive-charged-neck motors, so the
probability that the attached heads begins the rising before the tethered heads
completes the falling is greater, leading to non-processivity.
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forces, the interaction between the different motor’s charges can be skipped. We

call A to the central charge and B to the free head. Then, we obtain ~FA and ~FB.

Using eq. 4.5 we obtain FθA
and FθB

, so

λθθ̇ =
FθA

L/2
+

FθB

L
+ ξ(t). (9.9)

As we see, the physics of these models is very simple. It is the complexity of the

spatial distribution of the charges the fact that gives such special properties.

It is quite relevant to perform here an analysis of the potential in a similar

way to the ones in the previous chapter. In this model, we expect the minimum

and the maximum to be shifted only considering the variable θ. In Fig. 9.15 we

can see the qualitative differences for both cases.

What is the reason for this shift between the two potentials? To answer this,

it is important to notice that while the charge of the free head changes with the

nucleotide state, the central charge remains constant all the time. Consequently,

the global potential after and before the change are not symmetric because the

potential contribution of the central charge is constant (and asymmetric) all the

time. The fact that ω is not zero makes that the central charge and the positive

charge of the occupied tubulin interact and decide the directionality. Then, we see

how the directionality is driven by the polarity of the stalk. A lot of times it has

been reported that the neck domain was crucial to decide if the motor was plus

or minus-ended. In this section we have confirmed this by showing the qualitative

mechanisms involved. In brief, it is the sign of the neck charge what decides the

directionality. We have a plus-ended motor for positive necks and minus-ended

motors for negative necks.

Fast and slow subprocesses: processivity As long as the central charge

is positive, it is intuitive to think that the motor will have more affinity to the

microtubule, and as a consequence, more processive. In the opposite case, a neg-

ative central charge will produce a repulsion that can difficult this processivity.

To shed more light into this, we should separate the step into two stages. Recall

that the vertical-tilted configuration is the parked state. Then, in the case of the

positive central charge, the falling velocity to the microtubule after the new ATP

binding will be clearly higher than in the ncd case. The reason is simply that in
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the first case the central charge helps while in the other this neck-charge opposes

to the falling movement. Recall also the fact that in such a process the falling

of the free head and the hydrolysis and phosphate release of the attached head

are in time competition. Then, if the falling time increases, the probability that

the attached head detaches before than the free head attaches increases. If this

happens, the motor will be completely detached from the microtubule and the

processive walking is broken. From Ref.[61] we can estimate the average time

for the detaching of the attached head as ∼ 10ms, although it could be much

smaller. We also know from our simulations and from Ref.[40] that the typical

falling times for ncd are big, normally the double of the wild-type case. How-

ever they give times of the order of 50µs, much smaller than 1ms. In any case,

in the case of ncd, this time should be comparable with the detaching time of

the attached head and that’s why the probability of perform a consecutive step

is low. However, falling times are much smaller in the wild-type case, and then

the probability of detaching decreases although it is not zero. To make accurate

predictions of these probabilities it is necessary to be in a very precise scale of the

physical parameters like the relative permittivity or the drag force. On the other

hand, the rising times for the head to reach the parked state are much longer

in the wild-type kinesin than in the ncd. But this difficulty is not a problem for

processivity because the attached head will remain attaches and without ATP a

time which is always big compared with the rising times.

In Fig. 9.16 we see high experimental temporal resolution recording of some ki-

nesin steps [40]. In the case of the forward (up) steps, we see an small initial

displacement of 1-2nm with a very small waiting time after it. This would cor-

respond to the falling process, while the second displacement would correspond

to the rising. It is interesting to notice how the motor slows down at the end of

the rising, in agreement with our simulations. From this figure we can see that

∼ 1 − 2nm are from the falling while 7 − 6nm are from the rising. This would

correspond to a θeq ∼ 135, which make us to think that maybe the tubulin has

more polarization than what is measured in Ref.[58]

The rigid γ model

In this subsection we sophisticate the previous model by considering that the

motor is no more a rod but an arm with an angle γ (See. Fig.9.14).
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Figure 9.16: High temporal resolution recording of some wild-type kinesin aver-
aged trajectories for single step-events[40]. Notice the two phases in every step.
Upper trajectories correspond to loaded forward motion, while lower trajectories
correspond to a backstepping regime.

The central charge will be in the vertex because the angle is located in the

center of the motor. What is the motivation for this angle? Several crystallizations

made on the structure indicate that tracing a straight line from head to head, the

neck does not fall in this line, but slightly away. The quantitative estimations of

this angle can belong to (120, 175) although its flexibility should motivate us to

consider γ as an elastic variable. For the purposes of this section let us consider

the angle as constant and see how it modifies the stepping properties.

A very important remark concerning this model is that the restriction to 2 di-

mensions drives us to consider that γ and 360− γ are different motors, although

they would correspond to 2 opposite orientations of the same motor in 3D.

This generalization does not increase the number of dynamical equations. The

only difference respect Eq.4.8 is that we have to make the following substitution

θA ⇒ θB +
γ

2
+ 90 (9.10)
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and then we have again a single variable θ giving

λθθ̇ =
FθBB+ γ

2
+90

L/2
+

FθB

L
+ ξ(t). (9.11)

After what has been said until now, it is very clear which is the relevant

variable for the step. Undoubtedly, ∆θ, i.e. the shift between the maximum and

the minimum in the potentials. Let us show in Fig. 9.17 the evolution of ∆θ as a

function of γ. We define ∆θ as θmax−θmin, so a plus-directed motor needs ∆θ < 0.

Values of γ > 180o give steps more robust to fluctuations and external forces.

However, in Fig.9.18 we see how for 176.5o < γ < 180o we also have plus-ended

motion. The figures are for ω = 10o. Greater values of this parameter reduces the

value for γmin.
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Figure 9.17: Plot of ∆θ as a function of γ for ω = 10o.

The external load F In almost all the experiments that have been done with

kinesins, the external force is a standard variable that is used to evaluate how
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Figure 9.18: Magnification of Fig.9.17. We see how the critical γ to have directed
motion is ∼ 3.07rad. This value corresponds to ∆θ = 0, where there is no direc-
tionality.

the motor behaves under its influence. Optical traps and fiber-glass devices have

measured that wild-type kinesin can still walk until they are pulling forces of the

order of 5pN . In our models, one has to put this force only in the central charge

because it is the place where the stalk begins and the load is supposed to be

applied to the stalk. However, if one pulls these motor-models with loads bigger

than 0.1pN, the motor reverses its direction. The stepping back mechanism has

been recently discovered in Ref. [40], so our models are not in contradiction with

it. But the magnitude of the stall force that we have is ridiculous compared with

the experimental. What is wrong then? Maybe the parameter values are far from

being realistic?

Parameters for an experimental scale The principal reason to question the

values of the parameters used until now is that the motors are not able to pull

with the experimental forces. The simulations in Ref.[58] are made in some very

specific conditions in which the results can depend dramatically. Although we

think that the tubulin is indeed dipolar, maybe the values of polarization are

different from the ones reported in [63, 58]. From Fig.9.16 we estimated that the
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θeq should be approximately 135o, which makes us think that α should be close

to this value. Such a value of α implies a reduction of d. In order to interpret the

positive-negative pairs of charge as dipoles, it is important that

d <
l0

2 sin α
. (9.12)

If this does not hold, the positive charge associated to a tubulin site would be

closer to the tubulin site below and the concept of polarity would change. Then,

we reduce to d ∼ 4nm. With these new values, we are able to pull with loads

up to 5pN, which is much more realistic. The source of this power is essentially

the interaction of the central charge with the positive charges below the negative

surface, so then a modification of the neck charge also helps to enter into a scale

closer to the experimental.

9.5 The kinesin 3D model

From protofilaments to microtubules

The work that has been done in the previous chapters is no more than the prepa-

ration for a three-dimensional system where the kinesin works in reality. The first

generalization one has to make is to take into account a set of protofilaments in-

stead of a single one. We are not going to consider a full microtubule because the

electrostatic forces decrease their strength as 1
r
e−kr and it is a nonsense to consider

long-range interactions. What we will do is to consider the neighbourhood where

the kinesin can be affected by electrostatic potentials. This system will consist in

one protofilament in which the motor walks and the two first neighbours. Later

we will show why it is not necessary to consider the interactions beyond the first

neighbour. In any case, new concepts like the shift between protofilaments will

appear. Others, like the curvature of the microtubule, have not been considered

to be relevant.

The main difference between an electrostatic system in 2D and 3D is that we

have to consider the lateral electric fields. To take this into account, we have to

expand the microtubule lattice in a lateral coordinate. It is well know that while

the axial periodicity of the tubulin is 8nm, the lateral is about 5-6nm. In Fig.
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9.19 we show this schematically. Then, a crucial new question appears. If the

Figure 9.19: Scheme of the microtubule lattice showing the two different mod-
ellings. In a) we see the scheme for the β model, whereas in b) we have the scheme
for the αβ model.

characteristic distance along a protofilament is bigger than the lateral distance,

won’t be the lateral electric field stronger than the axial? One can see that the

motor will rise when the free head is negative, but after the charge switching, will

not fall to the adjacent protofilament? The answer is that, with the β−model

of tubulin, yes. If we coarse-grain the full charge of the tubulin single points

separated by 8nm, the lateral forces will dominate and the motor can no be

faithfull to a single protofilament (in fact, it cannot even perform steps). This is

the reason why we have to abandon the β−model of tubulin and concentrate in

a more realistic one, the αβ−model. If one makes this, the resulting lattice is the

one shown in Fig.9.19 (b).

In this new case we see how now the axial characteristic distance is of 4nm

while the lateral distance remains above 5 nm. In fact, there is no surprise. The fi-

delity that kinesin show to protofilaments is so clear that is not difficult to accept

that along this protofilaments the electric field is stronger than in other directions.

In Ref.[6] it is reported that kinesin walks parallel to the protofilaments not
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only in the standard microtubule lattice, but also in other variants where the

protofilaments are not parallel to the symmetry axis of the microtubule. These

different lattices show different shifts between protofilaments, from 0.9 nm (in

the standard lattice) up to 6 nm. This fact shows that the shift is a factor that

does not affect the fidelity to a single protofilament. Moreover, we believe that

the shift favours this fidelity because it increases the distance between to lateral

tubulin sites and consequently reduces the strength of the lateral electric field in

the rising or parked configuration.

In Ref.[59] it is reported that decorating tubulin sheets with kinesins, most

of them attach parallel to the protofilaments, i.e. with both heads in the same

protofilament. The same experiment reveals that heads always attach to the β-

subunits of tubulin, although other references state that both α and β subunits

have the same net charge (∼ −25e). One possible explanation for these evidences

could be that the polarization of the α−subunit is smaller, as it has been reported

in Ref.[60]. In the context of our tubulin models, it would mean that dα and αα

are smaller than dβ and αβ , respectively. These values will decrease significantly

the negativity of the effective α−subunit and then the reason of why the heads

don’t attach them becomes clear.

As we have already mentioned, the tubulin also exhibits a certain lateral

polarization, i.e. perpendicular to the protofilaments and to the radius of the mi-

crotubule. We think that this fact is not relevant for the directionality, although

it maybe explains some experimental facts. For example, in Ref. [59] the deco-

rated tubulin sheets showed that the attached motor head had more probability

to be shifted to the left (if the plus end is up). This would be explained by a

3D model of tubulin where the lateral polarization would be considered. Further-

more, in Refs [36, 7] asymmetric lateral properties were reported in the response

to a lateral external load and in the dwell times, respectively. Maybe the lateral

polarization has the key for the explanation of these properties.

Which value of γ shall we use in the 3D model? As we saw in previous sec-

tions, only angles greater than ∼ 173o where effective to produce directed motion.

However, two important restrictions have to be made. First, recall than in 3D γ
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is always smaller or equal to 180o because of the localization of the stalk and the

external force that is transmitted through it. (See Ref.[67]). Then, we only have

a valid domain of γ ∈ (175, 180)o. On the other hand, one has to consider that

the directionality is decided in the parked state. In this situation, the negativity

of the free head strains the motor away from microtubule’s surface. This allows

us to consider that γ = 180o is the best choice. We will take this angle for the

whole movement although we suppose that in other phases of the step its value

can change. However, these supposed changes are not relevant. Any flexibility in

the raising or in the falling will produce a step in the same direction because

only the parked state decides if the step has to be produced to the plus or the

minus end. Consequently, we take the most simple assumption: that the angle γ

is always 180o and that the neck does not permit significant compliance. These

assumptions also simplify very much the numerical simulations.

As we are now considering a 3D system, we have to add an equation of motion

to our simulations, so now the microtubule-induced kinesin interaction potential

is given by

V (~ri) =
−1

4πǫ0ǫr(1 + ka)

N
∑

j=1

qiqj

|~ri − ~rj|
ek(a−|~ri−~rj |), (9.13)

where ~ri is the position vector labeling the charges on kinesin (i = 1, 2, 3), while

~rj is the location of the N microtubule charges qj on the α and β subunits. k

is again the inverse of the Debye length, which we take around ∼ 3.5nm, and

a ∼ 1nm is the excluding volume radius as described in Ref. [64]. A regime with

a greater a and lower Debye length lD is also operative. We considered a flat

microtubule with five protofilaments; due to the rapid decay of the force out

from protein volumes, we include in total the N = 10 closest tubulin charges to

kinesin, 5 from the surface and the other corresponding 5 partners below. For the

simplest case when neck and head charges are aligned we have γ = π and the

protein reduces to a triply charged rigid rod. As a result the polar angle θ and

the azimuthal angle φ are sufficient for describing the motor rotation, leading to

the following overdamped equations of motion for kinesin:

λθ̇ = − 1

L

dV (~r)

dθ
+ ξθ(t) (9.14)
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and

λφ̇ = − 1

L

dV (~r)

dφ
+ ξφ(t) (9.15)

where λ is the drag coefficient, L the head-to-head distance and V (~r) the total

microtubule electrostatic potential of Eq. (9.13) at the Cartesian location ~r. The

environment is simulated through the thermal forces ξθ(t) and ξφ. For each we

have 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2λkBTδ(t − t′). In order to integrate Eqns.

(9.14, 9.15) we need to perform at each instant of time the Cartesian-to-polar

transformation θ = θ(~r, L). For the rotation we consider the attached head to

coincide with the origin of the coordinate system; the latter is shifted by 8nm

each time a step is completed. The simple Larmor-like rotation of the protein for

γ = π becomes a more complex rigid body rotation for γ < π.

9.6 Summary

What is the physical mechanism of the kinesin, then? We have seen how there are

a lot of geometrical and physical properties in the system microtubule-motor and

we have analyzed them step by step. In this paragraph, we can summarize the

keys of the mechanism. First, it is clear that the microtubule has a broken sym-

metry along the axis of motion. This fact allows directional transport, although

the specific direction is determined by the aminoacidic polarity of the stalk or

other electrostatic properties of the neck. Considering γ ∼ 180o we consider the

3D motor walking in a similar fashion than the central charge model. The reason

is that the electric field along the axis of symmetry is stronger than in lateral

directions. Differences in left-right lateral electric fields due to the shift between

protofilaments and to lateral tubulin polarization can induce asymmetric steps,

but don’t modify directionality.

For some years, a long discussion about the stepping way of kinesin was produced.

The main candidates were the inchworm mechanism, the symmetric hand-over-

hand and the asymmetric hand-over-hand. Ref.[7] seemed to clarify that the last

choice was the correct, although here we can make some comments about it. In

our calculations, the mechanism of the kinesin results to be hand-over-hand but

neither symmetric nor asymmetric because the motor rises vertically, i.e. without

any rotation with respect to the axis defined by the vector which is perpendicular

to the MT surface. However, in reality the stalk will disturb a perfectly vertical
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rising and will force the motor to slightly turn left or right to allow the stalk to

rotate and be oriented back, i.e. pulling the cargo. One can think then of the

alternation left-right in such a rotation. We call B to a clockwise rotation and

C to the counter-clockwise rotation. A perfectly asymmetric mechanism predict

the pattern BCBCBC. . . while the symmetric one predicts BBBBBB. . . or CCC-

CCC. . .Most probably, it is the torsional stiffness of the stalk the responsible of

the asymmetric stepping. After one step, the elastic restoring force will help the

next step to be rotated by the opposite side. However, in Ref. [68] this stiffness

is reported to be very low, so several things can be said about it. First of all,

this stiffness may be reduced with decreasing lengths in the stalk, in such a way

that this left-right compensation would be more significant for short stalks. If

the stalk is long enough, kinesins don’t seem to limp, and then one cannot sup-

pose that the motion is strictly asymmetric. For example, one could observe the

pattern BBBCCCBBBCCC. . . if the stiffness is so low that until three turns the

elastic force is not significant. On the other hand, the thermal fluctuations would

disorder any regular pattern. We conclude that for long stalks, the mechanism

could be a mixture between symmetric and asymmetric hand-over-hand, although

globally, the number of left and right events may be equal. For short stalks, the

asymmetric hand-over-hand would dominate, but not necessarily in a regular way

like BCBCBC. . .Once that the torsion spring is relaxed, the new event is proba-

bly decided by chance, so we could have BCCBCBBCCBBCBC. . .Of course, the

shift between the microtubules and the lateral polarization of the tubulin could

make this patterns more regular. For example, it is reasonable to suppose that if

the stalk is relaxed, the preferential side will be the one with the lateral tubulin

site shifted forward. In the case of the standard microtubule lattice, the shift is

about 1nm in the left protofilament and -1nm in the right. Most probably, in the

absence of torsional forces, the kinesin would prefer to turn to the left because is

the lowest potential way.

In Figs. 9.20 and 9.21 we show our simulations for the 3D mechanism from dif-

ferent views. In Fig. 9.22 we have plot the three-dimensional potentials.
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Figure 9.20: 3D aerial sight of plus-ended kinesin simulations. The motor is in a)
Parked state with head 2 tethered and negative, and head 1 attached and positive.
In b) head 2 (positive) starts to fall, and in c) the attached head 1 detaches and
becomes negative, performing the power stroke. The transition from a) to b)
shows explicitly the sliding of head 1 to its next tubulin binding site.

Figure 9.21: As in the previous figure, we show the three stages of the step from
a lateral sight. In a) we see the parked state. In b) the falling regime with the
parked state shown with transparency. State c) is for the rising regime, with a
transparent representation of the previous state.
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Figure 9.22: 3D microtubule potentials in the case of the α−model of tubulin.
These images illustrate the existence of binding sites arranged as in Figure 9.5

9.7 Mechano-chemical considerations

In kinesin motors, chemistry and mechanics are mutually connected in such a way

that it is difficult to understand one without the other. In the previous chapters

we have paid more attention to the physical part, maybe the most unknown until

now. Now we will connect these mechanisms with the chemical paths that are

involved in kinesin’s cycle. As we explained in several chapters of this thesis, the

essential chemistry of the kinesin is governed by ATP hydrolysis. Despite the

simplicity of such a reaction, it is important to remark the different conditions in

which every chemical state can act and the rates that depend on them.

Chemical pathways In Ref. [61] we can see an excellent chemical scheme that

we reproduce also in Fig.9.23. We can see how in the absence of ATP, the head

attaches strongly to the microtubule. However, when an ATP attaches the head,

this head is still strongly bound to the microtubule. It is interesting to say that

in myosin motors, when the ATP attaches, the head unbinds immediately from

the tubulin. Of course, it is the negative charge of the ATP the responsible of

detaching, but in the case of kinesin-tubulin systems, the way is more complex.

From the Fig.9.23 we can see that after ATP binding, there is a cascade of rapid

reactions that drives the system to unbind the head. First, there is a conforma-
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Figure 9.23: Chemical pathways of kinesin. Figure extracted from Ref.[61]
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tional change that is supposed to close the ATP binding pocket. After this, the

hydrolysis of ATP is produced. The energy to close the binding pocket should

be taken from the ATP hydrolysis, so maybe the closing process and the hydrol-

ysis run parallel. Later, the γ-phosphate group from ATP is released from the

head, marking the crucial moment of microtubule detaching. In this moment, the

binding pocket is supposed to close even stronger. If we consider the rates of the

process we have that after ATP binding there are five rapid reactions with rates

700, 250, 250, 600 and 600 s−1 respectively, while the inverse reactions are clearly

less probable. In next chapter we will provide a detailed explanation for this.

Rates In the already mentioned Fig.[61], there are 30 rates to be given, but only

five are measured experimentally and 13 are estimations based on simulations.

What does this mean is that any proposed model where the chemical and physical

times are in competition is necessary speculative. More precise data about these

rates is required. Specially in the fast cascade of microtubule detaching and in

the detached states. For example, the rate at which the ADP is released from a

detached head is thought to be fundamental in our workframe. However, there

are more pathways to consider the full chemical cycle. Specifically, one of the

most important aspects is to consider the rates in one head as a function of the

chemical state of the other head. The scheme in Fig.9.23 is admirable, but it does

not consider yet the mutual influence between the two heads. For example, we

think that the ADP in the free head is strongly attached until an ATP attaches

to the other head. In our opinion, the ADP has to unbind the binding pocket

just to begin the step, and not after as other models propose (Ref.[69, 61]). Only

ADP release before the step can convert the head’s charge into positive and then

to be attracted by the microtubule.

Physical and chemical velocities There are two different types of velocities

in kinesin: physical and chemical. Looking at a position-time trajectory as the

one in Ref. [9] we will rapidly notice that there are two very different slopes in

the graph. One of these slopes is zero on average because it corresponds to the

waiting time in the parked state and consequently the motor only experiments

fluctuating displacements with zero mean. The other slope seems to be infinite

and corresponds to the physical step. Although it is not infinite indeed, the time

of the step is very small compared with the typical dwell times at low ATP con-
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centration (which is the case in the plotted trajectories because the authors want

to show the steps clearly). Only very recent techniques can show trajectories with

greater (microsecond) resolution, see Refs. [70, 40]. While the physical velocity

is about 10000nm/s, the global or chemical velocity never reaches the 1000nm/s.

Furthermore, an [ATP] reduction or F increase implies the reduction of the global

velocity but it has not been shown the same in the case of the physical velocity.

Intuitively, we can speculate that under an external force, the physical velocity

will decrease until the direction is reversed at superstall loads. However, under

[ATP] reduction, the physical velocity is probably the same.

The difference in time scales is the reason why the kinetic models, like Ref.[43]

have been successful fitting the experimental data. Furthermore, mechanical de-

tails rely on a temporal an spatial scale that are not easily accessible yet.

Mechanical substeps In Refs. [70, 40] the authors have studied the possibility

of having substeps, i.e. to observe a tiny dwell time at some intermediate point of

the step. Ref. [70] reports that there is one substep at x ≃ 4 nm when they pull

with a F = 3pN . Ref.[40] reports that there are not substeps longer than 30µs

under pulling loads of about F = 5pN . Several things can be said about this.

First, that in the experiment where the authors find substeps the optical laser is

focused diagonally. The optical trapping techniques may be affecting the system

when studying a protein that behaves electrostatically. The laser beam produces

an intense electric field that could modify the polar properties of the motor and

the tubulin. Second, in the reference where the authors state that they don’t find

substeps, they show a figure (shown here as Fig.9.16) where there are indeed two

well separated processes forward step.

What is clear about substeps in the context of our model is that there are two

different physical regimes in one step: the falling and the rising (and we suppose

the sliding regime as overlapped into these two). The consecutivity in time be-

tween them depend on the coordination of ATP hydrolysis in one head and ADP

release in the other. We have also reported that these two processes have different

rates and that this can be related with processivity. In fact, a clearer definition

of substep has to be done. One can say that a substep is a step divided by a

certain dwell time between the main step. In this sense, when the experimental
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resolution will be high enough, they will find this waiting time (maybe Ref.[70] is

already an good example of this, although maybe they have found an artifact).

However, if what is wanted is to see that there are two different subprocesses in

the step, then one has to be sure that there are indeed. The considerations made

in the central charge model are a clear evidence of this.

Processivity Substep and processivity concepts are indeed very related. If

there is no substep, processivity cannot be achieved. After ATP binding in the

attached head there is a competition between this head trying to detach from

tubulin (process A) and the other head releasing ADP and falling to the next

tubulin (process B). What can happen in a competition? That any of the pro-

cesses win or that they equal. . . If process A is slower than B, the full motor

detaches from microtubule and the motor loses the processivity. If A is faster,

then, there will be a time between ADP falling and process B where both heads

will be attached to the microtubule. This time will be interpreted as a substep.

In the case of a processive motor without substep, the difference in time between

the two process has to be zero, or at least smaller than the temporal resolution

of the experiment. Fig. 9.24 illustrates what has been said in this paragraph.

Trajectories In this last section we would like to show different perspectives

of the trajectories traced by our 3D model. First of all, in Fig.9.24 we see the

properties of two steps with micrometer resolution. The continuous line has a

substep that is longer. Normally, in processive motors we will expect small sub-

steps. Recall that the longer the substep, the less the probability of losing the

processivity. The falling and rising regimes are differentiated, and also a very fast

process of sliding. This corresponds to the moment at which the attached head

detaches and allows the other to travel until the next binding site. Furthermore,

in Fig.9.25 we plot a step in a millisecond scale, just to see how our model predicts

the measured behaviour.

However, these trajectories, obtained with the polarization values from [63],

do not seem to agree quantitatively with the averaged µs trajectories shown in

Fig.9.16, where it seems to be an intermediate state located at a ∼ 15% of the

step displacement. If the first part of the curve corresponds to the falling regime

and the second part to the rising regime, then the values of our parameters should

be tuned in order to agree with this asymmetry between falling and rising, which
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Figure 9.24: Details of two different steps. We follow the position of the central
charge. The one with dashed line has a shorter substep. Note the microscale time
of the processes.
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Figure 9.25: Trajectory of the central charge with millisecond resolution



9. MECHANICS OF KINESIN STEP EXPLAINED BY ELECTROSTATIC
INTERACTIONS 214

is tightly related with θeq, the angle of the motor at the parking state. There

are two main quantities that modify the angle of the parked state. First, it is

better to increase the polarization angle until ω ≃ 20o, but strongest angles

don’t affect very much the output. It is the increasing of the neck charge what

makes the difference. In order to reach a strongly tilted parked state we need to

change the neck charge to 4e. Then, we can obtain trajectories more similar to

the experimental data shown in Fig.9.16. We show in Fig.9.26 an example. We

can see how the falling regime produces only a small fraction of the step. After

such displacement, an arbitrary (i.e. not known) time (we use 10−4 s) is waited

until the rising of the attached head begins. Then, we can see how there is a

complex rising curve that covers most of the 8 nm-step.
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Figure 9.26: Simulated deterministic trajectory of a step for a neck charge of 4e
and a polarization angle ω = 20o. a) The step begins with the falling regime,
which drives a displacement of about 1 nm. The time between b) and c) is added
by hand (10−4 s), since it is not known how long does the motor waits with both
heads attached to the MT. After c), the rising begins until e), where the step is
completed. In d) we see a singular point which is an artifact of the simulation.
At every point, there is a criterion for which neighboring charges interact with
the charges of the motor. At this point d), the neighboring sites change and
the interactions are slightly modified, not affecting the qualitative behaviour.
Such a singularity would be avoided by considering Debye screening, which is not
included here.
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9.8 Conclusions

In this section we have developed the idea that the kinesin acts as an electrostatic

motor and showed how the results are in good agreement with the experimen-

tal features, even the most recent ones. To achieve a global understanding of its

physical mechanisms, we have built a series of models of increasing complexity.

The main external input of this work comes from the numerical simulations made

with the tubulin structure [63, 58]. The calculated polarization vector showed an

axial asymmetry along the axis of the microtubule, fact that motivated us to

perform these new calculations.

In the first part of this work, we presented two 2D models for tubulin. The first,

the β−model, allowed us to deal with the majority of the motor models presented

here, although at the end the αβ model was required to have an axial electric

field that should be stronger than the lateral one.

We have taken into account the electrostatics of the ATP molecule and showed

that the charges involved in its hydrolysis are enough to justify microtubule’s

binding and detaching. Later, we introduced our most simple models for the ki-

nesin motors. We saw how the switching charges in the head allow an stepping

behaviour. A simple rigid dimer with charges at the ends was not enough to

produce directed motion, but some elasticity in the effective radius of the motor

allowed the system to step. We also saw how the specific changes in length de-

termined the directionality of the motor. Only with this very reduced scheme we

reproduce some principal features of kinesin.

The next qualitative jump in the way to a realistic model was to take into ac-

count the polarity of the stalk, leading to a central charge that depended on the

aminoacidic polarity of the α-coiled coil. This charge results to be the essential

factor for the directionality, because of its interaction with the positive region un-

der the microtubule’s surface. We showed by changing only the sign of this charge

that the direction of motion is reversed, in agreement with the experimental re-

sults in real motors. Later, a discussion about the elasticity and the geometry

defined by the γ−angle is made, arriving to the conclusion that this angle has

to be near to 180 when the motor is on the parked position. The neck linkers

shouldn’t be so flexible because then the power of the central charge cannot be
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easily transmitted to the free head.

Finally, a 3D dimensional model is presented with a high similarity to the central

charge model. We justified the fidelity to protofilaments with electric field argu-

ments and typical distances of the microtubule lattice.

As a general conclusion, we can say that the electric polarity of the tubulin

protein allows the directed motion, while the polarity of the stalk or other elec-

trostatic properties of the neck give the specific directionality. The role of ATP

is not to induce global conformational changes but local ones, changing the sign

of the head’s charge and allowing the repelled ADP to bring the motor with it.

Of course, some further improvements are needed, like to explain the high value

of the stall force, maybe due to higher polarization in tubulin.

After a long time of many models, diverse speculation and frequently controversial

experiments, we think that this work gives a general understanding of many of the

crucial keys in kinesin motion. It also gives a new perspective to deal with other

motors that may share similar properties. There is no surprise in our conclusions.

At the molecular scale, the electrostatic forces are of the crucial importance, spe-

cially if the structures involved are known to be highly charged. The succession of

attractions and repulsions, the combination of switching and constant potentials,

the opening and closing of the binding pockets and the electrostatic structure of

the microtubule have provided us the clue of how the chemical energy is converted

into mechanical work in kinesin-1. The most relevant results of this section are

published in [71].
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An analysis of the nucleotide-dependent

conformations of kinesin

10.1 Introduction

In order to understand how kinesin walks along microtubules it is essential to

clarify how each of the heavy chain domains interact with tubulin heterodimers

depending on the nucleotide state of the enzyme. Very recently [55, 56] new sets of

experiments have been performed with kinesin-1 in order to shed some light to this

interaction. Even though these references don’t exactly agree between each other

concerning the relative position of the tethered head with respect to the attached

heavy domain, they both give some pieces to complete the ATP-head-tubulin puz-

zle. Our previous work on the electrostatic interactions on kinesin-microtubule

systems [71] dealt with medium range forces that are based on Coulomb poten-

tials and Debye screening effects. However, the nucleotide-dependent charge of

each head was not modelled. The so called question of how the chemical energy is

converted into mechanical work was reduced to the question of how the chemical

hydrolysis manages to carry with itself the head domain when repelled from the

microtubule. Furthermore, even though the role of the γ-phosphate group was

known to be crucial in the process of head detaching [61], it was not clear how Pi

could have such a regulating task. In this section we will give some new insight on

the mechano-chemical energy conversion clarifying how the role of the phosphate

217
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group is essential to the whole cycle.

In Ref.[56] some stationary situations between the head domains and the

microtubule have been characterized with the FRET (Fluorescence Resonance

Electron Transfer) technique. The main scenarios can be summarized as follows:

in the presence of no nucleotide, both heads of the dimer are mainly attached to

the microtubule. If we add AMP-PNP, a non-hydrolyzable analogue of ATP, we

can see a similar situation, i.e. both heads are attached, but the distributions are

less broad, i.e. the bindings are more tight. If we prepare a system where only

ADP is available, then there are two mainly stable configurations: the heads that

are attached to tubulin have no nucleotide in the pocket, while heads that are

tethered but relatively faraway from the microtubule have ADP in their pockets.

Furthermore, if we add Pi in a quantity that [Pi]/[ADP ] ∼ 5 · 104 we can still

see how the motor is mainly attached with a single head but a two-bound-state

appears with a relatively small frequency.

Given this experimental information we will try now to complete our previous

analysis of kinesin motion by modelling the interaction between four objects: a

tubulin dimer (T ), a kinesin’s head (H) domain, an ADP and a Pi (P ) group.

Our main goal will be to describe the experimentally observed states of T −H as

a function of the state of ADP and P . We will introduce effective interactions be-

tween these four elements sheding some light into the question of how the stored

energy in ATP is able to produce the necessary head detachment. In fact, it will

be shown that the role of the phosphate Pi is pivotal in understanding the whole

mechano-chemical cycle of kinesin. Specifically, it is the ability of Pi (which is

negatively charged) of confining itself near also negatively charged structures like

the ADP or the tubulin dimer at small distances what allows ATP energy storing,

delayed head detachment and other phenomena that we will see on next sections.

On the other hand, the other main assumption is based on the catalytic activities

of the enzyme.

It is commonly accepted that an enzyme is able to lower the activation bar-

rier of the ATP allowing the hydrolysis to occur with a huge increase in rate. We

will incorporate this effect in our modelling in a more detailed way. Specifically,
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we consider that the activation barrier, given by a gaussian potential term, is

transferred from the ADP-P interaction to the interaction between the ADP and

the head domain. In other words, when the ATP binds the pocket, the phos-

phate group and the ADP will not be confined anymore and thus they will repell

to each other, while the confinement is transferred to the head, so the ADP is

trapped into the head. In other words, the activation barrier of the ATP molecule

is converted into a closing of the pocket. Additionally, we will consider that such

a barrier transference produces the opposite effect on the other-tethered head,

which causes the opening of the pocket and the subsequent ADP release.

First we will model the interactions between the four objects of the system.

Then we will show the results, beginning by the simulation of the situations

that have been performed in [56] and finally extrapolating the model to an ATP

hydrolysis, which is a situation that is not trivial to measure in an experiment.

10.2 Modelling the interactions

In this section we will introduce analytical expression for effective potentials and

subsequent forces between the six pairs formed by T, H, ADP and P . Most of

them are essentially Coulomb potentials with a screening exponential correction

due to the ionic environment. However, there are other interactions that, even

though we have tried to write them in the most simple form, there are no available

standard descriptions of them, as far as we know. The main goal is to describe

the phenomenology involved in nucleotide-dependent kinesin-MT interactions,

but some of the specific quantities presented here, even if they are reasonable,

are introduced without experimental support. Specifically, it is the confinement

effect of ADP into H , P into ADP and P into T what is not included in the

Coulomb-Debye terms, so then we will make use of gaussian terms in order to

model confinement barriers and wells.

Tubulin-Head (T-H) interaction

The interaction of a tubulin dimer with a kinesin’s head is modelled by consider-

ing that the tubulin T is simply a charge Qt with an excluding volume radius Rt.

It interacts electrostatically with the head, with is also modelled as a charge Qh
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with radius Rh. We know from [63, 58] that a tubulin subunit can have about −27

electronic charges, but we will use −35e as in [72]. For the kinesin head we will

use Qh = 0.5. The reason to consider the head as an effective positively charged

structure is to be able to explain the affinity of free heads for the microtubule.

The specific value of +1/2e is based on the fact that we want a MgADP , which

has −e, to be able to invert the sign of the head. So, if we choose these values, a

head with MgADP (we will omit the Mg for simplicity) will have charge −1/2e

and with ATP the total charge will be −3/2e.

The Coulomb interaction with a screening correction can be written as

V (rij) =
kQiQj

ǫrr
e−rij/λD , (10.1)

where k ≃ 230pNnm2/e2, ǫr ≃ 80 and λD ∼ 1nm are 1/(4πǫ0), the relative per-

mittivity and the Debye length, respectively (all in [nm− pN − s] units system).

The only missing ingredient is a contact repulsion in order not to allow H to pen-

etrate T . This repulsion is incorporated through a Van der Waals term inversely

proportional to x12
h . We write xh for the position of the head, which is bound

between the interval [0, L] and L = 8nm. We fix the position of the tubulin at

xt = 0 and we suppose its motion is negligible compared to the motion of the

head. Then, we can write for the whole potential

V[t,h](xh) =
kQtQh

ǫr
e−xh/λD(

1

xh
− (Rt + Rh)

11

12x12
h

). (10.2)

This potential accomplishes the fact that the head has significant affinity

for the microtubule when free from any nucleotide. We can see the plot of the

potential in Figure 10.1.

Tubulin-ADP (T-ADP) interaction

The ADP molecule is again a charged object but now with charge Qadp = −1e

and radius Radp. Except from these two differences, the T − ADP potential is

the same as the T − H potential. But now the ADP, being negative, will be

repelled away from the microtubule and only thermal noise will be able to force
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Figure 10.1: Potential between the head and the tubulin along a one-dimensional
coordinate system. We can see how the head is mainly attracted to the micro-
tubule due to its positive charge, even though it cannot penetrate it beyond
Rt +Rh. In this potential, Debye screening predominates at long distances, while
Van der Waals repulsion dominates at short distances.

an approach. The ADP particle, as all of them except the tubulin, can swim

along the one-dimensional path between xadp = 0 and xadp = L. At xadp = L

there is a reflecting barrier, for the ADP as well as for P and H. In the P and

ADP cases, such a barrier is a way of introducing the concentration of these

molecules. Specifically, the closest the barrier to the microtubule, the greatest

the effective concentration. The existence of a reflecting barrier for H is simply a

way of consider the tethering of the head by the rest of kinesin structure. Since

in this model we are not considering dimeric-structural properties, we don’t want

the head to diffuse more than ∼ 8nm away from the microtubule. Thus we can

write

V[t,adp](xadp) =
kQtQadp

ǫr
e−xadp/λD(

1

xadp
+

(Rt + Radp)
11

12x12
adp

). (10.3)

With such a potential, as it can be seen in Figure 10.2, only thermal fluctuations

allow the ADP to explore the vicinity of tubulin.

Tubulin-Phosphate (T-P) interaction

We know that when two charges are sufficiently closed, other effects apart from

the Coulomb interaction appear. In fact, all the chemical types of bonding are
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Figure 10.2: Interaction potential between the ADP molecule and the microtubule
along the coordinate that defines the position of ADP, xadp. Such an interaction
is always repulsive, but the existence of a reflecting barrier at xadp = L, due to
a finite ADP concentration, allows the ADP to approach the tubulin helped by
thermal fluctuations.
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based on this highly nontrivial electrodynamics. The structure of the effective

potential between the microtubule and the phosphate group is more subtle than

the T-ADP potential. At medium and long distances, we can consider the same

Coulomb-Debye potential as in the two previous cases. However, when P will

explore, due to thermal noise, the region close to the tubulin, it will be able to

bind it due to a well in the potential. With such a profile, the phosphate can

eventually bind the microtubule in a higher energy configuration for a reasonably

long time. We model this confinement effect through the addition of a gaussian

potential to the Coulomb-Debye profile. The gaussian is centered at xp = Rp, has

a height E[t,p] and a standard deviation σ such that 1
2σ

= A[t,p]. We can write the

potential as

V[t,p](xp) =
kQtQp

ǫrxp

e−xp/λD −E[t,p]e
−A[t,p](xp−Rp)2 . (10.4)

This potential, plotted in Figure 10.3, even though is partially phenomenological,

achieves the interesting property that allows the Pi confinement. Such a confine-

ment is an hypothesis that is part of our model, but it allows to understand the

stability of the AMP-PNP states of kinesin when attached to the microtubule

and also prevents the ATP to be repelled from the microtubule before the hy-

drolysis process. Furthermore, the appearance of a relatively low-frequent state

of two-bound-heads kinesin in ADP solution with high [P ] can also be explained

with the confinement of P in T. However, such an hypothesis implies the fact

that every tubulin site (at high [P ]) may be occupied by a phosphate group. This

phenomenon could be tested experimentally by labelling phosphates with isotopic

techniques, and maybe it is this effect what determines the preference of kinesin

to walk above the beta subunits of the protofilament. What is necessary then is

that the binding of a new ATP in the attached head could be able to expel the

phosphate that could be confined in the same tubulin site.

Head-Phosphate (H-P) interaction

We will simply consider that the phosphate group does not interact with the

head. At first sight, it may seems counter-intuitive, but it’s perfectly reasonable.

Nevertheless, there is a strong connection between the head and P , but this
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Figure 10.3: Potential between the phosphate Pi and the microtubule, T , as a
function of P’s position, xp. We can notice how this potential is very similar to
V[t,adp] except at very short distances (Rt+Rp), where a confinement phenomenon
appears. Our hypothesis is that the phosphate group is able to strongly bind
the microtubule. This hypothesis can explain the affinity of AMP-PNP state of
kinesin to the microtubule, and also the appearance of a low but finite frequency
state of kinesin with two heads bound in the presence of free ADP and a big
concentration of P [56]. But such an hypothesis suggests that every tubulin site,
at high [P ], may be occupied by a phosphate group.

connection has the ADP molecule as mediator. Thus we write

V[h,p] = 0 F[h,p] = 0. (10.5)

Head-ADP (H-ADP) and Phosphate-ADP (P-ADP) inter-

actions: enzymatic barrier transfer and coordination be-

tween the two heads

The interactions of ADP with H and P constitute the main core of the model

concerning enzymatic activity. It is known that enzymes are able to reduce the

height of the activation barrier of the substrate facilitating the formation of the

product. As we are modelling the interaction between ADP and P we need to

consider such an effect. But there are evidences [61] that kinesin not only lowers

the ATP activation barrier but also is able to close the nucleotide pocket upon

ATP hydrolysis. Thus it is reasonable to suppose that the activation barrier is

transferred from the ADP · P complex to the ADP · H system. We model this
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barrier term as,

EA = EΓe−EΓ(r−RΓ)2 , (10.6)

where the distance r can be either r[h,adp] or r[p,adp], depending on whether the

enzyme is in a state Γ = 1 or Γ = 0. In fact, the Γ = 0 state corresponds to the

ATP molecule in a stable conformation and the nucleotide pocket in an opened

configuration, while Γ = 1 corresponds to an unstable ATP and a confined

H −ADP state (the ADP trapped into the closed pocket). We can write

V[h,adp](r[h,adp]) = ΓEΓe−aΓ(r[h,adp]−RΓ)2+

+
kQhQadp

ǫr
e−r[h,adp]/λD(

1

r[h,adp]

− (Rh + Radp)
11

12r12
[h,adp]

) (10.7)

and

V[p,adp](r[p,adp]) = (1− Γ)EΓe−AΓ(r[p,adp]−RΓ)2 +
kQpQadpr[p,adp]

ǫr
e−r[p,adp]/λD , (10.8)

where we have added to each case the Coulomb-Debye contribution, with short-

range repulsion in the H −ADP case.

In this context, the activity of the enzyme is to change the value of Γ, which

we will consider as an instantaneous switch between Γ ∈ [0, Γmax]. We will discuss

later which value of Γmax is more appropriate in order to agree with experimental

data. Furthermore, the Γ parameter is involved in the coordination between the

two heads of kinesin. What is accepted is that ATP binding at the attached head

promotes ADP release on the tethered head, but it is not known how both heads

communicate, even though some mechanisms are proposed. First, a mechanical

strain model in which ATP binding on the attached head induces a strain in the

other head, but such a mechanism is ruled out since ATP gating is also observed

with unpolymerized tubulin [55]. On the other hand, extra electrostatic repulsion

due to the presence of ATP in the attached may help to ADP release [73] but it

is not clear yet how this interaction can be channeled along 8nm without being

completely screened. We will consider here the following assumption: let Γ1, Γ2

be the states in heads 1 and 2, respectively. Then, the states must always hold

Γ1 + Γ2 = 2 − Γmax, which implies that if one of the heads changes its state

the other head changes it automatically. Such an entanglement, which could be



10. AN ANALYSIS OF THE NUCLEOTIDE-DEPENDENT
CONFORMATIONS OF KINESIN 226

due to quantum effects, allows the two-head coordination, which is necessary

for a processive hand-over-hand motion. The role of Γ is quite similar to the

commutators of brushed DC electric motors.

In Figure 10.4 we can see plots of V[p,adp] and V[h,adp], at both Γ = 0 (solid line)

and Γ = Γmax (dashed line). We can explicitly see the transfer of the activation

barrier from V[p,adp] to V[h,adp] when Γ : 0 → Γmax and from V[h,adp] to V[p,adp]

when Γ : Γmax → 0. In our model we are considering that the height of the

protection barrier is ∼ 150pNnm, but as it represents the activation barrier of

an ATP molecule it should be much higher. We are considering here a lower

value for the sake of simplicity, as it does not significantly change the scenario

in a qualitative way. However, a more realistic situation would require a much

higher barrier, in order to obtain an approximately one-week-stable ATP [41].The

mechanism of the barrier transfer is the following: When the ATP enters into the

kinesin pocket, which in fact means that the ADP enters into the pocket and

what is more important, the phosphate group is confined in the microtubule, the

barrier is transferred to the interaction between the head and the ADP. Then, the

repulsion between P and ADP without a high protection barrier helps the ADP

expulsion away from the microtubule, but as now the head is confined with ADP,

both ADP and H are expelled from the microtubule surface, which is the rising

process of the trailing head described in [71]. When this head reaches the parked

state and an ATP binds the attached head and it changes it barrier-Γ state, the

tethered head changes its Γ-state as well in the reverse order and then ADP is

easily released from the pocket, which causes the head to be attracted again by

the microtubule, but this time to the next tubulin site. It is in Ref. [71] where the

role of the neck in producing directional motion is discussed, while here we are

focusing on how the substeps of the whole cycle are sequenced as the nucleotide

states changes in each of the heads.

Furthermore, this approach allows us to model the experimental situation

where we substitute ATP by the non-hydrolyzable analogue AMP-PNP. We will

consider that the AMP-PNP simply does not activate the switch in Γ values, so

we will see how the head domain remains stably bound to the microtubule thanks

to the confinement of the phosphate, which in AMP-PNP is supposed to be able

to bind the microtubule as in the ATP case. Numerical details and parameters

of the model are shown in Table 10.1.
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Figure 10.4: Interaction potentials of ADP with P (upper figure) and with H
(lower figure). Each potential is plotted for Γ = 0 (solid line) and Γ = Γmax

(dashed line). a) V[p,adp] versus r[p,adp], which is the distance between P and ADP .
We can see how P and ADP can be confined at close distances (≤ 0.25nm) at
a energy of ∼ 50pNnm, which is the enthalpic value for the ATP hydrolysis.
When they are mutually confined at this state we can say we have an ATP
molecule. We can see, nevertheless, that when Γ = Γmax, which here is 0.75,
the protection barrier is strongly reduced, allowing a fast hydrolysis inside the
enzymatic cavity. b) V [h, adp] versus r[h,adp]. When Γ = 0 the head and the
ADP are electrostatically attracted, and ADP can bind the catalytic pocket,
even though the average time of residence inside this cavity is low, specially if
the head is bound to the microtubule. However, when Γ = Γmax the protection
barrier is transferred from V[p,adp] to V[h,adp], and then, after ATP hydrolysis the
ADP remains inside the pocket until Γ returns to a zero value promoting ADP
release.
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Parameter Value Units
ǫr 80 dimensionless
λD 1 nm
k 230 pNnm2/e2

Qp = Qadp −1 e
Qt −35 e
Qh −1/2 e
L 8 nm
kBT 4.1 pNnm
∆t λp10−7 s
Rstokes

p 0.05 nm

Rstokes
adp 0.20 nm

Rstokes
h 2.00 nm

Rt 0.10 nm
Radp 0.10 nm
RL

H 0.40 nm
RR

H 0.00 nm
Rp 0.45 nm
RΓ 0.40 nm
A[t,p] 100 nm−2

AΓ 20 nm−2

E[t,p] 125 pNnm
EΓ 150 pNnm

Table 10.1: Paremeters of the model with their values and units
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10.3 Numerical results and discussion

We perform Langevin simulations in one dimension with a gaussian white noise

of intensity kBT = 4.1pNn where the drag coefficients follow the Stokes relation

λ = 6πRη where η is the viscosity of the medium, which we approximate to

be equal to the viscosity of the water, ηH2O = 10−9pNs/nm2. Here R is the

Stokes radius, also called Van der Waal radius, and it is different for each of

the four objects. Specifically, we consider that it is infinite (very large compared

with the rest) for the microtubule, while Rstokes
p = 0.05nm, Rstokes

adp = 0.2nm and

Rstokes
h = 2nm. The equations are the following,

λpẋp = F[total,p] + ξp(t), (10.9)

λadpẋadp = F[total,adp] + ξadp(t) (10.10)

and

λhẋh = F[total,h] + ξh(t), (10.11)

where

F[total,p] = F[t,p] − F[p,h] − F[p,adp], (10.12)

F[total,adp] = F[t,adp] + F[adp,h] + F[p,adp], (10.13)

and

F[total,h] = F[t,h] − F[adp,h] + F[p,h], (10.14)

are the forces associated to the potentials by Fi = −dVi/dxi. Furthermore, we fix

xt = 0.

The experimental cases

Now we will use the potentials described above to emulate the situations measured

in Ref.[56]. First, we will simulate only kinesin with tubulin. Later, we will ”add”

AMP-PNP and then we will study the system with ADP and finally with ADP

+ P.

Kinesin with no nucleotide and AMP-PNP solution In order to re-

produce the case where kinesin has no available nucleotide neither Pi, we will fix
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the tubulin at x = 0 and allow the head to move along xh ∈ [0, L] interacting

with Vth. This case is quite simple, since the positively charged head likes to

be near the negatively charged microtubule. When we add AMP-PNP, a non-

hydrolyzable analogue of ATP, it is observed that both heads of kinesin stably

bind the microtubule. In the context of our approach this means that each head

has an AMP-PNP attached with a phosphate group confined in the microtubule.

Furthermore, as the AMP-PNP is not able to activate a switch in the Γ-state of

the enzyme, the head remains attached to the tubulin. This case is quite inter-

esting, since it is supposed to be a frozen image of what happens exactly after

ATP binding, but without destabilizing the system towards a power-stroke cycle.

Thus these two cases, with no nucleotide and with AMP-PNP added, are quite

similar and experiments confirm it. We show in Figure 10.5 two trajectories of

the head, one (a) with no nucleotide and the other (b) with AMP-PNP added.

In both cases the head remains bound to the microtubule, but in the presence

of AMP-PNP and due to P confinement, the distribution in the latter case is

wider, as it is experimentally found in [56]. There is relatively small portion of

the xh trajectory in the nucleotide-free case where the head is unbound from the

microtubule, which corresponds to the experimentally observed one head bound

state that appears with low frequency in the FRET setup of [56].

ADP In the case where we add ADP to the motor-microtubule solution we

can distinguish two situations, depending whether the head is in a Γ-state or in

the other. If Γ = 0, the head will not be able to trap an ADP in its interior

and then it will collapse to the microtubule, while the ADP will mainly remain

away from the heavy chain domain. Thus the situation can be summarized as

ADP diffusing in the media and an empty head attached to the microtubule, as

in the case where we add no ADP at all. However, if the head changes to a Γmax

state, it will have the ability to trap an ADP, so then the head and the ADP

will diffuse together away from the microtubule. Such a diffusion is biased by the

repulsion of the whole ADP-H system, which is negatively charged. Additionally,

if we are supposing that the Γ-states of both heads in each dimer are entangled

in such a way that in each head the state has to be different, we obtain a scenario

where one head is nucleotide-free and attached to the microtubule while the
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Figure 10.5: Trajectories and normalized histograms for xh with no nucleotide (a)
and with AMP-PNP added (b). We simulate the trajectories along ∼ 5 · 10−8s,
which is enough for the histograms to be smooth. In b), the initial conditions
are taken with the AMP-PNP already bound to the T-H system. We can see
how in the nucleotide-free case the distributions are broader, pointing to the fact
that the head is not restricted by the confinement of a phosphate group in the
microtubule, as is the situation in b). With AMP-PNP added, we can observe
transitions from AMP-PNP bound and AMP-PNP free, but a high concentration
of the non-hydrolyzable ATP analogue (1mM in [56]) ensures that the head will
mostly in the state we show in the figure.
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other head is occupied by an ADP molecule and repelled by the tubulin electric

field. Eventually, the ADP can overcome the protecting barrier and produce the

collapse of the tethered head towards the microtubule again, and even though it

is not the most probable situation, the FRET distributions observed in [56] that

a two-bound-head state is also plausible (with low frequency). If the tethered

head prefers to bind an ADP instead of being nucleotide-free we can guess that

there is an electrostatic interaction (attraction) between the head and the ADP

that makes the energy level of the HADP complex lower than the two elements

alone. In Figure 10.6 we show our results for this case.

ADP+P When adding Pi to the ADP solution the state where one head is

bound and the other is tethered changes to a state where kinesin can have one

or both heads attached, showing bimodal diagrams from FRET experiments [56].

In the context of our model the explanation is straightforward. When we add

phosphate groups to the system, (and the experiments add a [P ] = 10mM for

[ADP ] = 200nM), the tubulin sites may be mostly occupied by P. Kinesins are

with one attached head and with another head unbound from tubulin. However,

and because Γmax < 1, there is still some affinity of ADP for the phosphate,

i.e. if we use Γmax = 0.75 there is still a 1/4 fraction of the activation barrier

that prevents ADP·P binding (and confines them if the barrier is surmounted).

Then, the ADP-tethered-head fluctuates and eventually the ADP interacts with

the microtubule-confined P. This results in a relatively short lived state where the

head is bound to the microtubule via the chain T-P-ADP-H. In [56], the peaks of

the bimodal distribution show that the peak corresponding to a one-head-bound

state doubles the counting number of the two-heads-bound peak. This indicates

that the two-heads-bound state is not so shortlived in comparison with the one-

head-bound state. On the one hand the former case is magnified by adding a big

concentration of P, but on the other hand this suggests that the tethered head

is quite close to a tubulin binding site when kinesin is on its parked state. This

corresponds to a strongly tilted parked state, as it seems to indicate the results in

[40] following the interpretation of [71]. Under this interpretation, the interaction

of tubulin dipole moments with the neck and with the tethered head charges pro-

duces a tilted parked state. The more tilted the dipole moment and the greatest
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Figure 10.6: Two trajectories of the head (a) and the head and ADP (b) versus
time for Γ = 0 (a) and Γ = 0.75 (b). a) This case, where Γ = 0, is quite similar to
the nucleotide-free solution, as the head is almost permanently collapsed to the
microtubule. The normalized distribution is also very similar to the one observed
in 10.5a). In b) we have Γ = Γmax, so then the head (black trajectory) is no
more bound to the microtubule (located at x = 0). In grey we explicitly plot
the trajectory for the ADP in order to illustrate how is the mutual confinement
of ADP and H what allows the head expulsion from the tubulin site. The left
inset shows a magnification of these two trajectories. The right inset shows the
distribution of xadp − xh, which is peaked at 0.1nm. The distributions shows no
finite frequencies for distances bigger than 1 because there are no ADP release
transitions during the simulation.
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the charge of the neck linker the more tilted the parked state. From the µs reso-

lution trajectories measured in [40] we can estimate that the tethered head is less

than 2nm away from its target site. Then, in our simulations we have forbidden

the head to diffuse beyond x ∼ 1.5nm. Furthermore, we have located the H-ADP

complex confined in the T-P complex as initial conditions and we have let the

dynamics evolve for several runs. With this methodology we are able to quickly

see a good approximation of the frequencies in the two possible states. It is in-

teresting how the appearing of the bimodal distribution due to the presence of a

high concentration of P reveals the close distance between the tethered head and

the microtubule, giving more support to our electrostatic model presented in [71].

We show in 10.7 the plots of three consecutive runs, all of them with confined-

state initial conditions, for the position of the head. In the inset we show the

normalized distribution of this position where two well distinguished peaks are

observed with relative frequencies in good agreement with the data presented in

[56]. We can notice how we have restricted H’s motion into xh ∈ [0, 1.5]nm in

order to emulate the strongly tilted parked state of kinesin suggested by [71, 55]

among other works.

ATP hydrolysis scenario

Finally, we should discuss the case where we add ATP and hydrolysis occurs.

Such a situation is not stationary as the others but dynamic, as it implies kinesin

stepping. In fact, whenever we have a realistic solution, i.e. ATP with ADP and

P, we can observe all the previous features in a sequential way. First, when ki-

nesin is in its parked state, the dimer has one head bound to the microtubule

with no nucleotide while the other is tethered through the neck linker with an

ADP bound. This is equivalent to the situation where we added only ADP. Later,

when an ATP binds the attached-trailing head, the phosphate binds the micro-

tubule, as in the AMP-PNP case. The difference is that AMP-PNP binds the

tubulin with a long life time while ATP promotes the activation barrier transfer

and it becomes hydrolyzed. But for a small time the AMP-PNP and the ATP

scenarios are equivalent. After ATP hydrolysis kinesin returns to the parked state.

In our simulations we start with initial conditions where P from ATP is al-
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Figure 10.7: Three different and consecutive runs for the trajectory of the head
with Γ = 0.75. The initial conditions locate the head confined due to the weak
P-ADP interactions at high values of Γ. The bimodal distribution in the inset
illustrates the existence of two metastable states, one where kinesin has one head
bound and other where the dimer has its two heavy chains attached to the mi-
crotubule.
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ready confined in the microtubule. Then, we must impose a condition where the

enzyme performs its barrier transfer activity. We impose that Γ : 0→ Γmax when

xp < Rp and r[p,adp] > 0.1nm. Then we observe how ATP hydrolysis is produced

and after some time the head and the ADP, bound together, leave the micro-

tubule. This time is crucial concerning processivity, as the slowest this process it

is the higher the processivity of the motor. As it is discussed in Ref. [71], the ATP

binding on the attached head promotes ADP release on the other head, which

causes the collapse of this head to the next tubulin site. This falling process has

to be faster than the detachment of the trailing head to ensure that at least one

head is always bound to the filament. Otherwise the motor would detach from

the structure and the processivity would be lost. Then, the time for the attached

head from ATP binding to head detachment in comparison with the time from

ATP binding to the leading head collapse is essential to achieve a processive co-

ordination between the heads. Next we will analyze an ATP hydrolysis process

and then we will characterize this crucial time.

In Figure 10.8 we can see the simulation performed for an ATP hydrolysis.

First of all, we set the initial conditions with the ATP already bound to the

tubulin site, since the time for the nucleotide to reach the P-confinement barrier

in T is too long to for a simulation with a time integration step of 10−16s. Then

the Γ-state switch occurs when xp < Rp and r[p,adp] is smaller than 0.1nm. After

this switch (which promotes the complementary Γ-state in the other head), the

head detachment with the bound ADP occurs when a characteristic time (the

necessary delay for the processivity) has passed. Then the head and the ADP

leave the microtubule and travels due to diffusion and to the repulsion between the

ADP·H complex and the negative microtubule surface. In the simulation, when

the head passes through a position of ∼ 3.5nm, we artificially switch the Γ-state

(it is not necessary to wait more for a qualitative analysis). Then, the ADP is not

strongly confined in the head anymore and this head starts an erratic trajectory

to the microtubule again. Here we do not distinguish between different tubulin

units because the directionality is given by the neck [71]. We can notice how the

time left between the ATP binding and the head detachment is quite small, of

the order of 1ns. However, the time from the next Γ-switch until the arrival of

the head to the microtubule is several times bigger. Under these circumstances,
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Figure 10.8: Trajectories for a whole mechano-chemical cycle in kinesin. The grey
trajectory stabilized at x ≃ 0.5nm corresponds to the position of the phosphate
group P. The other grey trajectory corresponds to the ADP, while the black
trajectory is the plot of the head trajectory. The initial conditions are located
at xh = 0.5, xp = 0.46, xadp = 0.56nm, which correspond to an ATP which has
already bound the attached head. In t1 ≃ 0s the Γ-state switches from 0 to
Γmax(= 0.75). In t ≃ 10−9s the head detaches from the microtubule. The ADP
and the head leave together the microtubule until the Γ-state of the head comes
back to 0 due to a eventual ATP binding on the other head, which is not simulated
here but given by hand (at t2 ≃ 5.7 · 10−9s, which should be much greater in a
realistic situation). At t3 ≃ 2 · 10−8s the head has come back to the microtubule
while the ADP remains away from the filament, diluted in the bulk.
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the motor would not be processive. What could make the initial time bigger in

order to achieve processivity? If Γmax is smaller than the value in the Figure 10.8

(0.75), the time for head detaching increases. If we set Γmax = 0.65, the detaching

time is about ∼ 2ns, and Γmax = 0.55 produces a time of ∼ 4ns, but then the

hydrolysis process is not so efficient and undesirable events where P, H and ADP

leave the microtubule are found with some probability. The reason for this is

related with the value of EΓ, which has the unrealistic value of 150 pN when in

fact a more appropriated value should be much bigger. The problem is that very

big values make the simulations very slow, as the potentials include huge forces.

However, with higher values of EΓ, the time delay would reach values that allow

to explain processivity.

10.4 Conclusions

The confinement effects between the interactions of P, ADP, kinesin head and

microtubule are responsible for the coordination of the mechano-chemical cycle.

Specifically, the ADP and P are able to bind in a stable way, the phosphate group

is able to become confined in the microtubule and the ADP is able to be confined

into the head. These confinements, added to the electrostatic and steric interac-

tions already discussed in our previous work [71] allow to have a broad description

of the whole mechanism. If in the previous work we discussed how the electro-

static changes in the head allow the hand-over-hand motion with a directionality

given by the neck, now we have discussed how the nucleotide states are related

with the affinity of the heads with the tubulin. We have given phenomenological

expressions for the potential interactions between the four elements which are

located in a one dimensional system for the sake of simplicity. Even though this

is a strong simplification, the results that we obtained are in agreement with very

recent results and allow to give some hints on the mechanisms that underlie the

interaction between kinesin heavy chain and tubulin heterodimers.

Specifically, there are two major points that constitute the essence of our

approach. On the one hand, the ability of the phosphate group to bind the mi-

crotubule plays a pivotal role in the understanding of the affinity of AMP-PNP

bound heads for the microtubule and also gives a clue of how the phosphate re-
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lease is related with head detachment. It was previously accepted that Pi release

promoted head detachment [61], but it was not clear from what did it detach. We

understand the such a release means that P unbinds the ADP·H complex so this

complex can leave the vicinity of the tubulin binding site. On the other hand,

the hypothesis of the Γ commutator represents an assumption that is strongly

phenomenological. The true nature of such interaction should be discerned ex-

perimentally.
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Throughout this thesis we have developed three blocks of analysis. The first

was based on ratchet models, which allowed to introduce energetic aspects and

mechanical deformations. In the second block we developed a formalism which

is shown to be useful for introducing mechanical forces into enzymatic reac-

tions. Finally, the third block was devoted to have a deeper understanding of

kinesin-microtubule motion from the point of view of electrostatics. Thus, we

have analyzed physical and chemical aspects of some molecular motors focusing

on mechanical, chemical and electrostatic details. In this small chapter we briefly

list and summarize the most relevant aspects of the thesis from a critical and

retrospective point of view.
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Results

11.1 Ratchet-based models

In the first chapter, after the introduction, we begin with a ratchet-based ap-

proach to the kinetic properties of kinesin-1, also called the conventional kinesin.

Under the experimental data of Ref.[9] we propose a simple model that is already

an expansion of the model of Ref.[32]. The main idea is to use a tilted ratchet

potential and simulate the trajectory of a brownian particle that is subject to

this potential. The idea is to be able to reproduce the trajectories and most of

all the mean velocity and randomness as a function of the two main control vari-

ables, the ATP concentration and the external load. Furthermore, the fact that

there is a tight coupling between kinesin steps and ATP hydrolysis, at least at

low load regimes, allows to couple the energetics with the mechanics in a very

simple way. Considering a one-dimensional motion, kinesin advances 8 nm per

ATP consumed. The step distance, given by the periodicity of the arrangement

of tubulin dimers, is fixed, and the energy of an ATP molecule is also fixed, al-

though there is some controversy if has to depend on [ATP]. But constant or

variable, the potential that models the interaction between the microtubule and

kinesin captures a 8 nm displacement every time the energy difference is ∆GATP .

With such a simple scheme we obtain reasonably good analytical expressions

for the mean velocity and for the randomness. The trajectories obtained from
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numerical simulations agree with the experimental. In fact, they agree too much.

While experimental limitations for temporal resolution don’t allow to discrim-

inate discrete steps for high ATP concentrations, the simulations should do it

as one can choose an arbitrary small step integration time. However, the model

consider that at high [ATP] the potential is a single tilted-straight line, so no

stepping occurs. We work in the limit where trajectories at high ATP concentra-

tions and low loads are not step-like. This assumption is the main virtue and at

the same time the most remarkable defect. The reason is that we work with an

effective friction that makes a coarse-grain of the rapid steps that in fact are dis-

crete. This allows to simple calculations that remarkably agree with experimental

data. Furthermore, such a useful friction parameter does not has a realistic value.

When ATP concentration is lowered and the load is increased, discrete steps

are experimentally discriminated, and our model captures this feature thanks to

the addition of [ATP]-dependent barriers to the potential. Relating Kramers rates

with Michaelis-Menten chemical kinetics we are able to give an expression for the

[ATP]-dependence of the barrier. However, in our model we don’t introduce a

load-dependence on this barrier, but we simply introduce the external force as an

external field that acts on the whole potential. With such scenario we are able

to fit all the experimental data for the mean velocity within a reasonable confi-

dence. The results for the randomness are not so good, since it is systematically

underestimated.

After the physical analysis of kinesin motion, which was published in Ref.[37],

we turned our attention to a model which could include a degree of freedom for

the conformational changes that the motor undergoes. Specifically, the model

is an inchworm machine that is able to work even without fluctuations. In or-

der to do this, we based our work on a previous model ([42]) which was a two

elastic-coupled-particles system where the spring changed periodically its elastic

properties. The dimer, defined by the two particles and the spring, was under

the influence of a ratchet potential. Then, the energy was introduced by flashing

the rest length of the spring between a value L and 2L. We changed the input

of the energy by adding stretching forces between the particles, allowing the rest

length to be constant. In short, the dimer initiates a stretching process until
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its elongation doubles the rest length and then the system is left to be relaxed.

With such a modification, our model presents significant improvements on the

inchworm model literature. First of all, we implement a gaussian white noise in

the modelling. Strictly speaking, the model can work without fluctuations, but

the range of the parameters for an operating regime becomes too narrow. Thus

thermal noise makes the choice of the parameters much more flexible. Moreover,

the way of adding the energy to the system allows to control how much energy

are we introducing. Even if in the previous modelling this could also be done, but

was not done, the amount of energy depended linearly on the stiffness in such a

way that high stiffness implied huge energy inputs. In our work, the energy does

not have this kind of dependences, so we can be concerned with actual values

for the energy of ATP. We find that a 8 nm displacement produced with a single

ATP hydrolysis does not allow to exhibit a current reversal regime that is consid-

ered in Ref.[42] unless a lever arm mechanism is introduced in order to amplify

a small conformational change to reach a long elongation in the dimer. Thus our

model restricts, due to energetic considerations, the motion to the direct-forward

mechanism, postponing the explanation for directionality of motors to another

model.

There are more relevant results in our inchworm model to be considered.

First, we introduce the process of nucleotide-fuel binding through a probability

of catching the fuel molecule. Not only we can control how much energy we are

adding but we can also control the concentration of the energetic substrate. This

is very important since experimental measurements use the substrate concentra-

tion as their main control variable. Thus, through a probability that is considered

when the motor is not experiencing a stretching-relaxing cycle, we can simulate

a substrate dependence. But maybe the most relevant contribution of the work is

the loaded conditions that we simulate on the model. By adding an external field

against the dimer motion, we can see how the velocity is decreased with increasing

loads until we see the stalling regime at which the motor does not walk on average.

The addition of the load in the model not only permits the evaluation of force-

velocity curves but to analyze the response of the efficiency and the coupling

ratio. As far as we know, the concept of global efficiency for a global trajectory
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is introduced. While the more canonical efficiency, which holds for a single step,

evaluates the ratio between the useful work and the energy input, the fact that a

percentage of the steps are not produced even when substrate is consumed makes

this efficiency poorly defined. It is more convenient to multiply the canonical

efficiency by the coupling ratio. This is a major point, because the canonical effi-

ciency includes the external force only in the useful work. But now, in the global

efficiency, we have a load-dependent coupling ratio which gives to the efficiency

a more complex load dependence. Classically, in an overdamped motor, the local

(canonical) efficiency rises to one at the stalling regime, since there is no mo-

tion and no dissipation. But it is the case that our inchworm model, as kinesin

and other motor do, presents a dropping coupling ratio at stalling loads, Then,

even though the canonical efficiency rises, the global efficiency drops to zero.

Thus, the maximum efficiency is reached at medium loads, as in macroscopic-

inertial motors. We have to add that inhibition theory, as it is explained in the

chemical-kinetic chapter, allows to give analytical expressions for all the vari-

ables of the system and for all the control variables dependence. We find that

while kinesin is a mixed-competitive motor (in the sense that the load performs

a mixed-competitive inhibition on the protein), our inchworm model is a mixed-

uncompetitive motor. This means that the load affects the motor stronger when

the dimer is on its stretching-relaxing cycle.

Summarizing, our inchworm model introduces significant improvements on

previous inchworm modelling. For some time, the inchworm mechanism was a

candidate for kinesin actual mechanism motion. However, today is discarded, see

Ref.[7]. However, it is not discarded that other molecular motors and probably

future artificial nano-devices can be based on this mechanism. The main results

of this work are published in Ref.[57].

Finally, our ratchet-based model chapter finishes with a preliminary study of

rotatory devices inspired from inchworm mechanisms. The idea is to generalize

the stretching-relaxing cycles of the dimer model to circular arrays of particles

connected by springs. The introduction of rotatory devices is inspired on the ex-

istence of nano-machines like the Bacterial Flagellar Motor or the FO-F1 ATP

synthase. For us, the modelling of such machines is a challenge. Furthermore, the
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available experiments are not so directly reproducible like in kinesin measure-

ments. Rotatory devices are harder to measure. First, it is not easy to force the

motor to a conservative external force, so normally non conservative loads are

applied, like variable size beads or attached actin filaments. Secondly, and most

important, is that there is no experimental evidence for a tight coupling between

fuel consumption and step performance on the ion powered motors. In a BFM,

about 1000 ions cross the membrane per revolution, but measurements show only

26 steps per revolution with no clues for a tight stechiometry. Furthermore, we

can distinguish between motors with a single torque-generating-unit (active site)

and motors with several units. To consider the 8 to 10 torque generating units of

a Bacterial Flagellar Motor is a desirable target to model, but we have stayed at

the case with a single torque generating unit.

We have modelled 10 particles coupled by springs and subject to a ratchet

potential that is non-zero only at the active site. Otherwise, at every step all

the particles should surmount an energetic barrier and the mechanism would

be not neither realistic nor possible. What we do is to stretch the spring, as in

the inchworm case, which is closer to the torque generating site, which belongs

to the stator. Then, the whole rotor performs a displacement of an angle step.

What we find is that the proposed mechanism is extremely inefficient, with max-

imum efficiencies of about ∼ 0.005. This indicates that further work is needed

in other to find more efficient mechanisms, but we have to admit that the cou-

pling ratio of real rotatory motors is not experimentally known. Moreover, the

inchworm approach to rotatory machines have to consider two main handicaps.

First, many rotatory devices are reversible, i.e. inverting the flow of the ions the

mechanism is reversed. In our modelling, the energy flow cannot be reversed. Sec-

ondly, many rotatory motors are based on ion interactions with the stator, not

on elastic deformations. When considering elastic stretchings one has to consider

that soft couplings are not efficient, and maybe the available energy is not enough

to stretch very stiff springs. Summarizing, the last section of this chapter is an

extension of the inchworm model to rotatory systems and a first trial to apply

the inchworm mechanism to understand some rotatory devices. However, some

caution has to be taken when thinking of ion powered machines. We think a good

rotatory candidate to be explained by this mechanism can be the F1 part of the
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ATP synthase, since it has a well defined stechiometry, it has only three units

and deformations play a role in the communication between the three nucleotide

sites [5].

11.2 Chemical kinetic models

Briefly speaking, we can say that the chemical kinetic chapter constitutes the

part with better agreement with experimental data and with lower degree of con-

troversial hypothesis. While the first chapter uses standard and well accepted

tools of analysis, the quality of its predictions is not very high and the theoreti-

cal models are not easy to be applicable to real molecular motors. On the other

hand, the last chapter, based on electrostatic interactions and (probably quan-

tum) confinements, is focused in a very particular molecular motor, kinesin-1,

and we are able to understand many experimental features that are explicitly

measured. However, the hypothesis that we used are controversial, since for most

part of the scientific community the screening effects forbid electrostatic interac-

tions on the range we are using them (we will expand this topic later). Moreover,

the commutation and confinement hypothesis that we formulate in the last work

of this thesis are pending to be measured in order to be discarded or accepted.

However, the second chemical-kinetic chapter is based on a well established and

accepted classical inhibition theory, which is an expansion of Michaelis-Menten

formalism. Additionally, the hypothesis that we use are quite reasonable and have

found good acceptance when presented in public. But what is most important,

the agreement of our predictions with experimental data is not only qualitatively

good but quantitatively accurate. We have been able to apply our formalism to

different experiments on kinesin, to Bacterial Flagellar Motor and to RNA poly-

merase with a significant success in all cases.

In this chemical-kinetic chapter, we review the formalism of classical inhibi-

tion theory as we consider it is of capital importance to understand our work.

In addition, we have calculated the free energies associated with the canonical

examples. These energies could be used for further work on the analysis of effi-

ciencies in molecular motors.
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The first of the two main blocks of this chapter is aimed to introduce a mechan-

ical force in the kinesin chemical kinetics using classical inhibition formalism. One

can think this is useless since there is already a way of introduce the force in the

chemical reactions. The already known method consists on modifying the kinetic

rates with Kramers coefficients. However, when coupling the reaction coordinate

with the longitudinal dimension of kinesin’s motion, we have to introduce some

longitudinal quantities that represents intermediate states of the cycle. And, as

far as we know, these states are not observed in the motor trajectories at least

for temporal resolutions lower than 30µs. And there is another and more severe

problem with such formalism. As it modifies the equilibrium state between the re-

actants and the products, at the stalling regime, the Kramers coefficient are such

that they compensate the driving free energy leading to a chemical equilibrium.

In other words, the chemical potential vanishes at stalling conditions. The point

is that this is not true, at least for kinesin, because even at stalling conditions,

and even at backstepping regimes, ATP is still being hydrolyzed and as far as

we know chemically inverted events are not measured (if detectable). Thus the

previous formalism, which is still common to be found in recent literature and

which for ion powered rotatory devices may be adequate, is not ideal for dealing

with mechano enzymes.

We have developed a formalism that is able to introduce the mechanical force

in a chemical reaction without affecting the equilibrium rates between ATP and

its products. Instead, we use inhibition theory to inject the force as a lateral

influence. In other words, we consider the mechanical force to be a inhibitor (or

activator for assisting loads, but we will say inhibitor only for the sake of sim-

plicity) of the reaction. At first sight, it may seem that with inhibitors we are

also altering the equilibrium between the reactants and the products, but we are

not. The critical point is to see that the rate of hydrolysis, k2 in Scheme 6.56, has

not a reversing partner, i.e. k−2. Thus by adding inhibitor we are not promoting

a reversible stalled state but a stalling regime where the motor cannot progress

on its reaction. Furthermore, by using mixed inhibitors we are able to split the

influence of the force on the two different chemical states (or more if we consider

a more detailed reaction). In a classical michaelian scheme, we can consider that
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the external force acts on the motor in a different way when it has an ATP bound

or when it is nucleotide-free.

The main point of this work is to relate the inhibitor concentration, for which

there was already a developed theory, and the mechanical force. What we have

done is to guess a relation by examining the conditions that such a relation must

hold, i.e. that for no inhibitor there is no force and that for an infinite inhibitor

concentration we have a stalling force. In the following chapter, deeper reasons

come to justify the explicit form of the inhibitor-force relationship. The impor-

tant fact in the current work is that such a simple relation allows to apply in

a straightforward way classical inhibition theory and obtaining excellent results

when predicting experimental kinesin data. The inhibition theory, added to our

I-F relationship, provides analytical-nonlinear expressions for the mean velocity

as a function of the substrate concentration and the external force.

Furthermore, as kinesin shows to be a mixed motor, we are able to give a

quantitative measure of how the mechanical force affects the different chemical

states. Specifically, the two inhibition constants, kic and kiu are given for the

kinesin motor showing that kic < kiu, i.e. it is a competitive-mixed motor. This

allows to explain the fact that kinesin trajectories are modified in two differ-

ent ways by the force. First, the jumping events, the 8 nm displacements, even

though they seem instantaneous in a ms-resolution plot, they have a finite slope

that is decreased in the presence of an opposing force. However, this effect is

not so strong as the other consequence of the presence of the load. Waiting, or

dwell times are strongly increased when the motor is loaded, and this is again due

to a mechanical force, even if the binding rate it is usually considered a purely

chemical-diffusive process (a physical interpretation of this fact is given in the

following chapter). The fact that the two inhibition constants are different reflects

these two types of influence of the force on kinesin motion.

Another important aspect of this work is that it presents a formalism and a

methodology in order to characterize a motor. We have applied exactly the same

methodology to the inchworm device obtaining an excellent agreement with the

simulation data. Thus such a formalism is useful for characterize the kinetics of
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a motor, no matter if it is a real protein or a theoretical machine. But the main

goal is to apply this formalism to other real molecular motors as long as there is

a complete set of measurements available. This is exactly the point of the next

chapter. Following the idea that a general formalism can be given for every simple

motor exhibiting michaelian behaviour under substrate concentration variations,

we have developed a unified framework that is not only successful when tested

with three different molecular motors, but also provides hints for a better under-

standing of the processes by which the mechanical force affect chemical rates.

The unified approach presented in the last section of the chemical kinetic chap-

ter is based on the idea that the total average time of each mechano-chemical

cycle can be expressed as the sum of the characteristic times of the different sub-

processes that compose the whole step. Specifically, we split the total cycle time

into the internal, waiting and mechanical time. With a characterized cycle time,

we can characterize the mean velocity if we consider a tight coupling between

mechanical and chemical events. The internal time is a variable that includes all

the processes that are not dependent on the load or the substrate concentration.

The mechanical time is simply calculated with overdamped dynamics. Normally,

it is a fast process that even though is load-dependent, such a dependence is weak

in comparison with the load dependence of the waiting time. This latter time is

characterized by an effusion process of the fuel molecule to the binding site. In

fact, the main point of this work is to explain the load dependence of the dwell

times by considering that the external force increases or decreases the opening of

the binding pocket when this force is assisting or opposing, respectively.

As a first approximation, we consider an harmonic load response of the pocket,

but a sigmoidal, more sophisticated response, fits better the experimental data.

When applied to three different molecular motors, kinesin-1, BFM and RNAp,

the unified approach is in appealing agreement with the experiments. However,

the main result of this approach is the splitting of the concept of stall force. As far

as we know, the stall force has been defined as the force that stops the motor, but

a distinction of whether the motor is mechanically or chemically stalled was lack-

ing. With our approach, we can distinguish between these two types of stalling,

mechanical and chemical. The mechanical stall force is that force that applied to
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the motor compensates the motive force of the motor and then there is no me-

chanical bias to drive the motion. The chemical force, less intuitive, consists in

closing the fuel pocket in a way that the nucleotides cannot be hydrolyzed. Then,

even if the motive force is still greater than the external force, if the load com-

pletely closes the pocket the motor cannot perform further steps. At this point,

we can distinguish between a motor where the mechanical stall force is greater

than its chemical stall force and a motor where the chemical force is greater. In

the first case, once we arrive to the mechanical stalling there is no more directed

motion. However, in the latter case, we first arrive to a mechanical stalling when

the pocket is not fully closed yet. Then, nucleotides still can be hydrolyzed. This

window, between the mechanical and chemical stall forces, allow the existence of

kinesin backstepping, where the mechanical cycle is inverted while the chemical

keeps going forward.

As our approach is generic for all individual molecular motors, we can establish

some quantitative comparisons between different types of motor. For example, the

internal time in BFM is of the order of µs, while kinesin-1 has internal time of

the order of ms and RNAp needs ∼ 0.02s for its internal work. Such a parameter

can give an idea of the complexity of the motor tasks. It is interesting that from

the hypothesis of an elastic, load dependent pocket, we can have an idea of the

relative stiffness of this pocket. For example, the pocket in RNAp seems to be ten

times greater than kinesin’s. This is consistent with the fact that a mechanical

stalling of RNAp needs about 15 pN while kinesin needs ∼ 5 pN. Moreover, the

kinetic parameters of the pocket, modelled by a modified law of mass action,

provide an interesting result: both kinesin-1 and RNAp have almost identical

properties concerning nucleotide binding at free-load conditions.

11.3 Mechanics of kinesin

This part is probably the most far-reaching but also the most controversial part

of this thesis. It first consists in analyzing the mechanics of the kinesin step by

considering electrostatic interactions between the tubulin heterodimers and the

motor protein. Later, there is an analysis of the interactions between kinesin

heads and tubulin for different nucleotide states. In molecular biophysics there
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is an explosion of experiments with optical traps, AFM and other devices that

are able to measure single molecule techniques. However, it is beyond the current

technology to deepen into the actual details of each molecular machine. Focusing

on kinesin, optical tweezers allow to measure kinetics or directionality, while very

recently, FRET has been able to measure nucleotide dependent conformations

in an indirect way. But all these techniques don’t allow yet a direct observation

of the interactions that occur between tubulin and the different domains of the

motor. However, there are many experimental facts with a lack of theoretical

explanation. For example, some kinesin types walk toward the plus-end of the

microtubule while other types have the opposite directionality. In addition, some

kinesins are more processive than others. These and other topics have been with-

out serious explanations, as far as we know. Perhaps there is a need for more

experimental data, but we show in our work how there are many pieces that can

be matched together in a quite simple and reasonable way.

The work is mainly based on the MD simulations of Ref.[63, 58], which show

that is plausible to assignate an electric dipole moment to each tubulin unit. Such

a dipole has a non-zero projection along the axis of kinesin motion. This result is

a very interesting clue, since it represents a physical property that produces po-

larity in the track. Literature already distinguished the plus-end and minus-end

of the microtubule in terms of polymerization rates, but a more specific polar

property was lacking. Thus we took advantage of this result in order to model a

microtubule as a periodic array of electric dipoles. Later, if an electric property

defines the polarity of the track, this polarity has to be read by the motor by

means of electrostatic interactions. The problem is that there is not very much

specific information on the electrostatic properties of kinesin. In fact, electrostat-

ics in proteins is known to be a major topic with very active research but with

no clear and general results. We will discuss this topic more extensively later.

Consequently, in order to advance with a model for microtubule-kinesin motion,

some electrostatic assumptions on kinesin were made. We already know that ATP

itself has negative charges, and this was taken into account. Additionally, kinesin

heads were supposed to be positively charged when free from nucleotide, since

they bind the microtubule surface, which is known to be highly negative. The

strong point of the hypothesis is to consider that the head’s charge changes sign
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upon ATP binding. Thus the head and the microtubule are repelled. In addition

to this assumption, another hypothesis is made concerning the neck linker. Under

the light of some experiments [8, 10], we understand that the neck gives the direc-

tionality to the motor, and even a single mutation on it can produce directionless

motors. Thus the neck reads the polarity of the track, so then we suppose that

the neck interacts electrostatically with tubulin dipole moments. The most simple

assumption was to consider the neck as a point charge, while the two heads of

kinesin were two ATP-dependent charges. All three charges are supposed to be

connected by a rigid rod. In brief, when considering this rod interacting with the

array of microtubule charges, a directed motion is observed. Such motion is cou-

pled in a way that an ATP hydrolysis produces a single step. This represents an

actual mechanical model for kinesin, where ”realistic” interactions are considered.

There are many relevant results of our electrostatic model for kinesin. First,

it utilizes MD realistic simulation data in order to incorporate a physical polarity

to the track, which interacts with a kinesin dimer in order to achieve directed

stepping motion as it is measured on experiments. The energy input is given as

the change of sign charge of the attaching head. In addition, it is very remark-

able that such model gives a tilted parked state with the leading head pointing

to the sense of motion, the plus end for a kinesin-1. This is in accordance with

[55]. However, and this is a major point, such a tilting is not the responsible of

directed motion. With no neck, the motor still exhibits a tilted parked state and

no directionality is observed. The actual directionality comes from the interaction

between the neck and the tubulin dipole moment, so if the neck charge has a pos-

itive sign, the motor is plus-ended, while a negative neck produces a minus-ended

kinesin. This is in agreement with experimental data in the sense that motors

with the amino-end of the stalk bound to the motor domain are plus-ended while

C-term necks produce minus-end motion. Probably there are more electrostatic

contributions to the neck than those coming from the polarity of the stalk, but

the scheme proposed here is simple and agrees notably with experimental data.

Furthemore, the combination of electrostatic interactions with chemical rates

provide clues for understanding processivity and why it seems to be related with

directionality. In fact, plus-ended motor seem to be more processive than minus-
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ended, and in addition this processivity seems to be enhanced when adding pos-

itive charges to the neck [8]. Our explanation lies on the competition of kinesin

falling with trailing head detaching. When the trailing head binds an ATP, there

is a time until this head detaches. While this occurs, the leading head releases its

bound ADP and collapses to the microtubule. In order to achieve processivity,

the motor has to be in a two-heads-bound state for at least some microseconds.

If not, the whole protein would detach. Then, the falling process has to be faster

than the initiation of the rising. This is tightly related with the charge of the

neck, since a positive neck produces a fast collapse while a negative neck slows

this falling. Then, as the charge of the neck is more negative (so the motor is

minus-ended) the falling is slower and the chances for processivity are strongly

lowered. While it is true in the context of this model that we don’t have an ex-

planation for the delay between ATP binding and trailing head detaching (and

ADP release in the leading head), we know it has to exist and we also can ex-

plain how it competes with the mechanical falling in order to achieve processivity.

The second section of this chapter is the last work of this thesis and it tries

to understand the interactions between the different nucleotide states of kinesin

heads and the tubulin heterodimers, as such interactions are indirectly measured

with FRET in recent experiments [56]. Our work is able to reproduce all the

different states that the experiment performs: When kinesin-1 is nucleotide-free,

it binds the microtubule with two heads. When ATP-PNP, a non-hydrolyzable

ATP analogue, is added, kinesin still binds tubulin with both heads in a more

tight way. However, if we only add ADP, the motor protein seems to bind the

microtubule only with a single head while the other remains detached. Finally,

if a huge concentration of phosphate groups is added to the ADP solution, some

transitions between two-heads and one-head bound states can be detected. Our

work is able to reproduce these stationary states and also the ATP state, which is

dynamical and more difficult to access experimentally at this level of description.

Two main hypothesis are needed. First, that the γ-phosphate group of the

ATP is able to be confined by ADP (this is not the hypothesis, but a well known

ATP synthesis description) and also by tubulin. This latter confinement property

is a key point to understand the different kinesin-MT states during the mechano-
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chemical cycle. Specifically, when an ATP binds the attached head, the enzymatic

activity is supposed to be manifest by a barrier transfer process, i.e. the enzyme

is thought to transfer the confinement barrier of the ADP-P complex to its own

interaction with ADP. Then, upon ATP binding, the ADP detaches from the

phosphate group and becomes confined to the kinesin head. In other words, the

head pocket becomes closed trapping the ADP inside, which was a necessary in-

gredient for our previous modelling in order to achieve a mechanical rising. On

the other hand, the phosphate group becomes confined by the tubulin site. When

ATP is bound, P is supposed to be already bound by the microtubule, while

the ADP part is still not fixed to the kinesin pocket. However, upon the barrier

transference, the phosphate is released from the ADP and this ADP is repelled

by the microtubule bringing the head with it. This mechanism is in accordance

with our previous model in the sense that now we have an explanation for the

delay between ATP binding and head detaching.

The second hypothesis is as necessary as speculative. It consists to suppose

that when the enzyme in one of the heads produces the barrier transference from

ADP-P to the head-ADP interaction, in the other head, the other enzyme is cou-

pled in a way that it switches its barrier state to the opposite state. We can think

the heads as having two complementary states that mutually commutate. And

even though we don’t know how such interaction can be produced, it is clear that

there is a communication between the heads, so our hypothesis makes sense.

With these hypothesis, we propose half-phenomenological potentials to model

all the interactions between the heads, ADP, P and the tubulin unit and we ob-

tain results in a good agreement with experimental data. If we let the heads in

a nucleotide-free state, they bind the tubulin sites. If we simulate an AMP-PNP

solution by considering an ATP which cannot induce barrier transference to the

enzyme, then the heads also bind the microtubule in a more tight way than in the

previous case. Even though the output is similar in both cases (they both bind

tubulin), the reasons for such a binding are different. While in the first case a

positively charged kinesin head is attracted to a negative tubulin molecule, when

AMP-PNP is considered, the tubulin repels the head, which now has a global

negative charge due to the presence of the ADP domain of ATP. However, the
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phosphate group becomes confined in the tubulin heterodimer and this phos-

phate, on the one hand, has the ADP confined, while on the other hand the ADP

is slightly attracted to the head.

When only ADP is added, one has to remind that each head is in a different

enzymatic state (barrier-Γ state). Then, while one of them will confine an ADP,

the other will not, so while the latter will bind the microtubule (free-nucleotide

case), the other head will remain away from the microtubule with a trapped ADP

in its interior. This leads to the tilted parked state described before. However,

the addition of a high phosphate concentration produces transition between the

tilted parked state and a two-heads-bound state. This is a non-expected experi-

mental result that we are able to reproduce since we the phosphates are bound

to the binding sites and these phosphates have a certain ability to confine an

ADP (with a low confinement barrier, since the ADP head has transferred the

high barrier to the ADP-head interaction). Then, due to thermal fluctuations,

the leading head can explore the tubulin site where the phosphate is and form

a metastable state where tubulin strongly confines phosphate, the phosphate

weakly confines ADP and ADP is strongly confined to the head. Such a chain of

confinements produce a transient bound state that we observe in our simulations.

This last section is in a good agreement with the experiments, but it is sup-

ported on strong hypothesis that have no direct experimental support. It is known

that enzymes are able to lower the activation barrier of ADP-P, but there is no

evidence, as far as we know, of a transference of this barrier. But what is true is

that such a transference is an effective way to consider that upon ATP hydroly-

sis, the nucleotide pocket becomes closed trapping the ADP in its interior. And

all these phenomena are well accepted in the literature. In other words, we have

expressed with a very specific hypothesis well accepted assumptions in order to

perform quantitative calculations. The other hypothesis, the Γ-state commuta-

tion, is again well supported by experiments even though the actual commutating

mechanisms remain unknown. In addition, our model also needs that phosphate

groups are confined by the microtubule, which can be tested in an experiment.

If this is correct, under high P concentrations, ATP binding needs not only to

reach the nucleotide pocket, but the phosphate group of the ATP has to expel
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the phosphate that can be already confined in the current tubulin site.
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Perspectives

Even though this thesis can be improved and expanded in all of its sections and

aspects, we would like to remark two interesting directions that would be worth

exploring them with more detail. First, the introduction of the load in chem-

ical kinetics coupled systems should be of a reasonable interest. For example,

tetrameric kinesins involved in mitosis can be thought as to kinesin-1 coupled to

each other, i.e. the motive force of one is the external force of the other. This

is interesting, since these forces would not be constant anymore, and mostly be-

cause the success in reproducing experimental data of our approach could be

expanded by trying to couple both systems. If an opposing/assisting force were

inhibitors/activators that we introduced to the system by hand, now each motor

has to produce these kinetic factors in order to alter the motion of the other.

Moreover, there is an example of capital importance that should be the target

of such an study: the FO-F1 ATP synthase, which mechanically couples two ro-

tatory systems through a shaft that is able to accumulate torsion. A complete

understanding of the chemical kinetics of this system would condense all the dif-

ficulties, i.e. mechanical coupling of chemical systems, load-dependent kinetics of

reversible motors, even if they are mechanoenzymes as the F1, and a good model

for reversible rotatory motion for different number of structural units. In short, a

model for this motor would complete the formalism that we have introduced here.

The second aspect that would be interesting to develop, even more for the per-
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spective of a physicist work, is based on electrostatic effects in protein systems. In

fact, this is a very active and difficult field, so we should specify a specific direction

to follow. Our ideas are motivated by the following problem: kinesin data can be

explained by considering Coulomb electrostatic interactions between the heads,

the neck linker and the tubulin dipole moment. However, Debye-Hückel theory

states that such electrostatic interactions must be screened in the presence of an

ionic environment [64]. Calculations using this theory for physiological conditions

provide a value of the Debye length slightly smaller than 1 nm. This quantity

means that beyond its value the strength of the interactions has been strongly

disminished. Thus, if we are considering in our kinesin model some interactions

that reach distances which are greater, i.e. more than 5 nm, such a model is not

according with Debye theory at least in the physiological regime that is usually

accepted. Given the problem, we have two choices. First, to abandon our model

arguing that no electrostatic force can travel such a distance between kinesin

and tubulin. Second, we can think that, even though screening is undoubtedly

a strong effect in electrolytes, the theory may not hold for protein systems as

the one we have been studied. Actually, there are many reasons to suppose that

electrostatic shielding deserves a better understanding and it is not prudent to

refuse models that, even though they contradict the 1 nm screening, it agrees

with many experimental features.

In Ref. [64] we can find a detailed review on electrostatic in biological systems.

Nevertheless, there are many approximations that may not be strictly correct in

all cases. Debye theory, first of all, is a continuous theory, i.e. it considers a

density of ions surrounding an object which is bigger than the ions. However, at

physiological conditions this hypothesis may not be well justified. In fact, one can

easily calculate that in the volume of about 100nm2, the number of ions that can

be found is by no means big enough to make a continuous approximation. Then,

the nature of the screening, when considered discrete, may alter the results of

Debye theory. Later on, the canonical shielding calculations are considered under

spherical symmetry, and again this is not the case of proteins. Given a charged

object, if we allow ions to explore all the available spherical surface, we can place

a maximum amount of ions. For example, if we had a charged object with a

charge of 10e and radius R and we allow ions of charges +1e and -1e and radius
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r . R to freely move and surround the object, then some counterions, about 10

of them, will surround the first object forming a 10-side regular polygon. The

point is that these counterions do repel from each other and then they try to be

as separated as possible. Now imagine we only allow half of the spherical surface

to be available to ions. Then, the 10 counterions will try to shield the big ob-

ject, but they cannot be so spread as before. Now the interactions between ions

produce an increase of the energy that in fact makes the screening less effective.

Now we could reduce even more the available surface and the screening would be

less and less strong. As far as we’ve been looking for asymmetric Debye theories

we have not found concluding results, so we think it would be worth to analyze

the implications of asymmetry in screening problems.

Another important aspect is volume exclusion. When Debye theory is consid-

ered in a system where ions occupy a certain volume, it can be shown that the

Debye length has an exponential effect beyond the volume size. In other words, if

no ions can penetrate the object, inside this object cannot be an effective shield-

ing. This is very important when working with proteins, since the interior of their

bodies are usually hydrophobic, thus no unstructured water and even less free

ions can penetrate the peptide. Only with this qualitative and reasonable consid-

eration one should not take Debye theory in a fully strict way when considering

electrostatic interactions inside the protein body. For example, it is more or less

accepted that kinesin takes advantage of the flexible C-termini of tubulin het-

erodimers, which are highly charged with negative sign. Thus it is supposed that

a considerable amount of positive ions will surround these structures in order to

reduce the overall energy. However, when a kinesin head attaches a tubulin site,

it is not so straightforward to consider that these ions remain there and are not

expelled by the hydrophobic presence of kinesin. This is a highly complex sce-

nario, even for supercomputing capabilities, so we have to try with more simple

schemes to gain some understanding. It is crucial to know that, without screening

ions, the charges in the molecules are so high that the interactions between them

would be incredibly greater than the measured forces. Then, we are not trying to

say there is no screening at all, but simply to give reasons to think why probably

the screening effects are not so strict under some circumstances.
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Furthermore, there are even more complications that a complete theory should

include. It consists in the dielectric properties and discontinuities that are found

in protein media. Water is known to has a relative permittivity of ǫr ≃ 80, while

the interior of proteins, if definable [74], can be characterized by a dielectric

constant of ǫr ∼ 4. As far as we know, there is no clear theories for proteins with

low permittivity that are in contact, establishing paths of connection where there

is no water or ions. Debye theory is considered for an homogeneous ǫr everywhere.

Again, this is a strong hypothesis that is not faithfull to the real conditions. In

our simulations, we have also considered an homogeneous permittivity, and we

have also included a Debye screening of length ∼ 3 nm, obtaining that the model

still can work. But to consider that the path between the interior of tubulin to the

interior of kinesin is electrostatically homogeneous with a continuous density of

ions in the middle is an abuse of a nice theory such the Debye-Hückel formalism,

which is applicable for many situations in physics and chemistry. The problem is

too complicated to have strong opinions about it. But our electrostatic model is

a hint for thinking that electrostatic interactions within a range of ∼ 10 nm can

play important roles in producing global conformational changes.
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Resumen de la tesis

Un motor molecular es una protéına o un complejo de estas en el que una enerǵıa

qúımica, almacenada en forma de ATP o a través de un potencial de membrana,

se transforma en trabajo mecánico, que se aprovecha para producir un transporte

lineal, mover una hélice, introducir material genético dentro de la célula, etc. De

hecho, las funciones asociadas a los motores moleculares son innumerables, en

el sentido en que toda nuestra actividad motora está basada en en la motrici-

dad de dichas protéınas y que buena parte de la actividad metabólica requiere

movimientos mecánicos para llevarse a cabo. Por ejemplo, orgánulos y veśıculas

deben ser transportadas en la célula a través del complejo citoesqueleto. En este

caso, kinesinas, dinéınas y miosinas se encargan de caminar sobre filamentos de

tubulina y actina para transportar dichos objetos. En el caso de células especial-

mente alargadas como las del sistema nervioso, la necesidad del transporte activo

se hace patente. La difusión, si bien es útil para la accesibilidad general de varias

sustancias como el ATP o algunos iones, no es suficientemente rápida y direccional

como para ser un mecanismo útil en muchos casos. Tampoco hay que olvidar que

incluso mecanismos exclusivamente qúımicos en apariencia como es la śıntesis del

ATP en la FO-F1 ATP sintetasa están mediados por un forzamiento mecánico que

aporta la enerǵıa necesaria para dicha śıntesis. En definitiva, la acción enzimática

que producen las protéınas está ı́ntimamente ligada con cambios conformacionales

que producen fuerzas mecánicas que se han revelado importantes para su función

cataĺıtica. Si bien hace unas décadas las fuerzas generadas por una protéına indi-

267
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vidual no se pod́ıan medir, las nuevas técnicas nanométricas como AFM, pinzas

ópticas o FRET han hecho posible la medición en el rango de los pN (10−12N),

lo cual ha abierto todo un campo de investigación en el que la mecánica y la

qúımica se presentan ı́ntimamente ligadas. De hecho, una de las vertientes más

interesantes desde el punto de vista f́ısico consiste en entender por qué las ve-

locidades de reacción qúımica dependen de las fuerzas mecánicas que se aplican

a la enzima. La introducción de fuerzas en esquemas de cinética qúımica se ha

convertido en un ingrediente esencial, pues la mayoŕıa de los motores moleculares

funcionan en reǵımenes forzados.

En este breve caṕıtulo se resumen las ideas principales de esta tesis aśı como

sus resultados más relevantes. Todo el trabajo está dividido en tres secciones bien

diferenciadas aunque con evidentes solapamientos que son ineludibles cuando se

ataca a un mismo problema una y otra vez. El problema en śı es tratar de entender

los mecanismos del funcionamiento de algunos motores moleculares, aunque la

kinesina-1 es claramente el ejemplo paradigmático del que se tienen más datos

experimentales y por lo tanto el objeto de estudio más detallado en nuestros

análisis. El primer caṕıtulo está basado en modelos tipo ratchet, es decir, modelos

en los cuales el potencial de interacción del motor con el filamento viene dado

a mano por un perfil diente de sierra que ya incluye la periodicidad del sistema

aśı como su polaridad. A veces, hasta incluye el aporte de enerǵıa [37] aunque

a veces dicha enerǵıa se introduce a través de alguna deformación [57]. En el

segundo caṕıtulo nuestro análisis se basa en una aproximación desde el punto

de vista de la cinemática qúımica, es decir, partiendo de esquemas cinéticos de

reacción tipo Michaelis-Menten para luego poder ampliarlos e incluir en ellos

una fuerza mecánica de forma apropiada. Finalmente, en el tercer caṕıtulo se

intenta un análisis más detallado sobre el funcionamiento espećıfico de la kinesina-

1 caminando por un microtúbulo. Se aborda el problema primero desde una

perspectiva electrostática para poder explicar fenómenos como la direccionalidad

o la procesividad para luego pasar a un análisis de potenciales qúımicos implicados

en los diferentes estados del motor dependiendo de su estado enzimático.
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13.1 Modelos basados en potenciales ratchet

En el primer caṕıtulo, tras la introducción, empezamos nuestro estudio con una

aproximación basada en ratchets y que tiene como objetivo reproducir los resul-

tados experimentales de la Ref.[9] sobre la kinesina-1, también llamada kinesina

convencional. El modelo que proponemos es ya una ampliación del modelo pre-

sentado en la Ref.[32]. La idea principal consiste en usar un potencial ratchet

inclinado y simular la trayectoria de una part́ıcula browniana sujeta a ese poten-

cial. El objetivo es reproducir las trayectorias experimentales aśı como la veloci-

dad media y el coeficiente de aleatoriedad (randomness) que se extrae de ellas.

Además, tales magnitudes dependen de dos variables control principales: la con-

centración de ATP, [ATP], y la fuerza externa, F . El ingrediente principal que

permite relacionar la qúımica con la mecánica proviene del hecho experimental

según el cual la hidrólisis de una molécula individual de ATP en la kinesina está

relacionada con la realización de un paso mecánico. Al cociente entre el número

de pasos efectuados y el número de ATP hidrolizados se le llama el cociente de

acoplamiento, que es aproximadamente 1 para forzamientos suaves. Para fuerzas

externas cercanas al régimen de fuerza máxima, al cual el motor se para, no está

claro si dicho cociente se mantiene en la unidad o bien decrece. En realidad, no

es descartable que se haga prácticamente cero.

En nuestro modelo consideramos un movimiento unidimensional, motivado

por la fidelidad que la kinesina profesa a los protofilamentos del microtúbulo [6].

Además, sabemos que cada paso de la kinesina mide 8 nm, que es precisamente

la periodicidad estructural del microtúbulo. En cambio, no está tan claro si la

cantidad de enerǵıa disponible por ATP es conocida con precisión. Para dicha en-

erǵıa hay varias contribuciones: la entálpica, la entrópica (que es insignificante) y

finalmente la debida a las concentraciones relativas entre reactantes y productos,

lo cual completa la enerǵıa de Gibbs. No obstante, hay cierta controversia en

si la enerǵıa que saca un motor individual de una molécula individual se puede

precisar a través de términos que están basados en termodinámica de equilibrio

y que requieren un número de moléculas grande para tener sentido. Nosotros,

en cualquier caso, trabajamos aqúı con la hipótesis de que sabemos la enerǵıa

disponible a través del valor de la fuerza máxima, que es ∼ 6pN y el del tamaño
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del paso, ≃ 8 nm. Entonces podemos estimar la enerǵıa que usa la kinesina en

unos ∼ 50 pNnm, que ya es la mitad de lo que normalmente se supone que es

el valor estándar. En realidad, este valor puede significar que la kinesina alcanza

una eficiencia del 50% o bien que la enerǵıa disponible no está bien calculada.

Para medirla, haŕıa falta observar transiciones qúımicamente inversas en el motor,

sobre lo cual se ha trabajado [75] pero se está lejos de obtener números fiables.

En cualquier caso, una vez que tenemos un valor para la enerǵıa que el motor usa

por cada paso, podemos construir un potencial periódico que acople el cambio de

enerǵıa ∆GATP con una variable espacial del tamaño del paso, L.

Con este esquema sencillo, es decir, con un potencial que es una recta incli-

nada cuya pendiente está determinada por el acoplamiento mecánico-energético,

podemos fácilmente resolver de forma anaĺıtica expresiones para la velocidad me-

dia y el randomness en función de la fuerza externa. También podemos utilizar

una dinámica de Langevin con ruido blanco gaussiano para simular una part́ıcula

browniana (el motor) sujeta al potencial (el filamento) y observar las trayectorias

resultantes. Lo que se obtiene se parece a lo que se ve experimentalmente. De

hecho, se parece demasiado. El motivo es sencillo: la precisión temporal en los

experimentos no permite resolver pasos discretos en la kinesina a concentraciones

de ATP saturantes, de forma que lo que se mide como trayectoria es una función

claramente rectiĺınea con algunas fluctaciones debidas al ruido térmico. Eso es

precisamente lo que se obtiene con nuestro modelo sencillo. Mientras que el ex-

perimento no resuelve pasos discretos, el modelo no tiene en cuenta que existe en

realidad un tiempo de espera entre esos pasos. Esto es solo una primera aprox-

imación, pero que ya permite unos cálculos interesantes y que no quedan muy

lejos de los resultados experimentales. Además, este caso permite entender una

de las hipótesis esenciales del modelo. Se trata de considerar que hay una fricción

efectiva a condiciones de [ATP] saturante y fuerza externa nula. Es decir, que

aun cuando en realidad la pendiente de la trayectoria experimental la determina

en gran parte el tiempo de espera en cada paso, nosotros consideramos que no

hay pasos y que una fricción, que evidentemente será superior a la real, es la en-

cargada de producir esa pendiente. Aśı, en la fricción, introducimos los tiempos

de espera que hay en condiciones no forzadas.
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Cuando la concentración de ATP se reduce y/o la fuerza externa se incre-

menta, las trayectorias experimentales permiten discriminar pasos discretos. Eso

obliga a nuestro modelo a introducir unas barreras de forma periódica que aumen-

tan con la concentración en una forma que se deduce del siguiente argumento:

al tener una barrera podemos asociar una frecuencia de paso usando la teoŕıa

de Kramers, lo cual introduce cuantitativamente la altura de la barrera de ac-

tivación. Por otra parte, la teoŕıa cinético-qúımica de Michaelis-Menten permite

relacionar la velocidad de reacción con la concentración de sustrato, ATP en este

caso. Aśı, podemos llegar, a través de una identificación razonable entre las dos

velocidades de reacción, a una dependencia de la barrera de activación con [ATP].

Todo esto nos permite, por una parte, obtener trayectorias con pasos discretos,

cuyos tiempos de espera aumentan al disminuir [ATP]. Por la otra, nos permite

comparar la dependencia de la velocidad media y el ı́ndice de aleatoriedad con la

fuerza externa y con la concentración del sustrato. Mientras que para los datos

de la velocidad media obtenemos un ajuste aceptable, los resultados para el coefi-

ciente de aleatoriedad no son tan optimistas. En la figura 13.1 mostramos algunos

detalles del modelo y sus principales resultados.

Estos resultados fueron publicados en [37] y suponen un primer avance en

nuestro análisis. A pesar de que obtiene unos resultados, sobretodo en lo que a

la velocidad media se refiere, que llegan a un buen compromiso con los valores

experimentales, hay algunas cŕıticas que se pueden hacer sobre él. De hecho, la

hipótesis de la fricción efectiva, si bien es uno de los pilares del modelo y por

tanto una de las herramientas que permite unas derivaciones anaĺıticas, falsea

en realidad la fricción real y enmascara la existencia de una velocidad global

mecano-qúımica por una parte y otra velocidad mecánica que es mucho más rap-

ida y que desvela el verdadero coeficiente de fricción. Por otra parte, hay una larga

controversia en si la fuerza máxima depende de la concentración de ATP o no.

Aunque nuestro modelo, suponiendo un factor dependiente de la concentración

en la enerǵıa disponible, reproduce aproximadamente los datos experimentales,

luego dichos datos han sido puestos en entredicho e incluso refutados por nuevas

medidas más precisas [40].

Tras un modelo en el que la introducción de la enerǵıa viene dada a mano, es



13. RESUMEN DE LA TESIS 272

Figure 13.1: Análisis de la dinámica de la kinesina a través de un poten-
cial ratchet inclinado [37]. a) Esquema del potencial utilizado en el modelo,
en el que se puede apreciar el acoplamiento mecánico-qúımico que hay entre el
desplazamiento de L y el desnivel energético ∆G. Nótese también la barrera de
activación del altura EA que es la encargada de modular las diferentes concen-
traciones de ATP. Finalmente, α es el coeficiente de asimetŕıa. b) Gráfica de
velocidad-fuerza para dos concentraciones de ATP distintas, [ATP ] = 2µM y
[ATP ] = 2mM . Los puntos son datos experimentales [9], donde los triángulos
representan los valores para el caso de concentración baja. Las ĺıneas corresponden
a las predicciones teóricas del modelo, las cuales están en un acuerdo cualitativo
con los valores del experimento.

decir, sin suponer que existe un cambio conformacional, nos centramos en otro

modelo que śı que incluye una deformación, aunque mantiene la interacción con

el potencial ratchet, que ahora ya no está inclinado. De nuevo, nuestro modelo

supone una ampliación de otro ya existente [42]. En este caso, no tenemos una

part́ıcula browniana sino dos, que están acopladas por un potencial armónico a

través de un muelle que tiene longitud natural L, que a su vez coincide con el

periodo del potencial de forma que en equilibrio las dos part́ıculas reposan en

mı́nimos consecutivos. En la modelización previa, la deformación se introdućıa a

través de un cambio periódico en las propiedades elásticas del muelle. Concre-

tamente, la longitud natural del muelle pasaba a ser 2L y tras otro periodo de

tiempo volv́ıa a ser L, lo cual además supońıa una adición energética en dos tiem-

pos. De esta forma, el sistema siempre tend́ıa hacia un estado de equilibrio que

hab́ıa sido desplazado a mano. En cambio, nuestra forma de introducir la defor-

mación se basa en la aparición de una fuerza de estiramiento que finaliza cuando

el d́ımero ha alcanzado una longitud 2L. Entonces el sistema relaja una sola vez

y la enerǵıa ha sido dada también una sola vez, aunque de forma no instantánea,

como el otro modelo, sino continua. Como consecuencia de estas diferencias, en el
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modelo anterior la enerǵıa aportada depende linealmente de la constante de elas-

ticidad del muelle mientras que en nuestra versión esta dependencia no aparece.

Esto tiene implicaciones a la hora de poner ĺımites a las cantidades de enerǵıa

aceptables en un motor molecular. En Ref.[42], una constante elástica alta pro-

duce un cambio de sentido en el movimiento, pero como vemos en los cálculos

eso implica un aporte de enerǵıa que no es aceptable en el rango experimental

a menos que consideremos una ampliación de la deformación en un modelo de

compás o de lever arm.

De forma estricta, el modelo funciona sin la ayuda de flucutaciones térmicas,

es decir, se trata de un mecanismo puramente newtoniano. No obstante, la adición

de ruido blanco gaussiano, lo que también representa un avance significativo en

este tipo de modelos de gusano o inchworm, mejora notablemente la efectividad

del mecanismo. Como, por otra parte, no consideramos más que enerǵıas dentro

del rango experimental para la kinesina y el ATP (aunque este modelo es pura-

mente teórico y de hecho el modelo de gusano no se corresponde al verdadero

mecanismo de ese motor [7]), el único régimen que obtenemos es el directo, es

decir, aquel en el que el d́ımero se mueve solo en la dirección favorable marcada

por el potencial ratchet (aquel sentido cuyo movimiento encuentra pendientes

negativas más suaves). Aśı pues, el mecanismo de la direccionalidad creemos que

dif́ıcilmente puede ser explicado en el contexto de este modelo.

Hay más innovaciones en nuestro modelo que son relevantes. Primero, intro-

ducimos un mecanismo aleatorio en el proceso de los ciclos qúımicos a través de

una probablidad de iniciar ese ciclo. De esta forma, las trayectorias que obten-

emos muestran una distribución aleatoria de tiempos de espera que permite em-

ular las distintas concentraciones de substrato a partir de esa probabilidad. Esto

es importante en tanto que dicha concentración suele ser la variable control más

utilizada experimentalmente. Además, el saber cuánta enerǵıa se está añadiendo

al sistema nos permitirá cálculos de eficiencia y del cociente de acoplamientos,

dos magnitudes importantes que además no son independientes. Por otra parte,

una de los aspectos más relevantes a mencionar es el hecho de que evaluamos la

respuesta del motor en condiciones forzadas, lo que permite obtener las deseadas

curvas velocidad-fuerza aśı como permite el estudio de otras cantidades, como la
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eficiencia, en función de dicha fuerza.

En relación a la eficiencia y al cociente de acoplamiento, definido para el

modelo anterior, se introduce el concepto de eficiencia global en contraposición

al de eficiencia convencional. Esta última se define en un motor molecular como

el trabajo obtenido, es decir, el producto de la fuerza externa con el tamaño

del paso, dividido por la enerǵıa aportada por la molécula. Cuando uno utiliza

esta definición se encuentra con el resultado de que la eficiencia crece linealmente

desde 0 (a fuerza externa 0, pues no se extrae trabajo) hasta 1 en el régimen

de fuerza máxima, pues no hay movimiento global y tampoco disipación. Pero

esta situación es incompleta si no se tiene en cuenta que existen eventos qúımicos

(hidrólisis de ATP) que no producen un paso, es decir, eventos futiles. Estas

moléculas no aprovechadas deben entrar en el cómputo de la enerǵıa suministrada

para tener un buen cómputo de la eficiencia. Por tanto, basta con multiplicarle

el cociente de acoplamiento a la cantidad anterior para lograr una evaluación de

la trayectoria global, que es válida no para un paso sino para una trayectoria

entera. De esta forma, la eficiencia encuentra otra dependencia con la fuerza, a

través del cociente acoplamiento, que depende de esta de forma no trivial. Aśı,

incrementando la fuerza externa y tras pasar por una valor máximo, la eficiencia

vuelve a caer hasta hacerse cero en el valor de fuerza máxima, pues en este el

motor gasta enerǵıa sin producir ningún trabajo útil. El valor máximo de esta

eficiencia se encuentra alrededor de la mitad del valor de la fuerza máxima, como

es el caso en los motores macroscópicos.

A todo esto cabe añadir que usando teoŕıa de inhibición, como se explica en el

caṕıtulo cinético-qúımico que resumiremos más adelante, se pueden encontrar ex-

presiones anaĺıticas para la velocidad media en función de las variables control aśı

como para el cociente de acoplamiento, lo cual permite contrastar los resultados

de las simulaciones con los obtenidos con dicha teoŕıa. Este contraste resulta ser

satisfactorio en tanto que las simulaciones y la teoŕıa están en perfecto acuerdo,

lo cual no es tan relevante como un acuerdo con valores experimentales, inexis-

tentes en este caso. Encontramos que, en contraposición a la kinesina, que como

se verá es un motor mixto competitivo, el modelo inchworm que desarrollamos

es un motor mixto no competitivo, lo cual significa que la fuerza actúa sobre el
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d́ımero de forma más severa cuando este experimenta su ciclo de estiramiento-

relajación que cuando simplemente sufre las fluctuaciones térmicas.

En resumen, nuestro modelo supone un avance significativo respecto a ante-

riores modelizaciones tipo inchworm. De todas formas, y auque dicho mecanismo

fue durante cierto tiempo un candidato serio, incluso con soporte experimental,

a ser el mecanismo real de la kinesina-1, hoy en d́ıa se sabe que es otro mecan-

ismo el más adecuado para la descripción de ese motor. De todas formas, no es

descartable que se encuentren otros motores que śı usen este tipo de desplaza-

miento, o bien que nano-máquinas artificiales se construyan inspirándose en él.

Estos resultados fueron publicados en [57]. En la figura 13.2 mostramos detalles

del modelo y algunos de sus resultados.

Finalmente, el caṕıtulo de modelos basados en potenciales ratchet acaba con

un estudio preliminar de motores rotatorios inspirados en el mecanismo inchworm

del modelo anterior. La idea es generalizar los ciclos de estiramiento y relajación

que se vieron antes en un d́ımero a una serie de part́ıculas conectadas ćıclicamente

por medio de muelles elásticos. La introducción de los motores rotatorios en este

contexto viene motivada por la existencia de máquinas biológicas como el BFM

(Bacterial Flagellar Motor), responsable del movimiento de los flagelos en bacte-

rias, o la ATP sintetasa, que gracias al gradiente electroqúımico que guarda la

membrana de la mitocondria, se produce una rotación mecánica que induce la

śıntesis del ATP. De hecho, la modelización de máquinas rotatorias es todav́ıa

un reto, pues son mucho más complejas que la ya nada simple kinesina. Además,

los experimentos disponibles en este tipos de motores no proporcionan un con-

junto de datos tan completo como en el caso de la kinesina. Por una parte, el

forzamiento que se les hace no proviene de una fuerza conservativa, como es el

caso del láser en la trampa óptica, sino que se utiliza el implante de estructuras

con diferentes fricciones para poder medir momentos de fuerza distintos, como

fragmentos de actina de longitud variable o micropart́ıculas de silicona de tamaño

también variable. Esto hace el análisis un poco diferente de los casos en los que

una fuerza conservativa se aplica en el experimento.

También hay un aspecto en los motores rotatorios, en particular en los que
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Figure 13.2: Detalles del modelo inchworm [57]. a) Esquema del modelo,
en el cual podemos ver cómo un d́ımero sufre un ciclo conformacional basado
en una fase de estiramiento y otra de relajación en las que la interacción con
un potencial ratchet produce un movimiento determinista hacia la derecha. L es
el periodo del potencial y también la longitud de equilibrio del muelle. V0 es la
altura de la barrera del potencial y α es el factor de asimetŕıa. En i) tenemos al
d́ımero relajado. En ii) el d́ımero experimenta un estiramiento hasta alcanzar una
longitud total 2L. Justo en ese instante la fuerza de estiramiento desaparece y
comienza la relajación que conduce al estado de equilibrio mostrada en iii) y que
completa el ciclo. b) Curvas velocidad-fuerza en la que los puntos corresponden a
valores que provienen de simulaciones y las ĺıneas a cálculos teóricos. Los ćırculos
corresponden a simulaciones donde la probabilidad de captar un ATP es p = 1,
lo cual emula una situación de ATP saturante. Los triángulos indican un valor
de p = 10−5, lo cual corresponde a una concentración de ATP considerablemente
más baja.
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son movidos por flujo iónico, que dificulta el acoplamiento entre cantidades

cinemáticas como la velocidad angular y las qúımicas como el flujo de protones.

En un BFM, por ejemplo, alrededor de 1000 iones cruzan la membrana por una

revolución completa del motor. No obstante, los experimentos [24] muestran sola-

mente 26 pasos discretos por vuelta, lo cual no proporciona información suficiente

para establecer una estequiometŕıa estricta. De hecho, es probable que tal este-

quiometŕıa no exista, de modo que un paso de rotación pueda ser debido al paso

de un número variable de iones. También hay que tener en cuenta que mientras

que algunos motores rotatorios como la parte FO de la ATP sintasa tienen so-

lamente una unidad generadora de momento de fuerza, otros motores como el

BFM tienen un número variable de estas. En concreto, pueden tener de 8 a 10

unidades, lo cual tampoco corresponde a las periodicidades estructurales obser-

vadas en ese motor que es de 26 unidades. Lo que śı está en acuerdo es este

número de unidades con el número de pasos por vuelta. De todas formas, en este

análisis preliminar nos limitamos a modelizar un caso con una sola unidad activa

o generadora de momento de fuerza.

Proponemos un modelo con 10 part́ıculas acopladas por muelles lineales,

sometidas a un potencial que es nulo en todas partes excepto en el entorno de la

zona generadora de momento de fuerza. Alĺı hay dos periodos no nulos de poten-

cial ratchet que permiten la aplicación de un mecanismo parecido al del modelo

anterior. De hecho, el modelo podŕıa probablemente mejorar su eficiencia si se

consideraran tres periodos no nulos, pero debido a que el mecanismo con dos ya

funciona preferimos en un principio tratar este caso más simple. La idea es muy

parecida a la del modelo anterior, ya que el estiramiento, introducido a través de

una fuerza como la del modelo inchworm, se produce solo entre las dos part́ıculas

(consecutivas) que están más cerca de la unidad activa. La diferencia respecto al

otro caso es que esta vez el estiramiento es más costoso porque supone la fuerza

de oposición del resto de enerǵıas elásticas de los otros muelles. Aśı pues, resulta

mucho más costoso energéticamente completar el ciclo si los muelles tienen una

constante elástica elevada. Si dicha constante es baja, entonces el acoplamiento

entre las part́ıculas es pobre y cuesta mucho hacer girar a todo el sistema. En

resumen, el mecanismo inchworm para máquinas rotatorias con muchas unidades

no es sencillo como el caso del d́ımero.
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El ciclo mecánico acopla un desplazamiento angular por cada evento pro-

ducido por la unidad activa. De todas formas, el cociente de acoplamiento resulta

ser siempre bajo lo cual quiere decir que una significativa proporción de los ciclos

no resultan en ningún trabajo útil. Aunque probatinas hechas con un modelo de 3

part́ıculas acopladas sugieren que el modelo inchworm puede ser relevante, los re-

sultados con muchas unidades estructurales no son excesivamente optimistas. De

hecho, utilizar modelos de gusano para máquinas rotatorias supone afrontar dos

obstáculos importantes. Primeramente, la mayoŕıa de las máquinas rotatorias son

reversibles, incluso las que, como el F1 de la ATP sintetasa, no están animadas

por un flujo de iones. Esto es un problema porque no está claro cómo se puede

invertir el flujo de enerǵıa introducido en el estiramiento para poder obtener una

reversibilidad. Si en vez de usar una fuerza de estiramiento fuera esta de com-

presión, todav́ıa estaŕıamos añadiendo enerǵıa al sistema, no extrayéndola. En

segundo lugar, la mayoŕıa de los motores rotatorios, estando movidos por po-

tenciales de membrana, basan sus interacciones en repulsiones y atracciones con

dominios situados en el estátor, que es donde se sitúan las unidades generadoras

de momento de fuerza. Por lo que sabemos, en esas máquinas no hay deforma-

ciones elásticas apreciables, sino que fuerzas electrostáticas pueden mover a toda

una corona ŕıgida sin necesidad de deformarla. Lo que śı es cierto es que el F1

de la ATP sintetasa śı parece experimentar transiciones elásticas que implican

la śıntesis/hidrólisis del ATP [5], con lo cual es probable que un modelo inch-

worm pueda ser útil de cara a modelizar este motor, siempre y cuando pueda

conseguirse una forma de invertir el flujo de enerǵıa. En resumen, este último

estudio representa una extrapolación del mecanismo inchworm a otro tipo de

máquinas, en este caso rotatorias, aśı como la evaluación preliminar de la con-

veniencia de usar este tipo de modelos o no en algunos ejemplos biológicos. En

la figura 13.3 mostramos algunos detalles del modelo propuesto aśı como algunos

resultados obtenidos.
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Figure 13.3: Análisis de modelos inchworm aplicados a sistemas rotato-
rios [57]. a) Esquema de un sistema rotatorio con una sola unidad generadora de
momento de fuerza, la cual se muestra como un ćırculo negro en el margen supe-
rior izquierdo. Este modelo en concreto tiene 10 unidades estructurales conectadas
entre śı por muelles lineales de constante k. El potencial al que dichas unidades
se ven sometidas está representado con ĺınea punteada en el interior de la figura.
Podemos ver cómo la única zona de potencial no constante es la que está junto
a la unidad generadora de momento de fuerza. b) Curvas velocidad-probabilidad
para tres valores diferentes del forzamiento externo. Los puntos son datos de la
simulación mientras que las ĺıneas son ajustes michaelianos. p es la probabilidad,
como en el modelo inchworm, de iniciar un ciclo mecánico.
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13.2 Modelos de cinética enzimática

El segundo bloque de la tesis, dedicado a la cinética qúımica, consituye el con-

junto de aportaciones originales que mejor se ajusta a los datos experimentales a

la vez que las hipótesis implicadas no implican una controversia que dificulte su

aceptación. Mientras que en el primer caṕıtulo, dedicado a los modelos ratchet,

se usan herramientas ampliamente aceptadas, la calidad de las predicciones, en

el caso de modelos que no son solo de interés teórico, no es muy alta. Por otro

lado, el último caṕıtulo, que resumiremos en breve, está basado en interacciones

electrostáticas y confinamientos (probablemente cuánticos), cosa que implica un

grado de controversia e incertidumbre en lo que se refiere a la confirmación de tales

hipótesis por la v́ıa experimental. Especialmente en relación a las interacciones

electrostáticas en medios nanométricos, los rangos de interacción que suponemos

chocan de frente con la teoŕıa reinante, de Debye-Hückel, según la cual dichas

interacciones son apantalladas en rangos mucho menores que los que nosotros

utilizamos. Lo que se quiere resaltar aqúı es que el segundo caṕıtulo, el basado en

cinética qúımica, es el que más aceptación ha tenido, por utilizar herramientas

bien aceptadas aśı como por reproducir mangnitudes más ligadas a la tecnoloǵıa

actual, que en motores moleculares está muy focalizada en medir propiedades

cinéticas. Además, la calidad de las predicciones es cuantitativamente alta, no

solo para diferentes experimentos con kinesina-1, sino también con otros motores

como el BFM o la RNAp.

En la primera parte de este caṕıtulo se repasa la teoŕıa clásica de inhibición

para luego aplicarla a sistemas motores donde intervienen fuerzas mecánicas. Se

pone énfasis en los ejemplos canónicos, en concreto el de la inhibición mixta, que

servirá luego para describir a motores reales como la kinesina o teóricos como

el inchworm. También se calculan enerǵıas libres asociadas a cada proceso como

herramienta para una posible ampliación de la teoŕıa basada en la modificación

de estas enerǵıas por parte de las fuerzas mecánicas.

En la siguiente sección se presenta cómo a partir de la teoŕıa clásica de in-

hibición se puede introducir la fuerza mecánica que actúa en la kinesina (debido

a la trampa óptica) a través de un inhibidor al que se le asigna una concentración
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efectiva que está relacionada con el valor concreto de la diferencia entre la fuerza

y la fuerza máxima (stall force). En un principio, se puede pensar que el formal-

ismo que introducimos es superfluo en tanto que ya existe un método que sirve

para inyectar una fuerza en una reacción qúımica. Dicho método consiste en la

modificación de los coeficientes cinéticos de la reacción a través de términos ex-

ponenciales de Kramers para desviar el equilibrio qúımico entre los dos estados

de la reacción. No obstante, para hacer eso es necesario identificar la coordenada

de reacción qúımica con la dimensión longitudinal del desplazamiento del mo-

tor y además es necesario definir unas longitudes caracteŕısticas que permitan

modular la influencia de la fuerza y convertir las fuerzas en enerǵıas, necesario

para completar el término de Kramers. A esta aproximación se le pueden criticar

principalmente dos cosas. La primera es que la introducción de las distancias

de modulación suponen estados intermediarios del motor a lo largo del ciclo.

En concreto, la Ref.[45] predice unos estados intermedios que luego, al menos

para tiempos inferiores a 30µs [40] no se observan en las trayectorias. La segunda

cŕıtica, más importante que la otra, consiste en que la aproximación con términos

de Kramer modifica el equilibrio qúımico de forma que para el valor de la fuerza

máxima, la situación de equilibrio es alcanzada. Se suele partir de una función de

potencial qúımico a la que se añade el trabajo de la fuerza externa. Cuando el mo-

tor llega a pararse, el potencial qúımico total se anula, lo cual quiere decir, desde

el punto de vista qúımico, que la reacción se produce tantas veces en un sentido

como en el otro. Este esquema es totalmente válido para un motor como el BFM o

el FO de la ATP sintetasa. No obstante, en una kinesina, cuando el motor está en

el régimen de fuerza máxima, aunque no se mueva, el ATP sigue hidrolizándose.

En cualquier caso, es inadmisible el aceptar que se producen tantas śıntesis de

ATP como hidrólisis. De forma que, aunque mecánicamente el motor ya está

parado, el potencial qúımico dista de haberse anulado. Tanto es aśı, que transi-

ciones qúımicas inversas en la kinesina ni siquiera han sido observadas de forma

evidente, aunque hay tentativas para estimar los baj́ısimos coeficientes cinéticos

inversos de dicha reacción [75]. Por lo tanto, creemos que es necesario introducir

otro formalismo que por una parte no necesite de un desplazamiento del centro

de masas para poder efectuar transiciones qúımicas como también poder tener

una forma de modular la velocidad de reacción sin por ello desviar el equilibrio

qúımico entre el ATP, ADP y Pi.
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Para ello desarrollamos un formalismo que en vez del alterar los coeficientes

de equilibrio entre ATP y sus productos, use una influencia lateral a la reacción a

través de la teoŕıa de inhibición, que si bien altera el ritmo global de la reacción, no

presupone que en condiciones cercanas a la fuerza máxima el ritmo de la reacción

inversa se vuelve tan fuerte como el de la reacción directa. En realidad, ni siquiera

nos hace falta suponer el último paso de la reacción de forma reversible, sino que

podemos seguir trabajando en la aproximación (t́ıpica en cinética de Michaelis-

Menten) de que el último paso de la reacción es irreversible, lo cual está mucho

más de acuerdo con los experimentos. En concreto, lo que hacemos es consid-

erar una fuerza mecánica como un inhibidor, o activador si la fuerza asiste al

movimiento en vez de oponerse, pero para simplificar nos referiremos al caso en

el que la fuerza se opone al movimiento, aunque luego apliquemos la teoŕıa en

todo su rango experimental, que incluye los dos reǵımenes. De hecho, un inhibidor

no tiene por qué ser una sustancia qúımica sino cualquier otro factor que altere los

ritmos globales de las reacciones. Lo que śı es cierto es que la teoŕıa clásica de in-

hibición se centra en el caso de inhibidores qúımicos, para los cuales hay definida

una concentración. Por eso uno de los objetivos de nuestra teoŕıa es poder definir

una concentración de inhibidor efectiva a partir de una fuerza mecánica. En este

primer trabajo lo que hacemos no es deducir esta relación de otros principios sino

adivinarla y ensayarla. En primer lugar, la adivinación no tiene más misterio que

la de elegir la funcionalidad más sencilla que cumpla los requisitos imprescindibles

que tiene que cumplir la relación fuerza-inhibidor. En primer lugar, si la fuerza es

nula, la concentración del inhibidor debe serlo también. En segundo lugar, si la

fuerza llega al valor de la fuerza máxima, el inhibidor debe hacerse infinito. Una

vez que se escoge la expresión más sencilla que cumple estas dos condiciones se

ensaya usando los valores experimentales a través de una aplicación directa de la

teoŕıa de inhibición y se ve que la concordancia con dichos valores es satisfactoria,

lo cual implica que no es necesario, de momento, buscar expresiones más com-

plicadas. Veremos más adelante cómo puede deducirse la expresión dada a partir

de otras hipótesis microscópicas, pero no es este el propósito de este bloque. En

resumen, tenemos una función sencilla (aunque no lineal) de la relación inhibidor

fuerza que nos permite una expresión anaĺıtica para la velocidad media en función

de la fuerza externa y de la concentración de ATP. Además, contrastado con los
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experimentos, el nivel de concordancia es realmente bueno.

Adicionalmente, como la kinesina resulta ser un motor mixto (en el sentido

en que la fuerza actúa en ella como un inhibidor mixto), podemos dar, a través

de las constantes de inhibición, que son dos, una medida cuantitativa de cómo

la fuerza mecánica afecta los diferentes estados qúımicos. En concreto, las dos

constantes de inhibición, kic y kiu, se deducen de los datos experimentales de-

mostrando que se trata de un inhibidor mixto competitivo, ya que kic < kiu. Esto

permite explicar el hecho de que las trayectorias en la kinesina se ven afectadas

de dos formas distintas por la fuerza. En primer lugar, los saltos que correspon-

den a los desplazamientos de 8nm, aunque parecen instantáneos en una escala

de milisegundos, tienen en realidad una pendiente finita que decrece cuando la

fuerza aumenta. No obstante, este efecto es menos importante que el hecho de

que la fuerza externa aumenta enormemente el tiempo de espera entre dos enven-

tos consecutivos. Este hecho, que no deja de ser curioso en tanto que un factor

mecánico afecte a un tiempo de espera que parece puramente basado en la efusión

(en la probabilidad de que un ATP entre en la cavidad de la enzima), es el que

predomina a la hora de ver cómo la velocidad global decrece cuando la fuerza

externa crece. Estos dos efectos desiguales se reflejan en la desigualdad de las

dos constantes de inhibición. En la figura 13.4 se muestra el esquema del modelo

de este bloque aśı como algunos de sus resultados principales, los cuales están

publicados en [43].

Otro aspecto importante de este trabajo es que presenta un formalismo y una

metodoloǵıa para las cuales la aplicación a la kinesina es solo un ejemplo par-

ticular. Esta aproximación permite caracterizar otros motores, incluso teóricos

como se vio en el modelo inchworm lineal o el rotatorio. No obstante, lo in-

teresante de verdad es contrastar en qué medida la aplicación de esta teoŕıa a

otros motores reales sigue siendo válida. Ese es exactamente el objetivo de la

siguiente sección. Con la idea de que cada motor individual que presente un com-

portamiento michaeliano ante modificaciones de la cantidad de substrato pueda

explicarse usando teoŕıa de inhibición, hemos desarrollado un modelo unificado

que se demuestra útil en los tres motores moleculares en los que ha sido ensayado,

a saber, en la kinesina-1 (con datos experimentales nuevos, diferentes a los del
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trabajo anterior), en el BFM y la RNA polimerasa. Como veremos, además del

buen acuerdo entre teoŕıa y datos experimentales, este nuevo formalismo nos

permitirá entender con más profundidad la forma en que las fuerzan alteran los

procesos qúımicos.

Figure 13.4: Teoŕıa de inhibición aplicada al forzamiento de la kinesina-
1 [43]. a) Esquema de inhibición sobre la reacción enzimática que la kinesina-1
produce sobre el ATP. La concentración efectiva de inhibidor, [I]F se obtiene
de la fuerza externa, F . b) Curvas velocidad fuerza en las que la información
experimental es la misma que en la figura 13.1. Las ĺıneas son predicciones teóricas
que están en buen acuerdo con los valores experimentales.

El formalismo unificado para motores individuales, lo que constituye el bloque

final del caṕıtulo cinético-qúımico, está basado en la idea de que el tiempo prome-

dio de cada ciclo mecánico-qúımico puede ser expresado a través de la suma de

tiempos caracteŕısticos de cada subproceso involucrado en dicho ciclo. Lo que

hacemos es separar el tiempo total en la suma de tres sub-tiempos: el tiempo

interno, el de espera y el mecánico. Una vez que estos tiempos están bien estima-

dos, ya podemos obtener una expresión para la cinética, pues normalmente los

motores moleculares con los que tratamos tienen un tamaño de paso fijo y cono-

cido, con lo cual todo el interés cinético se esconde en el conocimiento de cómo las

fuerzas mecánicas afectan a cada subtiempo. Definimos al tiempo interno como

la suma de los tiempos de aquellos procesos que no dependen de ninguna de

las dos principales variables control, que son la concentración del substrato y la

fuerza externa. El tiempo de espera es el tiempo que tarda el motor entre dos

eventos mecánicos (dos pasos), y aunque es bien sabido que este tiempo es aleato-

rio, también es cierto que de cara a analizar la cinética global promediada nos
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basta con caracterizar el tiempo promedio de la distribución de tiempos que se

observa en realidad. Finalmente, el tiempo mecánico consiste el tiempo que tarda

el motor en realizar el paso mecánico, y se estima de forma sencilla utilizando

una dinámica sobreamortiguada a través de las fuerzas y el coeficiente de fricción

asociado.

Mientras que el tiempo externo es simplemente una constante a ajustar a

partir de los datos y que el tiempo mecánico proviene de un cálculo sencillo en

el que la acción de la fuerza es totalmente lineal, el tiempo de espera se revela

menos trivial y en realidad es donde se esconde buena parte de la fenomenoloǵıa

que aqúı estudiaremos. De hecho, cuando se aumenta la fuerza externa, el tiempo

de espera crece razonablemente, lo cual no deja de ser sorprendente. Si el ATP,

o los substratos pertinentes en cada caso, se aproximan por difusión a la zona

del bolsillo cataĺıtico, ¿cómo es que tal proceso se ve tan afectado por la acción

de una fuerza? Esta pregunta motiva la principal hipótesis de este trabajo, que

consiste en suponer que dicho bolsillo tiene una apertura que se ve afectada por la

fuerza. De esta forma, si consideramos al proceso de captura del substrato como

un proceso de efusión, el ritmo de paso de la part́ıcula a través del agujero que

define la entrada a la cavidad enzimática depende de la superficie de ese agujero.

De esta forma, si la fuerza externa, cuando se opone al movimiento, reduce dicha

superficie, entonces el substrato necesita más tiempo para poder pasar a la cavi-

dad y por tanto el tiempo aumenta. Si en cambio la fuerza asiste al movimiento,

la cavidad se abre aún más de lo que lo está cuando no hay fuerza, lo que explica

que el ritmo de la reacción aumente cuando esta fuerza se aplica. Esta es una

hipótesis que nos llevará a resultados muy relevantes pero que, según creemos,

no está demostrada experimentalmente.

Como primera aproximación, un primer modelo sencillo para la respuesta de

la cavidad a la presencia de la fuerza externa es suponer que la apertura del bol-

sillo está modulada por un potencial armónico. Esto, como se ve en los apéndices

de la sección, permite demostrar la expresión que se utilizó en el estudio anterior.

No obstante, podemos ver que una expresión más sofisticada es más apropiada

para describir al motor en un rango de fuerzas más amplio, pues los experimentos

más recientes exploran no solo un espectro de fuerzas asistentes al movimiento
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más ancho [46], sino que también se explora el régimen de fuerzas opuestas al

movimiento que son mucho mayores que la fuerza máxima [40], lo cual llevó

al descubrimiento de la existencia de un régimen en el que la kinesina realiza

una inversión del ciclo mecánico que sin embargo no supone la inversión del ci-

clo qúımico. Para un modelo de potencial armónico de bolsillo, pues, es necesario

acotar los casos extremos. Por ejemplo, es preciso que el modelo no adquiera aber-

turas negativas para la cavidad, como tampoco aberturas infinitas para fuerzas

asistentes demasiado grandes. Lo que hacemos es conservar el comportamiento de

respuesta armónica lineal cerca de fuerzas de módulo pequeño o moderado mien-

tras que suavizamos la respuesta para fuerzas extremas de forma que existe una

saturación que implica que existe un máximo de apertura aśı como un mı́nimo,

que es cero. Esto lo conseguimos a través de una función sigmoidal que recupera

el caso armónico simple para deformaciones pequeñas.

El modelo se aplica a los tres motores ya mencionados con un acuerdo exce-

lente en los casos de la kinesina-1 y la RNAp, que son mecanoenzimas, mientras

que el acuerdo con los datos para el BFM es solamente notable, lo cual no es

poco si se tiene en cuenta que los experimentos son más dif́ıciles y se presen-

tan con mucha menos precisión. En cualquier caso creemos que la conclusión

es que nuestro formalismo se revela muy útil para caracterizar cualquier motor

individual, especialmente si se trata de mecano-enzimas. No obstante, una re-

stricción del modelo es que tal y como está presentado aqúı solamente sirve para

predecir resultados en un régimen de irreversibilidad qúımica, aunque admite la

reversibilidad mecánica. Un motor como el F1 de la ATP sintetasa requeriŕıa una

modelización mucho más compleja.

Más allá del acuerdo con los resultados experimentales, cabe destacar que este

trabajo aporta un resultado teórico muy relevante. Se trata de la necesidad de

separar el concepto de fuerza máxima (stall force) en dos elementos bien diferen-

ciados. Esta separación, inédita según creemos, permite explicar un fenómeno tan

curioso como la inversión mecánica, pero no qúımica, de la kinesina. Hasta ahora,

el concepto de fuerza máxima hab́ıa sido uńıvoco: era el valor de la fuerza ex-

terna al cual la velocidad promedio del motor se haćıa nula. Pero en vista de que

ahora sabemos que la fuerza afecta al comportamiento del motor de dos formas
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distintas, ¿qué clase de inmovilización es la que para al motor? Hay dos opciones.

Una es que la fuerza motriz del motor se iguala en módulo a la fuerza externa y

por lo tanto se llega a un equilibrio mecánico que impide al motor avanzar más.

La otra opción, menos evidente, es que la fuerza externa cierra completamente

la cavidad de modo que el acceso del substrato al motor queda vedado. Según

esto, aunque la fuerza motriz siga siendo mayor que la fuerza externa, el motor

se parará. En el caso de la kinesina es interesante discernir a qué tipo de ĺımite

se llega primero a medida que la fuerza externa aumenta. Si se llega primero al

ĺımite de fuerza máxima qúımica (aquella que ya cierra la cavidad), entonces el

motor ya no se moverá más porque el tiempo de espera se volverá infinito. En

cambio, si se llega primero al valor de fuerza máxima mecánica, la fuerza motriz

se ve igualada por la externa pero el acceso del ATP a la cavidad sigue estando

permito, lo cual posibilita que el ciclo qúımico siga avanzando. Si estiramos con

una fuerza externa muy grande (régimen de superstall force), la fuerza externa

desv́ıa el equilibrio mecánico de forma que el paso mecánico puede darse hacia

atrás, como en realidad se observa, mientras que el ciclo qúımico sigue yendo

hacia adelante e incluso en el ĺımite en el que la irreversibilidad qúımica siendo

siendo una aproximación muy buena. Ahora bien, si uno sigue aumentando la

fuerza externa, se llegará eventualmente a un valor para el que el bolsillo quedará

cerrado del todo y por tanto la velocidad media, que hab́ıa empezado a crecer

en el dominio negativo, vuelve a cambiar de rumbo hasta hacerse cero de nuevo.

Estos resultados permiten entender los resultados obtenidos en [40] a la vez que

predicen una anulación final de la velocidad que no puede discernirse con claridad

en los datos experimentales debido a la dificultad para explorar esos reǵımenes.

En la figura 13.5 mostramos algunos detalles y resultados de este estudio, que

está por publicar.

13.3 Modelos electrostáticos para la kinesina-1

Este caṕıtulo es el que probablemente contiene resultados más interesantes pero

a la vez el más controvertido de la tesis. Está dividido en dos bloques princi-

pales, aunque asimétricos, pues al primero se le concede mucho más peso que

al segundo. Aśı, por una parte presentamos un análisis de la mecánica de la ki-
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Figure 13.5: Modelo unificado para caracterizar las curvas velocidad-
fuerza a) Esquema de la hipótesis de un tiempo de espera que está modulado
por la apertura de la cavidad enzimática, que a su vez depende de la fuerza
externa. En 0) observamos la cavidad con su apertura natural, no forzada. Si
la fuerza externa asiste al movimiento abrimos más la cavidad (+1) mientras
que si la fuerza se opone al movimiento la cavidad se cierra (-1) aumentando
aśı el tiempo de espera. b) Curvas velocidad fuerza para la RNAp. Los puntos
experimentales provienen de [46], mientras que las curvas son las predicciones
del modelo. Vemos cómo el ajuste es satisfactorio a todas las [NTP ]eq, que son
las concentraciones relativas de ATP, UTP, CTP y GTP a las que los ritmos de
reacción no forzados se igualan para las cuatro bases.
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nesina considerando algunas interacciones electrostáticas entre el microtúbulo y

el motor. Por la otra, analizamos las interacciones entre la cabeza de la kinesina

con el microtúbulo en función de los diferentes estados que aquella tiene respecto

al substrato, lo que viene a completar algunas lagunas de la primera parte. El

motivo de adentrarnos de forma más profunda en los mecanismos que subyace

el paso de la kinesina es principalmente la existencia de múltiples evidencias ex-

perimentales aparentemente inconexas pero que cobran sentido en el contexto de

nuestros modelos. Por otra parte, constituye un modelo verdaderamente f́ısico

en el sentido en que la mayoŕıa de los modelos para dicho motor, aunque mu-

chos con elementos mecánicos, usan fuerzas fenomenológicas sin especificar el

posible origen y naturaleza de estas. Nosotros, aunque no abordamos el prob-

lema en su por otra parte inmensa complejidad, śı que apuntamos a algunos

datos sobre propiedades electrostáticas que permiten entender buena parte de la

fenomenoloǵıa conocida. El problema de adentrarse en detalles que requieren una

precision temporal y espacial (esta última en un sentido dinámico) que están más

allá o justo en el ĺımite experimental es que el grado de especulación aumenta,

por mucho que las hipótesis intenten ser mı́nimas y razonables. Además, nuestra

utilización de interacciones electrostáticas en un rango algo superior al que la

teoŕıa de Debye-Hückel estricta permite, no nos ha ayudado mucho de cara a

la difusión y aceptación de este trabajo. No obstante, tenemos motivos de peso

para dudar de la aplicación a la ligera de la teoŕıa del apantallamiento iónico en

condiciones como las que nos ocupa, algunas de las cuales se han hecho expĺıcitas

en esta tesis. Por otra parte, nuestro modelo reproduce numerosas propiedades

experimentales que, al menos por lo que nos consta, otros modelos más aceptados

y no siempre más conservadores no reproducen. Entre los numerosos resultados

de nuestro trabajo, podŕıamos destacar el de cómo la interacción de la carga del

cuello de la kinesina con el momento dipolar de la tubulina proporciona una di-

reccionalidad al movimiento que sin carga el motor no puede tener, por mucho

que el estado de espera sea inclinado con respecto a la dirección del protofila-

mento. Además, el cambio de signo en la carga del cuello produce un cambio de

sentido en dicho movimiento, lo cual está en gran acuerdo con el hecho de que la

direccionalidad se ve totalmente afectada ante un cambio puntual en el cuello [10].

El primer bloque de este caṕıtulo está basado principalmente en unas simula-
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ciones de dinámica molecular destinadas a estudiar las propiedades electrostáticas

de la tubulina en solución acuosa [63, 58]. El resultado principal de estas refer-

encias es que la tubulina tiene un momento dipolar permanente que se desarrolla

en presencia de los iones del medio y el agua, pues es un monopolo negativo en

el vaćıo. Lo más importante es que estas tubulinas, una vez polimerizadas en un

microtúbulo, conservan ese momento dipolar y lo tienen orientado en una forma

tal que la proyección del dipolo sobre el eje del movimiento de la kinesina es

no nulo. De este modo, la superficie del microtúbulo resulta ser negativa, pero

con una capa subyacente positiva que además le da carácter dipolar a toda la

estructura. Estos datos suponen una rotura de simetŕıa espacial en el filamento

que nos permite pensar un modelo que la tenga en cuenta para poder explicar

el movimiento del motor. Cierto es que hasta entonces ya se sab́ıa que los dos

extremos del filamento son distinguibles, pero esta propiedad estaba basada en

términos de frecuencias de polimerización (el extremo positivo es el que polimeriza

más deprisa). Y probablemente, ambos fenómenos estén bien relacionados, pero

si bien usando velocidades de polimerización no tenemos forma de plantear un

modelo válido, una estructura con propiedades ferroeléctricas abre mucho margen

de posibilidades.

Como utilizamos una propiedad electrostática del microtúbulo para mod-

elizar la kinesina, es necesario establecer unas hipótesis sobre las propiedades

electrostáticas de esta. Por simplificadoras que parezcan, aportan sentido a mu-

chos fenómenos importantes. Sabemos que la molécula de ATP también lleva

asociadas cargas eléctricas. En concreto, un ATP tiene cuatro cargas electrónicas

negativas, aunque normalmente se considera que tiene solo dos, puesto que suele

ir acompañada de un ión de magnesio. Por otra parte, a la superficie de una tubu-

lina se le asocian de 27 [63] a 35 [72] cargas negativas, lo cual significa que incluso

considerando la alta permitividad relativa del agua las fuerzas entre un ATP y la

tubulina pueden ser descomunales, mucho mayores que las fuerzas máximas pro-

ducidas por la kinesina. Es cierto que los iones del medio apantallarán en parte

esas fuerzas, pero tampoco parece razonable suponer que ninguna de esas fuerzas

son relevantes en el problema que tratamos. El ATP se introduce en una de las

cavidades cataĺıticas del motor, como ya hemos comentado antes, lo cual significa

que en cada cabeza, cada vez que se produce un cambio de estado de nucleótido,
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se produce un significativo cambio electrostático. Además, como una cabeza de

kinesina que está libre de nucleótido tiene tendencia a permanecer ligada a la

superficie del microtúbulo, suponemos que la carga global de la cabeza es ligera-

mente positiva, lo justo para que en presencia del nucleótido el signo global del

complejo cabeza-ATP o cabeza-ADP se vuelva negativo. Esto nos permite tener

una cabeza en el motor que es af́ın o no al microtúbulo dependiendo de si no

tiene un nucleótido adherido o si śı lo tiene, respectivamente. Finalmente, una

tercera carga es añadida al motor justo en la posición del cuello (neck linker).

Esta carga es lo que confiere la direccionalidad y su signo al motor. En definitiva,

suponemos al motor como una barra ŕıgida con una carga central (el cuello) que

es fija y una carga variable (depende del estado del nucleótido) en cada extremo,

lo que emula a la cabeza.

La introducción de la carga del cuello enel modelo está motivada por varios

hechos. Primero, se sabe que mutaciones puntuales en los pocos aminoácidos que

representan ese dominio producen cambios radicales en la procesividad [8] aśı

como en la pérdida de direccionalidad [10]. Esto apoya la tesis de que el cuello,

aunque pequeño y relativamente distante del microtúbulo, lee las propiedades de

este para poder decidir el sentido del movimiento e incluso condicionar su pro-

cesividad, que es una medida del número de pasos consecutivos que puede dar el

motor sin desengancharse del microtúbulo. El otro motivo por el cual se intro-

duce una propiedad electrostática en el cuello y de hecho, la razón que nos lleva a

elegir el signo de la carga que consideramos está basada en la polaridad del tallo

del motor (stalk), que es el dominio filamentoso que une las cabezas con la carga

que el motor transporta. Este tallo tiene una polaridad eléctrica bien definida

en tanto que son dos cadenas aminoaćıdicas. El hecho es que el tallo puede estar

conectado al cuello a través de su terminal amino, que es positivo o de su terminal

carboxil, que es negativo. Y parece ser [76] que mientras las primeras producen

kinesinas que se mueven hacia el extremo + (plus-end) del microtúbulo, las otras

caminan en sentido inverso. Es cierto que otras propiedades electrostáticas cer-

canas al cuello y que no dependan de la polaridad del tallo pueden afectar a

la direccionalidad, pero nosotros solamente consideramos una carga puntual que

resume de forma efectiva, a grosso modo, las propiedades electrostáticas del cuello.
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Cuando simulamos el modelo, incluso sin tener en cuenta la carga del cuello,

obtenemos un resultado remarcable: la posición de mı́nima enerǵıa, lo que se suele

llamar el parked state, adquiere una inclinación respecto la vertical definida por

la superficie del microtúbulo. Este estado se da cuando una cabeza, la trasera,

es positiva (sin nucleótido) y está adherida a una tubulina, mientras que la otra

cabeza, que es negativa (tiene un ADP atrapado) y a la que llamamos cabeza de-

lantera, no está en posición exactamente vertical sino inclinada, lo que es natural

por otra parte debido a la polarización de la tubulina. A menudo en la literatura

[55, 56] se trata el problema de la inclinación del estado de espera sin dejar claro

que dicha inclinación no define una direccionalidad. Es cierto que a primera vista,

el hecho de que la cabeza delantera ocupe una posición de espera más cerca de su

objetivo que del lugar de donde proviene (la tubulina anterior en la que estaba

adherida en el estado de espera anterior) parece que vaya a favorecer la cáıda de

esta cabeza hacia ”delante”. Pero eso no es cierto. Nuestras simulaciones demues-

tran que a pesar de la inclinación del motor, una vez que cambiamos la carga de

la cabeza delantera, lo cual equivale a la expulsión del ADP, la cáıda de la carga

ocurre tantas veces hacia un lado como hacia al otro. Es este hecho lo que hace

tan importante la introducción de la carga en el cuello, la cual por una parte

acentúa la inclinación del estado del espera (o la invierte si la carga del cuello es

negativa) y además decide de forma determinista el sentido del movimiento del

motor, por mucho que las fluctuaciones térmicas le induzcan transiciones inversas

de forma esporádica.

Se puede también establecer una relación entre la procesividad de la kinesina

y nuestro modelo, aunque a falta de saber datos reales sobre algunos coeficientes

cinéticos necesarios no hemos podido realizar cuantificaciones sobre ello. Pero la

idea cualitativa es por śı sola suficientemente clara. Un motor como la kinesina,

para ser procesivo, es decir, para poder efectuar varios pasos consecutivos sin

separarse del microtúbulo, debe tener las dos cabezas adheridas simultáneamente

al microtúbulo por un intervalo de tiempo determinado, por pequeño que este sea

(y de hecho se ha podido acotar que este es al menos inferior a 30µs [40]). Ahora

bien, para que esto pueda ser posible, el proceso de colapso de la cabeza de-

lantera hacia el microtúbulo debe ser más rápido que la ascensión y liberamiento

de la cabeza trasera. Cuando el motor está en su estado de reposo, aparcado,
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un ATP se adhiere eventualmente a la cabeza trasera. Esto activa dos procesos

en paralelo. Por una parte, y de forma totalmente misteriosa a d́ıa de hoy, esto

activa la expulsión del ADP atrapado en la cabeza delantera. Se ha especulado

con que la trasmisión de esta información viaja debido a deformaciones elásticas,

pero esta hipótesis no está demostrada e incluso hay algunas razones para pen-

sar que no es aśı [55]. Más adelante nosotros nos veremos obligados a suponer

que existe un conmutador entre las cabezas, la naturaleza del cual no es cono-

cida. Quizá algún efecto de transferencia electrónica pueda estar implicado, o

bien exista algún mecanismo de canalización electrostática, sobre la cual hemos

trabajado de forma preliminar [73] sin obtener todav́ıa resultados conclusivos.

Por otra parte, el otro proceso que activa la llegada del ATP a la cabeza trasera

provoca la hidrólisis del nucleótido, obteniendo un grupo Pi que al desprenderse

de la cavidad se produce el desprendimiento de esta cabeza del microtúbulo, de

forma que esta inicia la ascensión hasta la posición inclinada del nuevo estado de

reposo. La clave para comprender la procesividad está en que el primer proceso

debe completarse antes de que la cabeza trasera inicie su disociación de la tubu-

lina. En la última sección de esta tesis damos una explicación plausible al retraso

del segundo paso.

En nuestro modelo, cuando el cuello tiene una carga positiva, el motor, además

de estar direccionado hacia el ĺımite de rápida polimerización (+end), se muestra

muy favorable a ser procesivo porque el proceso de cáıda de la cabeza delantera

es muy rápido, ya que el cuello y la cabeza se ven atráıdos por el microtúbulo. En

cambio, motores con el cuello negativo, experimentan un proceso de cáıda lento,

lo cual propicia la desunión del motor que supone la pérdida de procesividad.

Aśı pues, la relación de las fases de nuestro ciclo mecánico con la interacción

del cuello-tubulina es crucial para determinar la procesividad de un motor. No

obstante, sin datos fiables de qué tiempos caracterizan los procesos de expulsión

de ADP y de desunión de la cabeza trasera una vez que el ATP se ha unido a ella

no podemos establecer cuantitativamente unos valores para el recorrido promedio

(mean run length), que es la magnitud que mide la procesividad y de la que hay

disponible una buena cantidad de datos experimentales. Cabe mencionar que,

además, hay evidencia experimental de que este recorrido medio se ve severa-

mente afectado por modificaciones puntuales en las propiedades del cuello [8], lo
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cual ratifica más la importancia de este aspecto en nuestro modelo. En la figura

13.6 mostramos algunos detalles del modelo tal y como fue publicado en [71].

El segundo bloque de este caṕıtulo es el último trabajo de esta tesis. Está

basado en la modelización de las interacciones entre cuatro elementos clave para

el funcionamiento de la kinesina: la cabeza del motor, el tubulina, el ADP y el

Pi. A la luz de recientes medidas [56] obtenidas con FRET intentamos reproducir

los estados estacionarios entre la kinesina y el microtúbulo para cuatro situa-

ciones diferentes. La primera consiste en una solución sin nucleótido, en la cual

ambas cabezas, la delantera y la trasera, se adhieren al filamento. En la segunda

situación se añade AMP-PNP, que es una molécula análoga al ATP pero con la

peculiaridad de que no es hidrolizable por la kinesina, lo cual permite observar

de una forma congelada el estado de la cabeza justo después de la captación del

ATP. El resultado es, como ya se sab́ıa de otros experimentos de decoración de

microtúbulos [59], que las dos cabezas se adhieren al microtúbulo. La diferen-

cia respecto al caso anterior es que con AMP-PNP parece haber un enlace más

ŕıgido. La tercera situación consiste en preparar una kinesina en una solución

de ADP. En este caso se observa el estado de reposo, con una cabeza adherida

(sin nucleótido) al filamento y la otra disociada pero con un ADP en su interior.

El cuarto caso es una variante del tercero, en la que se añade al ADP una gran

concentración de Pi. Esto promueve que haya transiciones de la cabeza delantera

entre el estado de reposo y un estado en el que está adherida al microtúbulo,

siendo este estado menos frecuente que el otro.

Nuestro trabajo permite reproducir todos estos resultados y da un paso más

allá, pues también permite reproducir el estado dinámico correspondiente a la

adición de ATP. Para ello, dos hipótesis principales son necesarias, ambas razon-

able en relación a lo que ya se conoce de las enzimas en general y la kinesina en

particular. Lo que se acepta de las enzimas es que son capaces de reducir enorme-

mente la barrera de activación que protege la enerǵıa almacenada en el sustrato.

De la kinesina se sabe que además es capaz de cerrar su cavidad cataĺıtica atra-

pando el ADP resultante en su interior. Además, se acepta que entre las dos

enzimas, una por cabeza, existe una trasmisión de información muy efectiva que

posibilita el movimiento coordinado del motor. Estos tres aspectos son los que
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Figure 13.6: Modelo electrostático de la kinesina [71]. a) Esquema del mod-
elo en cuatro fases distintas para el caso de una kinesina convencional (wild-type)
y otra ncd. Partiendo del caso 0) ambas están en su estado aparcado, inclinadas
según sus respectivas direccionalidades. En ambas, un ATP llega a la cabeza
unida al microtúbulo y desestabiliza dicho estado. En +1) y -1) el ADP en la
cabeza libre sale de la cavidad enzimática dejando a la cabeza libre con carga
global positiva, lo cual propicia la cáıda de esta cabeza al microtúbulo. En +2)
y -2) vemos la direccionalidad de cada una de las cáıdas, que vienen dadas por
la interacción de un cuello positiva o negativamente cargado, según tengamos la
kinesina convencional o una ncd, respectivamente. Finalmente, en +3) la cabeza
trasera se desune del microtúbulo y asciende a un nuevo estado aparcado que
completa el ciclo. En -3) dibujamos una situación similar (y simétrica) aunque es
poco probable que el ascenso de la cabeza trasera se produzca después de la cáıda
de la cabeza libre. En el motor ncd, tal cáıda es probablemente muy lenta debida
a la repulsión cuello-microtúbulo y eso reduce drásticamente la procesividad del
motor. b) Respecto a todos los casos de a) hay asociados unos potenciales que
ilustran las inestabilizaciones que produce el ATP aśı como la direccionalidad de
cada motor, evidente al ver que la contribución del potencial cuello-microtúbulo
desplaza lateralmente los puntos de derivada nula que hay antes y después de la
desestabilización.
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explicitaremos cuantitativamente en forma de hipótesis en el modelo. Además,

incluimos otra hipótesis adicional que creemos necesaria para poder explicar la

fenomenoloǵıa observada en [56] y que en cualquier caso es verificable experimen-

talmente de forma directa o bien a través de lo que esta predice.

Para comenzar con esta última hipótesis, podemos decir que el grupo Pi re-

sultante de la hidrólisis del ATP (o necesario para su śıntesis) parece tener una

cierta afinidad qúımica por el microtúbulo, hecho del que no tenemos noticia

experimental. No obstante, sabemos que tanto el microtúbulo (en su superficie)

como el grupo Pi son electrostáticamente negativos. Entonces, dicha afinidad solo

puede deberse a que ambos pueden confinarse mutuamente como también lo hace

Pi con el ADP a la hora de formar un ATP, siendo el ADP negativo también.

Esta suposición, aunque pueda parecer sorprendente al principio, es necesaria

para entender cómo la kinesina actúa con el microtúbulo.

A continuación, podemos formalizar el resto de hipótesis de la siguiente forma.

Supondremos que la actividad enzimática es capaz de eliminar parcialmente la

barrera de activación entre el ADP y Pi, pero que en vez de ser una simple elimi-

nación, esta barrera se transfiere a la interacción entre el ADP y la propia cabeza,

lo cual permite explicitar el fenómeno cataĺıtico y el del encierro del ATP en el

bolsillo. La transferencia de esta barrera le hace pasar a la cabeza de un estado A

a un estado B. La última hipótesis, la de coordinación entre cabezas, consiste en

suponer que cuando una cabeza realiza la transición A→ B, la otra cabeza realiza

la opuesta, B → A. Este tipo de trasmisión, que no es más que una conmutación,

muy t́ıpica en los motores macroscópicos, posibilita que la cabeza delantera pueda

desprender el ADP que lleva dentro y activar aśı el ciclo mecánico descrito en el

trabajo anterior.

Con todas estas hipótesis, elaboramos potenciales de interacción basados en

las cargas que cada elemento posee (según el trabajo anterior y otras estimaciones

en [63, 58, 72], en un apantallamiento moderado debido a los iones del medio y en

barreras de confinamiento que sirven para incorporar las hipótesis anteriores. La

barrera que confina a la tubulina con el Pi es fija, mientras que la que confina a

ADP-Pi y ADP-cabeza dependen de su estado de conmutación, al que llamamos
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estado Γ. Sin suponer aqúı la tubulina como un dipolo ni tener en cuenta más que

una dimensión de movimiento por razones de simplicidad, simulamos los cuatro

elementos con una dinámica sobreamortiguada en la que incorporamos fluctua-

ciones térmicas a través de un ruido blanco gaussiano.

Si simulamos el sistema con solo la cabeza y la tubulina vemos cómo la

atracción electrostática hace que ambos elementos queden atrapados mutua-

mente. Si añadimos AMP-PNP, que modelizamos como un estado confinado de

ADP-Pi con una barrera que no permite la conmutación del estado Γ (lo que

implica que la hidrólisis no puede ocurrir), vemos cómo el grupo Pi se confina en

el microtúbulo mientras que el ADP queda ligeramente atrapado en la cabeza.

El complejo cabeza-ADP se ve globalmente repelido por el microtúbulo, ya que

la suma de sus cargas es negativa, pero la barrera de confinamiento entre ellos

no es suficientemente alta como para que la repulsión del ADP pueda llevarse a

la cabeza consigo. De todas formas, el ADP está fuertemente confinado al grupo

fostato, el cual está atrapado en la tubulina. Como vemos, aunque el resultado

experimental es muy parecido al del caso sin nucleótido, la situación es ahora

bastante más compleja. Esta diferencia se aprecia en un enlace más ŕıgido en este

caso (con AMP-PNP), lo cual nuestro modelo también reproduce claramente.

Los dos casos restantes se explican de forma más compleja, y se necesita tener

en cuenta nuestro trabajo anterior para poder completar el razonamiento. Cuando

se introduce ADP en el sistema, las fluctuaciones térmicas harán que moléculas

de ADP entren eventualmente en los dos bolsillos de la kinesina. No obstante,

uno de ellos tendrá un estado Γ que permitirá confinarlo fuertemente mientras

que el otro no podrá retenerlo. En consecuencia, la primera cabeza, unida al

ADP, se verá repelida del microtúbulo, mientras que la otra, sin ADP, quedará

atrapada por este. Sabiendo que esto define el estado de reposo de la kinesina

es de esperar que la cabeza con ADP quede fuertemente inclinada hacia el +end

del microtúbulo, pero sin poder caer al microtúbulo de forma estable debido a

la interacción de esta cabeza y el cuello con el potencial que marcan los dipo-

los de la tubulina. Esto explica el bloqueo al que se alude en [55] por el cual la

cabeza delantera no puede colapsar hasta que un ATP no se adhiera a la cabeza

trasera. En nuestra simulación, si tenemos una cabeza en un estado Γ u otro



13. RESUMEN DE LA TESIS 298

obtendremos que la cabeza quedará unida al microtúbulo sin ADP o bien vemos

cómo se forma el complejo ADP-cabeza y cómo este se aleja del microtúbulo.

Todo esto nos prepara para entender el cuarto estado estacionario experimental,

en el cual se añade a este escenario una gran cantidad de grupos Pi. Bajo el marco

de nuestro modelo, esto aumenta mucho las posibilidades de que los grupos fos-

fato acaben ocupando una buena parte de las tubulinas, quedando confinadas en

ellas. Aśı pues, tenemos una cabeza con ADP cerca del microtúbulo pero con un

mı́nimo de equilibrio fuera de él. Tenemos en la tubulina cercana un grupo fos-

fato confinado. Si tenemos ahora en cuenta que el ADP y el grupo Pi tienen una

barrera de confinamiento mutua que debido al estado Γ es baja pero no nula (la

conmutación no transfiere la barrera inicial más que parcialmente), entendemos

cómo el grupo fosfato en la tubulina y el ADP del bolsillo enzimático pueden

formar un complejo metaestable, que es lo que se observa tanto en los experi-

mentos como en nuestro modelo. Para mayor apoyo experimental, es interesante

ver cómo en [75] se observa en la cabeza delantera de la kinesina que hay una

cierta facilidad de que grupos fosfato se adhieran de forma metaestable al ADP

atrapado.

Finalmente, podemos observar todo el ciclo dinámico que consiste en tener

una cabeza libre de nucleótido atrapada en el microtúbulo. Entonces un ATP, que

es un complejo ADP-P fuertemente confinado, tras un tiempo que computacional-

mente es casi inalcanzable en nuestro modelo (y por eso preparamos la condición

inicial que sabemos que eventualmente acabará pasando), llega a la tubulina de

forma que el fosfato se confina en el microtúbulo. Entonces, tras un cierto tiempo,

la cabeza efectúa su actividad enzimática transfiriendo parte de la barrera entre

ADP-Pi al complejo ADP-cabeza. Obtenemos entonces que el complejo cabeza-

ADP se ve repelido por el microtúbulo, aunque aún confinado a través de una

barrera entre ADP y Pi que ahora es más débil. Este tiempo, durante el cual en la

cabeza remota ya se ha debido iniciar el colapso que asegura la procesividad, es de

competición entre un ADP que se ve repelido por el microtúbulo pero atrapado

por el grupo fosfato. Finalmente, de produce el desligamiento y el ADP se aleja

del microtúbulo llevándose al ADP consigo hacia la posición del estado de reposo.

Esta discusión completa de forma notablemente los huecos que el modelo elec-

trostático anterior dejaba y supone una aproximación altamente fenomenológica
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pero con un nivel de predicción que queda bien patente al ver cómo los resultados

concuerdan con los experimentos. En la figura 13.7 podemos ver algunos de los

resultados más notables de este modelo.

Figure 13.7: Proceso de hidrólisis en la cabeza de una kinesina-1. Re-
sultados de la simulación de un proceso de hidrólisis. Vemos cómo la cabeza,
inicialmente af́ın al microtúbulo, se desune (t1) del filamento llevándose al ADP
resultante consigo. Es crucial el hecho de que t1 > 0, ya que es esta diferencia
entre t1 y t = 0 lo que permite al motor ser procesivo. En t2 tenemos el proceso
de unión de un ATP en la otra cabeza, la cual no simulamos aqúı explicitamente.
Entonces el ADP sale de la cavidad enzimática y la cabeza vuelve a ser af́ın por
el microtúbulo, al cual cae tras un cierto tiempo que dura hasta t3.
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