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Abstract

We consider priority-based school choice problems with farsighted stu-

dents. We show that a singleton set consisting of the matching obtained from

the Top Trading Cycles (TTC) mechanism is a farsighted stable set. However,

the matching obtained from the Deferred Acceptance (DA) mechanism may

not belong to any farsighted stable set. Hence, the TTC mechanism provides

an assignment that is not only Pareto efficient but also farsightedly stable.
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1 Introduction

Abdulkadiroğlu and Sönmez (2003) formulate the school choice problem of assign-

ing students to schools as a mechanism design problem.1 Each student has strict

preferences over all schools and each school has a strict priority ordering imposed

by state or local laws of all students. The outcome of a school choice problem is

a matching that assigns schools to students such that each student is assigned one

school and no school is assigned to more students than its capacity. Two prominent

mechanisms used for priority-based matching are the Gale and Shapley’s (1962) De-

ferred Acceptance (DA) mechanism and the Shapley and Scarf’s (1974) Top Trading

Cycles (TTC) mechanism. Both mechanisms are strategy-proof: truthful preference

revelation is a weakly dominant strategy for students.2 On the one hand, the TTC

mechanism is Pareto efficient while the DA mechanism may select an inefficient

matching. On the other hand, the DA mechanism is stable while the TTC mecha-

nism may select an unstable matching.

A stable matching in the context of school choice eliminates justified envy in

the sense that there is no unmatched student-school pair (i, s) where student i

prefers school s to her assignment and she has higher priority than some other

student who is assigned a seat at school s. Since only the preferences of students

matters in the context of school choice, the stable matching that results from the

DA Mechanism Pareto dominates any other matching that eliminates justified envy

and is strategy-proof. However, this matching may still be Pareto-dominated.3 A

Pareto efficient and strategy-proof matching is obtained by the TTC mechanism.

There is no mechanism that is both Pareto efficient and stable.4

Up to now, it has been assumed that all students are myopic when they decide

to join or leave some school. Myopic students do not anticipate that other students

1Abdulkadiroğlu and Anderson (2022) provide an extensive survey of school choice. See also

Roth and Sotomayor (1990) or Haeringer (2017) for an introduction to matching problems.
2Reny (2022) introduces the Priority-Efficient (PE) mechanism that always selects a Pareto

efficient matching that dominates the DA stable matching, but PE is not strategy-proof. Another

attempt to improve the efficiency of the DA mechanism can be found in Kesten (2010).
3Doğan and Ehlers (2021) characterize the priority profiles for which there exists a Pareto

improvement over the DA matching that is minimally unstable among Pareto efficient matchings.
4See e.g. Roth (1982). Che and Tercieux (2019) show that both Pareto efficiency and stability

can be achieved asymptotically using DA and TTC mechanisms when agents have uncorrelated

preferences.
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may react to their decisions. However, looking forward joining school s′, a farsighted

student i may decide to join some school s to push student j out of school s, and

later on exchanging her priority at school s with another student k who has priority

at school s′, prefers s to s′ and is worse ranked than j at s.

Does the TTC mechanism lead to a stable matching when students become far-

sighted? To address this question, we adopt the notion of farsighted stable set for

school choice problems to study the matchings that are stable when students farsight-

edly apply to schools while schools myopically and mechanically enroll students.5

A farsighted improving path for school choice problems consists of a sequence of

matchings that can emerge when farsighted students form or destroy matches based

on the improvement the end matching offers them relative to the current one while

myopic schools always accept any student on their priority lists unless they have full

capacity. In the case of full capacity, a school accepts to replace the current match

by another match if each student who leaves is replaced by a newly enrolled student

who has a higher priority. A set of matchings is a farsighted stable set if (Internal

Stability) for any two matchings belonging to the set, there is no farsighted improv-

ing path connecting from one matching to the other one, and (External Stability)

there always exists a farsighted improving path from every matching outside the set

to some matching within the set.

We show that, once students are farsighted, the matching obtained from the

TTC algorithm becomes stable. A singleton set consisting of the TTC matching

is a farsighted stable set. In fact, we construct a farsighted improving path from

any matching leading to the TTC matching. Along the farsighted improving path,

students belonging to cycles sequentially act in the order of the formation of cycles

in the TTC algorithm. Looking forward towards the end matching (i.e. the TTC

matching), students belonging to a cycle first get a seat at the school they have

priority. Second, they leave that school, and by doing so, guaranteeing a free seat

at that school. Third, they join the school they match to in the TTC matching.

Thus, the matching obtained from the TTC algorithm is not only Pareto efficient

and strategy-proof, it is also farsightedly stable. On the contrary, the matching

obtained from the DA algorithm may not belong to any farsightedly stable set.

5See Chwe (1994), Mauleon, Vannetelbosch and Vergote (2011), Ray and Vohra (2015, 2019),

Herings, Mauleon and Vannetelbosch (2019, 2020), Luo, Mauleon and Vannetelbosch (2021) for

definitions of the farsighted stable set.
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In addition, starting from any matching, students only need to look forward (at

least) three steps ahead to have incentives for engaging a move towards the matches

they have in the matching obtained from the TTC algorithm. Hence, not much

farsightedness is already sufficient for stabilizing the matching obtained from the

TTC algorithm.

Morill (2015) and Hakimov and Kesten (2018) introduce variations of the TTC

mechanism for selecting a matching that intends to be more equitable or fair by

eliminating avoidable justified envy situations. Morill (2015) proposes both the

First Clinch and Trade (FCT) mechanism and the Clinch and Trade (CT) mecha-

nism, while Hakimov and Kesten (2018) develop the Equitable Top Trading Cycles

(ETTC) mechanism. We show that the matchings obtained from those three vari-

ations are farsightedly stable too. That is, a singleton set consisting of the FCT

matching (CT matching / ETTC matching) is a farsighted stable set. The TTC

algorithm as well as its three variations lead to Pareto efficient matchings. One

may be tempted to infer that any Pareto efficient matching can be stabilized once

students are farsighted. However, we show that Pareto efficiency is not a sufficient

condition for a matching to be farsightedly stable.6

To sum up, farsightedness stabilizes the matching obtained from the TTC algo-

rithm while destabilizes the matching obtained from the DA algorithm, and so may

tip the balance in favor of TTC or one of its variations.

In addition, Abdulkadiroğlu, Che, Pathak, Roth, and Tercieux (2020) provide

both theoretical and empirical results supporting the TTC mechanism over alter-

native mechanisms. The TTC mechanism is justified envy minimal in the class of

Pareto efficient and strategy-proof mechanisms in priority-based one-to-one match-

ing problems. Justified envy minimal means that the mechanism satisfies Pareto

efficiency with the minimal amount of (myopic) instability. In priority-based many-

to-one matching problems, the TTC mechanism admits less justified envy than the

Serial Dictatorship mechanism in an average sense. Recently, Doğan and Ehlers

(2022) show that, for any stability comparison satisfying three basic properties, the

TTC mechanism is minimally unstable among Pareto efficient and strategy-proof

mechanisms when schools have unit capacities.

6The matching obtained from the Immediate Acceptance (IA) algorithm (i.e. the Boston mech-

anism) may not belong to any farsighted stable set. The IA mechanism satisfies Pareto efficiency

but is not strategy-proof.
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The paper is organized as follows. In Section 2, we introduce priority-based

school choice problems. In Section 3, we provide a formal description of the TTC

mechanism and its algorithm. In Section 4, we introduce the notions of farsighted

improving path and farsighted stable set for school choice problems, and we provide

our main result. In Section 5, we look at how much farsightedness is needed for

getting our main result. In Section 6, we consider three variations of the TTC

mechanism. In Section 7, we conclude.

2 School choice problems

A school choice problem is a list 〈I, S, q, P, F 〉 where

(i) I = {i1, ..., in} is the set of students,

(ii) S = {s1, ..., sm} is the set of schools,

(iii) q = (qs1 , ..., qsm) is the quota vector where qs is the number of available seats

at school s,

(iv) P = (Pi1 , ..., Pin) is the preference profile where Pi is the strict preference of

student i over the schools and her outside option,

(v) F = (Fs1 , ..., Fsm) is the strict priority structure of the schools over the stu-

dents.

Let i be a generic student and s be a generic school. We write i for singletons

{i} ⊆ I and s for singletons {s} ⊆ S. The preference Pi of student i is a linear order

over S ∪ i. Student i prefers school s to school s′ if sPis
′. School s is acceptable

to student i if sPii. We often write Pi = s, s′, s′′ meaning that student i’s most

preferred school is s, her second best is s′, her third best is s′′ and any other school

is unacceptable for her. Let Ri be the weak preference relation associated with the

strict preference relation Pi.
7

The priority Fs of school s is a linear order over I. That is, Fs assigns ranks to

students according to their priority for school s. The rank of student i for school

s is denoted Fs(i) and Fs(i) < Fs(j) means that student i has higher priority for

7Haeringer and Klijn (2009) investigate constrained school choice problems where students can

only rank a fixed number of schools.
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school s than student j. For s ∈ S, i ∈ I, let Φ(s, i) = {j ∈ I | Fs(j) < Fs(i)} be

the set of students who have higher priority than student i for school s.

An outcome of a school choice problem is a matching µ : I ∪ S → 2I ∪ S such

that for any i ∈ I and any s ∈ S,

(i) µ(i) ∈ S ∪ i,

(ii) µ(s) ∈ 2I ,

(iii) µ(i) = s⇔ i ∈ µ(s),

(iv) #µ(s) ≤ qs.

Condition (i) means that student i is assigned a seat at school s under µ if

µ(i) = s and is unassigned under µ if µ(i) = i. Condition (iv) requires that no

school exceeds its quota under µ. That is, for any s ∈ S, we have #µ(s) = #{i ∈
I | µ(i) = s} ≤ qs. The set of all matchings is denoted M.8 For instance,

µ =
( i1 i2 i3 i4

s2 s1 s1 i4

)
is the matching where student i1 is assigned to school s2, students i2 and i3 are

assigned to school s1 and student i4 is unassigned. For convenience, we often write

such matching as µ = {(i1, s2), (i2, s1), (i3, s1), (i4, i4)}.
Given a school choice problem 〈I, S, q, P, F 〉, a matching µ is stable if

(i) for all i ∈ I we have µ(i)Rii (individual rationality),

(ii) for all i ∈ I and all s ∈ S, if sPiµ(i) then #{j ∈ I | µ(j) = s} = qs (non-

wastefulness),

(iii) for all i, j ∈ I with µ(j) = s, if µ(j)Piµ(i) then j ∈ Φ(s, i) (no justified envy).

Let S(I, S, q, P, F ) be the set of stable matchings. A matching µ′ Pareto dom-

inates a matching µ if µ′(i)Riµ(i) for all i ∈ I and µ′(j)Pjµ(j) for some j ∈ I. A

matching is Pareto efficient if it is not Pareto dominated by another matching. Let

E(I, S, q, P, F ) be the set of Pareto efficient matchings.

8Throughout the paper we use the notation ⊆ for weak inclusion and ⊂ for strict inclusion.

Finally, # will refer to the notion of cardinality.
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A mechanism systematically selects a matching for any given school choice prob-

lem (I, S, q, P, F ). A mechanism is individually rational (non-wasteful / stable /

Pareto efficient) if it always selects an individually rational (non-wasteful / stable

/ Pareto efficient) matching. A mechanism is strategy-proof if no student can ever

benefit by unilaterally misrepresenting her preferences.

3 The Top Trading Cycles algorithm

Abdulkadirog̃lu and Sönmez (2003) introduce the Top Trading Cycles (TTC) mech-

anism for selecting a matching for each school problem. The TTC mechanism finds

a matching by means of the following TTC algorithm.

Step 1. Set q1
s = qs for all s ∈ S where q1

s is equal to the initial capacity of school

s at Step 1. Each student i ∈ I points to the school that is ranked first in

Pi. If there is no such school, then student i points to herself and she forms

a self-cycle. Each school s ∈ S points to the student that has the highest

priority in Fs. Since the number of students and schools are finite, there is

at least one cycle. A cycle is an ordered list of distinct schools and distinct

students (s1, i1, s2, ..., sl, il) where s1 points to i1 (denoted s1 7→ i1), i1 points

to s2 (i1 7→ s2), sl points to il (sl 7→ il) and il points to s1 (il 7→ s1). Each

school (student) can be part of at most one cycle. Every student in a cycle

is assigned a seat at the school she points to and she is removed. Similarly,

every student in a self-cycle is not assigned to any school and is removed. If a

school s is part of a cycle, then its remaining capacity q2
s is equal to q1

s−1. If a

school s is not part of any cycle, then its remaining capacity q2
s remains equal

to q1
s . If q2

s = 0, then school s is removed. Let C1 = {c1
1, c

2
1, ..., c

L1
1 } be the set

of cycles in Step 1 (where L1 ≥ 1 is the number of cycles in Step 1). Let I1 be

the set of students who are assigned to some school at Step 1. Let ml
1 be all

the matches from cycle cl1 that are formed in Step 1 of the algorithm:

ml
1 =

{
{(i, s) | i, s ∈ cl1 and i 7→ s} if cl1 6= (j)

{(j, j)} if cl1 = (j)

where (j, j) simply means that student j who is in a self-cycle ends up being

definitely unassigned to any school. Let M1 = ∪L1
l=1m

l
1 be all the matches

between students and schools formed in Step 1 of the algorithm.
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Step k ≥ 2. Notice that qks keeps track of how many seats are still available at the school

at Step k of the algorithm. Each remaining student i ∈ I \∪k−1
l=1 Il points to the

school s that is ranked first in Pi such that qks ≥ 1. If there is no such school,

then student i points to herself and she forms a self-cycle. Each school s ∈ S
such that qks ≥ 1 points to the student j ∈ I \ ∪k−1

l=1 Il that has the highest

priority in Fs. There is at least one cycle. Every student in a cycle is assigned

a seat at the school she points to and she is removed. Similarly, every student

in a self-cycle is not assigned to any school and is removed. If a school s is

part of a cycle, then its remaining capacity qk+1
s is equal to qks − 1. If a school

s is not part of any cycle, then its remaining capacity qk+1
s remains equal to

qks . If qk+1
s = 0, then school s is removed. Let Ck = {c1

k, c
2
k, ..., c

Lk
k } be the set

of cycles in Step k (where Lk ≥ 1 is the number of cycles in Step k). Let Ik

be the set of students who are assigned to some school at Step k.

Let ml
k be all the matches from cycle clk that are formed in Step k of the

algorithm.

ml
k =

{
{(i, s) | i, s ∈ clk and i 7→ s} if clk 6= (j)

{(j, j)} if clk = (j)

Let Mk = ∪Lk
l=1m

l
k be all the matches between students and schools formed in

Step k of the algorithm.

End. The algorithm stops when all students have been removed. Let k̄ be the step

at which the algorithm stops. Let µT denote the matching obtained from the

Top Trading Cycles mechanism and it is given by µT = ∪k̄k=1Mk.

Abdulkadirog̃lu and Sönmez (2003) show that the TTC mechanism is Pareto

efficient and strategy-proof. TTC is also individually rational and non-wasteful, but

it is not stable.

In addition to TTC, two alternative mechanisms are also central to the theory

of school choice and commonly adopted all over the world: the Deferred Acceptance

(DA) algorithm and the Immediate Acceptance (IA) algorithm, also known as the

Boston mechanism. Let µD denote the matching obtained from the DA mechanism

and µB denote the matching obtained from the IA (or Boston) mechanism.
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4 Farsighted Stable Sets for School Choice

We adopt the notion of farsighted stable set for school choice problems to study the

matchings that are stable when students farsightedly apply to schools while schools

myopically and mechanically enroll students. The notion of a farsighted stable set

for school choice problems is adapted from the notion of a myopic-farsighted stable

set that has been introduced by Herings, Mauleon and Vannetelbosch (2020) for

two-sided matching problems and by Luo, Mauleon and Vannetelbosch (2021) for

network formation games.9

A farsighted improving path for school choice problems is a sequence of matchings

that can emerge when farsighted students form or destroy matches based on the

improvement the end matching offers them relative to the current one while myopic

schools form or destroy matches based on the improvement the next matching in

the sequence offers them relative to the current one.

Let P(µ(s)) denote the power set of the set µ(s), i.e. the set of all subsets of

µ(s).

Definition 1. Given a matching µ, a coalition N ⊆ I ∪ S is said to be able to

enforce a matching µ′ over µ if the following conditions hold:

(i) µ′(s) /∈ P(µ(s)) ∪ {s} implies µ′(s) \ µ(s) ∪ {s} ⊆ N and

(ii) µ′(s) ∈ P(µ(s))∪{s}, µ′(s) 6= µ(s), implies either s or µ(s)\µ′(s) or s together

with a non-empty subset of µ(s) \ µ′(s) should be in N .

Condition (i) says that any new match in µ′ that contains different partners than

in µ should be such that s and the different partners of s belong to N . Condition (ii)

states that so as to leave some (or all) positions of one existing match in µ unfilled,

either s or the students leaving such positions or s and some non-empty subset of

such students should be in N .

Definition 2. Let 〈I, S, q, P, F 〉 be a school choice problem. A farsighted improving

path from a matching µ ∈ M to a matching µ′ ∈ M \ {µ} is a finite sequence

9When all agents are myopic, the myopic-farsighted stable set boils down to the pairwise CP

vNM set as defined in Herings, Mauleon and Vannetelbosch (2017) for two-sided matching prob-

lems. Ehlers (2007) introduces another set-valued concept based upon the concept of vNM stable

sets.
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of distinct matchings µ0, . . . , µL with µ0 = µ and µL = µ′ such that for every

l ∈ {0, . . . , L− 1} there is a coalition Nl ⊆ I ∪ S that can enforce µl+1 from µl and

(i) µL(i)Riµl(i) for all i ∈ Nl ∩ I and µL(j)Pjµl(j) for some j ∈ Nl ∩ I,

(ii) For every s ∈ Nl ∩ S such that #µl(s) + #{i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} > qs,

there is {i1, . . . , iJ} ⊆ {i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} and {j1, . . . , jJ} = {i ∈
I | i ∈ µl(s), i /∈ µl+1(s)} such that

Fs(i1) < Fs(j1)

Fs(i2) < Fs(j2)

...

Fs(iJ) < Fs(jJ).

Notice that µl(s) are the students who are assigned to school s in µl and {i ∈ I |
i /∈ µl(s), i ∈ µl+1(s)} are the students who join school s in µl+1. Thus, a farsighted

improving path for school choice problems consists of a sequence of matchings where

along the sequence (i) students form or destroy matches based on the improvement

the end matching offers them relative to the current one while (ii) schools always

accept any student on their priority lists unless they have full capacity. In the case

of full capacity, a school s ∈ Nl ∩ S accepts to replace the match µl by µl+1 if each

student i ∈ {j ∈ I | j ∈ µl(s), j /∈ µl+1(s)} who leaves or is evicted from school s

from µl to µl+1 is replaced by a newly enrolled student who has a higher priority.

Let some µ ∈ M be given. If there exists a farsighted improving path from a

matching µ to a matching µ′, then we write µ→ µ′. The set of matchings µ′ ∈ M
such that there is a farsighted improving path from µ to µ′ is denoted by φ(µ), so

φ(µ) = {µ′ ∈M | µ→ µ′}.

Definition 3. Let 〈I, S, q, P, F 〉 be a school choice problem. A set of matchings

V ⊆M is a farsighted stable set if it satisfies:

(i) Internal stability (IS): For every µ, µ′ ∈ V , it holds that µ′ /∈ φ(µ).

(ii) External stability (ES): For every µ ∈M \ V , it holds that φ(µ) ∩ V 6= ∅.

Condition (i) of Definition 3 corresponds to internal stability. For any two match-

ings µ and µ′ in the farsighted stable set V there is no farsighted improving path

connecting µ to µ′. Condition (ii) of Definition 3 expresses external stability. There
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always exists a farsighted improving path from every matching µ outside the far-

sighted stable set V to some matching in V .

When all agents are farsighted, the notion of the farsighted stable set in Defini-

tion 3 coincides with the definition of the vNM farsightedly stable set of Mauleon,

Vannetelbosch and Vergote (2011).

Given a matching µ ∈ M with student i ∈ I matched to school s ∈ S, so

µ(i) = s, the matching µ′ that is identical to µ, except that the match between i

and s has been destroyed by either i or s, is denoted by µ− (i, s). Given a matching

µ ∈M such that i ∈ I and s ∈ S are not matched to one another, the matching µ′

that is identical to µ, except that the pair (i, s) has formed at µ′ (and some j ∈ µ(s)

becomes unassigned if #µ(s) = qs), is denoted by µ+ (i, s).

Theorem 1. Let 〈I, S, q, P, F 〉 be a school choice problem and µT be the matching

obtained from the Top Trading Cycles mechanism. The singleton set {µT} is a

farsighted stable set.

Proof. Since {µT} is a singleton set, internal stability (IS) is satisfied. (ES) Take any

matching µ 6= µT , we need to show that φ(µ) 3 µT . We build in steps a farsighted

improving path from µ to µT .

Step 1.1. If m1
1 ⊆ µ and 1 6= L1 then go to Step 1.2 with µ′′′1,1 = µ. If m1

1 ⊆ µ and 1 = L1

then go to Step 1.End with µ′′′1,L1
= µ. If m1

1 * µ then µ′1,1 = µ − {(i, µ(i)) |
(i, µT (i)) ∈ m1

1 and µ(i) 6= i} + {(i, s) | i, s ∈ c1
1 and s 7→ i} − {(j, s) ∈ µ |

s ∈ c1
1, µ(s) ∩ c1

1 = ∅, #µ(s) = qs and Fs(j) > Fs(l) for all l ∈ µ(s), l 6= j}.
That is, starting from µ, looking forward towards µT , the coalition of students

belonging to c1
1 has incentives to deviate to µ′1,1 where each student in c1

1 is

assigned to the school where she has the highest priority. Students belonging

to c1
1 obtain their best match in µT . Schools have incentives to accept those

students because either they do not have full capacity or the new student

replaces the student who had the lowest priority among the students enrolled

at the school. Next, students belonging to c1
1 leave their school to reach µ′′1,1 =

µ′1,1 − {(i, s) | i, s ∈ c1
1 and s 7→ i}. Next, each student belonging to c1

1 joins

her most preferred school to reach µ′′′1,1 = µ′′1,1 + {(i, s) | i, s ∈ c1
1 and i 7→ s}.

Schools accept those students since they have (at least) one vacant position.

We reach µ′′′1,1 with m1
1 ⊆ µ′′′1,1 and so students belonging to c1

1 are assigned to

the same school as in µT . If 1 6= L1, then go to Step 1.2. Otherwise, go to
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Step 1.End with µ′′′1,L1
= µ′′′1,1.

Step 1.k. (k > 1) If mk
1 ⊆ µ′′′1,k−1 and k 6= L1 then go to Step 1.k+1 with µ′′′1,k = µ′′′1,k−1.

If mk
1 ⊆ µ′′′1,k−1 and k = L1 then go to Step 1.End with µ′′′1,L1

= µ′′′1,k−1. If mk
1 *

µ′′′1,k−1 then µ′1,k = µ′′′1,k−1 − {(i, µ′′′1,k−1(i)) | (i, µT (i)) ∈ mk
1 and µ′′′1,k−1(i) 6=

i} + {(i, s) | i, s ∈ ck1 and s 7→ i} − {(j, s) ∈ µ′′′1,k−1 | s ∈ ck1, µ′′′1,k−1(s) ∩ ck1 =

∅, #µ′′′1,k−1(s) = qs and Fs(j) > Fs(l) for all l ∈ µ′′′1,k−1(s), l 6= j}. From µ′′′1,k−1,

looking forward towards µT , the coalition of students belonging to ck1 has

incentives to deviate to µ′1,k where each student in ck1 is assigned to the school

where she has the highest priority. Students belonging to ck1 obtain their

best match in µT . Schools have incentives to accept those students because

either they do not have full capacity or the new student replaces the student

who had the lowest priority among the students enrolled at the school. Next,

students belonging to ck1 leave their school to reach µ′′1,k = µ′1,k −{(i, s) | i, s ∈
ck1 and s 7→ i}. Next, each student belonging to ck1 joins her most preferred

school to reach µ′′′1,k = µ′′1,k+{(i, s) | i, s ∈ ck1 and i 7→ s}. Schools accept those

students since they have (at least) one vacant position. We reach µ′′′1,k with

mk
1 ⊆ µ′′′1,k and so students belonging to ck1 are assigned to the same school as

in µT . If k 6= L1, then go to Step 1.k + 1. Otherwise, go to Step 1.End with

µ′′′1,L1
= µ′′′1,k.

Step 1.End. We have reached µ′′′1,L1
with ∪L1

l=1m
l
1 = M1 ⊆ µ′′′1,L1

. If µ′′′1,L1
= µT then the

process ends. Otherwise, go to Step 2.1.

Step 2.1. If m1
2 ⊆ µ′′′1,L1

and 1 6= L2 then go to Step 2.2 with µ′′′2,1 = µ′′′1,L1
. If m1

2 ⊆
µ′′′1,L1

and 1 = L2 then go to Step 2.End with µ′′′2,L2
= µ′′′1,L1

. If m1
2 * µ′′′1,L1

then µ′2,1 = µ′′′1,L1
− {(i, µ′′′1,L1

(i)) | (i, µT (i)) ∈ m1
2 and µ′′′1,L1

(i) 6= i} + {(i, s) |
i, s ∈ c1

2 and s 7→ i} − {(j, s) ∈ µ′′′1,L1
| s ∈ c1

2, µ′′′1,L1
(s) ∩ c1

2 = ∅, #µ′′′1,L1
(s) =

qs and Fs(j) > Fs(l) for all l ∈ µ′′′1,L1
(s), l 6= j}. Starting from µ′′′1,L1

, looking

forward towards µT , the coalition of students belonging to c1
2 has now incentives

to deviate to µ′2,1 where each student in c1
2 is assigned to the school where

she has the highest priority among students belonging to I \ I1. Remember

that I1 is the set of students who are involved in M1. Given M1 ⊆ µ′′′1,L1

remains fixed, students belonging to c1
2 obtain their best match in µT . Schools

have incentives to accept those students because either they do not have full

capacity or the new student replaces the student who had the lowest priority
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among the students enrolled at the school. Next, students belonging to c1
2

leave their school to reach µ′′2,1 = µ′2,1 − {(i, s) | i, s ∈ c1
2 and s 7→ i}. Next,

each student belonging to c1
2 joins her most preferred school (constrained to

M1 being fixed) to reach µ′′′2,1 = µ′′2,1 + {(i, s) | i, s ∈ c1
2 and i 7→ s}. Schools

accept those students since they have (at least) one vacant position. We reach

µ′′′2,1 with m1
2 ⊆ µ′′′2,1 and so students belonging to c1

2 are assigned to the same

school as in µT . If 1 6= L2, then go to Step 2.2. Otherwise, go to Step 2.End

with µ′′′1,L2
= µ′′′2,1.

Step 2.k. (k > 1) If mk
2 ⊆ µ′′′2,k−1 and k 6= L2 then go to Step 2.k+1 with µ′′′2,k = µ′′′2,k−1.

If mk
2 ⊆ µ′′′2,k−1 and k = L2 then go to Step 2.End with µ′′′2,L2

= µ′′′2,k−1. If mk
2 *

µ′′′2,k−1 then µ′2,k = µ′′′2,k−1 − {(i, µ′′′2,k−1(i)) | (i, µT (i)) ∈ mk
2 and µ′′′2,k−1(i) 6=

i} + {(i, s) | i, s ∈ ck2 and s 7→ i} − {(j, s) ∈ µ′′′2,k−1 | s ∈ ck2, µ′′′2,k−1(s) ∩ ck2 =

∅, #µ′′′2,k−1(s) = qs and Fs(j) > Fs(l) for all l ∈ µ′′′2,k−1(s), l 6= j}. Starting

from µ′′′2,k−1, looking forward towards µT , the coalition of students belonging

to ck2 has now incentives to deviate to µ′2,k where each student in ck2 is assigned

to the school where she has the highest priority among students belonging to

I \ I1. Given M1 ⊆ µ′′′2,k−1 remains fixed, students belonging to ck2 obtain their

best match in µT . Schools have incentives to accept those students because

either they do not have full capacity or the new student replaces the student

who had the lowest priority among the students enrolled at the school. Next,

students belonging to ck2 leave their school to reach µ′′2,k = µ′2,k −{(i, s) | i, s ∈
ck2 and s 7→ i}. Next, each student belonging to ck2 joins her most preferred

school (constrained to M1 being fixed) to reach µ′′′2,k = µ′′2,k + {(i, s) | i, s ∈
ck2 and i 7→ s}. Schools accept those students since they have (at least) one

vacant position. We reach µ′′′2,k with mk
2 ⊆ µ′′′2,k and so students belonging to ck2

are assigned to the same school as in µT . If k 6= L2, then go to Step 2.k + 1.

Otherwise, go to Step 2.End with µ′′′2,L2
= µ′′′2,k.

Step 2.End. We have reached µ′′′2,L2
with M1 ∪M2 ⊆ µ′′′2,L2

. If µ′′′2,L2
= µT then the process

ends. Otherwise, go to Step 3.1.

End. The process goes on until we reach µ′′′
k̄,Lk̄

= ∪k̄k=1Mk = µT .

The matching obtained from the TTC algorithm is always Pareto efficient but
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may not be stable when students are myopic. Theorem 1 shows that, once students

are farsighted, the matching obtained from the TTC algorithm becomes stable.10

Example 1 highlights Theorem 1. In addition, it shows that, once students are

farsighted, the matching obtained from the Deferred Acceptance (DA) algorithm

may become unstable.

Example 1 (Haeringer, 2017). Consider a school choice problem 〈I, S, q, P, F 〉 with

I = {i1, i2, i3, i4} and S = {s1, s2, s3}. Students’ preferences and schools’ priorities

and capacities are as follows.

Students

Pi1 Pi2 Pi3 Pi4

s1 s1 s2 s1

s2 s2 s1 s3

s3 s3 s3 s2

Schools

Fs1 Fs2 Fs3

qs 2 1 1

i1 i1 i2

i3 i2 i3

i4 i4 i4

i2 i3 i1

Using Example 1 we provide the basic intuition behind Theorem 1 and its proof.

In Example 1, µT = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)} is the matching obtained from

the TTC algorithm. In the first round of the TTC algorithm, there is one cycle

where student i1 points to school s1 and school s1 points to student i1. That is,

C1 = {c1
1} with c1

1 = {s1, i1}. Student i1 is matched to school s1: m1
1 = {(i1, s1)}

and school s1 has only one leftover seat. In the second round of the TTC algorithm,

there is one cycle where student i2 points to school s1, school s1 points to student i3,

student i3 points to school s2 and school s2 points to student i2. That is, C2 = {c1
2}

with c1
2 = {s1, i3, s2, i2}. Student i2 is matched to school s1 and student i3 is matched

to school s2: m1
2 = {(i2, s1), (i3, s2)}, and so i2 and i3 exchange their priority. In the

third round of the TTC algorithm, there is only one leftover student, i4, who points

to school s3 and school s3 points to student i4. That is, C3 = {c1
3} with c1

3 = {s3, i4}.
Student i4 is matched to school s3: m1

3 = {(i4, s3)}, and so µT = m1
1 ∪m1

2 ∪m1
3.

From Theorem 1 we know that {µT} is a farsighted stable set. Indeed, from any

µ 6= µT there exists a farsighted improving path leading to µT . Take for instance

10This result is robust to the incorporation of various forms of maximality in the definition of

farsighted improving path, like the strong rational expectations farsighted stable set in Dutta and

Vohra (2017) and absolute maximality as in Ray and Vohra (2019). See also Herings, Mauleon

and Vannetelbosch (2020).
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the matching µ0 = {(i1, s1), (i2, s2), (i3, s3), (i4, s1)}. We now construct a farsighted

improving from µ0 to µT = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)} = µ4 following the steps

as in the proof of Theorem 1. First, we consider students and schools belonging to

the cycles in C1. Since m1
1 = {(i1, s1)} ⊆ µ0, student i1 stays matched to school

s1 along the farsighted improving path, i.e. m1
1 = {(i1, s1)} ⊆ µl, 0 ≤ l ≤ 4.

Next, we consider students and schools belonging to the cycles in C2. Notice that

m1
2 = {(i2, s1), (i3, s2)} ∩ µ0 = ∅. Looking forward towards µT , the coalition N0 =

{i2, i3, s1, s2} deviates so that student i3 joins school s1 and student i2 joins schools

s2 to reach the matching µ1 = {(i1, s1), (i2, s2), (i3, s1), (i4, i4)} where students i2

and i3 are matched to the schools where they have priority. By doing so, they

push student i4 out of school s1. Next, the coalition N1 = {i2, i3} deviates so that

students i2 and i3 leave, respectively, schools s2 and s1 to reach the matching µ2 =

{(i1, s1), (i2, i2), (i3, i3), (i4, i4)} where both students are not assigned to any school.

They are temporarily worse off, but they anticipate to end up in µT . Next, the

coalition N2 = {i2, i3, s1, s2} deviates so that student i2 joins school s1 and student

i3 joins schools s2 to reach the matching µ3 = {(i1, s1), (i2, s1), (i3, s2), (i4, i4)} with

m1
2 = {(i2, s1), (i3, s2)} ⊆ µ3. Both schools accept to enroll those students because

they are not at full capacity. Finally, we consider students and schools belonging

to the cycles in C3. Since m1
3 = {(i4, s3)} ∩ µ3 = ∅, the coalition N3 = {i4, s3}

deviates so that student i4 joins school s3 to form the match (i4, s3) and to reach

the matching µ4 = µT . Thus, µT ∈ φ(µ0).

In Example 1, µD = {(i1, s1), (i2, s2), (i3, s1), (i4, s3)} is the matching obtained

from the Deferred Acceptance (DA) algorithm, µB = {(i1, s1), (i2, s3), (i3, s2), (i4, s1)}
is the matching obtained from the Immediate Acceptance (IA) algorithm (i.e. the

Boston mechanism). Thus, µT 6= µD 6= µB.

Since students are at least as well off and some of them (i2 and i3) are strictly

better off in µT than in µD, we have that there is no farsighted improving path from

µT to µD. That is, µD /∈ φ(µT ). Hence, {µD} is not a farsighted stable set since
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(ES) is violated. Let

µ1 = {(i1, s1), (i2, i2), (i3, s2), (i4, s1)},

µ2 = {(i1, s1), (i2, s3), (i3, s2), (i4, s1)} = µB,

µ3 = {(i1, s1), (i2, s2), (i3, i3), (i4, s1)},

µ4 = {(i1, s1), (i2, s2), (i3, s3), (i4, s1)},

µ5 = {(i1, s1), (i2, s2), (i3, s1), (i4, i4)}.

Computing the farsighted improving paths emanating from µT , we get φ(µT ) =

{µ1, µ2, µ3, µ4}. Notice that µ5 /∈ φ(µT ) since student i4 is worst off in µ5 than in

µT . From µ1, µ2, µ3, µ4 and µ5, there is a farsighted improving to µD. That is,

µD ∈ φ(µ) for µ ∈ {µ1, µ2, µ3, µ4, µ5}. From µD there is only a farsighted improving

path to µT ; i.e. φ(µD) = {µT}. For a set V ⊇ {µD} to be a farsighted stable set,

we need that (i) µT /∈ V (otherwise (IS) is violated), (ii) a single µ ∈ {µ1, µ2, µ3, µ4}
should belong to V to satisfy (ES) since µD /∈ φ(µT ). But, V would then violate (IS)

since µD ∈ φ(µ) for µ ∈ {µ1, µ2, µ3, µ4, µ5}. Thus, there is no V such that µD ∈ V
that is a farsighted stable set in Example 1.

Since φ(µD) = {µT}, there is no farsighted improving path from µD to µB. Thus,

V = {µB} does not satisfy (ES), and hence V = {µB} is not a farsighted stable

set. Moreover, a set V ⊇ {µB, µD} cannot be a farsighted stable since µD ∈ φ(µB).

Otherwise, V would violate (IS) since there is a farsighted stable improving path

from µB to µD.

Is V = {µT} the unique farsighted stable set in Example 1? The answer is yes

because any V such that {µD, µT} * V violates (ES). Thus, Example 1 provides an

example where both the matching obtained from the Deferred Acceptance (DA) al-

gorithm and the matching obtained from the Immediate Acceptance (IA) algorithm

are not stable once students are farsighted.

Remark 1. There are school choice problems such that the matching obtained from

the Deferred Acceptance (DA) algorithm does not belong to any farsightedly stable

set.

Since the matching obtained from the Immediate Acceptance (IA) algorithm is

Pareto efficient, Example 1 also shows that there are school choice problems where

some Pareto efficient matching does not belong to any farsighted stable set. Thus,

Pareto efficiency is not a sufficient condition for guaranteeing the stability of a

matching when students are farsighted.

15



Remark 2. There are school choice problems such that some Pareto efficient match-

ing does not belong to any farsighted stable set.

Corollary 1. Let 〈I, S, q, P, F 〉 be a school choice problem and µT be the matching

obtained from the Top Trading Cycles mechanism. From any µ 6= µT there is a

farsighted improving path to µT with µ0 = µ and µL = µT such that for every

l ∈ {0, . . . , L− 1} there is a coalition Nl ⊆
⋃k̄
k=1Ck that enforces µl+1 from µl.

Corollary 1 follows from the proof of Theorem 1. Notice that
⋃k̄
k=1 Ck is simply

the collection of sets where each element is a set consisting of students and schools

belonging to a cycle obtained from the TTC algorithm. Definition 2 of a farsighted

improving path is quite permissive in terms of the size of the coalition Nl that

enforces µl+1 from µl. However, Corollary 1 tells us that there exists a farsighted

improving path from µ 6= µT to µT with µ0 = µ and µL = µT such that for every

l ∈ {0, . . . , L − 1} the coalition Nl that enforces µl+1 from µl consists of students

(and possibly schools) who are part of the same cycle in the TTC algorithm. Thus,

for getting Theorem 1, it is sufficient to allow a deviating coalition (involving more

than one student) to be composed of exclusively students (and possibly their schools)

who are exchanging their priorities among themselves in the TTC algorithm. Such

restriction seems not too demanding since students who coordinate their moves are

the ones who exchange their priorities.

5 Limited Farsightedness

How much farsightedness from the students do we need to stabilize the matching

obtained from the TTC algorithm? To answer this question we propose the notion

of horizon-k farsighted stable set for school choice problems to study the matchings

that are stable when students are limited in their degree of farsightedness. A horizon-

k farsighted improving path for school choice problems is a sequence of matchings

that can emerge when limited farsighted students form or destroy matches based on

the improvement the k-steps ahead matching offers them relative to the current one

while myopic schools form or destroy matches based on the improvement the next

matching in the sequence offers them relative to the current one. A set of matchings

is a horizon-k farsighted stable set if (IS) for any two matchings belonging to the

set, there is no horizon-k farsighted improving path connecting from one matching
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to the other one, and (ES) there always exists a horizon-k farsighted improving path

from every matching outside the set to some matching within the set.

Definition 4. Let 〈I, S, q, P, F 〉 be a school choice problem. A horizon-k farsighted

improving path from a matching µ ∈ M to a matching µ′ ∈ M \ {µ} is a finite

sequence of distinct matchings µ0, . . . , µL with µ0 = µ and µL = µ′ such that for

every l ∈ {0, . . . , L − 1} there is a coalition Nl ⊆ I ∪ S that can enforce µl+1 from

µl and

(i) µmin{l+k,L}(i)Riµl(i) for all i ∈ Nl ∩ I and µmin{l+k,L}(j)Pjµl(j) for some j ∈
Nl ∩ I,

(ii) For every s ∈ Nl ∩ S such that #µl(s) + #{i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} > qs,

there is {i1, . . . , iJ} ⊆ {i ∈ I | i /∈ µl(s), i ∈ µl+1(s)} and {j1, . . . , jJ} = {i ∈
I | i ∈ µl(s), i /∈ µl+1(s)} such that

Fs(i1) < Fs(j1)

Fs(i2) < Fs(j2)

...

Fs(iJ) < Fs(jJ).

Definition 4 tells us that a horizon-k farsighted improving path for school choice

problems consists of a sequence of matchings where along the sequence students form

or destroy matches based on the improvement the k-steps ahead matching offers

them relative to the current one. Precisely, along a horizon-k farsighted improving

path, each time some student i is on the move she is comparing her current match

(i.e. µl(i)) with the match she will get k-steps ahead on the sequence (i.e. µl+k(i))

except if the end matching of the sequence lies within her horizon (i.e. L < l+k). In

such a case, she simply compares her current match (i.e. µl(i)) with the end match

(i.e. µL). Schools continue to accept any student on their priority lists unless they

have full capacity. In the case of full capacity, a school s ∈ Nl∩S accepts to replace

the match µl by µl+1 if each student i ∈ {j ∈ I | j ∈ µl(s), j /∈ µl+1(s)} who leaves

or is evicted from school s from µl to µl+1 is replaced by a newly enrolled student

who has a higher priority.

Let some µ ∈M be given. If there exists a horizon-k farsighted improving path

from a matching µ to a matching µ′, then we write µ →k µ
′. The set of matchings
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µ′ ∈ M such that there is a horizon-k farsighted improving path from µ to µ′ is

denoted by φk(µ), so φk(µ) = {µ′ ∈M | µ→k µ
′}.

Definition 5. Let 〈I, S, q, P, F 〉 be a school choice problem. A set of matchings

V ⊆M is a horizon-k farsighted stable set if it satisfies:

(i) Internal stability (IS): For every µ, µ′ ∈ V , it holds that µ′ /∈ φk(µ).

(ii) External stability (ES): For every µ ∈M \ V , it holds that φk(µ) ∩ V 6= ∅.

From the construction of a farsighted improving path in the proof of Theorem

1 we have that students belonging to a cycle only need to look forward three steps

ahead to have incentives for engaging a move towards the matches they have in the

matching obtained from the TTC algorithm, µT . Once they reach those matches

they do not move afterwards. The three steps consist of (i) getting first a seat at

the school they have priority, (ii) leaving that school and by doing so, guaranteeing

a free seat at that school, (iii) joining the school they match to in µT . Hence, for

k ≥ 3, there exists a horizon-k farsighted improving from any µ 6= µT to µT , and so

{µT} is a horizon-k farsighted stable set.11

Corollary 2. Let 〈I, S, q, P, F 〉 be a school choice problem and µT be the matching

obtained from the Top Trading Cycles mechanism. The singleton set {µT} is a

horizon-k farsighted stable set for k ≥ 3.

6 Three Variations of The TTC Algorithm

6.1 First Clinch and Trade Algorithm

Morill (2015) introduces two variations of the Top Trading Cycles mechanism for

selecting a matching for each school problem: the First Clinch and Trade mecha-

nism (FCT) and the Clinch and Trade mechanism (CT). Both mechanisms intend

to mitigate the following problem. In the TTC mechanism, if a student i’s most

preferred school is s and the student has one of the qs highest priorities at s, then

i is always assigned to s. However, until i has the highest priority at s, the TTC

11In Example 1, it is sufficient for the students who belong to c12 to look forward towards µ3

when they participate to the moves from µ0 to µ4. Indeed, they are not affected by the move from

µ3 to µ4 since they remain with the same matches.
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mechanism allows i to trade her priority at other schools to be assigned to s. Such

trade may cause distortions regarding the elimination of justified envy.

In the First Clinch and Trade algorithm (FCT), a student that initially has one

of the qs highest priorities at a school s (she is guaranteed a seat at s), cannot trade

with another student to get s. The FCT algorithm runs basically the TTC algorithm

but, at each round, if a student points at a school where she is guaranteed a seat, the

student is assigned to the school and cannot trade her priority. For the remaining

students, the TTC is run and the students who have the highest priorities at some

schools are allowed to trade their priorities and are assigned their top choices.

Example 2 (Morrill, 2015). Consider a school choice problem 〈I, S, q, P, F 〉 with

I = {i1, i2, i3} and S = {s1, s2}. Students’ preferences and schools’ priorities and

capacities are as follows.

Students

Pi1 Pi2 Pi3

s2 s1 s2

s1 s2 s1

Schools

Fs1 Fs2

qs 2 1

i1 i2

i2 i3

i3 i1

Let µF be the matching obtained from the FCT mechanism. A formal description

of the FCT algorithm can be found in Appendix A.1. By means of Example 2 we

illustrate the mechanism behind the FCT algorithm. In the first round, each student

points to her top choice school. That is, i1 points to s2, i2 points to s1 and i3 points to

s2. Student i1 and student i2 are guaranteed admissions to school s1 since both have

one of the two highest rankings at school s1. Student i2 is also guaranteed admission

to school s2 since she is ranked first at school s2. Student i2 is pointing to s1, and

so she is clinched to school s1 and the match (i2, s1) is formed. Student i1 is not

pointing to a school where she is guaranteed admission. Hence, she is not clinched

to any school and she participates next with i3 to the trading procedure. Schools s1

and s2 point to their highest ranked student, respectively i1 and i2. Hence, there is

no cycle and no match is formed. In the second round, each student points to her top

choice school that has still available capacity. That is, i1 points to s2 and i3 points

to s2. Guaranteed admissions do not change. Hence, nor i1 nor i3 are clinched to

some school and so they participate next to the trading procedure. School s1 points
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to i1 while school s2 points now to i3 and so the match (i3, s2) is formed. Student

i1 remains unmatched. In the third round, each remaining student points to her

preferred school that has still available capacity. That is, student i1 points now

to school s1. Since she is guaranteed admission to school s1, she is clinched and

assigned to school s1. We obtain the matching µF = {(i1, s1), (i2, s1), (i3, s2)}.
The matching obtained from the FCT algorithm differs from the matching ob-

tained from the TTC algorithm, µT = {(i1, s2), (i2, s1), (i3, s1)}. In the TTC mech-

anism, students i1 and i2 first exchange their priorities to form the matches (i1, s2)

and (i2, s1). Student i1 has priority at s1 while student i2 has priority at s2. How-

ever, student i3 is ranked above student i1 at school s2. In addition, student i2 is

guaranteed admission at school s1. The FCT mechanism intends to remedy to such

drawback.

Morrill (2015) shows that the First Clinch and Trade mechanism (FCT) is Pareto

efficient, strategy-proof, non-bossy, group strategy-proof, reallocation proof and in-

dependent of the order in which cycles are processed.

Take for instance the matching µ0 = {(i1, s2), (i2, s1), (i3, s1)} = µT . We now

construct a farsighted improving from µ0 to µF = {(i1, s1), (i2, s1), (i3, s2)} = µ2

following the steps as in the proof of Theorem 2. First, we consider student i2

who is the only student to clinched in the first round of the FCT. Since student i2 is

matched to school s1 in both µ0 and µF she does not participate to any deviation and

remains clinched to s1 along the farsighted improving path. That is, (i2, s1) ∈ µl,
l = 0, 1, 2. There is no cycle between schools and students who are not clinched in

the first round of the FCT. In the second round of the FCT, none of the remaining

students is clinched to some school. However, student i3 and school s2 form a cycle.

So, looking forward towards µT , the coalition N0 = {i3, s2} deviates from µ0 so

that student i3 joins school s2 to reach the matching µ1 = {(i1, i1), (i2, s1), (i3, s2)}.
Student i3 is matched to her preferred school s2 in µ1 and she has a higher priority

than i1 at s2. By doing so, student i1 is pushed out of school s2. In the third round

of the FCT, student i1 points to school s1 and is guaranteed admission at school s1.

So, from µ1, the coalition N1 = {i1, s1} deviates so that student i1 joins school s1

to reach the matching µ2 = {(i1, s1), (i2, s1), (i3, s2)} = µF . Thus, µF ∈ φ(µT ).

In fact, it holds in general that, from any µ 6= µF there exists a farsighted

improving path leading to µF . So, {µF} is a farsighted stable set and the match-

ing obtained from the FCT algorithm preserves the property of being stable once
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students are farsighted.

Theorem 2. Let 〈I, S, q, P, F 〉 be a school choice problem and µF be the matching

obtained from the First Clinch and Trade mechanism. The singleton set {µF} is a

farsighted stable set.

The proof of Theorem 2 can be found in Appendix A.1.

6.2 Clinch and Trade Algorithm

While the FCT algorithm does not update the students that are able to clinch

her most preferred school, the Clinch and Trade algorithm (CT) removes from the

priority list of each school the students that are guaranteed a seat. As a result, the

priorities of the remaining students weakly improve and thus, students that initially

are not guaranteed a seat at their most preferred school may now be guaranteed one

of the remaining seats.

Example 3 (Morrill, 2015). Consider a school choice problem 〈I, S, q, P, F 〉 with

I = {i1, i2, i3, i4} and S = {s1, s2, s3}. Students’ preferences and schools’ priorities

and capacities are as follows.

Students

Pi1 Pi2 Pi3 Pi4

s2 s1 s2 s3

s1 s2 s1

Schools

Fs1 Fs2 Fs3

qs 2 1 1

i4 i2 i4

i1 i3

i2 i1

i3 i4

Let µC be the matching obtained from the CT mechanism. A formal description

of the CT algorithm can be found in Appendix A.2. By means of Example 3 we

illustrate the mechanism behind the CT algorithm. In the first round of the clinching

procedure, each student points to her top choice school. That is, student i1 points to

school s2, student i2 points to school s1, student i3 points to school s2 and student i4

points to school s3. Student i4 is guaranteed admission to both school s1 and school

s3, student i2 is guaranteed admission to school s2, and student i1 is guaranteed

admission to school s1. Hence, only student i4 is assigned and clinched to school s3.

In the second round of the clinching procedure, each remaining student still points to
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her top choice school. Since student i4 is clinched to school s3, guaranteed admissions

are updated as follows. Student i2 is now guaranteed admission to both school s1 and

s2, while student i1 is still guaranteed admission to school s1. Hence, only student i2

is assigned and clinched to school s1. In the third round of the clinching procedure,

each remaining student still points to her top choice school. Since students i2 and i4

are, respectively, clinched to schools s1 and s3, guaranteed admissions are updated

as follows. Student i1 is still guaranteed admission to school s1, while student i3

is now guaranteed admission to school s2. Hence, only student i3 is assigned and

clinched to school s2. Since student i1 remains pointing at s2, the iterated clinching

procedure stops and leads to the matches (i2, s1), (i3, s2) and (i4, s3). Next, at most

one round of the trading procedure takes place before proceeding (if necessary) again

with the iterated clinching procedure. Each remaining student points to her top

choice school that has still available capacity. Each school with available capacity

points to the remaining student who has the highest priority. That is, i1 points

to s1 and s1 points to i1 to form a cycle. So, i1 is assigned to s1 and we obtain

µC = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)}.
In Example 3, the matching obtained from the CT algorithm differs from the

matching obtained from both the TTC algorithm and the FCT algorithm, µT =

{(i1, s2), (i2, s1), (i3, s1), (i4, s3)} = µF . Notice that µD = µC .

Morrill (2015) shows that the Clinch and Trade mechanism (CT) is Pareto effi-

cient and strategy-proof. Unlike the TTC mechanism, the CT mechanism is bossy,

not group strategy-proof, and not independent of the order in which cycles are

processed.

Take for instance the matching µ0 = {(i1, s2), (i2, s1), (i3, s1), (i4, s3)} = µT . We

construct a farsighted improving from µ0 to µC = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)} =

µ2 following the steps as in the proof of Theorem 3.

First, we consider student i4 who is the only student to be clinched in the

first round of the clinching procedure of the CT. Since student i4 is matched to

school s3 in both µ0 and µC she does not participate to any deviation and re-

mains clinched to s3 along the farsighted improving path. That is, (i4, s3) ∈ µl,

l = 0, 1, 2. Next, we consider student i2 who is the only student to be clinched

in the second round of the clinching procedure. Since student i2 is matched to

school s1 in both µ0 and µC she does not participate to any deviation and re-

mains clinched to s2 along the farsighted improving path. That is, (i2, s1) ∈ µl,
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l = 0, 1, 2. Next, we consider student i3 who is the only student to be clinched

in the third round of the clinching procedure. Looking forward towards µC , the

coalition N0 = {i3, s2} deviates from µ0 so that student i3 joins school s2 to reach

the matching µ1 = {(i1, i1), (i2, s1), (i3, s2), (i4, s3)}. Student i3 is matched to her

preferred school s2 in µ1 and she has a higher priority than i1 at s2. By doing so,

student i1 is pushed out of school s2. Next, there is one cycle between schools and

students who are not clinched in the iterated clinching procedure: i1 and s1 form

a cycle. So, the coalition N1 = {i1, s1} deviates from µ1 so that student i1 joins

school s1 to reach the matching µ2 = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)} = µC . Thus,

µC ∈ φ(µT ).

In fact, it holds in general that, from any µ 6= µC there exists a farsighted

improving path leading to µC . Hence, {µC} is a farsighted stable set.

Theorem 3. Let 〈I, S, q, P, F 〉 be a school choice problem and µC be the match-

ing obtained from the Clinch and Trade mechanism. The singleton set {µC} is a

farsighted stable set.

The proof of Theorem 3 can be found in Appendix A.2.

6.3 Equitable Top Trading Cycles Algorithm

Hakimov and Kesten (2018) introduce the Equitable Top Trading Cycles mecha-

nism for selecting a matching for each school problem by means of the Equitable

Top Trading Cycles algorithm (ETTC). They show that the ETTC mechanism is

Pareto-efficient and group strategy-proof and eliminates more avoidable justified

envy situations than the TTC. Instead of allowing only the current highest priority

students to participate in the trading process, the ETTC assigns all slots of each

school s to all the qs students with the highest priorities in each school, giving one

slot to each student and endowing them with equal trading power. The terms of

trade are next determined by a pointing rule specifying for each student-school pair

which student-school pair should be pointed to among those who contain the re-

maining favorite school. In the ETTC, each student-school pair points to the pair

containing the highest priority student for the school contained in the former pair

in order to ensure that the students included in a cycle between two student-school

pairs have the highest priority for their favorite schools among their competitors at

that step of the trading market.
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Example 4 (Morrill, 2015). Consider a school choice problem 〈I, S, q, P, F 〉 with

I = {i1, i2, i3, i4} and S = {s1, s2, s3}. Students’ preferences and schools’ priorities

and capacities are as follows.

Students

Pi1 Pi2 Pi3 Pi4

s1 s3 s2 s2

s2 s1 s1 s3

s3 s2 s3 s1

Schools

Fs1 Fs2 Fs3

qs 2 1 1

i2 i1 i1

i4 i2 i4

i1 i3 i2

i3 i4 i3

Let µE be the matching obtained from the ETTC mechanism. A formal descrip-

tion of the ETTC algorithm can be found in Appendix A.3. By means of Example

4 we illustrate the mechanism behind the ETTC algorithm. In the inheritance

round of the first step of the ETTC algorithm, all seats are available to inherit

and so, students are assigned to seats according to the priority orders F to form

the following student-school pairs: (i2, s1), (i4, s1), (i1, s2) and (i1, s3). Next, each

student-school pair (i, s) points to the student-pair (i′, s′) such that s′ is the top

choice of student i and i′ has the highest priority for school s among the students

who are assigned a seat at school s′ in the inheritance round. That is, (i2, s1) points

to (i1, s3), (i4, s1) points to (i1, s2), (i1, s2) points to (i2, s1) and (i1, s3) points to

(i4, s1). There is one cycle (i2, s1) 7→ (i1, s3) 7→ (i4, s1) 7→ (i1, s2) 7→ (i2, s1).12 It

leads to the following matches: (i1, s1), (i2, s3) and (i4, s2). In the inheritance round

of the second step of the ETTC algorithm, only one seat at school s1 is available

to inherit and so student i3 is assigned to a seat at school s1 to form the student-

school pair (i3, s1). Next, the student-school pair (i3, s1) points to (i3, s1) and the

match (i3, s1) is formed. We reach the matching obtained from the ETTC algorithm,

µE = {(i1, s1), (i2, s3), i3, s1), (i4, s2)}.
In Example 4, the matching obtained from the ETTC algorithm differs from the

matching obtained from the TTC algorithm, µT = {(i1, s1), (i2, s3), (i3, s2), (i4, s1)} =

µF = µC . For completeness, µD = {(i1, s1), (i2, s1), (i3, s2), (i4, s3)} is the matching

12There is at least one cycle. If some student appears in the same cycle or in different cycles

with different schools, then she is definitely assigned a seat at her top choice among those schools

while the other seats she was pointing to remain to be inherited in the next step.
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obtained from the DA algorithm.13

Take for instance the matching µ0 = {(i1, s1), (i2, s3), (i3, s2), (i4, s1)} = µT . We

construct a farsighted improving from µ0 to µE = {(i1, s1), (i2, s3), i3, s1), (i4, s2)} =

µ3 following the steps as in the proof of Theorem 4. In the first round of ETTC, there

is only cycle between student-school pairs involving students i1, i2, i4 and schools

s1, s2, s3. Looking forward towards µE, the coalition N0 = {i1, i2, i4, s1, s2} deviates

from µ0 so that student i1 joins school s2, student i2 joins school s1 and student i4

joins school s1 to reach the matching µ1 = {(i1, s2), (i2, s1), (i3, i3), (i4, s1)}. That

is, each student is matched to the school from the pair student-school she belongs

to. Next, the coalition N0 = {i1, i2, i4} deviates from µ1 so that student i1 leaves

school s2, student i2 leaves school s1 and student i4 leaves school s1 to reach the

matching µ2 = {(i1, i1), (i2, i2), (i3, i3), (i4, i4)} where all students are unmatched.

Next, the coalition N0 = {i1, i2, i3, i4, s1, s2, s3} deviates from µ2 so that student i1

joins school s1, student i2 joins school s3, student i3 joins school s1 and student i4

joins school s2 to reach the matching µ3 = {(i1, s1), (i2, s3), (i3, s1), (i4, s2)} = µE.

Thus, µE ∈ φ(µT ). Again, it holds in general that, from any µ 6= µE there exists a

farsighted improving path leading to µE. Thus, the matching obtained from the FCT

algorithm also preserves the property of being stable once students are farsighted.

Theorem 4. Let 〈I, S, q, P, F 〉 be a school choice problem and µE be the matching

obtained from the Equitable Top Trading Cycles mechanism. The singleton set {µE}
is a farsighted stable set.

The proof of Theorem 4 can be found in Appendix A.3.

7 Conclusion

We consider priority-based school choice problems. Once students are farsighted,

the matching obtained from the TTC mechanism becomes stable: a singleton set

consisting of the TTC matching is a farsighted stable set. However, the matching

obtained from the DA mechanism may not belong to any farsighted stable set.

Hence, the TTC mechanism provides an assignment that is not only Pareto efficient

but also farsightedly stable. Moreover, looking forward three steps ahead is already

13In Example 1, µT = µF = µC = µE 6= µD. In Example 2, µT = µE 6= µF = µC = µD. In

Example 3, µT = µE = µF 6= µC = µD.
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sufficient for stabilizing the matching obtained from the TTC. Since the choice

between the DA mechanism or the TTC mechanism usually depends on the priorities

of the policy makers, farsightedness and Pareto efficiency may tip the balance in

favor of TTC or one of its variations.
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A Appendix

A.1 First Clinch and Trade Algorithm

Let Gs be the set of students who are guaranteed admissions to school s. That is,

Gs = {i ∈ I | #(Φ(s, i)) < qs}.

Thus, a student i is only guaranteed admission to a school s if she initially has one of

the qs highest rankings at school s. The First Clinch and Trade mechanism (Morrill,

2015) finds a matching by means of the following First Clinch and Trade algorithm

(FCT).

Step 1. Set q1
s = qs for all s ∈ S where q1

s is the remaining capacity of school s at Step

1.

First, each student i ∈ I points to the school that is ranked first in Pi. If

student i is pointing to school s and i ∈ Gs, then she is assigned to school s

and the capacity of school s is reduced by one. Student i is said to be clinched

to school s. Let m0
1 be all matches formed by students who clinch to some

school:

m0
1 = {(i, s) | s ∈ S, i ∈ Gs and i 7→ s}.
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The capacity of school s is now equal to q1
s −#{(i, s) | i ∈ Gs and i 7→ s} and

{i ∈ I | s ∈ S, i ∈ Gs and i 7→ s} is the set of students who clinch to some

school and are removed.

Second, each remaining student i ∈ I \ {i ∈ I | s ∈ S, i ∈ Gs and i 7→ s}
points again to the school s that is ranked first in Pi. If there is no such

school, then student i points to herself and she forms a self-cycle. Each school

s ∈ S points to the student j ∈ I that has the highest priority in Fs. If

there exists a cycle, every student in a cycle is assigned a seat at the school

she points to and she is removed. Each school (student) can be part of at

most one cycle. Similarly, every student in a self-cycle is not assigned to any

school and is removed. If a school s is part of a cycle, then its remaining

capacity q2
s is equal to q1

s − #{(i, s) | i ∈ Gs and i 7→ s} − 1. If a school

s is not part of any cycle, then its remaining capacity q2
s remains equal to

q1
s − #{(i, s) | i ∈ Gs and i 7→ s}. If q2

s = 0, then school s is removed. Let

C1 = {c1
1, c

2
1, ..., c

L1
1 } be the set of cycles in Step 1 (where L1 ≥ 1 is the number

of cycles in Step 1). Let ml
1 be all the matches from cycle cl1 that are formed

in Step 1 of the algorithm.

ml
1 =

{
{(i, s) | i, s ∈ cl1 and i 7→ s} if cl1 6= (j)

{(j, j)} if cl1 = (j)

Let I1 be the set of students who are assigned to some school at Step 1. Let

M1 = ∪L1
l=0m

l
1 be all the matches between students and schools formed in Step

1 of the algorithm.

Step k ≥ 2. Notice that qks keeps track of how many seats are still available at the school

at Step k of the algorithm.

First, each remaining student i ∈ I \ ∪k−1
l=1 Il points to the school s that is

ranked first in Pi such that qks ≥ 1. If student i is pointing to school s and

i ∈ Gs, then she is clinched and assigned to school s and the capacity of school

s is reduced by one. Let m0
k be all such matches formed by students who clinch

to some school in Step k:

m0
k = {(i, s) | s ∈ S, i ∈ Gs ∩ (I \ ∪k−1

l=1 Il) and i 7→ s}.

The capacity of school s is now equal to qks − #{(i, s) | i ∈ Gs ∩ (I \
∪k−1
l=1 Il) and i 7→ s} and {i ∈ I | s ∈ S, i ∈ Gs ∩ (I \ ∪k−1

l=1 Il) and i 7→ s}
is the set of students who clinch to some school in Step k.
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Second, each remaining student i ∈ (I \ ∪k−1
l=1 Il) \ {i ∈ I | s ∈ S, i ∈ Gs ∩

(I \ ∪k−1
l=1 Il) and i 7→ s} points again to the school s that is ranked first in Pi

such that qks ≥ 1. If there is no such school, then student i points to herself

and she forms a self-cycle. Each school s ∈ S such that qks ≥ 1 points to the

student j ∈ (I \ ∪k−1
l=1 Il) that has the highest priority in Fs. If there exists a

cycle, every student in a cycle is assigned a seat at the school she points to

and she is removed. Similarly, every student in a self-cycle is not assigned to

any school and is removed. If a school s is part of a cycle, then its remaining

capacity qk+1
s is equal to qks −#{(i, s) | i ∈ Gs ∩ (I \ ∪k−1

l=1 Il) and i 7→ s} − 1.

If a school s is not part of any cycle, then its remaining capacity qk+1
s remains

equal to qks − #{(i, s) | i ∈ Gs ∩ (I \ ∪k−1
l=1 Il) and i 7→ s}. If qk+1

s = 0, then

school s is removed. Let Ck = {c1
k, c

2
k, ..., c

Lk
k } be the set of cycles in Step k

(where Lk ≥ 1 is the number of cycles in Step k). Let ml
k be all the matches

from cycle clk that are formed in Step k of the algorithm.

ml
k =

{
{(i, s) | i, s ∈ clk and i 7→ s} if clk 6= (j)

{(j, j)} if clk = (j)

Let Mk = ∪Lk
l=0m

l
k be all the matches between students and schools formed in

Step k of the algorithm. Let Ik be the set of students who are assigned to

some school at Step k.

End. The algorithm stops when all students have been removed. Let k̄ be the step

at which the algorithm stops. Let µF denote the matching obtained from the

First Clinch and Trade mechanism and it is given by µF = ∪k̄k=1Mk.

Proof of Theorem 2

Since {µF} is a singleton set, internal stability (IS) is satisfied. (ES) Take any

matching µ 6= µF , we need to show that φ(µ) 3 µF . We build in steps a farsighted

improving path from µ to µF .

Step 1.0. If m0
1 ⊆ µ and C1 6= ∅ then go to Step 1.1 with µ′1,0 = µ. If m0

1 ⊆ µ and

C1 = ∅ then go to Step 1.End with µ′′′1,L1
= µ. Notice that it is not excluded

that m0
1 = ∅. Let Λ1 = #{(i, s) /∈ µ | (i, s) ∈ m0

1} be the number of students

who are not yet matched to their preferred school in µ and are guaranteed

admissions to their preferred school. If m0
1 * µ then µ′1,0 = µ + {(i, s) /∈ µ |

(i, s) ∈ m0
1} − {(j, s) ∈ µ | Λs

j(µ) < Λ1 − qs + #µ(s)} where Λs
j(µ) = #{l ∈
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I | (l, s) ∈ µ and Fs(l) > Fs(j)} is the number of students who are matched

to school s in µ and have a lower priority than student j. We reach µ′1,0 with

m0
1 ⊆ µ′1,0. If C1 6= ∅, then go to Step 1.1. Otherwise, go to Step 1.End with

µ′′′1,L1
= µ′1,0.

Step 1.1. If m1
1 ⊆ µ′1,0 and 1 6= L1 then go to Step 1.2 with µ′′′1,1 = µ′1,0. If m1

1 ⊆ µ′1,0

and 1 = L1 then go to Step 1.End with µ′′′1,L1
= µ′1,0. If m1

1 * µ′1,0 then µ′1,1 =

µ′1,0−{(i, µ′1,0(i)) | (i, µF (i)) ∈ m1
1 and µ′1,0(i) 6= i}+ {(i, s) | i, s ∈ c1

1 and s 7→
i} − {(j, s) ∈ µ′1,0 | s ∈ c1

1, µ′1,0(s) ∩ c1
1 = ∅, #µ′1,0(s) = qs and Fs(j) >

Fs(l) for all l ∈ µ′1,0(s), l 6= j}. Next µ′′1,1 = µ′1,1−{(i, s) | i, s ∈ c1
1 and s 7→ i}.

Next µ′′′1,1 = µ′′1,1 + {(i, s) | i, s ∈ c1
1 and i 7→ s}. We reach µ′′′1,1 with m1

1 ⊆ µ′′′1,1.

If 1 6= L1, then go to Step 1.2. Otherwise, go to Step 1.End with µ′′′1,L1
= µ′′′1,1.

Step 1.k. (k > 1) If mk
1 ⊆ µ′′′1,k−1 and k 6= L1 then go to Step 1.k+1 with µ′′′1,k = µ′′′1,k−1.

If mk
1 ⊆ µ′′′1,k−1 and k = L1 then go to Step 1.End with µ′′′1,L1

= µ′′′1,k−1. If mk
1 *

µ′′′1,k−1 then µ′1,k = µ′′′1,k−1 − {(i, µ′′′1,k−1(i)) | (i, µF (i)) ∈ mk
1 and µ′′′1,k−1(i) 6=

i} + {(i, s) | i, s ∈ ck1 and s 7→ i} − {(j, s) ∈ µ′′′1,k−1 | s ∈ ck1, µ′′′1,k−1(s) ∩
ck1 = ∅, #µ′′′1,k−1(s) = qs and Fs(j) > Fs(l) for all l ∈ µ′′′1,k−1(s), l 6= j}. Next

µ′′1,k = µ′1,k − {(i, s) | i, s ∈ ck1 and s 7→ i}. Next µ′′′1,k = µ′′1,k + {(i, s) | i, s ∈
ck1 and i 7→ s}. We reach µ′′′1,k with mk

1 ⊆ µ′′′1,k. If k 6= L1, then go to Step

1.k+1. Otherwise, go to Step 1.End with µ′′′1,L1
= µ′′′1,k.

Step 1.End. We have reached µ′′′1,L1
with ∪L1

l=0m
l
1 = M1 ⊆ µ′′′1,L1

. If µ′′′1,L1
= µF then the

process ends. Otherwise, go to Step 2.0.

Step 2.0. If m0
2 ⊆ µ′′′1,L1

and C2 6= ∅ then go to Step 2.1 with µ′2,0 = µ′′′1,L1
. If m0

2 ⊆ µ′′′1,L1

and C2 = ∅ then go to Step 2.End with µ′′′2,L2
= µ′′′1,L1

. Given M1 ⊆ µ′′′1,L1
,

let Λ2 = #{(i, s) /∈ µ′′′1,L1
| (i, s) ∈ m0

2} be the number of students who

are not yet matched to their preferred school in µ′′′1,L1
and are guaranteed

admissions to their preferred school. If m0
2 * µ′′′1,L1

then µ′2,0 = µ′′′1,L1
+{(i, s) /∈

µ′′′1,L1
| (i, s) ∈ m0

2} − {(j, s) ∈ µ′′′1,L1
| Λs

j(µ
′′′
1,L1

) < Λ2 − qs + #µ′′′1,L1
(s)} where

Λs
j(µ
′′′
1,L1

) = #{l ∈ I | (l, s) ∈ µ′′′1,L1
and Fs(l) > Fs(j)} is the number of

students who are matched to school s in µ′′′1,L1
and have a lower priority than

student j. We reach µ′2,0 with m0
2 ⊆ µ′2,0. If C2 6= ∅, then go to Step 2.1.

Otherwise, go to Step 2.End with µ′′′2,L2
= µ′2,0.

Step 2.1. If m1
2 ⊆ µ′2,0 and 1 6= L2 then go to Step 2.2 with µ′′′2,1 = µ′2,0. If m1

2 ⊆ µ′2,0

29



and 1 = L2 then go to Step 2.End with µ′′′2,L2
= µ′2,0. If m1

2 * µ′2,0 then µ′2,1 =

µ′2,0−{(i, µ′2,0(i)) | (i, µF (i)) ∈ m1
2 and µ′2,0(i) 6= i}+ {(i, s) | i, s ∈ c1

2 and s 7→
i} − {(j, s) ∈ µ′2,0 | s ∈ c1

2, µ′2,0(s) ∩ c1
2 = ∅, #µ′2,0(s) = qs and Fs(j) >

Fs(l) for all l ∈ µ′2,0(s), l 6= j}. Next µ′′2,1 = µ′2,1−{(i, s) | i, s ∈ c1
2 and s 7→ i}.

Next µ′′′2,1 = µ′′2,1 + {(i, s) | i, s ∈ c1
2 and i 7→ s}. We reach µ′′′2,1 with m1

2 ⊆ µ′′′2,1.

If 1 6= L2, then go to Step 2.2. Otherwise, go to Step 2.End with µ′′′2,L2
= µ′′′2,1.

Step 2.k. (k > 1) If mk
2 ⊆ µ′′′2,k−1 and k 6= L2 then go to Step 2.k+1 with µ′′′2,k = µ′′′2,k−1.

If mk
2 ⊆ µ′′′2,k−1 and k = L2 then go to Step 2.End with µ′′′2,L2

= µ′′′2,k−1. If mk
2 *

µ′′′2,k−1 then µ′2,k = µ′′′2,k−1 − {(i, µ′′′2,k−1(i)) | (i, µF (i)) ∈ mk
2 and µ′′′2,k−1(i) 6=

i} + {(i, s) | i, s ∈ ck2 and s 7→ i} − {(j, s) ∈ µ′′′2,k−1 | s ∈ ck2, µ′′′2,k−1(s) ∩
ck2 = ∅, #µ′′′2,k−1(s) = qs and Fs(j) > Fs(l) for all l ∈ µ′′′2,k−1(s), l 6= j}. Next

µ′′2,k = µ′2,k − {(i, s) | i, s ∈ ck2 and s 7→ i}. Next µ′′′2,k = µ′′2,k + {(i, s) | i, s ∈
ck2 and i 7→ s}. We reach µ′′′2,k with mk

2 ⊆ µ′′′2,k. If k 6= L2, then go to Step

2.k+1. Otherwise, go to Step 2.End with µ′′′2,L2
= µ′′′2,k.

Step 2.End. We have reached µ′′′2,L2
withM1∪M2 ⊆ µ′′′2,L2

where ∪L1
l=0m

l
1 = M1 and ∪L2

l=0m
l
2 =

M2. If µ′′′2,L2
= µF then the process ends. Otherwise, go to Step 3.0.

End. The process goes on until we reach µ′′′
k̄,Lk̄

= ∪k̄k=1Mk = µF .

A.2 Clinch and Trade Algorithm

The Clinch and Trade mechanism (Morrill, 2015) finds a matching by means of the

following Clinch and Trade algorithm (CT).

Step 1. Set q1
s = qs for all s ∈ S where q1

s is the remaining capacity of school s at Step

1.

1.A. Let q1,1
s = q1

s for all s ∈ S.

In the first round of the clinching procedure, each student i ∈ I points to

the school that is ranked first in Pi. If student i is pointing to school s and

i ∈ G1,1
s = {i ∈ I | #(Φ(s, i)) < q1,1

s }, then she is assigned to school s and

the capacity of school s is reduced by one. Student i is said to be clinched to

school s. Let I1,1
0 = {i ∈ I | i ∈ G1,1

s and i 7→ s} be the set of students who
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clinch to some school in the first round and let m0,1
1 be all the matches formed

by students belonging to I1,1
0 . Let q1,2

s = q1,1
s −#{(i, s) | i ∈ G1,1

s and i 7→ s}
be the capacity of school s at the end of the first round. Whenever a student

is removed, the rankings of all schools are adjusted accordingly. In the second

round of the clinching procedure, each remaining student i ∈ I \ I1,1
0 points to

the school that is ranked first in Pi. If student i is pointing to school s and

i ∈ G1,2
s = {i ∈ I \ I1,1

0 | #(Φ(s, i) \ I1,1
0 ) < q1,2

s }, then she is assigned to school

s and the capacity of school s is reduced by one. Let I1,2
0 = {i ∈ I \ I1,1

0 |
i ∈ G1,2

s and i 7→ s} be the set of students who clinch to some school in the

second round and let m0,2
1 be all the matches formed by students belonging to

I1,2
0 . Let q1,3

s = q1,2
s −#{(i, s) | i ∈ G1,2

s and i 7→ s} be the capacity of school s

at the end of the second round. Whenever a student is removed, the rankings

of all schools are adjusted accordingly. Let I1,0
0 = ∅. For r ≥ 1, let

G1,r
s = {i ∈ I \ ∪r−1

l=0 I
1,l
0 | #(Φ(s, i) \ ∪r−1

l=0 I
1,l
0 ) < q1,r

s },

q1,r+1
s = q1,r

s −#{(i, s) | i ∈ G1,r
s and i 7→ s},

I1,r
0 = {i ∈ I \ ∪r−1

l=0 I
1,l
0 | i ∈ G1,r

s and i 7→ s},

m0,r
1 = {(i, s) | i ∈ G1,r

s and i 7→ s}.

The clinching procedure is iterated until I
1,r′1
0 6= ∅ while I

1,r′1+1
0 = ∅ for some

r′1. Then, M0
1 = ∪r

′
1
r=1m

0,r
1 are all the matches obtained from iterating the

clinching procedure in Step 1.A.

1.B Each remaining student i ∈ I \ ∪r
′
1
l=0I

1,l
0 points to the school s that is ranked

first in Pi such that q
1,r′1+1
s ≥ 1. If there is no such school, then student i points

to herself and she forms a self-cycle. Each school s ∈ S such that q
1,r′1+1
s ≥ 1

points to the student j ∈ I \ ∪r
′
1
l=0I

1,l
0 that has the highest priority in Fs. If

there exists a cycle, every student in a cycle is assigned a seat at the school

she points to and she is removed. Each school (student) can be part of at most

one cycle. Similarly, every student in a self-cycle is not assigned to any school

and is removed. If a school s is part of a cycle, then its remaining capacity q2
s

is equal to q
1,r′1+1
s − 1. If a school s is not part of any cycle, then its remaining

capacity q2
s remains equal to q

1,r′1+1
s . If q2

s = 0, then school s is removed. Let

C1 = {c1
1, c

2
1, ..., c

L1
1 } be the set of cycles in Step 1.B (where L1 ≥ 1 is the

number of cycles in Step 1.B). Let ml
1 be all the matches from cycle cl1 that
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are formed in Step 1.B of the algorithm.

ml
1 =

{
{(i, s) | i, s ∈ cl1 and i 7→ s} if cl1 6= (j)

{(j, j)} if cl1 = (j)

Let I1
1 be the set of students who are assigned to some school and let M1

1 =

∪L1
l=1m

l
1 be all the matches between students and schools formed in Step 1.B of

the algorithm. Let I1 = I1
1 ∪ (∪r

′
1
l=0I

1,l
0 ) be the set of students who are assigned

to some school in Step 1 of the algorithm and let M1 = M0
1 ∪M1

1 be all the

matches formed between students and schools.

Step k ≥ 2 Notice that qks keeps track of how many seats are still available at the school

at step k of the algorithm. Let Ĩk−1 = I \ (∪k−1
l=1 Il) be the set of students who

are not yet assigned at the end of Step k − 1 of the algorithm.

k.A. Let qk,1s = qks for all s ∈ S. Let Îk = {i ∈ Ĩk−1 | i 7→ s in Step k −
1.B and qk,1s ≥ 1} be the set of students who were pointing to some school

in Step k − 1.B that still has available capacity in Step k.A (i.e. qk,1s ≥ 1).

Each student i ∈ Îk does not participate to the clinching procedure. In the first

round of the clinching procedure, each student i ∈ Ĩk−1\ Îk points to the school

that is ranked first in Pi. If student i is pointing to school s and i ∈ Gk,1
s =

{i ∈ Ĩk−1\Îk | #(Φ(s, i)∩Ĩk−1) < qk,1s }, then she is assigned to school s and the

capacity of school s is reduced by one. Student i is said to be clinched to school

s. Let Ik,10 = {i ∈ Ĩk−1 \ Îk | i ∈ Gk,1
s and i 7→ s} be the set of students who

clinch to some school in the first round and let m0,1
k be all the matches formed

by students belonging to Ik,10 . Let qk,2s = qk,1s −#{(i, s) | i ∈ Gk,1
s and i 7→ s}

be the capacity of school s at the end of the first round. Whenever a student

is removed, the rankings of all schools are adjusted accordingly. In the second

round of the clinching procedure, each remaining student i ∈ Ĩk−1 \ (Îk ∪ Ik,10 )

points to the school that is ranked first in Pi. If student i is pointing to school s

and i ∈ Gk,2
s = {i ∈ Ĩk−1\(Îk∪Ik,10 ) | #(Φ(s, i)∩(Ĩk−1\Ik,10 ) < qk,2s }, then she is

assigned to school s and the capacity of school s is reduced by one. Let Ik,20 =

{i ∈ Ĩk−1 \ (Îk ∪ Ik,10 ) | i ∈ Gk,2
s and i 7→ s} be the set of students who clinch

to some school in the second round and let m0,2
k be all the matches formed by

students belonging to Ik,20 . Let qk,3s = qk,2s −#{(i, s) | i ∈ Gk,2
s and i 7→ s} be

the capacity of school s at the end of the second round. Whenever a student
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is removed, the rankings of all schools are adjusted accordingly. Let Ik,00 = ∅.
For r ≥ 1, let

Gk,r
s = {i ∈ Ĩk−1 \ (Îk ∪ (∪r−1

l=0 I
k,l
0 )) | #(Φ(s, i) \ ∪r−1

l=0 I
k,l
0 ) < qk,rs },

qk,r+1
s = qk,rs −#{(i, s) | i ∈ Gk,r

s and i 7→ s},

Ik,r0 = {i ∈ Ĩk−1 \ (Îk ∪ (∪r−1
l=0 I

k,l
0 )) | i ∈ Gk,r

s and i 7→ s},

m0,r
k = {(i, s) | i ∈ Gk,r

s and i 7→ s}.

The clinching procedure is iterated until I
k,r′k
0 6= ∅ while I

k,r′k+1
0 = ∅ for some

r′k. Then, M0
k = ∪r

′
k
r=1m

0,r
k are all the matches obtained from iterating the

clinching procedure in Step k.A.

k.B Each remaining student i ∈ Ĩk−1 \∪
r′k
l=0I

k,l
0 points to the school s that is ranked

first in Pi such that q
k,r′k+1
s ≥ 1. If there is no such school, then student i points

to herself and she forms a self-cycle. Each school s ∈ S such that q
k,r′k+1
s ≥ 1

points to the student j ∈ Ĩk−1 \ ∪
r′k
l=0I

k,l
0 that has the highest priority in Fs. If

there exists a cycle, every student in a cycle is assigned a seat at the school

she points to and she is removed. Each school (student) can be part of at most

one cycle. Similarly, every student in a self-cycle is not assigned to any school

and is removed. If a school s is part of a cycle, then its remaining capacity

qk+1
s is equal to q

k,r′k+1
s − 1. If a school s is not part of any cycle, then its

remaining capacity qk+1
s remains equal to q

k,r′k+1
s . If qk+1

s = 0, then school s

is removed. Let Ck = {c1
k, c

2
k, ..., c

Lk
k } be the set of cycles in Step k.B (where

Lk ≥ 1 is the number of cycles in Step k.B). Let ml
k be all the matches from

cycle clk that are formed in Step k.B of the algorithm.

ml
k =

{
{(i, s) | i, s ∈ clk and i 7→ s} if clk 6= (j)

{(j, j)} if clk = (j)

Let I1
k be the set of students who are assigned to some school and let M1

k =

∪Lk
l=1m

l
k be all the matches between students and schools formed in Step k.B of

the algorithm. Let Ik = I1
k ∪ (∪r

′
k
l=0I

k,l
0 ) be the set of students who are assigned

to some school in Step k of the algorithm and let Mk = M0
k ∪M1

k be all the

matches formed between students and schools.

End The algorithm stops when all students have been removed. Let k̄ be the step

at which the algorithm stops. Let µC denote the matching obtained from the

Clinch and Trade mechanism and it is given by µC = ∪k̄k=1Mk.
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Proof of Theorem 3

Since {µC} is a singleton set, internal stability (IS) is satisfied. (ES) Take any

matching µ 6= µC , we need to show that φ(µ) 3 µC . We build in steps a farsighted

improving path from µ to µC .

Step 1.A.1. If m0,1
1 ⊆ µ and r′1 6= 1 then go to Step 1.A.2 with µ1,1 = µ. If m0,1

1 ⊆ µ,

r′1 = 1 and C1 6= ∅ then go to Step 1.B.1 with µ1,r′1
= µ. If m0,1

1 ⊆ µ, r′1 = 1

and C1 = ∅ then go to Step 1.End with µ′′′1,L1
= µ. It is not excluded that

m0,1
1 = ∅. Let Λ1,1(s) = #{(i, s′) /∈ µ | (i, s′) ∈ m0,1

1 and s′ = s} be the

number of students who are not yet matched to their preferred school s in µ

and are guaranteed admissions to their preferred school s. If m0,1
1 * µ then

µ1,1 = µ+{(i, s) /∈ µ | (i, s) ∈ m0,1
1 }−{(j, s) ∈ µ | Λs

j(µ) < Λ1,1(s)−qs+#µ(s)}
where Λs

j(µ) = #{l ∈ I | (l, s) ∈ µ and Fs(l) > Fs(j)} is the number of

students who are matched to school s in µ and have a lower priority than

student j. We reach µ1,1 with m0,1
1 ⊆ µ1,1. If r′1 6= 1 then go to Step 1.A.2. If

r′1 = 1 and C1 6= ∅, then go to Step 1.B.1. Otherwise, go to Step 1.End with

µ′′′1,L1
= µ1,1.

Step 1.A.k. (k > 1) If m0,k
1 ⊆ µ1,k−1 and r′1 6= k then go to Step 1.A.k+1 with µ1,k = µ1,k−1.

If m0,k
1 ⊆ µ1,k−1, r′1 = k and C1 6= ∅ then go to Step 1.B.1 with µ1,r′1

= µ1,k−1.

If m0,k
1 ⊆ µ1,k−1, r′1 = k and C1 = ∅ then go to Step 1.End with µ′′′1,L1

= µ1,k−1.

It is not excluded that m0,k
1 = ∅. Given the matches ∪k−1

r=1m
0,r
1 ⊆ µ1,k−1 remain

fixed, let Λ1,k(s) = #{(i, s′) /∈ µ1,k−1 | (i, s′) ∈ m0,k
1 and s′ = s} be the

number of students who are not yet matched to their preferred school s in

µ1,k−1 and are guaranteed admissions to their preferred school s. If m0,k
1 *

µ1,k−1 then µ1,k = µ1,k−1 + {(i, s) /∈ µ1,k−1 | (i, s) ∈ m0,k
1 } − {(j, s) ∈ µ1,k−1 |

Λs
j(µ1,k−1) < Λ1,k(s) − qs + #µ1,k−1(s)} where Λs

j(µ1,k−1) = #{l ∈ I | (l, s) ∈
µ1,k−1 and Fs(l) > Fs(j)} is the number of students who are matched to school

s in µ1,k−1 and have a lower priority than student j. We reach µ1,k with

m0,k
1 ⊆ µ1,k. If r′1 6= k then go to Step 1.A.k + 1. If r′1 = k and C1 6= ∅, then

go to Step 1.B.1. Otherwise, go to Step 1.End with µ′′′1,L1
= µ1,k.

Step 1.B.1. If m1
1 ⊆ µ1,r′1

and 1 6= L1 then go to Step 1.B.2 with µ′′′1,1 = µ1,r′1
. If m1

1 ⊆
µ1,r′1

and 1 = L1 then go to Step 1.End with µ′′′1,L1
= µ1,r′1

. If m1
1 * µ1,r′1

then µ′1,1 = µ1,r′1
− {(i, µ1,r′1

(i)) | (i, µC(i)) ∈ m1
1 and µ1,r′1

(i) 6= i} + {(i, s) |
i, s ∈ c1

1 and s 7→ i} − {(j, s) ∈ µ1,r′1
| s ∈ c1

1, µ1,r′1
(s) ∩ c1

1 = ∅, #µ1,r′1
(s) =
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qs and Fs(j) > Fs(l) for all l ∈ µ1,r′1
(s), l 6= j}. Next µ′′1,1 = µ′1,1 − {(i, s) |

i, s ∈ c1
1 and s 7→ i}. Next µ′′′1,1 = µ′′1,1 +{(i, s) | i, s ∈ c1

1 and i 7→ s}. We reach

µ′′′1,1 with m1
1 ⊆ µ′′′1,1. If 1 6= L1, then go to Step 1.B.2. Otherwise, go to Step

1.End with µ′′′1,L1
= µ′′′1,1.

Step 1.B.k. (k > 1) If mk
1 ⊆ µ′′′1,k−1 and k 6= L1 then go to Step 1.B.k+1 with µ′′′1,k = µ′′′1,k−1.

If mk
1 ⊆ µ′′′1,k−1 and k = L1 then go to Step 1.End with µ′′′1,L1

= µ′′′1,k−1. If mk
1 *

µ′′′1,k−1 then µ′1,k = µ′′′1,k−1 − {(i, µ′′′1,k−1(i)) | (i, µC(i)) ∈ mk
1 and µ′′′1,k−1(i) 6=

i} + {(i, s) | i, s ∈ ck1 and s 7→ i} − {(j, s) ∈ µ′′′1,k−1 | s ∈ ck1, µ′′′1,k−1(s) ∩
ck1 = ∅, #µ′′′1,k−1(s) = qs and Fs(j) > Fs(l) for all l ∈ µ′′′1,k−1(s), l 6= j}. Next

µ′′1,k = µ′1,k − {(i, s) | i, s ∈ ck1 and s 7→ i}. Next µ′′′1,k = µ′′1,k + {(i, s) | i, s ∈
ck1 and i 7→ s}. We reach µ′′′1,k with mk

1 ⊆ µ′′′1,k. If k 6= L1, then go to Step

1.B.k+1. Otherwise, go to Step 1.End with µ′′′1,L1
= µ′′′1,k.

Step 1.End. We have reached µ′′′1,L1
with ∪L1

l=1m
l
1 = M1

1 ⊆ µ′′′1,L1
and ∪r

′
1
r=1m

0,r
1 = M0

1 ⊆ µ′′′1,L1
.

That is, M1 ⊆ µ′′′1,L1
. If µ′′′1,L1

= µC then the process ends. Otherwise, go to

Step 2.A.1.

Step 2.A.1. If m0,1
2 ⊆ µ′′′1,L1

and r′2 6= 1 then go to Step 2.A.2 with µ2,1 = µ′′′1,L1
. If

m0,1
2 ⊆ µ′′′1,L1

, r′2 = 1 and C2 6= ∅ then go to Step 2.B.1 with µ2,r′2
= µ′′′1,L1

.

If m0,1
2 ⊆ µ′′′1,L1

, r′2 = 1 and C2 = ∅ then go to Step 2.End with µ′′′2,L2
= µ′′′1,L1

.

It is not excluded that m0,1
2 = ∅. Given the matches M1 ⊆ µ′′′1,L1

remain fixed,

let Λ2,1(s) = #{(i, s′) /∈ µ′′′1,L1
| (i, s′) ∈ m0,1

2 and s′ = s} be the number of

students who are not yet matched to their preferred school s in µ′′′1,L1
and

are guaranteed admissions to their preferred school s. If m0,1
2 * µ′′′1,L1

then

µ2,1 = µ′′′1,L1
+ {(i, s) /∈ µ′′′1,L1

| (i, s) ∈ m0,1
2 } − {(j, s) ∈ µ′′′1,L1

| Λs
j(µ
′′′
1,L1

) <

Λ2,1(s)−qs+#µ′′′1,L1
(s)} where Λs

j(µ
′′′
1,L1

) = #{l ∈ I | (l, s) ∈ µ′′′1,L1
and Fs(l) >

Fs(j)} is the number of students who are matched to school s in µ′′′1,L1
and have

a lower priority than student j. We reach µ2,1 with m0,1
2 ⊆ µ2,1. If r′2 6= 1 then

go to Step 2.A.2. If r′2 = 1 and C2 6= ∅, then go to Step 2.B.1. Otherwise, go

to Step 2.End with µ′′′2,L2
= µ2,1.

Step 2.A.k. (k > 1) If m0,k
2 ⊆ µ2,k−1 and r′2 6= k then go to Step 2.A.k + 1 with µ2,k =

µ2,k−1. If m0,k
2 ⊆ µ2,k−1, r′2 = k and C2 6= ∅ then go to Step 2.B.1 with

µ2,r′2
= µ2,k−1. If m0,k

2 ⊆ µ2,k−1, r′2 = k and C2 = ∅ then go to Step 2.End

with µ′′′2,L2
= µ2,k−1. It is not excluded that m0,k

2 = ∅. Given the matches
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M1 ∪ (∪k−1
r=1m

0,r
2 ) ⊆ µ2,k−1 remain fixed, let Λ2,k(s) = #{(i, s′) /∈ µ2,k−1 |

(i, s′) ∈ m0,k
2 and s′ = s} be the number of students who are not yet matched

to their preferred school s in µ2,k−1 and are guaranteed admissions to their

preferred school s. If m0,k
2 * µ2,k−1 then µ2,k = µ2,k−1 + {(i, s) /∈ µ2,k−1 |

(i, s) ∈ m0,k
2 }− {(j, s) ∈ µ2,k−1 | Λs

j(µ2,k−1) < Λ2,k(s)− qs + #µ2,k−1(s)} where

Λs
j(µ2,k−1) = #{l ∈ I | (l, s) ∈ µ2,k−1 and Fs(l) > Fs(j)} is the number of

students who are matched to school s in µ2,k−1 and have a lower priority than

student j. We reach µ2,k with m0,k
2 ⊆ µ2,k. If r′2 6= k then go to Step 2.A.k+ 1.

If r′2 = k and C2 6= ∅, then go to Step 2.B.1. Otherwise, go to Step 2.End with

µ′′′2,L2
= µ2,k.

Step 2.B.1. If m1
2 ⊆ µ2,r′2

and 1 6= L2 then go to Step 2.B.2 with µ′′′2,1 = µ2,r′2
. If m1

2 ⊆
µ2,r′2

and 1 = L2 then go to Step 2.End with µ′′′2,L2
= µ2,r′2

. If m1
2 * µ2,r′2

then µ′2,1 = µ2,r′2
− {(i, µ2,r′2

(i)) | (i, µC(i)) ∈ m1
2 and µ2,r′2

(i) 6= i} + {(i, s) |
i, s ∈ c1

2 and s 7→ i} − {(j, s) ∈ µ2,r′2
| s ∈ c1

2, µ2,r′2
(s) ∩ c1

2 = ∅, #µ2,r′2
(s) =

qs and Fs(j) > Fs(l) for all l ∈ µ2,r′2
(s), l 6= j}. Next µ′′2,1 = µ′2,1 − {(i, s) |

i, s ∈ c1
2 and s 7→ i}. Next µ′′′2,1 = µ′′2,1 +{(i, s) | i, s ∈ c1

2 and i 7→ s}. We reach

µ′′′2,1 with m1
2 ⊆ µ′′′2,1. If 1 6= L2, then go to Step 2.B.2. Otherwise, go to Step

2.End with µ′′′2,L2
= µ′′′2,1.

Step 2.B.k. (k > 1) If mk
2 ⊆ µ′′′2,k−1 and k 6= L2 then go to Step 2.B.k+1 with µ′′′2,k = µ′′′2,k−1.

If mk
2 ⊆ µ′′′2,k−1 and k = L2 then go to Step 2.End with µ′′′2,L2

= µ′′′2,k−1. If mk
2 *

µ′′′2,k−1 then µ′2,k = µ′′′2,k−1 − {(i, µ′′′2,k−1(i)) | (i, µC(i)) ∈ mk
2 and µ′′′2,k−1(i) 6=

i} + {(i, s) | i, s ∈ ck2 and s 7→ i} − {(j, s) ∈ µ′′′2,k−1 | s ∈ ck2, µ′′′2,k−1(s) ∩
ck2 = ∅, #µ′′′2,k−1(s) = qs and Fs(j) > Fs(l) for all l ∈ µ′′′2,k−1(s), l 6= j}. Next

µ′′2,k = µ′2,k − {(i, s) | i, s ∈ ck2 and s 7→ i}. Next µ′′′2,k = µ′′2,k + {(i, s) | i, s ∈
ck2 and i 7→ s}. We reach µ′′′2,k with mk

2 ⊆ µ′′′2,k. If k 6= L2, then go to Step

2.B.k+1. Otherwise, go to Step 2.End with µ′′′2,L2
= µ′′′2,k.

Step 2.End. We have reached µ′′′2,L2
with ∪L2

l=1m
l
2 = M1

2 ⊆ µ′′′2,L2
, ∪r

′
2
r=1m

0,r
2 = M0

2 ⊆ µ′′′2,L2

and M1 ⊆ µ′′′2,L2
. That is, M1 ∪M2 ⊆ µ′′′2,L2

. If µ′′′2,L2
= µC then the process

ends. Otherwise, go to Step 3.A.1.

End. The process goes on until we reach µ′′′
k̄,Lk̄

= ∪k̄k=1Mk = µC .
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A.3 Equitable Top Trading Cycles Algorithm

The Equitable Top Trading Cycles mechanism (Hakimov and Kesten, 2018) finds

a matching by means of the following Equitable Top Trading Cycles algorithm

(ETTC).

Step 1. Set q1
s = qs for all s ∈ S where q1

s is the initial capacity of school s at Step 1.

1.A. In the inheritance round, since all seats are available to inherit, students are

assigned seats according to the priority orders F to form student-school pairs.

Let Φ1(s, i) = {j ∈ I | Fs(j) < Fs(i)} be the set of students who have

higher priority than student i for school s in Step 1. Let IS1 = {(i, s) ∈
I × S | #Φ1(s, i) ≤ q1

s} be the set of student-school pairs formed by assigning

students one-by-one to the schools while respecting their capacities. In other

words, IS1 consists of student-school pairs such that each school s pairs with

qs highest priority students.

1.B. Each student-school pair (i, s) ∈ IS1 points to the student-school pair (i′, s′) ∈
IS1 such that (1) s′ is the best choice of student i in Pi, and (2) student i′

has the highest priority in Fs among students who are assigned a seat at s′,

i.e. (i, s) 7→ (i′, s′) such that Fs(i
′) < Fs(l) for any other (l, s′) ∈ IS1.14 Since

there is a finite number of students and schools, there is at least one cycle.

Let C1 = {c1
1, c

2
1, . . . , c

L1
1 } be the set of cycles in Step 1.B where L1 ≥ 1 is the

number of cycles in Step 1.B.

1.C. If student i appears in the same cycle or in different cycles with different

schools, then she is assigned a seat at her top choice among those schools. That

is, for each i ∈ I such that there exists (i, s) 7→ (i′, s′) in cl1 and (i, ŝ) 7→ (i′′, s′′)

in cl
′

1 , possibly cl1 = cl
′

1 , m1(i) = s′ such that Pi(s
′) > Pi(s

′′). Moreover, the

seats at all other schools than her top choice she points to in those cycles

remain to be inherited in Step 2.A. For all other students, they are matched

with the school that is in the student-school pair they point to at a cycle cl1,

i.e. if (i, s) 7→ (i′, s′) (possibly s = s′) in cl1, then m1(i) = s′. Finally, if there is

a student-school pair participating in a cycle, (i, s) ∈ cl1, and another student-

school pair with the same student and a different school not participating at

any cycle, (i, s′) /∈ cl
′

1 , cl
′

1 ∈ C1, then this seat at school s′ remains to be

14Note that if Fs(i) = 1, then all pairs (i, s′) ∈ IS1 point to (i, s).
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inherited in Step 2.A. Let I1 = {i ∈ I | (i, s) ∈ cl1, cl1 ∈ C1} be the set of

students involved in a cycle in Step 1. Let M1 = ∪i∈I1(i,m1(i)) be all the

matches formed between students and schools in Step 1. Let Î1 = I \ I1 be

the set of students who have not been assigned a seat at the end of Step 1. If

Î1 6= ∅, then go to Step 2.A. Otherwise, go to End.

Step k ≥ 2. At the beginning of Step k, the remaining capacity of school s is qks and the

set of remaining students is Îk−1.

k.A. In the inheritance round, for each school s such that (1) there are seats at s

remained from Step k − 1.C to be inherited, and (2) no student-school pair

was assigned at Step k − 1 and hence remaining seats qks are assigned to the

remaining students Îk−1 according to the priority orders F to form student-

school pairs. Let Φk(s, i) = {j ∈ Îk−1 | Fs(j) < Fs(i)} be the set of students

who have higher priority than student i for school s in Step k. Let ISk =

{(i, s) ∈ Îk−1×S | #Φk(s, i) ≤ qks} be the set of student-school pairs formed by

assigning students one-by-one to the schools while respecting their capacities.

In other words, ISk consists of student-school pairs such that each school s

pairs with qks highest priority students.

k.B. Each student-school pair (i, s) ∈ ISk points to the student-school pair (i′, s′) ∈
ISk such that (1) s′ is the best choice of student i in Pi, and (2) student i′

has the highest priority in Fs among students that are assigned a seat at s′,

i.e. (i, s) 7→ (i′, s′) such that Fs(i
′) < Fs(l) for any other (l, s′) ∈ ISk. Since

there is a finite number of students and schools, there is at least one cycle.

Let Ck = {c1
k, c

2
k, . . . , c

Lk
k } be the set of cycles in Step k.B where Lk ≥ 1 is the

number of cycles in Step k.B.

k.C. If student i appears in the same cycle or in different cycles with different

schools, then she is assigned a seat at her top choice among those schools. That

is, for each i ∈ Îk−1 such that there exists (i, s) 7→ (i′, s′) in clk and (i, ŝ) 7→
(i′′, s′′) in cl

′

k , possibly clk = cl
′

k , mk(i) = s′ such that Pi(s
′) > Pi(s

′′). Moreover,

the seats at all other schools than her top choice she points to in those cycles

remain to be inherited in Step k.A. For all other students, they are matched

with the school that is in the student-school pair they point to at a cycle clk,

i.e. if (i, s) 7→ (i′, s′) (possibly s = s′) in clk, then mk(i) = s′. Finally, if there is
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a student-school pair participating in a cycle, (i, s) ∈ clk, and another student-

school pair with the same student and a different school not participating at

any cycle, (i, s′) /∈ cl
′

k , cl
′

k ∈ Ck, then this seat at school s′ remains to be

inherited in Step k + 1.A. Let Ik = {i ∈ Îk−1 | (i, s) ∈ clk, clk ∈ Ck} be the set

of students involved in a cycle in Step k. Let Mk = ∪i∈Ik(i,mk(i)) be all the

matches formed between students and schools in Step k. Let Îk = Îk−1 \ Ik be

the set of students who have not been assigned a seat at the end of Step k. If

Îk 6= ∅, then go to Step k + 1.A. Otherwise, go to End.

End The algorithm stops when all students have been removed. Let k̄ be the step

at which the algorithm stops. Let µE denote the matching obtained from the

ETTC algorithm and it is given by µE = ∪k̄k=1Mk.

Proof of Theorem 4

Since {µE} is a singleton set, internal stability (IS) is satisfied. (ES) Take any

matching µ 6= µE, we need to show that φ(µ) 3 µE. We build in steps a farsighted

improving path from µ to µE.

Step 1.1. If (i, µE(i)) ∈ µ for all i ∈ {j ∈ I | (j, s) ∈ c1
1} and 1 6= L1 then go to Step

1.2 with µ′′′1,1 = µ. If (i, µE(i)) ∈ µ for all i ∈ {j ∈ I | (j, s) ∈ c1
1} and 1 = L1

then go to Step 1.End with µ′′′1,L1
= µ. Let c1

1(i) = {(i, sl)}τ(i,c11)
l=1 such that

(i, sl) ∈ c1
1 and sl = sol 6= sl+1 = sol+1

with ol < ol+1 for l = 1, ..., τ(i, c1
1) − 1.

That is, c1
1(i) is an ordered set of the pairs involving student i in cycle c1

1

where τ(i, c1
1) = #{(j, s) ∈ c1

1 | j = i} is the number of distinct pairs involving

student i in cycle c1
1. Let Λ1,1(s) = #{(i, s′) /∈ µ | (i, s′) = (i, s1) with (i, s1) ∈

c1
1(i) and s′ = s} be the number of students who are not yet matched in

µ to school s that ranks them among the first qs positions and is ranked

first in their ordered set. If (i, µE(i)) /∈ µ for some i ∈ {j ∈ I | (j, s) ∈
c1

1} then µ′1,1 = µ − {(i, µ(i)) | (i, s) ∈ c1
1 and µ(i) 6= i} + {(i, s) | (i, s) =

(i, s1) with (i, s1) ∈ c1
1(i)} − {(j, s) ∈ µ | Λs

j(µ) < Λ1,1(s)− qs + #µ(s)} where

Λs
j(µ) = #{l ∈ I | (l, s) ∈ µ and Fs(l) > Fs(j)} is the number of students who

are matched to school s in µ and have a lower priority than student j. Next,

if (i, µ′1,1(i)) = (i, µE(i)) and c1
1 = {(i, µE(i))} then µ′′1,1 = µ′1,1. Otherwise,

µ′′1,1 = µ′1,1 − {(i, s) | (i, s) = (i, s1) with (i, s1) ∈ c1
1(i)} so that all students

involved in c1
1 are unmatched. If τ(i, c1

1) = 1 for all i ∈ {j ∈ I | (j, s) ∈ c1
1}

and 1 6= L1, then go to Step 1.2. If τ(i, c1
1) = 1 for all i ∈ {j ∈ I | (j, s) ∈ c1

1}
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and 1 = L1, then go to Step 1.End with µ′′′1,L1
= µ′′1,1. If τ(i, c1

1) 6= 1 for some

i ∈ {j ∈ I | (j, s) ∈ c1
1} then go to Step 1.1.A.

Step 1.1.A Take i ∈ {j ∈ I | (j, s) ∈ c1
1} such that τ(i, c1

1) 6= 1. If #µ′′1,1(s2) < qs2 ,

then µi21,1 = µ′′1,1 + (i, s2) with (i, s2) ∈ c1
1(i). If #µ′′1,1(s2) = qs2 , then µi21,1 =

µ′′1,1 + (i, s2) − (j, s2) with (i, s2) ∈ c1
1(i), (j, s2) ∈ µ′′1,1 and Fs2(j) > Fs2(l) for

all l ∈ µ′′1,1(s2), l 6= j. Next, student i leaves school s2 to become unmatched

and guaranteeing a free slot at school s2. We reach µi2
′

1,1 = µi21,1 − (i, s2). Next,

if τ(i, c1
1) 6= 2 and #µ′′1,1(s3) < qs3 , then µi31,1 = µi2

′
1,1 + (i, s3) with (i, s3) ∈ c1

1(i).

If τ(i, c1
1) 6= 2 and #µ′′1,1(s3) = qs3 , then µi31,1 = µi2

′
1,1 + (i, s3) − (j, s3) with

(i, s3) ∈ c1
1(i), (j, s3) ∈ µ′′1,1 and Fs3(j) > Fs3(l) for all l ∈ µ′′1,1(s3), l 6= j.

Next, student i leaves school s3 to become unmatched and guaranteeing a free

slot at school s3. We reach µi3
′

1,1 = µi31,1 − (i, s3). We repeat this process until

we reach µ
iτ(i,c11)′

1,1 = µ
iτ(i,c11)
1,1 − (i, sτ(i,c11)).

We repeat the process of Step 1.1.A with each student i ∈ {j ∈ I | (j, s) ∈ c1
1}

such that τ(i, c1
1) 6= 1 to reach in the end the matching µ′′′1,1 where all students

involved in c1
1 are unmatched and each school s involved in c1

1 has #{(i, s′) ∈
c1

1 | s′ = s} free slots.

Step 1.k. (k > 1) If (i, µE(i)) ∈ µ′′′1,k−1 for all i ∈ {j ∈ I | (j, s) ∈ ck1} and k 6= L1 then

go to Step 1.k+1 with µ′′′1,k = µ′′′1,k−1. If (i, µE(i)) ∈ µ′′′1,k−1 for all i ∈ {j ∈ I |
(j, s) ∈ ck1} and k = L1 then go to Step 1.End with µ′′′1,L1

= µ′′′1,k−1. Let ck1(i) =

{(i, sl)}τ(i,ck1)
l=1 such that (i, sl) ∈ ck1 and sl = sol 6= sl+1 = sol+1

with ol < ol+1

for l = 1, ..., τ(i, ck1)− 1. That is, ck1(i) is an ordered set of the pairs involving

student i in cycle ck1 where τ(i, ck1) = #{(j, s) ∈ ck1 | j = i} is the number of

distinct pairs involving student i in cycle ck1. Let Λ1,k(s) = #{(i, s′) /∈ µ′′′1,k−1 |
(i, s′) = (i, s1) with (i, s1) ∈ ck1(i) and s′ = s} be the number of students who

are not yet matched in µ′′′1,k−1 to school s that ranks them among the first

qs positions and is ranked first in their ordered set. If (i, µE(i)) /∈ µ′′′1,k−1 for

some i ∈ {j ∈ I | (j, s) ∈ ck1} then µ′1,k = µ′′′1,k−1 − {(i, µ′′′1,k−1(i)) | (i, s) ∈
ck1 and µ′′′1,k−1(i) 6= i} + {(i, s) | (i, s) = (i, s1) with (i, s1) ∈ ck1(i)} − {(j, s) ∈
µ′′′1,k−1 | Λs

j(µ
′′′
1,k−1) < Λ1,k(s) − qs + #µ′′′1,k−1(s)} where Λs

j(µ
′′′
1,k−1) = #{l ∈

I | (l, s) ∈ µ′′′1,k−1 and Fs(l) > Fs(j)} is the number of students who are

matched to school s in µ′′′1,k−1 and have a lower priority than student j. Next,

if (i, µ′1,k(i)) = (i, µE(i)) and ck1 = {(i, µE(i))} then µ′′1,k = µ′1,k. Otherwise,
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µ′′1,k = µ′1,k − {(i, s) | (i, s) = (i, s1) with (i, s1) ∈ ck1(i)} so that all students

involved in ck1 are unmatched. If τ(i, ck1) = 1 for all i ∈ {j ∈ I | (j, s) ∈ ck1} and

k 6= L1, then go to Step 1.k+1. If τ(i, ck1) = 1 for all i ∈ {j ∈ I | (j, s) ∈ ck1}
and k = L1, then go to Step 1.End with µ′′′1,L1

= µ′′1,k. If τ(i, ck1) 6= 1 for some

i ∈ {j ∈ I | (j, s) ∈ ck1} then go to Step 1.k.A.

Step 1.k.A Take i ∈ {j ∈ I | (j, s) ∈ ck1} such that τ(i, ck1) 6= 1. If #µ′′1,k(s
2) < qs2 ,

then µi21,k = µ′′1,k + (i, s2) with (i, s2) ∈ ck1(i). If #µ′′1,k(s
2) = qs2 , then µi21,k =

µ′′1,k + (i, s2)− (j, s2) with (i, s2) ∈ ck1(i), (j, s2) ∈ µ′′1,k and Fs2(j) > Fs2(l) for

all l ∈ µ′′1,k(s2), l 6= j. Next, student i leaves school s2 to become unmatched

and guaranteeing a free slot at school s2. We reach µi2
′

1,k = µi21,k − (i, s2). Next,

if τ(i, ck1) 6= 2 and #µ′′1,k(s
3) < qs3 , then µi31,k = µi2

′

1,k +(i, s3) with (i, s3) ∈ ck1(i).

If τ(i, ck1) 6= 2 and #µ′′1,k(s
3) = qs3 , then µi31,k = µi2

′

1,k + (i, s3) − (j, s3) with

(i, s3) ∈ ck1(i), (j, s3) ∈ µ′′1,k and Fs3(j) > Fs3(l) for all l ∈ µ′′1,k(s
3), l 6= j.

Next, student i leaves school s3 to become unmatched and guaranteeing a free

slot at school s3. We reach µi3
′

1,k = µi31,k − (i, s3). We repeat this process until

we reach µ
iτ(i,ck1)′

1,k = µ
iτ(i,ck1)
1,k − (i, sτ(i,ck1)).

We repeat the process of Step 1.k.A with each student i ∈ {j ∈ I | (j, s) ∈ ck1}
such that τ(i, ck1) 6= 1 to reach in the end the matching µ′′′1,k where all students

involved in ck1 are unmatched and each school s involved in ck1 has #{(i, s′) ∈
ck1 | s′ = s} free slots. If k 6= L1, then go to Step 1.k+1. Otherwise, go to Step

1.End with µ′′′1,L1
= µ′′′1,k.

Step 1.End. We have reached µ′′′1,L1
where each student i involved in C1 is either matched to

µE(i) or unmatched and each school s involved in C1 has #{(i, s′) ∈ ∪L1
l=1c

l
1 |

s′ = s and µ′′′1,L1
(i) 6= µE(i)} free slots. Next, those unmatched students join

the school they point to in C1 to form the matching µ̃1 = µ′′′1,L1
+{(i, s) ∈M1 |

(i, s) /∈ µ′′′1,L1
}. If µ̃1 = µE then the process ends. Otherwise, go to Step 2.1.

Step 2.1. If (i, µE(i)) ∈ µ̃1 for all i ∈ {j ∈ Î1 | (j, s) ∈ c1
2} and 1 6= L2 then go to Step

2.2 with µ′′′2,1 = µ̃1. If (i, µE(i)) ∈ µ̃1 for all i ∈ {j ∈ Î1 | (j, s) ∈ c1
2} and 1 = L2

then go to Step 2.End with µ′′′2,L2
= µ̃1. Let c1

2(i) = {(i, sl)}τ(i,c12)
l=1 such that

(i, sl) ∈ c1
2 and sl = sol 6= sl+1 = sol+1

with ol < ol+1 for l = 1, ..., τ(i, c1
2) − 1.

That is, c1
2(i) is an ordered set of the pairs involving student i in cycle c1

2

where τ(i, c1
2) = #{(j, s) ∈ c1

2 | j = i} is the number of distinct pairs involving

student i in cycle c1
2. Let Λ2,1(s) = #{(i, s′) /∈ µ̃1 | (i, s′) = (i, s1) with (i, s1) ∈
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c1
2(i) and s′ = s} be the number of students who are not yet matched in µ̃1

to school s that ranks them among the first q2
s positions and is ranked first

in their ordered set. If (i, µE(i)) /∈ µ̃1 for some i ∈ {j ∈ Î1 | (j, s) ∈ c1
2}

then µ′2,1 = µ̃1 − {(i, µ̃1(i)) | (i, s) ∈ c1
2 and µ̃1(i) 6= i} + {(i, s) | (i, s) =

(i, s1) with (i, s1) ∈ c1
2(i)} − {(j, s) ∈ µ̃1 | Λs

j(µ̃1) < Λ2,1(s) − qs + #µ̃1(s)}
where Λs

j(µ̃1) = #{l ∈ I | (l, s) ∈ µ̃1 and Fs(l) > Fs(j)} is the number of

students who are matched to school s in µ̃1 and have a lower priority than

student j. Next, if (i, µ′2,1(i)) = (i, µE(i)) and c1
2 = {(i, µE(i))} then µ′′2,1 =

µ′2,1. Otherwise, µ′′2,1 = µ′2,1 − {(i, s) | (i, s) = (i, s1) with (i, s1) ∈ c1
2(i)}

so that all students involved in c1
2 are unmatched. If τ(i, c1

2) = 1 for all

i ∈ {j ∈ Î1 | (j, s) ∈ c1
2} and 1 6= L2, then go to Step 2.2. If τ(i, c1

2) = 1 for all

i ∈ {j ∈ Î1 | (j, s) ∈ c1
2} and 1 = L2, then go to Step 2.End with µ′′′2,L2

= µ′′2,1.

If τ(i, c1
2) 6= 1 for some i ∈ {j ∈ Î1 | (j, s) ∈ c1

2} then go to Step 2.1.A.

Step 2.1.A Take i ∈ {j ∈ Î1 | (j, s) ∈ c1
2} such that τ(i, c1

2) 6= 1. If #µ′′2,1(s2) < qs2 ,

then µi22,1 = µ′′2,1 + (i, s2) with (i, s2) ∈ c1
2(i). If #µ′′2,1(s2) = qs2 , then µi22,1 =

µ′′2,1 + (i, s2) − (j, s2) with (i, s2) ∈ c1
2(i), (j, s2) ∈ µ′′2,1 and Fs2(j) > Fs2(l) for

all l ∈ µ′′2,1(s2), l 6= j. Next, student i leaves school s2 to become unmatched

and guaranteeing a free slot at school s2. We reach µi2
′

2,1 = µi22,1 − (i, s2). Next,

if τ(i, c1
2) 6= 2 and #µ′′2,1(s3) < qs3 , then µi32,1 = µi2

′
2,1 + (i, s3) with (i, s3) ∈ c1

2(i).

If τ(i, c1
2) 6= 2 and #µ′′2,1(s3) = qs3 , then µi32,1 = µi2

′
2,1 + (i, s3) − (j, s3) with

(i, s3) ∈ c1
2(i), (j, s3) ∈ µ′′2,1 and Fs3(j) > Fs3(l) for all l ∈ µ′′2,1(s3), l 6= j.

Next, student i leaves school s3 to become unmatched and guaranteeing a free

slot at school s3. We reach µi3
′

2,1 = µi32,1 − (i, s3). We repeat this process until

we reach µ
iτ(i,c12)′

2,1 = µ
iτ(i,c12)
2,1 − (i, sτ(i,c12)).

We repeat the process of Step 2.1.A with each student i ∈ {j ∈ Î1 | (j, s) ∈ c1
2}

such that τ(i, c1
2) 6= 1 to reach in the end the matching µ′′′2,1 where all students

involved in c1
2 are unmatched and each school s involved in c1

2 has #{(i, s′) ∈
c1

2 | s′ = s} free slots.

Step 2.k. (k > 1) If (i, µE(i)) ∈ µ′′′2,k−1 for all i ∈ {j ∈ Î1 | (j, s) ∈ ck2} and k 6= L2 then

go to Step 2.k+1 with µ′′′2,k = µ′′′2,k−1. If (i, µE(i)) ∈ µ′′′2,k−1 for all i ∈ {j ∈ Î1 |
(j, s) ∈ ck2} and k = L2 then go to Step 2.End with µ′′′2,L2

= µ′′′2,k−1. Let ck2(i) =

{(i, sl)}τ(i,ck2)
l=1 such that (i, sl) ∈ ck2 and sl = sol 6= sl+1 = sol+1

with ol < ol+1

for l = 1, ..., τ(i, ck2)− 1. That is, ck2(i) is an ordered set of the pairs involving
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student i in cycle ck2 where τ(i, ck2) = #{(j, s) ∈ ck2 | j = i} is the number of

distinct pairs involving student i in cycle ck2. Let Λ2,k(s) = #{(i, s′) /∈ µ′′′2,k−1 |
(i, s′) = (i, s1) with (i, s1) ∈ ck2(i) and s′ = s} be the number of students who

are not yet matched in µ′′′2,k−1 to school s that ranks them among the first

q2
s positions and is ranked first in their ordered set. If (i, µE(i)) /∈ µ′′′2,k−1 for

some i ∈ {j ∈ Î1 | (j, s) ∈ ck2} then µ′2,k = µ′′′2,k−1 − {(i, µ′′′2,k−1(i)) | (i, s) ∈
ck2 and µ′′′2,k−1(i) 6= i} + {(i, s) | (i, s) = (i, s1) with (i, s1) ∈ ck2(i)} − {(j, s) ∈
µ′′′2,k−1 | Λs

j(µ
′′′
2,k−1) < Λ2,k(s) − qs + #µ′′′2,k−1(s)} where Λs

j(µ
′′′
2,k−1) = #{l ∈

I | (l, s) ∈ µ′′′2,k−1 and Fs(l) > Fs(j)} is the number of students who are

matched to school s in µ′′′2,k−1 and have a lower priority than student j. Next,

if (i, µ′2,k(i)) = (i, µE(i)) and ck2 = {(i, µE(i))} then µ′′2,k = µ′2,k. Otherwise,

µ′′2,k = µ′2,k − {(i, s) | (i, s) = (i, s1) with (i, s1) ∈ ck2(i)} so that all students

involved in ck2 are unmatched. If τ(i, ck2) = 1 for all i ∈ {j ∈ Î1 | (j, s) ∈ ck2} and

k 6= L2, then go to Step 2.k+1. If τ(i, ck2) = 1 for all i ∈ {j ∈ Î1 | (j, s) ∈ ck2}
and k = L2, then go to Step 2.End with µ′′′2,L2

= µ′′2,k. If τ(i, ck2) 6= 1 for some

i ∈ {j ∈ Î1 | (j, s) ∈ ck2} then go to Step 2.k.A.

Step 2.k.A Take i ∈ {j ∈ Î1 | (j, s) ∈ ck2} such that τ(i, ck2) 6= 1. If #µ′′2,k(s
2) < qs2 ,

then µi22,k = µ′′2,k + (i, s2) with (i, s2) ∈ ck2(i). If #µ′′2,k(s
2) = qs2 , then µi22,k =

µ′′2,k + (i, s2)− (j, s2) with (i, s2) ∈ ck2(i), (j, s2) ∈ µ′′2,k and Fs2(j) > Fs2(l) for

all l ∈ µ′′2,k(s2), l 6= j. Next, student i leaves school s2 to become unmatched

and guaranteeing a free slot at school s2. We reach µi2
′

2,k = µi22,k − (i, s2). Next,

if τ(i, ck2) 6= 2 and #µ′′2,k(s
3) < qs3 , then µi32,k = µi2

′

2,k +(i, s3) with (i, s3) ∈ ck2(i).

If τ(i, ck2) 6= 2 and #µ′′2,k(s
3) = qs3 , then µi32,k = µi2

′

2,k + (i, s3) − (j, s3) with

(i, s3) ∈ ck2(i), (j, s3) ∈ µ′′2,k and Fs3(j) > Fs3(l) for all l ∈ µ′′2,k(s
3), l 6= j.

Next, student i leaves school s3 to become unmatched and guaranteeing a free

slot at school s3. We reach µi3
′

2,k = µi32,k − (i, s3). We repeat this process until

we reach µ
iτ(i,ck2)′

2,k = µ
iτ(i,ck2)
2,k − (i, sτ(i,ck2)).

We repeat the process of Step 2.k.A with each student i ∈ {j ∈ Î1 | (j, s) ∈ ck2}
such that τ(i, ck2) 6= 1 to reach in the end the matching µ′′′2,k where all students

involved in ck2 are unmatched and each school s involved in ck2 has #{(i, s′) ∈
ck2 | s′ = s} free slots. If k 6= L2, then go to Step 2.k+1. Otherwise, go to Step

2.End with µ′′′2,L2
= µ′′′2,k.

Step 2.End. We have reached µ′′′2,L2
where each student i involved in C2 is either matched to
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µE(i) or unmatched and each school s involved in C2 has #{(i, s′) ∈ ∪L2
l=1c

l
2 |

s′ = s and µ′′′2,L2
(i) 6= µE(i)} free slots. Next, those unmatched students join

the school they point to in C2 to form the matching µ̃2 = µ′′′2,L2
+{(i, s) ∈M2 |

(i, s) /∈ µ′′′2,L2
}. Notice that (M1∪M2) ⊆ µ̃2. If µ̃2 = µE then the process ends.

Otherwise, go to Step 3.1.

End. The process goes on until we reach µ̃k̄ = ∪k̄k=1Mk = µE.
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