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Abstract

One of the most striking phenomena of active fluids, i.e., fluids composed
of self-propelled constituents, is the emergence of chaotic spatiotemporal flows.
”This regime, reminiscent of inertial turbulence but happening at low Reynolds
numbers, has become to be known as active turbulence. It has been observed in
a variety of systems, such as bacterial suspensions or epithelial tissues. Despite
the visual similarities, active turbulent flows possess fundamental differences
from classical turbulent flows. The differences essentially emanate from the
fact that active turbulence originates at vanishing Reynolds numbers from the
self-organization of the fluid constituents, which move coordinately at distances
much larger than their own size. As a result, active chaotic flows are endowed
with a characteristic length scale.

In this thesis, working with an experimental active system displaying ne-
matic order, i.e., head-to-tail orientational order, and composed of proteins from
the cytoskeleton, we address some still-standing open questions regarding active
turbulence. More specifically, since our experimental system is two-dimensional
and has nematic order, we study 2D active nematic turbulence. We begin this
thesis by unveiling the pathway followed by the active fluid with an imposed
radial alignment to its final characteristic chaotic state. More in particular, we
demonstrate that the AN in the aster configuration is intrinsically unstable to
buckling. In turn, a characteristic length scale already emerges at the insta-
bility’s early stages. Interestingly, the instability of the aligned active nematic
can be characterized in terms of a growth rate that exhibits a quadratic or
quasi-quadratic dependence on the leading wavenumber. Our experimental re-
sults are then compared with predictions obtained from linear stability analysis.
This enables us to see that the coupling of the active nematic with adjacent fluid
layers precludes long wavelength fluctuations, imposing in this way a genuine
wavelength selection mechanism.

In the second project, we measure the active liquid crystal’s flow field and
the associated kinetic energy spectrum. In this way, we verify the existence of
scaling regimes, some of which feature exponents previously predicted through
theory and simulations , together with new ones. To understand the newly-
discovered scaling regimes, we exploit a theory that includes the hydrodynamic
coupling of the active nematic with the two contacting passive fluid layers. This
theory assesses the range of validity of the identified scaling regimes, and permits
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to extract information on important rheological parameters of the active fluid.
In the final project, still in progress, we address the presence of energy cas-

cades in active nematic turbulence. Preliminary experimental results, supported
with simulations, suggest that even though the free energy balance does not en-
tirely vanish at all length scales, we cannot indeed conclude that there is energy
transfer between scales. A significant limitation we encounter when computing
the free energy balance of the active nematic is that most of the material param-
eters still need to be determined. Therefore, further research research devoted
to the evaluation of such parameters may shed light on this respect.

On top of the above fundamental studies, we also demonstrate two imple-
mentations of polarimetry measurements coupled with fluorescence imaging,
with which we can simultaneously measure the director and velocity fields of
the active nematic. The first arrangement is based on a liquid crystal slab,
whose retardance can be easily commanded with a computer. By measuring
the light intensity reaching the detector at different configurations of the liquid
crystal retarder, we can unequivocally and continuously know the sample’s local
orientation. The alternative implementation incorporates a polarization camera,
a device composed of subpixels with different polarizations. This arrangement
allows us to obtain exceptional birefringence measurements at significantly high
frame rates, even with very low-birefringent samples, as it is common for the
active nematic.
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Resum

Els fluids actius, com les suspensions de bactèries o els teixits, són fluids
compostos per moltes unitats capaces de propulsar-se cont́ınuament. Aquests
fluids presenten propietats molt interessants i radicalment oposades a les que
s’observen quan una d’aquestes unitats actives es mou individualment. Un ex-
emple és el que es coneix com a turbulència activa, on els fluids actius es mouen
caòticament i que emergeix inclús a números de Reynolds baixos, quan la inèrcia
es menyspreable. Aquest fenomen es diu aix́ı perquè visualment recorda a la tur-
bulència inercial clàssica. Tot i aix́ı, hi ha diferències fonamentals entre aquests
dos tipus de turbulència, els quals ens interessa discernir.

En aquesta tesi es presenten estudis experimentals, duts a terme amb una
suspensió de protëınes del citoesquelet, i amb els quals abordem algunes qües-
tions encara obertes sobre la turbulència activa i les seves similituds i diferències
amb la turbulència inercial. Més concretament, com el nostre sistema experi-
mental és 2D i presenta simetria nemàtica, nosaltres estudiem la turbulència
nemàtica activa.

En primer lloc, revelem el camı́ que segueix el nemàtic actiu alineat ra-
dialment fins que arriba al seu estat turbulent. Més concretament, demostrem
que la geometria d’àster és inestable; en conseqüència, el fluid actiu comença
a deformar-se i llavors emergeix una escala de longitud caracteŕıstica. Després
duem a terme estudis on l’actiu nemàtic ja es troba plenament en el seu estat tur-
bulent. En aquest sentit, demostrem l’existència de règims d’escala en l’espectre
d’energia cinètica del nemàtic actiu i abordem la presència o no presència de
cascades d’energia en el context de la turbulència nemàtica activa. Finalment,
descrivim dues tècniques de polarimetria acoblades a fluorescència amb les quals
podem mesurar simultàniament la orientació i el camp de velocitats del nemàtic
actiu i que ens permeten dur a terme les mesures experimentals presentades en
aquesta tesi.
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ser riure i explicar-me la teva primera ”ficada de pota”. Tots dos heu sigut una
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bé durant la tesi, aqúı he de mencionar especialment a la Laura, la Raquel, la
Ghiza, l’Alberto, l’Aleix, la Roser, la Laura B., el Marco (intentando igualar
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ment i per animar-me a realitzar aquesta tesi. Sense vosaltres no hagués sigut
possible. Mai hagués triat una millor famı́lia. Us estimo. Als yayos per
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∗ Mean vortex radius extracted from the kinetic

energy spectrum
m

Rv
∗ Mean vortex radius extracted from the distribu-

tion of vortex areas
m

I Energy injection N/(m·s)
Ds Viscous energy dissipation N/(m·s)
Dr Rotational energy dissipation N/(m·s)
T Energy transfer N/(m·s)
A Area m2

φ Azimuth rad

w Winding number

m Topological charge

Re Reynolds number

H Height or layer thickness m

u 3d fluid velocity m/s

E Electric field V/m
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δx, δy x and y phase constants rad
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ψ Retarance of the variable liquid crystal retarder rad
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∆n Birefringence rad

n Refractive index rad

V Voltage V
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Introduction

1.1 Active matter

Flocks of birds, colonies of ants, large groups of people or dense suspensions of
swimming bacteria are all encompassed within what is known as active matter.
Active matter refers to systems composed of units, each capable of transforming
stored or ambient energy into constant movement [2, 3, 4, 5, 6]. These systems
can be found in a vast spectrum of length scales: from the micron scale up to
some tens of meters (see Fig. 1.1).

Interestingly, interactions of the constituents with their neighbors and the
surrounding medium trigger the appearance of collective motion, where large
groups of these active particles move as a one, without the need for a leader [9].
Moreover, this collective behavior and the non-equilibrium environment give rise
to striking phenomena. Some examples include pattern formation [8, 10, 11, 12,
13, 14], unusual mechanical and rheological properties [15], and chaotic flows
even when inertia is negligible [16, 17, 18, 19, 20], all sharing that they are not
observed for individual constituents.

Throughout this thesis, we have been mainly concerned about active colloidal
systems. The latter refer to suspensions with non-soluble particles with a typical
size ranging between the nano and the micron scales. Given the particles’ small
scales, these systems are at low Re. This number relates inertial forces with
viscous forces:

Re =
Lρu

η
(1.1)

where ρ and η are the fluid’s density and viscosity, respectively, and L and
u are the swimmer’s typical size and velocity. Then, hydrodynamics at low
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a) b)

c)
d)

e)
f)

Figure 1.1: Examples of active systems at different length scales. a)
Giant school of mobulas swimming in Mexico. Image from Pier Nirandara adapted
under Attribution-NonCommercial-NoDerivs 2.0 license (CC BY-NC-ND 2.0). b)
Penguin waddle. Image available at Rawpixel under CC0 1.0 Universal (CC0 1.0)
Public Domain Dedication. c) A swarm of Blue Morpho butterflies. Image courtesy
of Kelvin Hudson. d) Swarms of ladybugs. Image from Amit Patel under Creative
Commons Attribution 2.0 Generic (CC BY 2.0 license). e) A dense colony of
Myxococcus xanthus forming an active nematic layer. Image adapted from [7] with
permission from Springer Nature. f) Pattern of asters formed through the self-
organization of microtubules and kinesins. Image adapted from [8] with permission
from Springer Nature.
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Reynolds numbers are governed by viscosity rather than inertia. As we will
see in the next section, swimming at a low Reynolds number has far-reaching
consequences because not all ways of swimming produce net movement under
these conditions. Accordingly, in this introductory chapter, we will first cover
different active colloidal particles able to move at low Re. Then we will focus
on highly packed systems of such active entities and their striking phenomena.

1.2 Active particles

In this section, we specifically concentrate on active colloidal particles, whose
motion can arise from either self-propulsion mechanisms or interactions with
external fields [21]. It is true that if one takes the definition of an active system
strictly, particles driven by external fields should not be considered active. Other
names, such as driven or activated particles, could be used instead. Nonethe-
less, these entities still capture the essence of their self-propelled counterparts.
Indeed, their study can lead to the engineering of new applications for medical
purposes, such as drug delivery to targeted regions [22].

Regardless of the phoretic mechanism, all particles moving at low Reynolds
numbers in a Newtonian fluid need to swim in a non-invariant way under time
reversal. This is because if a swimmer at low Reynolds number deforms its body
in a particular way and then deforms back to the original shape by following the
same sequence, but in reverse, it will not move. This idea was first introduced
by Purcell as the Scallop’s theorem in his celebrated article Life at low Reynolds
number [23]. Such conclusion was derived from the Navier-Stokes equation in
the Stokes limit, which neglects the inertial terms:

−∇p+ η∇2u = 0 (1.2)

where p, η, and u are the fluid’s pressure, viscosity and velocity, respectively.
Dropping all the inertial terms, leads to a non-time dependant velocity. Con-
sequently, if an animal at low Re swims in a reciprocal motion, it will exactly
go back to the starting point. Notice that Purcell’s theorem only holds for
Newtonian fluids. For instance, Qiu et al. [24] have reported a symmetric
’micro-scallop’ moving in a reciprocal motion that can self-actuate in shear
thickening and shear thinning, which are fluids with shear-dependent viscosi-
ties (non-Newtonian). Thus, as the authors reported, the micro-scallop can
self-propel by setting different opening and closing rates. Reviews regarding
this issue can be found in [25, 26]. Also, a very detailed review dedicated to
microswimmers can be found in [27].
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AuPt

2H+ + 2e- +H2O2 H2O2 

O2 + 2 H+ + 2e- 2 H2O
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v Fluid flow
2 H2O2 

O2 + 2 H2O
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v

a) b)

Figure 1.2: Schematic representation of two artificial swimmers with
self-phoresis. a) Bimetallic rod (self-electrophoresis) and b) Janus polystyrene
(PS) particle half-coated with a platinium (Pt) layer that catalyzes the dispropor-
tionation of H2O. Solute gradients drive the particle (self-diffusiophoresis).

1.2.1 Experimental realizations

1.2.1.1 Artificial microswimmers

Inspired by living systems, researchers have created synthetic microswimmers
that, with few building blocks, grasp the dynamics of their more complex living
analogues. Here I list and introduce som examples.

Bimetallic nanorods

The first synthesized self-propelled particles were reported by Paxton et al.
[28], who prepared self-motile bimetallic rods with one platinum and one gold
part. The former metal catalyzes the oxidation of H2O, whereas the latter
catalyzes the H2O reduction. These electrical processes generate an electron
transport from the platinum to the gold end, which translates into a potential
difference that triggers the proton migration along the rod-solution interface.
The movement of protons produces, in turn, the flow of water molecules from
Pt to Au, which propels the rod (see Fig. 1.2a). This motion process is known
as self-electrophoresis [29, 30, 31]. Other colloidal particles actuated through
self-electrophoresis also include enzymatic reactions.

Janus particles

We cannot go trough this section without mentioning Janus particles (see Info
Box 1.1). These self-phoretic colloids are split into at least two regions with
differentiated physical and/or chemical properties. In this way, the symmetry
is broken so that they can self-propel. The most simplified version of a Janus
particle is a sphere with its surface divided into two parts, with one of them
catalyzing a given reaction, such as the redox disproportionation of H2O in
the surrounding media. This chemical reaction locally produces O2 and H2O,
leading to a concentration gradient and, thus, to self-diffusiophoresis (see
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Fig. 1.2b). Howse et al. [32] engineered the first realization of such self-motile
inclusions, which contained platinum or palladium as catalytic materials.

Infobox 1.1: Where does the name Janus particle come
from?

Leonard Wibberley, in his novel The Mouse on the Moon (1962), was
the first person who coined the term Janus to refer to a science-fictional
device for space travel propelled with wine. The author used this name
after the roman god Janus [33], who is usually depicted with two faces
(see Fig. 1.3).

Figure 1.3: Statue representation of the roman god Janus in Museo
Chiaramonti (Vatican Museums). Janus, usually represented two-faced, is
the god of the beginnings, gates, and endings. This is why January is named
after Janus [34]. Image from Marie-Lan Nguyen [35] under Attribution 3.0
Unported license (CC BY 3.0).

The term Janus was not used in a scientific context until 1988 by C.
Casagrande et al., who synthesized glass spherical particles, featuring
one hemisphere hydrophilic, and the other one hydrophobic [36].

Other artificial self-proppeled colloids

Apart from the already mentioned synthetic self-propelled particles, researchers
have also synthesized many others, like those moving from the production of
bubbles, or through Marangoni stresses originating from surface tension gradi-
ents localized at the colloid surface.

1.2.1.2 Driven or activated particles

As aforementioned, colloidal particles can also be propelled through external
fields. This can be very interesting because external actuation enables finely
tuning and controlling the motility, at least in some cases. In the literature,
many different experimental realizations of externally-driven colloids exist. Here
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we will only mention some of them. For a thorough review concerning driven
active particles, refer to [37].

Janus-based driven particles

First, we can find Janus-based driven particles whose underlying working princi-
ple is the same as in the autonomous Janus particles, but in this case, an exter-
nal laser or force is applied to the particle to initiate and trigger the propulsion
mechanism. An example is the colloids Palacci et al. synthesized with hematite,
which catalyzes the H2O2 decomposition under blue light [38]. These colloids, as
their autonomous counterparts, also move by diffusiophoresis. Alternatively to
this phoresis, as Jiang et al. proposed [39], Janus particles can also be propelled
by means of self-thermophoresis. In this case, silica particles are half-coated
with a gold layer that, upon laser beam irradiation, produce a local thermal
gradient leading to net propulsion.

Particles driven by magnetic and electric fields

Then, we can find colloidal particles actuated through magnetic fields. Some
remarkable examples include the Dreyfus et al. [40] sperm-like particles con-
structed by the DNA-mediated linking of colloidal magnetic particles attached
to a red blood cell. By means of external magnetic field, the researchers align
the colloids and produce a beating pattern that propels the swimmer. Other
magnetically-actuated particles are based on rotary particles [41] and axially
symmetric particle spinners [42, 43].

Alternatively, electric fields have also been proven effective in propelling
colloids. For example, Quincke rollers are colloids made of dielectric spheres or
cylinders that start to spin when immersed in a slightly conducting fluid and a
DC field is applied. If such colloids are near a substrate, this rotation causes the
translation of the particles [44]. Also, some colloidal particles have been driven
by what is known as induced-charge electrophoresis. In this case, asymmetric
particles in a solvent under an AC field produce an imbalanced migration of
charged ions or molecules, resulting in net particle propulsion [37, 44].

1.2.1.3 Biological microswimmers

Living systems are the prototypical example of entities capable of self-propelling.
At the colloidal scale, one can find microorganisms like bacteria, eukaryotic cells,
algae, or proteins from the cytoskeleton. All of them, constrained by the Scallop
theorem, have evolved to create propulsion strategies, successfully overcoming
and exploiting viscosity.

Bacteria
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a) b)
Swimming

Twitching

Gliding

Focal adhesion complexes

CW
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forward run

Start

Flagellum
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Figure 1.4: Bacterial motion. a) The different locomotion mechanisms of
individual bacteria. Swimming is attained with helical flagella. Conversely, bac-
teria can move on a substrate through twitching with pilus or gliding with focal-
adhesions. Image adapted from Kearns [46] with permission from Springer Nature.
b) The run-and-tumble in Escherichia Coli. Image adapted from Bastos-Arrieta
et al. [47] under Creative Commons Attribution License (CC BY).

Most bacteria swim thanks to helical filaments, known as flagella, protruding
from the cell envelope (Fig. 1.4a). The helical structure of flagella ensures the
broken time-reversal symmetry. The number and arrangement of flagella can
vary among different species of bacteria. For example, some bacteria possess
multiple flagella localized at a particular spot, whereas others can be covered
by multiple flagella randomly oriented. Flagella are then spun by motor com-
plexes either clockwise or counterclockwise, inducing in this way the bacterium’s
propulsion [27, 45].

Flagellated bacteria generally present two differentiated motion phases: the
run and tumble phases. In the run phase, the bacteria move forward in one
direction, whereas in the tumbling phase, the microswimmers change their ori-
entation randomly (Fig. 1.4b). By tuning the shift from one phase to the other,
bacteria can explore the surroundings in the seek of food or ideal environmental
conditions. [27].

Other forms of bacterial locomotion include gliding either through proteins
(adhesins) that attach to the substrate and move across the length of the cell,
or pili, which are thin filaments acting like grappling hooks: they extend, attach
to the substrate and then retract, pulling the cell forward. The latter way of
motility is known as twitching (Fig. 1.4a). Finally, some pathological bacteria,
when they infect a eukaryotic cell, induce the polymerization of the eukaryotic
actin, a component of the cytoskeleton (see Info Box 1.2) to propel themselves
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[45, 48].

Infobox 1.2: The cytoskeleton

The cystokeleton is a complex of network-forming filamentous proteins
involved in many cell functions. This protein complex is ubiquitous: it
can be found in almost all cells, from bacteria and archae to eukaryotic
cells.
The proteins of the cytoskeleton are involved in a multitude of functions
[49, 50, 51]:

• Preserve and change the cell’s shape

• Secure a specific position of some organelles

• Enable the active transport of vesicles and cytoplasm (cytoplasmic
streaming)

• Enable the cell’s movement

• Assist with cell division

In the case of eukaryotic cells, one can find the intermediate filaments,
composed of keratin, the microfilaments, composed of tubulin, and micro-
tubules, composed of actin (Fig. 1.5). The two latter ones work together
with molecular motors: myosins, dyneins, and kinesins.

Cell membrane

Intermediate
filaments

Microfilaments

Microtubules

Intermediate filaments

Microfilaments (actin)

Microtubules (tubulin)

Figure 1.5: The cytoskeleton of an eukaryotic cell. Microfilaments
thicken the cortex around the inner edge of a cell; like rubber bands, they
resist tension. Microtubules are found in the interior of the cell where they
maintain cell shape by resisting compressive forces. Intermediate filaments
are found throughout the cell and hold organelles in place. Image and
caption adapted avialable in OpenStax [49] under Creative Commons At-
tribution 4.0 License (CC BY 4.0).
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Eukaryotic cells

The locomotion mechanism of eukaryotic cells is very diverse. Nevertheless, the
two prevailing ones are flagellar-dependent swimming and actin-dependent cell
migration (crawling) (Fig. 1.6). These two types of motility are both used by
animal cells and unicellular eukaryotic organisms [52].

Flagellar motility in eukaryotic cells is akin to flagellar motility in bacteria.
However, in eukaryotic cells, apart from actin, flagella also contain microtubules,
which are absent in prokaryotic cells (like bacteria). Moreover, motion of bacte-
ria through flagella is attained through the filaments rotation, whereas flagella
in eukaryotic cells exhibit a beating model resulting in the cell’s propulsion.

Actin-dependent cell migration relies on the dynamic turnover of actin net-
works, which pull and push the cell across solid surfaces. Some cells can also
crawl by exploiting the flows created at the cell’s rear by the myosin-mediated
contraction of actin filaments.

Other biological microswimmers

Nature offers us a huge catalogue of microswimmers. Apart from the already ex-
plained bacteria and eukaryotic cells, there are some that are worth-mentioning.
The first one is the single-celled algae Chlamydomonas reinhardtii, which swims
with two flagella and are the typical example of a puller microswimmer [27].

Motility assays

Actin and microtubules are essential for the life of eukaryotic cells. These fil-
amentous proteins are not only involved in the cells’ motility but also many
other functions, such as intracellular transport or the divisions of chromosomes
during mitosis. In pursuit of understanding these proteins’ mechanical and ki-
netic properties, researchers have devised techniques to measure the molecular
motors’ movement. First, Sheetz et al. [53] constructed myosin proteins bonded
to fluorescent beads that were then deposited onto a Nitella axillaris cell, which
features actin cables. Myosin can then move along such well-aligned structures
carrying the beads. Later, Kron et al. [54], inspired by Sheetz et al. investi-
gation, developed a system based on a myosin-decorated substrate that induces
movement to actin filaments under the presence of ATP (Fig. 1.7). This pio-
neering study led to many others devoted to deciphering the self-organization
and the collective behavior of motile actin filaments [11, 12] and microtubules
[55].

Alternatively to motility assays, motion translocation from molecular mo-
tors to actin filaments or microtubules can also be attained by using crosslinking
molecular motors. For instance, Verde et al. [57] used dynein to dynamically
self-organize microtubules into asters and Kumar et al. [58] used myosin II to
prepare an active system. Also, Nédélec et al. [8] succeeded in preparing clus-
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Figure 1.6: Flagellar-based swimming and actin-dependent crawling are
the two predominant forms of eukaryotic cell motility. (Top) Species from
every branch of the eukaryotic tree use flagella to swim through liquids. Some cells,
including human sperm and the Batrachochytrium dendrobatidis fungal cells shown
here, use flagella to push cells. Other cells, like Chlamydomonas and Naegleria
flagellates, use flagella to pull themselves through liquid. Flagellar motility is
often very rapid; these cells were imaged once every millisecond. (Bottom) The
other predominant form of eukaryotic cell motility is the actin-dependent crawling
motility used by cells to crawl across or between solid surfaces. In contrast to
the rigid and stable microtubules that are the basis of flagellar motility, crawling
motility relies on the dynamic turnover of ephemeral actin polymer networks. Many
eukaryotic species take advantage of the ability to crawl on solid surfaces and swim
through liquids, including this Naegleria gruberi cell (here imaged every 2 seconds)
that eats and replicates as a crawling amoeba, but under stress can differentiate
into a swimming flagellate. Both scale bars represent 5 µm. Image and caption
adapted from Fritz-Laylin [52] with permision from Elsevier.

tered kinesins, which are very similar to the ones we have used in the experiments
presented in this thesis and that we will introduce in Section 1.4.1.

1.3 Active fluids

In the previous section, we have seen different self-propelled and driven parti-
cles. When they are densely packed, forming an active fluid, these entities start
self-organizing, giving rise to emergent collective phenomena.

Pattern formation

In some scenarios, large collections of active particles can self-organize, giving
rise to structures with an order that propagates to scales much larger than the
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Figure 1.7: Schematic of the high-density motility assay. a) The molecular
motor heavy meromyosin (HMM) is immobilized on a coverslip and the filament
motion is visualized by the use offluorescently labelled reporter filaments with a
ratio of labelled to unlabelled filaments of ∼1:200 to 1:320. b) For low filament
densities, a disordered phase is found. The individual filaments perform persistent
random walks without any specific directional preferences. Encounters between
filaments lead to crossing events with only slight reorientations. Scale bar, 50 µm.
Image adapted from Shaller et al. [56] with permision from Springer Nature.

particle size. Depending on the symmetries of the system, one can find po-
lar patterns, where active entities move in the same direction producing active
transport, or nematic patterns, which form in systems where particles align but
move indistinctively back and forth.

Motility-induced phase separation

Systems of self-propelled particles can undergo liquid-phase separation. Re-
markably, such phase separation happens even when the interactions between
particles are repulsive. It, therefore, stems from the motility of the particles
[59].

Giant number fluctuactions

One of the hallmarks of collective motion is the presence of giant number fluctu-
ations, a phenomenon characterized by abnormally large fluctuations in particle
density [60, 61]. They are abnormal because they are far larger than those for
particles in thermal equilibrium.

Chaotic flows. Active turbulence

One of the most striking behaviors seen in active systems is the presence of
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chaotic spatiotemporal flows, even at low Reynolds numbers. The study of the
statistical properties of this chaotic state has been the main focus of this thesis.
Therefore, to contextualize the concept of active turbulence better, we will not
enter into more detail here and devote Section 1.5 to explaining active turbulence
thoroughly.

1.4 Active systems based on cytoskeletal proteins

Dealing with cells to prepare in vitro reconstitution of active systems can be
complex and time-consuming. Working instead with in vitro active materi-
als composed of proteins from the cytoskeleton effectively reduces the system’s
complexity and, at the same time, enables the study of self-organization. Re-
markably, with only a few building blocks, these protein-based systems show a
vast plethora of dynamic states. Indeed, these in vitro systems do not only re-
produce behaviors seen in some living systems but also uncover new phenomena,
leading to a significant betterment in bioinspired material science.

As earlier explained in Section 1.2, these synthetic protein-based materials
are mainly comprised of either actin filaments or microtubules driven far
from equilibrium by their corresponding molecular motors, which are proteins
capable of converting chemical energy into mechanical work. In general, to
do so, they hydrolyze ATP, the fuel of the cell. In eukaryotic cells, one can
find three different types of molecular motors: myosins, which are the ones
associated with actin filaments and dyneins and kinesins, both associated
with microtubules.

1.4.1 The Dogic group active system

Back in 2012, Sanchez et al. [17], in the Dogic group, revolutionized the field of
active bioinspired systems by presenting an assemblage of stabilized-MT with
kinesin, ATP, and a depletant (or crowding agent). This protein suspension
leads to the spontaneous formation of a percolating network of continuously
breaking and self-healing MT-bundles.

The typical preparation of the protein suspension includes 1 µm-longMTs,
stabilized with the GTP analog GMPCPP (see Info Box 1.3), and bundled
thanks to the depleting action of the non-adsorbing polymer polyethylene gly-
col (PEG) (Fig. 1.8). The system is driven far from equilibrium with clustered
kinesins (see inset in Fig. 1.9), which crosslink multipleMTs. These kinesin
clusters, fueled by ATP hydrolysis, walk along two neighboring microtubules
towards the plus-end. If such microtubules are antiparallely aligned (they have
opposite polarity), such movement results in a relative sliding of the two fila-
ments (Fig. 1.9).
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PEG
MT

»1 µm

Vexcluded

Fdepletion

Figure 1.8: PEG drives the formation of bundles trhough depletion
forces. The addition of a non-adsorbing polymer, like polyethylene glycol (PEG),
induces an effective attraction of the ∼1 µm-microtubules (MTs), leading to the
formation of bundles. There is a volume around the filament (the excluded volume,
Vexcluded, indicated with dashed lines) unavailable for the PEG molecules. As
two filaments get closer, there is an overlap between their Vexcluded (indicated in
blue). This originates an imbalance of osmotic pressure and an attractive force
between theMTs (Fdepletion). This phenomena is the so-called depletion. The PEG
molecules have been created using Biorender.

+¡

+ ¡

+ ¡

+ ¡

Antiparallel MTs Parallel MTs
Streptavidin

Biotin
Kinesin-1

Figure 1.9: Kinesin clusters induce the sliding of antiparallely aligned
MTs. Kinesins-1 walk alongMTs towards the filament’s plus end (kinesins’ direc-
tions are marked with blue arrows) as they hydrolyze ATP into ADP and a phos-
phate (Pi). When a kinesin cluster crosslinks two antiparrallely aligned MTs, it
produces a relative movement of the filamentous proteins (red arrows indicateMTs’
displacement). If the MTs are polarity sorted, no sliding is produced. The insets
shows a representation of the kinesin clusters, which are prepared through the
binding of (in average) two kinesins-1 with the tetrameric protein streptavidin via
biotin molecules. The the inset has been created using Biorender.
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Infobox 1.3: The dynamic instability of microtubules

The length of microtubules is not constant inside the cell because they
constantly suffer from polymerization and depolymerization events. Such
processes are regulated by the nucleotide GTP, which binds to tubulin
(the MT’s subunit), triggering the attachment of the subunit to the fil-
ament growing side. This binding requires energy supplied by the GTP
hydrolysis into GPD + a phosphate after the tubulin’s incorporation.
Tubulins at the end of the filament linked to a GTP are stable and do not
detach from the microtubule. However, if the hydrolysis catches up to the
tip, it originates a rapid depolymerization and shrinkage (see Fig. 1.10).
The polymerization and depolymerization phenomena allow the cell to
reorganize microtubules rapidly when necessary [62].

Figure 1.10: Shrinking microtubule. Cryo-electron micrograph of a
microtubule during its depolymerization. Image adapted from Mandelkow
et al. [63] with permision from Elsevier.

The depolymerization of microtubules can be hampered using other
molecules, such as GMPCPP or the stabilizing agent Taxol.

In this system, the active stresses that the kinesin clusters produce are ex-
tensile in the sense that they tend to extend the bundles’ length (Fig. 1.11a).
This is in contrast to other systems, such as the actin-myosin preparation in
[64], that feature contractile stresses, which shorten the filamentous bundles
(Fig. 1.11b). It is worth mentioning that the molecular motor’s nature is not
the only determinant of the type of stress. As a matter of fact, clusters of
kinesin-1 have been shown to produce many different dynamic patterns com-
patible with both types of stresses [8, 17, 55, 65, 66]. According to computer
simulations and experiments, molecular motors in contractile systems tend to
accumulate at the end of the filaments [10, 67], be they microtubules or actin fil-
aments. This capacity to remain bound upon reaching the filament ends enables
multiple filament ends to be brought together, forming an aster. For stabilized
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Figure 1.11: The kinesin clusters in this preparation produce extensile
stresses. a) Fluorescence micrographs of two microtubule bundles merging and
immediately extending, eventually falling apart. Time interval, 5 s; scale bar 15 µm.
Image adapted from Sanchez et al. [17] with permission from Springer Nature.
b) Schematic of a filaments’ bundle experiencing contraction (top) and extension
(bottom). In contractile systems, the bundles’ length shortens, whereas in extensile
systems, it lengthens.

filaments, the inter-filament attractive interactions and the filament length and
density seem to be key in dictating the stresses generated by the molecular mo-
tors [11, 65, 68, 69, 70, 71]. Large atractive forces promote the formation of
bundles, thereby precluding aster formation

The extension of long filament MT-bundles causes their buckling and pos-
terior fracture into smaller fragments, which can recombine with a surrounding
bundle. If such recombination produces regions with mixed polarity, the bundle
extends, buckles and fractures back again (Fig. 1.12a). When the concentra-
tion of MT-bundles is high enough, these cycles of polarity sorting, extension,
buckling, and fracturing drive the formation of an active network pervaded with
large-scale chaotic flows (Fig. 1.12b).
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a)

b)

Figure 1.12: The dynamics of the MT-bundles. a) In a percolating mi-
crotubule (MT) network, bundles constantly merge (red arrows), extend, buckle
(green dashed lines), fracture, and self-heal to produce a robust and highly dynamic
steady state. Time interval, 11.5 s; scale bar, 15 µm. b) An active MT network
viewed on a large scale. Arrows indicate local bundle velocity direction. Scale bar,
80 µm.
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1.4.2 The 2D active nematic

Strikingly, when the protein suspension is placed in contact with an oil/water
interface decorated with a surfactant, the MT-bundles adsorb onto such inter-
face. The increase in the filaments’ density triggers the spontaneous formation
of a liquid crystalline phase, where the bundles are locally aligned, with the
orientational order only disrupted by half-integer defects, seen as darker regions
depleted of MTs Fig. 1.13. Notice that the presence of half-integer defects is
a signature of nematic symmetry rather than polar order, where defects with
semi-integer defects are geometrically constrained. In polar liquid crystals, one
would expect the appearance of asters or vortices.

Figure 1.13: Fluorescence micrograph of the MT-based active nematic
(AN). One +1/2 and one -1/2 defects are marked in blue and red. Scale bar is
100 µm.

Passive liquid crystals tend to minimize their elastic energy. To do so, they
tend to minimize the total number of topological defects. Once the equilib-
rium liquid crystal finds its state of minimal energy or a metastable state, the
defects, if existent, remain essentially static. Conversely, in the presented out-of-
equilibrium nematic, defects are constantly being created, unbounded, sheared,
and annihilated, reaching a steady state with a statistically constant number of
defects. These defect dynamics are fundamentally and drastically different from
those of passive liquid crystals.

In this system, the buckling of aligned bundles drives the self-fracture of
the material, originating two oppositely-charged half-integer defects placed at
each end of the rupture. This disclination line can self-heal, resulting in the
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unbinding of the defects, which then move around until their annihilation with
oppositely charged defects. The comet-like symmetry of the +1/2 singularity
renders the defect self-motile. In contrast, the threefold symmetry of −1/2
defects counterbalances the flows originating from the activity. As a result, −1/2
defects are not self-propelled and can only move stirred by the background flow.
[72].

Infobox 1.4: Topological defects

Topological defects are singularities in the orientation field of a phase
featuring orientational order, such as a liquid crystal. Within such sin-
gularities, domains with different alignment meet, and consequently, the
perfect order is lost. Moreover, they cannot be removed by a continuous
deformation of the material where they are embedded. This is, indeed,
why they are called topological. In 2D materials, one can characterize
topological defects based on their topological charge, which provides how
much the orientation of the composing molecules or particles varies after
a full rotation around the considered defect point.
The most common topological defects are the ±1/2 defects, where the
orientation of the molecules rotates ±180 degrees, and ±1 defects, where
the molecules rotate an entire loop (±360 degrees) (see Fig. 1.14).

m=+1 m=¡1 m=+1/2 m=¡1/2

b)

a) Polar order Nematic order

c) d) e) f)
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Figure 1.14: Topological defects. a) Sketch of topological defects in
2D orderd phases depending on the system symmetry (polar and nematic)
and the topological charge (m). b–f) Experimental micrographs of active
systems featuring the topological defects in a. b and d show a monolayer
of fibroblasts onto patterns imposing the topological charge. Scale bars:
120 µm. c, e and f are suspensions of microtubules and kinesins. Scale bars:
50 µm. b and d are adapted from Endresen et al. [73] under Attribution-
NonCommercial 3.0 Unported license (CC BY-NC 3.0). c is adapted from
Nédélec [8] with permission from Springer Nature

Overall, the permanent defects dynamics lead to spatiotemporally chaotic
flows with a high visual resemblance to classical turbulence (Fig. 1.16). Due to
this similarity, this chaotic state is known as active or mesoscale turbulence,
and it has been the main focus of the here presented thesis. More specifically,
the active turbulence in 2D active nematics.

1.4.2.1 Modelization of the active nematic

0 ¼
Director angle

a)
Defect-free active nematic Active nematic with defects

b)

Figure 1.15: Simulations of 2D active nematics. Snapshots of the angle field
of a defect-free active nematic (a) and of the Schlieren texture constructed from the
director field of an active nematic with defects (b). The orientational field of the
active fluid in a has been parameterized with the nematic vector n = (cos θ, sin θ),
whereas the one in b has been parameterized with the Q = S(nnT − I/2) tensor,
which allows for defects (marked as red (+1/2 defects) and blue (-1/2 defects)
dots). a has been adapted from [74] with permission from Springer Nature and b
has been adapted from [75] under Creative Commons Attribution 3.0 license (CC
BY 3.0).

19



1

Chapter 1. Introduction

Infobox 1.5: Models of active systems. Dry and wet systems
and polar and nematic systems

Active fluids, especially those formed by living units, are of great complex-
ity. Consequently, a very detailed modelization is, nowadays, unattain-
able. Notwithstanding, many macroscopic properties are shared among
some active materials. Therefore, Marchetti et al. [3], in a strive to
categorize active materials within a small number of universal groups
capturing some essential features, proposed two classifications: one con-
sidering the momentum conservation and another considering the broken
symmetry of the ordered phase. Regarding momentum conservation, ac-
tive systems can be classified as dry (no momentum conservation) or
wet (with momentum conservation). As for the average alignment of the
constituents, systems with their microscopic objects pointing on aver-
age towards the same direction are classified as polar, whereas systems
with microscopic objects aligned on average along a preferential axis, but
pointing in either direction along this axis, are classified as nematic.

In the case of the MT-based active nematic, it can be regarded as a wet sys-
tem with nematic symmetry (see Info Box 1.5). Therefore, the modelization of
this active system has been mainly based on the generalization of nematohydro-
dynamics for systems actively driven. Such models coarse-grain the microscopic
properties of the material as continuous variables to further predict macroscopic
behaviors. In the most simplistic case, one assumes an incompressible one-
component phase with constant density. Then, the two regarded variables that
enable the description of the active nematic film are the coarse-grained velocity
and nematic orientation. For the latter, one can either use a vectorial repre-
sentation with the n = (cos θ, sin θ) director, with θ the local orientation of the
molecules (here MTs) restricted within 0 and π and n = −n, or a tensorial
representation with the Q = S(nnT − I/2) tensor, where S is the scalar order
parameter that goes from 0 to 1 and I is the identity matrix. Notice that the
vectorial representation fixes the modulus of each director, and consequently,
defects are not taken into account (see Fig. 1.15). The phenomenology of ac-
tive nematics is then captured by the velocity and orientational field dynamics
using partial differential equations. In the case of the velocity dynamics, one
can use the Navier-Stokes equation with no inertial terms. For the system here
considered, this equation must contain the following ingredients:

• Shear viscosity

• Pressure
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• Flow alignment

• The stress due to deformations in the orientational field

• Activity

As for the orientational dynamics, the included ingredients must be:

• Advection by the flow

• Corrotation of the director. This accounts for the response of the elongated
MTs to gradients in the flow.

• Rotational viscosity arising from the relaxational dynamics of the orien-
tational field that tends to push the system towards the minimum of free
energy.

1.5 Inertial and active turbulence

As explained earlier, active turbulence is a state characterized by chaotic flows
constantly mixing and arising from the self-organization of an active system’s
constituents. Despite the visual likeness of this state with classical (or inertial)
turbulence (Fig. 1.16), fundamental differences might lead to the establishment
of new classes of turbulence.

Since inertial turbulence is an already well-established concept, we will first
introduce its principal properties to later comment on the main similarities
and differences between inertial and active turbulence and raise some still open
questions.

1.5.1 Inertial turbulence

Inertial turbulence in a fluid emanates from an external forcing at high Re. In
general, at the injection scales, there is no dissipation mechanism. Consequently,
energy is transferred from these scales to other scales where it can be dissipated
and, thus, prevent infinite energy accumulation. In the case of 3D turbulence,
kinetic energy uniquely cascades from the largest to the smallest scales, where
viscosity can dissipate energy. Richardson proposed that this energy transfer
results from hierarchical instabilities, where large eddies break up into smaller
ones, which break again into even smaller eddies, and so on, until viscous stresses
can dissipate the kinetic energy [77, 78, 79]. Put in his own words:

”Big whirls have little whirls that feed on their velocity,
and little whirls have lesser whirls and so on to viscosity.”
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a) b)

Figure 1.16: Inertial vs active turbulent flows. Experimental flow fields of
an inertial turbulent 2D soap film (a) and of the 2D MT-based active nematic
featuring active turbulence (b). a has been adapted form Rivera et al. [76] with
permission from AIP Publishing. Scale bars: 0.1 cm (a) and 50 µm (b)

Interestingly, as Kolmogorov postulated in 1941, the energy cascade pro-
motes the loss of any possible anisotropy coming from the injection source. In
other words, the information regarding the large eddies’ geometry is lost as the
energy cascades down to smaller scales. Thus, for well-separated injection and
dissipation lengths, fluctuations at intermediate scales are statistically isotropic
and do not depend on the forcing mechanism [77]. This gives rise to universal
exponents in the kinetic energy spectrum as a function of the wave number q,
E(q) ∼ q−5/3. Here, universal exponents mean that they do not depend on
the fluid’s nature or the forcing mechanism. The implication of this result is
enormous because, even though the hallmark of turbulence is the presence of
chaotic flows, the existence of universal exponents stresses that there is some-
thing predictable in something seemingly unpredictable (turbulence). Further
research in this regard has shown that some deviations from universality are
possible and they arise from what is known as intermittency, a phenomenon
linked to strong and abrupt fluctuations in the flow [78, 79]. Nevertheless, the
effects are minimal. Therefore, the results by Kolmogorov are still of great sig-
nificance and constitute a paradigm of inertial turbulence [78]. As a curiosity,
Kolmogorov’s theory has even been applied to analyze the degree of realism of
some Van Gogh’s paintings, mainly the Starry Night [80], which clearly captures
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Figure 1.17: Turbulence in Vincent van Gogh’s Starry Night . This paint-
ing from 1889 includes eddies of very different sizes, evoking to real turbulence.
Public domain, via Wikimedia Commons

turbulence (see Fig. 1.17).
The cascades in fully developed turbulence are ultimately due to inertial

forces. However, the exact mechanism driving the energy cascade is still un-
der debate. Many mechanisms have been proposed [81, 82, 83], yet the most
accepted one is vortex stretching. Notice that this mechanism is absent in 2D
turbulent flows because vortex stretching entails the third dimension. Indeed, in
2D turbulence, studies claim the existence of two cascades: a direct enstrophy
cascade and an inverse energy cascade [79, 84, 85, 86]. This means that energy
and enstrophy are injected by external forcing at a given intermediate scale.
Then kinetic energy is transferred to larger scales until it is eventually dissipated
by friction, while enstrophy is transferred to smaller scales until its dissipation
by viscous stresses Fig. 1.18. These two inertial ranges endowed with cascades
present universal scaling regimes in their kinetic energy spectrum. Kraichnan,
back in 1967, was the first one to predict such scaling laws. By assuming that the
energy and enstrophy spectra depend on the energy and enstrophy dissipation
rate, respectively, plus the wave number q, he could use dimensional analysis
to demonstrate that the energy spectrum scales as E(q) ∼ q−5/3 in the inertial
energy range and E(q) ∼ q−3 in the enstrophy inertial range [87].

1.5.2 Active turbulence

Once we have introduced the main properties of turbulence at high Reynolds
numbers, we are ready to dive inside active turbulence and its essential distinc-
tions from its inertial counterpart.

The first observation of spontaneous chaotic flows in an active system we
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Figure 1.18: Qualitative sketch of the stationary scale-by-scale energy
balance of inertial turbulence. In the presence of energy cascades, the energy
balance has an injection term, F (q), peaked around the forcing length qin, and
two well separated peaks at qχ and qη, where energy is dissipated through friction
(−2χE(q) term) and viscous damping (−2ηq2E(q) term), respectively. Then, en-
ergy balance satisfies T (q) = F (q) − 2χE(q) − 2ηq2E(q). Here, the three peaks
are well separated qχ ≪ qin ≪ qη and should integrate to 0. Image adapted from
Alexakis et al. [79] with permission from Elseiver.
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encounter within the literature is the bacterial suspension reported by Dom-
browski et al. [88]. These chaotic flows were then termed bacterial turbulence.
This chaotic state was later demonstrated in many other living and artificial
systems, prompting its rename to active turbulence [89]. Active turbulence
has then been observed in very disparate systems, such as monolayers of ep-
ithelial cells [19, 90], suspensions of filamentous proteins and molecular motors
[17, 91, 92], and swarming sperm [18] (Fig. 1.19). All these examples are at low
Reynolds numbers, where inertia is negligible. This is the first main difference
between active and inertial turbulence.

The second distinction between active and inertial turbulence is that, in the
former, the scale of energy input is imposed by the external driving mechanism.
Conversely, in active turbulence, the energy is injected by the constituents, and
the input scale ultimately depends on the self-organization of the active units. In
other words, the injection scale is set by the typical distance of correlated motion.
Without this self-organization phenomenon, the appearance of spatiotemporal
chaos would be precluded by viscous damping: a single swimming bacteria does
not trigger turbulent flows but produces laminar flows characterized by the
smooth sliding of fluid layers with no mixing [23].

Both types of turbulence occur as multiscale phenomena, with vortices span-
ning a vast range of length scales. Nevertheless, active turbulent flows, albeit
their chaotic behavior, are endowed with a characteristic length, which organizes
the flow pattern. Such length is generally much larger than the size of one active
unit and is set by the balance between elastic and active forces. In the case of
active turbulence in 2D active nematics, the signature of such length appears
as an exponential distribution of vortex areas. Such geometrical structure of
the flow was first predicted by Giomi’s in-silico study [75]. Experiments with
cytoskeletal reconstitutions [92, 93] and epithelial cell monolayers [19] later ver-
ified this remarkable result. In contrast, in inertial turbulence, the distribution
of vortex areas is self-similar and thus follows a power law [94].

There is still an ongoing debate regarding the presence of universal exponents
in the kinetic energy spectrum of active turbulence. In fact, before going any
further, we should emphasize that, oppositely to inertial turbulent flows, which
can be properly described with the Navier-Stokes equation, active turbulence
does not hold a unique fundamental equation. For example, equations describing
systems with polar symmetry differ from those modeling systems with nematic
symmetry. This emphasizes the disparate physics governing active systems. The
first experimental study fully dedicated to this matter was done by Wensink et
al. [16], who measured the flows of dense bacterial 3D and quasi-2D suspensions
(B. subtilis). In particular, they showed that the kinetic energy spectrum of the
chaotic flows in the 2D geometry exhibits regimes with power laws: q−8/3 (small-
q) and q+5/3 (large-q) separated by the bacterial injection scale. The authors
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Experimental micrograph Measured vorticity field

a) Bacterial suspension

b) Sperm suspension

c) Tissue cell monolayer

Figure 1.19: Examples of experiments on active turbulence. Each panel
shows the experimental image (left) and the measured vorticity field (ω). a and
b are quasi-2D systems and c is a 2D system. Scale bars are: 50 µm (a), 200 µm
(b) and 300 µm (b). a is adapted from [16] through the PNAS open access option.
b is adapted from [18] with permission from the American Physical Society. c is
adapted from [90] under Creative Commons Attribution 4.0 International license
(CC BY 4.0).
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Figure 1.20: Kientic energy spectrum of an active nematic film. Simula-
tions have shown that the kinetic energy spectrum of an isolated 2D active nematic
has to scaling regimes with exponents: q−1 for small-q (large scales) and q−4 for
large-q (small scales). Image adapted from Alert et al. [74] with permission from
Springer Nature.

also perform particle simulations and formulate a minimal continuum theory
that agree with the experimentally measured scaling regimes. Nevertheless, the
universality of such exponents is not discussed there.

Some years later, Bratanov et al. [95], inspired by the model of Wensink et
al. [16], claimed that the energy spectra of 2D active fluids feature power laws at
large scales with non-universal exponents that depend on both finite-size effects
and physical parameters. However, the models used in these two studies [16, 95]
are extensions of Toner-Tu equations that include the terms admitted by the
problem’s symmetry. Such models are usually considered as dry. In contrast,
some recent theoretical works on active nematics have claimed the existence of
scaling laws with universal exponents independent of the active fluid properties
[74, 75]. Interestingly, these two studies arrived at identical results using two
different approaches (also see Fig. 1.20). For now, we will not get into much
detail because we will discuss this issue in Chapter 3. In that chapter, we show
the experimental results, already published in [96], regarding the presence of
scaling regimes in the kinetic energy of the interfaced MT-based active nematic.

Finally, some studies have addressed the existence of energy cascades in
active turbulent flows [74, 97, 98, 99]. In the case of active nematics, the most
consensual conclusion, according to simulations, is that there are no energy
cascades [74, 97, 98]. However, this result still lacks experimental evidence,
which we aim to provide. In Chapter 4, we present preliminary experimental
results obtained by means of simultaneous measurements of the velocity and
orientational fields of the MT-based active nematic.
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1.6 Objectives

As anticipated in the introduction, the main objective of this thesis is to con-
tribute to the current understanding of active turbulence through experiments.
More precisely, in this thesis, with this principal aim, we use the MT-based ac-
tive nematic presented in Section 1.4.2 to cover and try to address the following
sub-objectives divided by the different chapters:

Chapter 2

2.1) Observe and characterize the primary bend instability in extensile ac-
tive nematics that finally leads to active turbulence.

2.2) Ascertain and decipher the dependence of the characteristic time and
length scales of the instability with different material parameters.

2.3) Test the suitability of a linear stability analysis of aligned MT-bundles
leading to active turbulence.

Chapter 3

3.1) Measure the kinetic energy spectrum and related statistical properties
of active nematic turbulence.

3.2) Evaluate the emergence of scaling regimes in the kinetic energy spec-
trum of active nematic turbulence.

Chapter 4

4.1) Measure the free energy balance of a turbulent active nematic

4.2) Assess the presence of energy cascades between scales in active nematic
turbulence.

Chapter 5

5.1) Develop techniques to simultaneously measure the director and the
velocity field of the active nematic.
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The bend instability: a route
to active turbulence

2.1 Introduction

Active turbulence is characterized by chaotic flows visually reminiscent of those
observed in inertial turbulence [16, 18, 19, 74, 95]. Nonetheless, these two states
present a fundamental difference: unlike inertial turbulence, active turbulence
is endowed with a characteristic length, typically referred to as active length.
This length is defined as the ratio between the material’s elastic constant and
the activity coefficient and sets the mean distance between defects within the
active fluid. The origin of such length is thought to be re-orientational instabili-
ties continuously evolving in the aligned domains within the active system. This
is because homogeneously oriented active nematics with extensile (contractile)
stresses are prone to destabilize, leading to bend (splay) long-range distortions
[100, 101, 102, 103]. In this chapter, I review our experimental results pub-
lished in [1], where we show this instability at its onset and demonstrate that
the length scale present at the fully developed turbulence is selected at the be-
ginning of the instability. Furthermore, we rationalize the wavelength selection
mechanism as a result of the activity amplifying any orientational fluctuation
and the elasticity and the hydrodynamic coupling to the adjacent viscous fluids
stabilizing short and long wavelength modes, respectively. Here, I should em-
phasize that such instability, albeit known for years, had never been observed
at its early-stage development for an unconfined active nematic. The closest
study devoted to characterizing this instability was published by Duclos et al.
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[104], who used spindle-shaped cells confined within stripes spontaneously de-
veloping shear flows. Nevertheless, these flows depended on the width of the
confining; thus, they were not enforced by a genuine wavelength selection mech-
anism. Therefore, our findings represented the first experimental evidence of
such instability from an unconstrained radially aligned active nematic.

Since then, there have been other studies regarding orientational instabilities
of active flows. A noteworthy example is a work by Senoussi et al.[13], who
showed that a 2D free-standing nematic active sheet spontaneously buckles out
of plane, creating a corrugated pattern. Notice that this buckling in the third
dimension is possible because the active film is not constrained by the two
interfacing oil and water layers as in our system. Indeed, at high activity, the
active fluid develops turbulent after the instability, forming a 3D percolating
active network. Later, two similar studies, one by Sarfati et al. [105] and
another by Najma et al. [106], demonstrated that it is possible to select the
type of orientational instability in an initially nematic-aligned 3D active gel
by changing the composition of the material. At low activity, the active fluid
undergoes an out-of-plane buckling instability like the one in [13], whereas, at
higher activity, the instability leading to chaotic flows becomes an in-plane bend
instability, similar to the one observed in our experiments [1] and shown below.

2.2 Results

2.2.1 The onset of active turbulence. A Pattern forming insta-
bility

As described in [1] and in Methods Section 6.2, we impose a radial alignment of
the active nematic layer by placing a capillary right at the oil/water interface.
Capillary forces induce an inward flow into the tube that aligns the nematic ma-
terial with the bundles oriented toward the cylinder. We immediately withdraw
the capillary and let the active material evolve freely. This radial disposition
(see Fig. 2.1a) is instantly destabilized and broken by the spontaneous buckling
of the MT-bundles. Bend fluctuations, reinforced by the active stresses, rapidly
grow, forming concentrical equispaced kinks, also known as walls [72, 102], sep-
arating nematic domains Fig. 2.1b. Elastic stresses accumulated at the walls,
where the bend deformation is the strongest, are then lessened by the nucle-
ation of ±1/2 defects, which momentously move along the kinks producing dark
circular lanes (see Fig. 2.1c). This striated pattern is shortly dismantled by the
movement of +1/2 defects, which, being strong sources of vorticity [102, 107],
can deviate and break the symmetry of the disposition (see Fig. 2.1d). The
system finally reaches the characteristic turbulent regime.
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Figure 2.1: The onset of active turbulence. a-d) Fluorescence microscopy
images displaying the spontaneous evolution of a radially aligned active nematic
towards the turbulent regime. The insets include diagrams illustrating the dispo-
sition of the microtubule bundles. Elapsed times from a are 13 s (b), 26 s (c)
and 47 s (d). a) Radially aligned active nematic. This geometry is obtained after
the introduction and the subsequent removal of the capillary tube at the oil/wa-
ter interface. The polar coordinate variables are sketched on the image and in
the diagram. b) Onset of the bend instability. Blue arrows indicate the active
stresses that reinforce the buckling deformation and lead to the formation of kinks.
c) Nucleation of ±1/2 defect pairs within the kinks, leading to a degradation of
the orientational order. In the diagram, -1/2 defects are shown by red triangles
and +1/2 by blue circles. Because of their geometry, +1/2 defects can self-propel
and travel transiently along the walls. Their trajectories are indicated with pink
arrows. d) Eventually, +1/2 defects alter their trajectories and finally break the
patterned structure. Scale bars, 100 µm. Experimental conditions are [ATP] =
280 µM, [streptavidin] = 8.2 µg/mL, [MT] = 1.3 mg/mL, [PEG]=1.7 %(wt/wt),
and Oil viscosity= 9.6 · 10−2 Pa·s. See also Video 2.1.
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Figure 2.2: Cascade of instabilities. a-f Fluorescence micrographs showing
the patterns formed after consecutive instabilities happening in orthogonal direc-
tions (along the radial, r̂, and azimuthal, φ̂ directions sketched in a. Elapsed
times from a are 22 s (b), 63 s (c) and 92 s (d). The amplitude of the 2D Fast
Fourier Transform (FFT) is included as an inset in each image. For clarity, we
have highlighted in the FFTs the peaks corresponding to every pattern emerging
in the azimuthal and radial directions, in red and green, respectively. e) Time
average of all the micrographs in a-d, evidencing the orthogonal arrangement of
the dark lanes in the fluorescence micrographs. f) Normalized FFT amplitude in
the peaks corresponding to patterns formed along the radial direction (green trace)
and along the azimuthal direction (red trace). Scale bars: 100 µm. Experimen-
tal conditions are [ATP]=1.5 mM, [streptavidin]=7.5 µg/mL, [MTs]=1.3 mg/mL,
[PEG]=1.7 %(wt/wt), and Oil viscosity= 9.6 · 10−2 Pa·s. Image adapted from [1]
with permission from Springer Nature. See also Video 2.2
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2.2.2 Instability cascade

The pattern with the dark circular lanes is not stable, as mentioned earlier. In
general, this geometry is melted by the +1/2 defect motion, yet, at low activity
conditions, a cascade of bend instabilities orthogonal to each other befall (see
Figs. 2.2a to 2.2d). The order of the active nematic keeps decreasing after each
instability until the material reaches the characteristic turbulent regime. This
instability sequence develops as a consequence of the defect motion that aligns
the MT fibers tangentially to the lanes. These aligned domains become un-
stable and the bend instability originates again, but with the bundles buckling
in the orthogonal direction. New defects unbundle anew, prompting another
instability all over again. The superposition of fluorescence images of subse-
quent instabilities produces a square grid highlighting the constant instability
wavelength (sse Fig. 2.2e). Moreover, we measure the radial, and azimuthal
modes of the Fourier transform FFT of the fluorescence images, which evidence
the alternation between these two directions (see Fig. 2.2f). This observation
stresses that defects originate due to regions with aligned bundles inside the
system that become unstable and form walls that will later result in defects.
The newly created +1/2 defects will then self-propel and produce new aligned
areas prompt to destabilize back again. Aligned regions can as well arise from
the annihilation of +1/2 with −1/2 defects. Hence, the persistent creation and
annihilation of defects lead to and sustain the active turbulent regime.

2.2.3 Quantitative characterization of the bend instability

We quantitatively describe the instability in terms of the characteristic wave
number q∗ = 2π/ℓ∗ and growth rate Ω∗, both corresponding to the leading
distortion mode. Briefly, we first determine q∗ by performing an FFT of the
intensity profile along a direction orthogonal to the kinks (see Methods Sec-
tion 6.4.4.1) and, afterward, track the temporal evolution of the FFT amplitude
of the known q∗. At the first stages of the instability, the FFT amplitude follows
an exponential trend; thus, we exploit such trend to extract Ω∗ (see Fig. 2.3).
Remarkably, this exponential growth is consistent with a linear selection mech-
anism. Here, we should remark that in [1], we use k instead of q to refer to wave
numbers. The relation between these two quantities is q = 2πk. This notation
has been chosen for consistency with the other chapters.

Then we study the influence of four control parameters: ATP, motor clus-
ters, MTs, and PEG on the quantitative properties of the AN’s orientational
instability. First, we analyze how ATP affects the pattern-forming instability.
Our results (Fig. 2.4) show that as we increase the ATP concentration, the in-
stability begets and grows faster (Ω∗ increases) and q∗ gets larger. Moreover, at
ATP concentrations lower than ∼ 400 µM, q∗ saturates due to system size limi-
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Figure 2.3: Long-range fluctuations grow exponentially at initial times.
The time evolution of the FFT amplitude at the wave number q∗ grows exponen-
tially at early times, this allows to extract the characteristic growth rate Ω∗. This
temporal evolution is extracted as explained in Methods Section 6.4.4.2.

tations. Within this latter regime, the system cannot be considered unbounded
and the selection mechanism becomes system-size dependent, similarly to what
happens in confined cellular nematics [104].
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Figure 2.4: Dependence of the characteristic wave number q∗ on ATP
concentration ([ATP]) The experimental characteristic wave number q∗ = 2π/ℓ∗,
upon a threshold, grows with the [ATP]. Both assumptions that q∗2 scales as q∗2 ∼
log[ATP] (fitting in a), and Michaelis-Menten kinetics (Eq. 2.1) (fitting in b) are
plausible. The fitting to b gives q∗2max = (3.5±0.2) ·10−4 µm2, KM = 959±11 µM,
and [ATP]thr = 274 ± 12 µM.

ATP concentration essentially affects the parameter controlling the active
stresses, α. Nevertheless, their relationship is still under debate. Thermody-
namic approaches suggest that the magnitude of the active stress scales as the
logarithm of ATP concentration: α ∼ log[ATP]. This relation arises from con-
sidering that the velocity of a kinesin is proportional to the ATP/ADP hydrol-
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Figure 2.5: Dependence of the characteristic wave number q∗ and growth
rate Ω∗ and scaling Ω∗(q∗) a-d) Experimental scaling relations of the charac-
teristic wave number q∗ = 2π/ℓ∗ and growth rate Ω∗ of the instability of aligned
active nematics, as a function of the different control concentrations. In a and b,
solid lines are guides for the eye in regions where q∗ ∼ log[ATP ]. b) Ω∗ versus q∗

for all experiments. Data collapse in a single master curve that can be fitted well
by Ω∗ ∝ q∗2 (solid line). For comparison, other power-law relations are included
as dashed lines. Error bars in q∗ represent standard deviation for measurements
of different images. Error bars in Ω∗ represent uncertainties from data fitting (see
Methods Section 6.4.4). Image adapted from [1] with permission from Springer
Nature.
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ysis rate, which is, in turn, proportional to the difference between ATP and
ADP and phosphate (Pi) chemical potentials, ∆µ = µATP − µADP − µPi ≈
RT log([ATP]/[ADP]) ≈ RT log[ATP], where R is the ideal-gas constant, and
T is the temperature of the system. In fact, within the active gel theory frame-
work, the activity coefficient is proposed to be α = ζ∆µ [100, 108], with ζ a
coefficient characterizing the proportionality between α and ∆µ. This assump-
tion has been revealed to work well for diverse experiments and simulations in
active nematics [91, 92, 109]. In our experiments, we measure q∗, which we
expect to scale with the active length ℓa as q∗ ∼ ℓ−1

a , a quantity that depends
on the ratio between the elastic constant, K, and α: ℓa ∼

√
K/α1. Hence,

(q∗)2 ∼ α ∼ log [ATP]. We observe that, past a threshold [ATP], our data is
fully compatible with the prediction that (q∗)2 grows as log[ATP] (see Fig. 2.4a).
In contrast, other experiments with single MTs driven by kinesins attached to
either a glass slide or silica beads [110] have proven a Michaelis-Menten depen-
dence of the gliding or bead velocity with the ATP concentration. This trend
seems to be also applicable to experiments involving highly concentrated MTs
systems forming an active nematic [93, 111]. Accordingly, we have also fitted our
data to Michaelis-Menten kinetics (see Info Box 2.1, Eq. 2.9, and Fig. 2.4b). We
need to add an extra fitting parameter [ATP]thr that accounts for the threshold
ATP concentration upon which we see a dependence between q∗ and the fuel
content:

q∗2 =
q∗2max([ATP] − [ATP]thr)

KM + ([ATP] − [ATP]thr)
(2.1)

Infobox 2.1: Michaelis-Menten kinetics

Michaelis-Menten relates the velocity of an enzimatic reaction with the
concentration of the reacting substrate [50] and is applicable to reactions
of the form

S + E
k1
k−1

ES
k2

P + E,

where S is the substrate, E the enzyme, ES the enzyme-substrate complex,
and P the product. Note that in the evolution of ES to P, there is a single
arrow, indicating that this reaction is assumed to be irreversible. For a
reversible reaction, this assumption will work as far as the concentration

1α is taken throughout the whole text as positive for extensile systems.
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of P is low. In this way, the velocity of product formation is given by:

dP

dt
= k2[ES]. (2.2)

Another approximation made to derive the Michaelis-Menten equation is
supposing that the system reaches an steady state where the concentra-
tion of ES remains constant until nearly all the substrate molecules have
reacted. This is as considering that [S]≫[E]. Therefore,

dES

dt
= −(k2 + k−1)[ES] + k1[S][E] = 0. (2.3)

Rearranging this last equation

[S][E]

[ES]
=
k2 + k−1

k1
= KM , (2.4)

we can define the Michaelis constant, KM . Since the enzyme is not con-
verted during the chemical process, it only catalyzes the reaction, we can
write:

[E]T = [E]+[ES], (2.5)

where [E]T is the total concentration of enzyme. Combining Eq. 2.4 with
Eq. 2.5

[ES] =
[E]T[S]

KM + [S]
, (2.6)

Introducing this last equation to Eq. 2.2

dP

dt
= k2

[E]T[S]

KM + [S]
(2.7)

Finally, we can define a maximum velocity

Vmax = k2[E]T (2.8)

that will correspond to a situation where [S] is very high and all the
enzymes are in the form of ES. In this way, Eq. 2.7 takes the form of

dP

dt
=

Vmax[S]

KM + [S]
, (2.9)

which is the Michaelis-Menten relation. Notice that the asymptotic value
of Vmax in Eq. 2.9 is translated as q2max in Eq. 2.1.
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2 Chapter 2. The bend instability: a route to active turbulence

Next, we scrutinize the impact of the molecular motors concentration on
the bend instability (Fig. 2.5b). We find a linear dependence of both q∗ and
Ω∗ with the concentration of motor units. In this respect, we can refer to an
earlier study [112] regarding the velocity of the active MT-based material, which
suggests that this velocity scales linearly with the motor concentration in the
used concentration range. Moreover, a relation v ∝ α1/2 has been predicted
theoretically [75, 108] and confirmed experimentally [13, 91]. Consequently,
the increase of q∗ and Ω∗ with motor concentration (see Fig. 2.5b) is entirely
consistent.

As for the content of MTs, we observe a decrease in q∗ and Ω∗ past a range of
minimal MT concentration (Fig. 2.5c). We interpret this behavior by assuming
that the densification of the active nematic by increasing the MT concentration
stiffens the system (larger K), making q∗ and Ω∗ decrease.

Finally, the variation of the depleting agent PEG highlights a non-monotonous
behavior (Fig. 2.5d). At low concentrations, increasing [PEG] conduces to the
destabilization of smaller wavelengths, whereas at higher concentrations, in-
creasing the [PEG] translates into a stiffer material unable to accommodate dis-
tortions even with wavelength comparable to the system size. As we understand
it, the depleting agent makes the system more efficient at low concentrations by
optimizing motor translocation, thus resulting in an enhanced effective α. At
high PEG concentrations, our results highlight that, beyond a threshold, PEG
has a similar effect to the one observed for the case of increasing MT concen-
tration. The decrease in q∗ and Ω∗ with PEG concentration can be understood
by either considering an increase in K or a decrease in α due to an increase in
interfilament friction at high PEG concentration [113].

2.3 Discussion

2.3.1 Selection mechanism. Linear stability analysis

To elucidate the wavelength selection mechanism, we draw on the active gel
theory [100, 114, 115] (see also Appendix A.1) and perform a linear stability
analysis of a parallelly aligned isolated active nematic (see Appendix A.2). We
find that, for such a system with extensile stresses like our AN, longitudinal
perturbations grow with a growth rate Ω given by (see Eq. A.22 in Appendix A):

Ω = −
Kq2y
γ

(
1 +

γ

4η
(ν − 1)2

)
+
α(1 − ν)

2η
, (2.10)

where K is the elastic constant in the one constant approximation, γ is the
rotational viscosity, η the shear viscosity, ν the flow alignment parameter, and
α the activity coefficient. Therefore, fluctuations perpendicular to the direction
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of initial alignment are unstable if ν < 1, corresponding to rod-like and flow
aligning objects [101], like MTs.

Ω

q   

Ω

q   

Without 3D layers With 3D layersa) b)

Figure 2.6: Schematics of the dispersion relation with and without the
3D fluid layers. (a) is computed with Eq. 2.10 and (b) with Eq. 2.11

According to Eq. 2.10, active stresses equally strengthen fluctuations at all
scales, whereas the elastic restoring stresses stabilize large wave number fluctua-
tions because of their high elastic cost. As a result, the most unstable wavenum-
ber is q∗ = 0 (Fig. 2.6a), meaning that the linear regime of the instability does
not entail any intrinsic wavelength selection. For a confined system, however,
the confinement forces the discretization of the growth rate spectrum, selecting
a finite scale that accommodates the adequate boundary conditions. However,
a radial alignment would not provide a wavelength selection mechanism in an
unconfined system (see Appendix A.3). Therefore, the only left mechanism
by which the wavelength can be selected at a linear level is through the vis-
cous coupling of the active fluid layer with the two surrounding passive fluids
with shear viscosities ηoil and ηwater (see Appendix A.4). The selection is a
result of a viscous damping by the oil and water layers that screen long-range
hydrodynamic interactions and thus hampers the long-wavelength fluctuations
[116, 117]. Thus, we can consider explicitly the effect of the contacting fluids in
the dispersion relation by redoing the linear stability analysis in this latter case.
In Appendix A.4, we analytically obtain the following relation dispersion for a
parallel alignment (see Eq. A.56):

Ω = −K
γ
q2y

(
1 +

1

4

γ(ν − 1)2q2y
Γ

)
+

1

2

α(1 − ν)q2y
Γ

. (2.11)

with

Γ = ηq2y + ηwater qy coth(qyHwater) + ηoil qy tanh(qyHwater), (2.12)

which does have a maximum at q ̸= 0 (Fig. 2.6b). We assume this relation to be
also valid for the radial case. We later discuss the role of the axial symmetry.
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2 Chapter 2. The bend instability: a route to active turbulence

2.3.2 Comparison between theory and experiments

Scrutinizing Eq. 2.11, we can see that the first term is always positive; hence,
it damps any perturbation around the ordered state. In contrast, the second
term can be either positive or negative depending on the value of ν and, conse-
quently, it controls the stability of small wave number perturbations. Therefore,
α enhances any perturbation, whereas K hinder them. To gain insight into the
wavelength selection, we compute the dispersion relation Ω(q) for different val-
ues of α. To select the range of values for α, we use the relation ωv ∼ α/ν,
where ωv is the mean vorticity inside vortices [75]. We use η = 4 · 10−6 Pa·s·m
from [96] and ωv = 0.2 s−1 obtained from the detection of vortices. In this
way, α ≈ 9 · 10−7 Pa·m, corresponding to saturating conditions of ATP and a
fixed oil viscosity ηoil = 1 · 10−1 Pa·s. The final range of investigated α values
are chosen according to the range of variation of q∗. Our guess for α is of the
same order of magnitude as the one estimated by Ellis et al. [118], who inferred
α from the velocity of defects of the AN confined in a torus. Note that, in
their article, they give a 3D active coefficient (α3D ≈ 250 mPa) that we can
rescale by the thickness of the AN layer ∼ 1 µm and get α ≈ 2.5 · 10−7 Pa·m.
Finally, we neglect flow alignment (ν = 0), set γ ≈ η, and get an estimate of
K ≈ 1 · 10−15 N·m from ℓa ≈ R∗ ≈

√
K/α where R∗ = 3 · 10−5 m, is the mean

vortex radius extracted from the exponential distribution of vortex areas [96].
Hence, introducing all the estimated parameters (also listed in Table 2.1)

into Eq. 2.11, we calculate the dispersion relations for α ∈ [2 − 9] · 10−7 Pa·m
(see Fig. 2.7a) and extract the q of maximal growth, q∗, and the corresponding
growth rate Ω∗. Interestingly, Eq. 2.11 predicts a relation q∗2 ∼ α (see Fig. 2.7b).
Notice that this relation is the well-known scaling reported in the literature for
the active length scale [75]. Then, we proceed analogously, but this time we
vary K instead of α, which we fix to 9 · 10−7 Pa·m. In this case, we only vary
K one order of magnitude from the previously obtained value and observe that,
as expected, the selected q∗ decreases with K (see Fig. 2.7c). Furthermore, the
dependence is fully compatible with q∗ ∼ 1/K, and therefore, with the just
mentioned scaling for the active length scale.

Next, we plot Ω∗(q∗) using the obtained data sets when varying α and K
(see Fig. 2.7d). In the former case, we find a power-law scaling between Ω∗

and q∗ with an exponent between 2 and 3, agreeing with the master curve in
Fig. 2.5e. However, when changing K, the theory yields a power-law scaling of
Ω∗ with q∗ with an exponent smaller than 2. Moreover, q∗ and Ω∗ predicted
from the theory are ∼ 1 and ∼ 2 orders of magnitude, respectively, smaller than
the ones captured from the experiments. This disparity is presumably due to a
lack of knowledge in the material parameters of the AN.

Finally, as the theory predicts that the oil viscosity also modifies the selected
wavelength, we perform supplementary experiments varying the oil viscosity.

40



22.3 Discussion

Varying K
Varying ®

®  (10-7 Pa·m)

3 6 9

1 2 3 4

K  (10-15 N·m)

K

®  (10-7 Pa·m)

3 6 9

Ω
 (

s-1
)

-0.02

-0.01

0

0.01

0.02

1

2

3

4

q   *
/2
¼
 (

µm
-1
)

10-4 10-3

10-2

Ω
 *

 (
s-1

)

q   */2¼ (µm-1)
10-2

10-3

q   /2¼ (µm-1)
0.5 1 1.5 2

(q
   */

2¼
)2  (

µm
-2
)

®  (Pa·m)
2 4 6 8 10

·10-7·10-7

0

0.5

1.5

1

2.5

2

·10-6

K  (N·m)
2 4 6

·10-15
0

2

·10-3

10-3

~q
3 

~q
2  

a) b)

c) d)

®

Figure 2.7: Wave length selection of the bend instability according to
the theory. a) Dispersion relation Ω(q) (Eq. 2.11) for different values of the
activity coefficient α (from 2·10−7 Pa·m to 9·10−7 Pa·m). b) (q∗)2 is proportional
to α. q∗ is extracted from the maxima for each value of α in a. Colors of the
lines (a) and the circles (b) correspond to the values of α used to calculate Ω(q).c)
q∗ decreases with K. Colors of the circles correspond to the values of K used to
calculate Ω(q). d) Ω∗(q∗) for the data when varying α (◦) and K (△). Dashed
lines indicate q∗2 and q∗2 power-laws. The parameters introduced in Eq. 2.11 to
obtain the plots are listed in Table 2.1.
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Used parameters

Parameter
Values

Varying α Varying K Varying ηoil

α (2 − 9) · 10−7 Pa·m 9 · 10−7 Pa·m 9 · 10−7 Pa·m
K 1 · 10−15 N·m (0.2 − 4) · 10−15 N·m 1 · 10−15 N

ηoil 1 · 10−1 Pa·s 1 · 10−1 Pa·s (10−4 − 100) Pa·s
η 4 · 10−6 Pa·s·m
γ 4 · 10−6 Pa·s·m

ηwater 1 · 10−3 Pa·s
Hoil 3 · 10−3 m

Hwater 4 · 10−5 m

ν 0

Table 2.1: Values used to compute the dispersion relations Ω(q) in Fig. 2.7
using Eq. 2.11.

Our results show that as ηoil is increased, q∗ increases as well. In contrast, the
theory yields a non-monotonous behavior of q∗ with ηoil. In our experiments,
we use oil viscosities ranging from 10−4 − 100 Pa·s, and, inspecting Fig. 2.8b,
we see that for the input parameters and this range of oil viscosities, we should
have uncovered the non-monotonic behavior. This could be interpreted in the
sense that the predicted value of α depends on the oil viscosity.

2.4 The role of the axial symmetry

To understand our experimental results, we have leveraged the stability anal-
ysis presented in Appendix A.4 for an active nematic surrounded by two fluid
layers. This analysis is incomplete because it does not include the axial sym-
metry of the AN in our experiments. Nonetheless, to try to comprehend the
role of such symmetry, we can draw on the stability analysis in Appendix A.3,
which corresponds to the problem with axial symmetry but without external
layers. According to our analysis, the axial symmetry modifies the structure
of the flows and the nematic director. More specifically, at early stages of the
instability, the angle perturbations δθ adopt the form of Bessel functions instead
of a superposition of Fourier modes, as in the problem with a parallel alignment.
We accordingly measure the director field using the method described in [118]
and Methods Section 6.4.2 and extract δψ = asin(nφ) (Fig. 2.9a), the angle
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Figure 2.8: Dependence of the characteristic wave number q∗ with the
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a function with the oil viscosity ηoil. q∗ is extracted as explained in Methods
Section 6.4.4. Error bars correspond to the standard deviation for measurements
of different frames. b) Dependence of q∗ with ηoil according to Eq. 2.11. Color of
the line corresponds to the oil viscosity. ηmax

oil corresponds to the oil viscosity with
maximal q∗ for the parameters used (listed in Table 2.1).

between the radial direction and the local nematic orientation. Averaging δψ
over the azimuth direction, we get the relation δψ(r) presented in Fig. 2.9b,
compatible with the predicted Bessel functions. We accordingly measure the
director field using the method described in [118] and Methods Section 6.4.2
and extract δψ = asin(nφ) (Fig. 2.9a, the angle between the radial direction
and the local nematic orientation. Averaging δψ over the azimuth direction,
we get the relation δψ(r) presented in Fig. 2.9b, which is compatible with the
predicted Bessel functions.

2.5 Conclusions

To summarize the results of this chapter, we have designed an experimental
setup that has permitted us to analyze the onset of the primary bend instability,
which leads to active nematic turbulence.

In particular, we have demonstrated that right at the onset of the instability,
the generated chaotic flows are endowed with characteristic length and time
scales given, respectively, by the inverse of q and Omega. Interestingly, they
appear related through a quadratic or quasi-quadratic scaling, i.e., Ω (q∗)2.

As support for our experimental observations, we have resorted to a theo-
retical description of the instability in terms of a linear stability analysis. The
first important conclusion that we can extract from the theory is that once the
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Figure 2.9: Angle perturbations at the threshold of the instability. a)
Sketch illustrating the disposition of the MT-bundles and the nematic director n at
a given point. n can be described in terms of the radial and azimuth components
nr and nφ, respectively, from which we extract δφ = asinnφ, the angle between
the radial direction and the local orientation of the filaments. b) Angle average
of the experimentally measured 2D δψ. The inset represents the image used to
extract δψ(r), with r = |r|. The continuous black line represents the fitting to a
Bessel function. Scale bars: 100 µm

viscous coupling of the AN with the adjacent layers is considered, the growth of
long wavelengths is prevented, and a wave number selection principle is enforced.

Moreover, from this linear stability analysis, we can conclude that (q∗)−1 is
a proxy for the active length scale ℓa, the length scale identified as characteristic
of the fully turbulent regime. This conclusion is based on the observation that
the scaling of q∗ in relation to the activity parameters alpha and elastic param-
eters (K) is compatible with the predicted scaling ℓa ∼

√
K/α (see Figs. 2.7b

and 2.7c).
In another respect, the agreement between the predictions of the linear sta-

bility analysis and the experimental observations at the onset of active turbu-
lence appears more questionable in quantitative and qualitative terms. In any
case, we recognize the difficulty of attempting such a direct comparison, which
is largely hampered by the lack of knowledge of most of the AN’s material pa-
rameters. This is an underlying limitation that reappears in other parts of this
thesis, more particularly in Chapter 4.

2.6 Videos
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Video 2.1: Route to active turbulence A capillary tube is introduced into the
open sample inducing the radial alignment of the material, which rapidly buck-
les displaying a concentric pattern. Proliferation of ±1/2 defects prompts the
breaking of the structure. Experimental conditions are [ATP]=1.5 mM, [strepta-
vidin]=8.2 µg/mL, [MTs]=1.3 mg/mL, [PEG]=1.7 %(wt/wt), and Oil viscosity=
9.6 · 10−2 Pa·s. Image adapted from [1] with permission from Springer Nature. To
watch the video, click here or scan the QR-code in List of Videos

Video 2.2: Sequential instabilities At low concentration of motors (i.e.,
low concentration of streptavidin), we can observe sequential patterns with or-
thogonal directions formed because of repeated bend instabilities. Experimen-
tal conditions are [ATP]=1.5 mM, [streptavidin]=7.5 µg/mL, [MTs]=1.3 mg/mL,
[PEG]=1.7 %(wt/wt), and Oil viscosity= 9.6 · 10−2 Pa·s. Video adapted from [1]
with permission from Springer Nature. To watch the video, click here or scan the
QR-code in List of Videos
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Scaling regimes of active
turbulence with external
dissipation

3.1 Introduction

Recent studies have exploited the body of knowledge accumulated around in-
ertial turbulence to establish the fundamentals of active turbulence and the
main similarities and differences between the two types of turbulence. More
specifically, some works have been devoted to the search for the emergence of
universal behaviors and scaling laws. An initial work involving bacterial tur-
bulence showed that these fluids display flow spectra with scaling regimes with
nonuniversal exponents in the sense that they are parameter-dependent [16, 95].
Note that highly-concentrated bacterial suspensions are traditionally modeled
as dry systems, which can be described with models with no momentum con-
servation. In contrast, the theoretical studies on active nematics by Giomi [75]
and Alert et al. [74] predicted spectra with universal exponent, whose values are
independent of the active nematic properties. Interestingly, these two studies
arrived at the same result following two different approaches. First, Giomi’s
work is based on a statistical analysis of the vorticity field of a 2D active ne-
matic that allows obtaining the energy and enstrophy spectra and extracting
the corresponding scaling regimes at large wavenumbers. Alternatively, Alert et
al., building on the active gel theory [114], could predict the same exponents as
Giomi’s. Unfortunately, experimental corroboration of such universal scalings
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remained elusive until very recently [96].

In this chapter, we review the work in [96], where we measure the kinetic
energy density spectrum per unit mass1 of the AN explained in this thesis, span-
ning a broad range of spatial scales. In this way, we can corroborate previously
predicted scaling regimes and find new ones that we rationalize in terms of the
coupling of the 2D active layer (1 µm thick) with the two adjacent 3D fluid
layers. Since the previous theoretical models consider the active nematic as an
isolated system, we propose a new theoretical framework that incorporates the
hydrodynamic coupling of the active fluid with the environment and allows us
to obtain an explicit expression for the full spectrum of turbulent active flows.

From the obtained expression for the kinetic energy spectrum, we can predict
six different scaling regimes, whose crossovers depend on three different lengths:
the average vortex size, the height of an external fluid layer, and a viscous
length controlling whether dissipation is dominated by either the active or the
external fluid. To explore the different scaling regimes, we perform experiments
varying the oil viscosity over more than four orders of magnitude. However, we
only observe three of the six predicted exponents. The missing scaling regimes
might be observed in other systems, such as cell monolayers. Overall, we see
that varying the oil viscosity changes the crossovers between the distinct scaling
regimes. Thus, our results showcase that external dissipation not only introduces
a small-q cutoff to the scaling behavior but also yields a new scaling regime.

The obtained closed expression for the kinetic energy spectrum matches re-
markably well to the experimental results with intermediate oil viscosities but
fails for extremely low and high viscosities. Therefore, our analysis calls for fu-
ture work on the theory of active turbulence. Directions for future improvement
of our hydrodynamic theory would be incorporating vortex-vortex correlations,
flow alignment, and, especially for high oil viscosities, going beyond descriptions
based on single phase active fluids.

Finally, we compare the results in Chapter 2 concerning the selected wave-
length with the average vortex radius, shown in this Chapter 3, as a function
of oil viscosity. In this way, we can show that the linear selection mechanism
originated by the viscous damping is insufficient to explain the mean vortex
size observed in the turbulent regime. Therefore, our analysis points out that
nonlinear effects in the active fluid might contribute to vortex size selection.

1Hereafter, we will call the kinetic energy density spectrum per unit mass simply kinetic
energy spectrum.
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Figure 3.1: Kinetic energy spectrum of active nematic turbulence. The
dashed lines indicate the previously predicted scaling regimes by theory and sim-
ulations [74, 75]. The plotted data is an average of 500 frames with a standard
deviation represented by the error bars. The inset shows a diagram of the experi-
mental setup

3.2 Experimental kinetic energy spectra of active ne-
matic turbulence

To gain insight into how the kinetic energy of an active turbulent flow is struc-
tured over different length scales and motivated by the way inertial turbulent
(at a high Reynolds number) is studied, we measure the spectrum of the kinetic
energy density of the microtubule-based AN (see Methods Section 6.1). This
quantity is ⟨E(q)⟩ ∝ ⟨|ṽ(q)|2⟩, where ṽ(q) is the Fourier decomposition of the
2D velocity field v(r) with wave number q = 2π(nx/Lx, ny/Ly) and ⟨·⟩ indi-
cates a temporal average. Finally, as the state of fully developed turbulence is
isotropic, we angle average E(q) and obtain the one-dimensional kinetic energy
spectrum ⟨E(q)⟩ ∝ q⟨|ṽ(q)|2⟩ with q = |q| (see Methods Section 6.4.9), which is
shown in Fig. 3.1.

The experimental E(q) features two regimes compatible with the scalings
predicted by the theory [74, 75]: q−1 and q−4 at large wave numbers. How-
ever, it presents an extra scaling regime with a positive exponent at small wave
numbers. We must remark that in these theories, the regarded system is an
isolated 2D active nematic layer. In contrast, in our experiments, we have a
quasi-twodimensional active layer unavoidably in contact with two 3D passive
layers: a thick oil layer (Hoil ≈ 3 mm) above the AN and a thinner water layer
(Hwater ≈ 40 µm) below the AN. Moreover, Guillamat et al. [119], working with
the same system, demonstrated that the velocity of defects and, thus, of the
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Figure 3.2: Flow filed and epifluorescence images of the AN with dif-
ferent oil viscosities. a-c) Measured flow fields of the AN through PIV (see
Methods Section 6.1.5) using images as the ones in Video 3.1. The color of the
arrows indicate the fluid speed (speed= |v|). See also Video 3.2. d-f) Epiflores-
cence micrographs of the AN. Here, all the MTs are fluorescently labeled. See also
Video 3.3. The experiments are performed with low (a and d), intermediate (b
and e) and high (c and f) oil viscosities. Scale bars: 100 µm.

flow diminishes with increasing oil viscosity, highlighting the oil and water lay-
ers’ significant role in the experimental system. This point can also be observed
in Fig. 3.2, which displays three flow fields and epifluorescence images of exper-
iments with different oil viscosities. We, therefore, hypothesize that the newly
observed regime arises from the viscous coupling of the AN with the water and
oil layers.

To investigate the effect of the 3D passive fluid layers on E(q), we system-
atically perform a series of experiments varying the oil viscosity while keeping
the rest of the control parameters fixed, namely the motor, ATP, and PEG
concentrations and the thicknesses of the oil and water layers. In this way, the
active length should be the same in all the experiments. As depicted in Fig. 3.3,
the oil viscosity significantly modifies the kinetic energy spectrum. First, upon
an increase of the oil viscosity, the whole kinetic energy spectrum decreases,
consistently with the decrease in the flow speed [119, 120]. Moreover, at low oil
viscosities, we observe a small-q (large-scale) regime where E(q) increases until
reaching a peak, an intermediate-q regime, and a crossover to another regime at
large wave numbers (small-scales). Nevertheless, as the oil viscosity increases,
the peak shifts to larger wave numbers, shrinking the intermediate regime until
its disappearance at high oil viscosities. We attribute this effect to a strengthen-
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Figure 3.3: Oil viscosity changes the kinetic energy spectrum of active
nematic turbulence. a-c Kinetic energy spectrum of the flows of an active
nematic sandwiched between a water and oil layer of low (Fig. 3.3a), intermediate
(Fig. 3.3b) and high (Fig. 3.3c) viscosity. The plotted data is an average of 500
frames with a standard deviation represented by the error bars. The top insets in
each panel display a representative fluorescence micrograph. Scale bars: 100 µm.
Image adapted from [96] under Creative Commons Attribution 4.0 International
license.

ing of the hydrodynamic screening towards large-scale flows as the oil viscosity
is increased.

3.3 Theoretical model and predicted scaling regimes

The chaotic flows within the active nematic propagate to the passive layers,
which, in turn, influence the active film flows. We derive a theoretical frame-
work that accounts for this hydrodynamic coupling to justify our experimental
results (for an in-depth explanation, see Appendix B). Shortly, we begin by in-
cluding in the active fluid’s Navier-Stokes equation the viscous stresses exerted
by the oil and water layers of thicknesses Hoil and Hwater and viscosities ηoil
and ηwater. Next, following the strategy designed by Lubensky et al. [121], we
obtain the corresponding Green’s function, which gives the response of a flow
field in a 2D fluid film adjacent to two 3D fluid layers of other fluids (see Ap-
pendix B.1). Using this Green’s function, we arrive at an expression that relates
the velocity power spectrum |v|2 with the vorticity power spectrum |ω|2 of an
isolated active nematic film. The latter power spectrum was earlier predicted
by Giomi [75], who developed a mean-field theory based on the decomposition
of the AN’s vorticity field into N uncorrelated vortices. Moreover, based on
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simulations, he could assume that the vortices feature a homogeneously dis-
tributed and size-independent vorticity ωv and that the vortex areas follow an
exponential distribution with mean area A∗ = πR2

∗, where R∗ is the mean vortex
radius. We finally obtain the following expression for the E(q) of a system with
N vortices, on average, over a total area of A:

E(q) =
BqR4

∗ e
−q2R2

∗/2
[
I0
(
q2R2

∗/2
)
− I1

(
q2R2

∗/2
)]

[q + ηoil/ηn tanh(qHoil) + ηwater/ηn coth(qHwater)]
2 , (3.1)

where B = Nω2
v/(32π3A), which is a coefficient related to the total enstrophy,

and I0 and I1 are modified Bessel’s functions of the first kind of order 0 and 1.
Notice that here we have denoted the active nematic viscosity with a subindex
n (ηn) to avoid confusion with the external fluids’ viscosities.

By inspecting Eq. 3.1, one can appraise that the problem holds five lengths
controlling the crossovers between the different regimes. Apart from the mean
vortex radius, the two passive fluid layers introduce into the problem four extra
lengths: the two layers’ thicknesses, plus two viscous lengths set by the ratio
ℓwater = ηn/ηwater and ℓoil = ηn/ηoil. These viscous lengths control whether
dissipation is dominated by either the active or the external fluids.

As in Appendix B.3, we consider only one external layer to simplify the
discussion regarding the scaling regimes predicted by Eq. 3.1. This simpler sce-
nario is sufficient to elucidate the effects of external fluid layers on the active
film. Indeed, as we argue latter, the water layer does not have a notorious effect
in E(q) within the length scales of our measurements. Then, the lengths control-
ling the crossovers between the different scaling regimes are R∗, the thickness of
the external layer (H), and the viscous length ℓv set by the ratio between the
2D active nematic viscosity, ηn, and the 3D viscosity of the external fluid, ηext.
As we will demonstrate in the next section, we can assume the thick-layer limit
(qH ≫ 1) for our experimental system, which we now discuss.

To elicit the different scaling regimes predicted by our theoretical model,
we dissect the behaviors of Eq. 3.1 at scales smaller and larger than the mean
vortex size R∗ and the viscous length ℓv. For qℓv ≫ 1, the scaling laws are those
predicted and numerically corroborated for isolated active nematics [74, 75].
These are q−1 for 2π/q > R∗ and q−4 for 2π/q < R∗ (top half Fig. 3.4). In
contrast, for qℓv ≪ 1, new scaling laws emanate: q1 and q−2 (bottom half
Fig. 3.4).

3.4 Comparison with experiments

As conveyed later, we infer the active film viscosity ηn = (4 ± 2) · 10−6 Pa·s·m
from the fitting of the model (Eq. 3.1) to our experimental measurements. In
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Figure 3.4: Scaling regimes of turbulent flows in an active nematic film in
contact with a thick external fluid layer. The different regimes are predicted
at length scales (2π/q) either larger or smaller than the mean vortex radius R∗,
the viscous length ℓv = ηn/ηext, and the thickness H of the external fluid layer.
This figure summarizes the scalings in the thick-layer limit qH ≫ 1; see Fig. B.2
in Appendix B.3 for the predictions in the thin-layer limit qH ≪ 1.
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this way, by taking ηwater = 10−3 Pa·s and ηoil = (6.4 · 10−4 − 12) Pa·s for the
different oil viscosities, we can extract the two viscous lengths ℓwater ≈ 4 mm,
and ℓoil ≈ 6 mm−0.3 µm, depending on the oil viscosity used. Note that ℓwater is
larger than our field of view (L = 2187 µm, q−1

min ≈ 0.3 mm). Consequently, the
flows in the water do not render any new scaling regimes. On the other hand,
several of the oils we use yield ℓoil that fall within our measurement window.
In addition, the oil layer in our experiments has a thickness Hoil ≈ 3 mm,
which is larger than the length scales we probe. We can accordingly assume the
thick-layer limit.

3.4.1 Scaling regimes

Congruent with our predictions, the experiments, independently of the oil vis-
cosity, exhibit E(q) ∼ q at large scales (small-q) and E(q) ∼ q−4 at small scales
(large-q) (see Figs. 3.5a and 3.5b). Nevertheless, the expected q−1 power law
only materializes in experiments with intermediate oil viscosities at scales be-
tween ℓoil and R∗. An example can be seen in Fig. 3.5c. At this point, we must
remark that the observed scaling regimes do not span a wide enough range of
length scales to be conclusive about the scaling laws. However, our experiments
verify the theoretical predictions that active nematic turbulence is vested with
inherent scaling laws with universal exponents. Here, by universal, we mean
that these exponents are independent of the nature of the material, such as the
sign of the active stress: these power laws should be observed both in contractile
and extensile active systems. The nature of the material essentially changes the
crossover between each power law.

The prevailing dynamics at a given length scale dictates the scaling law
characterizing the active flows. Therefore, at length scales smaller than the
oil viscous length ℓoil, the effect of the external fluid layer is negligible, and,
consequently, dissipation is dominated by the viscosity of the active film. Within
this regime, the predicted scaling laws for an isolated active film arise: q−1 and
q−4. The former exponent emerges from the dynamics of large patches of non-
coherent but correlated flows. As explained in [122], this exponent originates
from the long-range hydrodynamic interactions that convert short-range angle
correlations into long-range correlations of the flow field. Conversely, the latter
scaling law occurs from the flow dynamics within vortices, i.e., within coherent
and correlated flows (see Figs. 3.6a and 3.10b). Ultimately, at length scales
larger than ℓoil, the external viscosity takes over dissipation, leading to new
scaling laws. In the case of our experiments, we uniquely observe the E(q) ∼
q power law. The role of the external fluid is to screen the hydrodynamic
interactions and, as a consequence, preclude q−1 from becoming the asymptotic
behavior of E(q). This argument agrees with the fact that these correlated flows,
which wrap the vortices and prompt the E(q) q−1 scaling, become smaller as the
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Figure 3.5: Oil viscosity tunes the scaling regimes of active nematic
turbulence. a) Kinetic energy spectra of turbulent flows in an active nematic
film in contact with a layer of oil, for 20 different oil viscosities. The data are
averaged over 500 frames. b) Rescaling each spectrum by its maximum and its
corresponding wave number clearly showcases the large-scale scaling regime. c) Fit
of Eq. 3.1 to a representative spectrum at intermediate oil viscosity (see fits for all
oil viscosities in Fig. 3.9). As predicted by our theory (see Fig. 3.4), the spectrum
features signatures of three scaling regimes, separated by two crossover lengths: the
mean vortex size Rs

∗ and the viscous length ℓoil = ηn/ηoil (vertical dashed lines).
The superindex s in Rs

∗ means that it is extracted from the fitting of the spectral
data. Averages are over 500 frames e) Error bars are standard deviations. d-e)
Mean vortex radius (d) and oil viscous length (e). The mean nematic viscosity
obtained from these fits is indicated in (e) as an inset (see also Fig. 3.11).
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oil viscosity increases (see Figs. 3.10c to 3.10e). This hydrodynamic screening
at large scales is also responsible for the wavelength selection in Chapter 2.
As a result, as we change the oil viscosity, the range of the different regimes
consistently varies while retaining the scaling laws.

3.4.2 Fitting of the model to the experimental data

Now, we fit the experimental energy spectra to Eq. 3.1 for the different oil
viscosities. Since ηwater, ηoil, Hwater, and Hoil are known, we only use B, ηn, and
R∗ as fitting parameters. We find that our theory is remarkably well suited for
a wide range of oil viscosities (2.9 · 10−2 < ηoil < 0.39 Pa·s; see Fig. 3.9). An
example of such notable agreement is presented in Fig. 3.5c.

In the remaining panels of Fig. 3.5, we plot the estimations for the mean
vortex radius, Rs

∗, and the oil viscous length, ℓoil, extracted from the fits within
our theory’s range of validity. We have added the superindex s to refer to
R∗ values obtained from the spectra and to avoid confusion with the average
vortex radius inferred from the exponential distribution of vortex areas [75].
As illustrated in Fig. 3.5d, Rs

∗ does not change with oil viscosity in the shown
range. Finally, concerning ℓoil, we observe that this length scale decreases with
oil viscosity as 1/ηoil, revealing that ηn is independent of oil viscosity in the range
of validity of the model. Hence, we infer a mean active nematic 2D viscosity
⟨ηn⟩ = 4 ± 2 Pa·s·µm, which is two orders of magnitude smaller than that
obtained by Guillamat et al. from the speed of topological defects [119]. Such
discrepancy is plausibly due to an overestimation of the flow screening length in
their model, leading to an underestimation of the nematic viscosity.

To assess the consistency of the prediction by our model that the mean vortex
radius gets unmodified by the oil viscosity, we infer the mean vortex radius
through the vortex area distribution n(a), as reported in [75]. Interestingly, we
find exponential distribution of vortex areas for all oil viscosities (see Fig. 3.6a),
in agreement with the theoretical assumption and previous experimental studies
[19, 92, 93]. Therefore, we can obtain the mean vortex radius from fitting such
tails to n(a) ∝ exp(a/a∗), with a∗ = π(Rv

∗)2. Using this method, we observe
that the mean vortex radius follows a monotonous decrease with the oil viscosity,
albeit with a weak dependence considering the significant variation in the oil
viscosity (see Fig. 3.6b). This result is consistent with our experiments when
we restrict the measurements to the oil viscosities within the range of validity
of our model. Indeed, if we compare Rv

∗ and Rs
∗, in this case, we find that both

methods yield similar vortex radius values (see Fig. 3.12), roughly independent
of oil viscosity.
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Figure 3.6: Vortex size and correlation functions in active nematic tur-
bulence. a) Vortex area distributions in the active turbulence regime for 20 dif-
ferent oil viscosities. The distributions are obtained by measuring vortices in 500
frames. b) Mean vortex radius obtained from the exponential tails of the vortex
area distributions in panel a (see Methods Section 6.4.5). Error bars are standard
errors of the mean. c,d) Spatial autocorrelation functions of the velocity (c) and
vorticity (d) fields, for all 20 oil viscosities. The data are averaged over 500 frames.
The insets show the corresponding correlation lengths (ℓvv and ℓωω), defined by
the conditions Cvv(ℓvv) = 0.5 and Cωω(ℓωω) = 0.5, respectively. Error bars are
standard errors of the mean.
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3.4.3 Assumptions in the model

Next, to understand why the theory fails at low and high oil viscosities, we
evaluate the validity of the assumptions made to build the model. For the sake
of clarity, we list all the assumptions one by one and discuss its adequacy:

1. The model assumes that the vortex areas are exponentially distributed;
this does not need to be true for all oil viscosities. However, as men-
tioned above, all our experiments present respective exponential tails in
the vortex area distribution.

2. Another premise in the model is the uncorrelation between neighbouring
vortices. We accordingly measure the correlation functions for velocity
and vorticity (Figs. 3.6c and 3.6d), and, especially in the latter, we find
negative correlations at distances comparable to, and even larger than, the
vortex size for intermediate and high oil viscosities. We can understand
this because vortices are surrounded mainly by other vortices with opposite
vorticity. Thus, the absence of this feature in the mean-field framework
might explain why the theory breaks down for experiments at high oil
viscosities.

3. The model also assumes that there is only one length related to the activity.
To validate this assumption, we retrieve the correlation lengths from the
velocity and vorticity correlation functions (Figs. 3.6c and 3.6d). Both
lengths show dependencies on the oil viscosity akin to that of the vortex
size, suggesting that all lengths are proportional to one another. Thus,
such observation validates our theoretical assumption.

4. Also, we believe that the modelization of the active fluid as a two-phase
fluid might help to understand our results, especially at high oil viscosities,
when regions depleted of MTs are very prominent.

To bolster further this last point, we perform new and independent experi-

ments and measure the elastic energy spectrum of the active layer Fn ∝ q⟨|∇̃θ|2⟩,
where ∇̃θ is the Fourier decomposition of the gradient of the nematic angle
θ ∈ [0, π), obtained as explained in Methods Section 6.4.2 (see also Methods
Section 6.4.10). A representative example of Fn(q) is displayed in Fig. 3.7a. By
measuring such spectrum for different oil viscosities, we can extract the depen-
dence of an elastic length ℓel, set by the maximum in the spectrum, with the oil
viscosity (see Fig. 3.7b). If we neglect flow alignment, the only characteristic
length appearing in the elastic energy spectrum should be equal or proportional
to the active length, ℓel ∼ ℓa. The observed behavior of ℓel with the oil viscosity
is similar to that of Rv

∗, ℓvv, and ℓωω: at low oil viscosities, all lengths decrease
slowly, yet, as the viscosity increases, such decrease accelerates (see Fig. 3.13).
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Figure 3.7: The elastic energy spectrum of an active nematic is also
modified by the oil viscosity. a) elastic energy spectrum of the AN prepared
in contact with an oil with viscosity ηoil = 9.7 · 10−2 Pa·s. The maximum sets an
elastic length ℓel (vertical dashed line). b) Dependence of ℓel with the oil viscosity
ηoil.

3.5 Vortex size selection

In Chapter 2, we demonstrated that the oil damping begets the selection of
a length scale 2π/q∗ right at the threshold of the bend in a radially-aligned
AN when linear effects dominate. Such length is imprinted at the orientation
field of the active nematic as the typical distance between well-aligned regions
of the pattern formed after the orientational instability [1]. Now, the question
is: how does this length relate to the characteristic length in the flow field,
i.e., the mean vortex radius R∗ in fully developed turbulence? Is also R∗ the
result of a linear selection mechanism? To address such questions, we begin by
comparing in Fig. 3.8 both lengths as a function of the oil viscosity. This figure
shows that the oil viscosity weakly modifies the mean vortex radius compared
to the variation observed for the selected wavelength. Thus, q∗ does not seem to
determine the mean vortex radius directly. Such difference might be attributed
to nonlinear effects that can modify the firstly selected length by the linear
dynamics upon the instability. For instance, a recent computational study [74]
showed that the vortex size in stationary and fully developed turbulence is set
by nonlinear dynamics of the active nematic and given by the critical wavelength
of the instability.
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Figure 3.8: Comparison of the selected wavelength upon the primary
bend instability with the average vortex radius in the turbulent regime.
The characteristic wavelength emerging at the threshold of the bend instability of
a radially-aligned nematic (q∗/2π, △) and the mean vortex radius (Rs

∗, ◦) at fully
develodep turbulence as a function of the oil viscosity. Values of q∗ correspond to
the data in Fig. 2.8 and values of Rv

∗ to data in Fig. 3.6b. Dashed lines indicate
the logarithmic fitting of each set of data.

3.6 Conclusions

In conclusion, we have experimentally measured and theoretically justified the
kinetic energy spectrum of active nematic turbulence. More precisely, we have
experimentally verified the presence of previously predicted scaling regimes with
universal exponents intrinsic to an active nematic film. In addition, we have
discovered other regimes stemming from the coupling to an external field. To
rationalize our experimental results, we have developed a theoretical model that
predicts the entire spectrum as a function of diverse system parameters. Re-
markably, the fitting of the data to our model in the intermediate range of
oil viscosities, where the theory appears to be valid, enables us to extract the
nematic viscosity and its dependence on the oil viscosity, which seems to be
constant. Overall, our study fosters the resolution of other open questions, from
vortex size selection to the role of vortex-vortex correlations, aiming to better
understand the fundamental similitudes and distinctions between inertial and
active turbulence.
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Figure 3.9: Fits of the spectra for all oil viscosities. The theory (Eq. 3.1)
adjusts well to data for an intermediate range of oil viscosities (9.7 · 10−3 < ηoil <
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oil viscosities.
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Figure 3.10: The flows that induce the q−1 and q−4 power laws. a)
Local kinetic energy (|v|2/2) of an active nematic film with an oil viscosity ηoil =
1.9 · 10−2 Pa·s. Lighter regions (more yellowish-greenish) correspond to areas with
large patches of correlated flow, where kinetic energy is mainly accumulated and
responsible for the E(q) ∼ q−1 power law. The typical thickness of such domains
is ∼ ℓoil. Conversely, darker (more blueish) areas correspond to vortices, coherent
regions in the flow with a mean radius R∗, related to the E(q) ∼ q−4 scaling.
Respective examples of such flows are marked in b, along with the corresponding
power laws. For comparison, Rs

∗ and ℓoil extracted from the fits are shown in the
top inset in b. White arrows in a and b indicate the local flow velocity extracted
from PIV. Velocity vectors are rescaled to the black arrow in panel b. c-e) Local
normalized kinetic energy (|v|2/|v|2max) for different experiments with oil viscosities
ηoil: 1.9 · 10−2 (c), 9.7 · 10−2 (d), and 3.9 · 10−1 (e). As ηoil is increased, the lighter
regions get smaller. The black arrow indicates the direction of ηoil increase.
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Figure 3.11: Active nematic viscosity. Effective viscosity of the active nematic
layer, ηn, in contact with oils of different viscosities. We obtained ηn from the fits
of Eq. 3.1 to the experimental data, as in Fig. 3.5c. The dashed line and the shaded
gray area indicate the mean and the s.d of the nematic viscosity (ηn). Adapted
from [96] under Creative Commons Attribution 4.0 International license.

Figure 3.12: Comparing vortex sizes. Ratio of the mean vortex radii obtained
from the spectral fits (Rs

∗, Fig. 3.5d) and from the vortex area distribution fits (Rv
∗,

Fig. 3.6b). In the range of oil viscosities in which the theory fits the data well,
both estimates of R∗ exhibit similar trends with oil viscosity. Hence, their ratio is
rather independent of oil viscosity. Adapted from [96] under Creative Commons
Attribution 4.0 International license.
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Figure 3.13: Comparison of characteristic length scales of active nematic
turbulence. The different length scales are defined as follows: Rs

∗ is the mean vor-
tex radius obtained by fitting the kinetic energy spectra (Figs. 3.5c and 3.5d); Rv

∗
is the mean vortex radius obtained by fitting the exponential tail of the vortex
area distribution (Figs. 3.6a and 3.6b); ℓvv is the distance at which the velocity
autocorrelation is 0.5 (Fig. 3.6c); ℓωω is the distance at which the vorticity auto-
correlation is 0.5 (Fig. 3.6d); ℓoil = ηn/ηoil is the oil viscous length obtained from
the fits of the kinetic energy spectra (Fig. 3.5c); ℓextel is the length corresponding
to the maximum in the elastic energy spectrum. Except for ℓoil, all other length
scales have similar behaviours with oil viscosity, consistent with them being pro-
portional to one another. Adapted from [96] under Creative Commons Attribution
4.0 International license.
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3.8 Videos

Video 3.1: Fluorescence micrographs used to measure the flow field of
the active nematic. a) Active nematic with 0.8% of the MTs labeled with a
fluorophore forming a speckle pattern, from which we measure the velocity field by
PIV. To filter out the noise from the images, a mean filter with a width of 2 px is
applied. b) Maximum-intensity projection of each frame in a and its 10 subsequent
frames, visually revealing vortical flows. Time interval between frames is 0.5 s. The
movie is sped up x5. Oil viscosity: 4.8 · 10−3 Pa·s. To watch the video, click here
or scan the QR-code in List of Videos
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3.8 Videos

Video 3.2: Flow field of the active nematic with different oil viscosities.
The flows within the active nematic layer become slower and the characteristic
vortex size decreases as ηoil is increased (from left to right). Colors of the vectors
indicate their magnitude. For the sake of a better visualization, we show a field of
view smaller than the one used to compute the kinetic energy spectra, and we plot
one vector every three. The video is sped up x5. The oil viscosities are indicated
in each panel. To watch the video, click here or scan the QR-code in List of Videos

Video 3.3: Epifluorescence images of the active nematic with different
oil viscosities The distance between defects becomes smaller as ηoil is increased.
The video is sped up x5. The oil viscosities are indicated in each panel. To watch
the video, click here or scan the QR-code in List of Videos
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Energy cascades in active
nematic turbulence

4.1 Introduction

Considering what was explained in the introductory section Section 1.5.1, it is
evident that when one thinks about turbulence, one also thinks about energy (or
enstrophy) cascades. Therefore, it is natural to ask whether active turbulence
also features this phenomenon. In fact, some authors have suggested an abusive
use of the word turbulence in the sense that a fluid assumed as turbulent should
not only be chaotic but also feature energy transfer [79, 97, 98].

As conveyed in the introduction, an essential difference between the clas-
sical and active turbulence is that the former stems from external forcing at
high Re. Conversely, active flows are self-sustained, meaning that the energy is
injected by the very same microscopic constituents of the flow, be they bacteria
or cytoskeletal proteins, which are at vanishing Re. Then, the energy injection
scale is ultimately set by the characteristic scale of the flows originating from
the particles’ collective behavior. Consequently, a priori, there is no need for
cascades, unlike in inertial turbulence. Moreover, the inertial effect that trig-
gers the cascades at high Reynolds numbers, which is the nonlinear advection, is
negligible at low Reynolds numbers. Notwithstanding, other nonlinear effects,
such as elastic stresses or flow alignment, could contribute to an energy cascade
in active turbulence, but energy transfer involving an extensive range of length
scales is not expected [122].
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Here, starting from the nematohydrodynamic1 theory, we derive the free
energy balance of an AN. Also, as the active fluid layer in our experiments is
unavoidably coupled to two 3D fluid layers (see Methods Section 6.1), we include
in the theory the corresponding terms accounting for the dissipation emanating
from such coupling. Next, exploiting the derived expressions, we experimentally
assess the different contributions to the energy balance. Our findings show that
the energy transfer terms are negligible and that we cannot conclude that there
is an energy cascade. Notice that these results are still in the preliminary stages;
therefore, further investigation is required.

4.2 Free energy balance of an active nematic in con-
tact with two fluid layers

As stated elsewhere [3, 114, 123], it is possible to describe the dynamics of an
active fluid using irreversible thermodynamics. All these studies generalize the
hydrodynamic theory of liquid crystals [124] to systems self-maintained out of
equilibrium. Within this framework, one considers local thermodynamic equi-
librium while the whole system is still away from equilibrium. In this regard,
the contributions to the total free energy are the kinetic and elastic energies (E
and Fn, respectively). Thus,

Ḟ =
d

dt

ˆ
(E + Fn) dr (4.1)

In the above-listed studies, the kinetic and elastic energy change rates are de-
rived using a vectorial parametrization of the nematic orientation based on the
Leslie-Ericksen nematohydrodynamic theory. Such parametrization is an ideal-
ization because it does not include defects, which are undoubtedly present in
our experiments with the MT-based AN. A way to incorporate defects in the
theory is to use the nematic Q tensor description based on the generalization
of the Beris-Edwards approach for active nematics [3]. We, therefore, combine
nonequilibrium thermodynamics with this last framework to obtain the different
contributions to the energy balance. In Section 1.4.2.1, we saw that continuum
models for active nematics included terms accounting for the relaxation dynam-
ics of the nematic phase towards a free-energy minimum. Models based on the
Beris-Edwards scheme usually invoke the Landau-de-Gennes free energy for ne-
matic liquid crystals [5, 124, 125, 126], which, for 2D systems and assuming a
single elastic constant reads:

FLdG =

ˆ [
A

2
(∂αQβγ)(∂αQβγ) +

B

2
QαβQαβ +

C

4
(QαβQαβ)2

]
d2r, (4.2)

1Hydrodynamic theory applied to liquid crystals with nematic order
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4.3 Experimental measurements of the free energy change rate

where we have used the Einstein summation convention (see Info Box A.1). B
and C are material parameters, and A is an elastic constant. Here, we have used
A instead of K to avoid confusion with the elastic constant in the Frank elastic
free energy. Indeed, A = K/2. Then, the first term in Eq. 4.2 accounts for the
free energy cost of spatial deformations of the order parameter field, whereas the
two last terms include the free energy related to the nematic/isotropic transition.
For simplicity, we overlook these last two terms. This approximation should be
adequate as far as the active nematic is far from the nematic/isotropic transition
[124]. Thus, we write Eq. 4.1 as:

Ḟ =
d

dt

ˆ [
E +

A

2
(∂αQβγ)

]
dr (4.3)

Moreover, by exploiting the hydrodynamic model presented in [96], we can
also include the dissipation due to the two external adjacent layers present in
our experiments (see Methods Section 6.1.4). Overall, introducing the Navier-
Stokes equation and the dynamics of the orientation field inside Eq. 4.3 (see
Appendix C), we find the following energy balance expressed in the Fourier
space:

Ḟ (q) = −Ds(q) −Dr(q) −Dwater(q) −Doil(q) + TFA(q) + I(q) + Tel(q) (4.4)

where q is the modulus of the wave number q = 2π(nx, ny)/L; Ds and Dr are the
shear and rotational viscous dissipations, respectively; Dwater and Doil are the
viscous dissipations due to the water and oil layers; I is the energy injected by
the active stresses; and Tel and TFA are the terms including the energy transfer
across scales originating from elastic stresses and flow alignment, respectively.
This energy balance should vanish in a steady state. The full expressions for all
these terms can be found in Methods Section 6.4.11.

4.3 Experimental measurements of the free energy
change rate

To experimentally infer the terms in the right-hand side of Eq. 4.4, we must
simultaneously measure the velocity field v(r) and the Q = S(nnT − I) tensor,
with n the local nematic column vector and I the identity matrix. To this aim,
we use the modular microscope presented in the next Chapter 5 that couples
fluorescence with birefringence imaging with negligible temporal offsets between
both techniques. In this way, we can exploit fluorescence images to obtain the
velocity field, whereas, with the birefringence measurements, we can attain the
Q tensor.
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In the experiments presented throughout this thesis, we have mainly used
the open sample set-up (see Methods Section 6.1.4). However, to perform these
measurements, we have found it is better to use the flow cell setup, which
ensures that the oil/water interface is flat. In the open cell configuration, the
aqueous phase containing all the proteins is deposited onto a glass substrate
and surrounded by the oil fluid layer. Consequently, minimization of the surface
tension induces the spontaneous curvature of the oil/water interface. Since the
light paths from the fluorescence and the birefringence imaging are not the
same, a curved interface, which is, in fact, highly dependent on the sample’s
preparation, introduces uncontrollable spatial offsets.

The analysis we are performing here requires accurate knowledge of many
material parameters, namely the elastic constant A, the rotational γ and shear
viscosities η, the flow alignment parameter ν, and the activity coefficient α. Even
though some of them have been previously forecasted in the literature [118, 119,
127], small changes in the AN preparation can entail significant variations in the
material parameters. To begin with, we leverage some relations that we have
already used previously in Chapter 2. First, we estimate the activity coefficient
α with α ≈ ωvη [75], where ωv is the mean vortex vorticity. We retrieve ωv from
the location of vortices as explained in [75, 93] and Methods Section 6.4.5, and
then infer η from the fitting of the kinetic energy spectrum to Eq. 3.1 as in [96]
(also see Methods Section 6.4.9). Afterwards, we extract A from the relation
A ≈ R2

∗α [75], where R∗ is the mean vortex radius, which we extract from the
exponential fitting of the distribution of vortex areas [75, 93] (also see Methods
Section 6.4.5).

To estimate the order of the rotational viscosity, we refer to previous stud-
ies [128, 129] where the anisotropy in the three Miesowicz shear viscosities and
rotational viscosity (see Info Box 4.1) of lyotropic liquid crystals1 based on poly-
mers are measured. More specifically, liquid crystals composed of a suspension
of the tobacco mosaic virus (TMV) [128], which can be thought of as an ideal
model for a rigid rod polymer, and poly-γ-benzyl-glutamate (PBG) [129]. The
inferred viscous anisotropies in these two analysis are listed in Table 4.1. Notice
that, for the 2D geometry of our problem, orientations outside the formation
plane are constrained. We can accordingly neglect ηa. The theory we have
relied on uniquely considers one shear viscosity, which corresponds to a situ-
ation with isotropic viscous properties. In practice, as the results by Hurd et
al. [128] and by Taratura et al. [129] demonstrate, this is not the case for
long molecules organized in a liquid crystalline phase. This point has been re-
inforced by later experimental [130, 131] and in silico [131, 132, 133] studies.

1A lyotropic liquid crystal is a liquid crystal formed by the dissolution of a molecule,
usually an amphiphilic molecule, within a solvent. Such mixture, at a given temperature and
concentration forms an ordered phase featuring liquid crystalline order.
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Therefore, the viscosity extracted in [96] is indeed an effective quantity, which
we expect to be the result of a particular combination of ηb and ηc. Assuming
that such combination is linear, we draw on our experimental measurements to
infer the contribution of each shear viscosity. Briefly, we locally contract the
n = (cos θ, sin θ) director with the symmetric part of the shear stress tensor
vαβ = 1/2(∂αvβ + ∂βvα): nαvαβ. This operation yields a vector whose x, and y
components respectively give the contributions of ηc and ηb to η in our experi-
ments. We find that η = 0.53ηb + 0.47ηc. Using the relations in Table 4.1, one
obtains γ ≈ 2η regardless of the polymer (TMV or PBG) and even with the
generalized theory for hard rods.

Ratio
Experiments Theory

TMV† PBG‡ Hard-rod theory§

ηb/ηc 0.015 0.0046 0.054–0.017*

γ/ηc 0.95 1.0 1.13–1.06*

Table 4.1: Viscous anisotropy of lyotropic polymer liquid crystals. Typ-
ical viscous anisotropies for the Tobacco mosaic virus (TMV), poly-γ-benzyl-
glutamate (PBG), and for hard-rods (theory). † Reference [128], ‡ Reference [129],
§ Reference [131]. * The anisotropies vary depending on the order parameter S
input in the theory, here S ∈ [0.7, 1] [131].

Finally, as the MTs are rod-like and have a flow-aligning behavior, we expect
ν ≈ −1, similar to the case of PGB [130]1. To summarize, we include a table
with all the parameters utilized to compute the terms of the energy balance.

Infobox 4.1: The Miesowicz shear viscosities

The symmetry of liquid crystals confers them with viscous anisotropy.
This means that such rheological property varies depending on the mea-
surement direction. Experimentally, the anisotropy of viscosity can be
assessed by measuring effective viscosities at different director orienta-
tions with respect to the flow direction. In this regard, one can define
three different shear viscosities, ηa, ηb, or ηc, when the director lies along
the z, y, or x axis, respectively (see Fig. 4.1). These viscosities correspond

1In this article the flow alignment parameter is not explicitly computed, but one can retrieve
it from the specified values of the different viscosities. In [134] the Leslie viscosity coefficients
obtained from [130] are already listed. Interestingly, one can readily obtain the flow alignment
parameter from such coefficients. using Eq. 4.6
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to the so-called Miesowicz viscosity coefficients [134].
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Figure 4.1: The Miesowicz geometry. a) Diagram of a plane Couette
flow. A Couette flow can be created by moving one plate and fixing the
opposite one (Inset in a). The LC director can be fixed with a magnetic
field while the flow is imposed by the moving plate. The measured shear
viscosities give the Miesowicz coefficient viscosities when n is: parallel to
the vorticity field (b), parallel to the flow (c), and parallel to the velocity
gradient (c). ηa, ηb, and ηc are the Miesowicz viscosity coefficients and are
functions of the Leslie coefficients αi, which appear in the Ericksen–Leslie
Model. [124, 134].

The rotational viscosity γ (γ1 in [134]) can be computed as

γ = α3 − α2, (4.5)

and the flow alignment parameter, ν:

ν =
α2 + α3

α2 − α3
(4.6)

Then, using the parameters in Table 4.2 and the measured Q tensor and
flow field, we obtain the different terms contributing to the AN’s free energy
balance. As Fig. 4.2a illustrates, the dissipation is not compensated by the injec-
tion, presumably due to material parameter mispredictions. In fact, scrutinizing
Fig. 4.2a, it is possible to appraise that the shear dissipation, Ds, is practically
counterbalanced by the active injection I. To fetch the parameters necessary to
compute the free energy terms, we have leveraged several relations, which we
have assumed to be exact. Yet, such relations can hold prefactors different from
1, significantly modifying the estimations for the material parameters. To as-
sess the extent of such variation, we appeal to simulations of isolated 2D ANs1,
whose material parameters are known, and measure the mean vortex radius. In

1The simulations have been carried out by Daniel Pearce.
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Parameter Value Obtained from

Shear viscosity, η 4 · 10−6 Pa·s·m Fitting E(q) to theory in [96]

Rotational viscosity, γ 8 · 10−6 Pa·s·m γ ≈ 2η

Activity coefficient, α 1·10−6 Pa·m α ≈ ωvη

Elastic constant, A 3 · 10−15 N·m A ≈ R2
∗α

Renormalized elastic constant, A 3 · 10−16 N·m A ≈ R2
∗α/a

2

Flow alignment, ν -1 From [130]

Table 4.2: Values used to compute the terms of the energy balance. These
parameters are for an experiment performed in a flow cell geometry (see Methods
Section 6.1.4) and with compound concentrations listed in Table 6.3. The mean
vortex vorticity, ωv and mean vortex radius R∗ for these experiments they are:
ωv = 0.25 s−1 and R∗ = 52 µm.

this way, we can obtain the prefactor a relating the mean vortex radius with
the elastic constant and activity coefficient: R∗ = a

√
A/α. According to the

simulations, a = 3. Moreover, trying to draw parallels to the viscous damping
in experiments, we include a friction term in the simulations. Interestingly, the
prefactor remains essentially the same, with only a deviation of 0.1. Including
this prefactor to retrieve the experimental elastic constant (the renormalized
elastic constant in Table 4.2), we find A = 3 ·10−16 N·m. With this value for the
elastic constant, the rotational dissipation decreases, becoming almost negligible
(Fig. 4.2b). Additionally, we observe that apart from the shear dissipation and
the injection, the rest of the terms, namely the oil and water dissipations and
the transfer terms, do not play a role in the free energy balance. It is worth
mentioning that even though the 3D oil layer significantly modifies the kinetic
energy spectrum, here, according to these preliminary results, we see that the oil
dissipation is insignificant. Moreover, we only observe one characteristic scale,
which corresponds to the maximum in the power spectra.

Overall, the energy balance is not 0 for all the values of q. This could be
consistent with an energy transfer, albeit small, between scales, especially be-
cause this term seems to integrate to 0. In the present case, the total energy
balance would indicate an energy transfer from large to small scales (from small-
q to large-q). Nevertheless, the terms included in Eq. 4.4 would not capture the
resultant energy transfer we observe. Another hypothesis for the non-zero en-
ergy balance could be experimental error derived from noise leading to spurious
results. To further evaluate this point, we compute the power spectrum of the
free energy balance of a simulated isolated AN.

Given that all the ingredients included in the simulations, except noise, ap-
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Figure 4.2: Experimental free energy balance of the AN

pear in Eq. 4.4, one would expect to find an energy balance that vanishes for all
q values. However, as depicted in Fig. 4.3, the injection does not wholly balance
with the dissipative and transfer terms. Indeed, to obtain the terms shown in
Fig. 4.3, we first need to filter out the noise from the velocity and Q tensor
fields. To do so, we respectively apply a Gaussian filter of size σv and σθ. One
should be careful when applying these filters because too large σv and σθ values
can wash out the data, leading to erroneous results (see Fig. 4.4).

Therefore, simulations indicate that a correct data treatment is essential to
obtain the energy balance. Nonetheless, despite the data pre-processing, noise
can still lead to a non-vanishing energy balance for some q-values. Therefore,
since there is not an energy transfer term that explains the experimental energy
balance, plus, simulations have revealed that noise and data treatment signif-
icantly modify the power spectra, we cannot conclude that there are energy
cascades in our experiments.

4.4 Conclusions

In a nutshell, we have experimentally obtained the power spectra of the energy
terms contributing to the free energy balance of an AN. To do so, we have
first theoretically derived the free energy balance of an AN in contact with two
fluid 3D layers encoding the orientational field of the active fluid layer using
the Q tensor description rather than the n vectorial one, as in [74]. Combining
the theory with the experimental measurements obtained through the modular
microscope shown in the next Chapter 5, we have been able to measure all the
terms in the energy balance. Nevertheless, these results are still preliminary,
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4.5 Supplemental images
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Figure 4.3: Free energy balance of the AN as obtained from simulations.
The simulations are of an isolated AN. Here, the friction and flow alignment terms
are 0.

and a more accurate obtaining of the material parameters is required. With
the now accessible parameters, we have retrieved an energy balance different
from 0 for some q-values that we cannot explain with the theory. Exploiting
simulations, we have seen that a non-vanishing energy balance at some length
scales is expected. Therefore, with the tools we have nowadays, we are not in a
position to ensure the presence of energy cascades in active turbulence.

4.5 Supplemental images
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Figure 4.4: Data-filtering modifies the power spectra of the contribu-
tions to the energy balance. These results are obtained changing the size of
the filters applied to the velocity and Q tensor fields (σv and σθ, indicated in each
panel). In these simulations, the flow alignment and the friction terms have been
set to 0.
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Imaging the active nematic
with polarimetry techniques

5.1 Introduction

The elongated geometry of MTs confers them with birefringence. This means
that light does not travel at the same speed along the long axis of a MT as
it does along the transverse direction. The ray crossing the fastest oscillates
along the so-called fast axis, whereas the slowest beam oscillates along the slow
axis. Therefore, when linearly polarized (see Appendix E.1 light crosses a MT,
it is split into two wave components perpendicular to and not perpendicular to
the optic axis1 (the ordinary and the extraordinary rays, respectively). When
these two rays come out from the anisotropic sample, they are out of phase with
a phase (or retardance) that depends on the birefringence. The combination
of the two exiting waves produces an elliptic wave. (see Appendix E.1). This
phenomenon accentuates when MTs self-organize into bundles or as an active
nematic due to an enhanced birefringence.

The microscope most widely employed to image birefringent materials is the
polarized optical microscope (POM) [135]. This device is a conventional optical
microscope incorporating two linear polarizers in the light path between the

1The optic axis is a direction in a birefringent material along which light polarization is
preserved. Thus, light propagating along this axis in a birefringent material behaves as if
there were no birefringence, i.e., as if the material were optically isotropic. Waves traveling
along the optic axis are called ordinary rays and follow Snell’s law, whereas waves travelling
perpendicularly to this axis are the extraordinary rays, which do not follow Snell’s law.
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sample to enhance the contrast of images of anisotropic materials. These two
elements are traditionally called the polarizer and the analyzer (see Fig. 5.1a).
The former is placed after the light source, whereas the latter is before the
detector. Furthermore, these two optical elements are generally oriented at a
right angle to each other to maximize the image contrast of the anisotropic
sample. The role of the polarizers is to select only one light polarization: the
one parallel to their polarizing axis. Thus, unpolarized light coming from the
light source becomes linearly polarized when it crosses the first polarizer. Then,
as aforementioned, when this polarized light passes through the sample, it be-
comes elliptically polarized. Finally, this beam is recombined in the analyzer
into a linearly polarized wave. Moreover, depending on the birefringent ma-
terial’s orientation, which does not need to be equal throughout the sample,
light intensity arriving at the director changes (see Fig. 5.1b). The minimum in
intensity is reached when the birefringent specimen’s optical axis is parallel or
perpendicular to the polarizer as it does not produce a light splitting, i.e., the
polarization does not change; hence, the analyzer blocks out the light coming
from the sample.

More interestingly, POMs incorporating one or more retarder1 (or compen-
sators) can unambiguously measure the local optical axis and birefringence of
anisotropic materials, which enables to unveil, in a non-invasive manner, the
ordering at the microscale. Such analysis, however, requires the numerical com-
bination of several images, acquired for different configurations of the optical
elements, that must be acquired without spatial offsets between them. In the
late 1990s, the use of liquid crystal retarders (LCRs) was demonstrated to sig-
nificantly increase the versatility of such protocols. LCRs are aligned liquid
crystal slabs whose retardance can be quickly and reversibly changed with a
low-voltage electric field without altering the orientation of the slow axis. A
celebrated implementation of such devices is an instrument called LC-Polscope
[136, 137, 138], which combines two LCRs along with several passive polarizing
elements. Although this instrument can be easily coupled to a standard polar-
izing optical microscope, it is a costly solution whose temporal resolution is well
above one second, thus hampering its use as a real-time imaging technique to
monitor dynamic events.

In our lab, we have assembled two alternative implementations to perform
live birefringence imaging. The first one is based on a computer-controlled com-
mercial variable LCR. By measuring the light intensity for at least, three differ-
ent configurations of the LCR, we can unequivocally obtain the local orientation
of the birefringent specimen’s molecules. Conversely, the second arrangement in-
cludes a polarization camera, which simultaneously measures the light intensity

1Retarders are birefringent optical devices that introduce a phase shift between two or-
thogonally polarized beams
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Figure 5.1: Polarized optical microscope - a) In POMs, a birefringent sample
is stacked between two polarizers: the polarizer and the analyzer. Unpolarized
light emerging from the light source suffers different polarizations as it crosses
the different optical elements (the polarizer, the sample, and the analyzer). With
this disposition, the contrast is enhanced over optical microscopy (Adapted from
[135]). b) Light intensity varies cyclically with the orientation of the birefringent
specimen, having maximum light extinction (minimum intensity) when α=0oor
90oand minimum light extinction when α=45oand 135o(α is the angle between the
ordinary axis of the sample and the polarizer). Regions deprived of birefringent
material will appear as dark, independently of the sample’s orientation.
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for four different light polarizations. By combining the four intensity measure-
ments, we can extract the local orientation of the sample. Remarkably, with this
imaging technique, we can measure the birefringence with extreme accuracy, al-
lowing us to produce images of the MT-based AN with a quality similar to those
obtained through epi-fluorescence imaging (see Methods Section 6.3). Moreover,
both setups, being custom-made, are very versatile. Thus, they can incorporate
extra modules, such as a module for epi-fluorescence that can be synchronized in
space and time and allow for simultaneous measurements of different variables.
In fact, this is the arrangement we use to simultaneously obtain the director
field with the polarimetry measurements and the velocimetry with the fluores-
cence images and further PIV analysis (see Methods Section 6.4.1). Finally, the
two setups attain better temporal resolutions and are more low-priced than the
commercial LC-Polscope.

In this chapter, I present these two techniques for birefringence measure-
ments. First, I start with the LCR-based setup and follow with the polarization
camera-based setup. The former arrangement has been developed in our lab in
collaboration with the specialist in optics, Dr. Oriol Arteaga. Hence, we intend
to publish an article illustrating its assemblage and functionalities. In the case
of the latter instrument, we have mounted it following the work by Gottlieb et
al. [139].

5.2 Fast adaptive polarimetry based on liquid crystal
compensators for birefringence measurements

5.2.1 Instrument description

The first setup for birefringence imaging is comprised of a variable LCR (LCC1411-
A (half-wave retarder), Thorlabs) along with two linear polarizers (LPVISE100-
A, Thorlabs), two quarter waveplates (QWPs) (WPQ10ME-633, Thorlabs) and
a camera (QImaging EXi Blue CCD camera or Blackfly S GigE camera with an
ethernet network interface card) (see Fig. 5.2a). All these elements are mounted
and stacked using Thorlabs optomechanical components on an optical table.
Then, the LCR is connected to a liquid crystal controller (LCC25, Thorlabs),
which modulates the retardance of the variable LCR by applying a voltage [140].
The applied voltage can be set with the corresponding knob of the LC controller
or with the software provided by the manufacturer [141]. Alternatively, the in-
stallation of such software includes the appropriate drivers to command the LC
controller with the off-the-shelf software LabVIEW [142]. Our chosen way of
control is this latter because it enables the acquisition of images right after each
voltage application with a custom-made LabVIEW program. Note that there
are cameras that might not be controllable with LabVIEW. As for our cam-
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Figure 5.2: Fast adaptive polarimeter. a) Sketch of the fast adaptive po-
larimeter we have assembled in the lab. Green arrows indicate the orientation of
the fast axis (0, π/4 or π/2 rad) of the respective optical elements. Camera I
acquires polarimetric images whereas Camera II fluorescence images. The variable
LCR and Camera I are connected and synchronized through Computer I, which
sends a signal to Computer II to acquire fluorescence micrographs once Camera I
has collected images at different dispositions of the LCR, like the ones in b. Due to
space limitations, we include an elliptical mirror between the linear vertical polar-
izer (LVP) and Camera I. However, for the sake of simplicity, we do not illustrate it
here (see Fig. 5.15 and Video 5.1 for the full assembly). b) Micrographs at different
retardance values (ψ) of the variable LCR and the fitting of the light intensity to
Eq. 5.2 for a given (x, y) point. c) Result of the polarimetry after fitting every
pixel of images in b to Eq. 5.2.
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eras, they both require the installation of the corresponding drivers. However,
the QImaging EXi Blue CCD camera is commanded using specific LabVIEW
SubVIs [143], whereas the Blackfly S GigE camera can be controlled with Lab-
VIEW’s NI-DAQmx package [144].

As we demonstrate later, the QWPs and the variable LCR stacked between
the crossed polarizers break the degeneracy present in a conventional POM
between supplementary angles. Hence, by imaging the birefringent sample at
different dispositions of the LCR, we can unequivocally map the optical axis
at a pixel-level resolution of anisotropic materials, such as the AN or a D-
Mannitol sample featuring spherulites (see Figs. 5.2b and 5.2c). Besides, the
time resolution is only limited by the temporal response of the variable LCR.
To speed up as much as possible the image acquisition, we vary the voltage as
a sawtooth wave instead of a triangle wave. In this way, we strike frame rates
higher than 2 Hz, significantly higher than those achieved with LC-PolScope.

To enable simultaneous observation of the AN through fluorescence imag-
ing, we couple the setup with a fluorescence microscopy module composed of
a Cy5 filter set (67-010, Edmund Optics) assembled with a fluorescence cube
(DFM1/M, Thorlabs), a mirror (BB2-E02, Thorlabs), and a camera (Zyla 4.2
PLUS sCMOS camera, Andor) controlled with another computer through Lab-
VIEW (Computer II in Fig. 5.2a). The fluorescence cube also serves as a wave-
length filter for the polarimetry since we require monochromatic light. More
precisely, we need red light (∼ 630 nm) because it is at this wavelength that
our optical devices introduce the retardance specified by the manufacturer. For
instance, according to the manufacturer’s specifications, the variable LCR was
calibrated at λ = 635 nm. For our device, we use the 660 nm LED from Thor-
labs (M660L4), which yields enough light intensity for both imaging techniques,
even with the filter set blocking out all the wavelengths not laying within 604
and 644 nm. Finally, we must remark that the fluorescence cube must be placed
before the first linear polarizer since otherwise, it might unpolarize the light
beam and alter our measurements. A diagram showing the full assembly can be
seen in Fig. 5.15 and Video 5.1. Furthermore, the budget of the full assembly
can be found in Appendix F in Appendix F.

5.2.2 Fluorescence and polarimetry synchronization

The synchronization of both computers and, in turn, of both cameras and the
variable LCR is attained with DataSocket within LabVIEW [145], which en-
ables the interchange of two boolean variables (true/false variables, Start and
Ready) between the two computers. When the user starts the measurement
process, both boolean variables are set to true, Computer I sends the Start
(true) variable to Computer II, and Computer II sends Ready (true) to Com-
puter I, and the measurement process begins. Computer I, once it reads a true
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Figure 5.3: Temporal synchronization of polarimetry and fluorescence.
Schematic representation of the way we shynchronize

value of Ready, sets Start to false and enters the For loop. For each For
cycle, a different voltage is applied to the variable LCR, then the system waits
for at least 120 ms (the optimal settling time, see Section 5.2.4.3) and acquires
an image. Once the system exits the for loop, it sets the Start boolean to
true, which is sent to Computer II. Computer II, which has been awaiting until
it receives a true value of the Ready variable, changes the Ready variable to
false, acquires a fluorescence image, and changes Ready back to true. In this
way, Ready and Start are continuously exchanged between both computers
and control the acquisition time. This process is depicted in Fig. 5.3 and is
repeated until the user stops the acquisition. Note that this synchronization
procedure can also be performed using only one computer. We have used two
due to computer performance limitations.

To ensure maximum synchronization, we also store the acquisition time of
each frame for both imaging techniques and then compare both times. Fluores-
cence/polarimetry frames with a time difference with polarimetry/fluorescence
frames surpassing a threshold (usually 300 ms) are discarded.

Spatial synchronization is also a critical process. To determine the x and y
offsets between the fluorescence and polarimetry images, we use a microscope
stage calibration slide containing a 1 mm ruler divided into 10 µm sections. By
imaging the ruler simultaneously with both imaging techniques and measuring
the position of several points in the ruler relative to each field of view, we can
finally obtain the spatial offsets.

We must remark that all the optical and optomechanical elements must be
correctly assembled, avoiding any inclination. Otherwise, when the sample or
an objective is translated along the z direction (perpendicular to the ground)
to focus both polarization and fluorescence images, the objectives’ focal points
will change not only in the z-axis but also in the xy plane. A shift of the
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PT1 - 1” 
translation stage

CT1A z-axis
translation stage

Sample holder

Lens tube

Figure 5.4: Diagram displaying the optomechanical elements used to
focus the sample. To assure constant x and y offsets between polarization and
fluorescence images, we fix the objective for birefringence imaging (upper objective)
with a lens tube. Polarization images are focused by translating the sample with
the PT1-1” translation stage from Thorlabs. Fluorescence images are focused by
moving the objective (bottom objective) with CT1A z-axis translation stage, also
from Thorlabs.

focal point of any of the two objectives in the xy plane also causes a shift in
the x and y offsets between both fluorescence and polarimetry image fields. If
there is no way to know these two offsets, the images cannot be correlated. In
addition, we have also observed that some z moving stages also introduce a shift
in the xy plane. Thus, selecting a stage that finely translates either the sample
or the objective is essential. For instance, we have found that zoom housings
coiled to optical tubes might introduce not desired x and y offsets during their
translation along z. In our case, the elements that have worked the best for us
are the PT1 - 1” translation Stage from Thorlabs, which holds and moves the
sample, and the CT1A z-axis Translation Stage, also from Thorlabs, for one of
the two objectives, while the other objective is fixed (see Fig. 5.4).

5.2.3 Theoretical description of light polarization

We use the Mueller calculus to predict light polarization with our setup and thus
determine the fast optical axis of anisotropic materials. With this formalism,
light polarization is described with a four-element vector (the Stokes vector,
see Appendix E.2) and optical elements with 4×4 matrices (Mueller matrices)
[146, 147]. The product of the Mueller matrix (M) associated with an optical
device by the Stokes vector of the incident light (Sin) gives the polarization of
this beam after crossing the optical device (Sout), i.e. Sout = MSin. Hence, for
our setup:
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Sout = M90
LP ·M45

QWP ·Mα
sample ·M0

QWP ·M45
LCR ·M0

LP · Sin. (5.1)

A thorough explanation of Mueller calculus and the full equation describing
light polarization with our setup can be found in Appendix E: Mueller Calculus.
According to our calculus, the intensity of the emergent light depends on the
retardance of the LCR (ψ) and the sample’s fast axis orientation and retardance
(α and δ, respectively) as follows:

I(ψ) = a+ b cosψ + c sinψ, (5.2)

with

a = I0, b = I0 sin 2α sin δ, c = −I0 cos 2α sin δ. (5.3)

Therefore, acquiring images at different values of ψ, and fitting the data to
Eq. 5.2 for each pixel (see Fig. 5.2b), we can extract both α and δ of the
birefringent specimen.

Given that, in practice, there is always background noise, and our measure-
ments are very sensitive, we always perform a blank right before initiating the
sample’s birefringence imaging. To do so, we remove or replace the sample with
a transparent isotropic thin material, such as a clean glass slide, and retrieve
the ablank, bblank, and cblank. These parameters are later subtracted from the
sample’s b, and c parameters pixel by pixel as:

b′ =
b

a
− bblank
ablank

, c′ =
c

a
− cblank
ablank

. (5.4)

Then, we can infer α and δ as:

α =
1

2
atan 2

(
b′

−c′
)
, (5.5a)

δ = asin
(√

b′ 2 + c′ 2
)
, (5.5b)

(see Fig. 5.2c). Here, atan 2 is the four-quadrant inverse tangent. Since δ is
obtained from the inverse sine, the maximum retardance for unambiguous mea-
surement is δ = π/2, which corresponds to ∆nd = λ/4, where ∆n = ne − no is
the birefringence, with ne and no the refractive indexes of the extraordinary and
ordinary ray, respectively, d is the thickness of the anisotropic specimen and λ
stands for the wavelength of the propagating length.

Finally, the local molecular orientation θ not only depends on α, but also on
the sign of ∆n: if the birefringence is positive, the molecules lie perpendicular to
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Figure 5.5: The fast axis vs the molecular axis of an elongated molecule

the fast axis, whereas if the birefringence is negative, the molecules are oriented
along the fast axis (see Fig. 5.5). Accordingly, we elicit θ as{

θ = α if ∆n < 0

θ = α+ π/2 if ∆n > 0.
(5.6)

Note that, as we assume nematic symmetry, i.e., head-to-tail symmetry, we
restrict θ within [0, π).

5.2.4 Assembly and calibration of the polarimeter

In this section, I explain the calibration of the optical devices and the polarime-
ter. The fluorescence module does not require any special calibration further
than retrieving the image field of view.

5.2.4.1 Calibration of the optical devices

In order to avoid aberrations when obtaining the local order of a birefringent
sample with the instrument described here, it is imperative to calibrate the
orientations of all the optical elements, especially when imaging low-birefringent
samples, as the AN. Even though the manufacturer specifies the fast axis of
the device, it is best to measure them again. For example, we have found
misalignments of up to 20o in some of our purchased compensators. Then, to
determine the fast axes, we use a power meter (Thorlabs, PM100USB with an
S120VC sensor) controlled with the Optical Power Meter Utility from Thorlabs
[148] along with a monochromatic laser diode (Monocrom, M- Series VIS 6335
laser diode and PSLDM5-PWR-M power supply). Moreover, right after the
LED, we add a polarizing beam splitting prism (Thorlabs, PBS253) mounted
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Figure 5.6: Calibration of the optical devices. Sketches that represent the
setup used to determine the polarization direction of a linear polarizer (LP) (a) and
the fast axis of a linear retarder (LR) (b). Red (vertical) and blue (perpendicular
to the paper) arrows indicate light polarization. The yellow arrow represents the
light path.

in a cage cube (Thorlabs, CCM1-4ER/M) to polarize the light emitted by the
light source. This prism separates the p- and s-polarized waves by allowing
the former to pass while reflecting the latter with the dielectric beamsplitter
surface [149]. P-polarized (from the German parallel) light has an electric field
polarized parallel to the plane of incidence, while s-polarized (from the German
senkrecht) light is perpendicular to this plane. Ultimately, to calibrate linear
retarders, e.g., QWPs, we also use a mirror, which we assume to be an ideal
mirror. In the following, we list the setups we use to calibrate each device.

1. Linear polarizers → The polarization axis of a linear polarizer is
readily obtained by placing it right after the polarizing beamsplitter and before
the power-meter and by looking for the orientation of minimum transmission,
i.e., the orientation with the lowest light intensity reaching the detector (see
Fig. 5.6a). At this disposition, the linear polarizer is at a right angle (90o) from
the beamsplitter’s incidence plane. The orientation with minimum light inten-
sity is 90o because the light intensity between linear polarizers follows Malus’s
law (I(α) = I0 cos2 α, where I0 is the light intensity coming out from the light
source and α is the angle between the unknown polarizer and the beamsplitter).

2. Linear retarders (QWP and LCR) → We calibrate all the linear
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retarders (LRs) (or compensators), like a QWP or a LCR, using the setup il-
lustrated in Fig. 5.6b. With this assembly, the light is emitted by the LED,
which is immediately linearly polarized by the beamsplitter. Then, the beam
crosses the LR, collides with the mirror, travels back to the LR, and reaches
the beamsplitter again, which polarizes the light vertically and changes the
beam propagation direction by 90o, so the ray arrives at the detector. As it is
shown in Appendix E.4.1, the minimum and maximum intensities are respec-
tively attained at αmin = 0o, 90o, and αmax = 45o, 135o. Therefore, to calibrate
the device, we need to take as a reference the fast axis provided by the man-
ufacturer and from there, look for the minimum or maximum light intensity,
depending on whether we want to orient the LR at 0o or 45o, respectively. In
the case of the variable LCR, we modulate the applied voltage so that the re-
tardance is ψ = π/2. With this configuration, the contrast is enhanced. In fact,
the described calibration methodology does not work for linear retarders with a
retardance equal to π as a half-wave plate because the contrast is lost. In other
words, the detected light intensity is always minimum.

5.2.4.2 Assembly and correction of misalignments

Once the fast axes of the optical devices are known, the setup is assembled.
To minimize as much as possible the error, we mount the instrument device
by device, starting with the two crossed polarizes (one at 0o and the other at
90o) and checking that the light intensity reaching the detector is minimal at
such disposition. Then, we incorporate the variable LCR to the setup with
an orientation of 45o to the lab reference frame. With this configuration, the
intensity must be maximal. Next, we assemble the QWP at 0o, ensuring that
the intensity is minimal in this case. We finally add the last QWP at 45o right
before the LVP and after the sample. In this disposition, the intensity arriving
at the detector must be maximal.

After the assembly of the instrument, we check and correct the presence of
offsets between the optical devices. For the sake of simplicity, we neglect errors
coming from the orientation of the two linear polarizer (LP) and the retardance
of the compensators, which are usually fairly well characterized. Thus, to assess
the misalignments, we measure the light intensity when the retardance of the
variable LCR is set at 0, π/2, π, and 3π/2 without a sample. Afterward, we
extract the deviations from the theoretical orientations of the variable LCR (∆0)
and the first and second QWPs (∆1 and ∆2, respectively) with the following
relations:

∆2 =
1

2

I(π/2) − I(3π/2)

I(π/2) + I(3π/2)
, (5.7)
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(∆1 − ∆0) =
1

2

I(0) − I(π)

I(0) + I(π)
(5.8)

The two deviations ∆0 and ∆1 cannot be isolated from each other. As a conse-
quence, we must correct them by trial and error. We derive these two expressions
using Mueller calculus (see Appendix E.4.1).

0 18090 Molecular orientation (degrees)

a) b)

c) d)

Figure 5.7: Measurements of D-mannitol spherulites. a) The alignment
of mannitol molecules forms spherulites, which appear as a Maltese cross under
an optical microscope with crossed polarizers. The top inset represents the local
alignment of a spherulite. b) Theoretical colormap indicating the orientation of
an ideal spherulite. c-d) Colormaps representing the measured orientation of a
spherulite using a LCR-based polarimeter with (c) and without (d) misalignments
between the optical elements.

To ascertain the correct assembly of the instrument, we measure the local fast
axes of a thin polycrystalline sample of twisted D-mannitol lamellae displaying
birefringent spherulites. Samples containing these structures are very conve-
nient for calibrating birefringence imaging techniques because the molecules are
organized in a radial pattern, displaying a Maltese cross under a microscope
(see Fig. 5.7a). A detailed explanation of how to prepare samples with this
spherulitic material can be found in [150]. An ideal spherulite features local
orientations as the ones shown in Fig. 5.7b. However, if the optical elements
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in the birefringent imaging technique are not accurately aligned, the measured
fast axes diverge from this ideal disposition, and, therefore, a more accurate
correction of the offsets is required (see Figs. 5.7c and 5.7d.

5.2.4.3 Determination of the optimal settling time

Upon application of a voltage to the variable LCR, as depicted in Fig. 5.8a, the
device needs a given time around ∼100–200 ms to relax and stabilize. Actually,
if the voltage is changed within a period shorter than the optimal settling time,
the error in the sample’s fast axis is very significant. To determine the optimal
settling time, we use a commercial liquid crystal cell that ensures the perfect
tangential alignment of the LC’s molecules along the cell’s rubbing direction.
Then, we repeatedly measure the orientation of the LC’s fast axis using images
at three different configurations of the LCR (ψ = 0, ψ = π/2, and ψ = π)
but varying the waiting time between the voltage application and the image
acquisition for each measurement. As shown in Fig. 5.8b, measurements with
a waiting time <120 ms yield an erroneous orientation with considerable un-
certainty. We, therefore, establish 120 ms as the optimal settling time between
subsequent voltages.

5.2.4.4 Determination of the optimal number of fitting points

Since we leverage Eq. 5.2 to retrieve an anisotropic material’s orientation pixel by
pixel, we require at least three images recorded at three different configurations
of the LCR. Adjustments with a higher number of points yield less-noisy results.
Nonetheless, these improved results are at the expense of a poorer temporal
resolution. In other words, using more points to fit Eq. 5.2 demands a higher
sampling, and considering that the settling time for the stabilization of the
LCR, plus the acquisition time calls for up to ∼ 200 ms per fitting point, the
amount of time needed to resolve one orientation significantly increases. For
static samples, this is not a problem. Conversely, samples dynamically changing
need high temporal resolution to obtain sharp results. Thus, using the minimum
number of fitting points possible for dynamic samples is better.

To evaluate whether results using few fitting points are satisfactory, we mea-
sure the fast axis of a homogenous birefringent sample using either 3, 5, or 10
images acquired at different ψ values. As shown in the top panel in Fig. 5.9,
the noise, here parameterized by the standard deviation, is almost negligible,
indistinctively of the number of fitting points. Lowering the birefringence of
the sample increases the noise, but it is still minimal for all measurements (see
bottom panel in Fig. 5.9). Overall, employing only 3 fitting points to obtain the
fast axis orientation of a birefringent sample already yields good results. If the
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Figure 5.8: Optimal settling time. a) Normalized gray intensity of micro-
graphs acquired with the polarimeter without a sample while changing the applied
voltage to the LCR. In the beginning, ∆V = 0. Then, around ∼ 0.45 s, we apply
a voltage ∆V = 4.4 V. The LCR requires around ∼ 100 − 200 ms to stabilize its
retardance. The inset displays the dependence of the variable LCR’s retardance ψ
with the applied voltage ∆V . At ∆V = 0, the gray intensity fluctuates more than
at ∆V = 4.4 V because ∂ψ/∂∆V |∆V=0 > ∂ψ/∂∆V |∆V=4.4 V. b) Measurements of
an homogeneous LC (CCN-37) cell with different waiting times (time between the
voltage application and the image acquisition). All the measurements are carried
out from the linear combination of frames taken at three different configurations
of the variable LCR (ψ = 0, ψ = π/2, ψ = π). The LC cell is oriented with its fast
axis lying at 90o. The plotted data are means of 10 different measurements. Error
bars indicate standard deviations.

noise in measurements of dynamics samples needs to be lowered, it is better to
perform spatial averages.

5.2.5 Live birefringence and fluorescence imaging

To prove the potential of this instrument for birefringence measurements, we
systematically image dynamic samples of different natures. First, we follow the
so-called Frederiks transition of a nematic liquid crystal. This phenomenon hap-
pens when an external field, such as an electric or magnetic field, triggers the
reorientation of the mesogen molecules [134]. Consequently, topological defects
originate and start moving, driven by elastic energy, until their annihilation
between two oppositely-charged defects. Next, we measure the orientation of
a nematic LC stirred by the AN. This stirring promotes the continuous reori-
entation of the passive LC, which we can track with our imaging technique.
Finally, we measure the nematic director of the MT-based AN. Given that the
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Figure 5.9: Measurements using different number of fitting points. His-
tograms showing the probability to measure a fast axis orientation α using homo-
geneous samples with ∆n · d = 720 nm (top) and 530 nm (bottom). We measure
the fast axis using either 3, 5, or 10 images acquired at different configurations of
the variable LCR (different ψ values). The standard deviations of each histogram
is indicated as insets in both panels. The samples are wave plates adapted to be
inserted inside a Nikon 50i Pol microscope.

MTs are fluorescently labeled, we can also image the active film through the epi-
fluorescence module and demonstrate the possibility of coupling both imaging
techniques.
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a) b)

c) d)

Figure 5.10: Birefringence measurements with the LCR-based polarime-
ter and simultaneous fluorescence imaging. a) Polarization image of a
Schlieren texture in a MLC 7029 liquid crystal cell formed after a Friederik tran-
sition actuated by an external electric field (also see Video 5.2). b) Close-up of
four integer defects of the sample in a (also see Video 5.3). c) 5CB liquid crystal
on top of the AN as seen with a POM (also see Video 5.4). Here, the isotropic oil
used to prepare our samples (see Methods Section 6.1.4) has been replaced by the
LC. All POM images from a–c are obtained from the measured local director and
using the relation I(θ) ∝ sin2 2θ. d) Fluorescence image acquired simultaneously
with the birefringence image (also see Video 5.5). The measured local director θ
is represented with red lines in all panels. We have applied a mean filter of size
(5×5) px2 to the director (see Methods Section 6.4.12). Scale bars: 50 µm

.
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5.3 Fast birefringence imaging with a polarization
camera

The alternative arrangement for birefringence imaging we exploit in our lab is
based on the polarimeter described by Gottlieb et al. [139], who propose polar-
ization cameras (see Fig. 5.11) as a way to simplify polarimeters incorporating
several compensators. Polarization cameras For instance, for a setup with the
same functionalities as the polarimeter described above, we uniquely need the
polarization camera, a QWP, and a linear polarizer. Remarkably, this minimal-
istic arrangement helps reduce the possibility of misalignment errors and also
facilitates the whole assembly.

90 45

135 0

Figure 5.11: Working principle of a polarization camera. The chips of
polarization camera incorporate pixels divided into four subpixels, each containing
one linear polarizer (LP) with polarization orientation: 0o, 45o, 90o, and 135o.
Green arrows indicate the corresponding polarizing axis.

5.3.1 Instrument description

In this case, the setup includes a linear horizontal polarizer (LHP) (LPVISE100-
A, Thorlabs) placed after the fluorescence cube, a QWP (WPQ10ME-633, Thor-
labs) with the fast axis at 45o right before the sample, and the polarization
camera (Exo253ZU3, SVS-Vistek). Furthermore, as we did with the LCR-based
polarimeter, we also include a module for epi-fluorescence imaging. In Fig. 5.12,
it is depicted a schematic representation of the setup’s main components (also
see Fig. 5.16 and Video 5.6 for the full assembly). The budget of the full assem-
bly can be found in Appendix F in Appendix F.

Interestingly, as we convey next, we only need one image to unequivocally
discern the fast axis and the birefringence of the anisotropic sample. Therefore,
the temporal resolution only depends on the maximum frame rate delivered by
the camera (up to ∼75 fps for our camera). Moreover, since no other devices
need to be commanded apart from the two cameras through LabView [142],
temporal synchronization is significantly simplified. As with the other setup, the
synchronization is controlled with two boolean variables (Start and Ready),
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Figure 5.12: Fast adaptive polarimeter with a polarization camera.
Sketch of the alternative polarimeter we have assembled in the lab. Green arrows
indicate the orientation of the fast axis (0 or π/4 rad) of the respective optical
elements. The polarization camera acquires polarimetric images whereas Camera
II fluorescence images. The polarization camera and Camera II are respectively
controlled with Computer I and Computer II. The two computers are interchange
boolean variables to synchronize the fluorescence and polarimetry. See Fig. 5.16
and Video 5.6 for the full assembly.

which are continuously interchanged between the two computers. In this way,
when Computer I receives a true value for Ready from Computer II, it starts
the acquisition process. Analogously, Computer II starts the acquisition when
Start is set to true by Computer I.

Spatial synchronization is attained as already presented in Section 5.2.2, and
using the same optomechanical elements shown in Fig. 5.4.

5.3.2 Working principle

Polarization cameras contain a sensor whose pixels are divided into four blocks,
each incorporating a linear polarizer with polarization direction: 0o, 45o, 90o,
and 135o. Thus, to predict light polarization of the arrangement including a
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Figure 5.13: Temporal synchronization of the polarization camera and
the fluorescence camera. Schematic representation of the way we synchronize
the polarimetry performed with the polarization camera and the fluorescence.

sample with fast axis α and retardance δ, we compute four different Mueller
calculus, one for each subpixel’s polarization (indicated as a superindex):

I0(α, δ) =
I0
2

(1 + sin 2α sin δ), (5.9)

I45(α, δ) =
I0
2

(1 + cos 2α sin δ), (5.10)

I90(α, δ) =
I0
2

(1 − sin 2α sin δ), (5.11)

I135(α, δ) =
I0
2

(1 − cos 2α sin δ). (5.12)

See Appendix E.5 for the full explanation of the Mueller calculi. Notice that the
combination of Eqs. 5.9 to 5.12 yieldas the a, b, and c parameters in Eq. 5.3:

a =
I0 + I45 + I90 + I135

2
, (5.13a)

b = I0 − I90, (5.13b)

c = I135 − I45. (5.13c)

Also, as we did before, we subtract the signal of a blank measurement:

I0
′

= I0 − I0blank , I45
′

= I45 − I45blank

I135
′

= I135 − I135blank , I135
′

= I135 − I135blank

(5.14)

Proper combination of these last equations allows us to extract α and δ:

α =
1

2
atan 2

(
I0

′ − I90
′

I45′ − I135′

)
, (5.15)
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δ = asin

(
2
√

(I0′ − I90′)2 + (I45′ − I135′)2

I0′ + I90′ + I45′ + I135′

)
. (5.16)

Thanks to the high frame rates reached by the polarization camera, the data
can be denoised by acquiring different subsequent images and performing a
temporal average while still attaining reasonable measurement rates. Afterward,
the director and the retardance are obtained using Eqs. 5.15 and 5.16.

5.3.3 Calibration of the polarimeter

To calibrate the setup, we proceed as previously by first calibrating the optical
devices as described in Section 5.2.4.1. After that, the setup is assembled, and
misalignments are corrected by minimizing the following metric:

∆1 − ∆2 =
I45(∆1,∆2) − I135(∆1,∆2)

I45(∆1,∆2) + I135(∆1,∆2) + I0(∆1,∆2) + I90(∆1,∆2)
, (5.17)

where ∆1 and ∆2 are the errors in the alignments of the LR and the QWP. To
minimize such metric, we just need to rotate the LR and the QWP while there
is no sample.

With this setup, no further calibration is required.

5.3.4 Live birefringence

We evaluate the suitability of this setup by measuring the birefringence and the
director of the AN. Strikingly, the quality of the retardance map (Fig. 5.14a
and Video 5.7), despite the low birefringence of the AN, is comparable to that
obtained through epi-fluorescence imaging (Fig. 5.14b and Video 5.8). Also, the
director is exceptionally well-determined. Indeed, to perform the experiments in
Chapter 4, we have employed this setup rather than the LCR-based polarimeter
because of the fine measurement accuracy and the good temporal performance.
Finally, in Video 5.9, it is possible to appraise how good the two measurements
(birefringence and fluorescence) can be synchronized.
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a) b)

Figure 5.14: Live birefringence measurements with the polarization
camera setup coupled to fluorescence measurements. a) Retardance map
of the AN. The mean retardance is ⟨δ⟩ = 1.8 nm. Fig. 5.14b) Fluorescence image
of the AN with the nematic director, obtained with the polarimetry, overlaid.
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5.4 Supplemental images

a) b) c)

LHP
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LVP

QWP2

KMM1
CAM1
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Figure 5.15: Optomechanical assembly of the fast adaptive polarimeter
based on LC. These diagrams have been constructed by combining the CAD
files for the different parts, as provided by Thorlabs, and are reproduced here
with permission. a) Global view of the instrument. Labeled items in the upper
module are zoom optics (ZM), quarter-wave plate (QWP2), linear vertical polar-
izer (LVP), field lens (FL1), 90o kinematic mirror mount (KMM1), and camera
(CAM1). b, c) Two magnified orthogonal views of the bottom module. Labeled
items are quarter-wave plate (QWP1), variable liquid crystal retarder (V-LCR),
linear horizontal polarizer (LHP), LED light source (LED), collimating condenser
lens (CL), fluorescence cube assembly (FL-C), field lens (FL2), kinematic mirror
mount (KMM2), and fluorescence camera (CAM2). See Video 5.1 for a 360 degree
rotation of the full assembly.
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KMM
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FL1
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a) b) c)

Figure 5.16: Optomechanical assembly of the setup for fast birefringence
imaging with a polarization camera. These diagrams have been constructed
by combining the CAD files for the different parts, as provided by Thorlabs, and
are reproduced here with permission. a) Global view of the instrument. Labeled
items in the upper module are zoom optics (ZM), field lens (FL1), and polarization
camera (PolCam). b, c) Two magnified orthogonal views of the bottom module.
Labeled items are quarter-wave plate (QWP), linear horizontal polarizer (LHP),
LED light source (LED), collimating condenser lens (CL), fluorescence cube as-
sembly (FL-C), field lens (FL2), kinematic mirror mount (KMM), and fluorescence
camera (CAM2).
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5.5 Videos

Video 5.1: 360 degree rotation displaying the full assembly of the LCR-
based polarimeter with the fluorescence module. The diagram has been
constructed by combining the CAD files for the different parts, as provided by
Thorlabs, and are reproduced here with permission. To watch the video, click here
or scan the QR-code in List of Videos
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Video 5.2: POM micrographs obtained with the LCR-based polarimeter
displaying an LC during the Friederik transition. With the polarimeter,
we retrieve the LC’s director θ and then we compute the POM micrograph as
I(θ) ∝ sin2 2θ. Red lines indicate the local director n = (cos θ, sin θ). The video
is sped up x7.5. The LC used is the MLC 7029. To watch the video, click here or
scan the QR-code in List of Videos

Video 5.3: Close-up POM images obtained with the LCR-based po-
larimeter displaying four topological defects annihilating. With the po-
larimeter, we retrieve the LC’s director θ and then we compute the POM micro-
graph as I(θ) ∝ sin2 2θ. Red lines indicate the local director n = (cos θ, sin θ). The
video is sped up x7.5. The LC used is the MLC 7029. To watch the video, click
here or scan the QR-code in List of Videos
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Video 5.4: POM images obtained with the LCR-based polarimeter dis-
playing a passive LC dragged by the MT-based AN. With the polarimeter,
we retrieve the LC’s director θ and then we compute the POM micrograph as
I(θ) ∝ sin2 2θ. Red lines indicate the local director n = (cos θ, sin θ). The video is
sped up x5. To watch the video, click here or scan the QR-code in List of Videos

Video 5.5: Epi-fluorescence micrographs of the MT-based AN with the
nematic director retrieved with the LCR-based polarimeter. Red lines
indicate the local director n = (cos θ, sin θ). The video is sped up x10. To watch
the video, click here or scan the QR-code in List of Videos

105

https://www.dropbox.com/s/dik3c61vihasvbf/5_4_POM_images_obtained_with_the_LCR-based_polarimeter_displaying_a_passive_LC_dragged_by_the_MT-based_AN.avi?dl=0
https://www.dropbox.com/s/r0l83eqx2j9i4vv/5_5_Epi-fluorescence_micrographs_of_the_MT-based_AN_with_the_nematic_directo_retrieved_with_the_LCR-based_polarimeter.avi?dl=0


5

Chapter 5. Imaging the active nematic with polarimetry techniques

Video 5.6: 360 degree rotation displaying the full assembly of the po-
larization camera setup with the fluorescence module. The diagram has
been constructed by combining the CAD files for the different parts, as provided
by Thorlabs, and are reproduced here with permission. To watch the video, click
here or scan the QR-code in List of Videos
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Video 5.7: Retardance map of the AN obtained with the polarization
camera setup. Both images are overlaid to show the synchronization of both
measurements. The fluorescence image is the one above. The video is sped up x9.
To watch the video, click here or scan the QR-code in List of Videos

Video 5.8: Epi-fluorescence micrographs of the MT-based AN with the
nematic director retrieved with the polarization camera setup. Red lines
indicate the local director n = (cos θ, sin θ). The video is sped up x10. To watch
the video, click here or scan the QR-code in List of Videos
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Video 5.9: Overlay of the retardance map, measured with the polariza-
tion camera setup, and the simultaneous fluorescence image of the AN.
Both images are overlaid to show the synchronization of both measurements. The
fluorescence image is the one above. The video is sped up x9. To watch the video,
click here or scan the QR-code in List of Videos
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Materials and methods

6.1 Active nematic preparation

6.1.1 Kinesin expression

The kinesin we use in our experiments is the K401-BIO-H6, which is a dimeric
kinesin containing the first 401 residues of kinesin-1 heavy chain (see Fig. 6.1a)
of Drosophila Melanogaster and fused to a region of Escherichia Coli biotin
carboxyl carrier protein (BCCP) and six histidines to enable protein purifi-
cation [151]. The BCCP domain allows the formation of kinesin clusters be-
cause it can attach to a biotin molecule, which can in turn link to streptavidin
molecules. Each streptavidin, as a tetrameric protein [152] with a molecular
weight ∼52 kDa, can bind to up to four biotins (see Fig. 6.1b).

K401-BIO-H6 protein is expressed with Escherichia Coli (BL21(DE3)pLysS
cells, resistant to chloramphenicol) transformed with the pWC2 plasmid (Ad-
dgene 15960) from Gelles Laboratory (Brandeis University) that contains the
gene of the protein of interest and confers resistance against ampicillin [151].

Briefly, we harvest the E. Coli in LB broth (Sigma, L3022) with 2.5 µg/mL
of chloramphenicol, 50 µg/mL of ampicillin, and 24.4 µg/mL of biotin at 37oC
and 120 rpm until reaching OD600=0.6, when 1mM of IPTG is added to induce
protein overexpression. Cells are left overnight at 22oC and 140 rpm. The next
day, the culture is centrifuged at 4,000 rpm and 4oC for 30 min. Pellets are
re-suspended with HEPES buffer (50 mM HEPES, 4 mM MgCl2, 10 mM β-
mercaptoethanol and 50 µM of ATP at pH 7.2) supplemented with PIC and
PMSF. The suspension is left at -80oC for 30 min and then, after adding 1
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Heavy chain

Light chain
Kinesin-1
heavy chain Streptavidin BCCPBiotin

a)

b)

Figure 6.1: Kinesin-1 and K401-BIO-H6 - a) Sketch of kinesin-1 where the
two chains of the molecular motor are indicated. The heavy chain allows the
protein to move and the light chain can attach to cargos to actively transport them
inside the cell (Adapted from [153]). b) Cluster of two kinesins. The genetically-
engineered kinesin is formed by the heavy chain of kinesin-1 (kinesin-1 truncated
at the residue 401) and the biotin carboxyl carrier protein (BCCP) which binds to
one biotin. A streptavidin molecule then links two kinesins through the biotins.
(The BCCP-biotin-streptavidin complex was created with BioRender.com)

mg/mL of lysozyme, it is sonicated with a probe-type sonicator to promote cell
lysis. Solid residues are removed via ultra-centrifugation at 20,000 rpm for 20
min at 4oC. The protein is then loaded into a 1 mL nickel column (1 mL HiFliQ
Ni-NTA FPLC column), washed with 20 mM imidazole in HEPES buffer, and
eluted with 500 mM imidazole in HEPES buffer. A PD10 desalting column (GE
Healthcare, GE17-0851-01) is used to exchange the buffer and thus remove the
imidazole. We measure the resulting protein concentration by means of UV-Vis
spectrophotometry (A280, ε=30370 -1cm-1). The kinesin is finally stored with
40 %(w/w) of sucrose at -80oC after flash freezing with liquid nitrogen. In
Appendix G, a more detailed protocol of the expression of K401-BIO-H6 can be
found.

6.1.2 Microtubules polymerization

MTs are polymerized at 37oC for 30 min in M2B buffer (80 mM PIPES, 1 mM
EGTA, 2 mM MgCl2)(Sigma, P1851, E3889 and M4880, respectively) with α
and β tubulin from bovine brain (a gift from Z. Dogic’s group at Brandeis Uni-
versity (Waltham, MA)) and Guanosine-5’-[(α,β)-methyleno]triphosphate (GM-
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PCPP) (Jena Biosciences, NU-405), a non-hydrolyzable analogue of GTP. GM-
PCPP catalyzes the polymerization of MTs at a similar rate to the one of GTP.
Nevertheless, the depolymerization rate of the former is much smaller than the
one of the latter. Hence, with GMPCPP it is possible to obtain stable MTs
with a fixed length [154]. By controlling the concentration of GMPCPP, we
could obtain MTs with a mean length of ∼1.5 µm. To enable the imaging of the
active gel through fluorescence microscopy, part of the tubulin is labeled with
Alexa-647 (Sigma, A20006). MTs are stored in small aliquots (∼2µL) at -80oC.

6.1.3 Active gel preparation

To assemble the active gel, we use different stock solutions (listed in Table 6.2),
that we can store for several months under the appropriate conditions (also
included in Table 6.2) upon use. The stock solutions that need to be stored at
-20oC or -80oC, are split into smaller aliquotes with a volume ∼10% larger than
the volume used to prepare the KSV, the PS, and the final active suspension.
All the stocks are prepared either in M2B buffer, or phosphate buffer, or are
kept in the aqueous solution as purchased. The pH of all the stock solutions is
adjusted with either 1 M HCl (if it is too basic, pH > desired pH) or with 1 M
KOH (if it is too acid, pH < desired pH). For small volumes of stock solutions,
it is difficult to use a pH meter. Thus, we use pH indicator strips with a pH
range between 6 and 8. It is important to use such a small range of pH to have
enough sensitivity to adjust properly the pH at ∼6.8 because small changes in
the pH can significantly impact the function of the proteins.

We prepare the active gel in four main steps that I explain here in detail.
The diagram in Fig. 6.4 shows schematically the protocol we follow to prepare
the active gel.

1- Preparation of KSV
K401-BIO-H6 motors (kinesins) are mixed at a 2:1 stoichiometric ratio with
tetrameric streptavidin (Invitrogen, 43-4301) and incubated at 4oC for 30 min.
This makes the KSV suspension. Here, we must remark that the expression of
kinesin as described in Methods Section 6.1.1 can produce not active proteins.
As a consequence, the activity of the active gel can be lower than the one ex-
pected for the concentration obtained through UV-Vis spectroscopy. One could
try to do activity assays to extract the real activity of the protein suspension.
Nevertheless, we do it empirically. Starting from the theoretical concentration
of kinesin, we follow the protocol here described to prepare the active gel and
screen different concentrations of molecular motors keeping the other compound
concentrations constant until we obtain a high activity active gel without see-
ing crosslinking. At low concentrations of kinesins, streptavidin proteins are
only bound to one molecular motor, giving a low activity active gel. As the
concentration is increased, the activity rises until a point where streptavidins
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Stock solutions

Compound Concentration Buffer
Storing
condi-
tions

ATP 50 mM M2B (pH 6.8) -20oC

Catalase 3.5 mg/mL 20 mM K2HPO4 (pH 7.5) -20oC

DTT 500 mM M2B (pH 6.8) -20oC

Glucose 300 mg/mL
20 mM K2HPO4 + 70mM

KCl (pH 7.2)
-20oC

Glucose
oxidase

20 mg/mL 20 mM K2HPO4 (pH 7.4) -20oC

GMPCPP 10 mM
Aqueous solution, as

provided by the
manufacturer

-20oC

MgCl2 67 mM M2B (pH 6.8) 4oC

MTs 8mg/mL M2B (pH 6.8) -80oC

PEG, 20 kDa 12 % (w/w) M2B (pH 6.8) -20oC

PEP 200 mM M2B (pH 6.8) -20oC

PKLDH
917 units/mL

PK

Aqueous buffered glycerol
solution, as provided by

the manufacturer
-20oC

Pluronic 17 % (w/w) M2B (pH 6.8) 4oC

Streptavidin 0.352 mg/mL M2B (pH 6.8) -20oC

Trolox 20 mM
20 mM Phosphate (pH

7.48)
-20oC

Table 6.2: Stock solutions for the preparation of the active gel List of the
different solutions used to prepare the active solution.

start being bound to more than two kinesins. Consequently, activity starts
dropping, and crosslinking can be observed. Maximum activity is reached at a
kinesin/streptavidin ratio of ∼1:2 [112].

In our case, we find a good preparation to be: 5 µL stock Kinesin + 1 µL
stock streptavidin solution (0.352 mg/mL) + 0.5 µL stock dithiothreitol (DTT)
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diluted by 100 (5 mM).

2- Preparation of PS
To prepare the PS suspension, we mix the non-adsorbing polymer PEG (20kDa)
(Sigma, 95172) to promote the aggregation of the MTs into bundles through de-
pletion forces, ATP to fuel the kinesins (Fig. 6.2) and an ATP-regenerating
system (PK/LDH and phosphoenol-pyruvate) (Fig. 6.3) to maintain the ATP
concentration constant. The presence of this regenerating system does not limit
the rate of ATP hydrolysis by kinesins [155]. In addition to such compounds,
we also add MgCl2 to reach an adequate ionic force and anti-oxidants (Trolox,
glucose, glucose oxidase, catalase, and DTT (Sigma, 238813, G8270, G2133,
C1345, 43815, respectively)) to ensure the correct functionality of the proteins
by preventing photo-bleaching, the formation of sulfur bonds and the oxida-
tion of the proteins by oxygen species. Finally, in the cases when we want to
prepare an active nematic that forms at an oil/water interface, we supplement
the MTs aqueous suspension with the PEGylated surfactant pluronic (Sigma
P2443). This compound assures the bio-compatibility of the proteins with the
interface. The volumes of stock solutions we mix are: 8 µL 12 % (w/w) PEG
+ 8 µL 200 mM PEP + 6 µL 20 mM Trolox + 2.9 µL 67 mM MgCl2 +
1.7 µL 50 mM ATP + 1.7 µL 917 unit/mL PKLDH + 1.5 µL 17 % (w/w) Pluronic
+ 0.66 µL 3.5 mg/mL Catalase + 0.66 µL 300 mg/mL Glucose + 0.66 µL 500 mM DTT
+ 0.66 µL 200 mg/mL Glucose Oxidase.

Pi
ATP ADP

Figure 6.2: Kinesins obtain energy from ATP and release ADP and
phosphoric acid - Chemical energy stored in the phosphate-phosphate bond fu-
els kinesins, which take the ATP, make one step forward, and release adenosine
5́-diphosphate (ADP) and phosphoric acid (Pi). (Adapted from [50]))

3- Mix of KSV+PS+M2B
Once we have waited for 30 minutes to ensure the formation of the kinesin
clusters, we can mix the KSV with the PS. We supplement this mixture with
M2B to attain suitable concentrations. For the kinesin we have expressed, we
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Figure 6.3: ATP regenerating system - ADP is converted back to ATP thanks
to pyruvate kinase (PK) that catalyzes the reaction of ADP with phosphoenol-
pyruvate (PEP).

mix 10 µL PS + 2.75 µL KSV + 2.25 µL M2B. These ratios should be changed
depending on the activity of the kinesin.

4- Preparation of the active solution or active gel
Finally, we mix a small volume of the motors and ATP solution with the MTs
at a ratio of 1:5. Depending on the sample we want to prepare (see Methods
Section 6.1.4), we make up a volume of 2 µL or 8 µL. With this mixture, the
MTs self-assemble into a percolating active network. The experiments in this
thesis have been performed in the presence of such interface.

Final concentrations of all compounds are listed in Table 6.3

Active nematic composition

Compound Concentration Compound Concentration

Streptavidin 0.16 µM PK/LDH 27 IU/mL

Kinesin 0.32 µM Pluronic 0.44 % (w/w)

DTT 5.8 mM Glucose 3.4 mg/mL

PEG (20 kDa) 1.6 % w/w Catalase 0.040 mg/mL

PEP 27 mM Glucose oxidase 0.23 mg/mL

Trolox 2.1 mM MTs 1.3 mg/mL

MgCl2 3.3 mM GMPCPP 0.1 mM

ATP 1.5 mM

Table 6.3: Typical composition of the active nematic

6.1.4 Assembly of the 2D active nematic. Experimental setup

In the presence of an oil/water interface, the network of active filaments bewitch-
ingly forms a 2D active layer with nematic order. This is thanks to depletion
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1 µL 5 µL 

5 µL Kinesin

1 µL
0.352 mg/mL
Streptavidin L0.5 µ

5 mM DTT

8 µL
200 mM PEP

8 µL 12 % (w/w) PEG 20 kDa 

6 µL
20 mM TroloxL2.9 µ

67 mM MgCl2

1.7 µL
50 mM ATP

1.7 µL 
917 units/mL

PKLDH
1.5 µL

17% (w/w)
Pluronic 

L0.66 µ
300 mg/mL

Glucose 0.66 µL
20 mg/mL

Gluocse Oxidase0.66 µL
3.5 mg/mL Catalase

0.66 µL
500 mM DTT

Wait 30 min

8 mg/mL MTs

Preparation of KSV1

Preparation of PS2

Preparation of the 
active solution

Mix of KSV+
PS+M2B

3

4

2.25 µL M2B buffer

10 µL PS2.75 µL KSV

KSV

PS

Active solution

Figure 6.4: Protocol diagram of the preparation of the active gel - All
the volumes are of the stock solutions
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forces due to the PEG that promote the adsorption of the MT bundles onto
the fluid interface. To obtain such interface, we use two different approaches
depending on the experimental requirements.

The first one consists of a chamber built between two glass slides with two
sheets of double-sided tape (thicknesses from 25 to 100 µm, 3M) as spacers.
One of the slides is functionalized with a polyacrylamide brush (see Methods
Section 6.1.6.1) to hydrophylize the substrate and prevent the proteins from
sticking to the glass and denaturalizing. The other slide is functionalized with
aquapel (see Methods Section 6.1.6.2), obtaining in this way a very hydropho-
bic surface (see Figs. 6.5a and 6.5b). A fluorinated oil (HFE 7500, 3M Novec
7500 Engineered Fluid) with 2% fluorosurfactant (008-FluoroSurfactant, RAN
Biotechnology) is then flowed into the chamber (Fig. 6.5c), followed by the MTs
aqueous suspension, that displaces the oil (Fig. 6.5d). However, due to the dif-
ference in the hydrophobicity of the two slides, a stable thin oil layer remains
(Fig. 6.5e).

Double-sided tape
AQ-functionalized slide

UV-curing glue
PAM-functionalized slide
Sample’s chamber

a) b)

c) d) e)

Figure 6.5: Flow-cell experimental setup - Front (a) and top view (b) of
a sketched flow cell. c)-e) Filling of the cell. The oil is first flowed through the
chamber (c) and then replaced by the aqueous suspension of proteins (d) a thin
oil layer remains wetting the hydrophobic slide (coated with Aquapel, AQ) (e).

The other approach consists of the assembly of an open cell with the sample
contained inside a polydimethylsiloxane (PDMS) block with a well in the center.
To prepare the block, we cure PDMS at 70oC for at least 4 hours inside a 3D-
printed poly-lactic acid(PLA) mold (Fig. 6.6). Afterward, we glue the block onto
a hydrophilic and bioinert polyacrylamide (PAM) coated glass with a UV-curing
adhesive (Norland, NOA81). We finally introduced in the pool 1.5 µL of the
aqueous suspension and 300 µL of silicon oil (Rhodorsil Oils 47 from Bluestar
Silicones) on top of it. Since the active nematic needs to be protected from the
air, we use an oil less dense than water, thus gravity forces drag the aqueous
suspension to the bottom leaving the oil layer covering it. After ∼20 min the
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active nematic spontaneously forms.

PLA mold

PDMS
Active gel

Silicon oil

UV gluePAM-functionalized
slide

Air

Figure 6.6: Open cell experimental setup - PDMS is polymerized within
a PLA mold to create pools. A block containing a well is then cut and glued
onto a PAM-functionalized glass slide using UV-curing adhesive. The MT-aqueous
suspension (active gel) is injected within the pool and followed by the silicon oil
that is in contact with the air and with the active gel droplet. The latter interface
is where the MTs condenses and forms the AN.

6.1.5 AN for Particle Image Velocimetry

To extract the flow field of the AN through PIV (Methods Section 6.4.1), we use
unlabeled MTs and dope them with fluorescent MTs (200:1) to obtain a speckled
pattern. Both types of MTs are prepared as explained in Methods Section 6.1.2,
but using either non-fluorescent or highly-fluorescent tubulin (∼75% labeled
tubulin), respectively. We remark that multiple freezing and unfreezing cycles
of the MTs induces their aggregation Fig. 6.7. This clustering can be useful
when working at small magnifications, when more light intensity is required,
although, it compromises up to some degree the resolution.

6.1.6 Glass-slides functionalization

Proteins tend to stick onto glass. Hence, it is imperative to functionalize glass
slides and make them bio-compatible. Depending on the desired hydrophobicity,
we follow the following two protocols.

6.1.6.1 Hydrophilic glass slides. Polyacrylamide brush

One of the most common surface treatments for biological samples is the at-
tachment of a polyacrylamide brush onto the substrate to avoid the adsorp-
tion of proteins thanks to steric repulsion. The coating of the slides is pre-
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a) b)

Figure 6.7: Fluorescent MTs tend to aggregate during freezing/unfreez-
ing cycles - Fluorescence micrographs of the AN using highly fluorescent MTs
that have been frozen one (a) and two (b) times. Scale bar, 100 µm.

pared by first cleaning and activating the glasses with an alkaline solution (0.1
M NaOH). Then we silanize the glasses with an acid ethanolic solution of 3-
(trimethoxysilyl)propyl methacrylate (Sigma, 440159) to create polymerization
seeds. The slides are subsequently rinsed with ethanol followed with Mili-Q wa-
ter and then immersed in a degassed 2% (v/v) acrylamide solution with the ini-
tiator ammonium persulfate (APS, Sigma, A3678) and the catalyst N,N,N’,N’-
Tetramethylethylenediamine (TEMED, Sigma, T9281) for at least 2 hours. The
substrates are stored until their usage in the acrylamide solution.

6.1.6.2 Hydrophobic glass slides

Hydrophobic glass slides are obtained with aquapel functionalization. We place
a clean glass slide to be functionalized on top of a glass slide with a small volume
(∼20 µL) droplet of Aquapel. We let it sit for 30 seconds and then rinse the
glass slide.

6.1.7 Prepration of oil mixtures

To attain oils of many different viscosities, we prepare oil mixtures. Next,
we estimate the final viscosity, η12, using the Arrhenius mixing rule log η12 =
χ log η1+(1−χ1) log η2, with η1 and η2 the oil viscosities of the mixed compounds
1 and 2, respectively, and χ1 is the molar fraction of oil 1.
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6.2 Radial alignment of the AN layer

To align radially the AN, we hold a capillary tube (outer and inner diameters:
1.2 mm and 0.3 mm) with a linear motion stage (KDC101, Thorlabs) right
above the oil layer with the AN already formed at the interface in the open
cell experimental set up (see Methods Section 6.1.4 and Fig. 6.8). The tube
is then slowly introduced into the fluid until it touches the oil-water interface,
creating an inwards flow that aligns the AN. The capillary is removed after a
few seconds letting the AN evolve freely from the radial alignment towards the
turbulent regime.

Figure 6.8: Radial alignemnt of the AN. We introduce a glass capillary tube
(1.2 mm outer diameter, 0.3 mm inner diameter) into the pool until it touches the
oil/water interface to produce inwards flows that organize the active material in
a radial geometry. The capillary is removed after few seconds, which allows the
radially aligned active nematic to evolve freely. Imaging is only performed after the
capillary has been removed, monitoring this way the onset of the bend instability.
To enable the introduction of the capillary, this experiment is performed using the
open cell setup (see Fig. 6.6).

6.3 Fluorescence microscopy

One of the techniques we use to image the active nematic is fluorescence mi-
croscopy. In this type of microscopy, a beam of light with a given wavelength is
shined toward the fluorescent sample (the exciting beam). After a few nanosec-
onds, the fluorophore1 emit a light beam (the emitting beam) with a wavelength

1Fluorophores are fluorescence-emitting molecules generally used to label molecules to be
imaged. Fluorophores tend to present conjugated double bonds and aromatic groups (ring
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typically larger than the incident one. The exciting light is filtered out, letting
only the emitted beam reach the detector. Therefore, only the molecules that
fluoresce are seen, whereas the background remains dark [156]. In practice, bi-
ological samples do not fluoresce by themselves, thus, they must be attached to
a fluorophore. In our case, we tag our tubulin with the far-red-fluorescent dye
Alexa-647 (Invitrogen, A2006). This molecule allows us to correctly resolve the
image because the exciting and the emission spectra are well separated, and it
has a high quantum yield. This quantity gives the ratio between the number of
emitted to absorbed photons, and it must be taken into account when choosing
the fluorophore to use. A fluorophore with a low quantum yield does not only
mean less fluorescence intensity, but also a higher probability of having not de-
sired photochemical processes like bleaching and free radical formation that can
significantly affect the sample [156].

For our experiments, we use the so-called epi-illumination fluorescence mi-
croscope (Fig. 6.9), in which both the excitation and emission beams cross the
objective. Since these two beams overlap in the light path, a beam splitter is
needed. This is the dichroic mirror, which reflects shorter wavelengths coming
from the light source and transmits longer wavelengths emitted by the sample.
Dichroic mirrors should be changed depending on the fluorophore of the sam-
ple. Usually, they are integrated into a filter cube set, which also includes two
filters: the excitation and the emission filters that block out the wavelengths
not contributing to the fluorescence. In our lab, we have two different set-ups
for fluorescence microscopy. First, we have a Nikon Eclipse Ti2-U inverted mi-
croscope equipped with a Cy5 filter (#67-010-OLY, Edmund), compatible with
Alexa-647 dye, and an Andor Zyla 4.2 Plus camera controlled with either the
open-source software ImageJ Micro-Manager [157]. This setup is optimal for
obtaining high-quality images. Nevertheless, it is not very customizable. In
contrast, we have a highly-versatile custom-made microscope assembled with
Thorlabs parts. With this setup, we can add almost any module we want to
perform different experiments. For instance, we use this fluorescence microscope
to attach a z-position motion stage and align our active nematic (see Methods
Section 6.2) or to integrate it with the polarimeter explained in Section 5.1.

6.4 Image and data analysis

6.4.1 Particle image velocimetry

PIV is a non-invasive technique used to quantitatively determine the velocity
field of a fluid [158, 159, 160, 161]. The idea of this technique is to seed the

structures), like benzenes. This is because a higher degree of conjugation results in a lower
exciting energy requirement and a higher fluorescence intensity relative to the exciting intensity.
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Filter
cube

Detector

Light
source

Dichroic
 mirror

Excitatiton
filter

Emission
 filter

Sample

Figure 6.9: Epi-illumination fluorescence microscope - Sketch of an inverted
fluorescence microscope with epi-illumination. In this kind of setups, the light
source sends a wide range of wavelengths, but only the ones that can excite the
fluorophore of interest can go through the excitation filter of the filter cube and
arrive at the sample. Fluorophores emit light in all directions and a portion of such
light crosses the objective and the emission filter to finally reach the detector. In
the detector, the signal is usually amplified since the fluorescence intensity is low.
The dichroic mirror separates the excitation from the emitted beam.

fluid with particles to create a speckled pattern in an otherwise homogeneous
media. The particles are then tracked to extract the flows within the fluid.
These tracers must be small enough and have a similar density to the fluid
to assure they follow the streams at the same velocity as the fluid. In our
experiments, we use fluorescent-labeled MTs (see Methods Section 6.1.5) that we
follow through fluorescence microscopy (see Methods Section 6.3). Afterwards,
to extract the flows, the images are divided into sub-areas called interrogation
windows (IWs) and the most probable displacement of the particles within an
IW is then determined by cross-correlating a pair of subsequent IW A and B
with sizes I × J and M ×N , respectively:

C(m,n) =
I∑

i=1

J∑
j=1

A(i, j)B(i−m, j − n) (6.1)

with −(M − 1) ≤ m ≤ I − 1 and −(N − 1) ≤ n ≤ J − 1. Cross-correlation
gives the degree of matching between two matrices (in this case two IWs) with
a shift. Therefore, the position of the peak in C(m,n) corresponds to the most
probable displacement of the particles from A to B. Note that the result of the
PIV is highly sensitive to the IW size.

In practice, the computation of cross-correlation in the real space using
Eq. 6.1 is highly expensive computationally speaking. Hence, C(m,n) is usually
obtained in the Fourier space by applying the cross-correlation theorem [162].
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Figure 6.10: The PIV algorithm - a) Synthetic image divided into 16 IWs. b)
Cross-correlation calculation of the IWs framed in green in (a). c) Resultan flow
field of the image in (a).

For our analysis, we use the off-the-shelf software PIVlab implemented in
Matlab [159, 160]. Post-processing of the PIV results is also carried out with
such program, which can filter out the outlying data and smooth the flow field.

Depending on the fluorescence images, the outcome from the PIV analysis
can be very noisy. To asses whether the obtained velocity field is not the result
of the background noise, but the signal of the fluorescent MTs, we calculate
the temporal autocorrelation of the computed velocity field (see Methods Sec-
tion 6.4.7). If the correlation drastically drops from one frame to the next one,
this means that the resulting velocity field is too noisy and further filtering of
the fluorescence images should be performed.
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6.4.2 AN Director determination through coherence enhanced
diffusion

Apart from the previously explained method based on polarizing microscopy
(see Section 5.1), we also use an alternative method to obtain the AN director,
n, described [118, 163] from fluorescence-microscopy images. In this case, the
director is obtained using coherent-enhanced diffusion filtering (CEDF) [164],
a technique employed to complete and enhance interrupted lines or flow-like
structures, like the ones in fingerprints or the ones formed by the fluorescent
MTs in the AN. To this aim, CEDF infers the direction with the weakest spatial
intensity fluctuations at a pixel level, which for the AN corresponds to the local
alignment of the MTs.

First of all, a gaussian blur filter of standard deviation σ and side length
6σ − 1 is applied to a raw image I to get the blurry image Iσ. Then, we obtain
the tensor product of ∇Iσ:

(∇Iσ)(∇Iσ)T =

[
(∇xIσ)(∇xIσ) (∇xIσ)(∇yIσ)

(∇yIσ)(∇xIσ) (∇yIσ)(∇yIσ)

]
(6.2)

We need to work with this tensor instead of the gradient vector, ∇Iσ, itself
to preserve the head-to-tail symmetry of MTs. Another Gaussian blur filter of
standard deviation ρ is applied to the gradient tensor to get rid of the small-scale
fluctuations in the coherence direction. ρ must be of the order of the size of the
coherent domains in the images. The eigenvector of the resultant tensor with
the smallest eigenvalue, u, gives the orientation where the intensity fluctuates
the least. Due to the nematic symmetry of the problem, the angle associated
to u must be within the interval [0o, 180o). From u, we can find the 2D tensor
nematic parameter, Q:

Q =
〈
uuT − 1

2
I
〉

(6.3)

where ⟨·⟩ indicates an average over a disk of size β and I the identity matrix.
Finally, we have to diagonalize Q to fetch for each pixel (see Info Box 6.1):

Q = S

(
nnT − 1

2
I

)
(6.4)

where S ∈ [0, 1] is the scalar order parameter, which provides information about
the degree of alignment of u (local molecular orientation) relative to n (mean
molecular orientation inside a disk of radius β). Note that this last step is only
an average process. Actually, if β was set to 0, we would obtain S = 1 and
n = u. We need to perform this average because S is a mean value.
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The choice of parameters σ, ρ, and β depends on each experiment because
the formulation of the AN, the magnification, and the microscope significantly
affect the size of the relevant features in the experiment.

Infobox 6.1: The eigenvectors and the eigenvalues of the Q
tensor

We start by expressing the Q tensor as

Q = S(nnT − I/2) = S

(
cos(2θ)/2 sin(2θ)/2

sin(2θ)/2 − cos(2θ)/2

)
, (6.5)

where I is the identity matrix. Now, to look for the eigenvalues λ, we
compute the characteristic polynomial

det(Q− λI) = λ2 − S2

4
(cos2 2θ + sin2 2θ) = λ2 − S2

4
. (6.6)

Thus, λ± = ±S/2
If we only take the positive eigenvalue, λ = S/2, we can compute the

corresponding eigenvector v =

(
a

b

)
applying (Q−λI)v = 0 and find the

following relation:

b = a
1 − cos 2θ

sin 2θ
(6.7)

Choosing a = sin 2θ:

v =

(
a

b

)
=

(
sin 2θ

1 − cos 2θ

)
(6.8)

Now, we can readily see that the orientation of the eigenvector gives the
orientation of the nematic field:

θ = atan

(
b

a

)
= atan

(
1 − cos 2θ

sin 2θ

)
= atan

(
sin θ

cos θ

)
(6.9)

Therefore, if we have Q, we can extract S and n (or θ) from the diago-
nalization of Q.
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6.4.3 Defect location and classification. Winding number

Regions with a low value of S are good candidates to feature topological defects.
Hence, using a custom-made MatLab code, we look for areas with S below
a threshold value, typically 0.1, and compute the winding number w along a
closed-loop centered on the point of minimum S. We numerically obtain w as
w = 1/2π

¸
(∂θ/∂u)du, where θ is the angle of n and u is the arc length along the

loop (the script used to compute w, winding.m, can be found in here. You can
also scan the QR in List of Codes). Regions of interest with w ∈ ±[0.49, 0.51]
are identified as ±1/2 defects. Note that, because of the nematic symmetry of
the director field, we need to include in the code that only jumps in the director
smaller than π/2 between subsequent pixels are allowed.

6.4.4 Characterization of the bend instability

6.4.4.1 Determination of the characteristic wave number

After the radial alignment of the AN, the material develops an instability trig-
gering the formation of a concentric pattern with a characteristic spacing be-
tween dark lanes (Fig. 6.11a). To characterize such spacing, we time-average
subsequent frames and measure light intensity along a direction orthogonal to
the kinks (Fig. 6.11b). We finally extract the characteristic wavenumber q∗ (in
[1] it appears as k∗) performing an FFT with Matlab (Fig. 6.11c). Error bars
are calculated as the standard deviation of the mean of 10 measurements along
different radial directions in a given experiment.

6.4.4.2 Determination of the characteristic growth rate

Next, we characterize the time evolution of the instability by monitoring the
FFT image over time with ImageJ (Figs. 6.12a and 6.12b). To do so, we follow
the here listed steps. Unless specified otherwise, all these steps are performed
with ImageJ.

1. Cut the image taking a region where the pattern is well observed.

2. Apply a Hann window to diminish the FFT noise. We create a MatLab
script to compute a 2D Hann window using the equation W = 1/2(1 −
cos(2πnx/Nx)) + 1/2(1 − cos(2πny/Ny)). The resulting filter is saved in
a file, which is later read with ImageJ as an image and multiplied by the
images to be analyzed.

3. Compute the 2D-FFT.

125

https://github.com/SOC-SAM/Berta-s-Ph.D.-thesis/blob/main/winding.m


6

Chapter 6. Materials and methods

'

r

q*/2¼

a)

b) c)

Figure 6.11: Determination of the predominant instability wavenum-
ber. a) Striped pattern formed by the active material after it has been radially
aligned and it has developed the instability in the azimuthal direction (φ, vec-
tor in red). Experimental conditions: [ATP]=1.5 mM, [Streptavidin]=8.2 µg/mL,
[MTs]=1.3 mg/mL and [PEG]=1.7 %. Scale bar: 100 µm b) Intensity profile in
(a) along the radial direction (r, vector in green) at the center of the image. c)
Power spectrum of (b), with q = 2π/l∗, showing the predominance of a peak, which
defines q∗. Figure adapted from [1]
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4. Measure and later average the grey intensity at different radii of the FFT-
image along the normal direction to the pattern in the real. We retrieve in
this way the average gray intensity for the different modulus of the wave
numbers.

These steps are repeated for each frame and finally saved as a 2D matrix. These
data is later opened with MatLab. We see that, at short times, the FFT intensity
of the characteristic length grows exponentially. Hence, we can fit our data to
an exponential trend and extract a characteristic growth rate Ω∗ (Figs. 6.12c
to 6.12e). Error bars are calculated as the uncertainty in the fitted parameter.
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Figure 6.12: Determination of the characteristic time-scale. a) Fluores-
cence micrograph of a pattern displayed by the material after its induced-alignment
(left) and FFT image of the micrograph (right). b) Fluorescence micrograph of the
material once it arrived at the active turbulent state (left) and the corresponding
FFT-image (right). Contrary to the images in a, there is no predominant wavenum-
ber. Scale bar: 100 µm Experimental conditions of (a) and (b) are: [ATP]=1.5 mM,
[Streptavidin]=8.2 µg/mL, [MTs]=1.3 mg/mL and [PEG]=1.7%. c) Kymograph of
the normalized FFT amplitude of a growing pattern as a function of the wave num-
ber magnitude, q = 2π/l. For each q, the radial-averaged amplitude is recorded.
Near q/2π = 2 · 10−2 µm−1 (region inside the purple rectangle) there is a hotspot
region that corresponds to the time when the active material features a periodic
pattern like the one shown in a. This defines q∗. d) Time evolution of the FFT
amplitude at the wavenumber q∗. e) At early times, this amplitude grows exponen-
tially, allowing to extract the intrinsic growth rate, Ω∗. The red line corresponds
to the exponential fitting.
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6.4.4.3 Measurement of angle perturbations

Moreover, in Appendix A.3, we show that the axial symmetry of the aster
configuration triggers the growth of angle perturbations δψ(r) following Bessel
functions of the first kind with imaginary order n. Here δψ is the deviation of
the director from the perfect aster disposition. Therefore, we first determine the
n = (nx, ny) = (cos θ, sin θ) director field as explained in Methods Section 6.4.2.
Now, given the axial symmetry, we must change the coordinate system to polar.
However, if we want to angle average δψ, we need to polarize the nematic director
field towards the center of the pattern. Otherwise δψ(r) will vanish. Then, we
write the n director in terms of the polar coordinates (nr, nφ) = (cos θ cosφ −
sin θ sinφ, cos θ sinφ + sin θ cosφ) with origin at the center of the aster, which
we place manually. We finally extract δψ as:

δψ = atan

(
nφ
nr

)
(6.10)

and perform an angle average.

6.4.5 Detection of vortices

Vortices in the AN are detected using the Okubo-Weiss (OW) criterion [75, 94].
This criterion parametrizes the stability of two initially close particles immersed
in a 2D velocity field at a given time v⃗(x, y, t) by analyzing the evolution of a
small perturbation of the flow field δv⃗. We start by writing the evolution of this
small perturbation in terms of the Jacobian of v⃗ as:(

δvx

δvy

)
=

(
∂xvx ∂yvx

∂xvy ∂yvy

)(
δx

δy

)
(6.11)

Now, we assess the stability of the velocity field by looking for the eigenvalues
λ± of the Jacobian matrix given by:

λ± =
−(∂yvy + ∂xvx) ±

√
(∂yvy + ∂xvx)2 − 4(∂xvx∂yvy − ∂yvx∂xvy)

2
(6.12)

If we consider the fluid to be incompressible, ∂xvx + ∂yvy = 0, we can simplify
Eq. 6.12 to:

λ± =
±
√
−4(−(∂xvx)2 − ∂yvx∂xvy)

2
=
√

(∂xvx)2 + ∂yvx∂xvy (6.13)

The term inside the square root is the OW parameter (OW = (∂xvx)2+∂yvx∂xvy).
In the regions of the fluid with OW < 0, the distance between the two particles
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Figure 6.13: Determination of the angle perturbations from the radial
aligned state. a) Simulated director field of a concentric pattern as the ones seen
in the experiments. b) Polarized director field in a toward the center of the aster. c)
Azimuth component of n, nφ, of an experiment. d) Resultant δψ = atan(nφ/nr),
with nφ represented in c, after the angular average.

embedded in the fluid will not diverge exponentially with time, whereas in the
regions with OW > 0, it will diverge. Hence, coherent vortices are expected to
be at simply connected regions with OW < 0 (see Fig. 6.14a). Notice here the
term coherent. Not all regions with OW < 0 feature vortices. Thus, to classify
a simply connected region as a vortex, we must check if it contains a singularity
with a winding number of +1 (see Section 6.4.3 and Fig. 6.14b).

As the velocity fields of our experiments are discrete, we use the five-point
method to compute the spatial derivatives of the velocity. Hence, for a function
f(x, y) and for the derivative with respect to x with a spacing between points
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Figure 6.14: Detection of vortices. a) OW parameter computed using the
experimental velocity field depicted in blue arrows. b) Orientation of the local
velocity. The vortices are regions with OW< 0 (areas in white) and with a rotation
of the velocity field of 2π within a closed loop (black lines in b. The direction of
the arrows indicate the direction of circulation of the flow). White arrows indicate
the local flow velocity (same as in a. The located vortices are enumerated in both
panels (green circles). The velocity field, obtained from PIV (see Fig. 6.10) has
been filtered with a mean filter of size 7 px. For the sake of a better visualization,
we plot one vector every four. The velocity vectors are scaled with respect of the
bottom black arrow in panel a. Scale bars: 100 µm

in the grid of ∆x, ∂f(x,y)
∂x is given by:

∂f(x, y)

∂x
≈ −f(x+ 2∆x, y) + 8f(x+ ∆x, y) − 8f(x− ∆x, y) + f(x− 2∆x, y)

12∆x
(6.14)

Finally, once we have detected the vortices, we count the number of vortices
with an area within ai and ai + da. To find the total area we look for neighbour
pixels with OW < 0. In this way we can obtain the distribution of vortex
areas (Fig. 6.15), which features an exponential tail. From the exponential
fitting N ∝ ea/a∗ , we can extract the characteristic (or mean) vortex area,
a∗, and therefore, the mean vortex radius, R∗ =

√
a∗/π. We also extract the

mean vorticity inside each vortex (inset in Fig. 6.15). The mean of this average
vorticities gives the mean vorticity of vortices, ωv.

6.4.6 Spatial autocorrelation functions

2D spatial autocorrelation of a discrete function f(xi, yj), Cff , is defined as:
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Figure 6.15: Determination of the mean vortex radius and mean vortex
radius. The distribution of vortex areas shows an exponential tail (N ∝ ea/a∗),
from which we can retrieve a mean vortex area a∗ = πR2

∗, with R2
∗ the average

vortex radius. Inset: The mean vorticity of each vortex seems not to depend on
the vortex area. We can therefore extract a mean vorticity of vortices ωv.

Cff (∆x,∆y) =

〈∑Nx−1
i=0

∑Ny−1
j=0 f(xi, yj)f(xi + ∆x, yj + ∆y)∑Nx−1
i=0

∑Ny−1
j=0 |f(xi, yj)|2

〉
, (6.15)

where ⟨·⟩ indicates a temporal average.
In practice, the functions we can extract from our experiments are discrete,

hence, to compute Cff , we have to multiply f point by point. As a consequence,
the calculation of Cff can be very expensive computationally speaking, espe-
cially when the system size is large. Therefore, we apply the Wiener-Khinchin
theorem (see Eq. D.15 in Appendix D), which relates the Fourier transform of
f , f̃(q⃗), with the correlation function as:

Cff (r⃗) =

〈
F−1

[
f̃(q⃗) f̃(q⃗)∗

]
F−1

[
f̃(q⃗ = 0) f̃(q⃗ = 0)∗

]〉 , (6.16)

where ∗ indicates the complex conjugate and F−1 the inverse Fourier transform,
that we compute with the built-in function ifft2() in Matlab. Also, we shift
the output with ifftshift() in such a way that r = 0 is at the center of the
output matrix.

131



6

Chapter 6. Materials and methods

If the 2D autocorrelation function is isotropic, we angle average Cff (r⃗) as:

Cff (r) =
1

2π

∑
φ

Cff (r, φ)∆φ. (6.17)

The code used to compute spatial auto-correlations, autocorrfun.m, can be found
in here, you will also need the function AngAverage.m, available here. You can
also scan the QR in List of Codes

6.4.7 Time autocorrelation function

We compute the time autocorrelation, Ctt as follows:

Ctt(x, y, τ) =

∑N−1
i=0 f [x, y, ti] · f [x, y, ti + τ ]∑N−1

i=0 |f [x, y, ti]|2
. (6.18)

Furthermore, we also average Ctt(x, y, τ) over the space:

Ctt(τ) =
1

NxNy

Nx−1∑
i=0

Ny−1∑
j=1

Ctt(xi, yj , τ) (6.19)

6.4.8 Power spectrum of an energy density

The power spectrum of an energy density at time t, Eff (t), produced by a signal
f(r, t) describes how this energy density distributes in the frequency domain.
To compute this quantity, we can begin by writing the total energy density of
the signal f(r, t):

Eff (t) =
1

A

Nx∑
j=1

Ny∑
k=1

|f(xj , yk, t)|2∆x∆y =
1

NxNy

Nx∑
j=1

Ny∑
k=1

|f(xj , yk, t)|2, (6.20)

where, we have assumed that f is discrete and a 2D variable, like all the quan-
tities we can extract from our experiments, and A = LxLy is the area of the
system with width Lx = Nx∆x and height Ly = Ny∆y. We now introduce
the Fourier decomposition of the zero-padded f(x, y)1, which we denote with

1We zero-pad the functions to enhance the performance of the FFT computation (see
Appendix D.3). Thus, the size of the input function is Nx × Ny and after the zero-padding
the size of the output function is Mx × My with Mx > Nx and My > Ny, and Mx and My

powers of 2. The zero-padding is automatically performed by the MatLab function fft2()
when it is introduced as fft2(f,Mx,My) [165], where f is the input function. Mx and My can
be computed as Mx=2ˆ(nextpow2(size(f,2))) and My=2ˆ(nextpow2(size(f,1))).
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the superindex ZP, fZP (x, y, t) = 1/Mx1/My
∑Mx

j=1

∑My

k=1 f̃(qjx, qky , t)e
i(qjxx+qkyy),

with f̃ the Fourier modes of fZP and (qjx, qky ) = 2π/L(j, k) (see Appendix D),
and obtain

Eff (t) =
1

NxNy

1

MxMy

Mx∑
j=1

My∑
k=1

|f̃ |2(qjx, qky , t), (6.21)

where we have applied the Parseval’s theorem for Discrete Fourier Transform
(DFT) (see Eq. D.22 in Appendix D.2). Now, we define the 2D energy density
power spectrum Eff (qx, qy, t) as:

Eff (t) =

Mx∑
j=1

My∑
k=1

Eff (qjx, q
k
y , t)∆qx∆qy, (6.22)

plugging ∆qx = 2π/Lx and ∆qy = 2π/Ly and comparing Eq. 6.21 with Eq. 6.22,

we can obtain the expression for the Eff (qjx, qky )

Eff (qx, qy, t) =
A

4π2
1

NxNy

1

MxMy
|f̃(qx, qy, t)|2. (6.23)

Furthermore, if we have a time series of the quantity f , we can perform a
temporal average, that we denote with ⟨·⟩:

Eff (qx, qy) =
A

4π2
1

NxNy

1

MxMy
⟨|f̃(qx, qy, t)|2⟩. (6.24)

The time averaged energy power spectrum can be isotropic. In these cases,
one can compute the angle-averaged power spectrum Eff (q), where q is the

modulus of the wave vector q = (qjx, qky ). We define this quantity as:

Eff =

M∑
l=1

Eff (ql)∆q. (6.25)

Then, taking ∆qx∆qy = q∆φ∆q in Eq. 6.22, with φ the azimuth, and introduc-
ing Eq. 6.23, we arrive at

Eff (q) =
A

4π2
1

NxNy

1

MxMy

∑
φ

q⟨|f̃(φ, q, t)|2⟩∆φ. (6.26)
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6.4.9 Kinetic energy power spectrum

To compute the kinetic energy power spectrum

Ḟ = I(q) +Ds(q) +Dr(q) +Doil
ext(q) +Dwater

ext (q)+

TFA(q) +Dwater +Doil(q),
(6.27)

we first measure the flows v(x, y, t) within the AN film through PIV (see Meth-
ods Section 6.1.5). Afterwards, following what has been explained in Methods
Section 6.4.8, we compute the 2D kinetic power spectrum E(qx, qy, t) for each
frame as:

E(qx, qy, t) =
A

8π2
1

NxNy

1

MxMy
|ṽ(qx, qy, t)|2. (6.28)

where we have used Eq. 6.24. Notice that the quantity in Eq. 6.24 is an energy
density per unit area. ṽ(qx, qy, t) is the discrete Fourier decomposition of size
Mx×My of the velocity field v(x, y, t) of size Nx×Ny (see footnote in Page 132)
obtained with the function fft2() in MatLab. We average all the 2D spectra
to obtain a temporal-averaged spectrum and perform an angular average.

E(q) =
A

8π2
1

NxNy

1

MxMy

∑
φ

q⟨E(φ, q, t)⟩∆φ, (6.29)

where ⟨·⟩ indicates the temporal average. The MatLab functions to compute
the 2D and 1D kinetic energy spectrum are available here and here, respectively.
You can also scan the QR in List of Codes.

The obtained E(q) are fitted to Eq. 3.1, which we rewrite here:

E(q) =
BqR4

∗ e
−q2R2

∗/2
[
I0
(
q2R2

∗/2
)
− I1

(
q2R2

∗/2
)]

[q + ηoil/ηn tanh(qHoil) + ηwater/ηn coth(qHwater)]
2 , (6.30)

where B is a prefactor; R∗ is the mean vortex radius; I0 and I1 are modified
Bessel’s functions of the first kind of order 0 and 1; ηn is the 2D AN’s shear
viscosity; ηoil and ηwater are the 3D oil and water layers viscosities; and Hoil and
Hwater are the oil and water layers thicknesses. As fitting parameters we have
B, R∗, and ηn. A good and reasonable convergence of the fitting can be hard
to reach. Thus, we introduce the following starting fitting points:

• For B: the mean value of E(q)

• For R∗: the value extracted from the exponential fitting to the distribution
of vortex areas (see Methods Section 6.4.5)

• For ηn: 10−6 Pa·s·m
The fittings are performed with Mathematica v10 [166].
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6.4.10 Elastic energy power spectrum

The elastic energy power spectrum Fd(q) is computed as E(q), but in this case,
instead of the velocity field, we use the Q tensor.

Fd(q) = A
A

8π2
1

NxNy

1

MxMy

∑
φ

q

〈[
|∂̃xQxx(φ, q, t)|2 + |∂̃xQxy(φ, q, t)|2+

|∂̃yQxy(φ, q, t)|2 + |∂̃yQyy(φ, q, t)|2
]〉

∆φ,

(6.31)

where A is the elastic constant in the one-constant approximation, and Qαβ is
the nematic tensor defined in Eq. 6.3. Note that this energy corresponds to
the elastic contribution in the Landau-de-Gennes free energy [125], and that
the elastic constant A, differs from the elastic constant in the Frank free energy
Fn = K/2

´
(∂αnβ)(∂αnβ), by a factor of 2: A = K/2. All the derivatives are

computed using Eq. 6.14.

6.4.11 Energy balance

To compute the energy balance, we include the different terms derived in Ap-
pendix C.1 and compute the respective energy spectra. To do so, as we did for
E(q) and Fn(q), we refer to Eq. 6.26, but, in this case, we replace |f̃(φ, q, t)|2 by
the contraction of the terms involved in the energy term. To put an example,
if we want to compute the power spectrum of the energy injection I, which is
given by Eq. C.27 that we rewrite here:

I =

ˆ
αvαβQαβd2r, (6.32)

we will need to substitute |f̃(φ, q, t)|2 by Re
[
ṽαβ(φ, q, t)Q̃αβ(φ, q, t)

]
, where Re[·]

indicates the real part1. Then, the spectrum of the energy injection, I(q) reads:

1When performing this calculus, it is better to specify in the code to only take the
real part of the operation. If the sampling frequency is high enough, the result will be
the same. However, when the sampling frequency and the length of the signal are lim-
ited, the output might have a non-vanishing imaginary part. I(q) must be real because
first, I is real and second because of the properties of the Fourier transform and complex
numbers: since

∑N−1
n=0 f(xn)g(xn) =

∑N−1
k=0 F (qk)G

∗(qk) =
∑N−1

k=0 F ∗(qk)G(qk), we can write∑N−1
n=0 f(xn)g(xn) = 1/2

∑N−1
k=0 F (qk)G

∗(qk) + 1/2
∑N−1

k=0 F ∗(qk)G(qk). Taking into account
that Re[F ∗(qk)G(qk)] = Re[F (qk)G

∗(qk)] and Im[F ∗(qk)G(qk)] = −Im[F (qk)G
∗(qk)], we can

then write
∑N−1

n=0 f(xn)g(xn) = Re
[∑N−1

k=0 F (qk)G
∗(qk)

]
.
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I(q) = α
A

4π2
1

NxNy

1

MxMy

∑
φ

qRe
[
⟨2ṽxx(φ, q, t)Q̃∗

xx(φ, q, t)+

2ṽxy(φ, q, t)Q̃∗
xy(φ, q, t)⟩

]
∆φ,

(6.33)

where we have already applied the Einstein summation convention and the sym-
metries of vαβ and Qαβ (vxx = −vyy, vxy = vyx, Qxx = −Qyy, Qxy = Qyx).
Proceeding analogously with the rest of the terms we obtain:

1. Shear dissipation, Ds(q) (Eq. C.24)

Ds(q) = −η A

2π2
1

NxNy

1

MxMy

∑
φ

q⟨2|ṽxx(φ, q, t)|2 + 2|ṽxy(φ, q, t)|2⟩∆φ

(6.34)

2. Rotational dissipation, Dr(q) (Eq. C.25)

Dr(q) = −γ−1 A

4π2
1

NxNy

1

MxMy

∑
φ

q⟨2|H̃xx(φ, q, t)|2+2|H̃xy(φ, q, t)|2⟩∆φ

(6.35)

3. Flow alignment energy transfer, TFA(q) (Eq. C.26)

TFA(q) = ν
A

4π2
1

NxNy

1

MxMy

∑
φ

qRe
[
⟨2ṽxx(φ, q, t)(H̃∗

xx − S̃H
∗
xx)(φ, q, t)+

2ṽxy(φ, q, t)(H̃∗
xy − S̃H

∗
xy)(φ, q, t)⟩

]
∆φ

(6.36)

4. Dissipation due to the water 3D layer

Dwater(q) = −ηwater
A

2π2
1

NxNy

1

MxMy

∑
φ

〈
I1,water(q)ṽαβ(φ, q, t)ṽ∗αβ(φ, q, t)+

I2,water(q)|ṽ(φ, q, t)|2
〉
∆φ,

(6.37)

with

I1,water(q) = −Hwater

2
csch2(qHwater) +

1

2q
coth(qHwater), (6.38a)

I2,water(q) =
1

2
q2Hwater csch2(qHwater) +

1

2
q coth(qHwater)]. (6.38b)
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5. Dissipation due to the oil 3D layer

Doil(q) = −ηoil
A

2π2
1

NxNy

1

MxMy

∑
φ

〈
I1,oil(q)ṽαβ(φ, q, t)ṽ∗αβ(φ, q, t)+

I2,oil(q)|ṽ(φ, q, t)|2
〉
∆φ.

(6.39)

In the case of the dissipation due to the oil layer, I1,oil(q) and I2,oil(q)
depend on the experimental setup used. This is because in the open setup,
the oil layer is in contact with the air, whereas in the flow cell arrangement,
this layer is in contact with a substrate. Thus, in the former we can
consider free boundary conditions and in the latter we can assume no-slip
boundary conditions.

Open system (PDMS pool)

I1,oil(q) =
Hoil

2
sech2(qHoil) +

1

2q
tanh(qHoil) (6.40a)

I2,oil(q) = −1

2
q2Hoil sech2(qHoil) +

1

2
q tanh(qHoil). (6.40b)

Closed system (Flow cell)

I1,oil(q) = −Hoil

2
csch2(qHoil) +

1

2q
coth(qHoil), (6.41a)

I2,oil(q) =
1

2
q2Hoil csch2(qHoil) +

1

2
q coth(qHoil)]. (6.41b)

Notice that these last two equations are the same as Eq. 6.38, but changing
Hwater and ηwater by Hoil and ηoil.

To facilitate the computation of all these terms, we rewrite in Table 6.4 the
meaning of the different terms appearing in the equations below.

The velocity field v obtained through PIV has a lower resolution than the
Q tensor field, extracted from the birefringence imaging techniques described
in Chapter 5. Consequently, we need to resize Q. To do so, we interpolate
Q using the coordinates of v. All the derivatives are obtained using Eq. 6.14
and then filtered using Gaussian filter with standard deviations between 2 and
3 pixels. Since here we are computing Fourier decompositions, we could obtain
the derivative by the corresponding multiplication of iqx and iqy. Nevertheless,
we have found a better performance when the derivatives are calculated in the
real space (see Appendix D.4).
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Term Description

vxx = ∂xvx Term xx of the symmetric part of the
deviatoric stress tensor

vxy = (∂xvy + ∂yvx)/2 Term xy of the symmetric part of the
deviatoric stress tensor

Hxx = A∇2Qxx Term xx of the molecular tensor

Hxy = A∇2Qxy Term xy of the molecular tensor

S = 2
√
Q2

xx +Q2
xy Scalar order parameter

Table 6.4: Meaning of the terms in Eqs. 6.32 to 6.41.

6.4.12 Filtering of the nematic director field

To filter the nematic orientational field, we cannot directly apply a conventional
filter. This is because of the discontinuity at 0 and π. To overcome this problem,
we can parameterize the orientation in terms of the Q tensor, that naturally
contains the nematic symmetry. Hence, we first compute Q as

Qxx = K ∗ cos(2θ)/2, (6.42a)

Qxy = K ∗ sin(2θ)/2, (6.42b)

where K is the filter kernel and ∗ indicates a convolution. Usually, we apply a
disk filter (or mean filter) or a gaussian filter. Then, we can obtain the order
parameter S as

S = 2
√
Q2

xx +Q2
xy, (6.43)

and the nematic orientation

θ = atan(Qxy, 0.5S +Qxx) (6.44)

The corresponding MatLab code (winding.m) used to compute the winding
number can be found in here. You can also scan the QR in List of Codes
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Conclusions

This thesis has experimentally addressed some open questions regarding 2D
active nematic turbulence. Here, we list the main conclusions we have extracted
from the present work:

• We have studied the onset of the primary bend instability, which leads
to active nematic turbulence. In some experiments, we have been able to
observe a cascade of instabilities prior to the final chaotic state. Interest-
ingly, the characteristic length appearing during the first instability is still
retained in the subsequent instabilities.

• The quantitative analysis of the orientational instability has demonstrated
a quadratic or quasi-quadratic trend of the instability’s leading growth rate
with the associated wave number.

• To rationalize our experimental results, we have employed linear stability
analyses that predict that the coupling of the AN with the two adjacent
fluid layers, as happens in our experiments, endows the system with a
wavelength selection mechanism. Moreover, according to this analysis,
the selected wavelength follows the well-recognized scaling of the active
length scale, ℓa, with the activity coefficient α and the elastic constant K:
ℓa ∼

√
K/α. This highlights that the wavelength selected during the first

instability is already an anticipation of the final characteristic wavelength.

• Although the theory allows us to have a taste of the possible mechanism
of wavelength selection, it only partially captures some of our experimen-
tal results. This could also be attributed to our need for more accurate
knowledge of most AN’s material parameters.
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• We have also studied some statistical properties of the AN in its fully de-
veloped turbulent regime. More particularly, we have measured the kinetic
energy spectrum, E(q) of the flows within the AN and have demonstrated
the appearance of different scaling regimes.

• With our experimental measurements, we have confirmed scaling laws with
universal exponents previously predicted by simulations and theory: a
E(q) ∼ q−1 for intermediate q and a E(q) ∼ q−4 for large q. Moreover, we
have discovered a new scaling regime at small q: E(q) ∼ q.

• By controlling the viscosity of the oil above the AN, we have been capable
of tuning the crossover between the different scaling regimes. The two
extreme scalings, i.e., E(q) ∼ q and E(q) ∼ q−4 at small and large wave
numbers, respectively, appear in all the experiments.

• Using a hydrodynamic theory that effectively introduces the coupling of
the active film with the two adjacent passive layers, we have demonstrated
that the newly unveiled scaling regime stems from such coupling. More-
over, this theory potentially predicts extra scaling regimes unseen in our
experiments, but that could be observed in other experimental realizations
of active fluids.

• The hydrodynamic theory correctly predicts the kinetic energy spectrum
of the experiments performed at intermediate oil viscosities. Nonetheless,
at low and high oil viscosities, the fitting of the theory fails. Therefore,
we propose different features that could be included in new hydrodynamic
theories devoted to eliciting the kinetic energy spectra for the full range
of oil viscosities.

• From the fitting of the theory to the kinetic energy spectra obtained in the
experiments with intermediate oil viscosities, we have inferred an unknown
material parameter, namely the nematic viscosity. The latter appears to
be constant for the range of validity of the theory.

• We have experimentally measured the different terms contributing to the
free energy balance of the AN to assess the presence of energy cascades
in 2D active nematic turbulence, as occurs in inertial turbulence. One
of the biggest limitations we have envisaged during this project is, again,
the lack of knowledge of most of the AN’s material parameters. However,
by exploiting some available parameters and predicted scaling relations,
we have been able to obtain a free energy balance that, despite not being
zero at all length scales, consistently integrates to zero over the whole
range of the wave numbers. To evaluate whether the not-vanishing free
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energy at all length scales is either a signature of an energy cascade or the
result of experimental uncertainty, we have resorted to the computation of
the energy balance from simulations of an isolated AN. We have observed
that the obtained energy balance highly depends on the data treatment.
Also, the balance does not completely vanish at all lengths, like in the
experiments. Therefore, we cannot reach a firm conclusion on whether
there are energy cascades in active nematic turbulence.

• For the last experiments devoted to investigating the energy cascades, we
have engineered a new polarimetry technique coupled with fluorescence
imaging. Such a technique is based on variable liquid crystal retarders that
can be easily commanded with a computer. The acquisition of images at
different retardance of the liquid crystal slab allows for the unambiguous
determination of the local orientation of birefringent samples, such as the
AN. Simultaneously, we acquire fluorescence images from which we can
obtain the AN’s velocity field.

• The temporal resolution we attain with the LC-based polarimeter substan-
tially betters other similar and well-known commercial implementations.
This setup will be of broad interest among the soft matter community.

• In addition to the LC-based polarimeter, we have implemented another
polarimetry technique that exploits a polarization-sensitive camera. The
advantage of this setup is that we only require one image to resolve the
local orientation of a birefringent material. In this way, the temporal res-
olution is only limited by the camera’s maximum frame rate. In addition,
the retardance images generated with this technique are comparable to
those obtained through epi-fluorescence imaging.
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Stability of an extensile active
nematic aster

A.1 Dynamic equations of an active nematic. Vecto-
rial description in absence of defects

The dynamics of an isolated 2D active fluid with a velocity field v⃗ and a nematic
director n⃗ = (cos θ sin θ) can be described using a hydrodynamic theory that
accounts for conservation laws and symmetries within the system. An example
of such theories is the so-called active gel theory [100, 114, 115]. In such theory,
the momentum balance equation in the Einstein summation convention (see Info
Box A.1) reads:

ρ(∂t + vβ∂β)vα = −∂αP + ∂β(σαβ + σaαβ), (A.1)

where P is the pressure and acts as a Lagrange multiplier to enforces the in-
compressibility condition ∂αvα = 0. σαβ and σaαβ are the symmetric and anti-
symmetric parts of the stress tensor, respectively. Since the system of interest
here is at low Reynolds number, we can neglect the left hand side of Eq. A.1,
which corresponds to the inertial forces, and momentum balance is reduced to
force balance.

0 = −∂αP + ∂β(σαβ + σaαβ), (A.2)
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Chapter A. Stability of an extensile active nematic aster

This is the Stokes limit.The symmetric and the antisymmetric part of the stress
tensor are defined by:

σαβ = 2ηvαβ +
ν

2
(nαhβ + hαnβ − nγhγδαβ) − αqαβ, (A.3a)

σaαβ =
1

2
(nαhβ − hαnβ), (A.3b)

where η is the shear viscosity, vαβ = 1/2(∂αvβ + ∂βvα) is the symmetric part
of the strain rate tensor. ν is the flow alignment coefficient, which controls the
coupling of the nematic field and the flow. hα = −δFn/δnα is the orientational
field defined by the functional derivative of the Frank free energy Fn. The active
term is controlled by the activity coefficient α. This term can be either positive
or negative depending on the active stresses exerted by the active particles, here
the kinesin clusters on the MT. In this formulation, if the stresses are extensile,
as in the system of interest in this thesis, α is positive (α > 0), whereas if the
stresses are contractile, like in the actin-myosin system in [167], α is negative
(α < 0). qαβ = nαnβ − 1/2δαβ is the nematic tensor. Note that in this theory
the modulus of n⃗ is fixed at |n⃗| = 1 and there is not a scalar order parameter,
thus topological defects are not considered. This approximation is good as far
as the system is below the nematic/isotropic transition temperature [124]. The
Frank free energy is given by

Fn =

ˆ [
K1

2
(∇ · n⃗)2 +

K3

2
(n⃗× (∇× n⃗))2 − h0∥n⃗ · n⃗

]
d2r⃗. (A.4)

where K1 and K3 are the splay and bend elastic constants, respectively and h0∥
is a Lagrange multiplier that ensures |n⃗| = 1. This term can be neglected by
parameterizing the director through the polar angle θ (n⃗ = (cos θ, sin θ)) in such
a way that the constraint |n⃗| = 1 is taken into account [134]. In this expression
Eq. A.4, there is no twist term because it is for a 2D system. The molecular
field then reads

hx = K1[∂
2
xnx + ∂x∂yny] +K3[∂

2
ynx − ∂x∂yny] (A.5)

hy = K1[∂
2
yny + ∂x∂ynx] +K3[∂

2
xny − ∂x∂ynx], (A.6)

where we have already not included the Lagrange multiplier.
Finally, the dynamics of the director field is given by:

D

Dt
nα = (∂t + vβ∂β)nα + ωαβnβ =

1

γ
hα − νvαβnβ, (A.7)

with γ the rotational viscosity and ωαβ the antisymmetric part of the strain rate
constant or the vorticity tensor which reads:

ωαβ =
1

2
(∂αvβ − ∂βvα) (A.8)
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A.1 Dynamic equations of an active nematic. Vectorial description in absence
of defects

Infobox A.1: Einstein summation convention

The Einstein summation is a convention to simplify mathematical expres-
sions including summations over vectors, matrices, and tensors. Accord-
ing to this convention:

1. Repeated indexes imply summation over.

2. Each index can appear in one term maximum twice.

Hence, for example the dot product of two 2D vectors can be written as:

a⃗ · b⃗ = aibi = a1b1 + a2b2

or, the contraction of two tensors, also known as Frobenius inner product
or double dot product:

A : B = Tr(ABT ) = aijbij = a11b11 + a12b12 + a21b21 + a22b22

Within the theory of active gels, it is very common to use the one constant
approximation (K1 = K3 = K), this leads Eq. A.4 to the following expression:

Fn =

ˆ
K

2
(∇n⃗)2d2r⃗ =

ˆ
K

2
(∂αnβ)(∂αnβ) =

ˆ
K

2
|∇θ|2d2r⃗. (A.9)

In this case, the orientation or molecular field reads:

hα = −δFn

δnα
= K∇2nα (A.10)

Usually hα is written in terms of its parallel (h∥ = n⃗ · h⃗) and perpendicular

(h⊥ = n⃗× h⃗) components with respect to n⃗:

hx = h∥ cos θ − h⊥ sin θ (A.11a)

hy = h∥ sin θ + h⊥ cos θ (A.11b)

h⊥ = K∇2θ (A.11c)

h∥ = −K|∇θ|2 (A.11d)

Combining properly the components x and y of the dynamics of the director in
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Eq. A.7 it is possible to arrive at the following simplified expressions:

∂tθ =
∂xvy − ∂yvx

2
+

1

γ
h⊥ +

ν

2
sin 2θ(∂xvx − ∂yvy) − ν

2
cos 2θ(∂xvy + ∂yvx) − (v⃗ ·∇)θ

(A.12)

0 =
1

γ
h∥ − ν∂xvx cos 2θ − ν

2
sin 2θ(∂xvy + ∂yvx)

(A.13)

In our experiments, we see how a radially aligned active nematic is unstable
to bend perturbations that rapidly grow driven by active stresses. To study
such instability, we start by the simplified picture of a linearly aligned active
material following the scheme in [100, 104]

A.2 Linear stability analysis

Consider an active nematic film confined within a channel of length much larger
than its width L. For an unconfined system L→ ∞. This geometry allows us to
assume that the system is translationally invariant along the long axis, which we
take as the x-direction. This implies that ∂xvx = 0, and, consequently, due to
the incompressibility of the fluid ∂yvy = 0. Moreover, mass conservation entails
that vy = 0. Then, under these conditions, the force balance along the x axis
reads

0 = ∂yσxy + ∂yσ
a
xy (A.14)

Also, if we assume hydrodynamic free boundary conditions, σxy(y = 0)+σaxy(y =
0) = σxy(y = L) + σaxy(y = L) = 0, the transverse stress must vanish:

0 = σxy + σaxy = η∂yvx +
ν

2
(h∥ sin 2θ + h⊥ cos 2θ) − α

sin 2θ

2
+
h⊥
2

(A.15)

Taking Eq. A.13 and imposing the boundary conditions for this problem,
the orientation dynamics read:

0 =
1

γ
h∥ − ν

∂yvx
2

sin 2θ, (A.16)

∂tθ =
1

γ
h⊥ − ∂yvx

2
(ν cos 2θ + 1). (A.17)

Introducing Eq. A.16 into Eq. A.15

∂yvx =
−2h⊥(ν cos 2θ + 1) + 2α sin 2θ

4η + ν2γ sin2 2θ
. (A.18)
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A.2 Linear stability analysis

Now, inserting this last equation Eq. A.18 into Eq. A.17 we obtain a nonlinear
differential equation for the angle θ

∂tθ =
h⊥
γ

4η + γ(ν2 + 2ν cos 2θ + 1)

4η + γν2 sin2 2θ
− α sin 2θ(ν cos 2θ + 1)

4η + γν2 sin2 2θ
, (A.19)

and, from Eq. A.11,
h⊥ = K∂2yθ. (A.20)

The steady states of Eq. A.19 are then given by an homogeneous alignment with
θ = 0, θ = π/2 and the angle θ0 satisfying (ν cos 2θ0 + 1) = 0. The latter case is
a stable configuration, independently to the material parameters of the system,
therefore, we only focus on the former cases. Here, for the symmetry of the
problem, the only wave numbers we can consider are those oriented along the
y-direction (qy). Hence, to study the stability of longitudinal (transversal) mod-
ulations, we have to take θ = π/2 (θ = 0). Longitudinal modulations result into
bend-dominated deformations whereas transversal modulations produce splay-
dominated deformations. For θ = π/2, when the material is aligned along the y
axis, we introduce angle perturbations θ = π/2 + δθ, whose linearized dynamics
reads:

∂tδθ =
K

γ

(
1 +

γ

4η
(ν − 1)2

)
∂2yδθ −

α(ν − 1)

2η
δθ, (A.21)

where we have used cos(2(π/2 + δθ)) ≈ −1, sin(2(π/2 + δθ)) ≈ −2δθ and |δθ| ≪
1.

Considering that the solution of Eq. A.21 has the form of δθ(y, t) = Y (y)T (t),
it is possible to see δθ(y, t) =

∑∞
n=0 δθne

Ωt cos(qny). Then, the growth rate Ω
takes the form

Ω = −
Kq2y
γ

(
1 +

γ

4η
(ν − 1)2

)
− α(ν − 1)

2η
. (A.22)

Since K > 0 and γ > 0, the first term in Eq. A.22 is always negative and, thus,
it damps any perturbation. In contrast, the second term can be either positive
or negative depending on α and ν. For an extensile active system (α > 0), as
the one in our experiments, small-wave number longitudinal perturbations grow
exponentially if ν < 1. ν in our experiments should be negative since the MTs
are rod-like (ν < 0) and they should be in the flow-aligning regime (|ν| > 1),
i.e. they tend to align at a unique angle from the flow direction [101]1.

Finally, the critical wave number is given by

qc =

(
− γ

K

α(ν − 1)

2η

)1/2(
1 +

γ

4η
(ν − 1)2

)−1/2

(A.23)

1In this article by Edwards et al., the authors use the coefficient λ for the flow alignment
parameter, which has the opposite sign of ν (ν = −λ)
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y

x

L

a)

b)

Longitudinal fluctuations. Bend instability 

Transversal fluctuations. Splay instability 

qy

qy

Figure A.1: Schematic representation of the two main fluctuations in
aligned active fluids. a) Longitudinal fluctuations trigger the bending of an
aligned active fluids. These fluctuations are seen in systems with extensile stresses.
b) Transversal fluctuations that lead to splay deformations of an aligned active
fluids. These fluctuations are seen in systems with contractile stresses. Both ge-
ometries are represented following the geometry for the problem here presented.
The long axis is the x-axis, and y has a size of L, which, for an unconfined sys-
tem L→ ∞. To study longitudinal (transversal) fluctuations we must consider an
initial alignment along the y-axis (x-axis). The wave number qy associated to the
fluctuations is indicated as a green arrow.
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and the wave number of maximum growth rate is q∗ = 0.

A.3 Linear analysis with an axial symmetry

Before starting, I must mention that this stability analysis has been performed
by Ricard Alert.

We start by considering a system with axial symmetry. Thus, the incom-
pressibility condition using the polar coordinates r and φ looks

1

r
∂r(rvr) = 0, (A.24)

which has a solution vr(r) = A/r. In order to avoid divergence at the center, we
impose A = 0 and, hence v⃗ = (0, vφ. We also write the director field in terms of
the angle ψ with respect to the radial direction:

nr = cosψ, nφ = sinψ. (A.25)

Using polar coordinates, the strain rate tensor reads (see Info Box A.3) vrφ =
vφr = 1

2

(
∂rvφ − vφ

r

)
and ωrφ = −ωφr = 1

2r∂r(rvφ) = 1
2

(
∂rvφ +

vφ
r

)
.

As in the previous section, we compute the force balance along the φ di-
rection taking into account the gradient of tensor in polar coordinates (see Info
Box A.3):

0 =
1

r2
∂r
[
r2
(
σφr + σaφr

)]
, (A.26)

Hence,
(
σφr + σaφr

)
= A/r2. As before, to avoid divergence at the center, we

impose A = 0. Thus,

0 = σφr + σaφr = 2ηvαβ +
ν

2
(h∥ sin 2ψ + h⊥ cos 2ψ) − α sin 2ψ

2
− 1

2
h⊥ (A.27)

and the dynamics of the director can be reduced to

0 =
1

γ
h∥ − νvrφ sin 2ψ, (A.28)

∂tψ =
1

γ
h⊥ − vrφν cos 2ψ + ωrφ, (A.29)

where, in this case, h∥ = (hr cosψ + hφ sinψ) and h⊥ = (−hr sinψ + hφ cosψ).

∂tψ =
1

γ
h⊥ − vrφ(ν cos 2ψ − 1) (A.30)
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Combining Eq. A.27 with Eq. A.28, we obtain the following expression for vrφ:

vrφ =
−h⊥(ν cos 2ψ − 1) + α sin 2ψ

4η + γν2 sin2 2ψ
, (A.31)

and introducing this last equation into Eq. A.29

∂tψ =
h⊥
γ

4η + γ(ν2 − 2ν cos 2ψ + 1)

4η + γν2 sin2 2ψ
− α sin 2ψ(ν cos 2ψ − 1)

4η + γν2 sin2 2ψ
. (A.32)

To compute h⊥, we need to write the Frank Free energy (Eq. A.4) in polar
coordinates

Fn =

ˆ 2π

0

ˆ [
K1

2

(
1

r
∂r(r cosψ)

)2

+
K3

2

(
1

r
∂r(r sinψ)

)2
]
rdrdφ, (A.33)

Thus,

hr = −δFn

δnr
= K1

[
−1

r
sinψ∂rψ − 1

r2
cosψ − sinψ∂2rψ − cosψ(∂rψ)2

]
(A.34)

hφ = −δFn

δnφ
= K3

[
1

r
cosψ∂rψ − 1

r2
sinψ + cosψ∂2rψ − sinψ(∂rψ)2

]
(A.35)

and

h⊥ = −δFn

δψ
= (K + ∆K cos2 ψ)

(
∂2rψ +

1

r
∂rψ

)
− ∆K

2
sin 2ψ

(
1

r2
+ (∂rψ)2

)
,

(A.36)
where K = K1 and ∆K = K3 −K1.

Then, the stationary solutions of Eq. A.32 are ψ = 0 and ψ = π/2. Note
that the steady state with ψ = 0 corresponds to the geometry of an aster, like
the one we get in our experiments. We introduce angle perturbations δψ around
ψ = 0 described by the following linearized dynamics

∂tδψ =
1

γ

(
1 +

γ

4η
(ν − 1)2

)
δh⊥ − α(ν − 1)

2η
δψ, (A.37)

with

δh⊥ =

[
(K + ∆K)

[
∂2r +

1

r
∂r

]
− ∆K

r2

]
δψ. (A.38)

Combining these last two equations, we get the following close dynamics[
γ

1 + γ
4η (ν − 1)2

]
∂tδψ = (K + ∆K)

[
∂2r +

1

r
∂r −

n2

r2
+

1

ℓ2

]
δψ. (A.39)
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Taking

n2 =
∆K

K + ∆K
, and

1

ℓ2
=

2γ

4η + γ(ν − 1)2
α(ν − 1)

K + ∆K
(A.40)

Notice that K and ∆K have units of N·m≡ Pa·m3, γ and η of Pa·s·m, α of
Pa·m, and ν is dimensionless. Hence, ℓ2 has units of area and it can be either
positive or negative depending on the sign of α(ν − 1).

As we did in the previous section, we consider that the solution to Eq. A.39
can be separated into the product of a function of t and a function of r such
as δψ = X(r)T (t). Here, T (t) =

∑∞
n=0 Tne

Ωnt, which means that perturbations
can grow or decay exponentially with a growth rate given by

Ω =
Γ

γ

(
1 +

γ

4η
(ν − 1)2

)
(A.41)

As for the function of r

(K + ∆K)

[
∂2r +

1

r
∂r −

n2

r2
+

1

λ2

]
X(r) = 0 (A.42)

with
1

λ2
=

1

ℓ2
− Γ

K + ∆K
(A.43)

The solutions to Eq. A.42 are the two Bessel function X(r) = Bn(r/λ) of order
n and −n. To find Γ, and hence see the stability of the perturbations, we need to
impose some boundary conditions. For this particular problem, we will assume
that the aster at a given radius R is undistorted, this is δψ(R) = 0. This picture
corresponds to having an aster that merges with the rest of the active gel at
r = R. This condition Bn(R/λ) = 0, sets a condition on the parameter λ,
namely zm = R/λ, where zm is a zero of the Bessel function. This discretizes
both λ and Ω, which are given by

λm =
2π

qm
=
zm
R
, (A.44a)

Ωm = −K + ∆K

γ

q2m
4π2

(
1 +

γ(ν − 1)2

4η

)
− α(ν − 1)

2η
, (A.44b)

where the subindex m indicates the allowed discrete set of growth rates and
wavelengths. Then, the growth rate of the fastest growing mode is

Ω1 = −K + ∆K

γ

z21
R2

(
1 +

γ(ν − 1)2

4η

)
− α(ν − 1)

2η
, (A.45)
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which happens for a finite wavelength λ1 = R/z1. In our experiments, α > 0.
Therefore, the aster disposition is unstable to small wave number perturbations
if ν < 1. We should recognize that the discretization of the relation dispersion is
the result of the imposed boundary conditions rather than the geometry itself.
Furthermore, even if we consider the discretization of the dispersion relation
to be the selection mechanism of the wavelength, given that the most unstable
mode is λ1 = R/z1, we would only see one turn of the director field. In other
words, we would have seen only one kink in our experiments.

Infobox A.2: Bessel functions

Bessel functions are solutions to partial differential equations of the form:

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (A.46)

These equations are widely used in physics, especially in problems in-
volving radial or cylindrical geometries [168]. There are different kinds of
Bessel functions, but the most studied are the Bessel function of the first
kind Jn(x)

It is interesting to mention that the growth rate only depends on the bend
elastic constant (K + ∆K = K3). This is because the aster geometry is a pure
splay state. In contrast, if the initial distribution were a vortex, a pure bend
geometry, the growth rate would only depend on the splay elastic constant.
However, the spatial distribution of the perturbations depends on both elastic
constants through the order of the Bessel function n. In fact, if ∆K ≥ 0, n
is real and then the Bessel function Bn(r/λ) is a Bessel function of the first
kind Jn(r/λ). Another possible solution to Eq. A.42 for real n could be a
Bessel function of the second kind Yn, but these type of functions diverge at
0. On the other hand, if ∆K < 0, the order of the Bessel function Bn(r/λ)
becomes imaginary and then the solution is not a Bessel function of the first
kind anymore. This is because these functions Jn are not real if n is imaginary.
We, therefore, need to use another set of Bessel functions, which are a linear
combination of Bessel functions of the first kind [169]

Fn(r) =
1

2
sec(nπ/2){Jn(r/λ) + J−n(r/λ)} (A.47)

Gn(r) =
1

2
cosec(nπ/2){Jn(r/λ) − J−n(r/λ)} (A.48)

Note that if ∆K = 0, the relation between the growth rate and the wave
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number given by A.44b is the same as in the problem with a linear geometry
(Eq. A.22).

Infobox A.3: Operators in polar coordinates

Polar coordinates are very useful to mathematically describe systems with
axial or radial symmetry. With this system, any point on a plane is
represented with a distance (r) from a reference point and an angle (φ)
from a reference angle.
Due to the new geometry, some operators can change from the cartesian
coordinate system. Here we list some of the most important operators:

Operator
2D cartesian co-
ordinate system

Polar coordinate system

Gradient
∇F [168]

∂xF êx + ∂yF êy ∂rF êr + 1
r∂φF êφ

Divergence of a
vector
∇ · f⃗ [168]

∂xfx + ∂yfy
1
r∂r(rfr) + 1

r∂φfφ

Curl of a vector
∇× f⃗ [168]

∂yfx − ∂xfy
1
r (∂r(rfφ) − ∂φfr)

Divergence of a
tensor
∇ · F

(
∂xFxx + ∂yFyx

∂xFxy + ∂yFyy

) (
∂rFrr + Frr

r + 1
r∂φFφr − Fφφ

r
1
r∂φFφφ + ∂rFrφ +

Frφ

r +
Fφr

r

)

Symmetric part
of the strain
rate tensor [170]

vαβ = 1
2(∂αvβ +

∂βvα)

vrr = ∂rvr
vφφ = vr

r + 1
r∂φvφ

vrφ = 1
2(∂rvφ − vφ

r + 1
r∂φvr)

vφr = vrφ

Antisymmetric
part of the
strain rate ten-
sor [170]

ωαβ = 1
2(∂αvβ −

∂βvα)

ωrr = 0
ωφφ = 0
ωrφ = 1

2(1r∂r(rvφ) − 1
r∂φvr)

ωφr = −ωrφ
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A.4 Linear stability analysis with external dissipa-
tion

In our experiments, the coupling of the AN layer with the surrounding 3D layers
is unavoidable. Thus, we assess whether this coupling can select a wavelength in
the linear regime of the instability. We proceed as in Appendix A.2, but in the
force balance equation we need to include two terms accounting for the viscous
stresses produced by the passive layers, fwater and foil:

0 = ∂βσαβ + ∂βσ
a
αβ + fwaterα + foilα (A.49)

with σαβ and σaαβ defined in Eq. A.3, and

fwater = −ηwater
∂uwater

∥ (r, z)

∂z

∣∣∣∣∣
z=0−

(A.50a)

foil = ηoil
∂uoil

∥ (r, z)

∂z

∣∣∣∣∣
z=0+

(A.50b)

Here, we have considered that the velocity fields of the passive layers are planar,
u(r, z) = u∥(r, z), with r = (x, y). With this geometry, the flow fields of the
3D layers are given by:

uext(r, z) = gext(z)v(r) (A.51)

where v(r) is the velocity of the AN, and gext(z) is a hydrodynamic function
that describes how the flow penetrates into the external fluid layers. Like in
Appendix A.2, we assume parallel alignment along the x axis of the active
material with transversal invariance. Thus, ∂xvx = ∂yvy = 0, vy = 0 and
f exty = 0. Then, the force balance along the x-direction has the form of:

0 = ∂yσxy + ∂yσ
a
xy + fwaterx + foilx =

η∂2yvx − α cos 2θ∂yθ + ∂y
h⊥
2

+
ν

2
∂y(h∥ sin 2θ + h⊥ cos 2θ)

+vx

(
−ηwater ∂zgwater(z)

∣∣
z=0−

+ ηoil ∂zg
oil(z)

∣∣∣
z=0+

) (A.52)

The dynamics of the orientational field, are the same as in Eqs. A.16 and A.17.
Thus, the stationary solutions of Eqs. A.16, A.17 and A.52 are θ = 0 or θ = π/2
and v = 0. In Appendix A.2, we have shown that extensile isolated active
nematics are unstable to longitudinal perturbations, which, for this problem,
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correspond to distortions of wavevector qy around θ = π/2. Thus, we now in-
troduce angle and velocity perturbations δθ and δv, respectively, around the
θ = π/2 and v = 0 stationary point.

∂tδθ =
K

γ
∂2yθ +

∂yδvx
2

(ν − 1) (A.53)

η∂2yδvx = −α∂yδθ + ∂y
K∂2yδθ

2
(ν − 1) − δvx

(
−ηwater ∂zgwater(z)

∣∣
z=0−

+ ηoil ∂zg
oil(z)

∣∣∣
z=0+

)
.

(A.54)

Combining Eqs. A.53 and A.54

∂tδθ =
K

γ
∂2yδθ +

(ν − 1)

2

[−α+K/2(ν − 1)∂2y ]∂2yδθ

η∂2y + (−ηwater ∂zgwater(z)|z=0− + ηoil ∂zgoil(z)|z=0+)
.

(A.55)
The solution to this last Eq. A.55, must be of the form δθ =

∑
q δθ̃e

(Ωt+iqyy),

which is the Fourier decomposition of δθ. We can take gwater and goil from
Eq. B.11, which are the prefactors of ṽ(q). Thus, we get

Ω = −K
γ
q2y

(
1 +

1

4

γ(ν − 1)2q2y
ηq2y + ηwater qy coth(qyHwater) + ηoil qy tanh(qyHwater)

)

−1

2

α(ν − 1)q2y
ηq2y + ηwater qy coth(qyHwater) + ηoil qy tanh(qyHwater)

.

(A.56)

As aforementioned, our system is extensile, implying that α > 0. Therefore, in
the presence of 3D fluid layers coupled to the 2D active layer, the latter can
suffer from flowing instabilities with longitudinal modulations if ν < 1. More
interestingly, the dispersion relation in Eq. A.56 showcases that the presence of a
fluid 3D passive layer endows the system with a wavelength selection mechanism
at a linear regime.
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Hydrodynamic theory of
active turbulence with
external dissipation

B.1 Hydrodynamic Green’s function

In practice, active nematics are not isolated systems. For instance, in our ex-
periments, an active nematic film is in contact with a thicker layer of water, and
an even thicker layer of oil. The water layer is underneath the active film and
supported by a solid substrate (a glass microscope slide), and the oil layer is in
contact with the air (see Fig. B.1). Thus, flows within the active layer induce
flows in both passive layers, which in turn modify or influence the flows in the
active film. This is why the kinetic energy spectrum of our active nematic can
be significantly modified by these two layers. To account for this, we can add
to the force balance equation in Eq. A.2 the viscous force densities exerted by
the water and the oil layers, fwater and foil, respectively:

0 = ηn∇2v −∇P + fwater + foil + f . (B.1)

Here, for compactness, we have grouped the stresses arising from the orienta-
tional order of the nematic film, including elastic, flow-alignment, and active
stresses into f . Note that, as in Appendix A.1, we have neglected the inertia
terms.

Now, as in [121], we introduce the Green’s function Gαβ that gives the
response of the active nematic layer coupled with the two passive fluid layers
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Oil

Active nematic
Water

Substrate

Air

0

Hoil

¡Hwater u(r,¡Hwater) = 0

@
z
u(r,Hoil) = 0

Figure B.1: Schematic represetation of the experimental setup and flow
fields (side view). The thicknesses of the fluid layers are not to scale. The actual
thickness of the active nematic film is h ≈ 2 µm, whereas the thicknesses of the
passive fluid layers are Hwater ≈ 40 µm and Hoil ≈ 3 mm. We treat the active
nematic as a two-dimensional film. White and black arrows represent the flow fields
in the active nematic film and in the passive fluid layers, respectively. The flow is
planar, and it penetrates into the oil and water layers, respectively in contact with
the air and a substrate. Thus, we assume free boundary conditions at z = Hoil and
no-slip boundary conditions at z = −Hwater. Here, we represent flow penetration
according to Eq. B.11 for a planar wave number q/(2π) = 5 ·10−3 µm−1, which lies
in the range of our experimental measurements. Image adapted from [96] under
Creative Commons Attribution 4.0 International license.

to a point force applied to the active layer. Similarly, we can also introduce
Green’s functions for the pressure, Hα, and the forces exerted by the passive
layers, Fwater

αβ and F oil
αβ. Thus, we can write

ηn∇2Gαβ(r, r′)−∂αHβ(r, r′)+Fwater
αβ (r, r′)+F oil

αβ(r, r′) = −δαβ δ(r−r′). (B.2)

where δαβ is the Kronecker delta. The Green’s function Gαβ must also obey the
incompressibility condition

∂αGαβ = 0. (B.3)

To obtain the velocity field, we need to sum all the contributions from the forces
at each point r′

vα(r) =

ˆ
Gαβ(r − r′)fβ(r′)dr′. (B.4)
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B.1 Hydrodynamic Green’s function

where the greek indices indicate spatial components, and summation over re-
peated indices (see Info Box A.1). Note that in Eq. B.4, the forces applied by
the passive fluids do not appear explicitly, nevertheless, they will be included
implicitly in Gαβ. To get rid of the integral, we can introduce the Fourier
decomposition of the velocity

v(r) =
1

(2π)2

ˆ
ṽ(q)eiq · rd2q, (B.5)

and invoke the convolution theorem

ṽα(q) = G̃αβ(q)f̃β(q). (B.6)

To find the Green’s function, we need to obtain first the viscous stresses
exerted by the water and oil layers on the active film

fwater(r) = −ηwater
∂u∥(r, z)

∂z

∣∣∣∣
z=0−

, (B.7a)

foil(r) = ηoil
∂u∥(r, z)

∂z

∣∣∣∣
z=0+

, (B.7b)

with u(r, z) the three-dimensional flow field of the passive fluids, and ∥ denotes
the components along the active film’s plane, which is at z = 0. Furthermore,
the viscous flows in the passive layers must obey the Stokes equation

ηwater∇2u−∇p = 0, −Hwater < z < 0, (B.8a)

ηoil∇2u−∇p = 0, 0 < z < Hoil, (B.8b)

where p is the three-dimensional pressure. These flows are induced by the
hydrodynamic coupling with the active film, thus velocity continuity entails that
at the interface all three fluids have the same velocity u∥(r, 0

+) = u∥(r, 0
−) =

v(r). We also consider these passive fluids to be incompressible, ∇ · v = 0,
thus, as shown in [171], the pressure p inside the surrounding fluids becomes
constant, ∇p = 0, and the out-of-plane component of the velocity vanishes
everywhere, uz = 0, i.e. the flow in the surrounding layers is planar u = u∥(r, z).
This simplifies significantly Eq. B.8. In fact, they take the form of the Laplace
equation and the components of u become harmonic.

ηwater∇2u∥ = 0, −Hwater < z < 0, (B.9a)

ηoil∇2u∥ = 0, 0 < z < Hoil, (B.9b)
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To obtain the Green’s function Gαβ in Fourier space, we need to solve Eq. B.9
in terms of the Fourier modes in 2d.

ηwater(∂
2
z − q2)ũ∥ = 0, −Hwater < z < 0, (B.10a)

ηoil(∂
2
z − q2)ũ∥ = 0, 0 < z < Hoil, (B.10b)

The solutions to Eq. B.10 should have the form of ũ∥(q, z) = Awater/oil(q) cosh(qz)+

Bwater/oil(q) sinh(qz). Assuming no-slip boundary conditions of the water layer
at the contact with the solid substrate, z = −Hwater, u∥(r,−Hwater) = 0 and
no-shear-stress boundary conditions of the oil layer at the contact with the air,
z = Hoil, ∂zu∥(r, z)|z=Hoil

= 0 and imposing u∥(r, 0
+) = u∥(r, 0

−) = v(r), the
solutions to Eq. B.10 become

ũ∥(q, z) = [cosh(qz) + coth(qHwater) sinh(qz)]ṽ(q),

−Hwater < z < 0,
(B.11a)

ũ∥(q, z) = [cosh(qz) − tanh(qHoil) sinh(qz)]ṽ(q),

0 < z < Hoil.
(B.11b)

Plugging this equation into the Fourier decomposition of Eq. B.7

f̃water(q) = −ηwater q ṽ(q)coth(qHwater) (B.12a)

f̃oil(q) = −ηoil q ṽ(q)tanh(qHwater) (B.12b)

Note that we are looking for the Green’s functions Fwater
αβ and F oil

αβ. We can thus

substitute ṽ by G̃αβ

F̃water
αβ (q) = −ηwater q G̃αβ(q)coth(qHwater) (B.13a)

F̃ oil
αβ(q) = −ηoil q G̃αβ(q)tanh(qHwater) (B.13b)

Now we have to find the Green’s function for the pressure Hα. Thus, we convert
Eq. B.2 to the Fourier space

−ηnq2G̃αβ − iqαH̃β + F̃water
αβ + F̃water

αβ = −δαβ (B.14)

Applying the gradient (iq·) and taking into account the incompressibility con-
dition qαṽα = 0

q2H̃β = −iqαδαβ = −iqβ (B.15)

Thus, inserting Eq. B.15 into Eq. B.14 and solving for G̃αβ

G̃αβ =
δαβ − qαqβ/q

2

ηnq2 + ηwater q (q)coth(qHwater) + ηoil q tanh(qHwater)
(B.16)
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Infobox B.1: Green’s functions

A Green’s function G(x, x0) at a point x0 of a linear differential operator
L is the solution of

LG(x, x0) = δ(x− x0), (B.17)

where δ denotes the Dirac delta function.
To have a more physical idea, we can imagine a given field u(x), whose
response to a force f(x) is defined by a linear operator L,

Lu(x) = f(x). (B.18)

If the force f(x) is a point force, which can be described by a Dirac delta
function, the field u(x) will take the form of the Green’s function of L

with particular boundary conditions [168, 172, 173].
One could consider that the force or the source f(x) is distributed into
many small point sources at different points, whose contributions can be
added up to obtain u(x) [173]. Hence, the interest in Green’s functions
relies on the fact that they provide a way to find the solution to partial
differential equations as

u(x) =

N∑
n=1

g(x, x0)f(x0)∆x0. (B.19)

If n→ ∞
u(x) =

ˆ
g(x, x0)f(x0)dx0. (B.20)

B.2 Kinetic energy spectrum

The kinetic energy per unit mass density E of a two-dimensional AN reads

E =
1

2

ˆ
v2d2r. (B.21)

Introducing the Fourier decomposition as in Eq. B.5, and applying the Parseval’s
theorem [174], we can obtain the following expression for the kinetic energy
spectrum E(q)

⟨E⟩ =
1

2

ˆ
1

(2π)2
⟨|ṽ(q|)⟩2d2q = A

ˆ
E(q)d2q, (B.22)
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where A is the area of the system, and ⟨·⟩ indicates a time average. If the
velocity correlations of the system are isotropic, we can angle-average E(q) as

E(q) =

ˆ 2π

0
qE(q, φ)dφ =

1

4πA
q⟨|ṽ(q)⟩ (B.23)

with q and φ the modulus and the azimuth of the wave number q, respectively.
To derive an analytical expression of the power spectrum, we need to invoke

Eqs. B.6 and B.16, that lead to

⟨|ṽ(q)|2⟩ = ⟨|G̃xxf̃x + G̃xyf̃y|2⟩ + ⟨|G̃yyf̃y + G̃yxf̃x|2⟩

=
1

q2Λ2(q)

〈
q2y |f̃x|2 + q2x|f̃y|2 − qxqy(f̃xf̃

∗
y + f̃yf̃

∗
x)
〉
,

(B.24)

where we have introduced the notation

Λ(q) ≡ ηnq
2 + ηoilq tanh(qHoil) + ηwaterq coth(qHwater). (B.25)

Now, to find a closed-form expression for the velocity, we need to eliminate the
source force density f . To this aim, we can utilize the force-balance condition
for an isolated active nematic, i.e. without external fluids:

ηn∇2vi −∇Pi + f = 0. (B.26)

Here, the subscript i indicates that the active nematic film is isolated. As it was
mentioned before, f accounts for the force density due to elastic, flow-alignment,
and active stresses. The source force must be equal for both the isolated and
the not-isolated film, as far as we ignore flow alignment. In this limit, f is not
modified by the velocity field.

As in [74], to eliminate the pressure, we take the curl of Eq. B.26 and intro-
duce the vorticity field ω = ẑ · (∇× v)

∇2ωi = − 1

ηn
ẑ · (∇× f). (B.27)

This equation in Fourier space is given by

−q2ω̃i(q) =
i

ηn
(qyf̃x − qxf̃y). (B.28)

Therefore, the vorticity spectrum of an isolated active nematic reads

⟨ω̃i(q) ω̃i(q)∗⟩ = ⟨|ω̃i(q)|2⟩ =
1

η2nq
4

〈
q2y |f̃x|2 + q2x|f̃y|2 − qxqy(f̃xf̃

∗
y + f̃yf̃

∗
x)
〉
.

(B.29)
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Comparing this last equation to Eq. B.24, we find the following expression, that
relates the velocity power spectrum of an active nematic in contact with two
passive layers to the vorticity spectrum of an isolated active layer

⟨|ṽ(q)|2⟩ =
η2nq

2

Λ2(q)
⟨|ω̃i(q)|2⟩. (B.30)

To obtain an expression for ⟨|ω̃i(q)|2⟩, we can draw on the mean-field theory
by Giomi [75]. In this theory, Giomi proposed as an ansatz that the vorticity
was decomposed into the superposition of N uncorrelated vortices with mean
vorticity ωv. Making use of simulations, the author observed that this mean
vorticity was independent of the vortex size and that the vortex areas followed
an exponential distribution with a characteristic area a∗ = πR2

∗, with R∗ the
mean vortex radius. With these assumptions, Giomi found the following closed-
form expression for the vorticity spectrum of an isolated active nematic layer

⟨|ω̃i(q)|2⟩ =
Nω2

vR
4
∗

8π2
e−q2R2

∗/2

[
I0

(
q2R2

∗
2

)
− I1

(
q2R2

∗
2

)]
, (B.31)

where I0 and I1 are modified Bessel’s functions of the first kind of order 0 and
1, respectively. Hence, plugging this last result to Eq. B.30 and ,

E(q) =
BqR4

∗ e
−q2R2

∗/2
[
I0
(
q2R2

∗/2
)
− I1

(
q2R2

∗/2
)]

[q + ηoil/ηn tanh(qHoil) + ηwater/ηn coth(qHwater)]
2 , (B.32)

where B = Nω2
v/(32π3A), which is independent of the wave number q. The

ratios between the 2D viscosity of the active nematic and the 3D viscosities of
the external fluid layers define two viscous lengths:

ℓwater = ηn/ηwater , ℓoil = η/ηoil. (B.33)

B.3 Predicted scaling regimes

To extract the scaling regimes predicted by Eq. B.32, we must analyze the
asymptotic behaviors of the functions involved, which I here list for x→ 0 and
x→ ∞.

For x → 0

1. Function e−x

e−x ≈ 1 − x (B.34)

179



B

Chapter B. Hydrodynamic theory of active turbulence with external
dissipation

2. Function I0(x)

I0(x) =
1

π

ˆ π

0
ex cos θdθ ≈ 1

π

ˆ π

0
(1 + x cos θ)dθ = 1 (B.35)

3. Function I1(x)

I1(x) =
1

π

ˆ π

0
ex cos θ cos θdθ ≈ 1

π

ˆ π

0
(cos θ + x cos2 θ)dθ =

x

2
(B.36)

4. Function tanhx

tanhx =
ex − e−x

ex + e−x
≈ x (B.37)

5. Function cothx

cothx =
ex + e−x

ex − e−x
≈ 1

x
(B.38)

Applying Eqs. B.34 to B.36, it is possible to see that the numerator of Eq. B.32
for small q scales as:

qe−q2 [I0(q
2) − I1(q

2)] ∼ q (B.39)

For x → ∞

1. Function e−x

e−x ≈ 0 (B.40)

2. Function I0 (see Info Box B.2)

I0(x) ≈ ex√
2πx

(
1 +

1

8x

)
(B.41)

3. Function I1

I1(x) ≈ ex√
2πx

(
1 − 3

8x

)
(B.42)

4. Function tanhx

tanhx =
ex − e−x

ex + e−x
≈ 1 (B.43)

5. Function cothx

cothx =
ex + e−x

ex − e−x
≈ 1 (B.44)
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Applying Eqs. B.40 to B.42, we can see that the numerator of the right-hand
side of Eq. B.32 for large q scales as:

qe−q2 [I0(q
2) − I1(q

2)] ≈ qe−q2 eq
2

√
2πq

2

q2
∼ q−2 (B.45)

Infobox B.2: Asymptotic expansion of modified Bessel func-
tions of the first kind

To find the asymptotic behavior of a modified Bessel function of the first
kind, we first need to introduce the full mathematical definition:

In(x) =
1

π

ˆ π

0
dθex cos θ cos(nθ). (B.46)

Thanks to Taylor’s series, we know that for x→ 0, ex ≈ 1 +x+x2/2 and
cosx ≈ 1 − x2/2 + x4/24. To be able to apply such expansions, we can
conveniently change variables θ = t/

√
x. Thus,

In(x) =
1

π

ˆ π
√
x

0

dt√
x

exp
(
x
(
cos
(
t/
√
x
)))

cos
(
nt/

√
x
)
. (B.47)

For large x, we can apply the expansions and cut at order x−1, so we are
left with:

In(x) ≈ 1

π
√
x

ˆ π
√
x

0
dt exp

(
x− t2

2
+

t4

24x

)(
1 − n2t2

2x

)
=

ex

π
√
x

ˆ π
√
x

0
dt exp

(
− t

2

2

)(
1 +

t4

24x

)(
1 − n2t2

2x

)
.

(B.48)

Finally, we can integrate this expression (we have used the integral cal-
culator in [175]). Note that we can use as integrations limits 0 and ∞
because we are looking at the asymptotic behavior (π

√
x → ∞). More-

over, erf(x) = 2/
√
x
´ x
0 e

−t2dt, where erf is Gauss’ error function [168],
rapidly goes to 1.

In(x) ≈ ex√
2πx

(
1 +

1

8x
− n2

2x

)
(B.49)

To derive this expression, I have used as a guide the post in [176]
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Chapter B. Hydrodynamic theory of active turbulence with external
dissipation

Now, to simplify the analysis, we can imagine there is only one external
fluid, and therefore, only one viscous length ℓv = ηn/ηext. With this simpler
configuration, we can still capture the effects of external fluid layers on the
active film. Within this framework, we can identify three different scenarios:

1. The thick-layer limit, qH ≫ 1

2. The thin-layer limit, qH ≪ 1, with free boundary conditions (in contact
with air)

3. The thin-layer limit, qH ≪ 1, with no-slip boundary conditions (in contact
with a substrate)

We will now discuss scenario by scenario, and utilize all the asymptotic behaviors
above listed to find the predicted scalings for each situation.

1. The thick-layer limit, qH ≫ 1

In this case, Eq. B.32 becomes

E(q) =
BqR4

∗ e
−q2R2

∗/2
[
I0
(
q2R2

∗/2
)
− I1

(
q2R2

∗/2
)]

[q + 1/ℓv]2
, (B.50)

Here, the boundary conditions are unimportant because both functions tanh(qH)
and coth(qH) are ≈ 1. Therefore, for qR∗ ≪ 1 and qℓv ≫ 1

E(q) ∼ q

q2
∼ q−1. (B.51)

For qR∗ ≪ 1 and qℓv ≪ 1

E(q) ∼ q

1/ℓ2v
= q1. (B.52)

For qR∗ ≫ 1 and qℓv ≪ 1

E(q) ∼ q−2

1/ℓ2v
= q−2. (B.53)

For qR∗ ≫ 1 and qℓv ≫ 1

E(q) ∼ q−2

q2
= q−4. (B.54)

2. The thin-layer limit, qH ≪ 1, with free boundary conditions (in

contact with air)
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B.3 Predicted scaling regimes

The term that accounts for the coupling of the AN with a 3D layer with free
boundary condition, is the term with tanh(qH). Therefore, we can neglect the
term containing coth(qH), that accounts for the 3D fluid with no-slip boundary
conditions. Moreover, in this thin-layer limit, we can use Eq. B.37, and, then,
Eq. B.32 becomes

E(q) =
BqR4

∗ e
−q2R2

∗/2
[
I0
(
q2R2

∗/2
)
− I1

(
q2R2

∗/2
)]

[q + qH/ℓv]2
, (B.55)

Thus, for qR∗ ≪ 1 and qℓv ≫ 1

E(q) ∼ q

q2
∼ q−1. (B.56)

For qR∗ ≪ 1 and qℓv ≪ 1

E(q) ∼ q

q2
= q−1. (B.57)

For qR∗ ≫ 1 and qℓv ≪ 1

E(q) ∼ q−2

q2
= q−4. (B.58)

For qR∗ ≫ 1 and qℓv ≫ 1

E(q) ∼ q−2

q2
= q−4. (B.59)

3. The thin-layer limit, qH ≪ 1, with no-slip boundary conditions (in

contact with a substrate)

Finally, in this case, analogously to what we did above, we can neglect the term
with tanh(qH) and keep the one containing coth(qH), and use the asymptotic
behavior shown in Eq. B.38. Then, Eq. B.32 becomes

E(q) =
BqR4

∗ e
−q2R2

∗/2
[
I0
(
q2R2

∗/2
)
− I1

(
q2R2

∗/2
)]

[q + 1/(qHℓv)]2
, (B.60)

Thus, for qR∗ ≪ 1 and qℓv ≫ 1

E(q) ∼ q

q2
∼ q−1. (B.61)

For qR∗ ≪ 1 and qℓv ≪ 1

E(q) ∼ q

q−2
= q3. (B.62)
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dissipation
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Figure B.2: Scaling regimes of turbulent flows in an active nematic film
in contact with a thin external fluid layer. The different regimes are predicted
at length scales (2π/q) either larger or smaller than the mean vortex radius R∗,
the viscous length ℓv = ηn/ηext, and the thickness H of the external fluid layer.
This figure summarizes the scalings in the thin-layer limit qH ≪ 1; see Section 3.3
and Fig. 3.4 for the predictions in the thick-layer limit qH ≪ 1.

For qR∗ ≫ 1 and qℓv ≪ 1

E(q) ∼ q−2

q−2
= q0. (B.63)

For qR∗ ≫ 1 and qℓv ≫ 1

E(q) ∼ q−2

q2
= q−4 (B.64)
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C

Derivation of the energy
balance

C.1 Constitutive equations of the active nematic

In this chapter, instead of parametrizing the nematic field with the nematic
director as in Appendix A.1, we utilize the traceless tensor Q = S(nnT − I/2),
used for instance in the models in [72, 75, 107, 177] based on the Beris-Edwards
theory of nematohydrodynamics. To help to understand the derivation of the
energy balance, I write again the Navier-Stokes equation written in Eq. A.1.

ρ(∂t + v ·∇)vα = −∂βPδαβ + ∂β(σαβ + σaαβ) = ∂βσ
′
αβ, (C.1)

where we have used the Einstein summation convention (see Info Box A.1). As
said before, P is the pressure, δαβ is the Kronecker delta, and σαβ and σaαβ
are the symmetric and antisymmetric parts of the stress tensor, respectively.
We also consider the active fluid to be incompressible, this requires ∂αvα = 0.
Within this framework, the symmetric and the antisymmetric parts of the stress
tensor are defined in terms of the Qαβ as:

σαβ = 2ηvαβ + νHαβ − αQαβ + σEαβ, (C.2a)

σaαβ = QαγHγβ −HαγQγβ, (C.2b)

where η is the shear viscosity, vαβ = 1/2(∂αvβ + ∂βvα) is the symmetric part of
the strain rate tensor (shear tensor). ν is the flow alignment coefficient, which
controls the coupling of the nematic field and the flow. Hαβ = −δFLdG/δQαβ
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is the orientational field that governs the relaxational dynamics of the nematic
phase and is obtained from the two-dimensional Landau-de Gennes free energy.
α is the active coefficient, which is positive (α > 0) for extensile systems, and
negative (α < 0) for contractile systems. Note that in some articles, the activity
coefficient (α, sometimes in the literature it appears as ζ [74], or as ζ∆µ [100,
104]) and the flow alignment coefficient (ν, sometimes in the literature it appears
as λ [75, 101, 177]) change their sign, depending on the way they are expressed in
the force balance equations (Eqs. C.1 to C.2b). Finally, σEαβ is the Ericksen stress

defined in Eq. C.13c (see Info Box C.1), which, in general, is not a symmetric
tensor. Nevertheless, if we consider the elastic constants to be equal, this stress
tensors turns out to be symmetric [124]. This is why we have only included it
in the symmetric part of the total stress tensor. Given that the Ericksen stress
includes higher order of the derivatives of Qαβ compared to other terms in the
stress tensor, it is most times neglected, as for instance in [75] or in previous
chapter Appendix A.1. The Landau-de-Gennes free energy required to compute
both Hαβ and σEαβ is defined as

FLdG =

ˆ [
A

2
(∂αQβγ)(∂αQβγ) +

B

2
QαβQαβ +

C

4
(QαβQαβ)2

]
d2r, (C.3)

where A is the single elastic constant, which differs from the elastic constant K
in the active gel theory (Appendix A.1), by a factor of 2, A = K/2. B and C
are nematic material parametters that control the nematic/isotropic transition
[125]. The first term is the analogue to the Frank free energy Fn defined in
Eq. A.4, in fact, if S were homogeneous and S = 1, this term and the Fn would
be the same.

For the sake of simplicity, we can neglect the two last terms in Eq. C.3. This
approximation is good as far as the system is well bellow the nematic/isotropic
transition, when S is almost everywhere close to 1. S will only go to 0 at the
defects. Then, the Landau-de Gennes free energy is only given by the distortion
term (Fd)

FLdG ≈ Fd =

ˆ
A

2
(∂αQβγ)(∂αQγβ) d2r. (C.4)

Therefore, the molecular field Hαβ reads

Hαβ = A∇2Qαβ. (C.5)
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Infobox C.1: The Ericksen stress tensor

If the molecules of a liquid crystal are displaced while retaining their
initial orientation, the total free energy changes [124]. The stress tensor
used to describe such change can be defined as:

σdαβ = −∂αQβγ
δFLdG

δ∂ϵQβγ
. (C.6)

To obtain the expression for this tensor assuming equal elastic constants,
we can start by applying the Einstein’s summation convention (see Info
Box A.1) to Eq. C.4

Fd =
A

2

ˆ
A

[(∂xQxx)2 + (∂xQxy)2 + (∂xQyx)2 + (∂xQyy)2

+(∂yQxx)2 + (∂yQxy)2 + (∂yQyx)2 + (∂yQyy)2]d2r

(C.7)

From this we can see that:

δFd

δ∂βQγϵ
= A∂βQγϵ (C.8)

Then, σdαβ reads:

σdαβ = −∂αQγϵ
δFd

δ∂βQγϵ
= −A∂αQγϵ∂βQγϵ (C.9)

Thus, applying this formula to each term of the tensor and taking into
account the symmetries Qxx = −Qyy and Qxy = Qyx:

σdxx = −A[(∂xQxx)2 + (∂xQxy)(∂xQyx) + (∂xQyx)(∂xQxy) + (∂xQyy)2]

= −2A[(∂xQxx)2 + (∂xQxy)2]

(C.10a)

σdxy = σdyx = −A[(∂xQxx)(∂yQxx) + (∂xQxy)(∂yQyx) + (∂xQyx)(∂yQxy)

+(∂xQyy)(∂yQyy)] = −2A[(∂xQxx)(∂yQxx) + (∂xQxy)(∂yQyx)]

(C.10b)

σdyy = −A[(∂yQxx)2 + (∂yQxy)(∂yQyx) + (∂yQyx)(∂yQxy) + (∂yQyy)2]

= −2A[(∂yQxx)2 + (∂yQxy)2]

(C.10c)
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This tensor is symmetric and has a trace. Since we are assuming that our
active fluid is incompressible, we are only interested in the traceless part
of the stress. Thus, we can take the trace:

Tr
{
σE
}

= −2A[(∂xQxx)2 + (∂xQxy)2 + (∂yQxx)2 + (∂yQxy)2], (C.11)

and write the stress as a combination of the traceless stress and Tr
{
σd
}

,
which will be absorbed by the isotropic pressure. This new tensor is the
so-called Ericksen stress tensor and is given by

σEαβ = σdαβ − Tr
{
σd
}
δαβ

2
. (C.12)

Thus,

σExx = −A[(∂xQxx)2 + (∂xQxy)2 − (∂yQxx)2 − (∂yQxy)2] (C.13a)

σExy = −2A[(∂xQxx)(∂yQxx) + (∂xQxy)(∂yQyx)] (C.13b)

σEyy = −σExx (C.13c)

Finally, the dynamics of the nematic orientation tensor

(∂t + v · ∇)Qαβ = −νSvαβ +Qαγωγβ − ωαγQγβ + γ−1Hαβ (C.14)

where ωαβ = (∂αvβ−∂βvα)/2 is the antisymmetric part of the strain rate tensor
(the vorticity tensor), and γ is the rotational viscosity.

C.2 Rate change of the free energy of an active ne-
matic

To obtain the energy balance of the 2D active nematic neglecting the two sur-
rounding passive fluid layers, we can compute the rate change of the free energy
Ḟ = U̇ − ˙TΩ, where U is the internal energy, T the temperature, and Ω the
entropy (not to be confused with the growth rate Ω). In this case, we use the
free Helmholtz energy because we consider the AN is at constant temperature
and volume.

Then, the free energy stored in our active nematic is given by

F =

ˆ [
1

2
ρ|v|2 + Fd

]
d2r (C.15)
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where the first term accounts for the kinetic energy and the second term for the
elastic energy due to distortions. Then, the energy change rate reads

Ḟ =
d

dt

ˆ [
1

2
ρ|v|2 + Fd

]
d2r. (C.16)

To derive the kinetic energy term, we apply the chain rule

d

dt

1

2
ρ|v| =

d

dt

1

2
ρvαvα = ρvα

d

dt
vα (C.17)

Here, d/dt is the material derivative, dvα/dt = (∂t + v ·∇)vα. Now, we insert
the force balance equation Eq. C.1 and integrate by parts, neglecting the surface
term. In this way, we obtain the following expression:

d

dt

ˆ
1

2
ρ|v|2 d2r =

ˆ
vα∂βσ

′
αβd2r = −

ˆ
∂βvασ

′
αβd2r. (C.18)

For the purpose of the derivation, it is convenient to separate the velocity gra-
dient into a symmetric and an antisymmetric part, which actually correspond
respectively to the symmetric and the antisymmetric parts of the strain rate
tensor (∂βvα = vαβ − ωαβ). In this way, we just need to contract vαβ and ωαβ

with the symmetric and the antisymmetric parts of σ′αβ , respectively.

d

dt

ˆ
1

2
ρ|v|2 d2r =

ˆ
[−2ηvαβvαβ − νvαβHαβ + αvαβQαβ

−vαβσEαβ + ωαβ(QαγHγβ −HαγQγβ)]d2r

(C.19)

Here, the incompressible condition has caused the pressure term to drop, Pvαβδαβ =
P (∂xvx + ∂yvy) = 0:

Now, to obtain the distortion energy, we take the left-hand term in Eq. C.3
and apply the chain rule

d

dt

ˆ
Fd d2r =

ˆ
A

2

d

dt
(∂αQβγ)(∂αQβγ) d2r =

ˆ
A

2
2(∂αQβγ)

d

dt
(∂αQβγ) d2r,

(C.20)
integrating by parts and neglecting the surface term:

−
ˆ
A(∂α∂αQβγ)

d

dt
Qβγ d2r = −

ˆ
A(∇2Qβγ)

d

dt
Qβγ d2r. (C.21)

Combining this last equation with Eqs. C.5 and C.14

189



C

Chapter C. Derivation of the energy balance

d

dt

ˆ
Fd d2r =

ˆ
−Hαβ

d

dt
Qαβ d2r =

ˆ
Hαβ

[
νSvαβ −Qαγωγβ + ωαγQγβ − γ−1Hαβ

]
d2r.

(C.22)

Thus, adding all the contributions from Eqs. C.19 and C.22

Ḟ =

ˆ [
−2ηvαβvαβ − νvαβHαβ(1 − S) + αvαβQαβ − vαβσ

E
αβ − γ−1HαβHαβ

]
d2r

(C.23)

From this final result, we can extract the different contributions to dissipation:

Ds =

ˆ
2ηvαβvαβd2r, (C.24)

Dr =

ˆ
γ−1HαβHαβd2r, (C.25)

TFA =

ˆ
νvαβHαβ(S − 1)d2r, (C.26)

I =

ˆ
αvαβQαβd2r. (C.27)

Tel =

ˆ
vαβσ

E
αβd2r. (C.28)

C.3 Dissipation in the external fluid layers

To account for the viscous dissipation in the external fluid layers, we can add to
the fee energy in Eq. C.15 the contributions to the kinetic energy of the external
layers: ˆ [

1

2
ρ|v|2 + Fd

]
d2r +

ˆ
1

2
|uoil|2d3r +

1

2
|uwater|2d3r (C.29)

The entropy production due to these two last terms is then given by

Ḟwater =
d

dt

ˆ
1

2
|uwater|2d3r =

ˆ
uα,water

d

dt
uα,waterd

3r (C.30)

Ḟoil =
d

dt

ˆ
1

2
|uoil|2d3r =

ˆ
uα,oil

d

dt
uα,oild

3r (C.31)
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Now, introducing the Navier-Stokes equations of the two passive fluids

(∂t + uwater ·∇)uα,water = −∂βPδαβ + 2ηwater∂βuαβ,water, (C.32)

(∂t + uoil ·∇)uα,oil = −∂βPδαβ + 2ηoil∂βuαβ,oil, (C.33)

where uαβ = (∂αuβ + ∂βuα)/2 is the symmetric part of the shear stress tensor,
we obtain

Ḟwater =

ˆ
uα,water[−∂βPδαβ + 2ηwater∂βuαβ,water]d

3r, (C.34a)

Ḟoil =

ˆ
uα,oil[−∂βPδαβ + 2ηoil∂βuαβ,oil]d

3r (C.34b)

The pressure term drops due to the incompressibility condition (
´
uα(−∂αPδαβ)d3r =´

∂βuα,oilPδαβd2r =
´

(∂xux + ∂yuy + ∂zuz)Pd3r = 0). Hence, we are left with

Ḟwater =

ˆ
−2ηwateruαβ,wateruαβ,waterd

3r, (C.35a)

Ḟoil =

ˆ
−2ηoiluαβ,oiluαβ,oild

3r, (C.35b)

where we have integrated by parts and substituted ∂βuαuαβ = uαβuαβ, which
is given by

uαβuαβ = u2xx + u2yy + 2(u2xy + u2xz + u2yz) (C.36)

The term uzz does not appear because the flows in our surrounding layers are
planar (see Appendix B.1), u = u∥(r, z), where r is the position vector on the
plane of the active fluid film.

Now, we need the expressions for u∥,water(r, z) and u∥,oil(r, z). In Ap-
pendix B.1, we have found the solutions in the Fourier space of these two quan-
tities (Eq. B.11). These solutions have the following form

ũ∥,water(q, z) = fwater(q, z)ṽ(q) (C.37a)

ũ∥,oil(q, z) = foil(q, z)ṽ(q) (C.37b)

where ṽ(q) is the velocity field of the active 2D layer, and fwater(q, z) and
foil(q, z) are hydrodynamic functions characterizing the penetration of the flow
into the water and oil fluid layers, respectively, and are given by Eq. B.12a and
Eq. B.12b. Therefore, we decompose Eq. C.35 into its Fourier modes and apply
the Parseval’s theorem (Eq. D.22)

F[Ḟwater] = −ηwater
2π2

ˆ
dz

ˆ
d2q ũαβ,waterũ

∗
αβ,water (C.38a)

F[Ḟoil] = − ηoil
2π2

ˆ
dz

ˆ
d2q ũαβ,oilũ

∗
αβ,oil, (C.38b)
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with ũ(q, z) =
˜

u(r, z)e−iq·rd2r and u(r, z) = 1/(2π)2
˜

ũ(q, z)eiq·rd2q and
combine this equation with Eq. C.37b:

F[Ḟwater] = −ηwater
2π2

ˆ
dz

ˆ
d2q

[
f2water(q, z)ṽαβ ṽ

∗
αβ + (∂zfwater)

2|ṽ|2
]
,

(C.39a)

F[Ḟoil] = − ηoil
2π2

ˆ
dz

ˆ
d2q

[
f2water(q, z)ṽαβ ṽ

∗
αβ + (∂zfoil)

2|ṽ|2
]
,

(C.39b)

We first integrate over z. In the case of the water layer we need to integrate
from −Hwater to 0, and in the case of the oil layer, from 0 to Hoil.

I1,water =

ˆ 0

−Hwater

f2water(q, z) dz = −Hwater

2
csch2(qHwater) +

1

2q
coth(qHwater),

(C.40a)

I1,oil =

ˆ Hoil

0
f2oil(q, z) dz =

Hoil

2
sech2(qHoil) +

1

2q
tanh(qHoil), (C.40b)

I2,water =

ˆ 0

−Hwater

(∂zfwater)
2(q, z) dz =

ˆ 0

−Hwater

q2[sinh(qz) + coth(qHwater) sinh(qz)]2 dz =

1

2
q2Hwater csch2(qHwater) +

1

2
q coth(qHwater)],

(C.41a)

I2,oil =

ˆ Hoil

0
(∂zfoil)

2(q, z) dz =

ˆ Hoil

0
q2[sinh(qz) − tanh(qHoil) sinh(qz)]2 dz =

−1

2
q2Hoil sech2(qHoil) +

1

2
q tanh(qHoil),

(C.41b)

Thus, the shear dissipation in the external fluids per unit area, read

Dwater(q) = −ηwater
2π2

[
I1,waterṽαβ ṽ

∗
αβ + I2,water|ṽ|2

]
, (C.42a)

Doil(q) = − ηoil
2π2

[
I1,oilṽαβ ṽ

∗
αβ + I2,oil|ṽ|2

]
, (C.42b)
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Fourier analysis

Throughout this thesis, we have extensively used Fourier analysis to extract
information from experimental data. Due to the different conventions used in
Fourier analysis found in the literature, we have encountered some hassles when
comparing my experiments with theoretical works. To this aim, we here write
a brief introduction to Fourier analysis applied to experimental data, which we
think would have been very useful at the beginning of this thesis.

D.1 Fourier analysis

Fourier analysis is based on representing a given function as a sum of sines
and cosines [162, 178, 179]. Likewise, we can apply Euler’s formula cos(qx) +
i sin(qx) = eiqx, and represent this sum of sines and cosines as a sum of expo-
nential functions. There exist four different Fourier analyses depending on the
type of function one is dealing with [162]:

1. Fourier series → for continuous and periodic functions on a finite interval
[a, b]

2. Fourier transform → for continuous functions on a infinite interval. This
is the limit of a Fourier series with an interval [a, b] = (−∞,+∞)

3. Discrete Fourier Transform DFT → for discontinuous and finite or periodic
on a finite interval functions

4. Discrete-time Fourier series → for discontinuous functions on a infinite
interval.
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The formulas for each Fourier analysis can be found in Table D.1.

Input function
Output function

Discrete Continuous

Continuous

Fourier series Fourier transform

F [n] =
1

L

ˆ L/2

−L/2
f(x)e

−i2πnx
L dx F (q) =

ˆ +∞

−∞
f(x)e−iqxdx

f(x) =

+∞∑
−∞

F [n]e
i2πnx

L f(x) =
1

2π

ˆ +∞

−∞
F (q)eiqxdq

Discrete

Discrete Fourier transform Discrete-time Fourier Transform

F [qk] =
N−1∑
n=0

f [xn]e−iqkxn F (q) =
+∞∑

n=−∞
f [n]e−iqn

f(xn) =
1

N

N−1∑
k=0

F [qk]eiqkxn

with xn = nL
N and qk = 2πk

L

f [n] =
1

2π

ˆ +π

−π
F (q)eiqndq

Table D.1: The four types of Fourier analyses - The different Fourier analyses
are classified depending on the continuity of the input (real space) and output
(frequency space) functions

At this point, we should warn that there is no standard convention for Fourier
transforms. Physicists tend to use:{

FP(q) =
´ +∞
−∞ f(x)e−iqxdx

f(x) = 1
2π

´ +∞
−∞ FP(q)eiqxdq

(D.1)

Mathematicians mainly use{
FM(ν̃) =

´ +∞
−∞ f(x)e−2πiν̃xdx

f(x) =
´ +∞
−∞ FM(q)e2πiν̃xdν̃

(D.2)

Finally, engineers prefer{
FE(q) = 1√

2π

´ +∞
−∞ f(x)e−iqxdx

f(x) = 1√
2π

´ +∞
−∞ FE(q)eiqxdq

. (D.3)

ν̃ and q are both wave numbers, but they differ by a factor of 2π, q = 2πν̃.
Thus, ν̃ gives the number of wavelengths per unit distance, whereas q gives the
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number of radians per unit distance. The relation between the different Fourier
transforms are:

FP(q) = 2πFM(2πν̃) (D.4a)

FP(q) =
√

2πFE(q) (D.4b)

D.2 Useful identities and theorems

In this section, we will list the different theorems and properties of Fourier
analysis. Given that the observables in our experiments are discrete, we will
mainly focus on the DFT and FFT, the algorithm we use (in Matlab) to compute
DFT. As a final remark, we will use F to denote the Fourier decomposition, in
this case DFT, and F−1 the inverse Fourier transform.

Convolution theorem

F[f(xn)g(xn)](qk) =
1

N
F (ql) ∗G(ql) =

1

N

N−1∑
l=0

F (ql)G(qk − ql) (D.5)

Proof :

We start by writing the Fourier transform of f(xn)g(xn) as given in Table D.1:

F[f(xn)g(xn)](qk) =
N−1∑
n=0

f(xn)g(xn)e−ixnqk (D.6)

now, we write f(x) in terms of its Fourier decomposition, F (ql):

F[f(xn)g(xn)](qk) =
N−1∑
n=0

(
1

N

N−1∑
l=0

F (ql)e
iqlxn

)
g(xn)e−iqkxn . (D.7)

Rearranging Eq. D.7:

F[f(xn)g(xn)](qk) =
1

N

N−1∑
l=0

F (ql)
N−1∑
n=0

g(xn)e−i(qk−ql)xn . (D.8)

F[f(xn)g(xn)](qk) =
1

N

N−1∑
l=0

F (ql)G(qk − ql) =
1

N
F (ql) ∗G(ql) (D.9)
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Cross-correlation theorem

Cfg =

N−1∑
n=0

f(xn + xm)g(xn) = F−1[F (qk)G∗(qk)] (D.10)

F−1 indicates the inverse DFT.

Proof

We start by writing the cross-correlation of two discrete functions f(xn) and
g(xn)

Cfg =
N−1∑
n=0

f(xn + xm)g(xn), (D.11)

now, we introduce the Fourier decomposition of both functions:

Cfg =
N−1∑
n=0

(
1

N

N−1∑
k=0

F (qk)eiqk(xn+xm)

)(
1

N

N−1∑
l=0

G∗(ql)e
−iqlxn

)
. (D.12)

Rearranging this last equation:

Cfg =
1

N2

N−1∑
k=0

N−1∑
l=0

F (qk)G∗(ql)e
iqkxm

(
N−1∑
n=0

ei(qk−ql)xn

)
, (D.13)

and now identifying that the term within the parenthesis is Nδkl (see Info
Box D.1, Eq. D.21), we can arrive at:

Cfg =
1

N

N−1∑
k=0

F (qk)G∗(qk)eiqkxm = F−1[F (qk)G∗(qk)]. (D.14)

Wiener-Khinchin or auto-correlation theorem

Cff =
N−1∑
n=0

|f(xn + xm)|2 = F−1[|F (qk)|2] (D.15)

This is the special case of the cross-correlation theorem in Eq. D.10 f(xn) =
g(xn), we have the Wiener-Khinchin or auto-correlation theorem:
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Infobox D.1: The Kronecker delta δkl and its discrete Fourier
transform

The Kronecker delta is a function of two integer numbers, i and j, defined
by:

δkl =

{
0 if k ̸= l

1 if k = l.
(D.16)

This equation can also be defined in an exponential form as:

δkl =
1

N

N−1∑
n=0

e2πi
n
N
(k−l) (D.17)

To derive this last equation, we can make use of the geometric series:

N−1∑
n=0

arn = a
1 − rN

1 − r
. (D.18)

Taking r = e
2πi
N

(k−l), we can arrive at:

N−1∑
n=0

e2πi
n
N
(k−l) =

1 − e2πi(k−l)

1 − e
2πi
N

(k−l)
=

1 − cos(2π(k − l)) − i sin(2π(k − l))

1 − cos
(
2π
N (k − l)

)
− i sin

(
2π
N (k − l)

) ,
(D.19)

where we have used the Euler’s formula. Taking into account that k and
l are integers and (k, l) ∈ [0, N − 1], this last equation goes to 0 if k ̸= l.
When k = l

N−1∑
n=0

e2πi
n
N
(k−l) =

N−1∑
n=0

1 = N for k = l. (D.20)

This is the same as writing

N−1∑
n=0

e2πi
n
N
(k−l) = Nδkl. (D.21)

Thus, we have proofed Eq. D.17. This last Eq. D.21 will be useful to
derive some properties of the DFT.

Parseval’s theorem
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N−1∑
n=0

f(xn)g(xn) =
1

N

N−1∑
k=0

F (qk)G∗(qk) (D.22)

Proof

As before, we start by writing the discrete functions f(xn) and g(xn) in terms
of their Fourier transforms, F (qk) and G(qk), respectively:

N−1∑
n=0

f(xn)g(xn) =
N−1∑
n=0

(
1

N

N−1∑
k=0

F (qk)eiqkxn

)(
1

N

N−1∑
l=0

G∗(ql)e
−iqlxn

)
, (D.23)

with some rearrangements and applying Eq. D.21:

N−1∑
n=0

f(xn)g(xn) =
1

N2

N−1∑
k=0

N−1∑
l=0

F (qk)G∗(ql)

(
N−1∑
n=0

ei(qk−ql)xn

)
=

1

N

N−1∑
k=0

F (qk)G∗(qk).

(D.24)

D.3 DFT and zero-padding

Zero padding is a technique consisting of extending with zeros a discrete signal
f(xn) with length N to a signal with a length M , with M > N . Zero-padding
is generally used to produce a function with a size equal to the next power of
two of the original size. For instance, if the original signal has size N = 20,
the output signal after zero-padding will be M = 32. The zeros are added
to the end of the signal, and if the FFT is computed with zero-padding, the
corresponding Inverse Fast Fourier Transform (iFFT) is also padded with zeros
(see Fig. D.1a). In fact, one could zero-pad the function f and then introduce
it to FFT in Matlab as:

N=numel ( f ) ;
f ( end+1:2ˆ nextpow2 (N))=0; Zero−padding manually

M=numel ( f ) ;
F=f f t ( f ,M) ;

and the result would be the same as in

N=numel ( f ) ;
M=2ˆnextpow2 (N) ;
F=f f t ( f ,M) ;
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Figure D.1: Zero-padding-a) Effect of the zero-padding in the inverse FFT.
b) Auto-correlation functions using the Wiener-Khinchin theorem (Eq. D.10) with
different sizes of the FFT (NFFT). The different sizes are obtained through zero-
padding.
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The motivations of this technique are, first, to improve the efficiency of FFT
calculations because computing the FFT of signals with a size equal to the next
power of two is faster; second, to improve the visual resolution of the spectrum
[180].

We should remark that when computing cross-correlations, convolutions, or
auto-correlations, zero-padding turns out to be very useful because it provides
the DFT with enough space to place all the data from the computation. As
an example, imagine we have a function of size N , if we compute the auto-
correlation of a function f in Matlab using the Wiener-Khinchin theorem with
the following script

func t i on [ aut ]= autocor r ( f )
F=f f t ( f ) ;
N=length (F ) ;
aut sym=i f f t s h i f t ( i f f t ( abs (F ) . ˆ 2 ) ) ;
aut=aut sym (N/2+1: end ) ; % aut sym i s symmetric from r e s p e c t
% to x=N/2 , so we take the second h a l f .
aut=aut/aut sym (N/2+1); % Resca le the data with the maximum
% ( which corresponds to the amplitude o f the mode q=0 and o f f . ˆ2

end

the output function aut will have size N/2. This is like if we would have cut the
auto-correlation function in the half, we would not see correlations at distances
larger than a half of the signal size. To overcome this problem, we can specify
that we want the DFT to be the size of 2*N or larger, for example we can use
2ˆnextpow2(2*N) (Fig. D.1b).

D.4 Some tips

Here, I list some tips that could be useful when computing DFT:

1. Convolutions are computationally expensive, therefore it is better to com-
pute the Fourier transform of a product of two functions as F[f(x)g(x)]
instead of using the convolution theorem (Eq. D.5).

2. Extending the continuous Fourier transform derivative identity (multipli-
cation by iq) to the discrete case, can lead to artifacts. In [181], a modified
wave number is proposed, but we think the best option is to differentiate
the functions in the real space and then compute the FFT.

3. Applying the Eq. D.22 directly in Matlab (or in another program) can
produce complex results. Hence, we must specify that we want to only
keep the real part by adding real().
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Mueller Calculus

Mueller calculus is a method to predict light polarization mediated by optical
elements. This framework describes light using a 4×1 vector: the Stokes vector,
whose elements are the so-called Stokes parameters obtained from the Poincare
sphere. To better understand the Stokes vector formalism, we first introduce
polarized light and the polarization ellipse. Afterward, we derive the Stokes
vector from the polarization ellipse, and finally, we illustrate how to compute
light modulation mediated by optical devices with the Mueller calculus.

E.1 Polarized light

Light is composed of electromagnetic waves that oscillate perpendicularly to the
direction of propagation. Generally, a beam coming from a light source, like the
sun or a bulb, has no preferred direction of oscillation, i.e., waves composing the
beam are randomly oriented. Such light is said to be unpolarized. In contrast,
if all the waves vibrate in the same plane, the light is linearly polarized. By
convention, the polarization of an electromagnetic wave refers to the direction
of oscillation of the electric field. Finally, there is partially polarized light, which
is between the linearly polarized and the unpolarized light [146, 147, 182]. Apart
from the linear polarization, two more polarization states exist: the circular and
the elliptical (see Fig. E.1), with the latter being the most general one since linear
and circular polarizations can be thought of as particular cases of the elliptical
one.

Regardless of the state of polarization of monochromatic light, any polariza-
tion can be described as the sum of orthogonal waves (Ex = îEx and Ey = ĵEy,
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with î and ĵ orthogonal unitary vectors), hence:

E(z, t) = îE0x cos(ωt− qz + δx) + ĵE0y cos(ωt− kz + δy) (E.1)

where ω is the angular frequency, q the wavenumber, x and y subscripts refer to
components in the x and y directions, E0x and E0y are the maximum amplitudes,
and δx and δy are the phase constants. The last four parameters should depend
on time t if the light is not monochromatic.

a)
Unpolarized Partially

polarized
Linearly
polarized

Cyclically
polarized

Elliptically
polarized

b)

Figure E.1: Light polarization. Direction of oscillation of different polarization
states (a) and illustration of the corresponding waves (b).

In the most general case, E(z, t) is an elliptic wave that would be seen
as an ellipse in a hypothetical visualization from any point at the z-axis (the
propagation direction). This hypothetical ellipse is known as the polarization
ellipse (see Fig. E.2a) and is mathematically described as:

E2
x

E2
0x

+
E2

y

E2
0y

− 2
Ex

E0x

Ey

E0y
cos δ = sin2 δ (E.2)

with δ = δy − δx (phase shift or retardance).
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The polarization ellipse can be fully parametrized with two angles: ψ and χ
and called the orientation angle and the ellipticity angle, respectively (Fig. E.2b).
Both angular parameters can be written in terms of E0x, E0y and δ:

tan 2ψ =
2E0xE0y cos δ

E2
0x − E2

0y

(E.3)

sin 2χ =
2E0xE0y sin δ

E2
0x + E2

0y

(E.4)

a) b)

Ex

Ey E

z
x

y

z

x

E0x

E0y

E

Ã

Â

y

Figure E.2: The polarization ellipse. a) Representation of an elliptical elec-
tromagnetic wave (E, green light), which is the combination of a wave oscillating
along the x-axis (Ex, in red) and the y-axis (Ey, in blue). The corresponding
polarization ellipse is also sketched. This ellipse would correspond to the wave as
seen from the x-axis. b) Polarization ellipse of a with the orientation angle (ψ)
and the ellipticity angle (χ) also represented. E0x and E0y are the amplitudes of
Ex and Ey.

In general, polarization ellipses are doubly degenerated given that they de-
scribe two possible waves: one rotating clockwise and another counter-clockwise.
Thus, together with the ellipse, a chirality (or handedness) should also be spec-
ified. By convention, handedness is to be given as if the observer was looking
toward the light source [146].

Description of polarized light in terms of the polarization ellipse is handy,
as it enables the study of different polarization states with only one equation.
Nevertheless, it has two significant limitations. The first one is that it can
describe neither unpolarized nor partially polarized light, and, in practice, light
is mainly partially polarized. The second limitation is that it is impossible to
experimentally observe the ellipse as the period of a single rotation is of the
order of 10−15 s [146]. Hence, it is an idealization of light, and the polarization
ellipse can only be applied to an instant of time. To overcome these limitations,
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in 1852, Sir G. G. Stokes [183] showed that, time averaging the polarization
ellipse, it is possible to obtain four different parameters, which, this time, are
measurable and can also be applied to unpolarized light. Such parameters are
now called the Stokes parameters, whose derivation from the polarization ellipse
we show in the next section.

E.2 Stokes parameters

To derive the Stokes parameters, we need to time average the equation of the
polarization ellipse (Eq. E.2) at a given point z, that, for the sake of simplicity,
we take z = 0 and consider a monochromatic wave. In this way E0x, E0y and
δ do not change with time. The time-averaged equation for the polarization
ellipse is written as:

⟨E2
x(t)⟩
E2

0x

+
⟨E2

y(t)⟩
E2

0y

− 2
⟨Ex(t)Ey(t)⟩
E0xE0y

cos δ = sin2 δ (E.5)

with

Ex(z = 0, t) = E0x cos(ωt+ δx) (E.6a)

Ey(z = 0, t) = E0y cos(ωt+ δy) (E.6b)

Time-averaged quantities ⟨E2
x(t)⟩, ⟨E2

y(t)⟩ and ⟨Ex(t)Ey(t)⟩ can be computed
as:

⟨Eα(t)Eβ(t)⟩ =
1

T

ˆ T

0
Eα(t)Eβ(t)dt α, β = x, y (E.7)

Thus, applying Eq. E.7 for E2
x(t), E2

y(t), and Ex(t)Ey(t) and using Eq. E.6:

⟨E2
x(t)⟩ =

E0x

2
, (E.8)

⟨E2
y(t)⟩ =

E0y

2
, (E.9)

⟨Ex(t)Ey(t)⟩ =
E0xE0y

2
cos δ. (E.10)

Substituting Eqs. E.8 to E.10 into Eq. E.2:

E2
0x

2E2
0x

+
E2

0y

2E2
0y

− 2E0xE0y cos2 δ

2E0xE0y
= sin2 δ (E.11)

Stokes parameters are obtained from this last equation but rearranged. One
of these parameter is light intensity (I2 = E2

0x + E2
y0). Therefore, we need to
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rearrange Eq. E.11 in such a way that we obtain a E2
0x + E2

y0 term. One way

to do this is by multiplying everything by 4E2
0xE

2
0y and adding and subtracting

E4
0x +E4

0y to the left-hand side of Eq. E.11. Doing this and grouping the terms
leads to:

(E2
0x + E2

0y)2 − (E2
0x − E2

0y)2 − (2E0xE0y cos δ)2 = (2E0xE0y sin δ)2 (E.12)

Each of these parameters between parenthesis gives one Stokes parameter:

S0 = E2
0x + E2

0y, (E.13)

S1 = E2
0x − E2

0y, (E.14)

S2 = 2E0xE0y cos δ, (E.15)

S3 = 2E0xE0y sin δ, (E.16)

and all together form the four-element Stokes vector S. Notice that each element
has a physical meaning: S0 gives the total intensity, S1 the amount of linear
horizontal or vertical polarization, S2 the amount of 45o or −45o polarization,
and S3 the amount of right or left circular polarization. The exciting thing about
these parameters is they all can be experimentally measured [184] because they
are light intensities.

Note that Eqs. E.13 to E.16 define polarized light (they have been derived
from the polarization ellipse). Nonetheless, Stokes parameters can still be used
for partially polarized and unpolarized light, but a degree of polarization (P )
should be added. P is defined as the ratio between light intensity coming from
polarized light (Ipolarized) and the total intensity (Itotal):

P =
Ipolarized
Itotal

=

√
S2
1 + S2

2 + S2
3

S0
(E.17)

For polarized light P = 1, for partially polarized 1 > P > 0 and for unpolarized
P = 0.

For unpolarized and polarized beams, the Stokes vectors (SUP and SP ) are
represented by:

SUP =


S0

0

0

0

 , SP =


S0

S1

S2

S3

 (E.18)

Then, partially polarized light can be represented as a linear combination of
these two vectors, whose contributions are given by (1 − P ) and P : SPP =
(1 − P )SUP + PSP .
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E.3 Mueller calculus

Polarization of light can be easily modulated with optical devices, like linear po-
larizers1 or retarders2 (or compensators). These transformations can be readily
anticipated with the Mueller calculus, which assumes that the Stokes vector
of the emergent light (Sout) can be represented as a linear combination of the
Stokes parameters of the incident light Stokes vector (Sin). Such combination is
given by a 4×4 matrix called a Mueller matrix. Thus, if a beam of light crosses
different optical elements 1, 2, ..., N − 1 like it is represented in Fig. E.3, the
resultant Stokes vector can be found as:

Sout = MNMN−1 · · ·M2M1Sin (E.19)

where Sin and Sout are the Stokes vectors of the incident and the resultant light,
respectively, and M1, M2,..., MN−1, MN are the Mueller matrices of element
1, 2, ..., N − 1 and N .

. . .

Sout=

S0

S1
S2

S3

0

0

0

0

Sin=

S0

S1
S2

S3

Figure E.3: Light polarization with optical devices - Diagram showing a
beam with a Stokes vector Sin crossing different optical elements with Mueller
matrices M1, M2,..., MN−1, MN . The emergent beam comes out with a different
polarization characterized by a stokes vector Sout.

Any Mueller matrix can be obtained by solving the linear system of equations
relating Sin and Sout. For an example, see Info Box E.1

Infobox E.1: How to obtain the Mueller matrix of a hori-
zontal linear polarizer (LHP)

Here, we obtain the Mueller matrix of a LHP. We start by writing the

1Polarizers block out any wave oscillating in a direction different from their principle axis.
2Retarders induce a phase shift (or retardance) between two orthogonal waves. They are

composed of birefringent materials.
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Stokes vector of the incident light:

Sin =


S0

S1

S2

S3

 =


E2

0x + E2
0y

E2
0x − E2

0y

2E0xE0y cos δ

2E0xE0y sin δ

 (E.20)

Now, since a LHP filters out any wave of light not oscillating along the x
direction, the only wave that crosses the polarizer is Ex. Consequently,
the Stokes vector of the emergent light is then represented as:

Sout =


S′
0

S′
1

S′
2

S′
3

 =


E2

0x

E2
0x

0

0

 (E.21)

Thus, we need to solve the linear system:
E2

0x

E2
0x

0

0

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44




E2
0x + E2

0y

E2
0x − E2

0y

2E0xE0y cos δ

2E0xE0y sin δ

 (E.22)

We finally get:

MLHP =
1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (E.23)

This is the Mueller matrix for a LHP.

Usually, tabulated Mueller matrices M for optical devices are written taking
as reference frame the fast axis of the device . Hence, if the fast axis of the
optical device is oriented at an angle α with respect to the horizontal (the frame
of work), one should:

1. Change the frame reference from x, y to x′, y′ of the Stokes vector of the
input light using a rotation matrix R(α), where α is the angle of rotation.
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2. Multiply the Mueller matrix by the rotated Stokes vector.

3. Change back the frame reference from x′, y′ to x, y with the rotating
matrix R(−α).

This is the same as computing a new Mueller matrix for the rotated device as:

M(α) = R(−α)MR(α) (E.24)

The rotation matrix R(α) is written as:

R(α) =


1 0 0 0

0 cos 2α sin 2α 0

0 − sin 2α cos 2α 0

0 0 0 1

 (E.25)

In Table E.1 there is a list of different Mueller matrices.

E.4 Mueller calculus for the fast adaptive polarime-
try based on liquid crystal compensators for bire-
fringence measurements (Section 5.1)

As we already explained in Section 5.1, we have assembled a setup composed
by the following optical elements:

1. Light source
2. LHP
3. LCR (with variable retardance ψ controlled with a computer)
4. QWP (fast axis at 0o)
5. Sample
6. QWP (fast axis at 45o)
7. VLP
8. Detector (camera)
In order to predict light modulation with this setup, we performed the ap-

propriate Mueller calculus. Considering that the samples imaged with this setup
were going to be birefringent, we took as the sample’s Mueller matrix the one
for a linear retarder (Eq. E.28) rotated at an angle α:

Mα,δ
sample = R(−α)M0,δ

LRM(α) (E.31)
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Optical device Mueller matrix

Linear hotizontal polarizer

(LHP) (fast axis at 0o)
MLHP =

1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

 (E.26)

Linear vertical polarizer

(LVP) (fast axis at 90o)
MLVP =

1

2


1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

 (E.27)

Linear retarder

with retardance δ

(LR) (fast axis at 0o)

M0,δ
LR =


1 0 0 0

0 1 0 0

0 0 cos δ sin δ

0 0 − sin δ cos δ

 (E.28)

Quarter wave plate

(retardance δ = π/2)

(QWP) (fast axis at 0o)

MQWP =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0

 (E.29)

Half wave plate

also ideal mirror

(retardance δ = π)

(HWP) (fast axis at 0o)

MHWP =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 (E.30)

Table E.1: Mueller matrices for some optical devices

The Mueller calculus for the setup is shown in the following Eq. E.32. For
the sake of clarity, we have also included the name of each device above the
corresponding matrix.

209



E

Chapter E. Mueller Calculus

Emergent light

Sout =


S′
0

S′
1

S′
2

S′
3

 =

Linear vertical polarizer

1

2


1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0



QWP fast axis at 45o
1 0 0 0

0 0 0 −1

0 0 1 0

0 1 0 0


Sample

1 0 0 0

0 cos2 2α+ sin 2α2 cos δ (1 − cos δ) cos 2α sin 2α − sin 2α sin δ

0 (1 − cos δ) cos 2α sin 2α sin2 2α+ cos2 2α cos δ cos 2α sin δ

0 sin 2α sin δ − cos 2α sin δ cos δ


QWP fast axis at 0o

1 0 0 0

0 1 0 0

0 0 0 1

0 0 −1 0



LCR fast axis at 45owith retardance ψ
1 0 0 0

0 cosψ 0 − sinψ

0 0 1 0

0 sinψ 0 cosψ


Linear horizontal polarizer

1

2


1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0



Incident light
S0

0

0

0

 (E.32)

The detector (the camera) only detects light intensity. Accordingly, the only
Stokes parameter we are interested in is S′

0, which corresponds to the total light
intensity (I). For this system of optical elements I is written as:

I =
(

1 0 0 0
)
·Sout =

1

4
S′
0(1 + sin 2α sin δ cosψ− cos 2α sin δ sinψ) (E.33)

Therefore, by acquiring images at different values of ψ (retardance of the
LCR) and fitting the data to an equation as:

I = a+ b cosψ + c sinψ, (E.34)
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it is possible to obtain the fast axis of a birefringent sample (oriented at α) and
its retardance (δ):

α =
1

2
atan2

(
b

−c

)
(E.35)

δ = arcsin

(√
b2 + c2

a

)
(E.36)

Note that this α will be perpendicular to the optical axis if the birefringence
is positive. Furthermore, this orientation is set with respect to the light; hence
it has to be corrected in order to reference it with respect to the camera.

E.4.1 Calibration

In this section, we explain and show the pertinent Mueller calculus we perform to
calibrate all the optical devices of the polarimeter described in Section 5.1. Then,
we describe how to minimize misalignments once the instrument is mounted.
Before starting, we should remark that all the angles are with respect to the lab
frame of reference.

E.4.1.1 Fast axis determination

In Section 5.2.4, we explain how we calibrate all the optical elements of the
LCR-based polarimeter. In this section, we show the corresponding Mueller
calculus.

1. Linear polarizers → The Mueller calculus for the setup shown in
Fig. 5.6a is given by:

I(α) = I0

(
1 0 0 0

)
M(−α)MLHPM(α)MLHP


1

0

0

0

 =

I0
2

(cos 2α+ 1) = I0 cos2 α

(E.37)

where I0 is the light intensity coming out from the light source. Thus, the
orientation with minimum light intensity is 90o. Note that Eq. E.37 coincides
with the Malus’s law.
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2. Linear retarders (QWP and LCR) → To calibrate a LR (or linear
compensator) with a fast axis oriented at α and a retardance δ, we use the setup
shown in Fig. 5.6b, whose Mueller calculus reads:

I(α, δ) = I0

(
1 0 0 0

)
M90o

LPM−α,δ
LR MMirrorM

α,δ
LRMLHP


1

0

0

0


=
I0
4

[
(cos 2δ − 1)(cos 4α− 1)

] (E.38)

where the superscripts of the Mueller matrices indicate the orientation of the
fast axis of each device with respect to the lab frame reference (horizontal).
Note that, with this arrangement, the beam crosses the LR from one side, hits
the mirror, changes the direction, and strikes back the LR, but this time on the
opposite side to the one it hit first. Consequently, if the angle of the rotation
matrix of LR is the first time α, the second time, it will be −α. This is why one
of the Mueller matrices has as an orientation angle −α.

Since the compensators we want to calibrate are QWP and the variable LCR,
which can be configure to be a QWP, we can simplify Eq. E.38 by substituting
δ = π/2, which is the retardance for a QWP:

I(α) =
I0
2

(1 − cos 4α) = sin2(2α) (E.39)

The light intensity depends on the cos(4α). Thus, there is not one only minimum
or maximum. The minima are at αmin = 0o, 90o, and the maxima αmax =
45o, 135o. Thus, for the calibration of these devices, we take as a first reference
the fast axis provided by the manufacturer. From there, we search for the
minimum or maximum light intensity, depending on the desired orientation (0o

or 45o, respectively).

E.4.1.2 Instrument calibration

Finally, after the assembly of the setup, it is convenient to calibrate the whole
assembly in order to minimize as much as possible light aberrations due to
misalignments. For the sake of simplicity, we assume that the alignment errors
of the QWPs and the variable LCR are larger than the ones of the LHP and
the LVP. Therefore, we neglect the latter ones. We also neglect the errors in
the retardation of the compensators.

Let us suppose we have an optical device with a Mueller matrix M and with
a deviation from its theoretical alignment of ∆. Then, the Mueller matrix M∆
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that accounts for this deviation can be written as:

M∆ = R(−∆)MR(∆) =
1 0 0 0

0 cos 2∆ − sin 2∆ 0

0 sin 2∆ cos 2∆ 0

0 0 0 1

M


1 0 0 0

0 cos 2∆ sin 2∆ 0

0 − sin 2∆ cos 2∆ 0

0 0 0 1

 (E.40)

if we consider ∆ → 0, we can simplify Eq. E.40 to:

M∆ = R(−∆)MR(∆) ≈


1 0 0 0

0 1 −2∆ 0

0 2∆ 1 0

0 0 0 1

M


1 0 0 0

0 1 2∆ 0

0 −2∆ 1 0

0 0 0 1

 (E.41)

Note that for an optical device with a theoretical orientation of α and a deviation
∆ from this angle α, we should rotate twice the Mueller matrix M:

Mα+∆ = R(−α)R(−∆)MR(∆)R(α) (E.42)

Applying Eq. E.42 to the Mueller calculus of our setup without a sample and
supposing that the only sources of error come from misalignments in the QWPs
and the LCR:

I(ψ,∆0,∆1,∆2) =
(

1 0 0 0
)
·M90

LP ·M45+∆2
QWP ·M0+∆1

QWP ·M45+∆0
LCR ·M0

LP · Sin =

I0[(4∆2
0 + cosψ)(−2∆2

2 + 2∆1∆2 + ∆1) + ∆2 sinψ(4∆1∆2 + 1)

−2∆0(cosψ − 1)(−4∆2
1∆2 + 4∆1∆

2
2 + 1/2) + 1/2]

(E.43)

where ∆0, ∆1 and ∆2 are the deviations of the variable LCR, the first QWP (the
one oriented at 0o), and the second QWP (the one oriented at 45o), respectively.
ψ is the retardance of the variable LCR. Assuming ∆0 ∼ ∆1 ∼ ∆2 → 0, we can
neglect the second order terms and write a simpler form of Eq. E.43:

I(ψ,∆0,∆1,∆2) ≈
I0
2

[
(∆1 − ∆0) cosψ + ∆2 sinψ +

1

2

]
(E.44)

We obtain ∆2 by combining the light intensities at ψ = π/2 and ψ = 3π/2:

∆2 =
1

2

I(π/2) − I(3π/2)

I(π/2) + I(3π/2)
(E.45)
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and (∆1 − ∆0) with the light intensities at ψ = 0 and ψ = π:

(∆1 − ∆0) =
1

2

I(0) − I(π)

I(0) + I(π)
(E.46)

Observe that the two deviations ∆0 and ∆1 cannot be isolated from each other.
This is why we have to minimize them by trial and error.

E.5 Mueller calculus for the fast adaptive polarime-
try with a polarization camera (Section 5.3)

In this case, the setup presented in Section 5.3 is comprised of the following
optical elements

1. Light source
2. LHP
3. QWP (fast axis at 45o)
4. Sample
5. Polarization camera with pixels divided into four different linear polarizers

with polarizing angles: 0o, 45o, 90o, and 135o.
In this sense, we can perform four different Mueller calculus for each subpixel:

Iβ(α, δ) =
(

1 0 0 0
)
Mβ

LPM
α,δ
sampleM

45
QWPM

0
LP (E.47)

where β is the orientation of the subpixel’s polarizing axis (0o, 45o, 90o, or 135o)
and α and δ are the sample’s fast axis orientation and retardance, respectively.

Mα,δ
sample is defined in Eq. E.31. To compute Mβ

LP we use Eq. E.28 and Eq. E.26.
Therefore, the detected light intensity for each pixel is described as:

I0(α, δ) =
I0
2

(1 + sin 2α sin δ), (E.48a)

I45(α, δ) =
I0
2

(1 + cos 2α sin δ), (E.48b)

I90(α, δ) =
I0
2

(1 − sin 2α sin δ), (E.48c)

I135(α, δ) =
I0
2

(1 − cos 2α sin δ). (E.48d)

Proper combination of these last equations allows us to extract α and δ:

α =
1

2
atan 2

(
I0 − I90

I45 − I135

)
, (E.49)
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δ = asin

(
2
√

(I0 − I90)2 + (I45 − I135)2

I0 + I90 + I45 + I135

)
(E.50)

E.5.1 Instrument calibration

As we explained previously, it is highly advisable to calibrate the instrument
after its assembly, obviously after the calibration of each device as presented in
Section 5.2.4 with the corresponding Mueller calculus shown in Appendix E.4.1.
In the case of the present arrangement, there are fewer optical devices than in
the previous one, which eases the calibration. Moreover, we can include the
error in the alignment of the linear polarizer, which was misregarded in the
other setup.

Then, assuming that the LP and the QWP have an error ∆1 and ∆2 in their
alignments, we can perform the following Mueller calculus:

Iβ(∆1,∆2) =
(

1 0 0 0
)
Mβ

LPM
45+∆2
QWP M0+∆1

LP , (E.51)

where M45+∆2
QWP and M0+∆1

LP are obtained using Eq. E.42. Thus, the light intensity
reaching each pixel is described by:

I0(∆1,∆2) = I0

(
1

2
− 2∆1∆2 + 2∆2

2

)
, (E.52a)

I45(∆1,∆2) = I0

(
1

2
+ ∆1 − ∆2

)
, (E.52b)

I90(∆1,∆2) = I0

(
1

2
+ 2∆1∆2 − 2∆2

2

)
, (E.52c)

I135(∆1,∆2) = I0

(
1

2
− ∆1 + ∆2

)
. (E.52d)

Omitting the terms with order higher than 1:

I0(∆1,∆2) =
I0
2
, (E.53a)

I45(α, δ) = I0

(
1

2
+ ∆1 − ∆2

)
, (E.53b)

I90(∆1,∆2) =
I0
2
, (E.53c)

I135(α, δ) = I0

(
1

2
− ∆1 + ∆2

)
. (E.53d)
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Combining these last equations we can find the following relation to assess how
well the LR and QWP are aligned:

∆1 − ∆2 =
I45(∆1,∆2) − I135(∆1,∆2)

I45(∆1,∆2) + I135(∆1,∆2) + I0(∆1,∆2) + I90(∆1,∆2)
(E.54)
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Chapter F. Budget for the multimodal microscopes with polarimetry and
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K401 Expression protocol for dummies

Berta Mart́ınez-Prat1 and Laura Casas-Ferrer2

1bmartinezprat@gmail.com
2lauracasas6@gmail.com

December 4, 2018

The following protocol explains the expression of the Drosophila Melanogaster heavy chain kinesin-1, K401-
BCCP-6His 1 in Escherichia Coli via the WC2 plasmid, from The Gelles Laboratory (Brandeis University,
MA, USA). The molecular weight of the protein is 140 kDa (120 kDa K401 + 20 kDa BCCP)

Products

− HEPES

− LB (Lennox)

− LB-Agar (Lennox)

− KOH (1M) (to adjust pH)

− Mili-Q water

− MgCl2·6H2O (Mw= 203.30 g/mol)

− Isopropyl β-D-1-thiogalactopyranoside2 (IPTG)
(1 M, in water)

− ATP (-20oC)

− Lysozyme3 (-20oC)

− Imidazole (Mw= 68.08 g/mol)

− DTT (500 mM, in water)

− Chloroamphenicol - CHAM (5 mg/mL, in
ethanol)

− Ampicillin - AMP (100 mg/mL)

− E Coli with the WC2 plasmid containing the
gene to express our protein.4

− Protease Inhibitor Cocktails (PIC). 5

− Phenylmethane sulfonyl fluoride6 (PMSF) (200
mM, in isopropanol)

− Biotin (Mw=244,31 g/mol)

− Sucrose (Mw=342.30 g/mol)

− β-mercaptoethanol (14.3 M, pure liquid) (Work
with it under the hood)

Buffers

− preHEPES buffer (500 mL)
50 mM HEPES (pH=7.2, adjust pH with 1M KOH) (5.95 g)
4 mM MgCl2·6H2O (0.407 g)

− HEPES buffer (Using the 500 mL preHEPES buffer)
10 mM β-Mercaptoethanol (350 µL)
50 µM ATP (0.0138 g)

For the protein purification:

1Truncated at residue 401, fused to biotin carboxyl carrier protein (BCCP) and labelled with six histidine tags
2To induce protein expression
3It is also known as muaramidase and it can be found in our inmune system. It damages the gram-positive bacterial cell wall.
4In the group SOC&SAM they are in the -85oC freezer inside the second box at the central drawer. It is a small tube with an

orange cap with a yellowish solid (because they are frozen in glycerol).
5To avoid protein degradation by endogenous proteases (i.e. by the bacteria themselves).
6A serine protease ihibitor

1
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− Washing buffer (100 mL)
100 mL HEPES buffer
20 mM Imidazole (0.136 g)

− Elution buffer (50 mL)
50 mL HEPES buffer
500 mM Imidazole (1.702 g)

− Sucrose storage solution
The expressed K401-BCP-6His must be stored in a 36% sucrose HEPES solution with 2mM of DTT.
Such solution can be prepared by just dissolving the sucrose and the DTT (from the 500 mM DTT stock
solution) in the final solution obtained during the expression and once the kinesin has been tested.

Day 1

Isolating a bacteria colony (Streaking) → This step ensures the homogeneity of the protein since only

cloned cells will be collected to perform the preculture7.

1. First hour in the morning Prepare the LB-agar broth (35 g LB-agar/1 L of MiliQ water) and autoclave
it. Not a large volume is needed (∼15 mL/plate).

2. While one waits for the LB broth to be autoclavated, it is possible to start preparing the preHEPES
buffer and LB broth (without agar) (2x(1L in a 3L flask)8). This LB broth will be the harvest LB
broth. You can prepare extra LB broth for the pre-culture (day 2) (for example 500 mL in a 500 mL
glass bottle). You could maybe steal it from the biochemistry lab. The preHEPES buffer and the LB broth must
be autoclaved as well. Before and after the autoclave, they can be stored at 4oC.

3. Prepare the plates to streak out the bacteria later. To prepare three plates (one blank, that will be the
control, and two to streak the bacteria).

Careful! For all the following steps, you must work under the sterile hood 9:

− If the LB-agar is not liquid, melt it in the microwave (∼10-15 min at low power). Leave it opened
under the sterile hood until it is cold enough to handle it.

− Transfer 50 mL of the LB-agar to a 50 mL sterile falcon and add the antibiotics: 25 µL of stock
chloroamphenicol + 25 µL of stock ampicillin (Final concentrations: 2.5 µg/mL of chloroamphenicol
and 50 µg/mL of ampicillin).

− Drain the LB-agar with the antibiotics (∼15 mL) to the plates (petri dishes) and let them sit until
they gel (∼10 min). The plates can be stored sealed with parafilm until the streaking at 4oC.

4. Streak out the E. Coli. Again under the sterile hood . This should be done in the afternoon in order to

proceed the next morning (∼16 hours later. Maximum 18 hours).

− It is convenient to prepare different plates with different dilutions of the stock of cells. To this aim,
the cells can be diluted with LB broth (without agar). For example, drain 1 mL of LB broth in a
1.5 mL eppendorf and add the cells from the stock by dipping the inoculation loop10 (Fig. 1) in the
tube with the cells and then introducing it in the eppendorf with the LB. From this first dilution,
more dilutions can be prepared11.

− Dip an inoculating loop (Fig. 1) in one of the eppendorfs with the cells and spread them as it is
shown in Fig. 2

5. Let the bacteria proliferate for 16 hours (18 maximum) in an oven at 37oC.

7In the stock of cells there can be both transformed cells with the desired gene and non-transformed cells, those which have
been successfully transformed, will survive the antibiotics and hence proliferate

8It is important that the flask is at least 3 times the volume of the broth so the bacteria have O2 during the harvest (day 3).
The harvest will be performed in the same containers

9At least two minutes before using it, the UV light should be turned on and once starting working, turned off. When finishing
to use the hood, the UV light must be switched on again to sterilize the hood again.

10If the loop is metallic, it should be previously sterilized with the bunsen flame. Advice: It is better to use an inoculation loop
with a big loop (like the ones at the left of Fig. 1)

11In our case we just made one dilution and streaked three plates: one with the dilution, another one without diluting the cells
and a blank.

2
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Figure 1: Inoculation loop

Figure 2

Day 2

1. Take out the plates from the oven and keep them at 4oC until the pre-culture. The bacterial colonies
should have proliferate within the 16 hours and different dots, each one corresponding to a single colony,
should be seen. If the streaked bacteria suspension was too concentrated, you will see a continuum. It
is possible to either try to grab one isolated colony, in the case there is any, or streak the bacteria again.
If more than 24 hours are needed for the colonies to appear, do not use them.

Pre-culture The addition of the reagents must be done under the sterile hood This should be done in

the afternoon in order to proceed the next morning (∼16 hours later. Maximum 18 hours).

2. Fill two 50 mL sterile falcons with 10 mL of autoclavated LB (with a serological pipette). It is important
not to fill too much the falcon since the bacteria need O2 to live.

3. Add the two antibiotics (cloroamphenicol and ampicillin), 5 µL of each stock (Final concentrations are:
2.5 µg/mL of cloroamphenicol and 50 µg/mL of ampicillin).

4. Collect one of the colonies with a micropipette (the tips should be sterile) and add it to one of the falcons

3
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with the LB.12 Do the same with another colony and the other falcon.

5. Leave the falcons at 37oC and 220 rpm overnight (∼16 hours, maximum 18 hours). The resultant broths
will be the pre-cultures.

→Hereinafter, all the steps will be done by duplicate, i.e. for the two pre-cultures and the two harvest
LB broth.

Day 3

Any time of the day, degase 13 the preHEPES buffer.

Harvest and protein expression

1. Take out the pre-cultures from the chamber at 37oC and leave them at 4oC as the other things are
prepared. The pre-cultures should look turbid and yellowish.

2. Add 500 µL of each stock of antibiotics (cloroamphenicol and ampicillin) to the 3L flasks containing the
(already autoclavated) harvest LB broth. Add as well 0.0244 g of biotin to each container. (Final
concentrations are: 2.5 µg/mL of cloroamphenicol, 50 µg/mL of ampicillin and 24.4 µg/mL of biotin)

3. Transfer 10 mL of pre-cultures to one of the harvest LB broth.

4. Read the OD600 as zero14.

5. Let the harvest broths at 37oC and 120 rpm until the OD600s reach 0.6 A.U. of absorbance, when the
bacterial density will be the optimal one for the protein expression. Measure the OD600 every hour. The
growth of the OD600 is a power of 215, in this way, if the OD600 is around 0.3 A.U., the 0.6 A.U. will be
reached when the bacteria divide one more time, this is after ∼30 min. In our case, we had to wait for
∼4 hours (this depends on the amount of pre-culture transferred to the harvest LB broth).

6. Once the OD600 is 0.6 A.U., leave the flasks for 15 minutes at 4oC and afterwards add 1/1000th of the
volume of IPTG (i.e. 1 mL of IPTG stock to our 1 L broth). The IPTG induces the overexpression of
the protein of interest encoded in our plasmid, in our case, the kinesin.

7. Leave the broths with the IPTG at 22oC and 140 rpm overnight (∼12-20 hours).

Day 4

From this point, working under the hood is not needed.

Centrifugation and lysis

1. Transfer the broths to plastic centrifuge bottles and centrifuge them at 4,000 rpm and 4oC16 for 30 min.
After the centrifugation, there should be a pellet (a solid) corresponding to the precipitated bacteria
(with the protein inside).

2. During the centrifugation, prepare the HEPES buffer by adding 350 µL of β-mercaptoethanol and 0.0138
g of ATP to the autoclavated and degased preHEPES buffer. (Final concentrations are: 10 mM of β-
mercaptoethanol and 50 µM of ATP).

3. Transfer 50 mL of HEPES buffer to two 50 mL falcons and add 500 µL of both PIC and PMSF (final
concentration: 1mM). Leave the falcons in ice. This will make the Full lysis buffer.

4. Once the centrifugation is over, remove the supernatant17 and transfer the pellets to the falcons with 20
mL of the Full lysis buffer. Resuspend the pellet using a vortex.

12To collect the colony it is convenient to mark it beforehand. In this way it will be easier to identify it when working under
the hood. Moreover, to collect the colony you can press the micropipette and suction it. Afterwards, add it to the LB broth
pippeting and releasing the volume several times.

13Degase solution using a vacuum pump and a stirrer for 30 minutes
14Transfer 1 mL of your broth to a cuvette and read the absorbance at 600 nm.
15It is a power of 2 because every bacterium divides into 2 bacteria in one life cycle.
16The low temperature is to avoid the heating of the centrifuge due to the high reached velocities. Vacuum is performed as well

in order to reduce the friction with the air and have a properly operation.
17You can use the 3 L flasks used for the harvest to collect the supernatant and then disinfect them with bleach
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5. Put the falcons at -80o for 30 min.

6. Anneal the falcons in a beaker with water at 4o for 20 min.

7. Add the lysozyme and leave the suspensions in ice at 4o.

8. Sonicate the suspensions with a probe type sonicator for two cycles (per suspension) of 90’ alternating
10’ of sonication and 10’ of rest (i.e. 5 times sonicating for 10’ with 10’ pauses between them). 18.

9. Transfer the suspensions to two centrifuge tubes and centrifuge them at 20,000 rpm for 20 min to get
the supernatants.

Figure 3: Result of the high-speed centrifugation.

Protein purification

1. During the highspeed centrifugation, prepare the buffers for the Ni-NTA column. We have used a 1 mL
column.

− Take ∼ 150 mL of HEPES buffer and adjust the pH>7.5 with KOH (in our case 1 M). The pH
must be >7.5 adjusted in order to prevent the His·Tag protonation. From the pH-adjusted HEPES
buffer prepare in 50 mL falcons:

• 50 mL of HEPES buffer (You can split the volume into 2x25 mL).

• 25 mL of Wash buffer.

• 50 mL of Elution buffer.

Ni·NTA column

The flow velocity during all the process should be ∼2 mL/min. The buffers used must be previously
degased.
In order to test whether the protein purification has been successful or not, it is possible to perform an
electrophoresis in polyacrilamide gel with Coomassie Blue as indicator (See more in page 8).

18Important! Keep the samples in ice during all the procedure to avoid heating during the sonication, as it could denature the
proteins.
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Figure 4: Ni NTA column. The column is connected to a peristaltic pump that allows the fluid to flow.

2. Equilibrate the Ni-NTA cartridge with the HEPES buffer by letting flow ∼ 5 mL of buffer (5 times the
volume of the column, which is 1 mL).

3. Load the column with the two centrifugated supernatants. You should make all the volume of both
supernatants completely flow through the column.

4. Make 10 mL of wash buffer flow.

5. Collect the sample with the elution buffer. It is possible to check when the protein has completely flowed
through the column by using coomassie blue (Fig. 5)19 In this way, the protein will be as concentrated
as possible.

Figure 5: Drops of Coomassie blue (with SDS that denaturalizes the proteins) mixed with the eluate candidate
to contain the protein. The eluate was collected when there had flowed: 3, 4 and 5 mL of elution buffer through
the column.

6. Recondition the Ni·NTA column following the protocol described by the manufacturer. In our case, the
refurbishment consisted on making flow:

− 5-10 mL of Protein wash buffer (7 M Urea + 400 mM Imidazol degased at pH=8.0)

− 5-10 mL of water

− 5-10 mL of purge buffer (50 mM NaPO4, 300 mM NaCl, 100 mM EDTA degased at pH=8.0)

19In a piece of parafilm, put 18 µL of the pendling drop when the protein is being eluated and add 2 µL of coomassie blue
stain. Mix with the pipette and wait: if it becomes blue, it means that the sample contains protein.(Fig. 5).
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− 20 mL Degased MiliQ water

− Nikel reload (>100 mM NiSO4 degased). Reflux for 20 minutes.

− 20 mL Degased MiliQ water

Removing the imidazol

In order to get rid of the imidazol coming from the elution of the protein, a PD10 column was utilized.
PD10 is a molecular exclusion column that will allow us to replace the elution buffer (with imidazol)
with hepes buffer (without imidazol).

Figure 6

7. Equilibrate the column with ∼25 mL of HEPES buffer.

8. Load the column with 2.5 mL of the solution containing the protein. If the sample is less than 2.5 mL,
add HEPES buffer until reaching 2.5 mL.

9. Eluate the protein with 3.4 mL of HEPES buffer.

10. Recondition of the column with water.

Protein reconcentration

It might be eventually necessary to concentrate more the protein to have a higher activity. It is convenient to
try first of all to prepare the active gel and if the activity is not high enough, it is possible to concentrate more
the protein suspension with a Centricon centrifugal filter. It consist on a falcon-like tube with a display that
contains a membrane splitting the falcon into two different parts: an upper one which contains the protein
and the lower one which collects the solvent as the protein suspension gets more concentrated. As it is said in
ref. [1] (Millipore, 2005): Concentration is achieved by ultrafiltering the sample solution through an anisotropic
membrane. Centrifugal force drives solvents and low molecular weight solutes through the membrane into the
filtrate vial. Retained macrosolutes are above the membrane inside the sample reservoir. As the sample volume
is diminished, retained solute concentration increases. For recovery, the sample is transferred to the retentate
vial by placing the vial over the sample reservoir, inverting the device, then centrifuging briefly.
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Figure 7

Figure 8

Polyacrilamide gel electrophoresis (SDS-PAGE)

An electrophoresis in polyacrylamide gel can be performed in order to test the presence of the protein of
interest and to probe if there are any other proteins contaminating the sample.

SDS-PAGE is a method of separating molecules based on the difference of their molecular weight. At the
pH at which gel electrophoresis is carried out the SDS molecules are negatively charged and bind to proteins
in a set ratio, approximately one molecule of SDS for every 2 amino acids. In this way, the detergent provides
all proteins with a uniform charge-to-mass ratio. By binding to the proteins the detergent destroys their
secondary, tertiary and/or quaternary structure denaturing them and turning them into negatively charged
linear polypeptide chains. When subjected to an electric field in PAGE, the negatively charged polypeptide
chains travel toward the anode with different mobility. Their mobility, or the distance traveled by molecules,
is inversely proportional to the logarithm of their molecular weight. [2]

Figure 9: SDS-PAGE cuvette

IMPORTANT! Read this part before performing the Ni column procedure , as you will need to take 4 sam-
ples of 20 µL each one at 4 different stages of the purification:

− Raw extract - it is the protein solution BEFORE passing it through the column.
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− Flow through - it is the protein solution AFTER passing it through the column.

− Wash - it is the sample that we get AFTER passing the washing buffer, that should contain a mixture
of proteins, but NOT OUR PROTEIN OF INTEREST.

− Elution - it is the sample that we get AFTER passing the elution buffer, that should contain ONLY
OUR PROTEIN OF INTEREST.

− PD10 - it is the sample that we get AFTER filtering our eluate (4) through the PD10 column. It should
contain ONLY OUR PROTEIN OF INTEREST.

The standard procedure for the polyacrylamide electrophoresis is the following one:

1. Prepare the polyacrylamide gels:

− Running gel

This gel allows to separate the proteins according to their molecular weight. It can be prepared in
a 15 mL falcon.

– 9.9 mL of acrylamide.

– 1.13 mL of Milli-Q H2O

– 3.75 mL of Tris Buffer 1.5 M pH=8.8

– 150 µL of 10% SDS

– 75 µL of 10% APS

– 7.5 µL of TEMED

− Stacking gel

The stacking gel will concentrate the proteins before they start flowing inside the running gel.
It can be prepared in a 15 mL falcon.

– 3.13 mL of Milli-Q H2O

– 0.62 mL acrylamide

– 1.25 mL of Tris buffer 1.5 M pH=6.8

– 50 µL of 10% APS

– 5 µL of TEMED

2. Pour the running gel in the electrophoresis cuvette until it reaches the front line. Wait until it has
completely polymerized (15-20 min). Then add isopropanol20 with a Pasteur pipette to make up the gel
and pour the solvent in the sink.

3. Pour the stacking gel in the electrophoresis cuvette, over the (already gel) running gel, until it reaches
the top and bursts.

4. Put the 1 cm comb in the cuvette and let it polymerize (1h).

5. Take out the comb carefully and proceed to load the wells as it is shown in the picture. You have to
add 10 µL of coomassie blue in 20 µL of the samples and load them with a 1 µl automatic pipette or a
hamilton pipette. Don’t forget the MW marker!

6. Fill the electrophoresis cuvette with Running Buffer, close it and connect it at 120 V 48 A for 30 min.
By that time the protein front should have reached the middle of the gel, if it hasn’t, leave it for another
half an hour.

7. Change to 140 V and leave it during another 40 minutes. By that time the proteins should be visibly
separated.

8. Take the gel out from the cuvette carefully and put it in a rocker with Milli-Q H2O during 10 min to
eliminate the excess of coomassie blue. The result should be similar to the one that is shown in Fig. 10,
with a thick line at the height corresponding to 110,000 Da, which is the molecular weight of the protein
of interest.

20Isopropanol eliminates bubbles from the meniscus and protects the gel solution of the radical scavenger oxygen.
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Figure 10
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