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Abstract: The evolution of resistance by the malaria parasite to artemisinin, the key component of
the combination therapy strategies that are at the core of current antimalarial treatments, calls for
the urgent identification of new fast-acting antimalarials. The apicoplast organelle is a preferred
target of antimalarial drugs because it contains biochemical processes absent from the human host.
Fosmidomycin is the only drug in clinical trials targeting the apicoplast, where it inhibits the methyl
erythritol phosphate (MEP) pathway. Here, we characterized the antiplasmodial activity of domiphen
bromide (DB), another MEP pathway inhibitor with a rapid mode of action that arrests the in vitro
growth of Plasmodium falciparum at the early trophozoite stage. Metabolomic analysis of the MEP
pathway and Krebs cycle intermediates in 20 µM DB-treated parasites suggested a rapid activation of
glycolysis with a concomitant decrease in mitochondrial activity, consistent with a rapid killing of the
pathogen. These results present DB as a model compound for the development of new, potentially
interesting drugs for future antimalarial combination therapies.

Keywords: malaria; Plasmodium falciparum; domiphen bromide; methyl erythritol phosphate pathway;
antimalarial drugs; antibiotics

1. Introduction

In 2006 the World Health Organization (WHO) recommended artemisinin-based com-
bination therapies as global first-line treatments for Plasmodium falciparum malaria [1]. This
therapeutic strategy consists of the combination of a fast-acting antimalarial (artemisinin)
with a second drug with a longer blood residence time and, ideally, a different mode of
action, which wipes out those parasites that were not killed by the first compound. How-
ever, by 2016, the emergence of artemisinin and partner-drug resistance in P. falciparum
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was detected in the Greater Mekong Subregion [2], and recently the independent evolu-
tion of artemisinin resistance has also been reported in Africa [3] and South America [4].
This alarming scenario calls for the urgent development of new fast-acting drugs with
little-exploited targets in the malaria parasite.

Isoprenoids are a large and diverse class of naturally occurring organic chemicals
which are essential for cell survival in all organisms [5]. All isoprenoids are derived from the
universal five-carbon precursors isopentenyl diphosphate (IPP) and dimethylallyl diphos-
phate (DMAPP), which may be synthesized via one of two independent nonhomologous
pathways: the classical mevalonate pathway or the alternative 2-C-methyl-D-erythritol
4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DXP) pathway [6]. In the malaria par-
asite, this biosynthetic route takes place in the apicoplast, a relict, plastid-like organelle [7,8]
that gives its name to the Apicomplexa phylum, which also includes important human and
animal pathogens such as Toxoplasma, Babesia, Cryptosporidium, Cyclospora, and Cystoisospora.
Malaria parasites lacking the apicoplast are entirely dependent on exogenous IPP for sur-
vival, indicating that isoprenoid precursor biosynthesis is the only essential function of the
apicoplast during blood stage growth [9].

For most bacteria and Apicomplexa parasites, the MEP pathway is the only route for
the biosynthesis of IPP and DMAPP and has therefore been identified as an interesting
target for the development of new antibiotics and antiparasitic drugs [10–16]. The MEP
pathway in Plasmodium starts with the condensation of pyruvate and glyceraldehyde
3-phosphate (G3P), which yields DXP as a key metabolite. DXP reductoisomerase (DXR)
then catalyzes the simultaneous intramolecular rearrangement and reduction of DXP to
form MEP. The third enzyme of the MEP pathway, 2-C-methyl-D-erythritol-4-phosphate
cytidylyltransferase (CMS), catalyzes the formation of 4-diphosphocytidyl-2-C-methyl-D-
erythritol (CDP-ME) [17]. Several reaction steps are necessary for the final conversion of
CDP-ME to IPP and DMAPP (Figure 1).
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2-C-methyl-D-erythritol 4-phosphate (MEP), MEP cytidylyltransferase (CMS), 4-diphosphocytidyl-
2-C-methylerythritol (CDP-ME), CDP-ME kinase (CMK), CDP-ME 2-phosphate (CDP-MEP), 2-C-
methyl-D-erythritol 2,4-cyclodiphosphate (MEcPP), MEcPP synthase (MCS), (E)-4-hydroxy-3-methyl-
but-2-enyl pyrophosphate (HMB-PP), HMB-PP synthase (HDS), HMB-PP reductase (HDR), dimethy-
lallyl pyrophosphate (DMAPP), isopentenyl pyrophosphate (IPP). Adapted from the scheme with
permission from [18] Copyright 2010 John Wiley and Sons.

One of the most studied MEP pathway inhibitors is fosmidomycin, a compound that
blocks DXR and CMS [19], and which has antiplasmodial activity with an in vitro IC50
between 0.3 and 1.2 µM in parasite cultures [10,20]. Exogenous supplementation of the
culture with IPP rescued asexual parasites treated with 100 µM fosmidomycin [9], which
illustrated the specificity of the drug. Similarly, apicoplast-lacking parasites could only
differentiate into gametocytes when the culture was supplemented with IPP [21], thus also
indicating the essential role of this metabolite for sexual development and suggesting that
other MEP inhibitors could have transmission-blocking activity. Fosmidomycin, which had
been proposed as a partner drug in antimalarial combination therapies [22], is now under
phase II clinical trials in combination with piperaquine [23]. Other compounds currently
under study are fluoropyruvate, which targets the first enzyme of the pathway [24], and
MMV008138, obtained from the Malaria Box [25], which inhibits CMS [17]. Similarly, the
quaternary ammonium compound domiphen bromide (DB, Figure 2) has been shown to
inhibit in vitro CMS from Mycobacterium smegmatis [26] and from Plasmodium vivax [27],
suggesting that it could become a novel antimalarial drug. Recently, DB has also been found
to be active against P. falciparum cultures, with an IC50 around 1 µM [28]. This compound
is soluble in water at 1 g/mL [29], it has a lowest published lethal dose of 10 mg/kg [30,31],
and it exhibits antibiotic activity against several bacteria [32,33].
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Figure 2. Chemical structure of DB.

Given the alarming scarcity of antimalarial drugs, the slow rate at which they are
developed, and the quick evolution of resistance by the parasite, we initiated an exploration
of the potential of DB for malaria therapeutics. We characterized the effect of DB on in vitro
P. falciparum cultures in comparison with fosmidomycin, using microscopy to observe the
effect of both drugs on parasitized red blood cells, and liquid chromatography–electrospray
ionization–tandem mass spectrometry (LC–ESI–MS/MS) to analyze the levels of MEP
pathway metabolites along time.

2. Materials and Methods

Except where otherwise indicated, reagents were purchased from Merck (Darmstadt,
Germany).

2.1. P. falciparum Cultures and In Vitro Growth Inhibition Assays

P. falciparum 3D7 was grown in vitro in human red blood cells of blood group type B
prepared as described elsewhere [34], using previously established conditions [35]. Briefly,
parasites (thawed from glycerol stocks) were cultured at 37 ◦C in T25 flasks (SPL Life
Sciences Co., Ltd., Naechon-Myeon, South Korea) in Roswell Park Memorial Institute
(RPMI) complete medium (containing 5 g/L Albumax II and supplemented with 2 mM
glutamine) under a gas mixture of 92% N2, 5.5% CO2, and 2.5% O2. Synchronized ring
stage cultures were obtained by 5% sorbitol lysis [36], and the medium was changed
every 2 days maintaining 3% hematocrit. A total of 200 µL of these Plasmodium cultures
with a 7% parasitemia and synchronized at ring stages were plated in 96-well plates and
incubated for 48 h at 37 ◦C in the presence of 20 µM fosmidomycin and/or 20 µM DB
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added from 5 mg/mL and 20 mM stocks prepared in H2O and methanol, respectively.
These concentrations were chosen because they are closer to the curative doses to be
administered to mice in future in vivo assays, according to our previous data obtained
with chloroquine [37,38]. A sample treated with 20 µM chloroquine was also included as
a growth inhibition control. The culture was monitored at different times by microscopy
(Olympus IX51, Tokyo, Japan), and parasitemia was determined by microscopic counting
of blood smears or by flow cytometry as previously described [39]. Just before drug
incorporation, and 30 min, 1 h, 8 h, 12 h and 24 h afterwards, 10 mL of culture were
removed, spun down at 500× g for 5 min, and the resulting pellets instantly frozen by
immersion in liquid N2. The frozen pellets were lyophilized and stored at −80 ◦C until
LC–ESI–MS/MS analysis.

2.2. Determination of Metabolites from the MEP Pathway and the Tricarboxylic Acid Cycle

The frozen lyophilized pellets were first reconstituted in 100 µL of ultrapure water. For
the determination of phosphate metabolites of the MEP pathway, 20 µL of the reconstituted
extract was mixed with 10 µL of AMP-13C5 (Toronto Research Chemicals, North York, ON,
Canada) used as internal standard, and 70 µL of high-performance liquid chromatography-
grade acetonitrile. The mixture was vigorously shaken and centrifuged (5 min, 13,400× g),
and the supernatant was transferred to a clean vial. Ten microliters was injected into the
LC–ESI–MS/MS system, which consisted of an Acquity ultra-performance liquid chro-
matography system (Waters Associates, Milford, MA, USA) coupled to a Xevo TQ-S micro-
triple-quadrupole mass spectrometer provided with an orthogonal Z-spray–electrospray
interface (Waters Associates). Nitrogen was used as both drying gas (1200 L/h) and nebuliz-
ing gas (50 L/h). The selected capillary voltage was 3 kV in positive ionization and negative
mode. The nitrogen desolvation temperature was 600 ◦C and the source temperature 150 ◦C.
The collision gas was argon at a flow of 0.21 mL/min. The chromatographic separation was
performed at 55 ◦C using an Acquity UPLC® BEH Amide 1.7 µm (2.1 × 100 mm) column
at a flow rate of 400 µL/min. The aqueous mobile phase was composed of ultrapure water
with ammonium bicarbonate (4 mM, pH 10.5), and the organic mobile phase was composed
of a mixture (8:2) of acetonitrile and water with ammonium bicarbonate (100 mM, pH 10.5).
The gradient linearly changed the percentage of aqueous mobile phase as follows: 0 min,
5%; 0.5 min, 5%; 2.75 min, 20%; 3.75 min, 20%; 3.76 min, 5%; 4.75 min, 5%. MS/MS detection
was performed by a selected reaction monitoring method including two ion transitions per
compound: MEP (215 > 79, 215 > 97); DXP (213 > 79, 213 > 97); G3P (169 > 79, 169 > 97);
phosphoenolpyruvate (167 > 79, 167 > 97); AMP-13C5 (351 > 78.9). The first transition was
used for quantification. The analysis batch also included standards of MEP, DXP, G3P, and
phosphoenolpyruvate to confirm the detection of the compounds.

The determination of pyruvate and other acidic metabolites, including lactate and
acidic compounds from the tricarboxylic acid cycle, was performed as previously de-
scribed [40,41]. Briefly, 5 µL of the reconstituted extract was mixed with 30 µL of an
internal standard consisting of a mixture containing 100 ng/mL for succinate-d4 and
fumarate-13C4, 1.2 µg/mL for lactate-13C3, and 10 µg/mL for malate-d3 and citrate-d4 in
ultrapure water. Derivatization was performed by adding 100 µL of a freshly prepared
O-benzylhydroxylamine: N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide–hydrochloride
mixture to the sample vial. After 60 min of reaction at room temperature, 1 mL of ultrapure
water was added to stop the reaction and the mixture was extracted with 4 mL of ethyl
acetate. After centrifugation (2000× g, 5 min), the organic layer was separated and dried un-
der a nitrogen stream in a water bath at 40 ◦C and 15 psi. The extracts were reconstituted in
150 µL of ultrapure water:methanol (1:1). Finally, 10 µL of the mixture was injected into the
LC–ESI–MS/MS system. Two transitions were acquired per analyte. Both chromatographic
and MS/MS conditions can be found elsewhere [41].

Data were processed with the MassLynx software V4.1 (Waters Associates), using the
TargetLynx package for integration and data management.
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2.3. Statistical Analysis

Statistical analyses were performed using Graphpad Prism v6 software (GraphPad
Software Inc., La Jolla, CA, USA). Three replicates were taken for each measure. Statistical
differences were assessed with the non-parametrical Mann–Whitney U test. p < 0.05 was
considered statistically significant. In the graphs, *, **, ***, and **** indicate p < 0.05,
p < 0.005, p < 0.0005, and p < 0.0001, respectively.

2.4. Ethics Statement

The human blood used in this work was commercially obtained from the Banc de Sang
i Teixits (www.bancsang.net (accessed on 18 June 2022). Blood was not specifically collected
for this research; the purchased units had been discarded for transfusion, usually because
of an excess of blood relative to anticoagulant solution. Prior to their use, blood units
underwent the analytical checks specified in the current legislation. Before being delivered
to us, unit data were anonymized and irreversibly dissociated, and any identification tag or
label was removed in order to guarantee the non-identification of the donor. No blood data
were or will be supplied, in accordance with the current Spanish Ley Orgánica de Protección
de Datos and Ley de Investigación Biomédica. The blood samples will not be used for studies
other than those made explicit in this research. The studies reported here were performed
under protocols reviewed and approved by the Ethics Committee on Clinical Research of
the Hospital Clínic de Barcelona (Reg. HCB/2018/1223, 23 January 2019).

3. Results
3.1. Effect of DB on In Vitro P. falciparum Cultures

The treatment of in vitro P. falciparum cultures with 20 µM DB and/or fosmidomycin,
a concentration well above their IC50 values, resulted in different outcomes across time
upon microscopic examination (Figure 3 and Figure S1). Whereas DB-treated samples 8 h
after treatment showed clear growth inhibition of the parasite evidenced by the presence
of abundant picnotic nuclei, cultures treated with fosmidomycin progressed until late
trophozoite stages. DB + fosmidomycin-treated samples exhibited a pattern similar to that
induced by DB alone, whereas chloroquine-treated controls presented the expected growth
arrest at the early trophozoite stage.

3.2. Analysis of MEP Pathway and Citric Acid Cycle Metabolites in DB-Treated Samples

LC–ESI–MS/MS analysis of synchronized untreated P. falciparum control culture ex-
tracts revealed a significant rise in the MEP:G3P ratio 24 h after ring-stage synchronization
(Figure 4), in agreement with the increased synthesis of MEP as the parasite grows and pro-
gresses through its intraerythrocytic cycle. Fosmidomycin led to a decrease in the MEP:G3P
ratio relative to the control, as expected from the inhibition of DXR (see Figure 1) by this
drug and the ensuing reduction in MEP levels. The effects of the DB treatment resulted in a
complete arrest of MEP production, in agreement with the observed rapid parasite death
upon administration of this drug to in vitro cultures. The DB-induced inactivation of CMS
(see Figure 1) did not lead to the accumulation of MEP that would occur if the parasite
had the rest of its metabolism intact, and maintained a regular supply of pyruvate and
G3P entering the MEP pathway; this result was instead suggestive of widespread cellular
damage in the pathogen. This fast-killing activity of DB was confirmed through analysis in
treated cultures of the main metabolites of the citric acid cycle, for 24 h after synchroniza-
tion at ring stages (Figure 5). Whereas in untreated cultures all the analyzed Krebs cycle
intermediates increased, both fosmidomycin- and, especially, DB-treated cultures after
24 h exhibited low levels for citrate, 2-oxoglutarate, succinate, fumarate and malate. Upon
treatment with DB, pyruvate was significantly reduced relative to the control, suggesting
the activation of an alternative path for energy production following the observed citric
acid cycle blockade. Indeed, analysis of the relative levels of lactate and pyruvate (Figure 6)
indicated an increase, in comparison with the untreated culture, in lactate dehydrogenase
activity in the presence of both drugs 1 h after treatment. Such an increment was significant

www.bancsang.net
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for DB-containing samples at 8 h and, particularly, 24 h after treatment start, pointing to an
activation of glycolysis in the dying parasites to compensate for the arrest of mitochondrial
activity.
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Figure 3. Effect of DB and fosmidomycin (FOS) on in vitro P. falciparum cultures. (A) Stage of growth
inhibition of P. falciparum during 48 h of treatment with 20 µM DB, fosmidomycin, and both drugs
combined. Controls included a non-treated sample and a culture treated with 20 µM chloroquine
(CQ). Giemsa-stained blood smears were prepared at the indicated time points between 0 and 48 h
of incubation, and the numbers of ring stages, early trophozoites, mature trophozoites, schizonts,
and cells with picnotic nuclei were counted. Bars indicate the percentages of developmental stages
present in the respective blood smears. (B) Representative images of Giemsa-stained P. falciparum
blood stages at different times after the addition to the culture of antiplasmodial drugs.
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4. Discussion

The apicoplast organelle originated from the endosymbiotic association of Plasmodium
evolutionary ancestors with a cyanobacterium [42]. This is the reason why antibiotics such
as doxycycline, solithromycin, azithromycin, clindamycin, and chloramphenicol inhibit
central apicoplastidic processes, such as genome replication, transcription, translation,
and proteostasis [43,44]. Malaria parasites treated with these compounds do not die
immediately, and are capable of producing invasive merozoites and therefore continuing
with the asexual cycle of replication. However, the apicoplast of the next generation of
parasites is not functional (if existent), because it has failed to replicate and segregate
properly, which will make the parasite population collapse. This is known as a delayed-
death phenotype and should be taken into account when screening for new antimalarial
compounds [45]. In contrast, fosmidomycin and DB target the apicoplast metabolism,
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thus inhibiting the parasite development directly. This is of major importance, as in this
case the therapeutic effect is obtained in the same cycle of replication where the drugs are
administered, which results in a reduction in the pathogenic clinical effects of the parasite.
In this work, we show that the effect of DB is already observed after 1 h of treatment,
slowing down parasite growth in the early ring stage. This can translate into an added
therapeutic advantage, as the parasitized erythrocytes containing picnotic rings might
remain functional and could be pitted by the spleen, recovering them as functional cells [46].
Such a rapid parasite-killing profile could be interesting for combination therapy [47], which
the World Health Organization recommends as the optimal drug administration strategy in
uncomplicated malaria [48]. In this approach, two or more antimalarials [49] with different
antiparasitic mechanisms are combined, one with a fast-killing action (usually artemisinin
or some of its derivatives, with elimination half-lives of approximately 1–3 h [50]) and
a second compound with a longer blood circulation time (between 4 days and several
weeks [51]) to finish off the surviving parasites. However, the incipient resistance to
artemisinin detected in several malaria-endemic regions demands new rapidly acting
drugs, for which DB could be a good candidate. The mode of action of DB is the inhibition
of CMS, leading to rapid parasite death through a subsequent disruption of the citric acid
cycle. However, working out the details of the precise molecular mechanisms will require
a more extensive analysis through dose-response metabolomics studies at different DB
concentrations throughout an expanded time frame.

In malaria parasites, IPP and DMAPP are building blocks used to synthesize small-
molecule isoprenoids with a host of functions, or C15/C20 prenyl chains for the post-
translational modification of proteins [52,53]. Essential isoprenoid products in Plasmod-
ium include ubiquinone, a component of the mitochondrial electron transport chain [54],
dolichols involved in protein N-glycosylation [55], and vitamin E, which is one of the
key parasite defenses against oxidative stress induced by pro-oxidant compounds such
as artemisinin [56]. Nevertheless, recent studies indicate that the key essential function of
isoprenoids in the parasite blood stages is their role as a substrate for protein prenylation,
an important post-translational modification that regulates protein targeting and function
throughout the cell [53,57,58]. Whereas most studied organisms make wide use of protein
prenylation, malaria parasites have a small prenylated blood stage proteome, consisting
primarily of proteins driving vesicular transport to the digestive vacuole [53,57], notably
the Rab family GTPases [59,60]. In the absence of prenylation, Rab5 trafficking is disrupted,
which leads to digestive vacuole destabilization and parasite death [57].

Among the heat shock proteins (HSP) that are necessary for protein folding and stabi-
lization, the robust prenylation of HSP40 during intraerythrocytic replication was found
to be critical for P. falciparum’s survival of thermal stress [58]. The inhibition of isoprenoid
biosynthesis resulted in the reduced association of HSP40 with critical components of the
cytoskeleton, protein export, and vesicular transport pathways, without which P. falciparum
could survive neither heat nor cold stress. Other reports also showed that apicoplastidic
isoprenoid biosynthesis is one of the essential metabolic pathways involved in the parasite
survival response to the extreme conditions of the host’s malarial fever [61].

DB is a potent inhibitor of human ether-a-go-go-related gene (HERG) potassium chan-
nels [62], and it also affects the activity of some hydrolytic enzymes [63]. These potential
side effects call for delivery strategies based on the encapsulation of this drug in nanocarri-
ers targeted to Plasmodium-infected cells, which will allow for high local parasite-killing
concentrations while maintaining the overall administered dose below the lowest published
lethal dose (10 mg/kg) [30,31]. DB has a log P of 2.55 (https://chemaxon.com (accessed on
18 June 2022), indicating a high lipophilicity and therefore a wide biodistribution, although
this characteristic of the drug might also offer a potential solution to this limitation. The
long hydrocarbon tail and charged head of DB are molecular features that resemble those of
membrane lipids, thus suggesting that this compound could be efficiently incorporated into
liposomes to improve its delivery [28]. Indeed, targeted delivery will likely be essential for
drugs such as DB which must reach the apicoplast, because, in addition to the organelle’s

https://chemaxon.com
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membrane, three other lipid bilayers must be crossed, namely those of the parasitized red
blood cell, the parasitophorous vacuole containing the parasite, and the plasma membrane
of Plasmodium. A targeted delivery strategy will also contribute to reduce the relatively
high IC50 of this drug for Plasmodium (1 µM) [28]. Previous data showed that DB had a
disruptive effect on liposomal lipid bilayers at in vitro concentrations close to those re-
quired for its antiplasmodial activity in P. falciparum cultures [28]. This indicates that DB
encapsulation in nanocarriers will require either the adaptation of the lipid formulation of
liposomes to impart upon their membranes a higher stability, or the use of non-liposomal
drug carriers, such as the different types of polymeric nanoparticles that have shown
efficiency in the targeted delivery of antiplasmodial drugs [38,64,65]. The next steps in the
eventual pharmaceutical development of such DB nanoformulations will need to include
pharmacokinetics/pharmacodynamics analyses and in vivo assays in murine models of
malaria.

5. Conclusions

The results reported above present DB as a fast-killing antiplasmodial whose effects are
already felt by the parasite 1 h after treatment start. The MEP pathway blockade by DB is
mirrored by a simultaneous arrest of the citric acid cycle and siphoning of pyruvate towards
glycolysis. The relatively high in vitro IC50 of this drug could be improved through targeted
delivery nanoencapsulation strategies to facilitate its entry into parasitized erythrocytes
and towards its target enzyme inside the apicoplast organelle. If this current limitation
can be solved, DB might become an important actor in future antimalarial combination
therapies.
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