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Abstract 
A fundamental goal in cancer research is to understand the mechanisms of cell transformation. 
This is key to developing more efficient cancer detection methods and therapeutic approaches. 
One milestone in this path is the identification of all the genes with mutations capable of driving 
tumors. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer 
driver genes are under positive selection in tumorigenesis, their observed patterns of somatic 
mutations across tumors in a cohort deviate from those expected from neutral mutagenesis. 
These deviations, or signals may be detected by carefully designed bioinformatics methods, 
which have become state-of-the-art in the identification of driver genes. A systematic approach 
combining several of these signals could lead to the compendium of mutational cancer genes.  
We present the IntOGen pipeline, an implementation of this approach to obtain the compendium 
of mutational drivers, available through intogen.org. Its application to somatic mutations of more 
than 28,000 tumors of 66 cancer types reveals 568 cancer genes and points to their 
mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of 
somatic tumor mutations will support the continuous refinement of our knowledge of the genetic 
basis of cancer.  
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Introduction 
Cancer is a family of diseases characterized by abnormal and uncontrolled cellular growth 
caused primarily by genetic mutations1,2. These mutations, called drivers after their ability to 
drive tumorigenesis, confer somatic cells in a somatic tissue a selective advantage with respect 
to neighboring cells1. They occur in a set of genes (called cancer driver genes), the mutant 
forms of which affect the homeostatic development of a set of key cellular functions. One of the 
main goals of cancer research, since the establishment of genetics, has been the discovery of 
these cancer driver genes across tumor types3–6. Their identification has led to the development 
of the paradigm of targeted anti-cancer therapies and, more generally to the search for genomic 
biomarkers of prognosis and response to treatments7. 
 
The first part of this article presents a historical perspective of the evolution of our knowledge on 
cancer genes starting before the sequencing of the first whole-exome and whole-genome 
tumors to the present, and provides an outlook of the future. It focuses on mutational driver 
genes, i.e., those capable of driving tumorigenesis via single nucleotide variants and short 
indels, which we call collectively point mutations. On the other hand, it does not cover other 
types of somatic alterations that affect cancer genes and also contribute to tumorigenesis, such 
as amplifications or deletions, genomic rearrangements and epigenetic silencing. For 
comprehensive reviews on some of the types of driver alterations not covered here, see for 
example8–10. Also excluded are methods that identify driver genes based on their vicinity to 
significantly mutated genes in biochemical pathways or networks, which have also been 
reviewed elsewhere11. 
 
In the second part, we propose that the maturity of the analysis methods of mutational driver 
identification and the wealth of tumor mutational datasets currently available in the public 
domain advance the goal of uncovering the compendium of driver genes across all tumor types 
and also point to their tumorigenic mechanisms. To demonstrate this proposition, we developed 
the IntOGen12,13 pipeline, aimed at the systematic identification of the compendium of mutational 
driver genes across tumor types. The snapshot of the compendium of driver genes described in 
the article has been obtained through the application of state-of-the-art driver discovery 
methods to 28,076 tumors grouped in 221 cohorts of 66 different tumor types. This snapshot of 
the compendium of driver genes (and newer versions), as well as the automatic system to 
produce it are hosted at the IntOGen platform (intogen.org). 
 

The genetic basis of cancer 
The search for the causes of cancer is firmly intertwined with the development of genetics14. 
The first scientific notions of the causes of cancer derive from the progression of systematic 
record-keeping in the 18th and 19th centuries, which linked the high incidence of specific types of 
tumors to the exposures derived from the practice of some professions15,16. The first known 
report on the heritability of cancer by Broca dates from the late 1800s, even before the genetic 
basis of inheritance developed by Mendel was widely recognized17. In the early 1900s Peyton 
Rous was able to transmit tumors to healthy birds using cell-free extracts obtained from a 
diseased animal18, thus suggesting that units smaller than cells were responsible for 
tumorigenesis. Contemporary with this finding, and previous to Morgan’s work on chromosomes 
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as the seat of genes, Theodor Boveri proposed that cancer could arise as a result of incorrect 
chromosomes combinations19. This brought the basis of cancer firmly within the realm of 
genetics. Experiments with chemical carcinogens also demonstrated that changes to the 
sequence of DNA promoted cellular transformation20–23. 
 
The improvement of biochemistry and molecular genetics in the decades spanning between 
1940 and 1980 fostered the development of laboratory methods like positional cloning, 
retrotranscription and Sanger sequencing. The application of these methods to cancer research 
led to the identification of the first cancer driver genes, named after the ability of their mutant 
forms to drive tumorigenesis. A small portion of the genomes of several birds that hybridized 
with part of the DNA of the avian sarcoma virus was the first cancer gene to be identified, and 
was thus named SRC24. The existence of such viral DNA fragments, a variant of “normal” genes 
present in the avian genomes which had acquired the transforming capability had already given 
birth to the term “oncogene” in 196925. Oncogenes such as HRAS were then identified in human 
tumors26,27, and the change of a single nucleotide in the gene sequence was demonstrated to 
be enough to provide the transforming capability28,29. With these discoveries, the genetic basis 
of tumorigenesis (including the aforementioned professional exposures) could finally be 
explained.  
 
As the introduction of defective copies of the driver gene variant, despite the presence of normal 
alleles in the recipient cell was enough to produce transformation, it was concluded that 
oncogenes act in a dominant way30. However, the analysis of the incidence of retinoblastoma, a 
pediatric tumor, had shown that two hits, i.e., genetic events inactivating both alleles of the gene 
(later named RB1, after the disease) are necessary for the development of the malignancy31. 
This apparent contradiction was solved by the mid-1980s with the acknowledgment of the 
existence of a second type of cancer genes, termed tumor suppressors30. Unlike in the case of 
oncogenes, transformation is caused by the inactivation of tumor suppressors, which in general 
requires loss of activity of both alleles of the gene. The discovery of tumor suppressors also 
provided an explanation to familial cancer cases17: an inherited mutation inactivating one of the 
alleles of a tumor suppressor increases the likelihood to develop a tumor as only the second hit 
is required.  
 
Following this clear blueprint of two classes of cancer genes, between the 1980s and early 
2000s dozens of genomic loci encoding oncogenes (such as MYC, RET, PDGFRA, MET, KIT, 
FLT3, EGFR, BRAF)32–38 and tumor suppressors (like TP53, TGFRB2, RB1, PTEN, CHEK2, 
CDKN2A, BRCA1, BRCA2, APC)39–51 were identified. Germline mutations in some of the latter 
were also shown to confer susceptibility to cancer development39,47,51–55. Further pioneering 
studies also established the importance of other types of alterations affecting these genes, such 
as amplifications, deletions, translocations or promoter hypermethylation, for cell 
transformation34,53,54,56.  
 
In 2004, a seminal article compiled a list of 291 cancer driver genes from the scientific 
literature57, including genes altered through point mutations, translocations or copy-number 
changes. In an effort to conceptualize this heterogeneity, driver genes were recognized to affect 
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primarily a handful of essential cellular functions, termed cancer hallmarks58 (reviewed and 
updated in 201159). According to this generalization, as a result of driver alterations, malignant 
cells become capable of: i) resisting apoptosis; ii) maintaining proliferative signaling (even in the 
absence of extracellular signals); iii) evading suppressors of cell growth; iv) activating invasion 
and metastasis; v) enabling replicative immortality; vi) inducing angiogenesis; vii) achieving 
deregulation of energy metabolism; and viii) avoiding immune destruction. In addition, the 
promotion of tissue inflammation and the genomic instability of tumors were regarded as 
intrinsic features enabling their evolution.  
 

Somatic mutation patterns reveal drivers 

In the early 2000s, improvements introduced in DNA sequencing technologies and the rapid 
advance in the annotation of the human genome enabled projects aimed at revealing increasing 
shares of the landscape of somatic mutations in tumors. In 2005, a study sequencing 518 
kinase-encoding genes found 76 non-silent mutations on average across 25 breast primary 
tumors and cell lines60. The following year, another group sequenced 13,023 genes of 11 breast 
and 11 colorectal tumors and found 519 and 673 with mutations, respectively61. The 
development of Next Generation Sequencing (NGS) technologies in the mid 2000s62 catalyzed 
the beginning of cancer genomics. In 2008, two further analyses of 22 glioblastomas and 24 
pancreatic tumors sequencing the entire exome found 1,007 and 685 mutated genes, 
respectively63,64. A similar landscape arose from the first tumor whole-genomes sequenced65–68. 
Nevertheless, the consensus viewpoint on tumorigenesis was that only a few mutational events 
affecting driver genes were expected at the root of malignization30,69. The vast majority of these 
mutated genes would, therefore, have no involvement whatsoever in tumorigenesis; in other 
words, they are passengers, rather than drivers. This finding first exposed the need for 
statistical tests that included the heterogeneity of mutation rate and mutation types to identify 
the unexpected mutational patterns that reveal cancer genes70–72. 
 
These first studies paved the way for the launch of large tumor sequencing initiatives in several 
countries, such as The Cancer Genome Atlas (TCGA)67, aimed at sequencing the exomes of 
hundreds of tumors of two-dozen frequent cancer types. As sequencing technologies continued 
to expand, more ambitious projects, many grouped under the umbrella of the International 
Cancer Genomes Consortium (ICGC)4, set their goal on sequencing the whole genome of 
thousands of samples. With the recent conclusion of many of these initiatives, comprehensive 
pan-cancer analyses laid out some of the most important findings of a little over a decade of 
cancer genomics research74–77, including lists of identified driver genes5,78. The vast majority of 
these pioneering projects focused on the study of primary malignancies. It is only more recently 
that similar projects probing metastatic tumors have begun to reveal the landscape of driver 
alterations of advanced malignancies79,80. 
 
One of the main goals of all these projects was the identification of the set of genes driving the 
malignancies. This revolutionary idea provided a rationale for the systematic and 
comprehensive identification of mutational driver genes. This rationale is rooted in the notion 
that tumorigenesis follows a Darwinian evolution characterized by variation and selection81,82. 
Variation is provided by randomly appearing somatic mutations that introduce genetic 
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differences between somatic cells in a tissue. Positive selection then acts upon cells carrying 
driver mutations that confer selective advantages over neighboring cells leading to clonal 
expansion of the mutants (Fig. 1a). (A variety of types of selective advantages, described above 
as the hallmarks of cancer, may be provided by mutations of different genes.)   
 
As a result of this evolutionary process, when a cohort of tumors of the same cancer type is 
analyzed, the deviation of patterns of mutations in some genes from their expectation may 
constitute signals that the mutations in those genes are under positive selection in 
tumorigenesis. For example, driver genes are mutated at abnormally high frequencies across 
the tumors of a cohort, and methods to detect this significant mutational recurrence were 
subsequently developed to analyze the mutational datasets produced by these projects69,83. 
Other signals of positive selection in tumorigenesis (Fig. 1b), such as the abnormal clustering of 
mutations in certain regions of the proteins84–89, a bias towards the accumulation of mutations 
with high functional impact90, or a bias in the frequency of tri-nucleotide changes91 have been 
exploited by driver identification methods92,93. Over time, many of these methods have been 
validated and tested on a number of cohorts of different cancer types and shown to be highly 
reliable. For thorough lists of methods see, for example, refs. 5,78,94,95. 
 
The analysis of the first large mutational datasets revealed that different types of mutations 
appear with varying frequencies in tumors of different origin and that the rate of mutations 
across the human genome is highly heterogeneous (see box 1 for details). It quickly became 
apparent that drivers detection methods are profoundly affected by the heterogeneity of the 
background mutation rate96. Building background models that accurately account for all the 
factors that affect the mutation rate in the absence of selection has become a hallmark of most 
driver identification methods developed in the past six years91,96–102. While several driver genes 
mutated at very high frequency may be spotted just by looking at their mutational pattern across 
tumors69, the accurate modeling of the background mutation rate is key to avoid false positive 
drivers and identify those with lower mutation recurrence, and thus uncover the genetic basis of 
tumorigenesis. The fact that methods exploit different signals of positive selection, and that 
some cancer driver genes clearly may exhibit one signal but not others makes the combination 
of their outputs the best approach for a comprehensive identification of cancer driver genes. 
Spurious discoveries by individual methods also have a higher chance of being filtered out by 
such combination 5,13,95,103. 
 

Systematic discovery of driver genes 
In parallel to the development of drivers identification methods, the adoption of NGS by cancer 
research, fostered by pioneering initiatives as the ones mentioned in the previous section, has 
generated a great amount of cancer genomics data available in the public domain. The tally of 
tumor samples sequenced at the whole-exome or whole-genome level which are currently 
available for systematic driver discovery is in the tens of thousands. These two premises 
provide in theory the opportunity to identify the compendium of mutational driver genes 
(compendium, for short), that is the list of genes driving each malignancy upon mutations. 
 
An implementation of the system 
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To build a snapshot of this compendium, we have collected somatic mutations across 221 
cohorts (comprising between 10 and 973 samples) of 66 different cancer types totaling 28,076 
samples (Fig. 2a; Supplementary Methods; Supplementary Table 1). We define as cohort a set 
of tumor samples of the same cancer type analyzed within a project with a uniform sequencing 
and calling pipeline. Most samples are contributed by large sequencing efforts, such as the 
ICGC4,104 (3,988 samples), TCGA73 (10,010 samples), PCAWG105 (2,554), the Hartwig Medical 
Foundation79 (3,742) and TARGET106 (246 samples). Importantly, the mutations across 60 other 
cohorts comprising 3,570 adult and 1,087 pediatric tumor samples sequenced by individual 
institutions were obtained via the cBioPortal and PedcBioPortal107, respectively. This highlights 
the importance of developing and maintaining centralized efforts to collect sequencing data 
produced within small projects. Finally, the mutations of 2,257 tumors sequenced as part of 
eight independent cohorts were obtained from the original studies. In summary, most cohorts 
(157) comprise primary tumors, but 33 of them are composed of metastatic or relapse samples 
(4,340). A special effort has been made to include pediatric malignancies (1,972 grouped in 25 
cohorts), traditionally underrepresented in driver discovery efforts.  
 
The number of coding mutations in tumors varies depending on the cancer type, and an 
important degree of variability across the samples of a given malignancy is also observed (Fig. 
2b, top). For example, some breast adenocarcinomas bear mutations in several hundred genes, 
while other samples of the same malignancy exhibit only a dozen mutated genes. Part of this 
heterogeneity may be explained by differences in sequencing technology or depth, or in 
mutation calling methods. Nevertheless, most of the heterogeneity in mutation burden has a 
biological basis, owing to differences in time or intensity of exposure to mutational processes, 
arising, for example, from faulty DNA repair108–112. While re-calling all mutations across the 
cohorts would eliminate part of the variability of technical origin, this is not yet possible for such 
large numbers of samples due to limitations in computational power. It is thus necessary, in the 
effort of systematic discovery of driver genes across cancer types, to analyze each cohort of 
tumors separately. Larger cohorts provide more statistical power to detect the signals of positive 
selection that characterize driver genes. In this systematic discovery, therefore, one expects 
that certain recurrently mutated driver genes appear across many cohorts of the same 
malignancy, while others will be detected in larger cohorts.  
 
The construction of the compendium by exploiting these datasets of tumor mutations requires 
an efficient computational system that systematically runs state-of-the-art driver discovery 
methods. Our implementation of this system, which we refer to as the IntOGen12,13 (Integrative 
OncoGenomics; Box 2) pipeline consists of three basic steps, illustrated in Figure 2c, and 
explained at length in the Supplementary Methods. A first pre-processing step guarantees that 
each method receives its input in the correct format and within operational parameters, e.g., 
deduplicating samples taken from the same tumor, or removing those with abnormal missense-
to-synonymous mutations ratio or with hypermutator phenotype. Seven recently published 
complementary methods of driver identification --dNdScv98, OncodriveFML99, cBaSE102, 
OncodriveCLUSTL100, a re-implementation of HotMAPS accounting for tri-nucleotide contexts 
mutation types88, smRegions101 and Mutpanning91-- are executed next. Then, the lists of 
candidate drivers identified by each method are combined through a weighted vote in which the 
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weight awarded to each method is based on its perceived credibility (Supp. Fig. 1). The 
combination yields lists of driver genes per cohort that are more sensitive than those produced 
by individual methods without loss of specificity (Supp. Fig. 2). In a final post-processing step, 
spurious candidate driver genes that may appear due to known confounders are automatically 
filtered out (Supplementary Methods). The IntOGen pipeline is designed to scale smoothly as 
the datasets of tumor mutations continue to grow into the hundreds of thousands, advancing our 
view of the compendium. 
 
Each driver discovery method focuses on one or more features of the mutational pattern of 
genes across tumors. To identify the signals of positive selection, it assesses the deviation 
between the observed and expected values of the feature under the assumption of neutral 
mutations (Fig. 2c). These mutational features, collected by the IntOGen pipeline for all driver 
genes, provide key insights into the mechanisms of tumorigenesis of each of these cancer 
genes (see below), and are an integral part of the compendium (Supplementary Methods). They 
comprise i) the clusters of mutations (both linear or 3D which may arise due to intra- or inter-
protein interactions), ii) domains in the protein that are preferentially affected by mutations, and 
iii) the excess of mutations with different consequence types. 
 
Linear clusters are local accumulations of mutations along the sequence of a gene across 
tumors, such as those formed by mutations at codons 12 and 13 of KRAS. On the other hand, 
3D clusters involve amino acid residues which are separated in the primary structure of the 
protein but close in its tertiary structure (e.g., mutations contributed by amino acids at positions 
26,39-42,57 and 59-62 of RHOA). Preferentially affected domains bear a significant 
accumulation of mutations, such as MH2 in SMAD4. The excess of mutations with different 
consequence types (100% and 50% of nonsense and missense mutations, respectively for 
ARID1A) informs about the mode of action (tumor suppressor or oncogene) of a driver gene. 
The relationship of the excess of nonsense and missense mutations in all drivers of the cohort is 
thus a good proxy to establish their mode of action in the onset of this malignancy. An excess of 
observed missense mutations in the absence of an excess of nonsense mutations indicates the 
activating mode of action of oncogenes. Tumor suppressor (or loss-of-function) genes, on the 
other hand, tend to exhibit an excess of nonsense mutations. While the mode of action of some 
genes is very clear-cut, some cases are harder to place within the binary oncogene-tumor 
suppressor model (close to the diagonal in the graph). Furthermore, the mode of action of some 
genes may differ between tumor types. 
 

A snapshot of the compendium 
How much does the systematic compendium, or more appropriately, the current snapshot 
obtained from these 221 cohorts of tumors (Box 2) add to the current knowledge of the genetic 
basis of tumorigenesis? A systematic mining of the literature to establish a thorough and reliable 
catalogue of validated cancer genes is beyond the scope of our analysis. To address this 
question, thus we employed the set of driver genes in the Cancer Gene Census113 (CGC, 
version 87) as the “ground truth” of the genes involved in the development of the 66 
malignancies represented in the compendium. While the CGC is incomplete and may contain 
some false positives, it is, to our knowledge, the most complete and accurate set of validated 
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cancer genes annotated from the literature, and it thus serves this purpose. One part of the 
answer (Fig. 3a,b), then is that almost three quarters of the 568 mutational driver genes in the 
compendium are already annotated in the CGC (which also provides a strong validation of the 
compendium). However, because the compendium identifies the signals of positive selection 
unbiasedly across the cohorts of all cancer types, more than 80% of all identified associations 
between a driver gene and a malignancy are not annotated in the CGC (Fig. 3a,b). For 
example, while 21 known CGC drivers of breast adenocarcinomas are in the compendium, 75 
genes annotated in the CGC, but not previously recognized to drive this malignancy are shown 
to be under positive selection across one or more of the 12 breast cancer cohorts analyzed (Fig. 
3a). In other words, for many well-known driver genes, the compendium reveals that their role 
across cancer types is much more widespread than previously documented (Fig. 3c). For 
example, the pattern of somatic mutations in KMT2C shows signals of positive selection across 
31 tumor types. However, it is only annotated in the CGC as a driver of medulloblastomas. The 
unbiased discovery of cancer genes through the IntOGen pipeline is thus an essential 
complement to the annotation of experimentally validated drivers. 
 
Not only does the systematic nature of the compendium add to our knowledge of the role of 
well-known cancer genes, but it also points at 152 potential new driver genes (Fig. 3a,c) --i.e., 
not previously annotated in the CGC. Note that since the CGC is most likely an incomplete 
proxy of the full catalogue of cancer genes, some of these potential new drivers may have been 
reported before in the literature. Indeed, we present and discuss below five of these 
unannotated genes which exhibit signals of positive selection in their mutational pattern across 
tumors, and have been suggested by independent studies to be involved in tumorigenesis (Fig. 
3c, bottom).  
 
The pattern of mutations in RASA1 across lung and head and neck squamous cell carcinomas 
exhibits several signals of positive selection probed in the system. Its decreased expression or 
loss-of-function mutations have been recognized to increase RAS-mediated signaling in human 
bronchial epithelial114 and melanoma115 cell lines. It has also been linked to tumorigenic 
promoting functions in triple-negative breast cancer116. Because RASA1, like NF1, negatively 
regulates the RAS/MAPK pathway, both genes are thought to function as tumor suppressors, 
which is also suggested by their mutational patterns. KDM3B, a H3K9me2 demethylase that 
promotes the transcriptional activation of target genes exhibits significant excess of mutations 
and functional bias across two cohorts of pilocytic astrocytomas and medulloblastomas. KDM3B 
has been shown to be involved in cell cycle regulation in hepatocellular carcinomas117, and to 
function as an activator of the Wnt signaling pathway in colorectal cancer stem cells118. Although 
these two studies suggest that KDM3B acts as an oncogene in tumorigenesis, a separate report 
proposes that some of its germline mutations cause susceptibility to Wilms tumors119. Its exact 
mode of action in tumorigenesis thus remains to be determined. Several Forkhead Box 
transcription factors are annotated in the CGC as drivers of several malignancies (e.g., FOXA1 
of breast and prostate carcinomas and FOXR1 of neuroblastomas). Nevertheless, FOXA2, with 
several signals of positive selection across uterine carcinomas is not. FOXA2 mutations 
frequently found in uterine carcinomas tend to affect the DNA binding domain or cause the 
truncation of the protein product120, causing its failure to localize to the nucleus121. Some of 
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these mutant forms are known to cause a decrease of CDH1, and have been thus associated 
with epithelial to mesenchymal transition in the progression of certain tumors122,123. KLF5, a 
transcription factor involved in the regulation of human development identified as a cancer driver 
gene, altered through different mechanisms124,125, exhibits signals of positive selection across 
cervical squamous, bladder and lung squamous cell carcinomas. We also identified BRD7, a 
bromodomain-containing protein with several paralogs already annotated in the CGC, which has 
been postulated to act as a coactivator of the SMAD transcription factors126 as a driver of 
melanomas and liver carcinomas.  
 
Some genes act as drivers across several cancer types, while others tend to be more specific. 
The compendium provides an opportunity to assess the specificity of driver genes across tumor 
types in a systematic manner (Fig. 3d). Most genes (360) act as drivers in one or two tumor 
types, and only a small group of 12 genes (cancer wide drivers) are able to drive more than 20 
malignancies through mutations. Some very specific mutational drivers (upper left outliers) are 
very frequently mutated in only one or two cancer types. For example, 60% and 47% of all 
Burkitt lymphomas bear driver mutations in MYC127 or CCND3128, respectively. Half of the cases 
of uveal melanoma bear activating mutations in one of two hotspots of GNAQ, while almost all 
other cases bear mutations at one of two homologous hotspots of its paralog GNA11129. 
Interestingly, the transcription factor GTF2I, which drives virtually half of all thymomas130 is not 
yet annotated in the CGC. 
 

Mutational features of driver genes  

We propose that the mutational features (exemplified in Fig. 2c) of a driver gene provide a 
unique opportunity to shed light on its tumorigenic function (Box 2). Below, we describe the 
mutational features of six driver genes as examples of the information they provide on the role 
they play in cell transformation. 
 
The oncogene PTPN11 (encoding a phosphatase) shows excessive missense mutations across 
multiple myelomas131 (Fig. 4a) and other tumor types132,133, which significantly cluster within its 
SH2 domain. Inhibitory contacts between this domain and the phosphatase domain are 
abrogated upon phosphorylation by a receptor tyrosine kinase in the wild-type or by mutations in 
the domain134. The activated PTPN11 then dephosphorylates inhibitors of several signaling 
pathways, such as MAPK or AKT pathways135. NFE2L2, another classic oncogene is a 
transcription factor key in the control of the redox state of the cell and its response to stress136–

138. Across lung squamous cell carcinomas139, two narrow clusters of missense mutations 
appear at its N-terminal portion (Fig. 4b). These mutations affect sequences recognized by the 
cognate E3-ubiquitin ligase KEAP1 (i.e., degrons), and cause the abnormal stabilization of the 
NFE2L2 protein101, as do mutations affecting its recognition domain in KEAP1, and cause the 
constitutive activation of NFE2L2-regulated genes101. 
 
The mutational features are radically different for tumor suppressors like RB1 across bladder 
adenocarcinomas140 (Fig. 4c), with greater excess of nonsense and splice affecting than 
missense mutations. Most nonsense mutations trigger nonsense mediated decay (NMD) of RB1 
mRNA141, thus causing a depletion of the protein and abrogating its functions in the regulation of 
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cell cycle progression and the cell division cycle, the response to cellular stress, differentiation, 
cellular senescence, programmed cell death and maintenance of chromatin structure142–144. 
PTEN, encoding another tumor suppressor, also shows an excess of both nonsense and 
missense mutations across glioblastomas73,145 (Fig. 4d). Nonsense mutations trigger NMD, 
preventing the production of a functional PTEN protein product, while missense mutations, 
hinder either its enzymatic activity or its recruitment to the membrane, or increase its 
susceptibility to ubiquitination for proteasome-mediated degradation146,147. These outcomes, in 
turn, interfere with its role in the regulation of a host of cellular functions, such as cell cycle 
progression, apoptosis, and protein synthesis148–150. 
 
Different tumorigenic mechanisms of the same driver across tumor types may also be revealed 
by their mutational features. For example, in glioblastomas73, missense mutations of EGFR (an 
oncogene involved in the activation of multiple signaling pathways) tend to cluster in the 
extracellular domains of the protein (Fig. 4e). These act as gain-of-function alterations, likely 
through the stabilization of the open conformation of the receptor, which stimulates its 
autophosphorylation in the absence of ligand151,152. Across lung adenocarcinomas153, on the 
other hand, missense mutations tend to cluster in the tyrosine kinase domain (Fig. 4f), altering 
its ‘on-off’ equilibrium and increasing its activity at the expense of a reduced affinity for 
ATP154,155. 
 
Overall, several protein domains across multiple genes appear as preferentially affected by 
mutations across more than 10 different tumor types (Fig. 5a,b). The P53 domain appears 
significantly enriched for somatic mutations across cohorts of a larger share of different cancer 
types (42) than any other protein domain, although this is driven only by TP53. In second place, 
the tyrosine kinase domain of 13 different genes is significantly enriched for mutations across 
cohorts of 24 tumor types. BRAF is the gene with the tyrosine kinase domain exhibiting a 
significant enrichment of somatic mutations across the largest number of tumor types (14). The 
RAS, cadherin and C2H2 zinc finger domains exhibit significant enrichment of mutations across 
13 cancer types.  
 
An overview of significant clusters reveals that those in tumor suppressors tend to be wider, 
while those in oncogenes are sharp and tend to accumulate a larger share of the mutations 
observed in the gene (Fig. 5c-g). Particularly narrow clusters are observed, for example in 
KRAS (5 nucleotides stretching codons 12 and 13 of the protein) accumulating 85% of the 
mutations in the gene across a cohort of 496 colorectal adenocarcinomas, or in IDH1 with all 
mutations in a cohort of 257 acute myeloid leukemias affecting one single nucleotide in codon 
132. Wider clusters accumulate 28% of mutations of TP53 (28 nucleotides between codons 266 
and 275) across a cohort of 439 pilocytic astrocytomas or 83% of the mutations of SPOP (44 
nucleotides between codons 119 and 133) across a cohort of 444 prostate adenocarcinomas 
(Fig. 5c-f). The width of clusters and the fraction of mutations of the protein that fall within them 
differ depending on the mode of action of cancer genes in tumorigenesis (Fig. 5g). The relatively 
narrow clusters of oncogenes reflect the existence of relatively few available gain-of-function 
mutations along their sequence. This is also the reason why these clusters tend to concentrate 
large shares of all the mutations observed in oncogenes across a cohort of tumors. Wider 
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clusters in tumor suppressor genes are observed because as a rule more loss-of-function 
mutations are available in their sequence (e.g., mutations affecting several amino acids of a 
functionally important domain). 
 

Conclusions and perspectives 
Much like ancient manuscripts, in which newer layers of writing have been superimposed onto 
older texts, or cities with long history of human dwelling, such as Rome, in which certain edifices 
exhibit rows of brick and mortar dating from different ages, the somatic mutations in tumor 
genomes constitute a record of their history. Therefore, borrowing the name given to these 
ancient scripts, somatic mutations in tumors may be considered a palimpsest108, the study of 
which may render extremely useful information about itself and its environment. These 
palimpsests contain the footprints of all the mutational processes to which somatic cells in the 
tumor have been exposed during the life of the patient, as well as the signals of positive 
selection reminiscent of successive selective sweeps caused by driver mutations. Cleverly 
designed bioinformatics analyses applied to tumor genomes are able to reveal such footprints 
and traces. This article has shown that the systematic application of such bioinformatics 
analyses to the detection of positive selection from the palimpsest of tumor somatic mutations 
are able to reveal the compendium of cancer driver genes.   
 
Before the inception of cancer genomics, a few dozen cancer driver genes were identified (Fig. 
6). In the span of two or three decades, these genes were intensively studied and functionally 
characterized through an array of biochemical assays and the laborious dedication of several 
research groups. In contrast, in a little over one decade elapsed since the sequencing of the first 
tumor genomes, several hundred more cancer genes have been identified. This “era” of cancer 
genomics has been made possible by advances in DNA sequencing and the development of 
bioinformatics methods to cope with the challenges of genomics data analysis it poses. As 
shown here, the compendium of mutational driver genes derived from the analysis of the cancer 
exomes currently in the public domain (~28,000) comprises between 500 and 600 mutational 
drivers. The completion of the compendium constitutes a milestone in the road of our 
understanding of tumor biology. Probably genes mutated at frequencies above 10% have 
already been discovered97, and systematic analyses reveal their involvement in tumorigenesis 
across cancer types. 
 
We are also now in a position to project the evolution of the compendium into the future. The 
number of datasets of tumor somatic mutations deposited in the public domain is foreseen to 
increase quickly as initiatives to share data generated internationally, such as the Global 
Alliance for Genomics and Health (www.ga4gh.org), the 1M genomes initiative156, and others 
come to fruition. As new snapshots of the compendium are uncovered exploiting these data, the 
trend described above is predicted to continue into the future, with the identification of i) new 
drivers mutated at frequencies below 10% across malignancies (owing to more statistical 
power97); ii) drivers of conditions not profiled before; iii) drivers in specific populations or 
ethnicities that have been biased against so far in tumor genome sequencing projects; and iv) 
drivers of new clinical entities, such as metastatic or relapse tumors, which have been 
comparatively less explored to date. For instance, a search through the current snapshot of the 
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compendium shows that ESR1 and AR, while rarely mutated across primary breast and prostate 
tumors (respectively) are clear drivers of resistance to treatment.  
 
In this article we have purposefully focused on driver mutations affecting protein-coding genes 
and left out driver mutations in non-coding elements. As mentioned in the Introduction, this 
excludes other types of somatic alterations affecting driver genes. Special mention must be 
made of short insertions and deletions (indels), whose probability of occurrence likely involve 
features beyond their immediate sequence context and the background rate of which is thus 
more difficult to calculate111,112,157. It also excludes the potential role in tumorigenesis of 
mutations affecting non-coding genomic elements, of which recent studies have identified few in 
comparison with coding genes78,103. Focusing on known cancer genes and their cis-regulatory 
regions, one of these surveys revealed that non-coding driver mutations are much less frequent 
than protein-coding ones (with the exception of TERT), even after correcting for differences of 
statistical power between whole-genome and whole-exome sequencing datasets78. 
Nevertheless, it has also become apparent from whole-genome sequenced tumors that our 
current knowledge of the distribution of mutations in non-coding regions is still incomplete to 
allow for a correct modeling of their background mutation rate. Furthermore, our knowledge of 
the biological function of most of the non-coding areas of the genome still lags far behind that of 
coding genes105. Solving these issues will be key to fully exploring the catalogue of driver non-
coding genomic elements. A holistic compendium of all these types of driver alterations (coding 
and non-coding somatic point mutations, structural variants, epigenetic silencing events and 
germline susceptibility variants) is needed to uncover their panorama across tumors103. 
 
A detailed description of the precise involvement of each gene in tumor development is absent 
from the current snapshot of the compendium of driver genes. Understanding the precise mode 
of alteration of each driver gene (i.e., which of its mutations have a potential to drive 
tumorigenesis and why) and the specific biological function it perturbs in tumorigenesis are thus 
one of the major challenges of cancer genomics in the near future.  
  
A first challenge is to precisely identify the mechanisms that alter the function of driver genes 
turning them capable of driving tumorigenesis. This is the same as identifying all the mutations 
of cancer driver genes that are capable of driving the malignancy and understanding how they 
do it7,98,103. As explained above, we propose that the mutational features computed within the 
compendium may aid in this endeavor. Furthermore, while the perturbation of several key 
biological processes (the hallmarks of cancer detailed above) are required for tumorigenesis, 
the specific process --e.g., evading apoptosis, maintaining proliferative signaling, escaping the 
immune system-- touched by mutations in many of the genes in the compendium is still 
unknown. The interpretation of the significance of driver mutations is also confounded by 
intratumoral heterogeneity and by the complexity of the ecology of the microenvironment of 
cancer cells158,159. Profiling other dimensions of tumors, such as transcriptomics, proteomics and 
methylomics, as well as systematic assays on the function of individual genes and their 
interactions160–162, and single-cell profiling approaches163–166 will contribute to bridging this gap.  
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A second challenge arises from the fact that while driver genes are identified in isolation by their 
signals of positive selection it is in fact a set of driver mutations that causes tumorigenesis98,103. 
For example, driver mutations affecting four specific pathways are known to occur in the vast 
majority of colorectal adenocarcinomas and are required from the progression of a healthy cell 
to an adenoma and finally an invasive carcinoma69. Furthermore, while the signals of positive 
selection in all driver genes in a tumor cohort are equivalent, driver mutations probably occur at 
different stages of the evolution of a tumor. Again, the clever application of bioinformatics to the 
analysis of the cancer genome palimpsest has allowed us to start resolving this temporal 
order167; nevertheless, more work is needed to understand it.  
 
There is finally the challenge to fully understand how other features besides somatic mutations 
cooperate in tumorigenesis. While virtually all tumors contain genomic driver mutations103, those 
are not sufficient to explain the history of cell transformation. Studies of somatic mutations from 
healthy donors have shown that many cancer drivers are already mutated in non transformed 
cells across somatic tissues168–171. The same has been shown in studies of premalignant stages 
of tumorigenesis172,173 (e.g, in clonal hematopoiesis) or benign tumors174,175. This has led to the 
conclusion that a certain level of positive selection is present in healthy somatic tissues in a 
continuum, without reaching the level of cell transformation. In this continuum, positive selection 
occurs on mutations that confer a fitness advantage, which likely vary between somatic tissues 
and over time. A mutation thus can only be a driver when presented against a background of 
specific selective constraints. In some cases to reach the level of cell transformation non-
genetic phenotypic changes may also be important. Such changes have been documented in 
processes such as resistance to drugs and metastasis176–180. 
 
In summary, closing the gap between the list of genes in the compendium and our complete 
knowledge of the process of tumorigenesis is one of the big challenges of cancer genomics for 
the near future. Applying clever bioinformatics analyses to the integrated analysis of cancer 
genomics and other dimensions of tumor cells will once again be key in this endeavor. In turn, 
gaining this insight into tumorigenesis will be fundamental to translate our knowledge of cancer 
genomics into precision cancer medicine. 
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Box 1. The background mutation rate of genes  

The background mutation rate of a gene (i.e. the rate and distribution of mutations) in a somatic 
cell is determined by its sequence, the tissue and the mutational processes the person has 
been exposed to during their lifetime. A correct assessment of the background mutation rate of 
genes requires to accurately model the variability introduced by all these factors. This is key to 
identify which observed mutational patterns are actually unexpected and attributable to positive 
selection.  
 
The mutational processes active in a tissue in an individual define a set of probabilities of each 
nucleotide in the gene to change taking into account its immediate sequence 
context108,111,112,181,182. These probabilities may be learned from the observed mutational profile 
of each tumor in a cohort, or derived from the activity of a set of relevant mutational processes 
across the samples of a cohort183.  
 
The probability that a specific nucleotide change occurs in the gene is also influenced by the 
specific features adopted by the chromatin of the cell both at the large and the small 
scales96,184,185. At the large scale, the time at which the gene is replicated relative to an origin186, 
the level of compaction of the chromatin187,188 at its locus, and the level at which the gene is 
expressed96 influence its mutation rate. The effect of these large-scale factors may be carefully 
modeled for each gene in each relevant tissue96,98. Alternatively, a background model within 
each gene may be built by permuting the mutations observed in the gene following their local 
probability99–101. 
 
At the small scale, factors such as the occupancy by nucleosomes189,190 and other proteins191, 
the distribution of certain chromatin marks along the gene body192,193, and the formation of local 
non B-DNA structures194–196 may alter the mutation rate locally at sequence stretches within the 
gene. 
 

Box 2: Accessing the compendium of mutational driver genes 
The snapshot of the compendium of driver genes described in this article, as well as the 
automatic system to produce it are hosted at the IntOGen platform (intogen.org). Cancer 
researchers may explore the compendium, comprising the list of driver genes across tumor 
types and their mutational features, via the web interface of the platform. All the information 
contained in it is also downloadable. Furthermore, the automatic system (the IntOGen pipeline) 
can be obtained by researchers from the platform for local installation and application to 
datasets of somatic mutations across cohorts of tumors. Details on the current implementation 
of the IntOGen pipeline appear in Supplementary Methods. Building upon a practice that dates 
back to 2013, when the IntOGen platform for the analysis of cancer driver genes was first 
established12,13, we will continue to collect tumor sequencing data as it becomes available in the 
public domain, and to produce more complete snapshots of the compendium. For future 
versions of the pipeline and the compendium, regular updates may be found at 
www.intogen.org. 
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Figure legends 
 
Figure 1. Signals of positive selection identify driver genes 
(a) Cells in somatic tissues accumulate mutations. Somatic mutations in certain genes provide 
the cell where they occur a selective advantage and are thus positively selected. Following a 
Darwinian process, over time, a clonal expansion occurs and thus the cells carrying mutations in 
these genes become predominant within the population.  
(b) Deviations of the observed pattern of mutations of genes across samples of the same 
cancer types from the expectation reveal the genes under positive selection in tumorigenesis. 
Two samples are taken from a cancer patient: one from the tumor and another from a healthy 
tissue (e. g., peripheral blood in solid malignancies). Comparing the sequences of these two 
samples, the somatic point mutations in the tumor are identified. The number of somatic 
mutations identified in the exome or the genome of tumors varies one or two orders of 
magnitude (respectively), depending on the cancer type and the exposure of donors to specific 
mutational processes. As a result, between a few dozen and several thousand genes appear 
mutated in each tumor. The driver genes are those that exhibit one or more signals of positive 
selection across the tumors of a cohort. 
 
Figure 2. Application of the IntOGen pipeline to datasets of tumor mutations 
(a) Datasets of tumor mutations collected from the public domain for the construction of the 
current snapshot of the compendium of driver genes. Both donut plots represent all datasets 
classified by source (left) or cancer type (right). In both plots, the innermost ring signals the 
cohorts from primary or metastatic/relapse tumors, while the second highlights cohorts of adult 
or pediatric tumors. 
(b) Mutation burden (top) and mutation type (bottom) of tumors from cancer types represented 
by at least two cohorts. Below the plot, the number of cohorts and samples contributing to the 
distribution of each cancer type are shown. 
(c) Schematic representation of the IntOGen pipeline exemplified through the flow of data 
resulting from its application to a cohort of tumors. The two outcomes of the pipeline, i.e, the 
catalog of driver genes in the cohort and the mutational features computed in each of them 
integrate the compendium of driver genes. 
 
Figure 3. A snapshot of the compendium of mutational driver genes 
(a) Overlap between the genes in the compendium in each cancer type and the Cancer Gene 
Census (CGC). The word clouds illustrate the genes driving tumorigenesis in three example 
cancer types, with the size of the driver name following its mutational frequency. The three-color 
scale to denote genes annotated in the CGC in the same tumor type or in a different tumor type, 
or genes not annotated in the CGC is used throughout the figure. 
(b) Overlap between the genes in the compendium and the CGC (top bar) and between driver 
gene-tumor type associations in the compendium and the CGC (bottom bar). 
(c) The landscape of tumorigenic associations between 25 well known mutational driver genes 
and the tumor types in the compendium is much denser than that annotated in the CGC. The 
bottom of the plot lays out the involvement in tumorigenesis of five previously unannotated 
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drivers across tumor types. The size of the dots represents the percentage of all cohorts of the 
tumor type in which the gene is identified as a driver. 
(d) Distribution of prevalence of driver genes across cancer types in the compendium. Each 
driver gene is represented as a single dot in the graph. The abscissa represents the number of 
tumor types where a gene has been identified as driver and the ordinate, its maximum 
mutational frequency across them. The distribution of these two variables separately are 
represented through one-dimensional histograms above and at the right side of the graph. Two 
sets of drivers mutated at high frequency across one or very few tumor types (cancer-specific 
highly prevalent) and mutated across more than 20 cancer types (cancer wide drivers) are 
circled and denoted by their names. While most cancer wide drivers are bona fide long-known 
cancer genes, LRP1B has long been suspected to be a potential spurious finding. The 
discussion is not settled, since some studies have found its loss of function may be related to 
enhanced cell migration in several tissues197–199. The barplots at the right present the mutational 
frequency across tumor types of selected cancer-specific highly prevalent and cancer wide 
drivers. The maximum mutational frequency of each of them appears beside the corresponding 
row.  
 
Figure 4. Interpreting the mutational patterns of driver genes 
Six exemplary mutational patterns computed for five genes across five cohorts, including 
multiple myelomas (obtained from a study published in 2018131), and lung squamous cell 
carcinomas, bladder adenocarcinomas, glioblastomas and lung adenocarcinomas obtained from 
TCGA. Clusters and their boundaries are defined by methods that assess the significant 
clustering of mutations. In all plots N denotes the number of mutations of each consequence 
type observed in the gene across the cohort.  
 
Figure 5. Recurrent cancer driver domains and mutational clusters 
(a) Dots represent domains with significant enrichment for mutations in a number of different 
driver genes across a number of different tumor types. 
(b) Genes with significant enrichment for mutations in domains colored in (a) across tumor 
types. 
(c-f) Number of mutations and prevalence in the cohort of linear mutational clusters identified in 
several drivers across (c) colorectal adenocarcinomas (obtained from TCGA), (d) AML 
(obtained from the Beat AML project200), (e) prostate adenocarcinomas (obtained from a 
publication), and (f) pilocytic astrocytomas (obtained from ICGC). The fraction of mutations of 
each protein in each cohort that appear in clusters and their width appear in the heatmaps 
below each figure. 
(g) Linear clusters detected in tumor suppressors (blue) and oncogenes (red) across all cohorts 
in the compendium. 
 
Figure 6. Past, present and future of cancer genomics 
Conceptual representation of the evolution of the compendium starting with the identification of 
the first cancer genes before the start of the cancer genomics era, through the sequencing of 
the first cancer tumors to the moment of writing this review, and outlook of consolidation and 
future trends of cancer genomics research. 
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Supplementary Information 
 

This document contains Supplementary Information to Martinez-Jimenez et al., Nat.          

Rev. Cancer, 2020, and is composed of three main sections. The first, a document of               

Supplementary Methods to the main manuscript contains technical details of the           

development of the IntOGen pipeline and its application to collected and annotated            

datasets of tumor somatic mutations from the public domain. Secondly, two           

Supplementary Figures illustrate specific aspects of the IntOGen pipeline, i.e., the           

combination of the output of driver identification methods and the comparison of the             

performance of this combination with that of individual driver identification methods.           

Finally, a Supplementary Table lists relevant information on the cohorts employed to            

produce the snapshot of the compendium of mutational cancer genes that is described             

in the main manuscript. 
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Supplementary Methods 

Data collection and annotation 

TCGA 

TCGA somatic mutations (mc3.v0.2.8 version) were downloaded from        

(https://gdc.cancer.gov/about-data/publications/pancanatlas). We then grouped    

mutations according to their patient’s cancer type into 32 different cohorts. Additionally,            

we kept somatic mutations passing the somatic filtering from TCGA (i.e., column            

FILTER == “PASS”). 

PCAWG 

PCAWG somatic mutations were downloaded from the International Cancer Genome          

Consortium (ICGC) data portal    

(https://dcc.icgc.org/releases/PCAWG/consensus_snv_indel/). Note that only mutations     

of ICGC samples can be freely downloaded from this site. The TCGA portion of the               

callsets is controlled data. To obtain them, we followed the instructions to dowload them              

that can be found in the same webpage. 

cBioPortal 

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome          

Sequencing (WGS) cohorts uploaded into cBioPortal that were not part of any other             

projects included in the analysis (i.e., TCGA, PCAWG, St. Jude or HARTWIG) were             

downloaded on 2020/01/15 (http://www.cbioportal.org/datasets). We then created       

cohorts following these criteria: 
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1. Cohorts with a limited number of samples (i.e., lower than 30 samples)            

associated to cancer types with extensive representation (such as Breast cancer,           

Prostate cancer or Colorectal adenocarcinoma) across the compendium of         

cohorts were removed. 

2. Samples were uniquely mapped to a cohort. If the same sample was originally             

included in two cohorts, we removed the sample from one of them. 

3. Mutations from samples that were not obtained from human tumor biopsies were            

discarded (cell lines, xenografts, normal tissue, etc.). 

4. When patient information was available, only one sample of each patient was            

selected. The criteria to prioritize samples from the same patient was: WXS over             

WGS; untreated over treated, primary over metastasis or relapse and, finally, by            

alphabetical order. When there is no patient information we assumed that all            

patients have only one sample in the cohort. 

5. When sequencing platform information was available, samples from the same          

study but with different sequencing platforms were further subclassified into WXS           

and WGS datasets (only if the resulting cohorts fulfilled the requirements herein            

described; otherwise, the samples were discarded). 

6. When variant calling information was available, samples from the same cohort           

and sequencing type were further classified according to their calling algorithm           

(VarScan, MuTect, etc.). If the resulting cohorts for each subclass fulfilled the            

requirements herein described, the samples were included; otherwise, the         

samples were discarded. When variant calling information was not available we           

assumed that all the samples went through the same calling pipeline. 

7. When treatment information was available, samples from the same cohort,          

sequencing type, calling algorithm were further classified according to their          

treatment status (i.e, treated versus untreated). If the resulting cohorts from the            

subclassification fulfilled the requirements herein described, the samples were         

included; otherwise, the samples were discarded. When information was not          

available we assumed that samples had not been treated. 
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8. When biopsy information was available, samples from the same cohort,          

sequencing type, calling algorithm, treatment status were further classified         

according to their biopsy type (i.e, primary, relapse or metastasis). If the resulting             

datasets from the subclassification fulfilled the requirements herein described,         

the samples were included; otherwise, the samples were discarded. When          

information was not available we assumed that the biopsy type of the sample             

was primary. 

Hartwig Medical Foundation 

 

Somatic mutations of metastatic WGS from Hartwig Medical Foundation         

https://www.hartwigmedicalfoundation.nl/en/database/ were downloaded on 2020/01/17     

through their platform. Datasets were split according to their primary site. Samples from             

unknown primary sites (i.e., None, Nan, Unknown, Cup, Na), double primary or            

aggregating into cohorts of fewer than 7 samples were not considered. A total of 30               

different cohorts were thus created. 

ICGC 

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome          

Sequencing (WGS) studies uploaded in ICGC Data Portal        

(https://dcc.icgc.org/repositories) not overlapping with other projects included in the         

analysis (i.e., TCGA, PCAWG, CBIOP or St. Jude) were downloaded on 2018/01/09.            

We then created cohorts following the criteria used for the cBioPortal datasets            

(cBioPortal). 

St. Jude 

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome          

Sequencing (WGS) of Pediatric Cancer Genome Project uploaded in the St. Jude Cloud             
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(https://www.stjude.cloud/data.html) were downloaded on 2018/07/16. Cohorts were       

created according to their primary site and their biopsy type (i.e., primary, metastasis             

and relapse). Resulting datasets with fewer than 5 samples were discarded. 

PedcBioPortal 

Somatic mutations from Whole Exome Sequencing (WXS) and Whole Genome          

Sequencing (WGS) studies uploaded in PedcBioPortal that were not part of any other             

projects included in the analysis (i.e., St. Jude or CBIOP) were downloaded on             

2020/01/15 (http://www.pedcbioportal.org/datasets). We then created cohorts following       

the criteria described in the cBioPortal dataset (cBioPortal). 

TARGET 

Somatic SNVs from WXS and WGS of two TARGET studies, Neuroblastoma (NB) and             

Wilms Tumor (WT), from the TARGET consortium were downloaded on 2019/03/07           

from the Genomic Data Commons Porta (https://gdc.cancer.gov/). 

Beat AML 

We downloaded unfiltered somatic mutations from samples included in the Beat AML            

study from the Genomic Data Commons Porta (https://gdc.cancer.gov/). We next          

applied the following criteria to create our Beat AML cohort: 

1. We focused on somatic single nucleotide variants from VarScan2 using skin as            

normal control. All samples that did not belong to this class were discarded. 

2. Samples from relapses were filtered out. 

3. Samples from bone-marrow transplants were discarded. 

4. If there were several samples per patient fulfilling the points 1-3, we selected the              

first in chronological order. 

257 independent samples of Beat AML tumors composed our Beat AML cohort. 
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Literature 

We also manually collected publicly available cohorts from the literature. Each cohort            

was filtered following the same steps mentioned above for the cBioPortal dataset (see             

above). 

 

 

Preprocessing 
 

Given the heterogeneity of the datasets analyzed in the current release of intOGen             

(resulting from differences in the genome aligners, variant calling algorithms,          

sequencing coverage, sequencing strategy, etc.), we implemented a pre-processing         

strategy aiming at reducing possible biases. Specifically, we conducted the following           

filtering steps: 

1. The pipeline is configured to run using GRCh38 as reference genome. Therefore,            

for each input dataset the pipeline requires that the reference genome is defined.             

Datasets using GRCh37 as reference genome were lifted over using PyLiftover           

(https://pypi.org/project/pyliftover/; version 0.3) to GRCh38. Mutations failing to        

liftover from GRCh37 to GRCh38 were discarded. 

2. We removed mutations with equal alternate and reference alleles, duplicated          

mutations within the sample sample, mutations with ‘N’ as reference or           

alternative allele, mutations with a reference allele not matching the nucleotide in            

the reference genome and mutations outside autosomes or sexual         

chromosomes. 

3. Additionally, we removed mutations with low pileup mappability, i.e. mutations in           

regions that could potentially map elsewhere in the genome. For each position of             

the genome we computed the pileup mappability, defined as the average           

uniqueness of all the possible reads of 100bp overlapping a position and allowing             

up to 2 mismatches. This value is equal to 1 if all the reads overlapping a                
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mutation are uniquely mappable while it is close to 0 if most mapping reads can               

map elsewhere in the genome. Positions with pileup mappability lower than 0.9            

were removed from further analyses. 

4. We filtered out multiple samples from the same donor. The analysis of positive             

selection in tumors requires that each sample in a cohort is independent from the              

other samples. That implies that if the input dataset includes multiple samples            

from the same patient –resulting from different biopsy sites, time points or            

sequencing strategies– the pipeline automatically selects the first according to its           

alphabetical order. Therefore, all mutations in the discarded samples are not           

considered anymore. 

5. We also filtered out hypermutated samples. WXS samples carrying more than           

1000 mutations or WGS samples with more than 10000 mutations were filtered            

out if they also exhibited a mutation count greater than 1.5 times the interquartile              

range above the third quartile of the mutation burden of the cohort were             

considered hypermutated and therefore removed from further analyses. 

6. Datasets without synonymous variants were discarded. Most cancer driver         

identification methods require synonymous variants to fit a background mutation          

model. Therefore, datasets with less than 5 synonymous and datasets with a            

missense/synonymous ratio greater than 10 were excluded . 

7. When the Variant Effect Predictor (VEP) mapped one mutation into multiple           

transcripts associated with different HUGO symbols, we selected the canonical          

transcript of the first HUGO symbol in alphabetical order. 

8. We also discarded mutations mapping into genes without canonical transcript in           

VEP.921. 
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Methods for cancer driver gene identification 

The current version of the intOGen pipeline uses seven cancer driver identification            

methods to identify cancer driver genes from somatic point mutations: dNdScv2,           

cBaSE3 and MutPanning4 which test for mutation count bias in genes while correcting             

for regional genomic covariates5, mutational processes and coding consequence type;          

OncodriveCLUSTL6, which tests for significant clustering of mutations in the protein           

sequence; smRegions7, which tests for enrichment of mutations in protein functional           

domains; HotMAPS8, which tests for significant clustering of mutations in the 3D protein             

structure; and OncodriveFML9, which tests for functional impact bias of the observed            

mutations. Next, we briefly describe the rationale and the configuration used to run each              

driver identification method. 

 

dNdScv 
dNdScv assesses gene-specific positive selection by inferring the ratio of          

non-synonymous to synonymous substitutions (dN/dS) in the coding region of each           

gene. The method resorts to a Poisson-based hierarchical count model that can correct             

for: i) the mutational processes operative in the cohort determined by the mutational             

profile of single-nucleotide substitutions with its flanking nucleotides; ii) the regional           

variability of the background mutation rate explained by histone modifications – it            

incorporates information about 10 histone marks from 69 cell lines within the ENCODE             

project5; iii) the abundance of sites per coding consequence type across in the coding              

region of each gene. 

 

We downloaded (release date 2018/10/12) and built a new reference database based            

on the list canonical transcripts defined by VEP.92 (GRCh38). We then used this             
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reference database to run dNdScv on all datasets of somatic mutations using the             

default setting of the method. 

OncodriveFML 
OncodriveFML is a tool that aims to detect genes under positive selection by analysing              

the functional impact bias of observed somatic mutations. Briefly, OncodriveFML          

consists of three steps: in the first step, it computes the average Functional Impact (FI)               

score (in our pipeline we used CADD10 v1.4) of coding somatic mutations observed in a               

gene across a cohort of tumor samples. In the next step, sets of mutations of the same                 

size as the number of mutations observed in the gene of interest are randomly sampled               

following trinucleotide context conditional probabilities consistent with the relative         

frequencies of the mutational profile of the cohort. This sampling is repeated N times              

(with N = 106 in our configuration) to generate expected average scores across all              

mutated genes. Finally, it compares the observed average FI score with the distribution             

expected from the simulations in the form of an empirical p-value. The p-values are then               

adjusted with a multiple testing correction using the Benjamini–Hochberg (FDR). 

 

 

OncodriveCLUSTL 
OncodriveCLUSTL is a sequence-based clustering algorithm to detect significant linear          

clustering bias of the observed somatic mutations. Briefly, OncodriveCLUSTL first maps           

somatic single nucleotide variants (SNVs) observed in a cohort to the genomic element             

under study. After smoothing the mutation count per position along its genomic            

sequence using a Tukey kernel-based density function, clusters are identified and           

scored taking into account the number and distribution of mutations observed. A score             

for each genomic element is obtained by adding up the scores of its clusters. To               

estimate the significance of the observed clustering signals, mutations are locally           

randomized using tri- or penta-nucleotide context conditional probabilities consistent         

with the relative frequencies of the mutational profile of the cohort. 
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Within the IntOGen pipeline, OncodriveCLUSTL version 1.1.2 is run for the set of             

defined canonical transcripts bearing 2 or more SNVs mapping the mutations file.            

Tuckey-based smoothing is conducted with 11bp windows. The different consecutive          

coding sequences contained on each transcript are concatenated to allow the algorithm            

to detect clusters of 2 or more SNVs expanding two exons in a transcript. Simulations               

are carried out using pre-computed mutational profiles. All cohorts are run using            

tri-nucleotide context SNVs profiles except for cutaneous melanomas, where         

penta-nucleotide profiles are calculated. Default randomization windows of 31bp are not           

allowed to expand beyond the coding sequence boundaries (e.g., windows overlapping           

part of an exon and an intron are shifted to fit inside the exon). A total number of N = 103                     

simulations per transcript are performed. Clustering signals are assessed using          

analytical p-values.  

 

cBaSE 
cBaSE asserts gene-specific positive and negative selection by measuring mutation          

count bias with Poisson-based hierarchical models. The method allows six different           

models based on distinct prior alternatives for the distribution of the regional mutation             

rate. As in the case of dNdScv, the method allows for correction by i) the mutational                

processes operative in the tumor, with either tri- or penta- nucleotide context; ii) the site               

count per consequence type per gene; iii) regional variability of the neutral mutation             

rate. 

 

We run a modified version of the cBaSE script to fit the specific needs of our pipeline.                 

The main modification is adding a rule to automatically select a regional mutation rate              

prior distribution. Based on the total mutation burden in the dataset, the method runs              

either an inverse-gamma (mutation count < 12,000), an exponential-inverse-gamma         

mixture (12,000 < mutation count < 65,000) or a gamma-inverse-gamma mixture           

(mutation count > 65,000) as mutation rate prior distributions – after communication with             
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Donate Weghorn, cBaSE’s first author). We also skip the negative selection analysis            

part, as it is not needed for downstream analyses. 

 

Mutpanning 
Mutpanning resorts to a mixture signal of positive selection based on two components:             

i) the mutational recurrence realized as a Poisson-based count model reminiscent to the             

models implemented at dNdScv or cBaSE; ii) a measure of deviance from the             

characteristic tri-nucleotide contexts observed in neutral mutagenesis; specifically, an         

account of the likelihood that a prescribed count of non-synonymous mutations occur in             

their observed given a context-dependent mutational likelihood attributable to the          

neutral mutagenesis. 

 

HotMaps3D 
HotMAPS asserts gene-specific positive selection by measuring the spatial clustering of           

mutations in the 3D structure of the protein. The original HotMAPS method assumes             

that all amino acid substitutions in a protein structure are equally likely. We employed              

HotMAPS-1.1.3 and modified it to incorporate a background model that more accurately            

represents the mutational processes operative in a cohort of tumors.  

 

Specifically, we implemented a modified version of the method where the trinucleotide            

context probability of mutation is compatible with the mutational processes operative in            

the cohort. Briefly, for each analyzed protein structure harbouring missense mutations,           

the same number of simulated mutations are randomly generated within the protein            

structure considering the precomputed mutation frequencies per tri-nucleotide in the          

cohort. This randomization is performed N times (N = 105 in our configuration) thereby              

leading to a background with which to compare the observed mutational data. The rest              

of the HotMAPS algorithm was not modified. 
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We downloaded the pre-computed mapping of GRCh37 coordinates into structure          

residues from the Protein Data Bank (PDB)       

(http://karchinlab.org/data/HotMAPS/mupit_modbase.sql.gz). We also downloaded (on     

2019/09/20) all protein structures from the PDB alongside all human protein 3D models             

from Modeller  

(ftp://salilab.org/databases/modbase/projects/genomes/H_sapiens/2013/H_sapiens_20

13.tar.xz). and  

(ftp://salilab.org/databases/modbase/projects/genomes/H_sapiens/2013/ModBase_H_s

apiens_2013_refseq.tar.xz). We then annotated the structures following the steps         

described in HotMAPS tutorial    

(https://github.com/KarchinLab/HotMAPS/wiki/Tutorial-(Exome-scale)). 

Since HotMAPS configuration files are pre-built in GRCh37 coordinates and our pipeline            

is designed to run using GRCh38, for each input cohort, we first converted input somatic               

mutations to GRCh37, executed the HotMAPS algorithm and transformed the output to            

coordinates to GRCh38. All conversions were done using the PyLiftover tool           

(https://pypi.org/project/pyliftover/). 

 

smRegions 
SmRegions is a method developed to detect linear enrichment of somatic mutations in             

user-defined regions of interest. Briefly, smRegions first counts the number of           

non-synonymous mutations overlapping a Pfam domain in a particular protein. Next,           

these non-synonymous variants are randomized N times (N = 103 in our configuration)             

along the nucleotide sequence of the gene, following the trinucleotide context probability            

derived from precomputed mutation frequencies per tri-nucleotide in the cohort. The           

observed and average number of simulated mutations in the Pfam domain and outside             

of it are compared using a G-test of goodness-of-fit, from which the smRegions p-value              

is derived. Within the IntOGen pipeline, smRegions discards domains with a number of             

observed mutations lower than the average from the randomizations. The p-values are            

adjusted with a multiple testing correction using the Benjamini–Hochberg procedure.          
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Therefore, the analysis is confined to Pfam domains with a number of observed             

mutations higher than or equal to the mean simulated number of mutations in the              

re-sampling. 

 

To create the database of genomic coordinates of Pfam domains we followed the next              

steps: i) we gathered the first and last amino acid positions of all Pfam domains for                

canonical transcripts (VEP.92) from BioMart; ii) for each Pfam domain we mapped the             

first and last amino acid positions into genomic coordinates using TransVar –using            

GRCh38 as reference genome–; iii) we discarded Pfam domains failing to map either             

the first or last amino acid positions into genomic coordinates. 

 

smRegions was conceptually inspired by e-driver11, although significant enhancements         

to the approach have been introduced. Particularly, i) our background model accounts            

for the observed tri-nucleotide frequencies rather than assuming that all mutations are            

equally likely; ii) the statistical test is more conservative; iii) Pfam12 domains are part of               

the required input and can be easily updated by downloading the last Pfam release; iv)               

the method can be configured to any other setting that aims to detect genes possibility               

selected by enrichment of mutations in pre-defined gene regions. 

 

Combining the outputs of driver identification      

methods 

Rationale 

The IntOGen pipeline aims to provide a compendium of driver genes which            

appropriately reflects the consensus from these seven driver identification methods. 
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To combine the results of individual statistical tests, p-value combination methods           

continue to be a standard approach in the field: e.g., Fisher’s13, Brown’s14, and             

Stouffer’s Z-score methods have been used for this purpose. These methods are useful             

for combining probabilities in meta-analyses, in order to provide a ranking based on             

combined significance under statistical grounds. However, the application of these          

methods may bear some caveats: 

1. The ranking resulting from p-value combination may lead to inconsistencies          

when compared to the individual rankings, i.e., they may yield a consensus            

ranking that does not preserve recurrent precedence relationships found in the           

individual rankings. 

2. Some methods, like Fisher’s or Brown’s method, may bear anti-conservative          

performance, thus leading to many likely false discoveries. 

3. Balanced (non-weighted) p-value combination methods may lead to faulty results          

just because of the influence of one or more driver identification method            

performing poorly for a given dataset. 

 

Weighted methods to combine p-values, like the weighted Stouffer’s Z-score, provide           

some extra room for proper balancing, in the sense of incorporating the relative             

credibility of each driver identification method. We reasoned that in the context of the              

combination of the output of driver identification methods, the allocation of weights            

should account for differences in credibility between methods and across cohorts. 

 

Our combination approach works independently for each cohort. To create a consensus            

list of driver genes for each cohort, we first determine how credible each driver              

identification method is when applied to this specific cohort (see Supplementary Figure            

1 for a representation of the combinatorial workflow). We do so by tuning a voting               

weight for each driver identification method that yields a good enrichment of bona-fide             

cancer genes -- reported in the COSMIC Cancer Gene Census database15 (CGC) -- in              

the highly ranked positions of the resulting consensus ranking upon letting each driver             
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identification method vote. Once a credibility score has been established, we use a             

weighted method for combining the p-values that each driver identification method gives            

for each candidate gene: this combination takes the driver identification methods           

credibility into account. Based on the combined p-values, we conduct FDR correction to             

conclude a ranking of candidate driver genes alongside q-values. 

Weight Estimation by Voting 

The relative credibility awarded to each method is based on the ability of the method to                

give precedence to well-known genes already collected in the CGC catalog of validated             

driver genes. As each method yields a ranking of driver genes, these lists can be               

combined using a voting system –Schulze’s voting method. The method allows us to             

consider each method as a voter with some voting rights (weighting) which casts ballots              

containing a list of candidates sorted by precedence. Schulze’s method takes           

information about precedence from each individual method and produces a new           

consensus ranking16. 

 

Instead of conducting balanced voting, we tune the voting rights of the methods so that               

the enrichment of CGC genes at the top positions of the consensus list is maximized.               

We limit the share each method can attain in the credibility simplex –up to a uniform                

threshold. The resulting voting rights are deemed the relative credibility of each method. 

Ranking Score 

Upon selection of a catalog of bona-fide known driver elements (the Cancer Gene             

Census, or CGC) we can provide a score for each ranking R of genes as follows: 

(R) E =  ∑
N

i=1

pi
log(i+1)  

where p(i) is the proportion of elements with rank smaller (closer to top) than i which                

belong to CGC and N is a suitable threshold to consider only the N top ranked                
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elements. Using E(R) we can define a function that maps each weighting vector w (in               

the simplex of methods weights) to a value E(R(w)) where R(w) denotes the consensus              

ranking obtained by applying Schulze’s voting with voting rights given by the weighting             

vector w. 

 

Optimization with constraints 

Finally we are bound to find a good candidate for  

rgmax E(R(w))ŵ = a  

For each method to have chances to contribute to the consensus score, we impose the               

mild constraint of limiting the share of each method to 0.3.  

 

Optimization is then carried out in two steps: we first find a good candidate by               ŵ0   

exhaustive search in a rectangular grid satisfying the constraints defined above (with            

grid step=0.05); in the second step we take as the seed for a stochastic hill-climbing         ŵ0         

procedure (we resort to Python’s scipy.optimize “basinhopping”, method=SLSQP and         

stepsize=0.05). 

 

Estimation of combined p-values using weighted Stouffer’s       

Z-score 

Using the relative weight estimate that yields a maximum value of the objective function              

f we combined the p-values resorting to the weighted Stouffer’s Z-score method.            

Thereafter we performed Benjamini-Hochberg FDR correction with the resulting         

combined p-values, yielding one q-value for each genomic element. If the element            
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belongs to the CGC, we computed its q-value using only the collection of p-values of               

CGC genes. Otherwise, we computed the q-value using the p-values computed for all             

genes. 

 

Tiers of driver genes from sorted list of combined rankings and           

p-values 

To finalize the analysis we considered only genes with at least two mutated samples in               

the cohort under analysis. These genes were classified into four groups according to the              

level of evidence in that cohort that the gene harbours signal of positive selection. 

For the sake of simplicity, we give some conventions before proceeding to describe the              

groups. For each gene G we have defined a rank r(G) and a significance q-value q(G)                

according to the voting and p-value combinations described above. Given the final            

ranked list of genes we can define two rank cutoffs that depend on a prescribed               

significance level t:  

 {r(G) | q(G) } 1R =  min
G

> t −    

 {r(G) | q(G) }r =  max
G

< t  

It is readily seen that r < R+1. By default the significance level t is set to 0.05. 

1. The first group of genes, TIER1, contains genes showing high confidence and            

agreement in their positive selection signals. TIER1 comprises all the genes           

G such that r(G) < r. 
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2. The second group, TIER2, was devised to contain known cancer driver           

genes, showing mild signals of positive selection, that were not included in            

TIER1. More in detail, we defined TIER2 genes as those CGC genes, not             

included in TIER1, whose CGC q-value was lower than a prescribed           

significance level (default CGC q-value=0.25). The CGC q-value is computed          

by performing FDR of the combined p-values albeit restricted to CGC genes. 

3. The third group, TIER3, encompasses genes G that are not included in TIER1             

or TIER2 which fulfill that r(G) < R. 

4. All genes not included in the aforementioned classes are considered          

non-driver genes. 

Combination benchmark 

 

We have assessed the performance of the combination compared to i) each of the              

seven individual methods and ii) other strategies to combine the output from cancer             

driver identification methods. 

 

Finally, we evaluated the contribution of each of the individual methods to the             

consensus list of driver genes.  

 
Datasets for evaluation 
 

We decided to perform an evaluation based on the 32 Whole-Exome cohorts of the              

TCGA PanCanAtlas project (downloaded from     

*https://gdc.cancer.gov/about-data/publications/pancanatlas*). These cohorts sequence    

coverage, sequence alignment and somatic mutation calling were performed using the           

same methodology guaranteeing that biases due to technological and methodological          

artifacts are minimal. 
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The Cancer Genes Census –version v87– was downloaded from the COSMIC data            

portal (*https://cancer.sanger.ac.uk/census*) and used as a positive set of known          

cancer driver genes. 

 

We created a catalog of genes with evidence of not involvement in cancerogenesis.             

This set includes very long genes (HMCN1, TTN, OBSCN, GPR98, RYR2 and RYR3),             

and a list of olfactory receptors from Human Olfactory Receptor Data Exploratorium            

(HORDE) (https://genome.weizmann.ac.il/horde/; download date 14/02/2018). In      

addition, for all TCGA cohorts, we added non-expressed genes, defined as genes            

where at least 80% of the samples showed a RSEM expressed in log2 scale smaller or                

equal to 0. Expression data for TCGA was downloaded from          

*https://gdc.cancer.gov/about-data/publications/pancanatlas*. 

Metrics for evaluation 

We defined a metric, referred to as CGC-Score, that is intended to measure the quality               

of a ranking of genes as the enrichment of CGC elements in the top positions of the                 

ranking; specifically given a ranking R mapping each element to a rank, we define the               

CGC-Score of R as: 

(R)  / S = ∑
N

i=1

p(i) 
log(i+1) ∑

N

i=1

1
log(i+1)  

where p(i) is the proportion of elements with rank that belong to CGC and N is a         ≤ i          

convenient threshold to consider just the top elements in the ranking (by default N=40).              

We estimated the CGC-Score across TCGA cohorts for all the rankings given by             

individual methods and by the consensus ranking. 
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Similarly, we defined a metric, referred to as Negative-Score, that aims to measure the              

proportion of non-cancer genes among the top positions in the ranking. Specifically,            

given a ranking R, we define the Negative-Score of R as: 

(R)  / N = ∑
N

i=1

n(i)
log(i+1) ∑

N

i=1

1
log(i+1)  

where n(i) is the proportion of elements with rank that belong to the negative set and         ≤ i         

N is a suitable threshold to consider just the top elements in the ranking (by default N =                  

40). We estimated the Negative-Score across TCGA cohorts for all the rankings given             

by individual methods and by the consensus ranking. 

Comparison with individual methods 

We compared the CGC-Score and Negative-Score of the combined lists of drivers with             

the individual outputs of the seven driver discovery methods integrated in the pipeline. 

 

We observed a consistent increase in CGC-Score of the combinatorial strategy           

compared to any individual method across 23/32 (71%) of the TCGA cohorts            

(Supplementary Figure 2a and 2b). Similarly, we observed a consistent decrease in            

Negative-Score across TCGA cohorts, where the combinatorial strategy ranked the          

least enriched in non-cancer genes in 14 (43%) cohorts and in none of them was the                

most enriched in non-cancer genes (Supplementary Figure 2c).  

In summary, the evaluation shows that the combinatorial strategy increases the True            

Positive Rate (measured using the CGC-Score) preserving lower False Positive Rate           

(measured using the Negative-Score) than the seven individual methods included in the            

pipeline. 

 

21 



Comparison with other combinatorial selection methods 

We then computed the CGC-Score and Negative-Score based on the consensus           

ranking from the aforementioned combinatorial methods and compared them to our           

Schulze’s weighted combination ranking across all TCGA cohorts. Our combinatorial          

approach met a larger enrichment in known cancer genes for 30/32 (93%) TCGA             

cohorts (Supplementary Figure 2d). 

Leave-one-out combination 

We aimed to estimate the contribution of each method’s ranking to the final ranking after               

Schulze’s weighted combination. To tackle this question, we measured the effect of            

removing one method from the combination by, first, calculating the CGC-Score of the             

combination excluding the aforementioned method and, next, obtaining its ratio with the            

original combination (i.e., including all methods). This was iteratively calculated for all            

methods across TCGA cohorts. Methods that positively contributed to the combined           

ranking quality show a ratio below one, while methods that negatively contributed to the              

combined ranking show a ratio greater than one. 

 

We observed that across TCGA cohorts most of the methods contributed positively (i.e.,             

ratio above one) to the weighted combination performance (Supplementary Figure 2e).           

Moreover, there is substantial variability across TCGA cohorts in the contribution of            

each method to the combination performance. In summary, all methods contributed           

positively to the combinatorial performance across TCGA supporting our methodological          

choice for the individual driver discovery methods (Supplementary Figure 2e). 

 

Drivers postprocessing 
The intOGen pipeline outputs a ranked list of driver genes for each input cohort. We               

aimed to create a comprehensive compendium of driver genes per tumor type from all              

the cohorts included in this version. 
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Then, we performed a filtering on automatically generated driver gene lists per cohort.             

This filtering is intended to reduce artifacts from the cohort-specific driver lists, due to              

e.g. errors in calling algorithms, local hypermutation effects, undocumented filtering of           

mutations. 

 

We first created a collection of candidate driver genes by selecting either: i) significant              

non-CGC genes (q-value < 0.05) with at least two significant bidders (methods            

rendering the genes as significant); ii) significant CGC genes (either q-value < 0.05 or              

CGC q-value < 0.25) from individual cohorts. All genes that did not fulfill these              

requirements were discarded. 

 

Additionally, candidate driver genes were further filtered using the following criteria: 

1. We discarded non-expressed genes using TCGA expression data. For tumor          

types directly mapping to cohorts from TCGA –including TCGA cohorts– we           

removed non-expressed genes in that tumor type. We used the following criterion            

for non-expressed genes: genes where at least 80% of the samples showed a             

negative log2 RSEM. For those tumor types which could not be mapped to             

TCGA cohorts this filtering step was not done. 

2. We also discarded genes highly tolerant to Single Nucleotide Polymorphisms          

(SNP) across human populations. Such genes are more susceptible to calling           

errors and should be taken cautiously. More specifically, we downloaded          

transcript specific constraints from gnomAD (release 2.1; 2018/02/14) and used          

the observed-to-expected ratio score (oe) of missense (mys), synonymous (syn)          

and loss-of-function (lof) variants to detect genes highly tolerant to SNPs. Genes            

enriched in SNPs (oe_mys > 1.5 or oe_lof > 1.5 or oe_syn > 1.5) with a number                 

of mutations per sample greater than 1 were discarded. Additionally, we           

discarded mutations overlapping with germline variants (germline count > 5) from           

a panel of normals (PON) from Hartwig Medical Foundation         
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(https://nextcloud.hartwigmedicalfoundation.nl/s/LTiKTd8XxBqwaiC?path=%2FH

MFTools-Resources%2FSage). 

3. We also discarded genes that are likely false positives according to their known             

function from the literature. We convened that the following genes are likely false             

positives: i) known long genes such as TTN, OBSCN, RYR2, etc.; ii) olfactory             

receptors from HORDE (http://bioportal.weizmann.ac.il/HORDE/; download date      

2018/02/14); iii) genes not belonging to Tier1 CGC genes lacking literature           

references according to CancerMine17 (http://bionlp.bcgsc.ca/cancermine/). 

4. We also removed non CGC genes with more than 3 mutations in one sample.              

This abnormally high number of mutations in a sample may be the result of either               

a local hypermutation process or cross contamination from germline variants. 

5. Finally we discarded genes whose mutations are likely the result of local            

hypermutation activity. More specifically, some coding regions might be the          

target of mutations associated with COSMIC Signature 9        

(https://cancer.sanger.ac.uk/cosmic/signatures) which is associated with     

non-canonical AID activity in lymphoid tumours. In those cancer types were           

Signature 9 is known to play a significant mutagenic role (i.e., AML, Non-Hodgkin             

Lymphomas, B-cell Lymphomas, CLL and Myelodysplastic syndromes) we        

discarded genes where more than 50% of mutations in a cohort of patients were              

associated with Signature 9. 

Candidate driver genes that were not discarded composed the compendium of driver            

genes. 

Classification according to annotation level from CGC 

We then annotated the catalog of highly confident driver genes according to their             

annotation level in CGC version 87. Specifically, we created a three-level annotation: i)             

the first level included driver genes with a reported involvement in the source tumor type               

according to the CGC; ii) the second group included CGC genes lacking reported             
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association with the tumor type; iii) the third group included genes that were not present               

in CGC. 

 

To match the tumor type of our analyzed cohorts and the nomenclature/acronyms of             

cancer types reported in the CGC we manually created a dictionary comprising all the              

names of tumor types from CGC and cancer types defined in our study, according to the                

following rules: 

1. All the equivalent terms for a cancer type reported in the CGC using the Somatic               

Tumor Type field (e.g. “breast”, “breast carcinoma”, “breast cancer”), were          

mapped into the same tumor type. 

2. CGC terms with an unequivocal mapping into our cancer types were           

automatically linked (e.g., “breast” with “BRCA”). 

3. CGC terms representing fine tuning classification of a more prevalent cancer           

type that did not represent an independent cohort in our study, were mapped to              

their closest parent tumor type in our study (e.g., “malignant melanoma of soft             

parts” into “cutaneous melanoma” or “alveolar soft part sarcoma” into “sarcoma”). 

4. Adenomas were mapped to carcinomas of the same cell type (e.g.,”hepatic           

adenoma” into “hepatic adenocarcinoma”, “salivary gland adenoma” into “salivary         

gland adenocarcinoma”). 

5. CGC parent terms mapping to several tumor types from our study were mapped             

to each of the potential child tumor types. For instance, the term “non small cell               

lung cancer” was mapped to “LUAD” (lung adenocarcinoma) and “LUSC” (lung           

squamous cell carcinoma). 

6. Finally, CGC terms associated with benign lesions, with unspecified tumor types           

(e.g., “other”, “other tumor types”, “other CNS”) or with tumor types with missing             

parents in our study were left unmatched. 
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Mode of action of driver genes 

We computed the mode of action for highly confident driver genes. To do so, we first                

performed a pan-cancer run of dNdScv across all TCGA cohorts. We then applied the              

aforementioned algorithm (see Mode of action section below for more details on how             

the algorithm determines the role of driver genes according to their distribution of             

mutations in a cohort of samples) to classify driver genes into the three possible roles:               

Act (activating or oncogene), LoF (loss-of-function or tumor suppressor) or Amb           

(ambiguous or non-defined). We then combined these predictions with prior knowledge           

from the Cancer Genome Interpreter18 according to the following rules: i) when the             

inferred mode of action matched the prior knowledge, we used the consensus mode of              

action; ii) when the gene was not included in the prior knowledge list, we selected the                

inferred mode of action; iii) when the inferred mode of action did not match the prior                

knowledge, we selected that of the prior knowledge list. 

Repository of mutational features 

Linear clusters 

Linear clusters for each gene and cohort were identified by OncodriveCLUSTL. We            

defined as significant those clusters in a driver gene with a p-value lower than 0.05. The                

start and end of the clusters were retrieved from the first and last mutated amino acid                

overlapping the cluster, respectively. 

3D clusters 

Information about the positions involved in the 3D clusters defined by HotMAPS were             

retrieved from the gene specific output of each cohort. We defined as significant those              

amino acids in a driver gene with a q-value lower than 0.05. 
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Pfam Domains 

Pfam domains for each driver gene and cohort were identified by smRegions. We             

defined as significant those domains in driver genes with a q-value lower than 0.1 and               

with positive log ratio of observed-to-simulated mutations (observed mutations /          

simulated mutations > 1). The first and last amino acids are defined from the start and                

end of the Pfam domain, respectively. 

Excess of mutations 

The so-called excess of mutations for a given coding consequence-type quantifies the            

proportion of observed mutations at this consequence-type that are not explained by the             

neutral mutation rate. The excess is computed from the consequence-type specific           

dN/dS estimates as . We computed the excess for missense, nonsense  ωc   ω ) / ω  ( c − 1 c         

and splicing-affecting mutations according to the canonical transcript. 

Mode of action 

Upon the consequence-type specific dN/dS estimates for nonsense and missense          

mutations computed at each gene, denoted and we deemed a gene      ωmis   ,ωnon      

activating or Act (resp. Loss-of-function or LoF) if (resp. )        ω  ωmis −  non > ε    ωnon − ωmis > ε  

with Genes with as well as genes with were deemed .1.  ε = 0    ω  ω |  | mis −  non < ε        ωmis < 1    

to have an “ambiguous” mode of action. 
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Supplementary Figures 
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Supplementary Figure 1. Schematic representation of the approach to combine          

the output of driver discovery methods.  

a) Given the output of the seven driver discovery methods integrated in intOGen, b) the               

pipeline dynamically estimates the credibility of the output of each method based on its              

enrichment for Cancer Gene Census genes. Then in c) it performs the combination of              

the outputs weighting each method output according to the credibility previously           

allocated. Finally in d), the resulting list of drivers is sorted by the optimized consensus               

ranking and their associated combined p-value.  
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Supplementary Figure 2. Benchmark of the IntOGen combination using TCGA          

cohorts.  

a) The proportion of CGC drivers among the top ranking genes in the combined list is                

greater than that of the lists of individual driver identification methods in three exemplary              

TCGA cohorts (BRCA, LGG and Sarcoma). The proportion of CGC drivers in each list              

of genes is measured across growing top ranked genes (x-axis). To summarize the             

proportion of CGC drivers obtained throughout all values of rank tested, a numeric value              

(CGC score) is derived (see Supplementary Methods).  

b) CGC score of the output of all driver discovery methods and the combined list across                

32 TCGA cohorts. Systematically, the combined list exhibits a CGC score which is at              

least equal to that of the best performing individual method. In most cases, the              

combined list exhibits a higher CGC score than that of any individual method.  

c) For any drivers list we can also compute a potential false positives score or Negative                

Score, tracking the proportion of a set of non driver genes (known “fishy” genes of driver                

identification, and not expressed genes in each tissue) within the top-ranking elements            

of the list. The Negative Score of the combined list across all TCGA cohorts is               

comparable to that of methods with the lowest Negative Score. This means that the              

increase in sensitivity of drivers identification in the combined list that is documented in              

a) and b) does not come at the cost of a reduction of specificity.  

d) Comparison of the CGC Score of the combined list with that obtained using classic               

combination strategies across all TCGA cohorts. The combination approach developed          

in the pipeline exhibits higher sensitivity than any other strategy across all cohorts. 

e) To assess the contribution of each individual method to the combined list of drivers,               

we carried out a systematic leave-one-out analysis across all TCGA cohorts (dots in             

each distribution). We then evaluated the sensitivity of the new combination using the             

CGC Score. In most cohorts, the elimination of a method from the combination causes a               

decrease of sensitivity. 

f) The effect of eliminating one method on the sensitivity of the combination changes              

across cohorts.  
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Supplementary Table 

Supplementary Table 1. Summarized list of cohorts employed to produce the           

snapshot of the compendium of cancer genes described in the main manuscript. 

The list of cohorts collected from the public domain and employed in the construction of               

subsequent snapshots of the compendium will be updated and published regularly in            

the IntOGen website (www.intogen.org).  
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##IntOGen RELEASE 2020/02/01

Index Column name Explanation
1 COHORT Name of the cohort. COHORT:

2 CANCER_TYPE Acronym of the cancer type associated with the cohort.
3 CANCER_TYPE_NAME Long name of the cancer type associated with the cohort. 
4 SOURCE Source of the data (TCGA, PCAWG, Hartwig Medical Foundation, cBioPortal, PedCbioPortal, ICGC, etc.).
5 PLATFORM Whole-exome sequencing (WXS) or Whole-genome sequencing (WGS).
6 REFERENCE Pubmed ID of the publication. 
7 TYPE Type of cohort [“Primary”, “Metastatic”, “Relapse”]
8 TREATED Whether the cohort of patients has undergone cancer treatment  {“Treated”, “Untreated”}. 
9 AGE Age of the cohort, status {“Adult”, “Pediatric”}
10 SAMPLES Number of samples (prior to any filtering by intOGen).
11 MUTATIONS Number of total of mutations in  the cohort (before filtering by intOGen).
12 WEB_SHORT_COHORT_NAME Short name in the intOGen website.
13 WEB_LONG_COHORT_NAME Long name in the intOGen website.
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