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Abstract

Motivation: Transposable elements (TE) have played a major role in configuring the structures of mammalian genomes
through evolution. In normal conditions, the expression of these elements is repressed by different epigenetic regulation
mechanisms such as DNA methylation, histone modification and regulation by small RNAs. TE re-activation is
associated with stemness potential acquisition, regulation of innate immunity and disease, such as cancer. However, the
vast majority of current knowledge in the field is based on bulk expression studies, and very little is known on cell-type-
or state-specific expression of TE-derived transcripts. Therefore, cost-efficient single-cell-resolution TE expression
analytical approaches are needed.

Results: We have implemented an analytical approach based on pseudoalignment to consensus sequences to
incorporate TE expression information to scRNAseq data.

Availability and implementation: All the data and code implemented are available as Supplementary data and in:
https://github.com/jmzvillarreal/kallisto_TE_scRNAseq.

Contact: jmartinezv@cnio.es or freal@cnio.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Transposable elements (TE) are heterogeneous genomic sequences
that represent a large proportion of eukaryotic genomes and whose
expression is related to various biological processes such as embry-
onic development, innate immune response and disease such as can-
cer (Burns, 2017; Chuong et al., 2016; Deniz et al., 2019).
However, the repetitive nature of TE as well as their organization
into families of highly similar TE members pose analytical chal-
lenges for their individual identification. It follows that most com-
mon transcript alignment procedures are oriented towards the
detection of protein-coding genes and are tailored to achieve a
unique mapping of reads to a reference genome locus thus ignoring

multiple-site matches for being considered indicative of poor-quality
reads that could incur in misalignment. This has largely precluded
studies on the TE expression landscape (Bourque et al., 2018).

Recently, He et al. designed an algorithm, referred to as scTE,
capable of allocating and collapsing TE reads from single-cell RNA
sequencing (scRNAseq) to TE metagenes based on the TE type-
specific sequence. In an extensive analysis, they elegantly show spe-
cific TE expression in mouse embryonic stem cells (mESC), during
human cardiac differentiation, mouse gastrulation and early organo-
genesis, in mouse adult somatic cells and in and in cells reprog-
rammed with OCT4, SOX2, KLF4 and MYC (OSKM) (He et al.,
2021). This work represents, to our knowledge, the second
scRNAseq-specific TE analytical approach after Shao and Wang
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(2021) described an alternative strategy to quantify TE expression at
single-cell resolution using transcript assembly. Both studies based
TE expression quantification on the base-to-base alignment of reads
using the well-established RNAseq aligner STAR (Dobin et al.,
2013) but allowing a certain level of multimapping due to the high
degree of sequence homology among the multiple copies of different
TE family members along the genomes (‘–outFilterMultmapNmax’
parameter set to 100 for He et al. and to 500 for Shao and Wang).
Note that while the value set for this threshold becomes somehow
arbitrary, it will necessarily have to compromise the detection of
repeated TE with some more error-permissive mapping of individual
copies. In recent years, pseudoaligners, such as Kallisto or Salmon,
have appeared as an alternative and highly efficient strategy to quan-
tify transcript abundance in bulk RNAseq data (Bray et al., 2016;
Patro et al., 2017). More recently, pseudoalignment has been
applied to scRNAseq data with a similar performance in cell-type
annotation results at a much lower computational cost, an especially
critical feature of single-cell genomics (Du et al., 2020). Here, we le-
verage this principle and present an additional method to quantify
TE expression at the single-cell level based on the pseudoalignment
of scRNAseq reads to consensus TE sequences using Kallisto.

2 Implementation

To test the validity of our approach, TE consensus sequences con-
sisting of 463 loci specific to Mus musculus were retrieved as a

multifasta file from Repbase database (Bao et al., 2015). These
sequences included all repeat element classes in Repbase: DNA
transposons, long terminal repeat (LTR) retrotransposons, endogen-
ous retroviruses, non-LTR retrotransposons, simple repeats, multi-
copy genes and integrated viruses. Briefly, in this database TE
sequences are clustered according to their similarity. The consensus
sequence is generated with the 50% majority rule applied from the
multiple alignments of TE copies (the number of sequences aligned
depends on the size of the TE family). Each consensus sequence is
defined by the most common nucleotide in that position. The result-
ing sequence is extended, following this method, at both sides to
cover full-length TE. The termini are determined (or predicted) by
the sequence identity among copies, the signatures of TE groups
(e.g. terminal inverted repeats, LTR, polyA tail, Helitron’s A—
TC.CTAG—T termini . . .), target site duplications, and the sequence
similarity to known TE. Kallisto pseudoaligns reads to a reference,
producing a list of transcripts that are compatible with each read
while avoiding alignment of individual bases and, therefore, bypass-
ing the multiple-mapping issues related to TE detection by conven-
tional alignment tools. It does so by creating an index through a
transcriptome de Brujin Graph where nodes are k-mers. Reads are
hashed and pseudoaligned to a transcript based on their intersection
of the k-compatibility classes.

In our study, an index was built using as a reference the combin-
ation of GRCm38 cDNA sequence assembly and the 463 consensus
sequences retrieved from Repbase (Fig. 1A, Supplementary data).

Fig. 1. TE expression in scRNAseq data using pseudoalignment to consensus sequences. (A) Flowchart describing the strategy used for TE expression detection. (B) ERV2-6-

MM-I and RLTR14 cell-specific expression in adult bone marrow in mouse both in 10� Genomics and SmartSeq2 data from Tabula Muris. (C) TE expression in all 10�
Genomics datasets from Tabula Muris. (D) Expression of MERVL and MT2-MM during early mouse pre-implantation embryogenesis. In all analyses, sparse matrices were

loaded into Seurat package (version 4.0.0). Seurat objects were generated for each individual sample and normalization was carried out with SCTransform function. Clusters

stability was determined from different resolution values using clustree program and the final clusters annotated. Top cluster markers were determined with FindAllMarkers

function. Detected TEs in the analysis were extracted from row names of the normalized Seurat object and the top TE identified from the list of cluster markers
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We were able to distinguish cell-type-specific expression of TE in
granulocytopoietic (ERV2-6-MM-I) and macrophage (RLTR14) lin-
eages from Tabula Muris data from adult murine bone marrow
(Fig. 1B) (Schaum et al., 2018; GSE109774). Remarkably, gene de-
tection capacity was not hampered when compared to the same ana-
lysis without including the 463 TE consensus sequences in the
aforementioned Kallisto index (Supplementary Table S1 and
Supplementary Fig. S1). Importantly, the same TE expression pat-
terns were found indistinctly using either droplet-based 30-end 10�
technology or full transcript SmartSeq2 protocol, demonstrating the
applicability of this method to different single-cell-based transcrip-
tomic technologies. TE expression was detected in all Tabula Muris
10� datasets analyzed, as shown in Figure 1C, with a moderate rela-
tionship observed between the number of TE detected and the depth
of gene quantitation in each tissue. Datasets from 10� Genomics
were pseudoaligned to this index using ‘Kallisto bus’ command (de-
fault parameters: k-mer length 31 bp and reads mapped to multiple
genes discarded) and sparse matrices were generated from the out-
put using bustools program and BUSspaRse R package. Datasets
from SmartSeq2 protocol were pseudoaligned using ‘Kallisto
pseudo’ command and sparse matrices were generated from the
output (Supplementary data). Finally, in Figure 1D, we show cell-
type-specific TE expression in the mouse pre-implantation
embryonic dataset used in Shao and Wang (2021) (GSE45719,
GSE100597, GSE109071 and E-MTAB-6967). As shown by Shao
and Wang, MERVL and MT2-MM are expressed mostly during the
2–8 cell stage. Similarly, He et al. showed that both MERVL and
MT2-MM were highly expressed in two cell-like populations arising
from mESC cultures. Moreover, TE family expression distribution,
as annotated in the multifasta file, showed a pronounced stage speci-
ficity (Supplementary Fig. S2).

3 Conclusion

In summary, we validated the use of pseudoalignment of scRNAseq
data to TE consensus sequences as an alternative and cost-efficient
strategy for incorporating TE expression information into the rou-
tine analysis of single-cell transcriptomic data. This approach pre-
cludes retrieving positional information on the genomic coordinates
of individual TEs. However, it bypasses multiple-mapping issues,
adding an additional layer of potentially valuable biological infor-
mation without compromising coding gene quantification.
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