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Abstract: The role of 2-hydroxy-(4-methylseleno)butanoic acid (OH-SeMet), a form of organic se-
lenium (Se), in selenoprotein synthesis and inflammatory response of THP1-derived macrophages
stimulated with lipopolysaccharide (LPS) has been investigated. Glutathione peroxidase (GPX)
activity, GPX1 gene expression, selenoprotein P (SELENOP) protein and gene expression, and reac-
tive oxygen species (ROS) production were studied in Se-deprived conditions (6 and 24 h). Then,
macrophages were supplemented with OH-SeMet for 72 h and GPX1 and SELENOP gene expression
were determined. The protective effect of OH-SeMet against oxidative stress was studied in H2O2-
stimulated macrophages, as well as the effect on GPX1 gene expression, oxidative stress, cytokine
production (TNFα, IL-1β and IL-10), and phagocytic and killing capacities after LPS stimulation. Se
deprivation induced a reduction in GPX activity, GPX1 gene expression, and SELENOP protein and
gene expression at 24 h. OH-SeMet upregulated GPX1 and SELENOP gene expression and decreased
ROS production after H2O2 treatment. In LPS-stimulated macrophages, OH-SeMet upregulated
GPX1 gene expression, enhanced phagocytic and killing capacities, and reduced ROS and cytokine
production. Therefore, OH-SeMet supplementation supports selenoprotein expression and controls
oxidative burst and cytokine production while enhancing phagocytic and killing capacities, mod-
ulating the inflammatory response, and avoiding the potentially toxic insult produced by highly
activated macrophages.

Keywords: cytokine production; glutathione peroxidase; immune response; macrophage polarization;
oxidative stress; phagocytosis; selenium deprivation; selenoprotein P; 2-hydroxy-(4-methylseleno)
butanoic acid

1. Introduction

Macrophages are immune cells that have an important role in immune regulation. The
activation of these cells by pathogens, exogenous molecules or tissue injury signals triggers
an oxidative burst, resulting in an increase in reactive oxygen species (ROS), followed by the
release of various mediators such as IL-1β, IL-6, and TNFα and arachidonic acid-derived
prostaglandins, which initiate the inflammatory response [1,2]. However, the disruption of
any of these inflammatory and oxidative mechanisms will lead to massive oxidation and a
potentially toxic insult, leading to persistent inflammation [3].

Selenoproteins play an important role in reducing ROS generated during the oxidative
burst, and therefore, in controlling and resolving the inflammatory process [3,4]. Although
selenoproteins are generally classified as antioxidants, they exhibit a wide range of func-
tions in inflammation and immunity (see [5] for a review). The selenoproteome consists
of 25 selenoproteins, and selenium (Se) availability in the organism is essential for the
expression of these proteins because they contain a selenocysteine residue in their active
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site. Carlson et al. [2] demonstrated that the glutathione peroxidase (GPX) family consists
of the most abundant selenoproteins in mouse macrophages after determining the whole
selenoproteome based on mRNA abundance. These authors also concluded that GPX1
was the most abundant isoform of GPX and that macrophages had relatively high levels of
expression of the gene encoding selenoprotein P (SELENOP), described by Barrett et al. [6]
as a selenoprotein with an important role in immune function. The importance of adequate
levels of dietary Se that can be efficiently incorporated into selenoproteins has been demon-
strated in cell culture models and animals experiment. It has been shown that limited Se
leads to a decrease in the expression of many selenoproteins, an increase in the production
of ROS, and proinflammatory cytokines and further chronic inflammation [6,7].

A growing body of research has suggested that the dietary form of Se is a major
determinant of its efficiency for meeting the Se requirement in livestock [8]. In this context,
organic forms of Se in poultry diets seem to have a range of important advantages over
traditional sodium selenite, since organic Se can be stored in the animals’ tissues [8]. Re-
cently, we reported that 2-hydroxy-(4-methylseleno)butanoic acid (OH-SeMet), an organic
Se source widely used in poultry nutrition, is capable of supporting selenoprotein synthe-
sis in Caco-2 cells, and that the increase in selenoprotein gene expression allows the cell
to rapidly synthesize selenoproteins, resulting in enhanced protection against oxidative
stress [9]. In the present study, the role of OH-SeMet as a source of Se in THP-1 derived
macrophages was studied to explore the effect of this dietary source on immune cells.
To study the effects of OH-SeMet on macrophages, we first established a model of Se
deprivation by removing fetal bovine serum (FBS) from the cell culture medium because
it naturally contains organic Se forms, mostly selenomethionine. Se-deprived cells were
subsequently supplemented with OH-SeMet to study its capacity to support selenoprotein
synthesis and to protect against oxidative stress. Furthermore, the capacity of OH-SeMet to
modulate the immune response of macrophages stimulated with lipopolysaccharide (LPS)
was investigated. Given that FBS could affect macrophage LPS-activation [10], experiments
were performed both in the absence and presence of FBS.

2. Materials and Methods
2.1. Materials

Roswell Park Memorial Institute 1640 medium (RPMI), non-essential amino acids, ster-
ile phosphate buffered saline (PBS), β-mercaptoethanol, LPS from Escherichia coli 0111:B4,
N-acetyl-L-cysteine (NAC), and forbol-12-miristate-13-acetate (PMA) were supplied by
Sigma (St. Louis, MO, USA). TRI-Reagent, penicillin, and streptomycin were supplied
by Life Technologies (Carlsbad, CA, USA). FBS was purchased from GE Healthcare Life
Sciences (Issaquah, WA, USA). Tryptic soy agar (TSA) was purchased from Thermo Fisher
Scientific Oxoid (Hampshire, UK). OH-SeMet (Selisseo®) was provided by Adisseo France
SAS (Antony, France). Tissue culture supplies were obtained from Costar (Cambridge,
MA, USA).

2.2. THP-1 Cell Culture

The human monocytic leukemia cell line THP-1 provided by ATCC (Manassas, VA,
USA) was cultured as previously described [11]. Cells were differentiated to macrophages
with PMA at a concentration of 100 nmol/L in RPMI 1640 for 3 days.

2.3. Salmonella Enteritidis Culture

Salmonella enterica serovar Enteritidis (phage type 4; nalidixic acid-resistant strain;
S. Ent) was provided by Ignacio Badiola from the Centre de Recerca en Sanitat Animal
(CReSA, IRTA-UAB, Bellaterra, Spain) and prepared as previously described [12]. To
prepare the inoculum, the bacteria were grown at 37 ◦C in TSA for 24 h and used in the
exponential growth phase as determined by absorbance at 600 nm.
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2.4. Se Deprivation and OH-SeMet Supplementation

The model of Se deprivation was established on the basis that the only Se source in
the culture medium was FBS [9]. To establish the Se-deprivation model, macrophages
were maintained in the presence or absence of FBS for different periods of time (6 and
24 h, Figure 1A). Then, GPX activity, GPX1 gene expression, SELENOP protein and gene
expression, as well as ROS production were determined as previously described [9].
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Intracellular ROS production was studied by the intracellular oxidation of 2′,7′-di-
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case of ROS production, cells were further incubated for 4 h with H2O2 1 mM. 

Figure 1. Experimental design for the Se-deprivation model, OH-SeMet supplementation, and
LPS-stimulation model. (A,B) are explained in Section 2.4 and (C) in Section 2.5. FBS, fetal bovine
serum; GPX, glutathione peroxidase; LDH, lactate dehydrogenase; LPS, lipopolysaccharide; NAC,
N-acetyl-L-cysteine; OH-SeMet, 2-hydroxy-(4-methylseleno)butanoic acid; ROS, reactive oxygen
species; SELENOP, selenoprotein P.

GPX activity and SELENOP protein expression were determined from the cell super-
natant after ultrasonic oscillation with a commercial kit GPX assay kit (Cayman Chemical,
Ann Arbor, MI, USA) and a commercial ELISA kit (Cusabio, Wuhan, China) respectively,
following the manufacturer’s instructions.

RT-PCR analysis was performed at the Centres Científics i Tecnològics of the Uni-
versitat de Barcelona (Barcelona, Spain) using the following primers: SELENOP (SE-
LENOP_selenoprotein P1, Life Technologies) and GPX1 (GPX1_glutathione peroxidase 1,
Life Technologies). After testing different reference genes, RPLP0 (RPLP0_ribosomal pro-
tein lateral stalk subunit P0, Life Technologies) was used for normalization purposes.

Intracellular ROS production was studied by the intracellular oxidation of 2′,7′-
dichlorofluorescein to the fluorescent compound dichlorofluorescein and performed with a
commercial intracellular ROS assay kit (OxiSelect, Cell Biolabs Inc., San Diego, CA, USA)
following the manufacturer’s instructions.

Based on the results obtained in the absence of Se, deprivation for 24 h was chosen for
OH-SeMet supplementation experiments (Figure 1B). Se-deprived macrophages were then
supplemented with OH-SeMet at 12.5 µM and 625 µM for an additional 72 h. In the case of
ROS production, cells were further incubated for 4 h with H2O2 1 mM.

Cytotoxicity was evaluated by lactate dehydrogenase (LDH) assay performed as
previously described [9]. Cell viability was not compromised in the absence or presence
of FBS nor with OH-SeMet supplementation (data not shown). Given that there were
differences in the number of cells in the cultures in the presence and absence of FBS, further
results were normalized or expressed as mg protein.
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2.5. OH-SeMet Supplementation in LPS-Stimulated Macrophages

After monocyte differentiation to macrophages, cells were maintained in the presence
or absence of FBS for 24 h (Figure 1C) and then supplemented for 24 h with OH-SeMet
at 12.5 µM and 625 µM or with NAC at 10 mM, a substrate with proven antioxidant
activity [13]. These cells were then stimulated with two LPS concentrations (100 and
250 ng/mL) for 4 and 24 h. In these cells, GPX1 gene expression and ROS production were
determined as in the former experimental model. To determine cytokine production, the
concentrations of TNFα, IL-1β, and IL-10 in the culture medium were assayed with an
enzyme-linked immunosorbent assay (ELISA) kit (Diaclone, Besançon, France), according
to the manufacturer’s instructions.

The phagocytic and killing capacities of macrophages were investigated in cultures
stimulated with 250 ng/m LPS for 24 h in the presence of FBS and supplemented with
625 µM OH-SeMet or 10 mM NAC. After the stimulation period, the cultures were in-
oculated with Salmonella Enteritidis at a multiplicity of infection (MOI) of 10 for 3 h.
The phagocytic and killing capacities were evaluated based on bacterial disappearance
from the incubation and intracellular medium, respectively. Colony-forming units (CFU)
were counted in a sample of the incubation medium and in cell lysate, as previously
described [12].

The autofluorescence emitted by macrophages at a wavelength of 561 nm was ex-
amined with a confocal laser scanning microscope (TCS-SP5; Leica Lasertechnik, GmbH,
Germany) at the Centres Científics i Tecnològics of the Universitat de Barcelona. Images
were processed using ImageJ software (public domain, version 1.41, National Institutes
of Health).

2.6. Statistical Analysis

Results are given as means ± SEM. Significant differences were detected by one-
factor ANOVA followed by Bonferroni’s post hoc test using IBM SPSS Statistics software,
version 27.0 (SPSS Inc., Chicago, IL, USA). p < 0.05 was considered to denote significance.

3. Results
3.1. Se Deprivation and OH-SeMet Supplementation

In macrophages cultured in the absence of FBS, GPX1 gene expression was significantly
reduced after 6 and 24 h with respect to macrophages cultured in the presence of FBS
(Figure 2A). The data also revealed a decrease in this variable with incubation time. This
reduction in GPX1 gene expression in the absence of FBS was accompanied by a reduction
in GPX activity, but only after 24 h incubation (Figure 2B). Se-deprived cells supplemented
with OH-SeMet (Figure 2C) showed a significant increase in GPX1 gene expression, reaching
values similar to those obtained in the presence of FBS.

SELENOP gene expression was also reduced following FBS removal but only after
24 h incubation (Figure 3A), an effect that was accompanied by a reduction in SELENOP
protein expression (Figure 3B). Here again (Figure 3C), OH-SeMet supplementation was
able to return SELENOP gene expression to values similar to those obtained in the presence
of FBS.

FBS removal induced an increase in ROS production after 6 and 24 h incubation
(Figure 4A). Moreover, ROS levels were significantly higher after 24 h when compared
to 6 h incubation. When these cells were stimulated with 1 mM H2O2, 12.5 µM OH-
SeMet conferred partial protection while 625 µM OH-SeMet was capable of completely
counteracting the effect of H2O2, reaching values similar to non-stimulated cells (Figure 4B).

3.2. OH-SeMet Supplementation of LPS-Stimulated Macrophages

For the establishment of the LPS-stimulated macrophage model, the effect of LPS (100
and 250 ng/mL; 4 and 24 h stimulation) on GPX1 gene expression and ROS production in
macrophages maintained in the absence of FBS was studied.
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GPX1 gene expression (Figure 5A,B) did not differ significantly between the two
LPS concentrations tested. After 4 and 24 h simulation, a similar profile was observed:
stimulation with LPS reduced GPX1 gene expression whereas supplementation with OH-
SeMet completely or partially restored this parameter with respect to non-stimulated cells.
In these conditions, NAC did not induce any effect. The results obtained regarding ROS
production (Figure 5C,D) showed no effect after stimulation at any LPS concentration
in either stimulation period. Interestingly, after 24 h stimulation, the data revealed that
supplementation with 625 µM OH-SeMet reduced ROS production. NAC also reduced
ROS production, this effect being more pronounced at the highest LPS concentration.
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Figure 3. (A) SELENOP relative gene expression and (B) SELENOP protein expression in
macrophages cultured in the presence (+) or absence (−) of FBS for 6 or 24 h and (C) SELENOP
relative gene expression in macrophages maintained for 24 h in (+)FBS or in (−)FBS and supple-
mented with 12.5 and 625 µM OH-SeMet for an additional 72 h. Gene expression results were
calculated using 2−∆Ct. The results are expressed as mean ± SEM of n = 6 cultures. The asterisk (*)
denotes significant differences (p < 0.05) between (+)FBS and (−)FBS (A and B) and the letters denote
differences (p < 0.05) between incubation periods (A) and conditions (C).
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Figure 4. ROS production in (A) macrophages cultured in (+)FBS or (−)FBS for 6 or 24 h and
(B) macrophages supplemented with 12.5 and 625 µM OH-SeMet for an additional 72 h and then
stimulated with 1 mM H2O2 for 4 h. ROS production is shown as relative fluorescence intensity
(FI) obtained at the beginning of the experiment ((FIf × 100)/FIi). The results are expressed as
mean ± SEM of n = 9 cultures. The asterisk (*) denotes significant differences (p < 0.05) between
(+)FBS and (−)FBS (A) and different letters denote differences (p < 0.05) between incubation periods
(A) and conditions (B).

Given the lack of effect of LPS on ROS production, the effect of LPS stimulation
on GPX1 gene expression and ROS production was also studied in the presence of FBS
(Figure 6). In these conditions, no differences were observed between the two LPS concen-
trations used. After 4 h stimulation, a similar profile to cells maintained in the absence
of FBS was observed (Figure 6A); here again, OH-SeMet completely restored GPX1 gene
expression in contrast to NAC. However, after 24 h stimulation (Figure 6B), LPS increased
GPX1 gene expression and OH-SeMet and NAC increased this parameter to values higher
than those in non-stimulated cells. As for ROS production (Figure 6C,D), a similar profile
was observed after 4 and 24 h stimulation: LPS increased ROS production whereas supple-
mentation with OH-SeMet and NAC reduced this parameter to values similar to those in
non-stimulated cells.

In further experiments, only the highest LPS concentration (250 ng/mL) was used.
To better understand the lack of an LPS-induced effect on ROS production observed in
the absence of FBS, the autofluorescence emitted by macrophages after LPS stimulation
(24 h, 250 ng/mL) was studied as an oxidative stress indicator (Figure 7). In the absence of
FBS, there were no significant changes in autofluorescence in any of the conditions tested
(Figure 7A). However, in the presence of FBS (Figure 7B), incubation with LPS significantly
increased autofluorescence intensity, and supplementation with OH-SeMet (both at 12.5
and 625 µM) decreased this parameter to values similar to those of non-stimulated cells or
even lower, respectively. NAC also decreased autofluorescence to values similar to those of
non-stimulated cells.

The effect of LPS on cytokine production was studied in macrophages cultured in
the absence or presence of FBS. In non-stimulated cells (Table 1), TNFα, IL-1β, and IL-10
production in the absence and presence of FBS and after 4 and 24 h incubation was very low
(below the detection limit) and, as expected, it increased after LPS stimulation. Cytokine
production was significantly higher in the presence of FBS compared with the absence of
FBS except for IL-1β at 24 h.
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the two LPS concentrations used for each incubation period. Different letters denote significant
differences (p < 0.05) between conditions for each LPS concentration.

OH-SeMet supplementation (Figure 8) at 625 µM reduced IL-1β production in all
conditions tested, as well as TNFα production but only in the presence of FBS in this
case. However, NAC supplementation induced a reduction in TNFα production but a
remarkable increase in the production of the proinflammatory cytokine IL-1β. OH-SeMet
maintained IL-10 production at 4 h stimulation in the absence of FBS and slightly reduced
its production in the other conditions (28.8% in the absence and 15.9–17.9% in the presence
of FBS). In contrast, incubation with NAC induced a drastic decrease in IL-10 production
(42.1–50.1% at 4 h and 95.7–98.6% at 24 h).
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Figure 6. GPX1 relative gene expression and ROS production in macrophages maintained in (+)FBS
for 24 h, supplemented for 24 h with 12.5 and 625 µM OH-SeMet or 10 mM NAC and then stimulated
with LPS (100 and 250 ng/mL) for 4 or 24 h (A–D, respectively). Gene expression results were
calculated using 2−∆Ct. ROS production is shown as relative fluorescence intensity (FI) obtained
at the beginning of the experiment ((FIf × 100)/FIi). The results are expressed as mean ± SEM
of n = 6–9 cultures. The asterisk (*) denotes significant differences (p < 0.05) between the two LPS
concentrations used for each incubation period. Different letters denote significant differences
(p < 0.05) between conditions for each LPS concentration.

Finally, the effect of OH-SeMet supplementation (625 µM) on the phagocytic and
killing capacities of LPS-stimulated macrophages in the presence of FBS was studied after
incubation with Salmonella Enteritidis (Figure 9). LPS stimulation reduced the number of
CFU of Salmonella Enteritidis from samples of both extracellular and intracellular compart-
ments. OH-SeMet supplementation accentuated this effect, suggesting an increase in the
phagocytic and killing capacities. Meanwhile, NAC only decreased the CFU of Salmonella
Enteritidis from the intracellular compartment, suggesting an increase in killing capacity.
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Figure 7. Autofluorescence in macrophages maintained in (−)FBS or (+)FBS for 24 h (A,B, respec-
tively), supplemented for 24 h with 12.5 and 625 µM OH-SeMet or 10 mM NAC and then stimulated
with LPS (250 ng/mL) for 24 h. The results are expressed as mean ± SEM of n = 12 macrophages. Dif-
ferent letters denote significant differences (p < 0.05) between conditions for each LPS concentration.

Table 1. Cytokine production (TNFα, IL-1β and IL-10) in macrophages maintained in (−)FBS or
(+)FBS for 24 h and then stimulated with LPS (100 and 250 ng/mL) for 4 or 24 h. The results are
expressed as mean ± SEM of n = 9 cultures. The asterisk (*) denotes significant differences (p < 0.05)
between (−)FBS and (+)FBS. ND, not detected.

(−)LPS (+)LPS

Time Cytokine (pg/µg) (+/−)FBS (−)FBS (+)FBS

4 h
TNFα ND 2.18 ± 0.159 15.21 ± 0.838 *
IL-1β ND 0.27 ± 0.021 0.43 ± 0.027 *
IL-10 ND 0.02 ± 0.002 0.31 ± 0.023 *

24 h
TNFα ND 7.02 ± 0.564 13.08 ± 0.742 *
IL-1β ND 0.99 ± 0.122 0.96 ± 0.039
IL-10 ND 0.25 ± 0.014 1.07 ± 0.077 *
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Figure 8. Cytokine production (TNFα, IL-1β, and IL-10) in macrophages maintained in (−)FBS or
(+)FBS for 24 h (A–D, respectively), supplemented for 24 h with 12.5 and 625 µM OH-SeMet or 10 mM
NAC and then stimulated with LPS (100 and 250 ng/mL) for 4 or 24 h (A–D, respectively). The
results are expressed as mean ± SEM of n = 9 cultures. Different letters denote significant differences
(p < 0.05) between conditions for each cytokine.
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expressed as mean ± SEM of n = 6 cultures. Different letters denote significant differences (p < 0.05)
between conditions. CFU, colony-forming units; S. Ent, Salmonella Enteritidis.

4. Discussion

Se incorporation in animal diets is of great relevance, as Se supplementation is reported
to be required for optimal growth and health [8]. In fact, inadequate dietary Se is considered
a risk factor for several chronic diseases in animals and humans, associated with oxidative
stress and immune response [5,14–16]. Recently, it has been demonstrated that a low Se
status is related to a higher risk of death from COVID-19 [17,18]. Macrophage activation
is regularly accompanied by an increase in the production of ROS and, for this reason,
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these cells require adequate levels of antioxidant defenses, such as selenoprotein expression
and activity, in order to avoid their harmful effects when produced in excess. Therefore,
Se reserves in the body are needed to maintain effective antioxidant defenses in stress
conditions [8]. Moreover, Se levels in diet also affect the inflammatory signaling capacity
and anti-pathogen activities of macrophages [7]. Prabhu et al. [19] and Vunta et al. [1,4]
stated that GPX activity in macrophages is markedly decreased in Se deficiency. Accord-
ingly, we found that the expression and/or activity of the two major selenoproteins in
macrophages, firstly GPX1 and secondly SELENOP [2], were reduced in these conditions.
Moreover, there is a correlation of these data with its gene expression, suggesting regulation
at the transcriptional level. Nevertheless, translational regulation cannot be ruled out, since
Schoenmakers et al. [20] stated that a Se-deficient environment decreases the expression
of high-stress-related selenoproteins due to the reduction in the expression of a specific
tRNA[Ser]Sec isoform (mcm5Um). GPX1 gene expression is a good biomarker of Se status,
since it was markedly downregulated even at 6 h of Se deprivation, in parallel with the
production of ROS. Indeed, it has previously been reported that Se deficiency increases ROS
production [2,21], which could be related to this downregulation of selenoproteins. Given
these results, the removal of FBS from the medium can be considered a useful model to
simulate Se deficiency since it allows for the monitoring of selenoprotein behavior and thus
oxidative stress modulation when Se levels are modified (deficiency and supplementation).

It has been proven that OH-SeMet is fully converted into selenomethionine, conferring
the ability to increase Se deposition in tissues of all species, including in muscle of chick-
ens [22–24], eggs and breast muscle of laying hens [25], muscle of growing pigs [26], sow
milk [27], beef cattle [28,29], and dairy cows [30]. Thus, improving Se availability will help
to improve health and to give rise to a biofortified animal products which are beneficial
for human consumers. Therefore, although metabolism is complete in different tissues,
it should be considered that conversion may be a limiting factor in a cell culture model.
For this reason, relatively high non-toxic OH-SeMet concentrations have been used. In
addition, pure organic forms of Se such as selenomethionine and OH-SeMet have a greater
capacity to modulate selenoprotein gene expression than selenized yeasts or inorganic
Se sources such as sodium selenite in different tissues [9,24,31–33]. In this context, it has
previously been reported that OH-SeMet supplementation increased GPX1 and SELENOP
gene expression in intestinal Caco-2 cells [9], consistent with the results obtained here in
macrophages. It was also recently confirmed that Se supplementation and particularly
OH-SeMet can support GPX activity when supplemented to poultry muscle tissues [34].
In the same way, Dhanjal et al. [3] found that GPX1 gene expression was upregulated in
murine macrophages (RAW264.7) after incubation with an organic Se source extracted from
wheat matrices, consistent with the results obtained here in macrophages and illustrating
the capacity of this organic Se source to modulate gene expression in an immune cell.
In the case of SELENOP, little information is available regarding the regulation of gene
expression by Se in macrophages. However, it is well known that increased expression of
SELENOP is induced when mouse macrophages switch from the M1 to M2 phenotype [35],
thus highlighting the role of SELENOP in the resolution of inflammation, stated as well by
Barret et al. [6], Short et al. [36], and Ding et al. [37].

Previous studies have demonstrated that organic Se sources confer a better protective
effect than inorganic sources against different oxidative stress conditions [32,38–41]. There-
fore, upregulation of GPX1 and SELENOP gene expression by OH-SeMet and a further
decrease in ROS production induced by H2O2 could maintain effective antioxidant defenses
and would help the cell to adapt to and overcome the stress with minimal negative conse-
quences. It should be considered that an increase in ROS production triggers the formation
of secondary oxidative products. Previously, we observed that OH-SeMet reduced protein
carbonylation and lipid peroxidation in Caco-2 cells incubated with H2O2 [9].

The fact that OH-SeMet is able to increase the gene expression of these selenopro-
teins illustrates the capacity of this organic source to prepare the cell when the immune
response starts. Therefore, we continued our study using an in vitro model of macrophages
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stimulated with LPS. In the first trial, we observed that FBS absence (Se-deficient model)
affected macrophage response, because there were no changes in ROS production after LPS
stimulation. Therefore, the effect of supplementation with OH-SeMet was also tested in the
presence of FBS, which itself contains small amounts of selenomethionine [9]. It should be
noted that the basal animal diet also contains low quantities of selenomethionine derived
from cereals [42].

LPS significantly decreased GPX1 gene expression in virtually all conditions tested, as
confirmed by Carlson et al. [2] and Wang et al. [43], who attributed this to dysregulation of
selenogenome expression. Nevertheless, the pattern of GPX1 gene expression changed in
the presence of FBS at 24 h, when higher expression of GPX1 was observed in the presence of
LPS. Wang et al. [43] described that in LPS-stimulated RAW264.7 macrophages, an increase
in some selenoproteins, such as TXNRD, was observed at 24 h, which may be a mechanism
to counteract the effects of LPS during long incubation periods. The upregulation of GPX1
gene expression induced by OH-SeMet and the further reduction in ROS production shows
the capacity of this organic source to support the expression of this selenoprotein even
under non-physiological conditions. Regarding the effect of NAC, the decrease in ROS
production was not accompanied by the upregulation of GPX1 gene expression in virtually
any of the conditions tested, except for 24 h LPS stimulation in the presence of FBS. In
this context, consistent with our results after a long period of incubation, Krifka et al. [44]
reported that supplementation of NAC in RAW264.7 macrophages exposed to HEMA (a
potent pro-oxidant) for long periods of time increased GPX1 and GPX2 expression. These
authors attributed this upregulation to high levels of ROS accompanied by high levels of
glutathione synthesized from NAC.

Regarding oxidative stress and cytokine production, these parameters varied when
FBS was present or not in the culture: Firstly, in the presence of FBS, LPS induced the
production of ROS, TNFα, IL-1β, and IL-10, as well as an increase in autofluorescence.
Secondly, when FBS was removed from the medium, LPS had no effect either on ROS
production or on autofluorescence, and there was a slight increase in cytokine production.
Similarly, Palacio et al. [10] stated that in the absence of FBS, LPS was not capable of induc-
ing ROS production in THP-1 macrophages. Nevertheless, consistent with our results, when
these cells were incubated with LPS together with NAC, a decrease in ROS was observed.
The lower production of cytokines observed was consistent with Safir et al. [45] who re-
ported that the absence of FBS led to a loss of immune competence of J774.1 macrophages
and/or the lower expression of proteolytic enzymes that are necessary for the release of
cytokines such as TNFα from its precursor [45]. These results could also be attributed to
the lack of an LPS-binding protein in the medium in the absence of FBS, which would
be necessary for LPS to efficiently bind to its receptor (Toll-like receptor 4, TLR4) [46,47].
Nevertheless, although ROS production was not modified by the different conditions tested,
the absence of FBS increased ROS production without increasing either autofluorescence or
cytokine production, suggesting no association of this effect with macrophage activation. In
contrast, when FBS is present, it has been reported that LPS efficiently activates the NF-κβ
and MAPK pathways, producing changes in the redox state of the cell and increasing
the secretion of several cytokines [11,48]. Moreover, Verstovsek et al. [49] observed an
increase in autofluorescence in splenic macrophages stimulated with LPS as Sköld et al. [50]
and Pankow et al. [51] observed in alveolar macrophages due to the presence of higher
amounts of ROS as well as higher metabolic activity and Edelson et al. [52] due to the for-
mation of protein adducts. Furthermore, autofluorescence is associated with macrophage
activation [53] and with cytokine production, such as IL-1α [54].

Supplementation with OH-SeMet reduced ROS production, the autofluorescence
peak, and cytokine production induced by LPS. Se-deficient cells usually show higher
NF-κβ activation, with further higher expression of inflammatory cytokines [21,55]. In
a similar way, it has been observed that Se reduced the production of proinflammatory
cytokines by NF-κβ inhibition [56,57]. Regarding NAC, Ryan et al. [58] observed that this
substrate was capable of both decreasing LPS-mediated IL-8 production as well as the
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translocation of NF-κβ to the nucleus in THP-1 derived macrophages. In contrast, we
found an increase in IL-1β in all conditions when NAC was added to cells. Similar results
were obtained by Parmentier et al. [13] who attributed this effect to NF-κβ activation. In
the same way, Al-Shukaili et al. [59], also indicated that NAC upregulated the production
of proinflammatory cytokines and downregulated anti-inflammatory cytokine production
by peripheral blood mononuclear cells. All these results confirm the controversial effect
of NAC, a substrate with proven antioxidant activity, in cytokine production [59]. Since
IL-10 is described to inhibit IL-1β processing [60], the drastic loss of IL-10 produced by
NAC found in our study could explain the failure to control IL-1β production in LPS-
stimulated macrophages. Nelson et al. [61] stated that Se supplementation was able to
induce the polarization of bone marrow-derived macrophages from M1 macrophages
towards M2 macrophages. Several studies have shown that OH-SeMet supplementation
in non-stressed conditions is capable of decreasing the production of proinflammatory
cytokines such as IL-1β or TNFα and increase the expression of anti-inflammatory cytokines
such as IL-10 [24,37,62–64]. Nevertheless, contrary to NAC, when a challenge was induced,
OH-SeMet supplementation helped the macrophages to control the cytokine production
by decreasing both proinflammatory cytokines (TNFα and IL-1β) and maintaining the
anti-inflammatory cytokine IL-10, as previously described in other tissues [27,37,64]. It is
important to remark that the control of IL-10 production is needed in stressed conditions
since it is described that high IL-10 production leads to a suppression of the immune
response and, therefore, a failure to control the infection [65].

Thus, OH-SeMet supplementation in non-stressed conditions would favor polarization
to M2 macrophages. However, in stressed conditions, its protective effect would mainly
consist of leading macrophages to be less prone to transition to the M1 phenotype. In fact,
Mosser and Edwards [66] suggested another classification model in which macrophages
have a functional plasticity that allows them to modify their function to assist in host
defense, wound healing, and/or immune regulation, depending on the environmental
signals. Thus, the OH-SeMet would optimize the macrophages activity to avoid excessive
immune response or immune suppression that can cause damage or secondary infections,
respectively. This could explain the improvement of phagocytosis and killing capacities by
OH-SeMet compared to NAC. Xu et al. [21] stated that the phagocytic capacity decreased
in macrophages that were deficient in Se, while Se supplementation increased these ca-
pacities [45,67,68]. In humans, it has been shown that different selenium sources activate
the phagocytosis of tumor cells by macrophages (see [18] for a review). Moreover, it has
been described that oxidative stress caused by Se deficiency could involve macrophage
dysfunction [69]. Overall, the supplementation of these cells with OH-SeMet, which is
capable of upregulating selenoprotein expression, would control oxidative damage and
thus, phagocytosis. Since the phagocytic capacity of macrophages is among the key features
of the innate immune response, these results highlight the capacity of OH-SeMet to foster
an innate immune response with minimal negative consequences for the tissues. Such
results corroborate the observations made in different in vivo trials [24,27,37,64], where
OH-SeMet supplementation promoted innate immune response compared to sodium se-
lenite and selenized yeast, and provide further knowledge on OH-SeMet’s mode of action
on macrophages.

5. Conclusions

In conclusion, the supplementation of macrophages with OH-SeMet supported GPX1
and SELENOP gene expression and controlled the oxidative burst. Thus, OH-SeMet
optimized and regulated the inflammatory response and thereby enhanced phagocytic and
killing capacities of macrophages.
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