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Abstract

We introduce and study Hodge–de Rham numbers for compact almost complex 4-manifolds,
eneralizing the Hodge numbers of a complex surface. The main properties of these numbers
n the case of complex surfaces are extended to this more general setting, and it is shown
hat all Hodge–de Rham numbers for compact almost complex 4-manifolds are determined by
he topology, except for one (the irregularity). Finally, these numbers are shown to prohibit the
xistence of complex structures on certain manifolds, without reference to the classification of
urfaces.
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1. Introduction

Hodge numbers are fundamental analytic invariants of complex manifolds. They arise
as the dimensions h p,q

:= dim H p,q
∂̄

of the Dolbeault cohomology groups which, by
Dolbeault’s Theorem, admit a sheaf-theoretic description using holomorphic differential
forms. In the compact case, Hodge theory gives an isomorphism between Dolbeault
cohomology and the spaces of ∂̄-harmonic forms, defined after choosing a Hermitian
metric. This isomorphism gives the following Serre duality identities for any compact
complex manifold of complex dimension n:

(I.1) h0,0
= hn,n

= 1 and h p,q
= hn−p,n−q for all 1 ≤ p, q ≤ n.

Dolbeault cohomology is related to the topology of the manifold by means of a
pectral sequence, called the Frölicher spectral sequence. One consequence of the
onvergence of this spectral sequence in the compact case is the Euler characteristic
dentity:

(I.2) e :=
∑

(−1)kbk
=

∑
(−1)p+q h p,q ,

here bk denotes the kth Betti number of the manifold.
Together with plurigenera, Hodge numbers are the most important invariants in the

nriques–Kodaira classification of compact complex surfaces. Many other invariants are
ritten as linear combinations of Hodge numbers, such as:

• (Irregularity) q := h0,1.
• (Geometric genus) pg := h0,2.
• (Holomorphic Euler characteristic) χ :=

∑
(−1)q h0,q

= 1 − q + pg .

The above invariants are defined in general for any compact complex manifold. In the
ase of compact complex surfaces, which are complex manifolds of complex dimension
, the following strong relations are satisfied:

(I.3) (Degeneration) bk
=

∑
p+q=k h p,q .

(I.4) (Signature) σ = 4χ − e =
∑

(−1)q h p,q .
(I.5) (Noether’s formula) 12χ = c2

1 + e.

ere σ := b+
− b− denotes the signature of the manifold and c1 is the first Chern

lass, whose square is a topological invariant. The above relations altogether imply that
odge numbers of compact complex surfaces are determined from the Betti numbers
f the manifold and the signature. In particular, they depend only on the oriented real
ohomology ring of the manifold.

The purpose of this note is to introduce and study a generalization of Hodge numbers
hat is valid for any almost complex 4-manifold. The starting point is the Frölicher-
ype spectral sequence introduced in [8] for any almost complex manifold and the
orresponding Dolbeault cohomology groups arising as the first stage of this spectral
equence. For a compact almost complex 4-manifold, the Dolbeault cohomology vector
paces introduced in [8] are always finite-dimensional for the bottom (∗, 0) and top

∗, 2) bidegrees, respectively, and are identified with certain spaces of harmonic forms.
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However, in bidegree (0, 1) such spaces have no supporting Hodge theory and, as shown
in [9], are infinite dimensional in the non-integrable case. Still, the Frölicher spectral
sequence always degenerates by the second page E2, at the latest. It therefore makes
ense to consider the Hodge–de Rham numbers

h p,q
:= dim E p,q

2 = dim E p,q
∞

,

hich are analytic invariants of the manifold, and always finite in the compact case. Of
ourse, these numbers trivially satisfy Equations (I.2) and (I.3), and reduce to the classical
odge numbers in the case of a complex surface. We show that the Serre identities (I.1)

re also satisfied, and provide relations generalizing Equations (I.4) and (I.5).
The presentation below will not assume any previous knowledge on complex surfaces,

ut rather we will prove from first principles the general properties for almost complex
-manifolds, and observe how these collapse to the well-known properties mentioned
bove in the case of complex surfaces. Additionally, we prove special properties for
on-integrable structures. This exercise allows us to describe with precision which of
he properties are special, and only satisfied in the case of complex surfaces, and which
f the properties still hold in the non-integrable case, even if their implications are not
s dramatic as in the integrable setting. As one somewhat surprising result of this, we
how that for non-integrable structures, all Hodge–de Rham numbers may be computed
rom the Betti numbers together with the irregularity q := h0,1. Moreover, this number is

lower semi-continuous under small deformations and is bounded by b1
≤ 2q ≤ 2b1. In

articular, when b1
≤ 1, the irregularity and hence all Hodge–de Rham numbers become

opological invariants.
There are many known examples of almost complex 4-manifolds not admitting any

ntegrable almost complex structure. The arguments for proving that such example exist
ften rely on Kodaira’s classification of compact complex surfaces. Using Hodge–de
ham numbers we show how, in many situations, one can prove such results without

nvoking Kodaira’s classification.
Another natural approach for generalizing Hodge numbers to the non-integrable

etting arises after choosing a Hermitian metric and considering the spaces of ∂̄-harmonic
orms Hp,q

∂̄
:= Ker(∆∂̄ )|p,q , as already noted by Hirzebruch in [16]. For compact almost

omplex manifolds, these spaces are finite-dimensional by elliptic operator theory, even
n the non-integrable case, and their dimensions h p,q

∂̄
:= dimHp,q

∂̄
satisfy the Serre duality

dentities. We have h0,0
∂̄

= h0,0 as well as inequalities h p,0
∂̄

≥ h p,0 for p = 1, 2, which
ive the same relations for the Serre-dual numbers. However, there is no obvious relation
etween the numbers h p,1

∂̄
and h p,1. In fact, as shown by Holt and Zhang in [20], the

umber h0,1
∂̄

depends on the metric in general and may be unbounded as the metric
aries, while h0,1 is metric-independent by construction. Additionally, the number h1,1

∂̄
lso depends on the metric in general, [22], but attains only two possible values [19].

This note is organized as follows. In Section 2 we review some preliminaries on
he algebra of differential forms of an almost complex manifold. We prove some first
asic properties of such differential forms, and review the Frölicher spectral sequence of
lmost complex manifolds. In Section 3 we introduce Hodge–de Rham numbers of almost
omplex 4-manifolds and provide generalizations of the identities (I.1)–(I.5). In Section 4
e study separately the integrable and non-integrable cases and establish a criterion of
ntegrability in terms of Hodge theory. The last section is devoted to examples.
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2. Preliminaries

2.1. Differential forms of almost complex manifolds

An almost complex structure on a smooth manifold M is given by an endomorphism
of the tangent bundle J : T M → T M such that J 2

= −Id. The pair (M, J ) is called an
lmost complex manifold. The extension of J to the complexified tangent bundle induces
bigrading on the complex de Rham algebra of differential forms

An
dR ⊗ C =

⨁
p+q=n

Ap,q

nd the exterior differential decomposes as

d = µ̄ + ∂̄ + ∂ + µ

here the bidegrees of each component are given by

|µ̄| = (−1, 2), |∂̄| = (0, 1), |∂| = (1, 0), and |µ| = (2, −1).

ere µ̄ and ∂̄ are complex conjugate to µ and ∂ respectively. The almost complex
tructure J is said to be integrable if and only if µ ≡ µ̄ ≡ 0. In this case, by the

Newlander–Nirenberg Theorem, the endomorphism J is induced from a holomorphic
atlas and so M is a complex manifold.

The equation d2
= 0 gives the following set of relations:

µ2
= 0

µ∂ + ∂µ = 0

µ∂̄ + ∂̄µ + ∂2
= 0

µµ̄ + ∂∂̄ + ∂̄∂ + µ̄µ = 0

µ̄∂ + ∂µ̄ + ∂̄2
= 0

µ̄∂̄ + ∂̄µ̄ = 0

µ̄2
= 0

In the integrable case, for which d = ∂̄ + ∂ , these equations collapse to the well-known
equations of a double complex ∂2

= 0, ∂∂̄ + ∂̄∂ = 0 and ∂̄2
= 0.

The following results are extensions, to the possibly non-integrable case, of well-
known results for compact complex surfaces. We first recall a result on pluriharmonic
functions which relies on the Hopf maximum principle (see Corollary 1 of [6] for a proof
in the possibly non-integrable case).

Lemma 2.1. Let f be a smooth function on a compact connected almost complex
manifold such that ∂̄∂ f = 0. Then f is constant. In particular, f is constant if ∂̄ f = 0.

A basic result for compact complex surfaces states that every holomorphic form is
losed (see Lemma IV.2.1 of [3]). More generally, we have:

emma 2.2. Let α ∈ Ap,0 be a differential form on a compact almost complex
¯
-manifold such that ∂α = µ̄α = 0. Then dα = 0.
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Proof. The case p = 0 follows from Lemma 2.1 and the case p = 2 is trivial for bidegree
reasons. The case p = 1 is an easy consequence of Stokes Theorem (c.f. Lemma 3.13
in [8]). Indeed, by assumption we have dα = ∂α is a (2, 0)-form, while on the other
hand ∫

dα ∧ dα =

∫
d(α ∧ dα) = 0.

Since the pairing (α, β) =
∫

α∧β̄ defines a positive definite inner product on (2, 0)-forms,
we deduce ∂α = 0, and so α is d-closed. □

The above result is actually valid for forms of type (n, 0) or (n −1, 0) on any compact
2n-dimensional almost complex manifold, but not in general for (p, 0)-forms. Lemma
IV.2.3 in [3] extends now easily to non-integrable structures:

Lemma 2.3. Let α ∈ Ap,0 be a differential form on a compact almost complex
4-manifold such that ∂̄α = µ̄α = 0. If α = ∂β then α = 0.

roof. Assume first that α ∈ A1,0. If α = ∂β then ∂̄∂β = 0 and so α = 0 by Lemma 2.1.
f α ∈ A2,0 and α = ∂β, we have∫

α ∧ α = 0

and arguing as in the proof of Lemma 2.2 we find α = 0. □

2.2. Frölicher spectral sequence

The Hodge filtration of a complex manifold is given by the column filtration

F pAn
:=

⨁
q≥p

Aq,n−q .

n the non-integrable case, this filtration is not compatible with the exterior differential.
owever, there is an elementary way to modify the usual Hodge filtration making it

ompatible with the exterior differential for all almost complex manifolds, and reducing
o the Hodge filtration in the integrable case [8]. Namely, we simply restrict to those
orms in the first column which are in the kernel of µ̄, i.e.

F pAn
:= Ker(µ̄) ∩ Ap,n−p

⊕

⨁
q>p

Aq,n−q .

One then verifies that d(F pAn) ⊆ F pAn+1 and so (A∗, d, F) is a filtered complex. The
first stage of its associated spectral sequence may be written as the quotient

E p,q
1

∼=
{x ∈ Ap,q

; µ̄x = 0, ∂̄x = µ̄y}

{x = µ̄a + ∂̄b; µ̄b = 0}

ith differential

δ [x] = [∂x − ∂̄ y].
1
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The second stage is given by the quotient

E p,q
2

∼=
{x ∈ Ap,q

; µ̄x = 0, ∂̄x = µ̄y, ∂x = ∂̄ y + µ̄z}
{x = µ̄a + ∂̄b + ∂c; 0 = µ̄b + ∂̄c, 0 = µ̄c}

.

urther terms of this spectral sequence are described in the Appendix of [8]. For the
tudy of 4-dimensional manifolds it suffices to understand the terms E1 and E2, as we
ill soon see. This spectral sequence converges to complex de Rham cohomology:

H n
dR ⊗ C ∼=

⨁
p+q=n

E p,q
∞

.

e have the following degeneration result:

emma 2.4. On any compact almost complex 4-manifold we have:

(1) E p,q
1 = E p,q

∞ for all 0 ≤ p ≤ 2 and q ∈ {0, 2}.
(2) E p,1

2 = E p,1
∞ for all 0 ≤ p ≤ 2.

roof. Lemma 2.1 implies E0,0
1 = E0,0

∞
(c.f. Corollary 4.9 of [8]) and Lemma 3.13

f [8] gives E2,0
1 = E2,0

∞
using the non-degenerate pairing in the middle degree, as in the

roof of Lemma 2.3 above. These two results imply E1,0
1 = E1,0

∞
since any non-trivial

ifferential δ1 with source or origin at E1,0
1 would affect non-trivially one of the vector

paces E0,0
1 or E2,0

1 . By Proposition 4.10 of [8], we have

E p,0
1 = Ker

(
∆∂̄ + ∆µ̄

)
∩ Ap,0 and E p,2

1 = Ker
(
∆∂̄ + ∆µ̄

)
∩ Ap,2.

hese are isomorphic under the Serre-Duality map ⋆̄ : E p,0
1

∼= E2−p,2
1 . Moreover, this

somorphism intertwines the differentials ∂ : E p,0
1 → E p+1,0

1 and ∂∗
: E p,2

1 → E p−1,2
1 .

Therefore we have that ∂∗
= 0 on E∗,2

1 . This proves E1-degeneration along the top row
= 2 as well. The second assertion now follows since the differential δr with r ≥ 2

has bidegree (r, r − 1), so that r − 1 > 0 and the differential must vanish by the first
assertion. □

3. Hodge–de Rham numbers

3.1. Degeneration, Euler and Serre identities

Define the Hodge–de Rham numbers of a compact almost complex 4-manifold as

h p,q
:= dim E p,q

2 .

Lemma 2.4 gives the degeneration identity

bk
=

∑
p+q=k

h p,q
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of Equation (I.3), and in particular one obtains the Euler characteristic in terms of
Hodge–de Rham numbers

e =

∑
(−1)p+q h p,q ,

hus recovering Equation (I.2). The following result restricts the possible Hodge–de Rham
umbers in total degree 1.

emma 3.1. On a compact almost complex 4-manifold we have

h1,0
≤ h0,1 and b1

≤ 2h0,1.

roof. The numbers h0,1 and h1,0 are, by definition, the dimensions of the vector spaces

E0,1
2

∼=
{α ∈ A0,1

; ∂̄α = µ̄β, ∂α = ∂̄β}

{α = ∂̄ f }
, and E1,0

2
∼= A1,0

∩ Ker(d),

respectively. Define a map E1,0
2 −→ E0,1

2 by letting α ↦→ [α] This is well-defined, since
dα = 0. We show that it is injective. If [α] = 0 then α = ∂̄ f and so α = ∂ f which
gives ∂̄∂ f = 0. Then f is constant by Lemma 2.1 and so α = 0. This proves h1,0

≤ h0,1.
Since b1

= h1,0
+ h0,1, we get the inequality b1

≤ 2h0,1. □

Serre duality is also satisfied for these numbers:

roposition 3.2. On any compact almost complex 4-manifold we have h p,q
= h2−p,2−q .

Proof. The identities h∗,0
= h2−∗,2 follow from Serre duality of Dolbeault cohomology

proven in Corollary 4.11 of [8] together with the fact that E1 = E2 in such bidegrees,
by Lemma 2.4 above. Finally, Poincare duality gives an equality

b1
= h0,1

+ h1,0
= h1,2

+ h2,1
= b3,

nd since h1,0
= h1,2, this implies the remaining identity h0,1

= h2,1. □

.2. Signature formula

In this section we generalize Equation (I.4) to the non-integrable setting. Though
e only present here the dimension 4 case, there is a result in all dimensions due to
irzebruch [18], with a proof given recently by Albanese in an appendix to [11]. Let

σ̃ :=

2∑
p,q=0

(−1)q h p,q

and consider the holomorphic Euler characteristic

χ :=

2∑
q=0

(−1)q h0,q .

We immediately obtain the following relation:
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Corollary 3.3. On any compact almost complex 4-manifold we have σ̃ = 4χ − e.

Proof. Using Serre duality we may write:

e =

2∑
p,q=0

(−1)p+q h p,q
=

= −

⎛⎝ 2∑
p,q=0

(−1)q h p,q

⎞⎠ + 2

⎛⎝ 2∑
q=0

(−1)q h0,q
+

2∑
q=0

(−1)q h2,q

⎞⎠ =

= −

⎛⎝ 2∑
p,q=0

(−1)q h p,q

⎞⎠ + 4

⎛⎝ 2∑
q=0

(−1)q h0,q

⎞⎠ = −σ̃ + 4χ. □

For any compact almost complex 4-manifold, Hirzebruch’s Signature Theorem gives
the relation

σ =
1
3

p1 =
1
3

(c2
1 − 2e),

here p1 is the first Pontryagin class (see [17]). Also, recall that the top Todd class of
ny compact 4-manifold is given by

T d =
1
12

(c2
1 + e).

ombining the above two identities we have

e + σ = 4 · T d.

n particular we have σ ≡ −e (mod 4) for any almost complex 4-manifold. This implies,
or instance, that the connected sum of two almost complex manifolds is never almost
omplex, e.g. S4 is not almost complex, since it is the unit for connected sums. Another
onsequence is the following:

roposition 3.4. On any compact almost complex 4-manifold we have σ − σ̃ =

4(T d − χ ).

Proof. It follows from the identity e + σ = 4 · T d together with Corollary 3.3. □

The above result gives σ ≡ σ̃ (mod 4). As we will see in Section 4, for the case of
omplex surfaces, the index theorem implies that χ = T d so that σ = σ̃ , for a complex
urface. This does not hold in general for almost complex manifolds as we will see in
he examples of Section 5.

.3. Noether’s formula

For any almost complex manifold there is an associated spinc structure and Dirac
operator

/∂
c
: Γ (S+) → Γ (S−),



1252 J. Cirici and S.O. Wilson / Expo. Math. 40 (2022) 1244–1260

i

i
H

C

0

s
s

T
d
m

C

d
i

where S+ may be identified with Λ0,even and S− may be identified with Λ0,odd. According
to Gauduchon [14], on a compact almost Hermitian 4-manifold, and for any connection
∇, the operator /∂

c is given by

/∂
c
φ =

√
2

(
∂̄ + ∂̄∗

)
+

1
4
θ.ϵ(φ) +

1
2

ia.φ.

Here θ is the Lee form characterized by dω = θ ∧ ω, ia = ∇ − ∇
chern is the 1-form that

measures the difference from the Chern connection, ϵ is the parity operator, and the dot
indicates Clifford multiplication. The operator ∂̄∗ is the formal adjoint to ∂̄ with respect
to the chosen Hermitian metric. In particular, modulo zero order terms, /∂

c
φ is equal to√

2
(
∂̄ + ∂̄∗

)
. As a consequence, these operators have the same index. The Atiyah–Singer

ndex theorem for /∂
c (see for instance [21]) gives

ind(/∂c) = ind(∂̄ + ∂̄∗) = T d,

where T d is the top Todd class. This gives a natural generalization of Equation (I.5):

Proposition 3.5. On any compact almost Hermitian 4-manifold, the vector spaces

Ker(∂̄ + ∂̄∗) and Coker(∂̄ + ∂̄∗)

are finite dimensional and

dim Ker(∂̄ + ∂̄∗) − dim Coker(∂̄ + ∂̄∗) =
1
12

(c2
1 + e).

The right hand side is integral, and the left hand side is purely topological (since c2
1

s topological, by Hirzebruch’s Signature Theorem). In particular, as already noted by
irzebruch [17] and Van de Ven [23], we obtain:

orollary 3.6. On any compact almost complex 4-manifold c2
1 + e ≡ 0 (mod 12).

Conversely, in [23] it is shown that for any pair of integers (p, q) with p + q ≡

(mod 12), there is a compact almost complex 4-manifold with p = c2
1 and q = e.

There is a bit more one can say from the above proposition. Note that if ∂̄2
̸= 0, the

paces Im(∂̄) and Im(∂̄∗) need not be orthogonal, so that Ker(∂̄ + ∂̄∗) may not split as
ubspaces of bidegrees (0, 0) and (0, 2). Nevertheless, we have the following. Recall that

Hp,q
∂̄

:= Ker(∆∂̄ ) ∩ Ap,q and h p,q
∂̄

:= dimHp,q
∂̄

.

he spaces Hp,q
∂̄

are always finite-dimensional in the compact case and we have Serre-
uality isomorphisms, giving identities h p,q

∂̄
= hm−p,m−q

∂̄
for any almost complex

anifold of dimension 2m. We have:

orollary 3.7. For any compact almost complex 4-manifold

dim Coker(∂̄ + ∂̄∗) = h0,1
∂̄

and h0,1
∂̄

≥ 1 + h2,0
∂̄

−
1
12

(c2
1 + e).

We note in the inequality, the left hand side is metric dependent [20], who have shown
h0,1

∂̄
can be arbitrarily large. But it is bounded below by the right hand side, which

epends only on the topology and the almost complex structure, since h2,0
∂̄

is metric
ndependent.
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Proof. Consider the map H0,1
∂̄

→ Coker(∂̄ + ∂̄∗) given by x ↦→ [x]. It is surjective
since given [x] we may choose a representative x and take its decomposition x =

H∂̄ (x) + ∂̄ ∂̄∗Gx + ∂̄∗∂̄Gx , where G is Green’s operator for ∆∂̄ and H∂̄ (x) denotes the
rojection to ∂̄-harmonic forms. Also, this map is injective since H0,1

∂̄
is orthogonal to

oth images Im(∂̄) and Im(∂̄∗).
Proposition 3.5 then yields:

h0,0
∂̄

− h0,1
∂̄

+ h0,2
∂̄

≤ dim Ker(∂̄ + ∂̄∗) − dim Coker(∂̄ + ∂̄∗) =
1
12

(c2
1 + e)

nd we use the fact that h0,2
∂̄

= h2,0
∂̄

by Serre Duality. □

. Integrability

In this section we show how, in the integrable case, the results obtained in the previous
ections collapse to give Equations (I.4) and (I.5), recovering the well-known results on
he Hodge numbers for compact complex surfaces. We also prove particular results that
re valid only in the non-integrable case, and discuss obstructions to integrability related
o Hodge theory, for almost complex 4-manifolds.

.1. Complex surfaces

Let us now restrict to the integrable setting. We first recall an inequality for the
eometric genus pg := h0,2 (see Lemma IV.2.6 of [3]).

emma 4.1. On any compact complex surface we have b+
≥ 2pg .

roof. Consider the map g : E2,0
1

∼= Ker(∆∂̄ ) ∩ A2,0
→ A2,0

⊕ A0,2 defined by
g(α) := α + ᾱ. This map is an injection, since A2,0

∩ A0,2
= 0. Also, it has image

n the real d-harmonic forms, since every closed (2, 0)-form is harmonic. The pairing on
omplex valued 2-forms given by

(α, β) =

∫
α ∧ β̄

s positive definite on A2,0
⊕A0,2, and restricts to the intersection pairing on real forms.

o, the pairing is still positive definite when restricted to the space of real d-harmonic
orms in A2,0

⊕ A0,2, and we have

b+
≥ dimR (Im g) = dimR

(
E2,0

1

)
= 2h2,0

= 2pg □

We may now prove the main results on the Hodge numbers for compact complex
urfaces (see for instance Theorem IV.2.7 in [3]).

heorem 4.2. For any compact complex surface, the Frölicher spectral sequence
egenerates at E1. The identities σ = 2χ − e and 12χ = c2

1 + e are satisfied and:

(i) If b1 is even then h0,1
= h1,0 and h1,1

= b−
+ 1.

(ii) If b1 is odd then h0,1
= h1,0

+ 1 and h1,1
= b−.
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Proof. Hodge theory gives isomorphisms Hp,q
∂̄

∼= E p,q
1 so in particular, h p,q

≤ h p,q
∂̄

.

ote as well that by Lemma 2.4 we have h p,0
∂̄

= h p,0 and h p,2
∂̄

= h p,2. A computation,
using integrability ∂̄2

= 0, shows that

dim Ker(∂̄ + ∂̄∗) = h0,0
+ h0,2

= 1 + h0,2 and dim Coker(∂̄ + ∂̄∗) = h0,1
∂̄

.

Then, Proposition 3.5 gives

1 − h0,1
∂̄

+ h0,2
=

1
12

(
c2

1 + e
)
.

ombined with Hirzebruch’s signature formula σ =
1
3

(
c2

1 − 2e
)

we get

(b+
− 2h0,2) + (2h0,1

∂̄
− b1) = 1.

oth terms within brackets are non-negative. Indeed, by Lemma 4.1 we have b+
≥ 2h0,2

nd by Lemma 3.1 we have b1
≤ 2h0,1

≤ 2h0,1
∂̄

. We are left with only two possibilities:

(i) b+
= 2h0,2

+ 1 and b1
= 2h0,1

∂̄
, or

(ii) b+
= 2h0,2 and b1

= 2h0,1
∂̄

− 1.

ince b1
= h0,1

+ h1,0
≤ 2h0,1

≤ 2h0,1
∂̄

, both cases imply h0,1
= h0,1

∂̄
. This proves that

= T d and so Corollary 3.3 gives the signature formula σ = 4χ − e. Combining
t with Hirzebruch’s Signature Theorem σ =

1
3 (c2

1 − 2e), we get Noether’s formula
2χ = c2

1 + e. We now prove degeneration at E1. By Serre duality we get h2,1
= h2,1

∂̄
.

herefore we have E0,1
1 = E0,1

2 and E2,1
1 = E2,1

2 , which implies that both differentials

E0,1
1

δ1
−→ E1,1

1
δ1

−→ E2,1
1 in the spectral sequence are trivial and so E1,1

2 = E1,1
1 . This

gives h1,1
= h1,1

∂̄
. Lastly, Lemma 2.4 gives h p,q

= h p,q
∂̄

when q ∈ {0, 2}. Therefore
we have E1 = E∞ and the two possibilities above correspond to even and odd b1

espectively. □

The two cases above correspond to Kähler and non-Kähler surfaces respectively. Note
hat the above result, together with Equation (I.3) as well as the Serre duality identities
I.1) allows to determine all Hodge numbers of a complex surface from the Betti numbers
ogether with the signature of the intersection pairing.

.2. Non-integrable structures

In the non-integrable case, and for the middle total degree, Hodge–de Rham numbers
re completely determined as follows:

emma 4.3. On a compact non-integrable almost complex 4-manifold we have h1,1
=

2 and h0,2
= h2,0

= 0.

roof. By Proposition 3.2 we have h0,2
= h2,0. Since b2

= h2,0
+ h1,1

+ h0,2 it suffices
o show h2,0

= 0. The argument is analogous to that of Lemma 5.6 in [7], see also
emma 2.12 in [12]. By Proposition 4.10 of [8] every class [α] ∈ E2,0

1 is represented

by a d-closed form α, so in particular µ̄α = 0. Since the almost complex structure is
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non-integrable, there is an open set U on which µ̄ : T 2,0
→ T 1,2 is pointwise nonzero

nd therefore α is zero on U . On the other hand, a d-closed (2, 0)-form α is always
harmonic. Hence α is zero on an open set it is zero everywhere by the continuation
theorem of [1] (see also Corollary 1 of [2]). □

Together with Serre duality, the above result implies that, in the non-integrable case,
all numbers h∗,∗ may be deduced from the Betti numbers of the manifold together with
the irregularity q := h0,1, which depends on the almost complex structure. Note that by
Lemma 3.1, q is bounded by b1

≤ 2q ≤ 2b1. This immediately gives:

Corollary 4.4. If b1
≤ 1 then the irregularity q = b1, as well as all Hodge numbers,

are topological invariants.

In general, we have:

Proposition 4.5. On any compact almost complex 4-manifold, the irregularity q is lower
emi-continuous under small deformations of the underlying almost complex structure.

roof. Since q = b1
− h1,0 it suffices to prove that h1,0 is upper semi-continuous. This

ollows from the fact that

h1,0
= dim

(
Ker(∂̄) ∩ Ker(µ̄)|(1,0)

)
= dim

(
Ker

(
∆∂̄ + ∆µ̄|(1,0)

))
,

and that in bidegree (1, 0), ∆∂̄ + ∆µ̄ is elliptic, with the same symbol as ∆∂̄ . □

In particular, since q ≤ b1, we have:

Corollary 4.6. If q = b1 (and so h1,0
= 0) then the irregularity and all Hodge–de

Rham numbers remain constant under small deformations.

4.3. Obstructions to integrability

There are many known examples of almost complex 4-manifolds not admitting any
integrable almost complex structure. The arguments for proving that such example exist
often rely on Kodaira’s classification of compact complex surfaces. We explain in this
section how, in many situations, one can prove such results without invoking Kodaira’s
classification.

The Hodge-type filtration on a compact almost complex manifold induces a filtration
of the complex de Rham cohomology H∗

:= H∗

dR ⊗ C, given by:

F1 H 1
:= {[α]; dα = 0, α ∈ A1,0

} ⊆ F0 H 1
:= H 1.

F2 H 2
:= {[α]; dα = 0, α ∈ A2,0

} ⊆ F1 H 2

:= {[α]; dα = 0, α ∈ A1,1
⊕ A2,0

} ⊆ F0 H 2
:= H 2.

he filtration F∗ H n is said to define a pure Hodge decomposition of weight n if and only
f

F p H n
⊕ F

q
H n ∼ H n for all p + q − 1 = n.
=
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Proposition 4.7. On any compact almost complex 4-manifold, F induces a pure Hodge
ecomposition of weight 2 on H 2. If moreover h0,1

= h1,0, then F also induces a pure
odge decomposition of weight 1 on H 1.

roof. In the integrable case, this is Proposition IV.2.9 in [3]. Assume that the structure
s non-integrable. By Lemma 4.3 we have F2 H 2

= 0 and H 2 ∼= F1 H 2 and so trivially
e have

H 2 ∼= F1 H 2
⊕ F

2
H 2.

Assume now that h0,1
= h1,0. Since h1,0

= dim F1 H 1 we have H 1 ∼= F1 H 1
+ F

1
H 1. We

ext prove that the intersection is trivial. Any class in F1 H 1
∩ F

1
H 1 can be represented

by α0 ∈ A0,1 and also by a form α1 ∈ A1,0 with dα0 = dα1 = 0 and α0 − α1 = d f .
hen α0 = α1 = 0 by Lemma 2.3 and the fact that A0,1

∩ A1,0
= 0. □

Pure Hodge structures are intimately related to formality. Recall that a differential
raded algebra (A, d) is said to be formal if it is connected to its cohomology H∗(A) by
string of quasi-isomorphisms of differential graded algebras, where H∗(A) carries the

rivial differential. A topological space X is then called formal if its rational algebra of
iece-wise forms Apl(X ) is a formal differential graded algebra. Note that by the descent
f formality from C to Q, in order to prove that a compact complex manifold is formal, it
uffices to prove that its complex de Rham algebra is a formal differential graded algebra.

In [10] there are two completely different proofs for the formality of Kähler manifolds.
he first one and most well-known uses the ∂∂̄-lemma. The second proof, called “the
rinciple of two types” uses the fact that, for Kähler manifolds, we have degeneration at

E1 together with pure Hodge decompositions in cohomology. For a complex manifold,
atisfying the ∂∂̄-lemma is equivalent to having pure Hodge decompositions together with
egeneration at E1. Note, however, that while the ∂∂̄-lemma only makes sense in the case
f complex manifolds, Hodge decompositions and degeneration conditions make sense
n the abstract broader context of a commutative dg-algebra A defined over R together
ith a filtration F on A ⊗R C. We have:

roposition 4.8. Assume that a compact almost complex 4-manifold satisfies E1 = E∞

nd h0,1
= h1,0. Then the manifold is formal.

roof. Proposition 4.7 gives Hodge decompositions for H 1 and H 2, whenever h0,1
=

h1,0 and by Serre duality we also have a Hodge decomposition on H 3. Together with the
egeneration condition at E1, this makes the de Rham algebra with the Hodge filtration,
nto a multiplicative pure Hodge complex. One may then apply the principle of two types
f [10] (see also the purity implies formality proof in [5]). □

By Theorem 4.2, the hypotheses of the above proposition are always satisfied for a
ompact complex surface with even first Betti number:

orollary 4.9. Any compact complex surface with b even is formal.
1
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Example 4.10. We list some examples where the above result applies:

(1) Let E3 be a principal circle bundle over a torus T2, and E4 a principal circle
bundle over E3. In [13] it is shown that whenever b2(E4) = 2, such manifolds do
not admit integrable structures, although they are symplectic. The proof in [13]
uses Kodaira’s classification, while Corollary 4.9 recovers the same result.

(2) More generally, any compact 4-dimensional nilmanifold is known to be either
a torus or non-formal [15]. So, other than a torus, a non-formal 4-dimensional
nilmanifold with b1 even does not admit any integrable almost complex structure.

(3) A large number of parallelizable four manifolds having no complex structure
are presented in [4]. The argument uses Kodaira’s classification together with
the existence of non-trivial Massey products. Corollary 4.9 reproves these results
without invoking Kodaira’s classification.

Note that in the case of non-integrable structures on a compact almost complex 4-
anifold, by [9] we always have E1 ̸= E∞, and so the hypotheses of the above

roposition imply as well that the manifold is a complex surface. We end this section
ith the following observation:

emark 4.11. The analytic invariant I := dim E0,1
1 − dim E1,0

1 takes the values 0, 1 or
according to Kähler surfaces, complex non-Kähler surfaces or non-integrable almost

omplex 4-manifolds respectively.

. Examples

A large source of examples of almost complex manifolds arises in the setting of
ilmanifolds, defined by means of an even dimensional real Lie algebra g together with
n endomorphism J : g → g such that J 2

= −1. When the coefficients of g are rational,
his data gives a compact almost complex manifold M = G/Γ where Lie(G) = g

nd Γ is a cocompact subgroup. Moreover, there the algebra of left-invariant differential
orms Ag ↪→ AdR ⊗ C injects into the de Rham algebra, preserves the bidegrees and
omputes the de Rham cohomology of the manifold. The inclusion A∗,∗

g ↪→ A∗,∗ of left-
nvariant forms into all forms and by Nomizu’s Theorem there are bidegree-preserving
somorphisms in cohomology⨁

L E p,q
∞

∼=

⨁
E p,q

∞
.

ote, that the left-invariant spectral sequence may degenerate at an earlier stage than the
rue spectral sequence. Still, the above isomorphism gives:

emma 5.1. For a left-invariant almost complex structure on a nilmanifold, the irreg-
larity q and hence all Hodge–de Rham numbers may be computed using left-invariant
orms only.
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5.1. Filiform nilmanifold

Consider the real Lie algebra g generated by {X1, X2, X3, X4} with the only non-trivial
ie brackets given by

[X1, X2] = X3 and [X1, X3] = X4.

ts Betti numbers are b1
= b2

= 2 and so its associated compact nilmanifold does not
dmit any integrable structure by Corollary 4.9. We have that q ∈ {1, 2} for any almost
omplex structure on this nilmanifold, which give two Hodge–de Rham diamond types:

1
1 1

0 2 0
1 1

1

1
0 2

0 2 0
2 0

1
Type 1 Type 2

All related invariants are listed in the table below:

q σ̃ σ χ pg

Type 1 (non-integrable) 1 0 0 0 0
Type 2 (non-integrable) 2 4 0 −1 0

Note that for Type 1 we do have σ = σ̃ , but for Type 2 we only have σ ≡ σ̃ (mod 4).
Also, by Corollary 4.6, Hodge–de Rham diamonds of Type 2 are constant under small
deformations. Note that Type 1 diamond looks like the diamond of a compact Kähler
surface. Its non-Kählerness (and hence non-integrability) is uncovered by the failure of
degeneration at E1, which in turn is forced by Proposition 4.8.

The above Hodge diamonds may be realized by left-invariant almost complex struc-
tures. For instance, the almost complex structures J1 and J2 defined on g by

J1(X1) = X2, J1(X3) = X4 and J2(X1) = X4, J2(X2) = X3

ive Hodge–de Rham diamonds of Type 1 and 2 respectively.
Note that the left-invariant Frölicher spectral sequence of any left-invariant almost

omplex structure of Type 1 will only degenerate at the second stage, in concordance
ith Proposition 4.8, so L E1 ̸=

L E2 = E2 = E∞. In contrast, Type 2 structures will
lways satisfy L E1 =

L E2 = E2 = E∞. In both cases, we have L E1 ̸= E1 ̸= E∞.

.2. Kodaira-Thurston manifold

Consider the Kodaira–Thurston manifold

K T := HZ × Z\H × R

here H is the 3-dimensional Heisenberg Lie group, HZ is the integral subgroup, and
he action is on the left. Its Betti numbers are b1

= 3 and b2
= 4 and so in this case we
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have q ∈ {2, 3}, which give the Hodge–de Rham diamonds

1
1 2

1 2 1
2 1

1

1
1 2

0 4 0
2 1

1

1
0 3

0 4 0
3 0

1
Type 1 Type 2 Type 3

nd the associated invariants

q σ̃ σ χ pg

Type 1 (integrable) 2 0 0 0 1
Type 2 (non-integrable) 2 −4 0 −1 0
Type 3 (non-integrable) 3 −8 0 −2 0

The Lie algebra of H ×R is spanned by X, Y, Z , W with bracket [X, Y ] = −Z . The
lmost complex structures J1 and J2 defined on g defined by

J1(X ) = Y, J1(Z ) = W and J2(W ) = X, J2(Z ) = Y

ive left-invariant almost complex structures on K T of Type 1 and 2 respectively. Type
left-invariant structures are forbidden by dimensional reasons, since dimA0,1

g = 2.
n particular, Hodge–de Rham diamonds of Type 2 left-invariant structures are constant
nder small deformations. Note that Type 1 is integrable and so L E1 = E1 = E∞, while
ype 2 satisfies L E0 =

L E1 =
L E2 = E2 = E∞ and E1 ̸= E2.
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