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Abstract
Efficient approximation of incident radiance functions from a set of samples is still an open problem in physically based rendering.
Indeed, most of the computing power required to synthesize a photo-realistic image is devoted to collecting samples of the incident
radiance function, which are necessary to provide an estimate of the rendering equation solution. Due to the large number of
samples required to reach a high-quality estimate, this process is usually tedious and can take up to several days. In this paper,
we focus on the problem of approximation of incident radiance functions on the S2 sphere. To this end, we resort to a Gaussian
Process (GP), a highly flexible function modelling tool, which has received little attention in rendering. We make an extensive
analysis of the application of GPs to incident radiance functions, addressing crucial issues such as robust hyperparameter
learning, or selecting the covariance function which better suits incident radiance functions. Our analysis is both theoretical and
experimental. Furthermore, it provides a seamless connection between the original spherical domain and the spectral domain,
on which we build to derive a method for fast computation and rotation of spherical harmonics coefficients.
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1. Introduction

Gaussian processes (GPs) have proven to be a highly flexible mod-
elling technique for spatial and temporal data or processes. GPs can
suit a large variety of problems such as speech waveforms [Wil19],
geophysical data [CVVMM*16], wireless communication channels
[NRL*20], among others. Many well-known stochastic processes
such as Brownian motions, Langevin processes and Wiener pro-
cesses are all special cases of GP. GPs are particularly well-suited
to prior modelling in Bayesian regression problems. It is indeed
the simplest way to model priors without parameters since a GP is
fully-specified by a mean and a covariance function only. GP-based
Bayesian regression (GPR) provides a powerful tool to deal with
unknown function approximation and interpolation. Many existing
approximation methods such as splines or regularized least-square
can be expressed in a GP-based framework [RW06].

GPs present several advantages, which make them appealing for
unknown function approximation. One of them is that GPR does not
require any precomputed topological data structure, such as mesh or
connectivity list. Another one, and perhaps the most important, is
the probabilistic characterization of the knowledge and uncertainty
about the unknown function. This feature is particularly interesting,

since the careful exploitation of this knowledge (which is gener-
ally not available when using other techniques) has already opened
several promising research avenues such as uncertainty-driven sam-
pling [GOG*14] or even the joint estimation of multiple correlated
integrals [XBG18]. However, these breakthroughs face several ob-
stacles in what concerns a direct application to rendering. Indeed,
the aforementioned works almost exclusively focus on providing
a single or a small number of unknown function approximations.
Therefore, in their case, the GP model can easily be adapted to the
features of the particular target function(s), by selecting a suitable
covariance function and learning the corresponding hyperarame-
ters. Nevertheless, a direct application of this approach to render-
ing, where millions of function approximations must be performed,
would imply an excessive computational overhead. This raises the
question of whether there exists a general GP setting which can be
learned over a set of different incident radiance functions, and then
used for an efficient and accurate approximation of most incident
radiance functions.

Our goal in this paper is to answer the above question and set
the grounds for a straightforward use of GPs for modelling incident
radiance functions on the S2 sphere. To this end, we tackle the prob-
lem of model selection for incident radiance functions by exploring
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different potentially suitable covariance functions, and learning
their most adequate hyperparameters for a set of distinct incident ra-
diance functions. We show that radiance functions can be modelled
with GPs under a very simple and general GP setting. Moreover, to
further motivate the use of GPs in rendering and enlarge its future
applicability, we also show that GPR can be used to very effectively
compute the spherical harmonics (SH) coefficients of the approxi-
mated functions. Indeed, another benefit of GPR is that, thanks to its
kernel-based approach, it allows an easy connection with the spec-
tral representation of radiance functions, i.e. their SH expansion.We
show that this property can be used for a fast computation of all SH
coefficients up to a specified degree through a single transform ma-
trix and a set of samples values at specified locations. Furthermore,
we also show that this SH expansion can be expressed in a form that
enables a fast and easy rotation method of the SH coefficients. Our
main contributions can be summarized as follows:

1. An analysis of covariance functions so as to compare their suit-
ability to GPmodelling of radiance functions. Both probabilistic
and spectral approaches are considered in this analysis;

2. A new simplified likelihood expression for hyperparameter
learning, which we use to show how the covariance functions
can be parametrized;

3. A performance analysis of GPR applied to radiance function ap-
proximation considering various covariance functions;

4. The derivation and experimentation of a new SH computation
method using a single transform matrix that enables a fast com-
putation of rotated SH coefficients.

Our paper is structured as follows. We first give an overview of
the related work in the field of spherical functions interpolation and
approximation with a focus on kernel-based and SH-based meth-
ods (Section 2). We then introduce the theory of GPs, covariance
functions and Bayesian regression (Section 3). Our contribution be-
gins in Section 4 with the spectral analysis of different covariance
functions (Section 4.1), followed by the derivation of our simpli-
fied hyperparameters learning method (Section 4.2), and by our new
method for enabling fast SH coefficients computation and rotation
using GPs (Section 4.3). Then, in Section 5, we present a set of
experiments illustrating the benefits of our proposed approach. Fi-
nally, we discuss our experimental results in Section 6 and conclude
in Section 7, providing also some suggestions for future research.

2. Related Work

Many rendering algorithms require interpolation and approxima-
tion of radiance functions. Interpolation allows significant savings
in computing time when radiance in some direction can be inferred
from neighbouring sampled directions. Indeed, this type of func-
tions are known to be rough and computationally expensive to sam-
ple. Furthermore, the conditions for which interpolation can provide
a radiance estimate with a sufficient precision are difficult to deter-
mine. Various solutions that go beyond the simple bilinear interpola-
tion have been proposed in the rendering literature. For example, in
Bala et al. [BDT99], the authors propose an interpolation technique
specifically dedicated to ray tracers, which enables error control
through adaptive sampling. Other interpolation techniques used in
global illumination renderers are based on a sum of Gaussian mod-
els that locally approximate the radiance function (e.g. [RHJD18,

GKMD06]). Although the sumofGaussian approximation has some
benefits when it comes to shading integral computation (e.g. in Tsai
and Shih [TS06]), the Gaussian radial basis functions (RBFs) are
overly smooth to deal with radiance functions.

Another family of methods are based on SH expansions that pro-
vide a compact representation of the radiance function enabling not
only fast interpolation but also fast integration. These properties
are extensively used in the pre-computed radiance transfer (PRT)
rendering method so as to enable global illumination rendering in
real time (e.g. Sloan et al. [SKS02]). In the radiance or irradiance
caching methods [KGPB05, AFO05, ZBN19], SH expansions are
used to store the directional distribution of incident radiance or irra-
diance so as to allow fast interpolation from a scattered set of radi-
ance samples. However, to take full advantage of these benefits, the
SH coefficients computation load must not be too heavy. Radiance
functions are generally highly irregular with sharp intensity vari-
ations, and fast transform methods [DH94, DWD08, GLW21] fail
to provide valuable results on this type of functions. It is therefore
necessary to resort to the straight computations of the inner prod-
ucts throughMonte-Carlo integration, which strongly constrains the
degree of the SH expansion. When implementing SH-based meth-
ods, we are faced with the problem of rotating the SH coefficients
so as to express the SH expansion in different coordinate frames.
The theoretical solution to this problem is given by the so-called
Wigner D functions but this method is known to be computation-
ally expensive and unstable. Several methods have been proposed in
the literature to speed up this computation [IR98, BFB97, KKP*06,
LdWF12, NSF12]. In Section 4.3, we propose a GP-based solution
to this problem that allows both fast computation and rotation of
SH coefficients.

Kernel techniques offer a very general theoretical framework for
approximation and interpolation [SW06]. For example, Marques
et al. [MBR*13b, MBSB15] improve the accuracy of illumination
integral computation by using a non-parametric Bayesian method
known as Bayesian Quadrature (BQ). In another work [MBB19],
the theory of reproducing kernel Hilbert spaces (RKHS) is used to
compute optimal weights for the computation of shading integrals
from sample sets having different directional distributions. Both BQ
and RKHSmethods are interpolating quadratures since they implic-
itly use some form of kernel-based interpolation to approximate the
integrand. In Schaback and Wendland [SW06], the authors provide
a wide survey of kernel-based tools in various fields of numerical
analysis and in particular for approximation and interpolation. As
regards the case of spherical functions, the work of Narcowhich
and Ward [NW02, NSWW07] is particularly interesting as their ap-
proach is based on the theory of Sobolev spaces, which allows to
make connections between spectral analysis and approximation er-
ror. Our approach in this paper is essentially based on GP [RW06]
that is used tomodel the space of the unknown function. In this prob-
abilistic framework, the kernel function is used to express the co-
variance function but the theoretical work of Narcowhich and Ward
still applies as we will see in Sections 4.1 and 4.3.

A deep understanding of approximation and interpolation of un-
known functions involves spectral analysis methods, which again
are based on SH. Pilleboue et al. [PSC*15] focus on the spec-
tral analysis of stochastic integration of spherical functions. To
tackle the problem of the convergence rate of error variance, they
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consider different classes of characteristic functions to model the in-
tegrand power spectrum.Marques et al. [MBB20] propose a theoret-
ical framework based on Sobolev spaces to analyse the integration
error of quadrature rules used for shading integrals. Their analysis
is also extended to the computation of shading integrals considered
as inner products in the SH domain.

In the following, we propose a GP-basedmethod for interpolation
that better fits the characteristics of radiance function compared to
bilinear interpolation or approximations based on the Gaussian ker-
nel. We show that it is possible to find general hyperparameter set-
tings of the GP, which adapt well to a set of different incidence radi-
ance functions, thus avoiding the need for further parameter learning
phases in future applications. Besides, a SH-based representation
can easily be derived from our model allowing both fast computa-
tion of SH coefficients and fast rotation of these coefficients.

3. Theoretical Background

3.1. Overview

In this section, we provide the necessary background for under-
standing GP-based regression on the S2 sphere. We start by provid-
ing a formal definition of GP (Section 3.2) which, as detailed below,
is specified by a prior mean function and a covariance function. In-
tuitively, the GP can be thought of as a probabilistic model over a
space of functions, the same way that a pdf characterizes the proba-
bility distribution over random variables. A GP is a non-parametric
model where the output of the model (i.e. the form and complex-
ity of the unknown function approximation) directly depends on the
number of observations [RW06, Bis06]. In contrast, in parametric
models, such as Gaussian Mixture Models (GMMs) or linear re-
gression with basis functions, a number of parameters must be first
estimated from the observations, and the model expressiveness is
limited by the (finite) number of used parameters [Bis06, RW06].
An example of model parameters in the case of a Gaussian mix-
ture is the number of used components and their respective weights,
mean and lengthscale (or bandwidth). No such constraints are in-
volved in a non-parametric regression.

In a non-parametric Bayesian regression, the prior model is usu-
ally defined by a GP for the sake of tractability. The prior mean
function of the GP contains our prior knowledge or beliefs regarding
the value of the function we wish to approximate. The covariance
function, in its turn, captures our knowledge or beliefs regarding
the sharpness of the unknown function, and is parametrized by a set
of hyperparameters. The term ‘hyperparmeters’ emphasizes the fact
that it concerns the prior knowledge. Furthermore, we refer to the set
composed of the covariance function, the hyperparameters and the
mean function of the prior GP model as the GP setting. As we show
below, the choice of the covariance function and its hyperparameters
is of crucial importance to the quality of the function approximation
resulting from the GP-based regression. Therefore, in Section 3.3,
we present different covariance functions of potential interest for
GP-based modelling of radiance functions. Then, in Section 3.4, we
provide mathematical details on GP-based regression and hyperpa-
rameters learning through likelihood maximization. These details
are tightly connected to our contributions regarding a spectral analy-
sis of the considered covariance functions (detailed in Section 4.1), a

Table 1: Table of notation.

Symbol Definition

x Input vector in RD

f (x) Unknown function to be estimated
f̄ (x) Prior mean function E[ f (x)]
k(x, x′ ) General covariance function
r Radial distance ‖x − x′‖
ks(r) Squared exponential covariance function
kp0(r) Piecewise polynomial covariance function
kp1(r) Differentiable piecewise polynomial cov. function
kgd (r) Generalized distance covariance function
ls Length-scale hyperparameter for ks, kp0 and kp1
sg Smoothness hyperparameter for kgd
ε Sample of an IID Gaussian noise
σ 2n Variance of ε (hyperparameter)
σ 2f Variance of the Gaussian Process (hyperparameter)
σ ′
n Noise ratio σn/σ f
X Set of sample locations s.t. X = {xi}
t Vector of observations s.t. ti = f (xi )+ ε

K Covariance matrix s.t. Ki, j = k(xi, x j )
x∗ Test input. Specifies a location at which the value of

f (x) will be inferred
k(x∗ ) k(x∗ ) = [k(x∗, x1), . . . , k(x∗, xn )]
f∗(x∗ ) Posterior estimate of f (x∗ ) = E[ f (x∗ )|t,X]

simplified likelihood expression for hyperparameters learning (Sec-
tion 4.2), and fast SH coefficients computation and rotation (Sec-
tion 4.3). The most important mathematical terms used throughout
the paper, together with a short description, can be found in Table 1.

3.2. Definitions

We restrict our analysis to theoretical elements that we have deemed
appropriate for rendering applications. For an exhaustive analysis
of GPs theory and applications, refer to Rasmussen and Williams
[RW06]. Formally, a GP is a stochastic process such that any finite
collection of random variables involved in this process has a multi-
variate normal distribution. A GP is completely defined by its mean
function f̄ (x) and its covariance function k(x, x′):

f̄ (x) = E[ f (x)]

k(x, x′) = E[( f (x)− f̄ (x))( f (x′) f̄ (x′))] (1)

and will be denoted by:

f (x) ∼ GP(
f̄ (x), k(x, x′)

)

In Equation (1), x ∈ X denotes an input vector of dimension D, X
being the set of all possible inputs. Given such an input vector x,
f (x) is thus a Gaussian random variable and, more generally, given a
set of n input vectors X = {xi}n1, the set { f (x1), . . . , f (xn)} is jointly
Gaussian with mean value m(X ) = [ f̄ (x1), . . . , f̄ (xn)] and covari-
ance matrix k(X,X ) the coefficients of which are k(xi, x j ). A re-
alization of such a GP is called a sample function or sample path.
The vector space X over which the GP is defined may be R, e.g.
time, or more generallyRD. In rendering applications, we aremostly

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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concerned with spherical functions, in which case X is S2 the unit
sphere inR3 and more generally a d-fold product of unit spheres S2.

3.3. Covariance function characteristics

A covariance function k(x, x′) is a mapping of a product space
X × X to R which, briefly speaking, characterizes the smoothness
of the GP model. The covariance function k(x, x′) must be positive
semidefinite (cf. Rasmussen and Williams [RW06]). In most appli-
cations, the covariance function is stationary, i.e. it only depends on
τττ = (x − x′) and, more specifically, isotropic (i.e. a function only
of r = ‖x − x′‖). The function space to which the sample functions
belong is characterized by the covariance function and in particular
as regards continuity and differentiability. This feature is important
as it characterizes the assumed smoothness of the functions we want
to approximate. As the function f (x) is random, continuity and dif-
ferentiability are defined on a mean square (MS) basis [RW06]. A
GP overRD with stationary covariance function is continuous if and
only if its covariance function is continuous at τττ = 0. Furthermore,
for such GPs, if a 2kth-order partial order derivative of the covari-
ance function exists and is finite at τττ = 0 then the kth-order MS
partial derivative exists for all x ∈ R

D. Therefore, the continuity and
differentiability properties of stationary GPs are only determined by
the properties of the covariance function at τττ = 0. Note, however,
that MS continuity of the covariance function does not imply that
the sample functions of the GP are continuous. A detailed theoreti-
cal analysis of this subject matter can be found in textbooks [Abr97,
Adl81].

In the following, we only focus on isotropic covariance func-
tions, which are used in most cases. This choice of isotropic co-
variance function corresponds to the most general setting, where
all directions are equivalent a priori and no prior assumption re-
garding directional knowledge is made. Such functions are met in
many other theories and are called kernel functions. Consequently,
many positive definite isotropic kernels have been proposed in the
literature in various application contexts (see e.g., Rasmussen and
Williams [RW06]). All the isotropic kernels presented hereafter are
designed such that k(0) = 1. Therefore, covariance functions are
derived from these kernels by simply multiplying them by σ 2f , the
pointwise variance of the isotropic GP. The squared exponential ker-
nel ks is certainly the most popular isotropic covariance function. It
is defined as

ks(r) = exp

(
− r2

2l2s

)
(2)

with ls defining the length-scale parameter. As this kernel is in-
finitely differentiable, the GP produced with this covariance func-
tion is mean squared (MS) differentiable at all orders, which results
in very smooth sample functions. This smoothness property might
be unsuited to model the sharp variations of illumination functions.
Various other classes of covariance functions have been proposed in
the literature so as to allow kernels with different smoothness lev-
els as for example the following piecewise polynomial covariance
functions [Wen04] that applies to GP defined on RD:

kp0(r) =
(
1− r

ls

) j

+
, j =

⌊
D

2

⌋
+ 1 (3)

kp1(r) =
(
1− r

ls

) j+1

+

(
( j + 1) r

ls
+ 1

)
, j =

⌊
D

2

⌋
+ 2 (4)

with a length-scale ls ≤ 1. The first one (Equation (3)) is continu-
ous but not differentiable while the second one is twice continuously
differentiable. The corresponding GPs is thus not MS differentiable
and once MS differentiable, respectively. Our interest in consider-
ing these kernels is that they have a compact support. This leads
to a sparse covariance matrix which, in its turn, enables the use of
computationally efficient techniques.

Isotropic covariance functions defined onR3 are also valid on the
S
2 sphere. In this case, the Euclidean distance r = ‖x − x′‖ with

x, x′ ∈ S
2 is known as the chordal distance on the sphere. Chordal

distance r are related to geodesic distance θ through

r =
√
2(1− cos(θ ) or : (5)

r = 2 sin

(
θ

2

)
. (6)

These so-called chordal covariance functions have the same conti-
nuity and differentiability properties as when defined onR3 [GF16].
Therefore, the polynomial covariance functions defined above are
valid on S2 by setting D = 3 in Equations (3) and (4). Covariance
functions can also be directly defined on S

2 but such covariance
functions are generally not valid on R

3. Various isotropic kernels
specifically defined for the S2 sphere have been proposed in the lit-
erature [KSKM13, GF16, FS98, BSSW14, SW06]. For example,
the generalized distance (GD) kernel [BSSW14]

kgd (r) = 1− sg
( r
2

)2sg−2
with 1 < sg < 2, (7)

sg being a smoothness parameter, has been used in Marques
et al. [MBB19] to derive optimum quadrature weights for shading
integrals. The GPs produced with this covariance function are MS
continuous but not differentiable. However, kgd is nearly first order
differentiability as the smoothness parameter s approaches 2.

Figure 1(a) illustrates the aforementioned covariance functions
on the S2 sphere, using different parameters ls and sg (with a large
and a small value). Figures 1(b) and 1(c) show spherical sample
functions drawn from GPs using the covariance functions shown
in Figure 1(a). Note how the shape of the covariance functions is
altered by their parameter (ls or sg). However the effect of these pa-
rameters is very different. The scaling parameter ls has no effect on
the MS differentiability of the GP whereas the parameter sg, used
in the GD kernel (Equation (7)), enables an effective control of the
GP smoothness. This property does not clearly appear from the co-
variance function plots in Figure 1(a), nor from the GP realizations
shown in Figures 1(b) and 1(c). However, as we show later, our spec-
tral analysis presented in Section 4.1 makes this difference explicit,
which will contribute to understand which kernel is more suitable
to model incident radiance functions.

3.4. Regression

Kernel techniques and GPs can be used as a solution to many ba-
sic problems such as classification [RW06] or probability density

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 2022, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.14501 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [18/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



R. Marques et al. / GP for Radiance Functions in S2 71

Figure 1: Left (a): example of covariance functions on the S2 sphere. The numbers in-between brackets show the used ls for ks (Equation (4)),
kp0 (Equation (3)) and kp1 (Equation (2)), and the used sg for the case of kgd (Equation (7)). Centre (b) and right (c): spherical sample
functions f (θ, φ) with different ls and sg values. The plots show function values for φ = 0 and θ = [0, π/2]. Note the smoothness of the
spherical function drawn using the squared exponential kernel ks.

estimation [SW06]. In this section, we focus on the problem of
unknown functions approximation and again, many kernel-based
theories such as RKHS, regularization networks, spline models,
etc., have been proposed for this purpose in the literature. In this
paper, our approach is based on non-parametric Bayesian regres-
sion which we think is most appropriate for modelling illumination
functions given its efficiency and flexibility. In particular, GP re-
gression can efficiently deal with highly unstructured data such as
those produced by adaptive sampling techniques. In Rasmussen and
Williams [RW06], the interested reader will find detailed theoreti-
cal analysis of the relationships between GP regression and other
kernel-based models.

In a Bayesian framework, a regression is basically an inference
problem. Given a setD of n observations such thatD = {(ti, xi)|i =
1, . . . , n}, X = {xi} being the set of input vectors (i.e. the observed
locations) and t = [t1, . . . , tn]t the corresponding target values (i.e.
the observed process values), the inference of the function value
f (x) is described by the posterior probability distribution

P( f (x)|t,X ) = P(t| f (x),X )P( f (x))
P(t|X ) . (8)

In the usual parametric regression, the prior on f (x) consists inmod-
elling the function as a weighted sum of some basis functions and
the problem amounts to finding the weights that give the most prob-
able estimate of the unknown function. In non-parametric regres-
sion, the prior is directly placed on a space of functions, which we
choose to be a GP. This model is the simplest to enable an analytic
solution to Equation (8). In this way, we have access to a function
space of infinite dimension instead of the finite vector space of the
parametric model.

Let GP ( f̄ (x), k(x, x′)) be our GP prior on f (x). We assume that
the target values ti are noisy values of the unknown function f (x)
such that ti = f (xi)+ ε, ε being samples of an additive IID Gaus-
sian noise with variance σ 2n . With this Gaussian model of the prior,
the posterior distribution is then also aGP as a result of the conjugate
prior property of Gaussian distributions. Given a test input vector x∗
(i.e. the location at which a prediction is inferred), the MAP (maxi-

mum a posteriori) estimate of f (x∗) is f∗(x∗) = E[ f (x∗)|t,X] given
by [RW06]

f∗(x∗) = f̄ (x∗)+ k(x∗)
(
K + σ 2n I

)−1(
t − f̄ (X )

)
, (9)

where k(x∗) = [k(x∗, x1), . . . , k(x∗, xn)], K is the covariance ma-
trix whose coefficients are the k(xi, x j ) covariances, I is the n× n
identity matrix and f̄ (X ) = [ f̄ (x1), . . . , f̄ (xn)]t . Equation (9) can
be rearranged as follows to show that this prediction is built from a
weighted sum of kernels function:

f∗(x∗) = f̄ (x∗)+
n∑
i=1

αik(x∗, xi), (10)

with

ααα = (
K + σ 2n I

)−1(
t − f̄ (X )

)
.

When the kernel is isotropic, Equation (10) leads to a RBF expan-
sion of the approximating function. Note, however, that, although
this expansion is limited to n terms, the bandwidth of f∗(x∗) in the
spectral domain is infinite if the kernel bandwidth is infinite.

For most applications, a constant GP prior mean value f̄ (x) = fc
is appropriate. Setting fc = 0 is often sufficient, but, in some cases,
better results are obtained by inferring the mean value from the ob-
served data. When the observed locations are uniformly distributed
among the observation space, it is sufficient to take the arithmetic
mean of the observations for fc, i.e. fc = ∑

i ti/n. In Rasmussen and
Williams [RW06], the authors provide a more general solution that
leads to the following prediction of the constant mean value:

fc = HQ−1t
HQ−1Ht

with H = [1, . . . , 1] and Q = K + σ 2n I. (11)

The variance of the f̄∗ estimate is given by

V ( f̄∗, x∗) = k(x∗, x∗)− k(x∗)(K + σ 2I)−1k(x∗)t . (12)

In this equation, the first term k(x∗, x∗) represents the prior variance
estimate while the second one represents the variance decrease due
to observation data. Note that this variance estimate, does not de-
pend on the target values t but only on the observed locations X .

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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72 R. Marques et al. / GP for Radiance Functions in S2

Figure 2: Examples of one-dimensional regressions obtained with the squared exponential ks and polynomial kp0 covariance functions. Data
points are marked in red. The blue shaded areas show the amplitude of the standard-deviation of error. The length scale is ls = 0.3 and ls = 1
for the ks and kp0 covariances, respectively.

Indeed, this estimate assumes that the ‘amplitude’ information is
provided by the prior covariance function. Therefore, this variance
can be used to estimate error-bounds insofar as the unknown func-
tion belongs to the function space of the prior GP. Most often, the
smoothness of the function to be approximated is unknown and er-
ror bounds based on Equation (12) may be very inaccurate. In Sch-
aback and Wendland [SW06], the authors propose a more general
theoretical analysis of approximation error based on the theory of
Sobolev spaces.

Isotropic covariance functions can be written under the form
kr(r) = σ 2f k(r) with k(0) = 1, k(r) being a kernel such as those dis-
cussed in section 3.3. In this case, Equations (9) and (12) can be
expressed as functions of the normalized kernel as suggested inMar-
ques et al. [MBR*13b]:

f∗(x∗) = f̄ (x∗)+ k(x∗)
(
K + σ

′2
n I

)−1(
t − f̄ (X )

)
(13)

V ( f∗, x∗) = σ 2f

(
1− k(x∗)

(
K + σ

′2
n I

)−1
k(x∗)t

)
, (14)

where σ ′
n = σn/σ f is the noise ratio and the covariance matrix K

and the vector k(x∗) are both computed with the normalized kernel
instead of kr.

Once a covariance function has been chosen, given a training set
of n data points D = {t,X}, the set of hyperparameters θθθ can be es-
timated by a maximum likelihood (MLE) method applied to the log
likelihood function of the GP [RW06]. The log likelihood function
is given by

ln p(t|X, θθθ ) = −1
2
ttQ−1t − 1

2
ln |Q| − n

2
ln 2π , (15)

where Q = K(X,X )+ σ 2n I. The likelihood function p(t|X, θθθ ) ex-
presses the probability of occurrence of the observed target values t
given the observed locations X and the hyperparameters θθθ .

Figure 2 shows examples of regression obtained with various pri-
ors and the same set of 1D data points. As expected, the predicted
function is much smoother with the squared exponential covariance
and this smoothness increases with a noise ratio σ ′

n = 0.2. When

σ ′
n = 0, V ( f̄∗, xi) = 0 and f̄∗(xi) = ti, that is, the error variance is
zero at all observed locations xi. In this case, f̄∗ is an interpolant
of f . The kp0 covariance produces a predicted function made of
connected line segments since kp0 is the hat function in 1D. This
figure shows that the predicted function can be very different de-
pending on the prior, i.e. the covariance function and the related
hyperparameters θθθ = {ls, σ ′

n, σ f }. Finding an appropriate set-up for
the GP model is thus decisive to correctly approximate incident ra-
diance functions over the S2 sphere.

4. Our Theoretical Contributions

In this section, we present our three theoretical contributions, which
consist of: (i) a spectral analysis of the considered covariance func-
tions; (ii) a simplified likelihood expression for hyperparameters
learning and (iii) fast SH coefficients computation and rotation. For
the sake of clarity, the new equations, which constitute our most
important results, are boxed.

4.1. Spectral analysis of covariance functions

Stationary covariance functions allow spectral representations
through Fourier transform. In the following, we analyse the con-
nections between these spectral representations and the smoothness
properties of sample functions. In the case of spherical functions,
spectral analysis must be performed through SH expansions. The
SH expression of an isotropic kernel (i.e. its spectral density) re-
duces to a Legendre polynomials expansion with [SW06]:

kθ (θ ) =
∞∑
l=0

al
2l + 1
4π

Pl (cos θ ), (16)

where θ = arccos(r) andPl (x) is the Legendre polynomial of degree
l. Then, from Equation (5), kθ (θ ) = k(2 arcsin(r/2)). The spectral
density of an isotropic covariance function is then characterized by
the sequence of al coefficients given by

al = 2π
∫ π/2

−π/2
kθ (θ )Pl (cos θ ) sin θ dθ or : (17)
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R. Marques et al. / GP for Radiance Functions in S2 73

Figure 3: Spectral densities (al) as a function of the SH degree l,
for the spherical covariance functions shown in Figure 1(a). The
numbers in-between brackets show the used ls for ks (Equation (4)),
kp0 (Equation (3)) and kp1 (Equation (2)), and the used sg for the
case of kgd (Equation (7)).

al = 2π
∫ 1

−1
kz(z)Pl (z) dz, (18)

with kz(z) = kθ (arccos(z)) = k(
√
2(1− z)) from Equation (5). The

al coefficients must be non-negative for the covariance function to
be positive semi-definite. The Legendre polynomial expansion of
some familiar RBFs can be found in Hubbert and Baxter [HB00].
For the squared exponential covariance function, we obtain

al = 2πe−γ

√
2π

γ
Iν (γ ) with γ = 1

l2s
, ν = l + 1

2
, (19)

where Iν is the modified Bessel function of the first kind. The ex-
pansion of the GD kernel of Equation (7) can be derived from the
potential splines case in Hubbert and Baxter [HB00] to give

a0 = 0 (20)

al = −4π �(1− sg + l)�(1+ sg)

�(1+ sg + l)�(1− sg)
, l ≥ 1, (21)

where�() is the extended factorial function. As regards kp0 and kp1,
no analytic formulation exists for the spectral density of polynomial
covariance functions. However, their al coefficients can be obtained
by numerical integration of Equation (18).

Figure 3 shows the spectral densities produced by the squared ex-
ponential, polynomial and GD kernels illustrated in Figure 1(a). It
can be seen that the spectral density of the GD kernels kgd (shown in
green) is almost a straight line. In fact, this kernel has been designed
for this purpose and it can be shown that the slope of the straight
line is exactly β = 2sg [BSSW14]. The slope is thus β = 2.4 when
sg = 1.2 (green dashed line), and β = 3 when sg = 1.5 (green con-
tinuous line). As for the polynomial kernels kp0 (in blue) and kp1
(in red), they exhibit an asymptotic slope β = 3 and β = 5, respec-
tively. Note that, as opposed to theGD kernels (in green), the asymp-
totic value of the slopes for the polynomial kernels remain constant

when the kernel parameter ls is changed. Finally, a similar observa-
tion can be made regarding the squared exponential kernels ks (in
black), since the asymptotic rate of decay of their SH coefficients
(al) tends to infinity regardless of the used lengthscale ls (black con-
tinuous line vs. black dashed line).

The importance of the observations made above is given by the
connection between the asymptotic slope β and the smoothness
of the GP. Let us recall that the MS differentiability properties of
the GP depend on the differentiability of the covariance kernel at
τττ = 0 (cf. Section 3.3). These properties lead to the result that a GP
over S2 is k-times MS continuously differentiable if k < β/2− 1
[BSSW14, NW02, LS15]. When applied to Figure 3, this result has
the striking consequence that the kgd kernel is the only one which
allows an active control of the MS differentiability properties of the
GP, since it is the single considered kernel whose asymptotic slope
can be explicitly adjusted.

As regards the actual smoothness properties, in the case of the
GD kernel kgd , we have that within the range of allowed sg val-
ues (1 < sg < 2), the asymptotic slope satisfies 2 < β < 4, which
means that the GPs produced with the GD kernel are MS contin-
uous but not MS differentiable. However, the GP smoothness can
vary between these two extremes and the in-between differentia-
bility corresponds to the so-called weak derivatives defined in the
theory of Sobolev spaces. That is why such a kernel is also called
Sobolev kernel [SW06]. It is interesting to note that the polynomial
kernel kp0, has a similar slope to that of kgd with sg = 1.5. This
feature is more noticeable when ls increases, since the effect of the
compact support diminishes. Therefore the GPs produced with kp0
and kgd with sg = 1.5 have similar smoothness characteristics. As
regards the kp0 polynomial kernel, its slope β = 5 means that it is
one-timeMS continuously differentiable, which confirms the differ-
entiability properties mentioned in Section 3.3. Finally, the squared
exponential kernel (ks), as it is well known, leads to GPs, which are
MS derivable at all orders.

Driven by the above analysis, in Section 5, we will show that both
the ks and kp1 covariance functions are too smooth to model radi-
ance functions, and that the kgd and kp0 kernels are clearly more
appropriate. Indeed, the first degree of differentiability is a too high
expectation for radiance functions.

4.2. A simplified likelihood expression

The goal of this section is to derive a new likelihood expression,
which reduces the number of hyperparameters to learn from three
(θθθ = {ls, σ ′

n, σ f })) to two (θθθ = {ls, σ ′
n}). Indeed, as shown in the fol-

lowing, σ f can be derived analytically in the case of anisotropic
functions as explained below. To this end, we apply the σ 2f factoriza-
tion used for Equations (13) and (14). Equation (15) then becomes

ln p(t|X, θθθ ) = − 1

2σ 2f
ttQ′−1t − n

2
ln σ 2f − 1

2
ln |Q′| − n

2
ln 2π (22)

where Q′ = K(X,X )+ σ ′2
n I. The partial derivative w.r.t. σ

2
f is then

∂

∂σ 2f
ln p(t|X, θθθ ) = 1

2σ 4f
ttQ′−1t − n

2σ 2f
(23)
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which is zero for:

σ 2f = ttQ′−1t
n

(24)

Integrating this σ f value in Equation (22), we obtain a new expres-
sion of the likelihood function as follows:

ln p(t|X, θθθ ) = −n

2
− n

2
ln

(
ttQ′−1t
n

)
− 1

2
ln |Q′| − n

2
ln 2π (25)

With this expression, the hyperparameters optimization gets sim-
pler, hence reducing the chances for the optimizer to get stuck in
local minima.

4.3. Enabling fast SH coefficients computation and rotation

In the following, we show that a non-parametric Bayesian regres-
sion can be as well expressed in the spectral domain thus enabling
a direct derivation of the spherical harmonic (SH) expansion of the
approximating function. This is possible since an isotropic covari-
ance function can be represented in the spectral domain as we have
seen in Section 4.1. The spectral domain analysis of Bayesian re-
gression based on GP has been studied in different works [Pac07,
WAP18] but their method uses discrete Fourier transform (DFT) to
represent the spectral domain, which is not suited to spherical func-
tions. The spectral analysis of spherical functions is based on the
SH expansion:

f (x) =
∞∑
l=0

m=l∑
m=−l

flmY
m
l (x), (26)

where x ∈ S
2, f ∈ L2(S2), { flm} are the SH coefficients and {Ym

l (x)}
are the SH basis functions. So as to express this equation in amatrix-
vector product form, it is necessary to limit the expansion by setting
a cutoff value L to the degree l. Let us thus define the SH coefficient
vector c = [c1, . . . , cM]t such that ci = flm for i = l2 + l + m+ 1
and M = (L+ 1)2. Similarly, the basis function vector b(x) is de-
fined by b(x) = [b1, . . . , bM]t such that bi = Ym

l (x). Equation (26)
can be rewritten as follows:

fL(x) = bt (x) c, (27)

where fL(x) is a band-limited approximation of f (x). As for kernels
SH expansion, using cos θ = x · ywith {x, y} ∈ S

2 in Equation (16),
we have

k(x, y) =
∞∑
l=0

al
2l + 1
4π

Pl (x · y) =
∞∑
l=0

m=l∑
m=−l

alY
m
l (x)Y

m
l (y) (28)

in application of the addition theorem of SH. A matrix-vector form
of Equation (28) can be built in the same way as for Equation (27).
For this purpose, let us define an M ×M diagonal matrix G whose
coefficients gi j are given by

gii = al when i ∈ [l2 + 1, (l + 1)2]∀i ∈ [1,M] (29)

gi j = 0 when i 
= j (30)

Then, we have

kL(x, y) = bt (x)G b(y), (31)

where kL(x, y) is a band-limited approximation of k(x, y). With the
same band-limited approximation, the covariance vector k(x∗) in
Equation (9) can be expanded as follows:

kL(x∗) = bt (x∗)GB, (32)

where B is a M × n matrix giving the SH basis function values at
each target location xi, i.e. the ith column of B corresponds to the
vector b(xi). Then, using Equations (27) and (32), Equation (9) be-
comes

f∗(x∗) = bt (x∗)
[
c̄ + GB

(
K + σ 2n I

)−1(
t − f̄ (X )

)]
, (33)

where c̄ is the vector of SH coefficients of f̄ . Considering Equa-
tion (27), the SH coefficients of f∗ can be identified as follows:

c∗ = c̄ + GB
(
K + σ 2n I

)−1(
t − f̄ (X )

)
. (34)

We will show in the following that Equation (34) provides an ef-
ficient method to obtain quite accurate SH coefficients of the un-
known function f without any integral computation. The main
computing load is due to the T = GB(K + σ 2n I)

−1 matrix product.
However, this M × n matrix can be pre-computed for appropriate
combinations of sample sets (e.g. Fibonacci grids [MBR*13a]) and
cutoff SH degree L, which reduces the computation to a O(Mn)
matrix-vector product.

Another benefit of the SH coefficients computation through Equa-
tion (34) is that it enables fast rotation of SH coefficients without the
expensive computation of the Wigner D matrix [Aub13, BFB97].
Examining Equation (10) provides an interesting interpretation of
Equation (34). Equation (10) represents the approximating function
in terms of zonal basis functions expansion. Each of this zonal basis
function k(x∗, xi) is rotated so as to be centred on a sampling loca-
tion xi. As k(., z) is zonal, the SH coefficients of the rotated func-
tion k(., xi) is simply klm(xi) = alYm

l (xi) where al is the l-degree
SH coefficient of the kernel k(x, y) (cf. Equation (28)). Indeed, all
the alYm

l (xi) products are performed by the matrix product GB in
Equation (34). Therefore, if we want to rotate the whole set of SH
coefficients so that the new z axis is z′, we simply have to rotate the
whole set of sample points xi before computing the B matrix. So
as to enable fast rotation of SH coefficients, Equation (34) can be
rewritten as follows:

c∗ = c̄ + GBααα (35)

where ααα is given by Equation (10). Once the ααα matrix is pre-
computed, rotated sets of SH coefficients are then easily obtained
as explained above. In Lessig et al. [LdWF12], a similar use of
zonal function expansion is made except that a different kernel is
used for each band, i.e. each SH degree. Therefore, a specific kernel-
based expansion is computed for each band with a specific sample
set whereas our method requires a single kernel and a single sam-
ple set. Furthermore, our method enables both the computation of
SH coefficients and their rotation whereas the method described in
Lessig et al. [LdWF12] only applies to SH coefficient rotation.
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Table 2: Average value of the learned hyperparameters for each kernel and
for different numbers of samples. Two objective functions were used: like-
lihood (for maximum likelihood estimation, MLE); and root mean squared
error (RMSE).

N MLE RMSE

ks 500 ls = 0.26 σ ′
n = 0.69 ls = 0.11 σ ′

n = 0.57
1000 ls = 0.20 σ ′

n = 0.65 ls = 0.07 σ ′
n = 0.49

2000 ls = 0.14 σ ′
n = 0.62 ls = 0.05 σ ′

n = 0.43
4000 ls = 0.09 σ ′

n = 0.55 ls = 0.03 σ ′
n = 0.41

kp0 500 ls = 1.40 σ ′
n = 0.44 ls = 1.06 σ ′

n = 0.25
1000 ls = 1.42 σ ′

n = 0.42 ls = 0.96 σ ′
n = 0.16

2000 ls = 1.23 σ ′
n = 0.36 ls = 0.89 σ ′

n = 0.11
4000 ls = 1.00 σ ′

n = 0.27 ls = 0.87 σ ′
n = 0.09

kp1 500 ls = 1.38 σ ′
n = 0.64 ls = 0.85 σ ′

n = 0.36
1000 ls = 1.14 σ ′

n = 0.55 ls = 0.68 σ ′
n = 0.24

2000 ls = 0.92 σ ′
n = 0.49 ls = 0.47 σ ′

n = 0.21
4000 ls = 0.66 σ ′

n = 0.41 ls = 0.39 σ ′
n = 0.16

kgd 500 sg = 1.41 σ ′
n = 0.23 sg = 1.40 σ ′

n = 0.05
1000 sg = 1.44 σ ′

n = 0.19 sg = 1.41 σ ′
n = 0.04

2000 sg = 1.41 σ ′
n = 0.18 sg = 1.68 σ ′

n = 0.03
4000 sg = 1.38 σ ′

n = 0.08 sg = 1.51 σ ′
n = 0.01

5. Experiments

5.1. Hyperparameter learning through simplified MLE

Experimental set-up. To learn the optimal hyperparameters for
each kernel, we have applied our simplified likelihood expression
(Equation (25)) to determine the hyperparameter values which max-
imize the likelihood (maximum likelihood estimation, MLE). The
incident radiance was simulated using eight different environment
maps. The hyperparameters have been learned using sample sets of
different sizes, ranging from 500 to 4000. This relatively large num-
ber of samples is required to capture the high-frequency features of
the typical incident radiance functions encountered in rendering ap-
plications, and obtain a representative set of hyperparameter values.
For each sample count, several runs of the learning function have
been performed, using different sample locations, while keeping the
sample distribution uniform over the sphere. To this end, for each
learning run with N samples, the sample positions have been deter-
mined using a spherical Fibonacci point set of size N [MBR*13a],
followed by a random rotation applied to all the point set. Then, we
averaged the learned hyperparameters over the different runs. The
results of the hyperparameter learning throughMLE for each kernel
are shown in the left-hand side of Table 2 (the detailed set of results
for each environment map can be found in additional material). On
the right-hand side of Table 2, the hyperparameters learned by mini-
mizing the RMSE (root mean squared error) instead of the log likeli-
hood. In this case, the RMSE was computed by measuring the error
between the original (reference) image, and the image reconstructed
from the samples using the tested hyperparameters through a GP-
based regression (Equation (13)). Figure 4 shows iso-value plots of
the log likelihood and RMSE as functions of the hyperparameters.

Comparing ks and kgd . Let us start by analysing the results in Ta-
ble 2 for ks (top) and kgd (bottom), which are the two kernels that
do not have a compact support. It is interesting to note that, for both

likelihood- and RMSE-based learning, the lengthscale parameter ls
of the squared exponential kernel ks exhibits a dependence on the
number of samples: larger (i.e. denser) point sets lead to smaller ls
values. We can conjecture that this is due to the strong smoothness
assumptions of the ks kernel, which, we recall, is infinitely differen-
tiable. Therefore, when the number of samples increases, the length-
scale of the model needs to be shortened so as to fit sharp variations
of the unknown functions that were not detected at lower sampling
densities. It is also worth noting that, for kgd , the smoothness param-
eter remains roughly around sg ≈ 1.5± 0.1 using both optimization
criteria. The fact that sg does not show a dependence on the num-
ber of samples is a strong indication that the model assumptions
properly suit incident radiance functions with no hyperparameter
adaptation. Finally, it is interesting to compare the results when us-
ing MLE and RMSE as objective function. These criteria are funda-
mentally different, since the likelihood gives the probability of the
observations given the model assumptions, whereas these assump-
tions are not directly considered in the RMSE criterion. However, in
the case of the kgd kernel, both criteria lead to very similar objective
functions, as shown in Figures 4(d) and 4(h). This result further rein-
forces the idea that the kgd kernel assumptions properly suit incident
radiance functions, and explains why, for this kernel, the hyperpa-
rameters found with both criteria are generally similar. In contrast,
for the ks kernel, likelihood- and RMSE-based optimization leads
to substantial differences in ls values due to the difference in the
objective functions as shown in Figures 4(a) and 4(e). Indeed, the
RMSE criterion favours strict data fitting whereas the likelihood cri-
teria aims at a balanced solution between data fitting and complexity
of the model, hence leading to a smoother solution (see Rasmussen
and Williams [RW06] for more details).

Results for the kp0 and kp1 kernels. To interpret the results for
the kp0 kernel, let us first recall that the rate of decay of its SH
coefficients is independent of the value of its lengthscale parame-
ter ls. Furthermore, this rate of decay is always equal to that of kgd
with sg = 1.5, as shown previously in Figure 3 (Section 4.1). Con-
sequently, and given that the optimal sg value for kgd is around 1.5,
this suggests that the kp0 kernel is also suitable to represent inci-
dent radiance functions. The optimization results of Table 2 show
that the lengthscale parameter ls, which controls the kernel support
size, is optimal at around ls ≈ 1.2. However, a closer analysis shows
that this value is not critical, as depicted in Figures 4(b) and 4(f).
Indeed, both figures show that there is a large set of ls values for
which both the likelihood and the RMSE are nearly optimal. A rele-
vant question is thus how small can the kernel support be such that,
on the one hand, we can have a sparse covariance matrix K leading
to computational advantages and, on the other hand, we do not incur
in a RMSE or likelihood penalization. Our results suggest that using
ls = 0.4 is a good compromise between both constraints. Finally, a
similar ls value can also be identified regarding the kp1 kernel, as
seen in Figures 4(c) and 4(g). Note, however, that, compared to kp0,
the RMSE and likelihood functions exhibit fewer similarities.

Fast hyperparameter set-up. Based on our extensive learning re-
sults (see additional material), which are summarized in Table 2, we
propose a set of general purpose hyperparameters for each of the
considered kernels. Our goal is to provide a set of hyperparameters,
which should perform well for most incident radiance functions,

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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76 R. Marques et al. / GP for Radiance Functions in S2

Figure 4: Contour plots for the likelihood (top row) and RMSE (bottom row) for each kernel as a function of the hyperparameters, using
the Arch environment map. The x-axis corresponds to sg in the case of the kgd kernel, and ls for the other kernels. The y-axis shows the σ ′

n

value. Each curve corresponds to a set of points for which the RMSE or likelihood has the same value (isovalue). The line colour encodes the
isovalue, where red represents a high value and blue represents a low value. In each image, the minimum function value found by optimization
is marked with a coloured dot, surrounded by a red circle. The other coloured dot in the image marks the minimum according to the other
criterion (RMSE or likelihood) for the same kernel. All images have been generated using 4000 samples.

Table 3: Recommended hyperparameters for each considered kernel. For
ks, the dependence of ls on the number of samples N is modelled by the
function fg(N) defined in Equation (36).

ks kp0 kp1 kgd

ls, sg fg(N) 0.4 0.4 1.5
σ ′
n 0.5 0.1 0.3 0.1

hence avoiding running an explicit learning step. These proposed
values are as shown in Table 3. Note that, for the squared exponen-
tial ks kernel, optimal ls value can be obtained by the function fg
given below that accounts for the dependence on N:

fg(N ) = e−0.46 lnN+0.56. (36)

This function results from approximating the dependence of ls on the
number of samples N with a polynomial of 1st degree in log space,
using the ls values of Table 2. In the next section, we will use these
hyperparameters to perform GP-based regression and compare the
results obtained using the different considered kernels.

5.2. Regression

The results for regression in the original spherical domain using a
set of 4000 uniformly distributed samples are shown in Figure 5,
for the Arch environment map. It is important to note that when
the number of samples is large (e.g. 4000), the sharp transitions

of the incident radiance function are, in general, sufficiently well-
captured, which allows assessing the capability of the GP model to
fit these sharp transitions. Results for various environment maps are
given in additional material, as well as regression results for a lower
number of samples. We show the results for the four tested kernels
parametrized with the hyperparameter settings of Table 3, together
with the original environment map and the used sampling pattern.
All kernels use exactly the same samples. We can observe that the
squared exponential kernel ks (Equation (2)) is the one that deliv-
ers poorer visual results. This is confirmed by the RMSE values
achieved using the kgd kernel, which are significantly higher than
those using the other kernels. Such a performance is explained by
the strong smoothness assumptions when using ks, which do not fit
the typical sharpness of incident radiance functions in practice. The
kp1 kernel, being also a smooth kernel, also suffers from the same
problem but to a smaller extent. This is apparent both visually and
in terms of RMSE. Finally, the kgd and kp0 kernels deliver the best
results, which confirms the findings of Section 5.1.

5.3. GP-based SH coefficients computation

In Section 4.3, we have seen that the SH coefficients of the approxi-
mating function resulting from a Bayesian regression can be directly
obtained using Equation (34). This also provides an efficient method
to compute the SH coefficients of a radiance functions as mentioned
above. Our goal in this section is to put this method in practice and
assess its results.

© 2022 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
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Figure 5: Regression results for the Arch environment map using different kernels and 4000 samples uniformly distributed over the sphere.
The sample positions are marked in red in (f). The root mean squared error (RMSE) using each kernel is shown in-between brackets. The used
hyperparameters for each kernel are the general purpose hyperparameters provided in Table 3.

Our SH computation method consists in using a precomputed
transform matrix T of size M × n, as explained in Section 4.3.
This transform matrix enables direct computation of a vector c∗ of
M = (L+ 1)2 SH coefficients from a set of n samples, with loca-
tion xi and values ti, and L being the maximum degree of the SH
coefficients. Recall that

T = GB
(
K + σ 2n I

)−1
(37)

and

c∗ = c̄ + T
(
t − f̄ (X )

)
. (38)

These equations express the regression equation (Equation (9)) un-
der a spectral form. The ‘spectral’ terms are: (i) theGmatrix defined
by Equations (29) and (30), which is a M ×M diagonal matrix;
(ii) the B matrix, which is the matrix of SH basis functions value
Ym
l (xi) and (iii) the vector c̄ of SH coefficients of the mean func-
tion f̄ (x). As our method is to be applied with no prior knowledge
on f (x) other than the GP prior model GP ( f̄ (x) = fc, k(x, x′)),
uniformly-distributed sample sets are most appropriate for the n ob-
served locations {xi}. In our experiments, we use Fibonacci sam-
ple sets [MBR*13a]. In this case, we can take fc = ∑

i f (xi)/n for
the constant mean value and thus the vector c̄ in Equation (38) is
reduced to c̄1 = f00 = 2 fc

√
π and c̄i = 0 for i > 1. As for the co-

variance function, we have used the GD kernel kgd (Equation (7))
since its SH coefficients al are known under an analytic form (Equa-
tion (21)), which facilitates the computation of the G matrix. To
assess the accuracy of the SH coefficients c∗ of the approximated
function, we use an error criterion based on the L2 norm: ‖ f‖ =∑

l

∑
m | flm|2 = ∑

i |ci|2 where the ci are the exact SH coefficients.
The relative SH approximation error Er is evaluated as follows:

Er =
∑M

i=1 |c∗i − ci|2∑M
i=1 |ci|2

. (39)

In this equation, the numerator expresses the L2 norm of the func-
tion ( f∗L − fL) giving the deviation between the function fL recon-
structed with the reference SH coefficients ci and the approximat-
ing function f∗L reconstructed with the c∗i SH coefficients. Only the
SH coefficients of the luminance component (i.e. a scalar value) is
considered in the following. The reference SH coefficients ci are
computed by the classic inner product integration method (labelled
IPI) with quasi Monte-Carlo integration using 1.5× 106 samples.
To eliminate the effect of spurious correlations between the sam-
pling pattern and the radiance function, the relative error Er is av-
eraged over 30 evaluations corresponding to 30 different rotations
of the sampling pattern. Only rotations about the z axis are used to
avoid too complex rotation corrections of the SH coefficients (i.e.
only the azimuth φ of the samples location is modified).

The results for the estimation of the SH coefficients using IPI
(QMC-based) and our GP-based approach are shown in Figure 6.
The figure shows the relative error E of the IPI method with respect
to the error obtained with the GP-based approach, such that

E =
∣∣E (IPI)r − E (GP)r

∣∣
E (GP)r

× 100, (40)

where E (IPI)r and E (GP)r denote the errors obtained with Equation (39)
for the IPI+ and GP-based methods, respectively. The axis of ab-
scissas in Figure 6 represents the number of the maximum degree L
of the estimated SH coefficients. For each value of L, the number of
samples used for the estimate of the SH coefficients was the same
for both methods, and it was set such that the error E (GP)r (as defined
by Equation (39)) of our method is of 0.3%, 0.7% and 1.5% (red,
green and blue lines, respectively). The plots of Figure 6 show that
the error of the IPI method is always larger than that of our GP-based
method. This relative error E increases with L and, when L = 30,
it reaches: +18.5% for E (GP)r = 0.3%; +54.7% for E (GP)r = 0.7%
and+215% for E (GP)r = 1.5%. The larger differences are explained
by the GP regression effect which compensates for the decreasing
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Figure 6: Relative error E (Equation (40)) of the IPI method with
respect to the error obtained with the GP-based approach, using the
same number of samples for both methods. The error E is plotted as
a function of the maximum degree L of the estimated SH coefficients.
For each value of L, the number of used samples to estimate the SH
coefficients c∗i is set such that the error of the GP-based approach
(E (GP)r ) computed using Equation (39) is 0.3%, 0.7% and 1.5% (red,
green and blue lines, respectively).

sampling density. When L ≤ 5, our experiments show that the gain
in accuracy achieved by our method is small. However, our method
remains beneficial when extensive use of SH coefficients rotation
is necessary. Recall that, as explained in Section 4.3, our method
enables fast rotation of SH coefficients through the use of Equa-
tion (35).

As regards the computing time, both methods require O(M × n)
operations if, in the IPI method, the SH basis function values are
pre-computed at the sample set locations. Indeed, in this case, the
inner product computation reduces to the sum of product computa-
tions involved in the classic QMC integration method. However, as
explained above, its performance in terms of error dependence on
the number of samples makes the IPI method much more costly in
general. For example, for L = 50, our method requires 3300 sam-
ples to obtain an error level Er (Equation (39)) of 0.7%, whereas the
IPI method requires n = 5000 samples. The ratio between the num-
ber of samples required for each of the two methods is even greater
for an error level Er of 1.5% with n = 3000 for IPI and n = 1250
for our method.

6. Application

Our experiments with HDR environment maps have shown that the
GD (kgd) and polynomial (kp0) covariance functions are the most
suited to radiance functions. Moreover, with this covariance func-
tions, no hyperparameters adjustment is necessary for both covari-
ance functions. Taking σn = 0.1, and sg = 1.5 and ls = 0.4 (for kgd
and kp0, respectively) gives good results for the tested environment
maps, and for both the original spherical and the spectral domain
regressions. In the case of of the squared-exponential covariance
function, an appropriate hyperparameter setting is easily obtained
with Equation (36). We have seen that GP-based regression results
in radiance function estimate that can be expressed in both orig-
inal spherical (Equation (9) or (10)) and spectral domains (Equa-

tion (34)). Both expressions are appropriate for shading integral
computations. In the spectral domain, the shading integral amounts
to a L2 inner product computation through a sum of products of
SH coefficients.

A direct application of GP-based regression is radiance
function approximation/interpolation either by using a whole
sphere/hemisphere sample set or a localized subset of samples. PRT
[SKS02], path guiding [MGN17, RHJD18] and radiance caching
[KGPB05] are certainly the most appropriate rendering methods
that could benefit from GP-based regression and its ability to pro-
vide fast SH expansion. However, a key issue is how to use such
approximations in importance sampling, i.e. how to provide an ap-
propriate probability density function (pdf). Although Equation (10)
defines a weighted sum of Gaussians when k(x, x′) is the squared
exponential kernel, it cannot be considered as a Gaussian mixture
pdf (such as in Vorba et al. [VKv*14]) since the weights αi are
not constrained to be positive. As used in [MGN17], the most ap-
propriate importance sampling method in our case is hierarchical
sample warping [CJAMJ05] and especially in its SH-based version
[JCJ09] since SH-based expansion are easily obtained with Equa-
tion (35) or (38). For this purpose, the SH-expansion can be band-
limited to a quite low L degree as a rough approximation is only
necessary. Besides, GP can be used to model pdfs as shown in Fradi
et al. [FFS*21] but this requires different covariance functions from
those used in this paper. Another interesting application domain of
GP-based regression concerns the case of BRDFs (e.g. [HLW15])
for which the potentialities are yet to be explored. GP-based meth-
ods (which are non-parametric) can also be used to define control
variates for Monte-Carlo integration [OGC16] or speed up Markov
ChainMonte Carlo integration [Ras03] but again, these applications
require customized GP models. Finally, in the context of path guid-
ing algorithms [VKv*14, MGN17], the incident radiance function
might be noisy, which is not the case of our environment map-based
experiments. However, the GP allows to model noisy observations
through the σn hyperparameter.

7. Conclusion and Future Work

In this paper, we have shown that GP-based regression is a pow-
erful tool for representing radiance functions provided that appro-
priate covariance functions are used. Furthermore, we have shown
that GP-based regression can be easily expressed in the spectral do-
main in terms of SH expansion. This property led us to an efficient
method for computing SH expansion of radiance functions and the
kernel-based theoretical support of this method greatly facilitates
rotation of the SH coefficients. We believe that GPs have a very rich
potential of applications in global illumination rendering. We are
currently investigating the use of GP to model BRDF and generate
BRDF SH expansions. Future research includes adaptive sampling
for shading integral computation and probability density estimation
for Markov Chain Monte-Carlo integration.
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