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Abstract

The main goal of this work is to study different geometric inequalities in the

plane. In particular, we will work on the isoperimetric, the Saint-Venant and the

Faber-Krahn inequalities for simple connected domains. We will use two different

approaches: first a classic one by complex analysis, and then a more recent one

by operator theory, bounding the commutator of Toeplitz operators in the Hardy-

Smirnov space E2 and the Bergman space A2. We will also study these spaces and

how they relate with geometric quantities. Finally, we will talk about functions of

bounded variation in order to extend the classical isoperimetric inequality for any

domain in the plane.

Resum

Estudiarem diverses desigualtats geomètriques en el pla per dominis simplement

connexos, en concret, la desigualtat isoperimètrica clàssica, la de Saint-Venant i la

de Faber-Krahn. Ho farem de dues maneres, primer una més clàssica utilitzant

anàlisi complexa i després una més recent utilitzant teoria d’operadors, utilitzant els

commutadors dels operadors de Toeplitz en l’espai de Hardy-Smirnov E2 i en l’espai

de Bergman A2. També estudiarem aquests espais i la seva relació amb diverses

quantitats geomètriques. Finalment, parlarem sobre les funcions de variació acotada

per tal d’estendre la desigualtat isoperimètrica per a tot domini del pla.
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gràcies per la teva paciència, les teves correccions, la teva resposta immediata quan

tenia qualsevol dubte, per la teva disponibilitat i flexibilitat a l’hora de quedar per

molts problemes que hi hagués i, en general, per tot el teu temps invertit en aquest

treball. He après molt i ha estat una experiència incrëıble.
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Chapter 1

Introduction

At last they landed, where from far your eyes

May view the turrets of new Carthage rise;

There bought a space of ground, which Byrsa call’d,

From the bull’s hide, they first inclos’d, and wall’d.

Virgil, The Aeneid, Book I

Imagine we have a simple non-elastic rope that we close by the two ends. Now

we have a simple and closed curve and we can play with it doing all kind of diferent

shapes (crossings are not allowed), noticing the perimeter always stays the same

while the area is changing. One natural question is to ask which shape maximizes

the area: this is the classical isoperimetric problem [23]. The solution is the circle

and was already known by the greeks. This leads to an inequality: given any shape

Ω, if we know the perimeter, then its area must be less than a circle D with the

same perimeter, which is the classical isoperimetric inequality:

Area(Ω) ≤ Area(D) =
Per(Ω)

4π

This is probably one of the oldest problems in the Calculus of Variations, with its first

appearance in Book V of the Collection of Pappus of Alexandria in the IV century

AD [8]. Although there is plenty of proofs of it, the first proof was not given until

1841 by Jakob Steiner [23]. After that, with the use of symmetrization, Schwartz

extended the inequality for a ball in 3 dimensions in 1884 and at the begining of the

20th century Hurwitz used trigonometric series and the method was also extended

to upper dimensions [2]. Our purpose is to study different proofs that use complex

analysis and operator theory techniques, and therefore we will focus on dimension

2. This allows to work with complex numbers and use tools such as the Riemann

mapping theorem or the Hilbert spaces H2(D) and A2(D). We will show how with

few properties of these tools we can prove three different inequalities and how they

are closely related.
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2 Introduction

Apart from the area or the perimeter, there are many other geometrical quan-

tities. They are geometrical in the sense that they only depend on the shape and

size of Ω, and they have a wide application in physics. In fact, we will even re-

duce the dependence on the size by considering only shapes with the same area, so

that we get properties inherent to the shape. The first quantity we will study is

the torsional rigidity, which is a constant from mechanics that quantifies the resis-

tance to be twisted of a cylindrical object with cross-section equal to Ω (although it

has also several hydrodynamical and electrodynamical applications [21, p. 3]). The

other quantity we will study is the principal frequency, which is the frequency of

the gravest proper tone of a drum, that is, a uniform elastic membrane. This is

also an interesting mathematical quantity, corresponding to the lowest eigenvalue of

the Laplacian and again, it only depends on Ω. For these quantities there are only

a few cases of Ω in which an explicit formula has been found, so we can only get

an approximation and try to estimate the error, and here is when the inequalities

gain importance. There is a lot of inequalities relating these quantities (see [21,

pp. 17–19]), but here we will work on the most important ones: the Saint-Venant

and the Faber-Krahn inequalities, which do not depend on the size and bound the

torsional rigidity and the principal frequency by the area, respectively.

In order to prove this inequalities, we will first present some classical proofs

working with the coefficients of the Riemann mapping (following the method of

Polya and Szego in [21]) and with Fourier series. Then we will focus on operator

theory, using a particular operator called Toeplitz operator. As we will observe,

Hardy and Bergman spaces will come up even in the most classical proofs, with a

natural association with the perimeter and the area. This relation has developed

to the point that they are important spaces to study on its own, and nowadays we

know a lot about its properties and they have been generalized in several ways. This

classical inequalities motivate to keep going in the right direction and they help for

discovering new inequalities involving more complicated mathematical objects with

more generality. For example, our strategy using operator theory will be finding

upper and lower bounds for the commutator of Toeplitz operators, which would

have been hard to obtain if Bell, Ferguson and Lundberg would not have tried to

prove the Saint-Venant inequality.

In the last chapter, in contrast with the others, we will consider the isoperimetri-

cal inequality for general domains (we will not assume they have smooth boundary).

To do this, we will have to be more rigorous and talk about the exact definition of

perimeter and what implies to have a boundary with finite length. After seeing some

consequences, we will observe that it is easy to obtain the isoperimetrical inequality

for any connected domain in the plane.

The structure of the work is as follows. In Chapter 2 we introduce the Hardy

and Bergman spaces in the disk and we show two classical proofs of the isoperi-

metrical inequality. Chapter 3 is dedicated to the torsional rigidity and we proof
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the Saint-Venant inequality in two ways, following the ideas of the proofs in Chap-

ter 2. In Chapter 4 we extend the Hardy and Bergman spaces in order to prove

the isoperimetric inequality and the Saint-Venant inequality. We also introduce the

principal frequency and show a close approximation to the Faber-Krahn inequality

with Toeplitz operators.



Chapter 2

The classical isoperimetric

inequality

We begin by stating our first version of the isoperimetric inequality, where we

consider regions in the plane with smooth borders:

Theorem 2.1 (Isoperimetric Inequality I). Let Ω ⊆ R2 such that ∂Ω is a smooth

curve, then

A(Ω) ≤ L(∂Ω)2

4π
(2.1)

and we have the equality if and only if Ω is a disk. [22]

In this section we will prove it in two ways, but first of all we need to introduce

the Hardy and Bergman spaces in the disk and some of its properties since we will

use them extensively not only in our first proof, but also later when proving other

isoperimetrical inequalities.

2.1 Hardy and Bergman spaces in the disk

Definition 2.2. Let f : D → Ω be an holomorphic function, if 0 ≤ r < 1 we

can write the functions in S1 as fr(e
iθ) = f(reiθ), which are the restriccions to the

circumference of radius r and center 0. Let µ be the normalized Lebesgue measure

in S1, we can define for 0 < p <∞:

∥f∥Hp := sup
0≤r<1

∥fr∥Lp(µ) = sup
0≤r<1

(∫
S1
|fr|pdµ

)1/p

= sup
0≤r<1

∫ 2π

0

(
|f(reiθ)|p dθ

2π

)1/p

∥f∥H∞ := sup
0≤r<1

∥fr∥L∞(µ) = sup
0≤r<1

(
sup
θ

|f(reiθ)|
)

and we define the Hardy space Hp for 0 < p ≤ ∞ as:

Hp := {f ∈ H(D) : ∥f∥Hp <∞}

4



2.1 Hardy and Bergman spaces in the disk 5

Since ∥fr∥Hp is a non-decreasing function of r for all 0 < p ≤ ∞ [19, p. 338],

exists the limit as r approaches 1 from the right so we can write the norm of Hp as:

∥f∥Hp = lim
r→1−

(∫ 2π

0
|f(reiθ)|p dθ

2π

)1/p

Since we will need to take powers of f (with real exponent), we have to study

the zeros of Hp functions. In order to do this, we will factorize f in the Blaschke

product (which have all the zeros of f) and a function without zeros where we will

be able to take powers without problem. We will see that the zeros of any Hp

function have a well-defined Blaschke product (and viceversa, if we have the zeros of

a Blaschke product, since the Blashcke product itself is bounded, we have a function

in H∞ ⊆ Hp with these zeros [19, pp. 310–311]) and we will state and prove some

usefull properties of it. First of all, let’s see that indeed the Blaschke product is

well-defined:

Definition 2.3. Let {zn} ⊆ D such that zn ̸= 0 and
∑∞

n=1(1 − |zn|) < ∞, let k be

a non negative integer, the Blaschke product of {zn} is

B(z) = zk
∞∏
n=1

|zn|
zn

zn − z

1− znz
, z ∈ D (2.2)

Proposition 2.4. The Blaschke product B is well-defined and B has zeros only in

the zn (and in the origin if k > 0). Moreover, |B(z)| < 1∀z ∈ D (and since it is

bounded, belongs to H∞).

Proof. We will use that if fn ∈ H(Ω), fn ̸≡ 0 ∀n ≥ 1 and
∑∞

n=1 |1− fn(z)| converges
uniformly in compact sets of Ω then f(z) =

∏∞
n=1 fn converges uniformly in compact

sets of Ω [19, Teorema 15.6]. Therefore, we only have to see that

∞∑
n=1

∣∣∣∣1− |zn|
zn

zn − z

1− znz

∣∣∣∣
is uniformly convergent in compact sets of D. To do this, we will use the Weierstrass

M-test [1, p. 37]. Let be |z| ≤ r < 1,∣∣∣∣1− |zn|
zn

zn − z

1− znz

∣∣∣∣ = ∣∣∣∣zn − |zn|2z − |zn|zn + |zn|z
(1− znz)zn

∣∣∣∣ =
=

∣∣∣∣zn(1− |zn|) + z|zn|(1− |zn|)
(1− znz)zn

∣∣∣∣ = |zn + z|zn||
|(1− znz)zn|

(1− |zn|)

≤ (1 + r)|zn|
|1− znz||zn|

(1− |zn|) ≤
1 + r

1− r
(1− |zn|) =Mn



6 The classical isoperimetric inequality

and
∑∞

n=1Mn < ∞ ⇔ 1+r
1−r

∑∞
n=1(1 − |zn|) < ∞ which is our hypothesis. Further-

more, it will only be zero if zn − z = 0 ⇒ z = zn (since the denominator never

vanishes because |z| ≤ 1 and |zn| < 1, which implies |znz| < 1 ⇒ znz ̸= 1).

Finally, we will see that if |z| < 1 then |B(z)| ≤ 1. Since

|B(z)| = |z|k
∞∏
n=1

∣∣∣∣ zn − z

1− znz

∣∣∣∣
it is enough that each factor is less (or equal) than 1 ∀z ∈ D. Clearly |z|k < 1, so

we just have to see that
∣∣∣ zn−z1−znz

∣∣∣2 =

∣∣∣∣( zn−z
1−znz

)2∣∣∣∣ ≤ 1 (which implies
∣∣∣ zn−z1−znz

∣∣∣ ≤ 1).

Evaluating at the boundary,∣∣∣∣ zn − z

1− znz

∣∣∣∣2 = |z|2 − znz − zzn + |zn|2

1− znz − zzn + |zn|2|z|2
= 1, |z| = 1

and as we have an analytic function in D and continuous in D, by the maximum

modulus principle [1, p. 134], we have the inequality for |z| < 1.

Now we have to prove the reciprocal, that is, given a function in Hp we can

construct its Blaschke product. For this, we will study the Nevanlinna class, which

is a bigger function space than Hp where we can always find a Blaschke product of

the zeros of its functions.

Definition 2.5. Let t ∈ R+, we denote log+(t) = log(t) if t ≥ 1 and log+(t) = 0 if

0 < t < 1. The Nevanlinna class is

N =

{
f ∈ H(D) : sup

0<r<1

∫ 2π

0
log+ |f(reiθ)|dθ

2π
<∞

}
This class includes all the Hardy spaces:

H∞ ⊆ Hp ⊆ Hq ⊆ N, 0 < q < p <∞

and the following theorem tells us that if f ∈ N then the zeros of f have the condition

that allows us to construct the Blaschke product (and therefore we will be able to

construct it for all f ∈ Hp, with p > 0).

Theorem 2.6. Let be f ∈ N such that f ̸≡ 0 in D, and {zn} are the zeros of f ,

repeated taking into account its multiplicity, then

∞∑
n=1

(1− |zn|) <∞

To prove it we first need the Jensen formula:
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Proposition 2.7. Let f ∈ H(D(0;R)), f(0) ̸= 0, 0 < r < R, let z1, ..., zN be the

zeros of f in D(0; r), then

|f(0)|
N∏
n=1

r

|zn|
= exp

{∫ 2π

0
log |f(reiθ)|dθ

2π

}
(2.3)

Proof. We arrange the zeros (taking into account the multiplicities) such that |zj | <
r if j = 1, ...,m and |zm+1| = ... = |zN | = r. Let ϵ > 0 such that f ∈ H(D(0; r + ϵ))

has the same zeros in D(0; r + ϵ), we construct the following holomorphic function

and without zeros in D(0; r + ϵ):

g(z) = f(z)
m∏
n=1

r2 − znz

r(zn − z)

N∏
n=m+1

zn
zn − z

(2.4)

that indeed is not zero because zn ̸= 0 ∀n and if |z| ≤ r, |zn| < r then r2 > |znz|.
Hence, it exists a branch of the logarithm of g in D(0; r+ ϵ) [19, Teorema 13.11] and

we have Re(log(g(z))) = log(|g(z)|). With the Integral Cauchy Formula [1, p. 119]

in the disk D(0; r) we get

log(g(0)) =

∫ 2π

0
log(g(reiθ))

dθ

2π

so

log(|g(0)|) = Re(log(g(z))) =

∫ 2π

0
Re(log(g(reiθ)))

dθ

2π
=

∫ 2π

0
log(|g(reiθ)|)dθ

2π
(2.5)

On one hand,

g(0) = f(0)

m∏
n=1

r

zn
⇒ |g(0)| = |f(0)|

m∏
n=1

r

|zn|

On the other hand, if |z| = r, for n = 1, ...,m,∣∣∣∣ r2 − znz

r(zn − z)

∣∣∣∣2 = ( r2 − znz

r(zn − z)

)(
r2 − znz

r(zn − z)

)
=

r4 − r2znz − r2znz + |zn|2|z|2

r2|z|2 − r2znz − r2znz + r2|zn|2
= 1

so we have
∣∣∣ r2−znzr(zn−z)

∣∣∣ = 1 and the integrant becomes, writing the zeros zn = reiθn :

log(|g(reiθ)|) = log

(
|f(reiθ)|

N∏
n=m+1

∣∣∣∣ reiθn

reiθn − reiθ

∣∣∣∣
)

=

= log

(
|f(reiθ)|

N∏
n=m+1

1

|1− rei(θ−θn)|

)
=

= log(|f(reiθ)|)−
N∑

n=m+1

log(|1− rei(θ−θn)|)
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Finally, we just need to prove that the integral of the summation is 0, so that the

integral in (2.4) does not change if we substitute g for f and we would have:∫ 2π

0
log |1− eiθ|dθ

2π
= 0 ⇒

∫ 2π

0
log(|g(reiθ)|)dθ

2π
=

∫ 2π

0
log(|f(reiθ)|)dθ

2π
(2.6)

and doing the change of variable θ = θ′ − θn we would get the integral we were

looking for.

Let Ω = {z ∈ C : Re(z) < 1}, since it is simply connected and 1 − z ̸= 0

in Ω, exists h ∈ H(Ω) such that eh(z) = 1 − z and it is unique if h(0) = 0 [19,

Teorema 13.11]. If w ∈ Ω, the image of 1− w is the half-plane {Im(z) > 0} so that

| Im(h(w))| = | arg(1− w)| < π
2 . Therefore,

Re(h(z)) = log |1− z|, | Im(h(z))| < π

2
, ∀z ∈ Ω (2.7)

Now let δ > 0 be small enough, let Γ(θ) = eiθ with θ ∈ [δ, 2π − δ] and let γ be the

path that goes from eiθ to e−iθ, following the circumferencia of center 1 and radius√
2(1− cos δ) through the inside of D. Utilitzant (2.7),∫ 2π−δ

δ
log |1− eiθ|dθ

2π
= Re

(∫ 2π−δ

δ
h(eiθ)

dθ

2π

)
= Re

(∫
Γ

h(z)

z

dz

2πi

)
and due to the Cauchy’s Theorem [19, Teorema 10.35] in Ω we have:∫

Γ

h(z)

z

dz

2πi
=

∫
γ

h(z)

z

dz

2πi

and since we can bound the length of γ by δπ, |γ| > 1/2 for a small enough δ and

|1− γ| =
√
2(1− cos δ), we get∣∣∣∣∫
γ

h(z)

z

dz

2πi

∣∣∣∣ ≤ L(γ) sup
z∈γ

∣∣∣∣h(z)2πiz

∣∣∣∣ ≤ δ

2
sup
z∈γ

∣∣∣∣h(z)z
∣∣∣∣ ≤

≤ δ

2

supz∈γ |Re(h(z))|
1/2

≤ δ| log(
√

2(1− cos δ))| =

=
δ

2
log

(
1

2(1− cos δ)

)
δ→0−−−→ 0

Therefore, ∫ 2π

0
log |1− eiθ|dθ

2π
= lim

δ→0

∫ 2π−δ

δ
log |1− eiθ|dθ

2π
= 0

Considering (2.4), (2.5) and (2.6), we get

log

(
|f(0)|

N∏
n=1

r

|zn|

)
=

∫ 2π

0
log |f(reiθ)|dθ

2π
⇒

⇒ |f(0)|
N∏
n=1

r

|zn|
= exp

{∫ 2π

0
log |f(reiθ)|dθ

2π

}
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Now we can prove the main theorem:

Proof. Let zn be the zeros of f ∈ N , we can assume they are ordered such that

|zn| ≤ |zn+1| and that f has infinit zeros (if f has a finite number of zeros, then it

is clera that the sum is finite). Moreover, we can assume that f(0) ̸= 0 because if f

has a root of order m in the origin, then g = z−mf(z) ∈ N and has the same zeros

of f , so if g fulfills the theorem, f also does it.

We put n(r) the number of roots of f in D(0; r), and given a k ∈ N, we take

r < 1 such that n(r) > k. Since 1 ≤ r
zn

and log(t) ≤ log+(t), by the Jensen formula

(2.3),

|f(0)|
k∏

n=1

r

|zn|
≤ |f(0)|

n(r)∏
n=1

r

|zn|
= exp

(∫ 2π

0
log |f(reiθ)|dθ

2π

)
≤ exp

(∫ 2π

0
log+ |f(reiθ)|dθ

2π

)
Since f ∈ N , we know that ∃ C > 0 such that

exp

(∫ 2π

0
log+ |f(reiθ)|dθ

2π

)
≤ C

so

|f(0)|
k∏

n=1

r

|zn|
= |f(0)| rk∏k

n=1 |zn|
≤ C ⇒ |f(0)|rk

C
≤

k∏
n=1

|zn| ∀k ∈ N

Therefore, taking r → 1 and then k → ∞,

∞∏
n=1

|zn| ≥
|f(0)|
C

> 0

(we know the limit exists when k → ∞ because |zn| < 1 and therefore we have a

non-decreasing succession in k).

Now we assume that
∑∞

n=1(1− |zn|) = ∞, using h(x) = ex−1 − x ≥ 0 ∀x ∈ R (h

has an absolute minimum in x = 1 and h(1) = 0),

∞∏
n=1

|zn| ≤
k∏

n=1

|zn| ≤
k∏

n=1

e|zn|−1 = exp

{
−

k∑
n=1

1− |zn|

}
k→∞−−−→ 0

and so
∏∞
n=1 |zn| = 0, leading to contradiction.

The property of the Blaschke product we will use is the following:

Proposition 2.8. Let p > 0, let f ∈ Hp with B the Blaschke product of the roots

of f . If g = f/B then g ∈ Hp with ∥g∥Hp = ∥f∥Hp and g(z) ̸= 0 ∀z ∈ D.
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Proof. First of all, since f and B have the same roots in D (taking into account

multiplicities), g is holomorphic in D and has no roots in it. We have already seen

in Proposition 2.4 that |B(z)| < 1 for z ∈ D and therefore

|g| ≥ |f | ⇒ ∥g∥Hp ≥ ∥f∥Hp (2.8)

Now let Bn the finite Blaschke product of the first n roots of f , let be gn = f/Bn,

if we take r → 1 for all n, we have that |Bn(reiθ)| converges uniformly to 1 so that

∥gn∥Hp = ∥f∥Hp . Since |gn| tends to |g| and is non-decreasing, we can apply the

Monotone Convergence Theorem [19, Teorema 1.26]:

lim
n→∞

∫ 2π

0
|gr,n(reiθ)|p

dθ

2π
=

∫ 2π

0
lim
n→∞

|gr,n(reiθ)|p
dθ

2π
=

∫ 2π

0
|g(reiθ)|p dθ

2π

so that

∥gr∥Hp = lim
n→∞

∥gn,r∥Hp

and it could be at most ∥f∥Hp so taking r → 1:

∥g∥Hp ≤ ∥f∥Hp

Together with (2.8) we have the equality.

Definition 2.9. Let be f : D → Ω an holomorphic function, let α be the area

Lebesgue mesure normalized in D, we define the Bergman norm for 0 < p ≤ ∞ as

∥f∥Ap := ∥f∥Lp(α) =

(∫
D
|f(z)|pdA(z)

π

)1/p

and the Bergman space Ap is

Ap = {f ∈ H(D) : ∥f∥Ap <∞}

There is a very special case, and that is when p = 2. Since f =
∑∞

n=0 anz
n for

|z| < 1 and zn are orthogonal in H2 and A2, we can characterize the Hardy and

Bergman norms in terms of the coefficients an:

Proposition 2.10. Let f ∈ H(D) such that f =
∑∞

n=0 anz
n, then

∥f∥2H2 =

∞∑
n=0

|an|2, ∥f∥2A2 =

∞∑
n=0

|an|2

n+ 1

Proof. Let 0 ≤ r < 1, we have uniform convergence in |z| = r de f(reiθ) and f(reiθ),

so that

|f(reiθ)|2 = f(reiθ)f(reiθ) =

∞∑
n,m=0

anamr
n+mei(n−m)θ
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also converges uniformly in |z| = r and therefore we can exchange the sum and the

integral. Since we have
∫ 2π
0 ei(n−m)θdθ = 0 if n ̸= m, then

∥f∥2H2(µ) = lim
r→1−

∫ 2π

0
|f(reiθ)|2 dθ

2π
= lim

r→1−

∫ 2π

0

∞∑
n,m=0

anamr
n+mei(n−m)θ dθ

2π

= lim
r→1−

∞∑
n,m=0

anamr
n+m

∫ 2π

0
ei(n−m)θ dθ

2π
= lim

r→1−

∞∑
n=0

|an|2r2n =

∞∑
n=0

|an|2

∥f∥2A2(α) =

∫
D
|f(z)|2dA(z)

π
=

∫ 1

0

∫ 2π

0

∞∑
n,m=0

anamr
n+mei(n−m)θr

dθ

π
dr

=

∫ 1

0

∞∑
n,m=0

anamr
n+m+1

(∫ π

0
ei(n−m)θ dθ

2π

)
dr =

=
∞∑
n=0

|an|2
∫ 1

0
r2n+1dr =

∞∑
n=0

|an|2

n+ 1

We will also use the following version of the Cauchy-Schwarz inequality:

Theorem 2.11 (Cauchy-Schwarz). Let be u, v ∈ Cn+1, then

|⟨u, v⟩|2 =

∣∣∣∣∣
n∑
k=0

ukvk

∣∣∣∣∣
2

≤ ⟨u, u⟩⟨v, v⟩ =
n∑
k=0

|uk|2
n∑
k=0

|vk|2

and we have the equality if and only if ∃C ∈ C such that uk = Cvk ∀k = 0, ..., n.

2.2 A proof of the isoperimetrical inequality using power

series

Let Ω ⊆ R2 be a domain such that ∂Ω is a rectificable Jordan curve (that is, a

simply connected curve) and smooth (we will only need C1), then from the Riemann

Mapping Theorem [19] we have a conformal, analytical and bijective F : D → Ω and

we can relate the Hardy and Bergman norms with the perimeter and area of Ω,

respectively: let be γr(θ) = F (reiθ),

L(∂Ω) = lim
r→1−

L(F ({|z| = r})) = lim
r→1−

∫ 2π

0
|γ′r(θ)|dθ =

= lim
r→1−

∫ 2π

0
|rieiθF ′(reiθ)|dθ = lim

r→1−
r

∫ 2π

0
|F ′(reiθ)|dθ = 2π∥F ′∥H1
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A(Ω) =

∫
Ω
1 · dA(w) =

∫
Ω
1 · dw ∧ dw̄

−2i
=

∫
D

F ′(z)dz ∧ F ′(z)dz̄

−2i
=

=

∫
D
|F ′(z)|2dz ∧ dz̄

−2i
=

∫
D
|F ′(z)|2dA(z) = π∥F ′∥2A2 , (2.9)

where we have made the change of variable w = F (z) and we have used that

dz ∧ dz̄ = (dx + idy) ∧ (dx − idy) = −i(dx ∧ dy) + i(dy ∧ dx) = −2idx ∧ dy =

−2i dA(z).

The Hardy i Littlewood theorem (1932) that we will use is the following [5]:

Theorem 2.12. Let p ∈ (0,∞), if f ∈ Hp then ∥f∥A2p ≤ ∥f∥Hp and we have an

equality if and only if

f(z) = C ·
(

1

1− λz

)2/p

, |λ| < 1, C ∈ C

Proof. We will first take p = 2. We have

∥f∥4A4 =

∫
D
|f(z)|4dA(z)

π
=

∫
D
|f(z)2|2dA(z)

π
= ∥f2∥2A2

Now, using twice that( ∞∑
k=0

akz
k

)( ∞∑
m=0

amz
m

)
=

∞∑
k=0

∞∑
m=0

akamz
k+m =

=
∞∑
k=0

∞∑
n=k

akan−kz
n =

∞∑
n=0

n∑
k=0

akan−kz
n (2.10)

and the Cauchy-Schwarz inequality for the vectors v = (a0an, a1an−1, ..., ana0) and

u = ( 1√
n+1

, ..., 1√
n+1

),

∥f2∥2A2 =

∥∥∥∥∥
( ∞∑
k=0

akz
k

)( ∞∑
m=0

amz
m

)∥∥∥∥∥
2

A2

=

=

∥∥∥∥∥
∞∑
n=0

(
n∑
k=0

akan−k

)
zn

∥∥∥∥∥
2

A2

=

=

∞∑
n=0

|
∑n

k=0 akan−k|2

n+ 1
≤

∞∑
n=0

n∑
k=0

|ak|2|an−k|2 =

=

( ∞∑
m=0

|am|2
)( ∞∑

n=0

|an|2
)

= ∥f∥4H2 ,
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Therefore, ∥f∥A4 ≤ ∥f∥H2 . We have an equality if and only if the Cauchy-

Schwarz inequality is an equality for every n ≥ 2, that is, if ∀n ≥ 2,

akan−k =
Cn√
n+ 1

= Dn, Cn, Dn ∈ C, ∀k = 0, ..., n (2.11)

Now, if a0 = 0 we have f ≡ 0, since a2n = a0 · a2n = 0 ∀n ∈ N. Therefore, we can

assume a0 ̸= 0, and since we have from (2.11) that

a0an = a1an−1 ⇒ an =
a1
a0
an−1 ∀n = 1, 2, 3, ...

then an =
(
a1
a0

)n
a0 and as we wanted to see,

f(z) =

∞∑
n=0

a0

(
a1
a0

)n
zn =

a0
1− λz

.

Now we take p ∈ (0,∞), we assume f(z) ̸= 0 ∀z ∈ D, since D is simply con-

nected we can choose a branch of log(f) [19, Teorema 13.11] and therefore of

fp/2 = exp(p2 log(f)). Then,

∥f∥p/2
A2p =

(∫
D
|f(z)|2pdA(z)

π

)1/4

= ∥fp/2∥A4 ≤

≤ ∥fp/2∥H2 = lim
r→1−

(∫ 2π

0
|f(reiθ)

p
2 |2dω

2π

)1/2

= ∥f∥p/2Hp

and we have the equality if and only if fp/2 =
(

a0
1−λz

)
⇔ f =

(
a0

1−λz

)2/p
.

Finally, if f has roots (zn) in D, by the Proposition 2.8 we can factorize f = Bg

with B the Blaschke product and g is a function without roots such that ∥f∥Hp =

∥f/B∥Hp = ∥g∥Hp . Since |B(z)| < 1 if |z| < 1, we get

∥f∥A2p

∥f∥Hp
=

∥Bg∥A2p

∥g∥Hp
<

∥g∥A2p

∥g∥Hp
≤ 1

Isoperimetric Inequality I. In order to obtain the isoperimetric inequality we only

have to use the theorem with p = 1 and f = F ′:

A(Ω) = π∥F ′∥2A2 ≤ π∥F ′∥2H1 =
L(∂Ω)2

4π

and we have an equality if and only if

F ′(z) =
C

(1− λz)2
⇒ F (z) =

D

1− λz
+A, A,C,D, λ ∈ C

which is a Möbius trasformation and a translation and therefore F sends disks to

disks or half-planes, so Ω = F (D) is a disk.
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2.3 Another proof of the isoperimetrical inequality us-

ing Fourier series

Another proof of the isoperimetrical inequality using Fourier series [6]. In par-

ticular we will prove:

Theorem 2.13 (Desigualtat isoperimètrica II). Let be Ω ⊆ R2 such that ∂Ω is a

smooth Jordan curve (here we need C3), then

A(Ω) ≤ L(∂Ω)2

4π

and we have a equality if and only if Ω is a disk.

Proof. Let γ([0, 2π]) = ∂Ω be parameterized by arc length and we assume L(∂Ω) =

2π (we are able to do it because we can scale by any λ and the inequality holds,

A(Ω̄) = λ2A(Ω) ≤ (λL(∂Ω))2

4π = L(∂Ω̄)2

4π ). Therefore, since γ ∈ L2([0, 2π]),

∂Ω = {γ(s) =
∞∑
−∞

cne
ins}, |γ′(s)| = 1, cn ∈ C

with cn =
∫ 2π
0 γ(s)e−ins ds2π .

The coefficients |cn| are bounded by C/|n|3: if we integrate by parts (we know

γ(s) has continuous derivatives) and using that γ(0) = γ(2π)),∫ 2π

0
γ(s)e−insds = γ(s)

e−ins

−in

∣∣∣∣2π
0

−
∫ 2π

0
γ′(s)

e−ins

−in
ds =

=
γ(2π)− γ(0)

−in
+

∫ 2π

0
γ′(s)

e−ins

in
ds =

∫ 2π

0
γ′(s)

e−ins

in
ds

so∫ 2π

0
γ(s)e−insds =

∫ 2π

0
γ′(s)

e−ins

in
ds =

∫ 2π

0
γ′′(s)

e−ins

−n2
ds =

∫ 2π

0
γ′′′(s)

e−ins

−in3
ds

Therefore,

|cn| ≤
∫ 2π

0

∣∣∣∣γ′′′(s)e−ins−in3

∣∣∣∣ ds = 1

|n|3

∫ 2π

0

∣∣γ′′′(s)∣∣ ds ≤ 2π

|n|3
sup

s∈[0,2π]
|γ′′′(s)| < C

|n|3

with C ∈ R. This allows us to prove that γ′(s) =
∑∞

n=1 cnine
ins −

∑∞
n=1 cnine

−ins

is uniformly convergent by the Weierstrass M-test [1, p. 37], since

|cnineins| = |cnn| ≤
1

n2
, |cnine−ins| ≤

1

n2
:=Mn
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and
∑∞

n=1Mn < ∞. For the same reason, γ′(s) and γ(s) =
∑∞

−∞ cne
−ins also

converge uniformly.

Now we can swap sums and integrals. On one hand,

1 =

∫ 2π

0
|γ′(s)|2 ds

2π
=

∫ 2π

0
γ′(s)γ′(s)

ds

2π
=

∫ 2π

0

( ∞∑
−∞

cnine
ins

)( ∞∑
−∞

cmimeims

)
ds

2π

and using the uniform convergence of γ′(s) and γ′(s) in D,

1 =

∫ 2π

0

( ∞∑
−∞

cnine
ins

)( ∞∑
−∞

cnineins

)
ds

2π
=

=

∫ 2π

0

∞∑
n=−∞

∞∑
m=−∞

cncmnme
i(n−m)s ds

2π
=

=

∞∑
n=−∞

∞∑
m=−∞

cncmnm

∫ 2π

0
ei(n−m)s ds

2π
=

∞∑
−∞

|cn|2n2 (2.12)

On the other hand, by Green’s Theorem to find the area,

A(Ω) =
1

2

∫
∂Ω
xdy − ydx =

1

2
Im

(∫
∂Ω

(x− iy)(x′(s) + iy′(s))ds

)
=

=
1

2
Im

(∫
∂Ω
z̄(s)z′(s)ds

)
= (2.13)

=
1

2
Im

(∫ 2π

0

∞∑
n=−∞

∞∑
m=−∞

(cne
−ins)(cmime

ims)ds

)
=

=
1

2
Im

( ∞∑
n=−∞

∞∑
m=−∞

cncmim

∫ 2π

0
ei(m−n)sds

)
=

=
1

2

∞∑
n=−∞

n|cn|22π = π

∞∑
n=−∞

n|cn|2 (2.14)

and we have used the orthogonality of the base {eins}n∈Z.
Since n ≤ n2, if we compare both (2.12) and (2.13) we see that

A(Ω) ≤ π =
(2π)2

4π
=
L(∂Ω)2

4π

and we have an equality if and only if cn = 0 ∀n ̸= 0, 1, that is, ∂Ω = {c0 + c1e
ins}

which is a circle of center c0 and radius |c1|.



Chapter 3

The Saint-Venant inequality

In this chapter we introduce the Saint-Venant inequality, a geometrical inequality

that relates the area with the torsional rigidity, another geometrical quantity that

depends only on the shape of a simply connected domain. We start by defining

the torsional rigidity in several ways and showing they are indeed equivalent. Then

we will prove the Saint-Venant inequality in two ways that follow the same idea as

the proofs in Chapter 2, one using the coefficients of the Riemann map and a more

heuristic one using a specific parameterization and Green’s theorem.

3.1 The Torsional Rigidity

We consider Ω a plane simply connected domain. We have to conceive it as

the cross-section of a uniform and isotropic cylinder twisted around an axis perpen-

dicular to Ω. The resistance to the twist offered by the shape of the cross-section

is what is called torsional rigidity and it is a purely geometric quantity [21, p. 2],

independent of the units of mass and time. This means that given any shape we can

associate this constant with it. There are several ways to define this quantity math-

ematically, the most classical being a variational definition among all the smooth

functions that cancel at the boundary ∂Ω:

Definition 3.1. Let f : Ω → R smooth enough, the torsional rigidity of Ω is

ρΩ = sup
f(∂Ω)=0

4
(∫

Ω fdxdy
)2∫

Ω f
2
x + f2y dxdy

(3.1)

Another definition (and the one that we will use the most) is a definition in terms

of a partial differential equation:

Definition 3.2. Let Ω be a simply connected domain, let v be the solution of{
∆v = vxx + vyy = −2

v|∂Ω = 0
(3.2)

16
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then the torsional rigidity of Ω is

ρ′Ω = 2

∫
Ω
vdxdy

In fact, this function is the one that maximizes (3.1) in domains with a smooth

boundary and the supremum turns into a maximum. Let’s see that indeed both

definitions are equivalent [18]:

Proposition 3.3. Let ρΩ be the torsional rigidity of a simply connected domain Ω

with smooth boundary as in (3.1), then if v is the solution of (3.2),

ρΩ = 2

∫
Ω
vdxdy

Proof. Let f : Ω → R be a smooth function such that f(∂Ω) = 0. First of all, we

observe that integrating by parts and by the Cauchy-Schwarz inequality we have∫
Ω
2f dxdy =

∫
Ω
(−∆v)f dxdy =

=

∫
Ω
∇v∇f dxdy ≤

(∫
Ω
|∇v|2dxdy

∫
Ω
|∇f |2dxdy

)1/2

and therefore
4
(∫

Ω f dxdy
)2∫

Ω |∇f |2dxdy
≤
∫
Ω
|∇v|2dxdy

Since ∆v = −2 and integrating by parts we have the identity:

2

∫
Ω
v dxdy = −

∫
Ω
v∆v dxdy =

∫
Ω
|∇v|2 dxdy

Then we have seen that ρΩ ≤ 2
∫
Ω v dxdy. On the other hand, if we choose f = v

we obtain:

ρΩ ≥
4
(∫

Ω v dxdy
)2∫

Ω |∇v|2 dxdy
=

4
(∫

Ω v dxdy
)2

2
∫
Ω v dxdy

= 2

∫
Ω
v dxdy

We can write v as v = ϕ− 1
2(x

2 + y2) with ϕ such that{
∆ϕ = ϕxx + ϕyy = 0 en Ω,

ϕ|∂Ω = x2+y2

2

(3.3)

then ϕ is unique (because if there was a ϕ2 that also works, then g = ϕ − ϕ2 is 0

at the boundary and ∆g = ∆ϕ − ∆ϕ2 = 0 so by the maximum modulus principle
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for harmonic functions g has to be identically 0, and therefore ϕ = ϕ2) and we can

check that in effect (if it exists):{
∆(ϕ− 1

2(x
2 + y2)) = ϕxx − 1 + ϕyy − 1 = −2

v|∂Ω = ϕ|∂Ω − 1
2(x

2 + y2) = 0

Then, putting the torsional rigidity in terms of the ϕ we obtain:

ρΩ =

∫
Ω
2ϕdxdy −

∫
Ω
(x2 + y2)dxdy (3.4)

The strategy of the first proof will be writing ρΩ and the area with the coefficients

of the function given by the Riemann mapping theorem, and then comparing directly

the coefficients. This is why we are interested in writing another definition of the

torsional rigidity with this coefficients. Given a simply connected domain, we will

always refer to the analytical, bijective and conformal function given by the Riemann

mapping theorem as F : D → Ω and its coefficients will be F (z) =
∑∞

n=0 anz
n.

Moreover, we assume it is uniformly convergent for |z| ≤ 1 (see the discussion in

Chapter 5, where we see that given F we can find an extension F in D that is

uniformly continuous and such that the image of {|z| = 1} is ∂Ω). First we will put

ϕ in terms of the coefficients (an):

Lemma 3.4. Let ϕ be the function that satisfies (3.3), let F (z) = anz
n be the

Riemann map just described, let be z = reiθ, then

2ϕ(z) =

∞∑
k=0

∞∑
l=0

akalr
|k−l|ei(k−l)θ (3.5)

Proof. We can find ψ such that {
ψx = ϕy

ψy = −ϕx

which are the Cauchy-Riemann equations and therefore ϕ is the real part of an

analytic function G totally characterized by ϕ, except for an imaginary additive

constant. We put it as G = ϕ + iψ =
∑∞

n=0 unz
n. We can take the constant such

that u0 ∈ R making that ψ(0) = 0. Since 2ϕ(z) = |z|2 in ∂Ω because of the definition

of ϕ in (3.3), we can link it with F (z). Let |z| = 1,

|F (eiθ)|2 = |z|2 = 2ϕ(z) = 2 · G(z) +G(z)

2
= 2u0 +

∞∑
n=1

unz
n +

∞∑
n=1

un z
n

and taking am = 0 if m < 0,

|F (eiθ)|2 = F (eiθ)F (eiθ) =
∞∑
k=0

∞∑
r=0

akare
i(k−r)θ =

∞∑
n=−∞

( ∑
k−r=n

akar

)
einθ
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By the unicity of the Fourier series, the coefficients of the two series must be equal

and we obtein the coefficients un:

2u0 =
∑
k−r=0

akar =

∞∑
k=0

|ak|2, un =
∑

k−r=n
akar ∀n ∈ N

which in effect satisfy un =
∑

k−r=n akar =
∑

r−k=−n arak , that are the coefficients

with negative n. Therefore, if |z| ≤ 1,

2ϕ(reiθ) = 2u0 +

∞∑
n=1

unz
n + unzn =

=
∑
k=0

|ak|2 +
∑

k−r=n
n∈N

akarr
neinθ +

∑
k−r=−n
n∈N

akarr
ne−inθ =

=
∑

k−r=n
n∈Z

akarr
|n|einθ =

∞∑
k=−∞

∞∑
r=−∞

akarr
|k−r|ei(k−r)θ =

=
∞∑
k=0

∞∑
r=0

akarr
|k−r|ei(k−r)θ

since am = 0 if m < 0.

Now we can define the torsional rigidity in terms of the corfficients of F :

Proposition 3.5. Let Ω be a simply connected domain, we take the analytic function

F (z) =
∑∞

n=0 anz
n in D given by the Riemann mapping theorem, then

ρΩ =
∑

α,β,γ,δ>0,
α+β=γ+δ

min(α, β, γ, δ)aαaβaγaδ (3.6)

Proof. We will start from the definition (3.4),

ρΩ =

∫
Ω
2ϕdxdy −

∫
Ω
x2 + y2dxdy =

∫
Ω
2ϕdxdy − I0

where I0 is a quantity called polar moment of inertia of Ω about the origin. We will

calculate the two terms of the sum independently. Developing the first integral and
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making the change of variable w = F (z),∫
Ω
2ϕ(w)dw =

∫
D
2ϕ(F (z))|F ′(z)|2dz =

∫ 1

0

∫ π

−π
2ϕ(reiθ)|F ′(reiθ)|2rdrdθ =

=

∫ 1

0

∫ π

−π

 ∞∑
α=0

∞∑
γ=0

aαaγr
|α−γ|ei(α−γ)θ

F ′(reiθ)F ′(reiθ)rdrdθ =

=

∫ 1

0

∫ π

−π

 ∞∑
α=0

∞∑
γ=0

aαaγr
|α−γ|ei(α−γ)θ

 ∞∑
β=0

βaβr
β−1ei(β−1)θ


( ∞∑
δ=0

δaδr
δ−1e−i(δ−1)θ

)
=

=

∫ 1

0

∫ π

−π

∞∑
α=0

∞∑
β=0

∞∑
γ=0

∞∑
δ=0

βδaαaβaγaδr
|α−γ|+β+δ−1ei(α+β−γ−δ)θdθdr =

= 2π
∑

α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδ
βδ

|α− δ|+ β + δ
(3.7)

Now if α ≥ γ, using that α+ β = γ + δ we get

2βδ

|α− γ|+ β + δ
=

2βδ

α− γ + β + δ
=

2βδ

2δ
= β

If α < γ,
2βδ

|α− γ|+ β + δ
=

2βδ

γ − α+ β + δ
=

2βδ

2β
= δ

Therefore, from both cases we arrive to:

2βδ

|α− δ|+ βδ
= min(β, δ) ⇒ P + I0 = π

∑
α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδmin(β, δ)

Now, making combinations we get 4 different expressions of (3.5) substituting β for

α and δ for γ:

ρΩ + I0 = π
∑

α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδmin(β, δ) = π
∑

α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδmin(β, γ) =

= π
∑

α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδmin(α, γ) = π
∑

α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδmin(α, δ)

and we obtain the following expression:

4(ρΩ+I0) = π
∑

α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδ(min(β, δ)+min(β, γ)+min(α, γ)+min(α, δ)) (3.8)
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For the second integral, that we called polar moment of inertia, changing to polar

coordinates we obtain

I0 =

∫ 1

0

∫ π

−π
|F (z)F ′(z)|2rdθdr (3.9)

From (2.10) we can write F (z)2 as:

F (z)2 =

∞∑
n=0

(
n∑
k=0

akan−k

)
zn

Then we can find the derivative respect z in both sides of the equality so that

2F (z)F ′(z) =
∞∑
n=0

n
n∑
k=0

akan−kz
n−1

and substituting in (3.7)

I0 =

∫ 1

0

∫ π

−π

1

4

( ∞∑
n=0

n
n∑
k=0

akan−kz
n−1

)( ∞∑
m=0

m
m∑
k′=0

ak′am−k′zm−1

)
rdθdr =

=

∫ 1

0

∫ π

−π

1

4

∞∑
n=0

∞∑
m=0

nm

(
n∑
k=0

akan−k

)(
n∑

k′=0

a′kan−k′

)
rn+m−2ei(n−m)θdθrdr =

=

∫ 1

0

π

2

∑
n=0

n2

(
n∑
k=0

akan−k

)(
n∑

k′=0

ak′an−k′

)
r2n−1dr =

=
π

4

∞∑
n=0

n

∣∣∣∣∣
n∑
k=0

akan−k

∣∣∣∣∣
2

We can write this last expression as a summation like (3.6):

I0 =
π

4

∞∑
n=0

n∑
k=0

n∑
k′=0

nakan−kak′an−k′ =
π

4

∑
α,β,γ,δ≥0
α+β=γ+δ

(α+ β)aαaβaγaδ (3.10)

Finally, from (3.8) and (3.10), we obtain the expression for the torsional rigidity:

ρΩ =
π

4

∑
α,β,γ,δ≥0
α+β=γ+δ

aαaβaγaδ(min(α, γ) + min(α, δ) + min(β, γ) + min(β, δ)− α− β)

Now by taking cases and using that α+ β = γ + δ we have:

min(α, γ) + min(α, δ) + min(β, γ) + min(β, δ)− α− β = 2min(α, β, γ, δ)

And therefore we get the expression we were searching:

ρΩ =
π

2

∑
α,β,γ,δ≥0
α+β=γ+δ

min(α, β, γ, δ)aαaβaγaδ
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3.2 The Saint-Venant inequality

Our first proof of the Saint-Venant inequality will follow the same basic idea of

the first proof of the isoperimetric inequality, using the coefficients of the Rieman

mapping. As in the first chapter, we let Ω be a simply connected domain such

that ∂Ω is a smooth Jordan curve. Then we can consider the Riemann mapping

F : D → Ω that is conformal, analytic and bijective, and we write it as F (z) =∑∞
n=0 anz

n. We have already seen in (2.9) that we can put the area of Ω in terms

of the coefficients:

A(Ω) = π∥F ′∥2A2 = π

∞∑
n=1

n|an|2

and we will use (3.3) and (3.4) to bound the torsional rigidity with the area.

Theorem 3.6. Let Ω be a domain like the one just described, let ρΩ and A(Ω) be

the torsional rigidity and the area of Ω respectively, then

2πρΩ ≤ A2

and we have the equality if and only if Ω is a disk.

Proof. If we choose uk = min(α, β, γ, δ)1/2aαaβ and vk = min(α, β, γ, δ)1/2aγaδ for

all the α, β, γ, δ ∈ N satisfying α+ β = γ + δ then by Cauchy-Schwarz we have∣∣∣∣∣∣∣∣
∑

α,β,γ,δ>0,
α+β=γ+δ

min(α, β, γ, δ)aαaβaγaδ

∣∣∣∣∣∣∣∣
2

≤

≤

 ∑
α,β,γ,δ>0,
α+β=γ+δ

min(α, β, γ, δ)|aαaβ|2


 ∑
α,β,γ,δ>0,
α+β=γ+δ

min(α, β, γ, δ)|aγaδ|2

 =

=

 ∑
α,β,γ,δ>0,
α+β=γ+δ

min(α, β, γ, δ)|aαaβ|2


2

Developing the sum inside the square,

∑
α,β,γ,δ>0,
α+β=γ+δ

min(α, β, γ, δ)|aαaβ|2 =
∞∑
α=1

∞∑
β=1

|aαaβ|2
α+β∑
γ=1

min(α, β, γ, α+ β − γ)


(3.11)
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Now we can remove the dependance on γ by developing the summation: we can

assume without loss of generality that α ≤ β, then

α+β∑
γ=1

min(α, β, γ, α+ β − γ) =
α−1∑
γ=1

γ +

β∑
γ=α

α+

α+β∑
γ=β+1

(α+ β − γ) =

=
(α− 1)α

2
+ α(β − α+ 1) +

α−1∑
γ=1

γ =

=
(α− 1)α

2
+ αβ − α(α− 1) +

(α− 1)α

2
= αβ

Therefore, (3.11) is left as:

∞∑
α=1

∞∑
β=1

|aαaβ|2αβ =

( ∞∑
α=1

α|aα|2
) ∞∑

β=1

β|aβ|2
 =

( ∞∑
n=1

n|an|2
)2

= A(Ω)2

Finally, since we know ρΩ is a real positive number, we get the inequality we wanted:

2ρΩ
π

=

∣∣∣∣∣∣∣∣
∑

α,β,γ,δ>0,
α+β=γ+δ

min(α, β, γ, δ)aαaβaγaδ

∣∣∣∣∣∣∣∣ ≤ A(Ω)2

For the equality, we do the same as in the first proof of the isoperimetric inequality:

since we only used the Cauchy-Schwarz inequality, we know we have an equality if

and only if the coefficients are proportional, that is, if

uk = Cvk ⇒ aαaβ = Caγaδ, for α+ β = γ + δ; α, β, γ, δ = 1, 2, 3, ...

In particular, for all n we have ana1 = Can−1a2. On one hand, if a1 = 0, since

a1a2n−1 = a2n we have an = 0 ∀n. Then we can assume a1 ̸= 0 and we can find the

an:

an =

(
a2
a1

)
an−1 =

(
a2
a1

)2

an−2 = ... =

(
a2
a1

)n−1

a1, n = 2, 3, ...

obtaining the function

F (z) = a0 + a1

∞∑
n=0

(
a2
a1

)n
zn = a0 +

a1z

1− (a2/a1)z

which a function that sends disks to disks or half-planes, and we know the image

can not be a half-plane so the image must be a disk (and therefore, we have the

equality if and only if Ω is a circle.



24 The Saint-Venant inequality

3.3 Another proof of the Saint-Venant inequality

We will give another proof, without using the Riemann mapping, for simply

connected domains with smooth boundary, based in a proof of Makai (see [11]). In

this case, we will use the variational definition of the torsional rigidity (3.1) and we

will develop the integrals. We recall that if ∂Ω is smooth (it is enough to be C1)

then exists v(x, y) such that we reach the supremum and therefore

ρΩ =
4
(∫

Ω vdxdy
)2∫

Ω v
2
x + v2ydxdy

(3.12)

and since this function must satisfy (3.3), it can not have local minimums and has

to be positive inside Ω.

We can parameterize the level curves of v(x, y) in the following way: given the

level curve v(x, y) = t, we consider the domain D = {(x, y) ∈ R2|f(x, y) > t} and for

each τ ∈ [0, A(Ω)] we consider Dτ such that its area is τ . We will denote by Cτ the

level curve of the boundary ofDτ and we define χ(τ) = v(x, y) for τ ∈ [0, A], which is

an increasing function and χ(A(Ω)) = 0. On the other hand, let s be the arc-length

parameter of Cτ (which can be not connected but the different components must be

connected because it can not have local minima) going from 0 to L(Cτ ), the length

of Cτ . We will assume that all these parameters are well-defined, but we should

see that they are indeed differentiable except on a set of measure 0 and that it is

not a problem for the proof. In particular, the biggest problem is in defining the

parameter s, because we can have different components and when the parameter

cross from one connected component to another it is not differentiable. Because

of this, the proof is not completely rigorous. That said, we introduce these new

coordinates τ and s instead of x and y, and we put the Jacobian as

∆ =

∣∣∣∣∣∂x∂τ ∂y
∂τ

∂x
∂s

∂y
∂s

∣∣∣∣∣ =
∣∣∣∣xτ yτ
xs ys

∣∣∣∣
Notice that from these coordinates we have the following:

∂v

∂τ
=
∂χ

∂τ
= χ′(τ) = vxxτ + vyyτ

∂v

∂s
=
∂χ

∂s
= 0 = vxxs + vyys (3.13)

and since it is the arc-length parameter, x2s + y2s = 1. From this three expressions,

developing (3.13) we have

0 = (vxxs + vyys)
2 = v2xx

2
s + v2yy

2
s + 2vxvyxsys =

= (x2s + y2s)(v
2
x + v2y)− v2yx

2
s − v2xy

2
s + 2vxvyxsys =

= (x2s + y2s)(v
2
x + v2y)− (vyxs − vxys)

2
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and since x2s + y2s = 1, we get:

v2x + v2y = (vyxs − vxys)
2

By expanding and using (3.13) and x2s + y2s = 1 we get

(vyxs − vxys)
2∆2 = (vyxs − vxys)

2(xτys − xsyτ )
2 = ... = (vxys + vyyτ )

2 = χ′(τ)2

so

v2x + v2y = (vyxs − vxys)
2 =

χ′(τ)2

∆2

We can finally make the change of variables and we get the integrals:∫
Ω
v(x, y)dxdy =

∫ A

0

∫ L(Cτ )

0
χ(τ)|∆|dsdτ =

∫ A

0
χ(τ)

∫ L(Cτ )

0
|∆|dsdτ (3.14)

∫
Ω
v2x + v2ydxdy =

∫ A

0

∫ L(Cτ )

0

χ′(τ)2

∆2
|∆|dsdτ =

∫ A

0

∫ L(Cτ )

0

χ′(τ)2

|∆|
dsdτ (3.15)

which can be improper integrals because ∆ can vanish at the boundary of Ω but in

any case it can only vanish in a countably set of points.

Now we will find two inequalities and one equality that involve integrals and

functions of the parameterization in τ and s (see [10]). The first one, using the

Cauchy-Schwarz inequality for integrals we get

L(Cτ )
2 =

(∫ L(Cτ )

0
ds

)2

≤

(∫ L(Cτ )

0
|∆|ds

)(∫ L(Cτ )

0

1

|∆|
ds

)
(3.16)

On the other hand, we take τ0 and we consider the curves L(Cτ0) and L(Cτ0+ϵ).

We know the area of the ring (or rings) Rτ0,ϵ between both curves are exactly

τ0 + ϵ− τ0 = ϵ, so that

ϵ =

∫
Rτ0,ϵ

dxdy =

∫ τ0+ϵ

τ0

∫ L(Cτ )

0
|∆|dsdτ

By the mean value theorem for integrals, exists c ∈ (τ0, τ0 + ϵ) such that∫ τ0+ϵ

τ0

(∫ L(Cτ0 )

0
|∆|ds

)
dτ =

(∫ L(Cc)

0
|∆|ds

)
(τ0 + ϵ− τ0) = ϵ

∫ L(Cc)

0
|∆|ds

Making ϵ go to 0 we get the equality we wanted:

ϵ = ϵ

∫ L(Cc)

0
|∆|ds⇒ 1 =

∫ L(Cc)

0
|∆|ds ϵ→0−−→ 1 =

∫ L(Cτ0 )

0
|∆|ds (3.17)

Finally, the last inequality we will use involves the radius of the biggest circle in-

scribed in Ω that we will call σ = σ(A(Ω)) (in the same way, we will call σ(τ) to



26 The Saint-Venant inequality

the radius of the biggest cercle inscribed in Dτ ) and S will be the area of this circle

(that is, S = πσ(τ)2). On one hand, by the isoperimetric inequality we have

L(Cτ )
2 ≥ 4πτ ⇒ L(Cτ ) ≥

√
4πτ, 0 ≤ τ ≤ AΩ (3.18)

On the other hand, we have the geometrical inequality L(Cτ ) ≥ τ
σ(τ) + πσ(τ) (see

[2, p. 3]) and because of how we defined τ , if τ ′ ≤ τ ′′ then Dτ ′ ⊆ Dτ ′′ . Therefore,

σ(τ ′) ≤ σ(τ ′′). We put g(x) = x + 1
x and we notice that it is non-decreasing for

x > 1. If τ ≥ S = πσ2, then

τ

πσ(τ)2
≥ τ

πσ2
≥ 1 ⇒

√
τ√

πσ(τ)
≥

√
τ√
πσ

≥ 1

so

L(Cτ ) ≥
τ

σ(τ)
+ πσ(τ) =

=
√
πτg

( √
τ√

πσ(τ)

)
≥

√
πτg

( √
τ√
πσ

)
=
τ

σ
+ πσ, τ ≥ S (3.19)

Taking into account (3.18) and (3.19) we get the following inequality:

L(Cτ ) ≥M(τ) =

{√
4πτ si 0 ≤ τ ≤ S

τ
σ + πσ si S ≤ τ ≤ A

(3.20)

Now, we can develop (3.14) and (3.15) by using (3.16), (3.17) and (3.20) (and

integrating by parts in (3.14)):∫
Ω
v(x, y)dxdy =

∫ A

0
χ(τ)dτ = A · χ(A)− 0 · χ(0)−

∫ A

0
τχ′(τ)dτ = −

∫ A

0
χ′(τ)dτ

∫
Ω
v2x + v2ydxdy =

∫ A

0
χ′(τ)2

∫ L(Cτ )

0

1

|∆|
dsdτ =

=

∫ A

0
χ′(τ)2

∫ L(Cτ )

0

1

|∆|

(∫ L(Cτ )

0
|∆|ds

)
dsdτ ≥

≥
∫ A

0
χ′(τ)2L(Cτ )

2dτ ≥
∫ A

0
χ′(τ)2M(τ)2dτ

Directly from the definition (3.12) and using in the last step the Cauchy-Schwarz

inequality we get:

ρΩ =
4
(∫

Ω vdxdy
)2∫

Ω v
2
x + v2ydxdy

≤
4
(∫ A

0 τχ′(τ)dτ
)2

∫ A
0 χ′(τ)2M(τ)2dτ

=

=
4
(∫ A

0
τ

M(τ)χ
′(τ)M(τ)dτ

)2
∫ A
0 χ′(τ)2M(τ)2dτ

≤ 4

∫ A

0

(
τ

M(τ)

)2

dτ
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and from the definition of M(τ) we can calculate the integral so that (we recall

S = πσ2):∫ A

0

(
τ

M(τ)

)2

dτ =

∫ S

0

τ

4π
dτ +

∫ A

S

(
τ

τ
σ + πσ

)2

dτ

=
1

8π
S2 +

1

(πσ)2

∫ A

S

τ2

( τS + 1)2
dτ =

S2

8π
+
S2

π

∫ A
S

1

τ2

(τ + 1)2
dτ

A primitive of the last integral is

g(x) = x− 1

x+ 1
− 2 log(|x+ 1|)

so that, because g(1) = 1− 1
2 − 2 log(2) = 1

2 − 2 log(2),∫ A

0

(
τ

M(τ)

)2

=
S2

π

(
1

8
+ g

(
A

S

)
+ 2 log(2)− 1

2

)
=

=
S2

π

(
−3

8
+
A

S
− 1

A
S + 1

− 2 log(
A
S + 1

2
)

)

Therefore, writing the terms of the Saint-Venant inequality we get:

A2 − 2πρΩ ≥ A2 − 8S2

(
−3

8
+
A

S
− 1

A
S + 1

− 2 log(
A
S + 1

2
)

)
=

= S2

(
A2

S2
+ 3− 8

A

S
+

8
A
S + 1

+ 16 log(
A
S + 1

2
)

)
= S2h

(
A

S

)
(3.21)

with h(x) = x2 − 8x+ 3 + 8
x+1 + 16 log(x+1

2 ). Since h(1) = 0 and

h′(x) = 2x−8− 8

(x+ 1)2
+

16

x+ 1
=

2(2x− 8)(x+ 1)2 − 8 + 16(x+ 1)

(x+ 1)2
=

2x(x− 1)2

(x+ 1)2

we can write (3.21) as an integral and we get

A2 − 2πρΩ ≥ S2(h

(
A

S

)
− h(1)) =

= S2

∫ A
S

1
h′(x)dx = S2

∫ A
S

1

2x(x− 1)2

(x+ 1)2
dx ≥ 0

which is what we wanted to see. Moreover, we see that it is an equality only if

A/S = 1, that is, if A = S and since S is the area of the biggest inscribed circle, if

they are the same must be because Ω is a circle.



Chapter 4

An operator theory approach

We have already proved the isoperimetric inequality and the Saint-Venant in-

equality in two ways, using complex analysis techniques. Our goal will be using

operator theory to prove both inequalities and we will see how they are very related

and that with the same tools we can easily prove another inequality involving the

principal frequency, that we will explain further. In particular, we will use the com-

mutator of the operator Tz(f) := zf in different spaces (we will extend the Hardy

and Bergman spaces to any Ω) to obtain different bounds and get the inequalities

we want. In this chapter we will strongly use the fact that H2 and A2 (and the

extensions we will use) are Hilbert spaces, which is what allow us to work easily

with them.

4.1 Preliminaries

First of all, lets introduce the notation we will use and some basic definitions.

Let T : H → H be a lineal bounded operator wehre H is a Hilbert space with the

inner product ⟨, ⟩ : H ×H → C and we denote ∥·∥ the usual norm induced in H by

the inner product. Let I : H → H be the identity operator. We call the spectrum

of T to sp(T ) = {z ∈ C : T − zI no és invertible}. We denote by T ∗ the adjoint

operator of T , which is the one that satisfies ⟨Tx, y⟩ = ⟨x, T ∗y⟩ ∀x, y ∈ H, and

then we can define the commutator of T as the operator [T ∗, T ] := T ∗T − TT ∗. An

operator is normal if T ∗T = TT ∗ (that is, if ∥[T ∗, T ]∥ = 0) so we can see ∥[T ∗, T ]∥ as

a measure of the abnormality of T . We will say that T is positive if ⟨Tx, x⟩ ≥ 0 for

all x ∈ H and we will write it as T ≥ 0. For normal operators we have the following

property:

Lemma 4.1. Let T : H → H be a normal operator, then∥∥T 2
∥∥ = ∥T∥2

28
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Proof. Let be y ∈ H, we observe that ∥Ty∥2 = ⟨Ty, Ty⟩ = ⟨y, T ∗Ty⟩ = ⟨y, T ∗Ty⟩ =
⟨T ∗y, T ∗y⟩ = ∥T ∗y∥2, so ∥T∥2 = ∥T ∗∥2 and therefore ∥T∥ = ∥T ∗∥. If we apply

this to y = Tx we get
∥∥T 2x

∥∥ = ∥T ∗Tx∥ so
∥∥T 2

∥∥ = ∥T ∗T∥. Now on one hand,∥∥T 2
∥∥ ≤ ∥T∥2. On the other hand, ∀x ∈ H,

∥Tx∥2 = ⟨x, T ∗Tx⟩ ≤ ∥x∥ ∥T ∗Tx∥ ≤ ∥T ∗T∥ ∥x∥2 ⇒ ∥T∥2 ≤ ∥T ∗T∥ =
∥∥T 2

∥∥
We observe that if T is normal, then T 2 is also normal: since ⟨T 2x, y⟩ = ⟨x, T ∗2y⟩,

then (T 2)∗ = T ∗2 and therefore

T 2(T 2)∗ = T 2T ∗2 = TTT ∗T ∗ = (TT ∗)(TT ∗) = T ∗(TT ∗)T = T ∗2T 2 = (T 2)∗T 2

By reiterating the last equality, we get
∥∥T 2n

∥∥ = ∥T∥2
n

∀n ∈ N.
The following lemma is another property of normal operators that we will use

later:

Lemma 4.2. Let T : H → H be a lineal normal operator with H a Hilbert space,

then

∥T∥ = sup
∥x∥=1

|⟨Tx, x⟩|

Proof. We set M := sup∥x∥=1 |⟨Tx, x⟩|. On one hand, by the Cauchy-Schwarz in-

equality, let x ∈ H such that ∥x∥ = 1,

|⟨Tx, x⟩|2 ≤ |⟨Tx, Tx⟩⟨x, x⟩| = |⟨T x

∥x∥
, T

x

∥x∥
⟩| ∥x∥4 ≤ ∥T∥2 ∥x∥4 = ∥T∥2

so ∥T∥ ≥ sup∥x∥=1 |⟨Tx, x⟩|.
On the other hand, we notice that for all y ∈ H we have |⟨Ty, y⟩| ≤ sup∥x∥=1 |⟨Tx, x⟩| ∥y∥

2 =

M ∥y∥2. Therefore, if x, y ∈ H with ∥x∥ = ∥y∥ = 1, by the parallelogram law we

obtain the inequality

|⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩| ≤ |M ∥x+ y∥2 |+ |M ∥x− y∥2 | =
=M(∥x+ y∥2 + ∥x− y∥2) =
= 2M(∥x∥2 + ∥y∥2) = 4M

In particular, taking y = Tx
∥Tx∥ in the inequality we have just seen, and developing

we get:

4M ≥ |⟨T (x+ y), x+ y⟩ − ⟨T (x− y), x− y⟩| =

= |2⟨Tx, y⟩+ 2⟨Ty, x⟩| = 2

∣∣∣∣⟨Tx, Tx

∥Tx∥
⟩+ ⟨ T

2x

∥Tx∥
, x⟩
∣∣∣∣ =

= 2

∣∣∣∣∥Tx∥+ 1

∥Tx∥
⟨T 2x, x⟩

∣∣∣∣
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Let θ ∈ [0, 2π) be such that ⟨T 2x, x⟩ = |⟨T 2x, x⟩|eiθ, since T is normal then e−iθ/2T

is also normal and since |⟨e−iθ/2Tx, x⟩| = |⟨Tx, x⟩| we can use it:

4M ≥ 2

∣∣∣∣|e−iθ/2| ∥Tx∥+ 1

|e−iθ/2| ∥Tx∥
|⟨T 2x, x⟩|

∣∣∣∣⇒
⇒ 2M ≥ ∥Tx∥+ 1

∥Tx∥
|⟨T 2x, x⟩| ≥ ∥Tx∥

Taking the supremum on ∥x∥ = 1 we get

∥T∥ ≤ 2M = 2 sup
∥x∥=1

|⟨Tx, x⟩| (4.1)

However, if we keep manipulating the inequality we get

0 ≤ 2M ∥Tx∥ − ∥Tx∥2 − |⟨T 2x, x⟩| =
= −(M − ∥Tx∥)2 +M2 − |⟨T 2x, x⟩| ≤M2 − |⟨T 2x, x⟩|

and taking the supremum on ∥x∥ = 1 we obtain

sup
∥x∥≤1

|⟨T 2x, x⟩| ≤M2 = ( sup
∥x∥≤1

|⟨Tx, x⟩|)2 (4.2)

Therefore, combining (4.1) and (4.2), taking into account what we have seen in

Lemma 4.1 that for normal operators
∥∥T 2n

∥∥ = ∥T∥2
n

∀n ∈ N (in fact, it is true that

∥Tn∥ = ∥T∥n for all n ∈ N),

∥T∥2
n

=
∥∥T 2n

∥∥ ≤ 2 sup
∥x∥=1

|⟨T 2nx, x⟩| ≤ 2 sup
∥x∥=1

|⟨Tx, x⟩|2n = 2M2n

and finally

∥T∥ ≤ 2−2nM
n→∞−−−→ ∥T∥ ≤M

We will also need to generalize the Hardy and Bergman spaces for more general

domains. To do this, we need to talk about rectifiable curves, which are curves that

have finite length. We will talk more rigorously about it in Chapter 5, but we notice

that in previous chapters we were assuming this by considering domains with smooth

boundary. The domains we will consider are simply connected domains Ω ⊆ C such

that ∂Ω is a rectifiable simple closed curve. In particular, we will generalize the

Hilbert spaces H2(D) and A2(D) to E2(Ω) and A
2(Ω).

At the beggining of the 30s, the theory of Hardy spaces had been well developed

in the unit disk and it was natural to look for generalizations. It was Smirnov [20]

who found a suitable extension to domains like the Ω we just described, also called

Jordan domains. This extension is called the Smirnov class:
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Definition 4.3. Let Ω be a simply connected domain such that ∂Ω is a Jordan curve

(that is, a simple closed curve), let p > 0, let f : Ω → f(Ω) be an analytic function, f

belongs to the Smirnov class Ep(Ω) if it exists a sequence {Cn} of rectifiable Jordan

curves that approches the boundary of Ω such that, if Ωn is the domain with boundary

Cn, then Ωn ⊂ Ωn+1 and also

sup
n

∫
Cn

|f(z)|p|dz| <∞

In fact, this is equivalent to define Ep(Ω) in terms of the level curves of an

arbitrary conformal mapping of D to Ω [3] (this is what we did working with the

Riemann mapping!). We also notice that E2(Ω) is a closed subspace of L2(ds), with

ds the Lebesgue measure in ∂Ω and therefore, the perimeter of Ω is P (Ω) =
∫
ds.

We also extend the Bergman spaces to domains like Ω with the following defini-

tion:

Definition 4.4. Let Ω be a simply connected domain such that ∂Ω is a rectifiable

closed curve and we consider the area measure dA = dxdy/π. We call Bergman

space in Ω to the (closed) subspace of holomorphic functions in L2(Ω, dA), that is,

A2(Ω) = H(Ω) ∩ L2(Ω, dA)

Just for the interested reader, these two spaces are in fact not so different and

if we extend the Bergman spaces with a weight, in the limit, we can reach to the

Smirnov class E2(Ω) (see [18]).

4.2 The isoperimetric inequality via Toeplitz operators

In this section we present the Toeplitz operators in the Smirnov class and we will

use it to proof the isoperimetrical inequality (in fact, we will use the shift operator

Tz that is a particular case of Toeplitz operator). With the same operators, changing

only the space where we consider them, we will get the Saint-Venant inequality and

almost the Faber-Krahn inequality. We start by defining them:

Definition 4.5. Let Ω be a simply connected domain such that ∂Ω is a rectifiable

simply closed curve, let ψ be analytic in Ω, the Toeplitz operator in E2(Ω) with

analytic symbol ψ is Tψ : E2(Ω) → E2(Ω) such that Tψ(f) = ψ · f .

In order to prove the isoperimetrical inequality we follow a proof of Khavinson

[7], which is based in two inequalities of the commutator of Toeplitz operators. The

first one is the Putnam inequality, an upper bound for positive commutators (which

is a more general set of operators). The second inequality is a lower bound of the

commutator specific for Toeplitz operators. We will only prove the second one, since
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in the next sections we will prove an upper bound specific for Toeplitz operators that

it is better than Putnam’s inequality.

As we said, the first inequality we will use is Putnam’s inequality [16], valid for

any lineal bounded operator with positive commutator:

Theorem 4.6 (Putnam’s inequality). Let T : H → H be a bounded lineal operator

such that [T ∗, T ] ≥ 0, then

∥[T ∗, T ]∥ ≤ Area(sp(T ))

π
(4.3)

The other inequality is a lower bound of
∥∥∥[T ∗

ψ, Tψ]
∥∥∥ for Toeplitz operators in

E2(Ω):

Theorem 4.7. Let ψ be an analytic and bijective function in a neighbourhood of Ω,

let be Tψ : E2(Ω) → E2(Ω) the Toeplitz operator with analytic symbol ψ, then

∥∥[T ∗
ψ, Tψ

∥∥ ≥
4Area(sp(Tψ))

2

∥ψ′∥2E2(Ω) P (Ω)
(4.4)

Proof. Let Π : L2(∂Ω, ds) → E2(Ω) be the orthogonal projection (we can consider

it because E2(Ω) is a closed subspace), we have for all g, h ∈ E2(Ω):

⟨T ∗
ψ(g), h⟩ = ⟨g, Tψ(h)⟩ = ⟨g, ψh⟩ = ⟨ψg, h⟩ = ⟨Π(ψg), h⟩ (4.5)

and therefore, T ∗
ψ(g) = Π(ψg). Now since [T ∗

ψ, Tψ] is a normal operator in E2(Ω),

using Lemma 4.2 we have∥∥[T ∗
ψ, Tψ]

∥∥ = sup
g∈E2(Ω)
∥g∥=1

⟨[T ∗
ψ, Tψ]g, g⟩

Let g ∈ E2(Ω) with ∥g∥ = 1, then by the orthogonal projection theorem:

⟨(T ∗
ψTψ − TψT

∗
ψ)g, g⟩ = ⟨Tψ(g), Tψ(g)⟩ − ⟨T ∗

ψ(g), T
∗
ψ(g)⟩ =

= ∥ψg∥2 −
∥∥Π(ψg)∥∥2 = ∥∥ψg∥∥2 − ∥∥Π(ψg)∥∥2 =

= distL2(ψg,E2(Ω))
2

So by the definition of distance,

∥∥[T ∗
ψ, Tψ]

∥∥ = sup
g∈E2(Ω)
∥g∥=1

distL2(ψg,E2(Ω))
2 = sup

g∈E2(Ω)
∥g∥=1

(
inf

f∈E2(Ω)

∥∥ψg − f
∥∥)2
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Now taking g = 1√
P (Ω)

, since in effect ∥g∥2 = 1
P (Ω) ∥1∥L2(ds) =

1
P (Ω)

∫
ds = 1, we

find the lower bound

∥∥[T ∗
ψ, Tψ]

∥∥ ≥ inf
f∈E2(Ω)

∥∥∥∥∥ ψ√
P (Ω)

− f

∥∥∥∥∥
2

=

=
1

P (Ω)

(
inf

f∈E2(Ω)

∥∥∥∥∥ψ − f√
P (Ω)

∥∥∥∥∥
)2

=
1

P (Ω)

(
inf

f∈E2(Ω)

∥∥ψ − f
∥∥)2

(4.6)

Let be f ∈ E2(Ω), by the Riesz theorem we have∥∥ψ − f
∥∥
L2 = sup

h∈L2

∥h∥=1

∣∣⟨ψ − f, h⟩
∣∣ = sup

h∈L2

∥h∥=1

∣∣∣∣∫
C
(ψ − f)hds

∣∣∣∣ (4.7)

Since we want to have ψ′ in the integral and integrate respect dz, a good option

for h would be h(z) = ψ′(z)
∥ψ′∥

dz
ds . Let’s see that indeed ∥h∥E2(Ω) = 1:

∥h∥2E2(Ω) =
1

∥ψ′∥2

∫
∂Ω

|ψ′(z)|2
∣∣∣∣dzds

∣∣∣∣2 ds
and therefore it is enough that |dzds | = 1. Let be ϕ : [0, L(∂Ω)] → C with ϕ(s) =

(x(s), y(s)) the arc-length parameterization of ∂Ω (we recall that x′(s)2+y′(s)2 = 1).

Since dz = dx− idy, at the boundary ∂Ω we have dz = (x′(s)− iy′(s))ds, so we get

|dz| = |x′(s)− iy′(s)||ds| =
√
x′(s)2 + y′(s)2|ds| ⇒ |dz| = |ds|

Now if we plug in h back in (4.7),∥∥ψ − f
∥∥ ≥ 1

∥ψ′∥

∣∣∣∣∫
∂Ω

(ψ − f)ψ′dz

∣∣∣∣ = 1

∥ψ′∥

∣∣∣∣∫
∂Ω
ψψ′dz −

∫
∂Ω
ψ′fdz

∣∣∣∣
We observe that f and ψ′ belong to E2(Ω), so fψ′ ∈ E2(Ω) so by Cauchy’s

theoremi the integral over ∂Ω is 0. Moreover, using Stokes’ theorem and making the

change of variable w = ψ(x+ iy) we get (using that ψ is bijective):∥∥ψ − f
∥∥ ≥ 1

∥ψ′∥

∣∣∣∣∫
∂Ω
ψψ′dz

∣∣∣∣ =
=

1

∥ψ′∥

∣∣∣∣∫
Ω

∂(ψψ′)

∂z
dz ∧ dz

∣∣∣∣ =
=

1

∥ψ′∥

∣∣∣∣∫
Ω
ψ′ψ′dz ∧ dz

∣∣∣∣ =
=

1

∥ψ′∥

∣∣∣∣2i ∫
Ω
|ψ|2dx ∧ dy

∣∣∣∣ =
∣∣∣∣∣2i
∫
ψ(Ω)

dxdy

∣∣∣∣∣ = 2Àrea(ψ(Ω))
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Therefore, taking into account the inequality (4.6) we obtain∥∥[T ∗
ψ, Tψ]

∥∥ ≥ 4Àrea(ψ(Ω))2

∥ψ′∥2E2(Ω) P (Ω)

This inequality already works if we want to proof the isoperimetric inequality,

but in order to find the inequality announced in the theorem we still have to see

that sp(Tψ) = ψ(Ω). Directly from the definition, let be f ∈ E2(Ω), if Gψ(f)(z) =

(ψ(z) − λ)f(z) then f(z) = G−1(G(f))(z) = G(f)(z)
ψ(z)−λ . Now if λ /∈ ψ(Ω) then G−1

is well-defined and is invertible so λ /∈ sp(Tψ). For the reciprocal, if λ /∈ sp(Tψ)

then G−1 is invertible, and therefore ∀z ∈ ψ(Ω), ψ(z)− λ ̸= 0, that is, λ /∈ ψ(Ω) =

ψ(Ω)

To prove the isoperimetric inequality we just have to take ψ(z) = z and apply

both inequalities (4.3) and (4.4). We get sp(Tz) = Ω and P (Ω) = ∥1∥2 = ∥ψ′(z)∥2

so that:

Area(Ω)

π
≥ ∥[T ∗

z , Tz]∥ ≥ 4Area(Ω)2

P (Ω)2
⇒ P (Ω)2

4π
≥ Area(Ω)

4.3 Saint-Venant via Hankel operators: a lower bound

Our purpose is proving the Saint-Venant inequality using operator theory. In

fact, by following the same strategy as in the isoperimetrical inequality we can

prove it except for a factor of 1
2 . Notice that we proved the isoperimetrical inequality

by finding upper and lower bounds to the commutator of Toeplitz operators in the

Smirnov space. It turns out that using the same operators but in the Bergman space

A2(Ω) we get the inequality relating to the torsional rigidity we want. The first we

will do is finding the lower bound in a very similar way to Theorem 4.7 and like Bell,

Ferguson and Lundberg (see [9]) with Putnam’s inequality as an upper bound we

almost get the isoperimetric inequality. The definition for Toeplitz operators in the

Bergman space is needless to say the analog of those defined in the Smirnov class:

Definition 4.8. Let Ω be a simply connected domain such that ∂Ω is a rectifiable

simply closed curve, if ψ is analytic in Ω, the Toeplitz operator in A2(Ω) with analytic

symbol ψ is Tψ : A2(Ω) → A2(Ω) such that Tψ(f) = ψ · f .

Moreover, in an analogous way to (4.5) we know that T ∗
ψf = ΠA2(Ω)(ψf). We

start with a lemma that formulates the norm of the commutator of the Toeplitz

operators as a supremum:

Lemma 4.9. Let Tψ be the Toeplitz operator with analytic symbol ψ, let be h ∈
A2(Ω), then ∥∥[T ∗

ψ, Tψ]
∥∥ = sup

h∈A2(Ω)

(
1

∥h∥2
sup

g∈A2(Ω)⊥

|⟨ψh, g⟩|2

∥g∥2

)
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Proof. By Lemma 4.2, we just have to prove that

|⟨[T ∗
ψ, Tψ]h, h⟩| = sup

g∈A2(Ω)⊥

|⟨ψh, g⟩|2

∥g∥2

On one hand, expanding the inner product we obtain:

⟨[T ∗
ψ, Tψ]h, h⟩ = ⟨Tψh, Tψh⟩ − ⟨T ∗

ψh, T
∗
ψh⟩ =

= ∥Tψh∥2 −
∥∥T ∗

ψh
∥∥2 = ∥ψh∥2 −

∥∥ΠA2(Ω)(ψh)
∥∥2 =

=
∥∥ψh∥∥2 − ∥∥ΠA2(Ω)(ψh)

∥∥2 = d(ψh,A2(Ω)) =

= inf
f∈A2(Ω)

∥∥ψh− f
∥∥2 = inf

f∈A2(Ω)
sup
g∈L2

|⟨ψh− f, g⟩|2

∥g∥2

We can take g ∈ A2(Ω)⊥ so that we obtain the inequality

⟨[T ∗
ψ, Tψ]h, h⟩ ≥ inf

f∈A2(Ω)
sup

g∈A2(Ω)⊥

|⟨ψh, g⟩ − ⟨f, g⟩|2

∥g∥2
= sup

g∈A2(Ω)⊥

|⟨ψh, g⟩|2

∥g∥2

But the extremum is attained by g = ψh − ΠA2(Ω)(ψh) (which belongs to A2(Ω)⊥

by the orthogonal projection theorem), and hence we get the identity we wanted:

since ΠA2(Ω)(ψh) ∈ A2(Ω) then ⟨ΠA2(Ω)(ψh), g⟩ = 0 and therefore:

⟨[T ∗
ψ, Tψ]h, h⟩ ≥

|⟨ψh, g⟩|2

∥g∥2
=

|⟨ψh, g⟩ − ⟨ΠA2(Ω)(ψh), g⟩|2

∥g∥2
=

=
|⟨g, g⟩|2

∥g∥2
=
∥∥ψh−ΠA2(Ω)(ψh)

∥∥2 =
=
∥∥ψh∥∥2 − ∥∥ΠA2(Ω)(ψh)

∥∥2 = ⟨[T ∗
ψ, Tψ]h, h⟩

With this lemma we can get the lower bound for the commutator we were search-

ing and by taking Tz we get an exact inequality that will lead to the Saint-Venant

inequality:

Theorem 4.10. Let Ω be a simply connected domain such that ∂Ω is a rectifiable

Jordan curve, let Tz : A
2(Ω) → A2(Ω) be the Toeplitz operator with symbol z, let ρΩ

be the torsional rigidity, then

∥[T ∗
z , Tz]∥ ≥ ρΩ

Area(Ω)
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Proof. The strategy of the proof is consider the closure of B := {∂ϕ(z,z̄)∂z : ϕ ∈
C∞(Ω), ϕ|∂Ω = 0} instead of the space A2(Ω)⊥ in order to obtain ρΩ. We take
∂ψ
∂z ∈ B and f ∈ A2(Ω), since ψ∂Ω = 0 and using Stokes’ theorem,

0 =

∫
∂Ω
fψdz =

∫
Ω

∂(fψ)

∂z
dz ∧ dz =

∫
Ω
(
∂f

∂z
ψ + f

∂ψ

∂z
)dz ∧ dz =

=

∫
Ω
f
∂ψ

∂z
dz ∧ dz = 2i

∫
Ω
f
∂ψ

∂z
dx ∧ dy = 2i⟨f, ∂ψ

∂z
⟩

Therefore, since f ⊥ ∂ψ
∂z ∀f ∈ A2(Ω) we have that B ⊆ A2(Ω)⊥ (in fact, both sets

are equal but we only need this inclusion). Using Lemma 4.9 and taking h ≡ 1,

∥[T ∗
z , Tz]∥ ≥ sup

g∈A2(Ω)⊥

|⟨z, g⟩|2

∥1∥2 ∥g∥2
≥ sup

ψ∈C∞(Ω)
ψ|∂Ω=0

|⟨z, ∂ψ∂z ⟩|
2

∥1∥2
∥∥∥∂ψ∂z ∥∥∥2 ≥ sup

ψ∈C∞(Ω)

ψ(Ω)⊆R
ψ|∂Ω=0

|⟨z, ∂ψ∂z ⟩|
2

∥1∥2
∥∥∥∂ψ∂z ∥∥∥2

Now using that ψ vanish at the boundary and Stokes’ theorem we can rewrite:

|⟨z, ∂ψ
∂z

⟩| =
∣∣∣∣∫

Ω
z
∂ψ

∂z
dx ∧ dy

∣∣∣∣ = ∣∣∣∣∫
Ω

(
∂(zψ)

∂z
− ψ

)
dx ∧ dy

∣∣∣∣ =
=

∣∣∣∣ 12i
∫
Ω

∂(zψ)

∂z
dz ∧ dz −

∫
Ω
ψdx ∧ dy

∣∣∣∣ =
=

∣∣∣∣ 12i
∫
∂Ω
zψdz −

∫
Ω
ψdx ∧ dy

∣∣∣∣ = ∣∣∣∣∫
Ω
ψdx ∧ dy

∣∣∣∣
And using that ∂

∂z = 1
2

(
∂
∂x − i ∂∂y

)
,

∣∣∣∣∂ψ∂z
∣∣∣∣2 = ∂ψ

∂z

∂ψ

∂z
=

1

4

(
∂ψ

∂x
− i

∂ψ

∂y

)(
∂ψ

∂x
+ i

∂ψ

∂y

)
=

1

4

((
∂ψ

∂x

)2

+

(
∂ψ

∂y

)2
)

Finally, we can obtain ρΩ finishing the proof:

∥[T ∗
z , Tz]∥ ≥ sup

ψ∈C∞(Ω)

ψ(Ω)⊆R
ψ|∂Ω=0

|⟨z, ∂ψ∂z ⟩|

∥1∥2
∥∥∥∂ψ∂z ∥∥∥2 =

=
1

∥1∥2
sup

ψ∈C∞(Ω)

ψ(Ω)⊆R
ψ|∂Ω=0

4
∣∣∫

Ω ψdx ∧ dy
∣∣2∫

Ω(∂xψ
2 + ∂yψ2)dx ∧ dy

=
ρΩ

Àrea(Ω)
(4.8)
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We observe that with this bound, together with Putnam’s inequality (4.3) we

get:

Area(sp(T ))

π
≥ ∥[T ∗, T ]∥ ≥ ρΩ

Area(Ω)
⇒ ρΩ ≤ Area(Ω)2

π

which is the Saint-Venant inequality except for a factor of 1
2 . We will solve this in

the next section.

4.4 Saint-Venant via Hankel operators: an upper bound

Bell, Ferguson and Lundberg conjectured that it was possible to improve by a

factor of 2 the Putnam’s inequality for Toeplitz operators, in order to arrive to the

Saint-Venant inequality. Olsen and Reguera answered in the positive ([18]) proving

a better upper bound for the Toeplitz operators in the Bergman spaces. To do this,

we have to introduce the Hankel operators and we will immediately see its direct

relation with Toeplitz operators and its commutator.

Definition 4.11. Let be ψ holomorphic, the Hankel operator with symbol ψ is

Hψ : A2(Ω) −→ A2(Ω)⊥

f 7−→ (Id−ΠA2(Ω))(ψf) = ψf −ΠA2(Ω)(ψf)

The Hankel operator sends f to the orthogonal of Tψ(f), and in factHψ+Tψ = ψf

(which is the operator in L2(Ω, dA) that multiplies by ψ to given a f ∈ A2(Ω)).

Studying the norm of the Hankel operators i the same as studying the commu-

tator of Toeplitz operators, as we see in the following lemma:

Lemma 4.12. Let be ψ analytic in Ω, let Tψ : A2(Ω) → A2(Ω) and Hψ : A2(Ω) →
A2(Ω)⊥ be the Toeplitz and the Hankel operator respectively, then

∥∥[T ∗
ψ, Tψ]

∥∥ =
∥∥∥Hψ

∥∥∥2
Proof. We check it directly, using Lemma 4.2 and the orthogonal projection theorem
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(in Lemma 4.9 we did a very similar reasoning):∥∥[T ∗
ψ, Tψ]

∥∥ = sup
h∈A2(Ω)
∥h∥=1

⟨(T ∗
ψTψ − TψT

∗
ψ)h, h⟩ = sup

h∈A2(Ω)
∥h∥=1

(
⟨Tψh, Tψh⟩ − ⟨T ∗

ψh, T
∗
ψh⟩
)
=

= sup
h∈A2(Ω)
∥h∥=1

(
∥Tψh∥2 −

∥∥T ∗
ψh
∥∥2) = sup

h∈A2(Ω)
∥h∥=1

(
∥ψh∥2 −

∥∥ΠA2(Ω)(ψh)
∥∥2) =

= sup
h∈A2(Ω)
∥h∥=1

(∥∥ψh∥∥2 − ∥∥ΠA2(Ω)(ψh)
∥∥2) =

= sup
h∈A2(Ω)
∥h∥=1

∥∥(Id−ΠA2(Ω))(ψh)
∥∥2 = ∥∥∥Hψ

∥∥∥2

From now on, we will talk indifferently of the norms of Hψ and the commutator

of Tψ. We will also need the integral expression of the orthogonal projection ΠA2(Ω).

When Ω = D, we can give directly: if f ∈ L2(D),

ΠA2(D)(f(z)) =

∫
D

f(w)

(1− zw)2
dA(w)

However, for a general domain Ω we need the Riemann mapping. As before, let

F : D → Ω be the analytic and bijective Riemann mapping, then

ΠA2(Ω)(f(z)) =

∫
Ω
f(w)

(F−1)′(z)(F−1)′(w)

(1− F−1(z)F−1(w))2
dA(w) (4.9)

We are finally able to prove the upper inequality for the commutator of Toeplitz

operators that improves Putnam inequality. First we will consider only the case

Ω = D (later we will be able to generalize it for all Ω).

Theorem 4.13. Let be ψ analytic in D such that ψ′ ∈ A2(D). Then,

∥∥∥Hψ

∥∥∥2
A2(D)→A2(D)⊥

≤
∥ψ′∥2A2(D)

2

Proof. We consider ψ(z) =
∑

n≥1 cnz
n (we can assume c0 = 0 without loss of gen-

erality). Let be f =
∑

n≥0 anz
n ∈ A2(D), the strategy of the proof is work with the

coefficients and in fact we will only use the ineuality 0 ≤ a2 + b2 − 2ab.

Therefore, the first part of the proof consists in writing
∥∥∥Hψ(f)

∥∥∥ =
∥∥ψf −ΠA2(Ω)(ψf)

∥∥
in terms of the coefficients. Since we are in Ω = D we have an explicit expression
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of the projeccion in A2(D) so we can compute ΠA2(D)(ψf): using
∑

l≥0(n+ 1)xn =
1

(1−x)2 and the orthogonality of the base,

ΠA2(D)(ψz
n) =

∑
k≥1

ck
∫
D

wkwn

(1− zw)2
dA(w) =

=
∑
k≥1

ck

∑
l≥0

(l + 1)zl
∫
D
wlwkwn

dx ∧ dy
π

 =

=
∑
k≥1

ck

∑
l≥0

(l + 1)zl
∫ 1

0

∫ 2π

0
rl+k+nei(n−(l+k))θ rdθdr

π

 =

=
n∑
k=1

ck(n− k + 1)zn−k2

∫ 1

0
r2n+1dr =

=

n∑
k=1

ck
n− k + 1

n+ 1
zn−k =

n−1∑
k=0

k + 1

n+ 1
cn−kz

k

With this, we get Hψ(f) as we want:

Hψ(f)(z) = ψ(z)f(z)−ΠA2(D)(ψf)(z) =
∑
l≥1

∑
n≥0

clanz
lzn︸ ︷︷ ︸

(∗)

−
∑
n≥1

n−1∑
k=0

k + 1

n+ 1
ancn−kz

k

(4.10)

Now to obtain the norm we just have to take the modulus to the squared and

integrate. To do this, we will rearrange several times the sums. First, to integrate

by
∫ 2π
0 dθ/π we will separate it in two sums of powers of z and z:

(∗) =
∑
l≥1

cla0z
l +
∑
n≥1

an

 ∑
1≤l≤n

cl|z|2lzn−l +
∑
l>n

cl|z|2nzl−n
 =

=
∑
l≥1

cla0z
l +
∑
n≥1

an

n−1∑
k=0

cn−k|z|2(n−k)zk +
∑
k≥1

cn+k|z|2nzk


Plugging it in equation (4.10) we get

∑
k≥1

a0ck +∑
n≥1

ancn+k|z|2n
 zk +

∑
n≥1

n−1∑
k=0

ancn−k

(
|z|2(n−k) − k + 1

n+ 1

)
zk =

=
∑
k≥0

zk
∑
n≥0

ancn+k|z|2n +
∑
k≥0

zk
∑

n≥k+1

ancn−k

(
|z|2(n−k) − k + 1

n+ 1

)
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Substituting z = reiθ and taking the modulus squared, since
∫ 2π
0 einθ, eimθdθ = 0 if

n ̸= m, then integrating by
∫ 2π
0 dθ/π we obtain:

∑
k≥1

∣∣∣∣∣∣
∑
n≥0

ancn+kr
2n

∣∣∣∣∣∣
2 ∫ 2π

0
r2k

dθ

π
+
∑
k≥0

∑
n≥k+1

ancn−k

∣∣∣∣r2(n−k) − k + 1

n+ 1

∣∣∣∣2 ∫ 2π

0
r2k

dθ

π
=

= 2
∑
k≥1

r2k

∣∣∣∣∣∣
∑
n≥0

ancn+kr
2n

∣∣∣∣∣∣
2

︸ ︷︷ ︸
(I)

+2
∑
k≥0

r2k
∑

n≥k+1

ancn−k

∣∣∣∣r2(n−k) − k + 1

n+ 1

∣∣∣∣2︸ ︷︷ ︸
(II)

Finally, we just have to integrate over
∫ 1
0 rdr. For simplicity, we will work separately

with (I) and (II) but the steps are analogous. We start expanding the square and

integrating after:

(I) = 2
∑
k≥1

∑
n,m≥0

anamcm+kcn+kr
2n+2m+2k ⇒

⇒ (I ′) = 2

∫ 1

0

∑
k≥1

∑
n,m≥0

anamcm+kcn+kr
2n+2m+2k+1dr =

∑
k≥1

∑
n,m≥0

anamcm+kcn+k
n+m+ k + 1

Now we make a change of coefficients by setting an = bn+1(n+1) and we adjust the

indices of summation slightly:

(I ′) =
∑
k≥1

∑
n,m≥0

bn+1bm+1cm+kcn+k
(n+ 1)(m+ 1)

n+m+ k + 1
=

=
∑
k≥0

∑
n,m≥1

bnbmck+mck+n
nm

n+m+ k

We can easily check that ∀z, w ∈ C, 2Re (zw) = zw + zw ≤ |z|2 + |w|2 expanding

the inequality |z − w|2 ≥ 0 (this is the only inequality we use in the proof) and

therefore,

(I ′) =
∑
k≥0

∑
n,m≥1

bnck+mbmck+n
nm

n+m+ k
=

=
∑
k≥0

1

2

 ∑
n,m≥1

2Re(bnck+mbmck+n)
nm

n+m+ k

 ≤

≤
∑
k≥0

1

2

 ∑
n,m≥1

(|bnck+m|2 + |bmck+n|2)
nm

n+m+ k

 =

=
∑
k≥0

∑
n,m≥1

|bnck+m|2
nm

n+m+ k
:= (I ′∗)
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where in the last equality we used that n and m are symmetric.

For (II) we repeat exactly the same procedure:

(II) = 2
∑
k≥0

∑
n,m≥k+1

anamcm−kcn−k

(
r2n+2m−2k − r2n

k + 1

m+ 1

−r2m k + 1

n+ 1
+ r2k

(k + 1)2

(n+ 1)(m+ 1)

)
so

(II ′) =
∑
k≥0

∑
n,m≥k+1

anamcm−kcn−k

(
(n+ 1)(m+ 1)− (k + 1)(m+ n− k + 1)

(n+ 1)(m+ 1)(n+m− k + 1)

)
=

=
∑
k≥1

∑
n,m≥1

bn+kbm+kcmcn
mn

n+m+ k
≤

≤
∑
k≥1

1

2

∑
n,m≥1

(
|bn+kcm|2 + |bm+kcn|2

) mn

n+m+ k
=

=
∑
k≥1

∑
n,m≥1

|bn+kcm|2
nm

n+m+ k
:= (II ′∗)

Rearranging the summations and using that for an arithmetic sum we

have
∑k

n=1 na0 =
a0k(1+k)

2 ,

(I ′∗) =
∑
n≥1

∑
m≥1

∑
k≥m

|bnck|2
nm

n+ k
=
∑
n≥1

∑
k≥1

k∑
m=1

|bnck|2
nm

n+ k
=

=
∑
n≥1

∑
k≥1

|bnck|2
k∑

m=1

nm

n+ k
=
∑
n≥1

∑
k≥1

|bnck|2
nk(1 + k)

2(n+ k)

(II ′∗) =
∑
m≥1

∑
n≥1

∑
k≥n+1

|bkcm|2
nm

m+ k
=
∑
m≥1

∑
k≥2

|bkcm|2
k−1∑
n=1

nm

m+ k
=

=
∑
m≥1

∑
k≥2

|bkcm|2
m(k − 1)k

2(m+ k)
=
∑
m≥1

∑
k≥1

|bkcm|2
m(k − 1)k

2(m+ k)

Finally, we obtain the upper bound for
∥∥∥Hψ(f)

∥∥∥ in terms of the coefficients an and

cn by substituting an = bn+1(n+ 1), getting the norms of f and ψ:

(I ′∗) + (I ′′∗ ) =
∑
n≥1

∑
k≥1

|bnck|2
(
nk(1 + k)

2(n+ k)
+
nk(n− 1)

2(n+ k)

)
=
∑
n≥1

∑
k≥1

|bnck|2
nk

2
=

=
∑
n≥1

∑
k≥1

|an−1ck|2
k

2n
=

1

2

∑
n≥0

∑
k≥1

|anck|2
k

n+ 1
=

=
1

2

∑
n≥0

|an|2

n+ 1

∑
k≥1

|ck|2k

 =
1

2
∥f∥2A2(D)

∥∥ψ′∥∥2
A2(D)
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We can easily extend this theorem to domains like Ω so that we obtain the

following corollary:

Corollary 4.14. Let Ω be a simply connected domain such that ∂Ω is a rectifiable

simply closed curved, let ψ be analytic, then∥∥∥Hψ

∥∥∥2
A2(Ω)→A2(Ω)⊥

≤
∥ψ′∥2A2(Ω)

2

Proof. To prove it, we have to go from a Ω to D and then use Theorem 4.13. To

do this, we will need the projeccion of A2(Ω) that we have seen in (4.9). Then, let

be F : D → Ω the Riemann mapping, if f ∈ A2(Ω) then we have ΠA2(Ω)(f) = f

(because it is a projeccion). Therefore, we can write explicitly the Hankel operator:

Hψ(f)(z) = ψ(z) ΠA2(Ω)f(z)−ΠA2(Ω)(ψf)(z) =

=

∫
Ω
f(w)

(F−1)′(z)(F−1)′(w)

(1− F−1(z)F−1(w))2
(ψ(z)− ψ(w))

dw ∧ dw
−2iπ

If we do the changes of variables z = F (ξ) and w = F (τ), we obtain

Hψ(f ◦ F )(ξ) =
∫
D
f ◦ F (τ)(F

−1)′(F (ξ))(F−1)′(F (τ))

(1− ξτ)2

(ψ ◦ F (ξ)− ψ ◦ F (τ)) F
′(τ)dτ ∧ F ′(τ)dτ

−2iπ
=

=

∫
D
f ◦ F (τ) (ψ ◦ F (ξ)− ψ ◦ F (τ))F ′(τ)F ′(τ)

F ′(F−1 ◦ F (ξ))F ′(F−1 ◦ F (τ))(1− ξτ)2
dA(τ) =

=

∫
D
f ◦ F (τ)F

′(τ)

F ′(ξ)

1

(1− ξτ)2
(ψ ◦ F (ξ)− ψ ◦ F (τ))dA(τ)

Therefore,

F ′(ξ)Hψ(f ◦ F )(ξ) = Hψ◦F (F (τ)(f ◦ F )(τ))

so by taking norms we have the identity∥∥∥Hψ

∥∥∥
A2(Ω)→A2(Ω)

=
∥∥∥Hψ◦F

∥∥∥
A2(D)→A2(D)

Finally, we just have to apply this equality in order to go from Ω to D and then use

Theorem 4.13: ∥∥∥Hψ◦F

∥∥∥
A2(D)→A2(D)

≤
∥(ψ ◦ F )′∥2A2(D)

2
=

∥ψ′∥2A2(D)

2
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With this corollary and with Theorem 4.10, by taking ψ = z we directly obtain

exactly the Saint-Venant inequality:

Àrea(Ω)

2π
=

∥1∥2A2(Ω)

2
≥ ∥Hz∥2 = ∥[T ∗

z , Tz]∥ ≥ ρΩ

Àrea(Ω)
⇒ Àrea(Ω)2

2π
≥ ρΩ

4.5 An approximation to the Faber-Krahn inequality

With the same strategy, using Toeplitz operators and all the tools we developed,

we can still get very close to another important geometric inequality: the Faber-

Krahn inequality, which bounds the principal frequency of a domain (which we will

immediately explain) in terms of its area. The principal frequency of a domain Ω is

the lowest frequency that a drum of shape Ω and uniform density and tension would

sound. Mathematically, given a domain Ω ⊆ R2, the oscilation frequencies of the

drum are given by the eigenvalues of the Laplacian −∆Ω with the Dirichlet boundary

conditions, that is, with eigenfunctions that vanish at the boundary. Therefore, we

have the following definition:

Definition 4.15. Let Ω be a simply connected domain such that ∂Ω is a simply

closed smooth curve, the principal frequency of Ω is the smallest eigenvalue λΩ such

that for some u : L2(Ω, dA) → L2(Ω, dA) satisfies{
∆u+ λΩu = 0

u|∂Ω = 0

We can also give a variational definition like we did with the torsional rigidity:

λ′Ω := inf
u∈C∞

0 (Ω)

∫
Ω |∇u|2∫
Ω u

2
(4.11)

For the sake of completeness we will prove the equivalence of the two definitions:

Proposition 4.16. Let Ω be a simply connected domain such that ∂Ω is a simply

closed smooth curve, let λΩ be the principal frequency of Ω, if the infimum is attained

then it is attained by the eigenfunction of λΩ and λΩ = λ′Ω.

Proof. On one hand, let ψΩ be the eigenfunction of λΩ, since it is smooth enough

(see [12]), by Green’s first identity and using that ψΩ vanishes at the boundary,

∆ψΩ + λΩψΩ = 0 ⇒
∫
Ω
(∆ψΩ + λΩψΩ)ψΩdA = 0 ⇒

⇒ λΩ

∫
Ω
ψ2
ΩdA = −

∫
Ω
ψΩ∆ψΩdA =

∫
Ω
|∇ψΩ|2dA⇒ λΩ =

∫
Ω |∇ψΩ|2dA∫

Ω ψ
2
ΩdA
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On the other hand, if there is a function ψ that attaines the infimum, we know that

for any function w ∈ C∞
0 (Ω) and for any ϵ > 0 we must have∫

Ω |∇ψ|2∫
Ω ψ

2
= J (ψ) ≤ J (ψ + ϵw) =

∫
Ω |∇(ψ + ϵw)|2∫

Ω(ψ + ϵw)2

where J (f) :=
∫
Ω |∇f |2∫
Ω f

2 . In particular, if we see J (ψ + ϵw) as a function of ϵ it has

a minimum at ϵ = 0. Let us now compute this idea more explicitly:

J (ψ + ϵw) =

∫
Ω |∇(ψ + ϵw)|2∫

Ω(ψ + ϵw)2
=

∫
Ω |∇ψ|2 + 2ϵ

∫
Ω∇ψ · ∇w + ϵ2

∫
Ω |∇w|2∫

Ω ψ
2 + 2ϵ

∫
Ω ψw + ϵ2

∫
Ωw

2

so that

0 =
d

dϵ

∣∣∣∣
ϵ=0

J (ψ + ϵw) =

=
(2
∫
Ω∇ψ · ∇w)(

∫
Ω ψ

2)− (
∫
Ω |∇ψ|2)(2

∫
Ω ψw)

(
∫
Ω ψ

2)2
= 2

∫
Ω∇ψ · ∇w − J (ψ)

∫
Ω ψw∫

Ω ψ
2

Therefore, since λ′Ω = J (ψ),

0 =

∫
Ω
∇ψ · ∇w − λ′Ω

∫
Ω
ψw, ∀w ∈ C∞

0 (Ω)

Integrating by parts we have

0 = −
∫
Ω
∆ψ · w − λ′Ω

∫
Ω
ψw = −

∫
Ω
(∆ψ + λ′Ωψ)w, ∀w ∈ C∞

0 (Ω)

And since we have it for any function w ∈ C∞
0 (Ω), it implies that

∆ψ + λ′Ωψ = 0

Therefore, we have λΩ = λ′Ω because if λ′Ω < λΩ then λΩ is not the smallest eigen-

value, and viceversa, if λ′Ω > λΩ then λ′Ω it is not the minimum, arriving to contra-

diction.

In the same way as the area with the isoperimetric inequality and the torsional

rigidity with the Saint-Venant inequality, we can bound the principal frequency λΩ
of a general Ω in terms of the principal frequency of the unit disk, λD. We have then

the exact inequality:

λΩ ≥ λD =
j20π

Àrea(Ω)

with j0 ≃ 2.405 the first positive root of the Bessel function J0(x). This inequality

was conjectured by Lord Rayleight in his work on the theory of sound [17] at the
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end of the 19th century and was proved independently by G.Faber and E.Krahn

(see [8]). With the operator theory tools we developed we will get very close to this

Faber-Krahn inequality, but it is still an open problem if we can prove it in this way.

We will still use the Toeplitz operator in the Bergman space with symbol z and the

improved Putnam’s inequality by Olsen and Reguera, and we only have to find a

new lower bound for the commutator of Tz involving λΩ. The closest one has been

proved by Bell, Ferguson and Lundberg [9]:

Theorem 4.17. Let Ω be a simply connected domain such that ∂Ω is a rectifiable

simple closed curve, let Tz : A
2(Ω) → A2(Ω) be the Toeplitz operator in A2(Ω) with

symbol z, let λΩ be the principal frequency of Ω, then

∥[T ∗
z , Tz]∥ ≥ 42π

λ2ΩÀrea(Ω)

Proof. If we start from the proof of theorem 4.10, we just have to choose another ψ

for the supremum. Therefore, by (4.8) we have:

∥[T ∗
z , Tz]∥ ≥ sup

ψ∈C∞
0 (Ω)

ψ(Ω)⊆R

4|
∫
Ω ψdA|

2

∥∇ψ∥2 ∥1∥2
= sup

ψ∈C∞
0 (Ω)

ψ(Ω)⊆R

4|
∫
Ω ψdA|

2

∥∇ψ∥2 ∥1∥2
(4.12)

We choose ψ = ψΩ to be the eigenfunction of λΩ for the Laplacian −∇Ω with Dirich-

let conditions as in proposition 4.16. We have seen that minimizes the variational

definition (4.11) of the principal frequency so it satisfies:

λΩ =

∫
Ω |∇ψΩ|2∫

Ω ψ
2
Ω

We will still need another property of ψΩ: we can bound the integral
∫
Ω ψΩdA

in terms of the norm ∥ψΩ∥A2(Ω). We have the following inequality (see [14]):(∫
Ω
ψΩdA

)2

≥ 4π

λΩ
∥ψΩ∥2A2(Ω)

Substituting in 4.12 we get the exact inequality we wanted (it is attained if Ω is a

disk):

∥[T ∗
z , Tz]∥ ≥

4|
∫
Ω ψΩdA|2

∥∇ψΩ∥2 ∥1∥2
≥ 4π

λΩ Àrea(Ω)

∥ψΩ∥2

∥∇ψΩ∥2
=

42π

λ2ΩÀrea(Ω)

Now together with corollary 4.14, that we recall gives us an upper bound of Tz,

we have left a expression like the Faber-Krahn inequality:

Àrea(Ω)

2π
≥ ∥[T ∗

z , Tz]∥ ≥ 42π

λ2ΩÀrea(Ω)
⇒ λΩ ≥ 4

√
2π

Àrea(Ω)
≃ 0.978

j20π

Àrea(Ω)

which only differs in a small constant, very close to the original inequality.



Chapter 5

Extension to rectifiable curves

We have already proved the isoperimetric inequality for domains with smooth

boundary (for example, we have proved it for C1 in section 2.2 and for C3 in section

2.3). In this section we will always consider Jordan curves, which we recall they are

simple and closed curves in the plane. We would like to extend it to any domain

with a rectifiable boundary, and from there it is easy to extend it to any domain in

R2 (see Corollari 5.7). We recall that a curve is rectifiable if it has finite lenght, but

since we don’t have a smooth curve, we need to define properly what we understand

by the length of a given contiuous curve. A good way to define it is, given a set

of points, construct a polygon ”following” the curve and consider its length, then

the length of the curve will be the supremum of the lengths taken over all possible

polygons. Specifically, from [4, p. 44],

Definition 5.1. Let C be a Jordan curve, let w : [0, 2π] → R2 be a continuous

parameterization of C and we consider T = {t0 < ... < tn} as all the finite partitions

of [0, 2π] with a given n. We define the length of C as the supremum of the length

of the inscribed polygonals, that is,

L = sup
{t0,...,tn}
n∈N

n∑
k=1

||w(tk)− w(tk−1)||

Definition 5.2. We say C is rectifiable if L <∞.

If we consider this property in functions on a closed interval instead of curves,

we say they are of bounded variation. In fact, both definitions are analogous:

Definition 5.3. Sigui f : [a, b] → C una funció cont́ınua, direm que és de variació

acotada o BV (bounded variation) si considerant totes les particions finites {x0, ..., xn}
de [a, b] amb n arbitrari tenim

sup
{x0,...,xn}

n∈N

n∑
k=1

|f(xk)− f(xk−1)| <∞

46
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We see then that if we have a parameterization w : [0, 2π] → C of C, asking

for C rectifiable is the same as asking w to be of bounded variation. The funtions

in this class are a.e. differentiable but not absolutely continuous, and in fact the

absolutely continuous functions are of BV.

One important property of this class is that being of BV for a function f : S1 → C
is exactly the necessary condition to characterize an harmonic function in the disk

(in fact we can construct the whole function in D) and viceversa, given an harmonic

function in the disk, its restriction to the boundary must be of BV.

We will need an important characterization of the Hp spaces for p ∈ [1,∞]: they

are subspaces of Lp, in particular, the subspace of functions in Lp without negative

Fourier coefficients, that is,

c−n =

∫ 2π

0
einθF (eiθ)dθ = 0 (5.1)

We can identify it like this because given an analytic function in the disk, the Fourier

coefficients of the restriction to S1 are the same as the Taylor coefficients in the disk

[4, p. 38], and the way to go from one to the other is with the Poisson-Stieltjes

integral. For our purpose we only need to define it for analytic functions (in fact we

only need a the first derivative to be continuous) but we can extend it to functions

of BV with the Riemann-Stieltjes integral.

Definition 5.4. Let f(t) : [0, 2π] → C be an analytic function, we define the Poisson

kernel for 0 < r < 1 as

P (reiθ) = P (r, θ) =

∞∑
−∞

r|n|einθ =
1− r2

1− 2rcosθ + r2

and the Poisson-Stieltjes integral is

u(reiθ) =

∫ 2π

0
P (r, θ − t)f ′(t)

dt

2π

and we have u(eiθ) = f(θ) (see [4, p. 2]).

Now we take as always Ω ∈ C such that ∂Ω is a Jordan curve and let F : D → Ω

be the Riemann conformal mapping, if ∂Ω is rectifiable, we can guarantee a certain

regularity of the derivatives of F in D:

Theorem 5.5. Let be F (z) : D → Ω conformal such that ∂Ω is a Jordan curve. If

∂Ω is rectifiable then F ′ ∈ H1.

Proof. Given F (z) conformal in the disk |z| < 1 in Ω by a Carathéodory’s theorem

[15] we can always find a continuous and bijective extension in |z| ≤ 1. Let’s see how,
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because of being a function of BV at the boundary (we have that ∂Ω is rectifiable),

this extension is absolutely continuous at the boundary. Let F (eiθ) = µ(θ) be the

continuous extension at the boundary with µ(0) = µ(2π) and let F (z) =
∑∞

n=0 anz
n,

which belongs to H1 for being analytic in D. We have already said in (5.1) that the

negative Fourier coefficients of F (eiθ) are 0. Let’s prove it: on one hand,

a−n :=
1

2π

∫ 2π

0
F (reit)rneintdt =

1

2π

∞∑
0

anr
2n

∫ 2π

0
e2intdt = 0 n = 1, 2, 3, ...

and the negative Fourier coefficients are

c−n =
1

2π

∫ 2π

0
eintF (eit)dt

Therefore,

|r−na−n−c−n| ≤
1

2π

∣∣∣∣∫ 2π

0
eint(F (reit)− F (eit))dt

∣∣∣∣ ≤ 1

2π

∫ 2π

0
|F (reit)−F (eit)|dt r→1−−−→ 0

so indeed c−n = 0, that is,

c−n =
1

2π

∫ 2π

0
einθF (eiθ)dθ = 0 ∀n = 1, 2, 3, ...

Now, integrating by parts, for n = 1, 2, 3, ... we have

0 =

∫ 2π

0
einθF (eiθ) =

einθ

in
F (eiθ)

∣∣∣∣2π
0

−
∫ 2π

0

einθ

in
dF (eiθ) =

1

in

∫ 2π

0
einθdF (eiθ)

which implies ∫ 2π

0
einθdF (eiθ) = 0, ∀n = 1, 2, 3, ...

Since F (eiθ) is of BV, then by the F. and M. Riesz theorem we have that F (eiθ) is

absolutely continuous [4, p. 41].

We have F (z) analytic in |z| < 1 and continuous in |z| ≤ 1, then the Poisson-

Stieltjes integral of its boundary function is

F (reiθ) =
1

2π

∫ 2π

0
P (r, θ − t)F (eit)dt

Differentiating with respect to θ,

ireiθF ′(reiθ) =
1

2π

∫ 2π

0

∂P (r, θ − t)

∂θ
F (eit)dt =

1

2π

∫ 2π

0
−∂P (r, θ − t)

∂t
F (eit)dt

and integrating by parts, using that F (eit) is absolutely continuous and taking z =

reiθ,

izF ′(z) =

∫ 2π

0
P (r, θ − t)ieitF ′(eit)dt

So we have izF ′(z) ∈ H1 which implies F ′(z) ∈ H1.
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Since for each r ∈ (0, 1) we have

Lr = r

∫ 2π

0
|F ′(reiθ)|dθ <∞

and these integrals are non-decreasing (because |F ′(reiθ)| ≤ |F ′(r′eiθ)| if r < r′, for

being F ′ analytic in |z| ≤ 1), then exists the limit when r → 1. Finally, we just have

to see that indeed

L = lim
r→1

Lr

but we have already seen in the proof of theorem 5.5 that F (eiθ) is in fact absolutely

continuous, so the length of ∂Ω is actually given by (see [13, p. 231]):

L =

∫ 2π

0
|F ′(eiθ)|dθ

so finally,

Ar(Ω) ≤
L2
r

4π

r→1−−−→ A(Ω) ≤ L2

4π

We have proved that

Theorem 5.6 (Isoperimetric Inequality II). Let be Ω ⊆ R2 such that ∂Ω is a recti-

fiable Jordan curve, then

A(Ω) ≤ L(∂Ω)2

4π
(5.2)

and we have an equality if and only if Ω is a disk. [22]

Moreover, is easy to extend it for any domain of the plane:

Corollary 5.7. Let Ω ⊆ R2 be any bounded domain, rectifiable or not, and with

possible holes, then we still have the isoperimetrical inequality (5.2).

Proof. If it is not rectifiable, since the perimeter is infinite, we have the inequality

trivially. On the other hand, if it is a rectifiable domain and we make any hole, the

perimeter increases while the area decreases, and hence the inequality still holds.



Conclusion

We have seen with the isoperimetric inequality how a simple question about

shapes can be approached in so many ways, and although it has been around since

the Greeks it is still of interest proving it with new mathematical tools. This classic

isoperimetric inequality leads us to consider inequalities of other quantities with the

same basic property: the circle is the domain that reaches the equality. We have also

seen how the Hardy and Bergman spaces arise naturally when working on the plane

and how they are the natural spaces to work when considering the perimeter or the

area, and in consequence other geometrical quantities that depend on the shape of

the domain. In particular, we considered the torsional rigidity and the principal

frequency, which are substantially more complex and in general we can only find

approximations of them.

After proving some inequalities in the classical way, our goal was to prove them

again with several recent results that involve Toeplitz operators. In consequence,

we have seen how with really smooth changes we can prove the first two inequalities

and almost the third one. To do this, we had to work again with the Hardy and

Bergman spaces but using the structure of Hilbert space of the case p = 2. One

kind of operators that we have been found to be important is precisely the Toeplitz

operators, and in this work we have seen its close relation with geometric quanti-

ties. These operators and spaces are still a wide area of interest and we have only

presented a tiny portion of its applications.

Although the principal goals of the work have been achieved, one possible exten-

sion would be proving the Faber-Krahn inequality with operator theory (this is still

an open problem) in the same way we proved the other inequalities, which would be

given by a lower bound of the commutator of Toeplitz operators. Another natural

extension is dealing with higher dimensions, and we notice how in this case we could

not work like the first proof due to its dependence of the dimension 2. However, it

is easy to consider Bergman spaces of a domain Ω ⊆ Cn and take similar arguments

[9].
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32(2) (2016), pp. 495–510. url: http://www.jstor.com/stable/3647909.

[19] Walter Rudin. Real and Complex Analysis. Mathematics Series. McGraw-Hill

Book Company, 1987. isbn: 0-07-054234-1.
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