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Chapter 1

Introduction

1.1 Some Notes on Dynamic Games

The content of this thesis falls within the field of dynamic games. In this introductory chapter,

we will briefly describe some basic game theoretical concepts which will be appear frequently

throughout the thesis, and which may be unfamiliar to the reader. We will also provide a

summary of the content of the thesis. For a general introduction to dynamic games with

applications in economics, see Dockner et al (2000).

The key aspect of a dynamic game is the presence of time and repeated action. As a rule,

each agent (or player) has preferences over his own individual actions, both present and future,

and over the “state of the game”, which evolves over time as a result of the actions of all agents.

In a noncooperative solution to the game (also known as a competitive solution), each agent

chooses the decision rule (also known as a control rule or a strategy) that he considers to be

optimal, given the decision rules of the other agents. In a cooperative solution, the agents

act jointly, by forming a coalition such that the decision rule of each member is decided upon

by the coalition as a whole. It is said that the coalition is stable if each agent is at least as

well off (as measured by his own subjective preferences) in the cooperative solution than in

the noncooperative solution. An important part of research in dynamic games is finding the

conditions under which, for particular games, coalitional stability is obtained.1

In economics, there’s a long-standing tradition of analyzing dynamic games by using the

so-called discounted utility model. This framework goes back at least to Samuelson (1937). It

assumes that each agent, in each time period, obtains some amount of utility (or happiness)

from his actions and from the state of the game. Utility obtained at some future point in time

is discounted relative to present utility at some constant rate, which reflects the impatience

inherent in human decision making: other things being equal, it is preferable to receive a given

1Some papers analyze coalitions that contain some but not all of the agents in the game. This is sometimes

referred to as partial cooperation (see e.g. Breton and Keoula (2014)). The coalition that contains all agents is

then referred to as the global coalition. We shall not deal with this type of solution in this thesis.

1



1.1. Some Notes on Dynamic Games 2

amount of utility sooner than later. The sum of discounted utilities that an agent expects to

receive is referred to as his intertemporal utility.

Mathematically, we can describe this as follows. Let time be indexed by t ∈ 0, 1, ..., T . The

(discrete time) intertemporal utility function of agent i at time t can be represented as

Ji,t(xt, cs) = Et

[
T∑
s=t

θi,s−tUi(xs, cs) | xt

]
.

All the intertemporal utility functions that we use in this thesis can be written in this general

form.2 The notation is as follows.

• xt is a vector that captures the state at time t of the system (of the game) within which

the agent acts. It contains all the state variables.

• ct contains the control variables at time t, which the agents have direct control over, and

which they use to steer the system. We will write ci,t to refer to the particular variables

that are chosen by agent i at time t.

• Ui(xs, cs) is the agent’s utility function, which determines the amount of utility received

at time s, as a function of the state and control variables.

• θi,t ∈ (0, 1] is the agent’s discount function, which determines the discounting of utility

obtained t periods of time into the future.

• T is the end of the planning horizon, the time at which the game ’ends’. If T → ∞, we

say that the planning horizon is infinite.

In many applications, xt is not a vector but a single variable, which captures the state of the

system in a single number. In the applications of this thesis, we will interpret state variables

as the gross domestic product and rate of price inflation of a country, as the wealth owned by

a household and as the biomass of fish in a territory of water. The economic interpretation

generally imposes constraints on which values the variables are allowed to take. For example,

a variable that represents a quantity must necessarily be nonnegative.

The law which determines how the state develops across time can be written as

Xt+1 = f(xt, ct, Zt+1) ,

where Zt+1 are random events that affect the development of the state variables. Random, in

this context, means that the outcome of the event is unknown to the agents up until the point

in time when the event takes place. This set of difference equations can be referred to as the

dynamics of the game.3 Depending on the application, the utility functions and the dynamics

2If time is continuous, we would write an integral instead of a summation sign.
3If time is continuous, we obtain the corresponding set of stochastic differential equations.
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might have other names. In the business cycle model of Chapter 2 of this thesis, we will refer

to the utility functions as loss functions. In the fish war model of Chapter 4 we will refer to

the dynamics as a growth function.

1.2 Solution Concepts

In each chapter of this thesis, we will look for cooperative and noncooperative solutions to

particular dynamic games. Hence, we need to specify precisely what we mean by these terms.

The decision rules that solve the game determine a particular control variable c∗i,t for each

agent and time period. In this thesis, we will invariably look for so-called Markov decision rules,

which means that the decision rule is a function of the current state and time. More precisely,

the information which the agents use to make decisions is completely captured by the current

state and time. Hence, we will write c∗i,t = φi,t(xt). If the decision rules are stationary, i.e.

independent of time, we write c∗i = φi(xt). A Markov decision rule has convenient properties

that simplify our analysis. They imply that past events effect current behavior only through

the current state, which is an intuitive property of the solution. For example, for a person who

is drawing up a plan for future business expenditures, what’s relevant is his current budget,

not how that budget developed in the past.

In a noncooperative solution, we will impose that the decision rules φi,t(xt) have the property

of being a subgame perfect Nash equilibrium to the game. This implies, first, that the solution

must be an intertemporal equilibrium, meaning that at no potential state and time (that is, no

(xt, t)) does agent i have the incentive to substitute some other decision rule for φi,t(xt). It also

implies that the solution must be an intratemporal equilibrium, meaning that within each time

period, the action of each agent is the optimal response to the actions of the other agents. It

follows that φi,t(xt) must satisfy

φi,t(xt) = arg sup
ci,t

Ji,t(xt, ci,t, φ−i,t(xt), φs(xs))

for all (i, xt, t), where s = t + 1, ..., T . That is, for each agent and in each time period, it is

optimal to act in accordance with the decision rule φi,t(xt), conditional on that every other

agent does so in the present, and that all agents do so in the future.

In a cooperative solution, the criteria for a solution are different. This is because when the

agents form a coalition and act jointly, the “entity that acts” is in effect the coalition rather

than the individual agents. That is, there is in effect only one agent. When there is only

one agent in the game, the concept of an intratemporal equilibrium breaks down. Hence, the

solution only needs to satisfy the criterium for an intertemporal equilibrium. The intertemporal

utility function of the coalition can be written as

Jt(xt; cs) =
N∑
i=1

λiJi,t(xt, cs) , (1.1)
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which is a weighted sum of the intertemporal utility functions of the N number of agents. The

relative sizes of the weights λi determine the relative influence of the agents over the behavior of

the coalition. The vector φt(xt), which contains the equilibrium decision rules for each member

of the coalition must then satisfy

φt(xt) = arg sup
ct

Jt(xt, ct, φs(xs)) , (1.2)

where s = t + 1, ..., T . That is, in each time period, it is optimal for the coalition to act in

accordance with the decision rule φt(xt), conditional on that the coalition does so in every

future period.

In most of the games we solve in this thesis, we will restrict ourselves to finding decision

rules in which the control variables are linear in the state variable(s) and independent of time

(other than indirectly through the state). These are known are linear decision rules. Within

this group of decision rules, we will find in our models that there are unique decision rules that

satisfies the properties of cooperative and noncooperative solutions.

The intuition of an equilibrium solution for noncooperation and cooperation, as laid out

above, is straightforward in discrete time models. When time is continuous, it is less obvious

how an equilibrium solution shall be defined. The reason is that when a time period collapses

into a single point, any action taken during that period has no impact on the course of events

(i.e. on the development of the state variables xt), nor on the intertemporal utility functions.

An elegant way around this problem was formulated in Ekeland and Pirvu (2008) and Ekeland

and Lazrak (2010). They allowed the agent at time t to control action over the interval [t, t+ε],

thus allowing him to gain some influence over the development of the state of the system for

an extended period. Then, by taking the limit ε → 0, the period vanishes, but the limit is

constructed in such a way that the essence of the behavior is preserved. The mathematical

details of this solution concept are quite involved, and we shall not bother with them at this

stage of our discussion.4

An alternative definition of an equilibrium solution was suggested by Karp (2007). His

approach is to first discretize the entire time interval [0, T ] into periods of length ε. Then, the

problem can be solved as a discrete time problem. The variable ε will appear in the solution,

and by taking the formal limit ε→ 0 one will (hopefully) obtain valid expressions for a solution

in continuous time. In general, it seems that decision rules based on one of these solution

concepts coincides with that of the other.5

In Chapter 2 and Chapter 3 of this thesis, we solve dynamic games in continuous time. In

both cases we will rely on the definition of an equilibrium solution due to Ekeland and Pirvu

(2008) and Ekeland and Lazrak (2010). In Chapter 4, we solve models in discrete time.

4We will look at this in more detail in Chapter 3.
5See also the discussion on this in Maŕın-Solano and Navas (2010).
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1.3 The Concept of Inconsistent Time Preferences

We’ve seen that the concept of intertemporal equilibrium is at the core of how we will char-

acterize the solutions to dynamic games in this thesis. An alternative type of solution is to

choose actions in each time period in such a way as to maximize the agent’s sum of utilities as

discounted back to the initial time period. That is, the intertemporal utility function of agent

i is

Ji,t(xt, cs) = Et

[
T∑
s=t

θi,sUi(xs, cs) |xt

]
.

This is referred to as a commitment (or precommitment) solution, the intuition being that

the agent at time t = 0 commits to a set of actions that, from the perspective of that time,

appears optimal, and follows them until the end of the planning horizon has been reached and

the problem ends.

In general, a commitment solution is not an intertemporal equilibrium, because the actions

that appear to be optimal at time t = 0 might not be optimal at time t > 0. That is, even

though the agent’s discount function remains the same, it might be the case the agent’s current

position in time affects what decision rule is prefered. The decision rule that at t = 0 appears

optimal for t = 1 may no longer be optimal when t = 1 is the present. When this is the case,

we say that the agent has inconsistent time preferences. He is inconsistent because he prefers

to change his decision rule rather than to stick to the one that he decided upon earlier. If the

agent’s time preferences are such that the same decision rule is always considered to be optimal,

regardless of the current time period, we say that the agent’s time preferences are consistent.

The first paper to systematically treat the issue of inconsistent time preferences (within the

context of a discounted utility model) seems to have been Strotz (1956). He showed that the

time preferences of agent i are consistent if and only if his discount function is given by the

exponential function

θi,t = βti ,

where β ∈ (0, 1].6 This implies that the function changes in time at the constant rate β −
1. Hence, consistent time preferences are characterized by the fact that the discount rate is

constant. A coalition with several members has consistent time preferences if and only if all the

members have the same constant discount rate. If this is the case, commitment and equilibrium

decision rules coincide.

Experimental research from behavioral economics has consistently shown that people typ-

ically do not have consistent time preferences. See Frederick et al (2002) for a survey on the

literature on this subject up to the year 2002. Moreover, it suggests that people’s discount rates

tend to decrease in magnitude over time. Hence, a more realistic model would have θi,t decrease

at a rate which decreases in magnitude. Despite this, much of the literature on dynamic games

6His model was in continuous time, but the result extends to discrete time.
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has assumed that all agents have constant and identical discount rates. Most likely, this is for

reasons of tractability, although economic justifications have been provided as well.7 As a rule,

a commitment solution can be found by using standard techniques in optimal control, such

as Hamilton-Jacobi-Bellman equations and Pontrayagin’s Maximum Principle. An intertem-

poral equilibrium with general discount functions, on the other hand, requires more elaborate

dynamic programming techniques. Moreover, in some common economic models, analytic so-

lutions can be obtained only in the case of commitment. For example, Maŕın-Solano and Navas

(2010) solve the classic Merton model (see Merton (1971)) for an agent with a general discount

function, and show that in the case of a power utility function, an explicit solution can be

obtained in the commitment solution but not in the intertemporal equilibrium solution. How-

ever, if discount functions are exponential, it is enough to solve for the commitment solution,

because it coincides with the intertemporal equilibrium solution.

1.4 Summary of The Thesis

The thesis is divided into three chapters (excluding the concluding chapter and this introduc-

tion). Each of them falls within a separate field in Economics. The first is on business cycle

theory, a field within Macroeconomics. The second is on life insurance models, which is gener-

ally regarded as a field within the actuarial sciences. The third is on the well-known fish war

model, a topic within Environmental and Resource Economics.

In Chapter 2, we construct a Macroeconomic differential game where the agents are the

fiscal and monetary authorities of an economy, i.e. the government and the central bank. The

authorities use the government deficit and the nominal interest rate as policy instruments to

steer the economy, the state of which is captured by aggregate output (or real gross domestic

product) and price inflation. The objective of the agents is to maintain those variables at some

given desired levels, which we think of as the economy’s general equilibrium. As is standard

in the literature, we assume that the use of policy instruments brings a cost, which must be

balanced against the cost of remaining in disequilibrium. We investigate the development of

the economy under the assumption that the government and the central bank discount future

utilities at constant but different rates, which implies that a coalition formed by the two has

inconsistent time preferences. We compute both noncooperative and cooperative solutions.

The main finding in Chapter 2 is that in the noncooperative solution, the authorities will

enact policies that are mutually contradictory. By this we mean that the government and the

central bank try to steer aggregate output in opposite directions, and therefore “cancel out” the

actions of one another. This implies that there is room for Pareto improvement. Importantly,

we show that this situation is a result of the asymmetry in the discount rates, and that in the

cooperative solution the mutually contradictory policies are removed. Based on this, we make

7For an economic argument in favor of using constant discount rates, see Rubinstein (2003).
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the claim that policy coordination between the government and the central bank is especially

useful when they operate under different discount rates. Since, in general, there’s no reason

to assume that governments and central banks operate under the same discount rates, our

findings have practical implications for the conduct of fiscal and monetary policy. For example,

we suggest that in countries with a democratic political system, the government may have a

higher discount rate because it is controlled by elected politicians, while the central bank is

controlled by unelected technocrats.

In Chapter 3, we construct a continuous time life insurance model in the tradition of Richard

(1975) and Pliska and Ye (2007). We model two agents that share a common household budget,

but have separate expenditures on consumption and life insurance. At each point in time, each

agent withdraws money from the budget at some rate to spend on his consumption expenditures

and insurance-premium. At some randomly determined point in time one agent dies, and the

survivor receives the life insurance payment and continues to consume until he too dies. The

unusual feature of our model is, as in Chapter 2, that the agents have different discount rates of

future events, meaning that the household as a whole has inconsistent time preferences. Thus,

we combine two different features which up to now have been developed separately within the

literature on life insurance models: on the one hand, households with multiple agents, and one

the other hand, households with inconsistent time preferences. As is standard in life insurance

models, we only compute the cooperative solution. That is, it is assumed that no agent will

leave the household under any conditions.

The model of Chapter 3 contains quite a large number of parameters for describing the

properties of the agents and the environment in which they act. Hence, there is plenty of

opportunities for making comparative dynamics. The most interesting result, perhaps, is that

if one agent becomes less patient (i.e. his discount rate increases), the household reacts by

shifting spending to his insurance premium from that of the other insurance premiums. We

provide an economic interpretation of this and several other results.

In Chapter 4, we investigate the fish war model due to Levhari and Mirman (1980), un-

der the assumption that the agents have asymmetric quasi-hyperbolic discount functions (also

known as (β−δ) preferences), which implies that the agents have inconsistent time preferences.

Hence, this chapter differs from Chapter 3 and Chapter 4 in that the individual agents have

nonconstant discount rates. We look at three types of fish war models. In the first, the agents

have logarithmic utility functions and the growth function is nonlinear, which is the standard

case. What is nonstandard are the discount functions. The behaviors under noncooperation

and cooperation are compared. We find that the stability of the coalition in the cooperative

solution is not sensitive to the inconsistency in time preferences introduced by quasi-hyperbolic

discounting. In the second model, we build a nonstandard fish war game with power utility

functions, quasi-hyperbolic discount functions and a linear stochastic autocorrelated growth

function. In contrast to the previous model, we find that stability breaks down quickly when
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the inconsistency in time preference increases. Then, as our third model, we extend the second

model by allowing asymmetric utility functions and a nonlinear growth function. Here, we

make some observations on how cooperative solution is affected by the presence of risk and

by asymmetry in risk aversions. Chapter 4 may be regarded as the “experimental” chapter of

the thesis: we develop a new set of dynamic programming algorithms and apply them to solve

specific problems.

1.5 The Mathematical Methodology

We’ve seen that the thesis covers diverse topics. What is common to all three of the main

chapters is the underlying mathematical theory: each chapter features a dynamic game with

two agents that may differ in terms of their discount functions and/or utility functions.

In Chapter 2, the model we build takes the form of an infinite horizon linear-quadratic

game8 in continuous time with two agents that have asymmetric utility and discount functions.

In order to solve the model, we make use of a dynamic programming algorithm developed in

de Paz et al (2013), which is based on the solution concept due to Ekeland and Lazrak (2010).

Chapter 3 follows the same basic framework, except that we extend the dynamic programming

algorithm to the case of stochastic dynamics. Specifically, we use a Brownian motion to model

the random development of the dynamics, and exponential distributions for the event of the

death of an agent. The utility functions are modeled as power functions. In Chapter 4, the

agents are not only asymmetric but also have inconsistent time preferences. To handle this, we

develop a set of dynamic programming algorithms for handling the case of stochastic discrete

time games with general asymmetric utility and discount functions. The algorithms also allow

for autocorrelation in the stochastic process that drives the dynamics, and we make use of this

property in one of the fish war models.

An important aspect of the thesis is the repeated use of numeric methods, especially in

Chapter 4. As a rule, we attempt to solve the models using analytic methods as far as this

can be done. When the analytic methods can take us no further, we assign parameter values

and solve the model numerically. In the models of Chapter 2 and Chapter 3, this implies that

we use dynamic programming to derive a system of nonlinear equations, which is then solved

numerically. However, in some cases in Chapter 4 we need to employ numeric methods at

a much earlier stage of the process. Our reliance on such methods tends to increase in the

complexity of the model.

It can certainly be argued that numerical methods are undesirable because they don’t pro-

vide “clean expressions” for the solutions. It is true that analytic solutions, if they are suffi-

ciently simple, provide direct information about the causal relationships between parameter,

8This means that the utility functions are second degree polynomials and the dynamics are first degree

polynomials.
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state variables and control variables, in a way that numeric solutions do not. But it’s also true

that if the analytic expressions are long and complicated, as they tend to be in complex models,

then numeric methods may provide more information about said causal relationships than the

expressions do. In any case, if analytic expressions are unattainable, the numeric methods are

the only way of understanding the solution, other than mathematical intuition.
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Chapter 2

The Impact of Coordination on Fiscal

and Monetary Policy under

Asymmetric Time Preferences

2.1 Introduction

Since the 1980’s, there has been a tendency for countries to move towards increased central

bank independence. This “divorce” of monetary and debt management, as it’s referred to in

Laurens and Piedra (1998), was motivated primarily by the need for price stability. It was

believed that by removing monetary policy decisions from the political process, inflation could

be stabilized, because policy would no longer be subject to the whims of voters and electoral

cycles. Therefore, to the extent that inflation is damaging the performance of the real economy,

central bank independence would increase overall welfare. Nowadays there exists a large body of

evidence, both theoretical and empirical, in support of the claim that central bank independence

is an effective method for controlling inflation.1

Notwithstanding the positive consequences of the reforms, the separation of monetary and

fiscal policy decisions also created reasons for concern. When the major instruments for sta-

bilizing the economy - the fiscal deficit and the steering nominal interest rate - are controlled

by two separate institutions that are (more or less) independent from each other, there arises

a need for policy coordination. In deciding the proper fiscal policy, the government will need

to take into consideration how the central bank will respond, and vice versa. Consequently,

both the monetary and fiscal authorities might find it useful to consult each other before they

pursue their individual objectives, that is, to coordinate their decisions. As noted in Lambertini

and Rovelli (2004), the need for coordination arises primarily because the policy instruments

of the government and the central bank have similar effects on aggregate demand, and hence

1An Overview of the research on this topic since the 1980’s and onwards can be found in Parkin (2012).

11
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also on aggregate output and inflation. Fiscal and monetary expansions alike will, other things

equal, increase output and inflation to levels above where they would have been otherwise.

Contractions will have the opposite effect.

In general, the monetary and fiscal authorities will work under a set of objectives or guide-

lines, such as the commonly used inflation targeting. One may then measure the benefits of

policy coordination by the extent to which it helps the authorities to reach those objectives.

Moreover, the benefits of coordination will likely depend on the specific set of objectives that

are being used (such as, for example, inflation targeting), how easy they are to reach without

coordination, and what type of disequilibrium the policy makers are responding to2. In the

absence of coordination, the authorities may pursue different policies because they prioritize

different aggregates or because they have different time preferences. For example, when re-

acting to a shock in aggregate demand, one authority may prefer a fast return to equilibrium

while the other prefers a slow and gradual return. Thus, Hanif and Arby (2003) make the point

that the objectives of government and central bank policy may be contradictory, in the sense

that the authorities, when they pursue policy independently without coordination, undermine

the actions of each other. This concern is also mentioned in Abdel-Haleim (2016). In such

situations, coordination may have substantial benefits for both authorities.

In this chapter, we analyze the argument that the need for policy coordination may crucially

depend on the time preferences of the government and the central bank. By policy coordination

we will mean a situation where the government and the central bank are actively consulting

and communicating with each other, with the purpose of achieving a Pareto optimal outcome.

We do not mean a situation where they act individually and obtain that same outcome because

their individual objectives happen to produce it.3

The following example illustrates why policy coordination may be important when the gov-

ernment and the central bank have different time preferences. Assume that the disequilibrium

faced by the authorities is such that inflation and output are both above their equilibrium levels.

Then, they will want to enact proper contractionary policies to produce a smooth and stable

return of aggregate output and inflation to their equilibrium levels. Moreover, they will want

to do so without making aggressive use of their policy instruments, such as the government

deficit and the steering nominal interest rate. However, while output can be affected by policy

quite directly, for instance by changing public demand, the control of inflation is more indirect.

Fiscal policy and monetary policy both affect inflation mainly through output. As discussed

in Blanchard et al (2010), decreasing inflation might require driving output temporarily down

below its equilibrium level. This is, for instance, what motivated the contractionary policies in

2Equilibrium, in this context, means that all the variables in the economy are at what is considered to be

their business cycle neutral levels. That is, the economy is neither in a recession or in a state of overheating.
3A different definition of policy coordination among the fiscal and monetary authorities is offered in Abdel-

Haleim (2016): “Coordination is defined as the necessary arrangements that assure that the decisions taken by

both authorities are not contradictory”.
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the United Kingdom in the 1980’s. Hence, it might not be sufficient for the authorities to steer

output back to its equilibrium level. They will have to go further and decrease output below

equilibrium if that is the only way to reduce inflation. Here, there’s a trade-off to be made

between losses due to high inflation, and losses due to the use of policy instruments. Moreover,

there’s an intertemporal aspect to the trade-off. By driving down output far below its equilib-

rium level, the authorities suffer large losses in the short term due to the aggressive use of their

policy instruments. But as a result of bringing down inflation quickly, they avoid losses in the

long term that would occur if inflation stayed high. How they choose to manage this trade-off

will depend on their time preferences. However, if they have different time preferences, they

will have different preferences regarding how to manage the return to equilibrium, and there

will be a conflict of interest, possibly leading to contradictory policies. For example, if the

government believes that the central bank is being too aggressive in pursuing contractionary

policies, it can counter those policies by pursuing its own expansionary policies. The conflict

can potentially be resolved by coordination of monetary and fiscal policy.

To analyze the issue described above, we will in this chapter solve a simple dynamic game.

We will model the government and the central bank as agents in an infinite horizon policy

differential game and solve for the noncooperative and cooperative solutions. Throughout the

chapter, we will think of the noncooperative solution of the game as the situation where the fiscal

and monetary authorities act independently from one another and don’t use policy coordination.

Likewise, we will think of the cooperative solution as reflecting policy coordination. The numeric

solutions to the game use standard parameter values, and the gains from coordination are

measured with loss functions of the sort that are commonly used in the literature on monetary

and fiscal policy. As is typically the case, we will assume the authorities have asymmetric loss

functions, which reflects the fact that they may target different variables in their policies.

As is standard in the literature, we will assume that the agents discount future losses

at some constant rate. In other words, the discount functions are of the standard exponential

form. However, we deviate from the standard case by allowing asymmetric discount rates. This

implies that the government and central bank may have different preferences in terms of how

to balance present against future losses. More precisely, we will assume in the numeric part of

the chapter that the government has a higher discount rate than the central bank. This may be

motivated by the fact that in countries where the political system is democratic, the government

is forced to focus on short term effects in order to win elections, while the central bank is freer

to focus on the long run. In countries that are not democratic, the government might still be

more shorted sighted than the central bank, since it is eager to avoid public discontent that

can lead to social disorder and revolutions. Such differences in time perspective, as we shall

see, create reasons for coordination.

As was mentioned in the introductory chapter, asymmetric discount rates imply that the

coalition in the cooperative solution has inconsistent time preferences. Consequently, we need
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to look for intertemporal equilibrium solutions, since they differ from commitment solutions.

The theory that we employ for this purpose has been developed quite recently (see de Paz et

al 2013). To the best of our knowledge, the present study is the first to apply it to a fiscal and

monetary policy game.

The rest of this chapter is organized as follows. Section 2 contains a literature review

and Section 3 presents the model that we will use. In Section 4 and Section 5 we solve the

noncooperative and cooperative solutions respectively. (Parts of the solutions are left for the

appendix). Section 6 employs numeric methods to show the effects of asymmetric discounting on

the benefits of policy coordination. The results are illustrated with graphs and tables. Section 7

is a brief extension that illustrates how our model can be used to investigate other asymmetries,

such as the consequences of when the central bank operates under inflation targeting and the

government does not. Section 8 concludes the chapter.

2.2 Literature Review

One early contribution to the literature on differential policy games is Turnovsky et al (1988).

They build a two-country model to analyze the effects of monetary policy on welfare. The

agents of the game are the monetary authorities of the two countries, and both are charged with

steering their respective economies toward equilibrium. The initial disequilibrium is created by

a shock to the real exchange rate, which creates an imbalance in trade flows and hence affects

output. Since monetary policy affects the real exchange rate, the central banks can reduce the

loss in welfare caused by the shock. The authors conclude that policy coordination reduces

welfare losses by between 6 and 10 percent.

An example of a game with interaction between both a monetary and a fiscal authority,

acting in the same country, can be found in Dixit and Lambertini (2003). They build a model

with monopolistic competition, which creates inefficiently low output, and gives policy makers

an incentive to intervene in the economy even in the absence of any external shocks. Moreover,

both the government and the central bank can operate under either discretion or commitment,

and this has implications for the strategic interaction of the authorities. The game is solved for

the noncooperative (Nash equilibrium) and leadership (Stackelberg) solutions. One conclusion

of the paper is that, from a welfare point of view, fiscal leadership is generally better than

monetary leadership, although both may be worse than the noncooperative solution.

Another paper with interaction between fiscal and monetary authorities is Di Bartolomeo

and Di Gioacchino (2008). They too include a leadership version of the game, and solve for

the cases of monetary leadership and fiscal leadership alongside the noncooperative solution.

The game is solved in two stages. The first one establishes whether the differential game is

sequential and which of the two agents that will have leadership. The paper also includes a

discussion on what type of leadership scenario may be the most realistic.
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A somewhat different – and creative – approach comes from Cellini and Lambertini (2006),

where a game with two agents is set up between the central bank and the representative

household of the private sector. The paper is concerned with the discretion vs commitment

debate in monetary policy, and attempts to analyze under what conditions the central bank can

exploit a first-mover advantage over the private sector to gain a costless reduction in inflation.

For this purpose, a leadership solution is found, with the central bank as the leader.

Leeper (1991) and Bonan and Lukkezen (2019) investigate the need for policy coordination

when public debt is taken into concern. In particular, the latter of these papers is concerned

with the fact that active use of fiscal policy can lead to large public deficit and hence a risk of

a default on the debt. Their paper was motivated by the fact that during the Great Recession,

the inefficiency of monetary policy prompted some countries to run large deficits, which resulted

in a breakdown of the market for government bonds. They find that when government bonds

are considered a risky investment, active fiscal policy increases interest rates and leads to large

crowding out effects of private investment, and that these undesirable effects can be mitigated

by active monetary policy.

In the late 90’s, the creation of the Euro raised interest in models for monetary unions.

Van Aarle et al (2002) models two countries that have the same currency and hence the same

monetary policy. A game with three agents involving the joint monetary authority and the fiscal

authority for each country, is solved for a sophisticated macroeconomic model which includes

dynamics for output, inflation, wages and unemployment. Moreover, the authors differentiate

between a Neoclassical regime, in which excess unemployment is the result of high wages, and a

Keynesian regime, in which excess unemployment is due to low aggregate demand. The game is

solved for both the noncooperative and the cooperative cases, and the welfare effects of policy

coordination are analyzed. The paper has been an important source of ideas for the present

study.

A recent contribution to the literature on dynamic games with monetary and fiscal author-

ities is Anevlalis et al (2019). In their model the government and the central bank aim to keep

government debt at a given level, by using the fiscal deficit and the rate of money growth as

instruments. The paper is similar to the present study in that the model is an example of a

linear-quadratic game, and in that both noncooperative and cooperative solutions are derived.

In the papers mentioned above, there are certain “standard questions” faced by the au-

thors. One such question is which specific objectives one assumes that the fiscal and monetary

authorities pursue. (That is, what do the intertemporal utility functions look like.) Another

is which variables one assumes to be under the direct control of policy makers, as opposed to

being steered only indirectly. (That is, which variables are state variables and which are control

variables.) For the government, an obvious and common choice for a control variable is the

fiscal deficit. For the central bank, a common but in no way dominating approach is to let the

central bank control the nominal interest rate. This approach is used in Saulo et al (2012), Gaĺı
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(2008) and Woodford (2003).4 On the other hand, Di Bartolomeo and Di Gioacchino (2008)

and Van Aarle et al (2002) build models where the central bank controls the monetary base.

Finally, in Cellini and Lambertini (2006), the central bank is given direct control over inflation

itself.

As for the intertemporal utility functions, i.e. the aims of policy, it is generally assumed that

utility is measured by loss function, which depend on the deviation of a set of macroeconomic

aggregates from their equilibrium levels. It is also standard to let the loss function be quadratic

in all its arguments. This is convenient because, if in addition the dynamics are linear, there

are well known methods for solving the model. There are also intuitive arguments for the

quadratic form: the marginal cost of deviation increases in the deviation and, importantly,

small deviations in several variables from their optimal levels are preferable to a large deviation

in a single variable. Typical arguments are output, inflation, the government deficit and the

nominal interest rate. Hence, in a seminal paper by Kydland and Prescott (1977), the central

bank’s loss function depends on the deviation of inflation and output from their equilibrium

levels. The same setup is adopted in Dixit and Lambertini (2003) and Cellini and Lambertini

(2004). As pointed out in Woodford (2003), this simple form is widely used in the literature

on monetary policy.

Other setups are also common. In Lambertini and Rovelli (2004), the central bank’s loss

function includes the real interest rate rather than output, while the government’s loss function

includes both of those variables along with the fiscal deficit. More extensive loss functions can

be found in van Aarle et al (2002) where both the central bank and the government attempts to

control deviations in output, inflation and unemployment. Another extensive setup is offered in

Engwerda (2006), where the monetary base and the government debt enter the loss functions.

In general, the choice of loss functions will depend on how much one assumes that the

fiscal and monetary authorities “care” about each variable. For instance, since most central

banks have the main objective of ensuring price stability, inflation is an obvious choice for

the monetary authority’s loss function. The government, on the other hand, might be more

concerned with unemployment and output.

As the preceding paragraphs make clear, it is common to include in the loss functions not

just major aggregates like output and inflation, but also the policy instruments. What is the

economic justification for this? In general, governments are advised not to deviate too much

from running a balanced budget. Low deficits may require cuts in welfare services, which may

be unpopular among the population of the country, while high deficits tend to crowd out private

investment. Moreover, as noted in van Aarle et al (2002), for members of the European Union

large deficits may result in sanctions on the country, as specified in the union’s Stability and

Growth Pact. It is less clear why monetary policy activism is costly, but this assumption is

4In Gaĺı (2008), there’s also a short section discussing the case in which the central bank controls the

monetary base.
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nevertheless common in the literature. One can, perhaps, imagine that large volatility in the

nominal interest rate makes financial returns unpredictable and discourages investment, which

hurts overall economic development. Van Aarle et al (2002), discussing the European Central

Bank, note that “other things equal policy makers prefer a constant level of their instrument

rather than to undertake changes all the time”.

Finally, an issue which is often ignored in the literature is what exactly the loss functions are

a measure of. In models on monetary policy, the loss function of the central bank is sometimes

derived from underlying optimization problems describing the behavior of households and firms.

This is the case in Gaĺı (2008), Woodford (2003) and more generally in the New Keynesian

Model. In those cases, the loss function can be interpreted as reflecting welfare or social utility.

However, problems arise when the model contains both a government and a central bank with

separate loss functions, as is the case in policy games, since there is no obvious way to decide

which of the two loss functions that reflect welfare. In Dixit and Lambertini (2003) it is

assumed that the government’s loss function is the welfare loss, while the central bank has a

loss function that differs from welfare. Van Aarle et al (2002) seem to assume that both loss

functions capture welfare losses, although they do not explain whether this means that there

are two separate measures of welfare. Another approach, however, is to assume that both loss

functions reflect just the objectives that the authorities follow when deciding on policy, with no

reference to welfare. The magnitude of the loss is then simply the extent to which an authority

fails to reach its objectives. That is the interpretation we will use here.

2.3 The Model

We will now define the loss functions and the dynamics that make up our model. We will

assume that the government controls the fiscal deficit and that the central bank controls the

nominal interest rate. The two other variables in our model, which are output and inflation,

are state variables that the authorities can impact indirectly.

The loss functions for the fiscal authority and for the monetary authority are given by

LF,t(xt, πt, gt) = λFxx
2
t + λFππ

2
t +

λFg
2
g2
t

and

LM,t(xt, πt, it) = λMxx
2
t + λMππ

2
t +

λMi

2
i2t .

Here, xt is output at time t ∈ [0,∞), πt is inflation, gt is the fiscal deficit and it is the nominal

interest rate. The λ-parameters are all positive. Hence, our setup is the most standard one with

output and inflation as arguments, except for the addition of the policy instruments. Future

losses are discounted at the rates ρF for the government and ρM for the central bank. Hence,
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the intertemporal loss functions are

JF,t(xt, πt, gs) =

∫ ∞
t
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and
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∫ ∞
t

e−ρM (s−t)
(
λMxx

2
s + λMππ

2
s +

λMi

2
i2s

)
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Note that each authority obtains losses only from its own instrument, since it is not responsible

for the actions of the other authority. As is standard, output and the fiscal deficit are measured

in terms of log deviations from their desired levels. This means that all four variables have

(approximately) a percentage interpretation and not a quantity interpretation. Henceforth

when we write output or government deficit, we are referring to the log deviations of those

variables from their equilibrium levels.

We will assume that the inflation target, to which inflation will be steered after a shock,

is equal to zero. The assumption of a zero inflation in equilibrium is in line with Gaĺı (2008),

where the inflation target is assumed to be “close to zero”. In practice, central banks tend

to prefer inflation levels slightly above zero because deflation is viewed as more harmful than

inflation. In our model, there is no difference between inflation and deflation in terms of impact

on the loss function, and hence a target of zero is natural.5

The λ-coefficients determine how much loss is incurred from one variable relative to the

others. We can therefore think of them as determining whether an authority operates under

output targeting or inflation targeting. For instance, if λMπ > λMx the central bank will prior-

itize inflation stability over output stability, because deviation in inflation from its equilibrium

level is more costly. Thus, the parameters of the loss function determine which policy regime

is followed.

Next, we will define the dynamics that govern how output and inflation evolve as functions

of the policy decisions. For output, we will assume the relationship

dxt
dt

= αgt − β(it − πt) , (2.1)

where α and β are positive parameters. This is essentially a continuous time Investment-

Saving equation of the kind that is common in models for monetary policy evaluation.6 The

two terms on the right hand side relate output to the fiscal deficit and the real interest rate

(which is approximately equal to the nominal interest rate minus inflation): an increase in

the fiscal deficit is expansionary while an increase in the real interest rate is contractionary.

5It is certainly possible to introduce a non-zero inflation target in our framework. The loss from inflation

would then be calculated from the deviation of inflation from the target. This would make no qualitative

difference to our model, but it would introduce an additional parameter.
6Most equations of this type are in discrete time and have no fiscal deficit, since the purpose is usually to

analyze monetary policy only. See Clarida et al (1999) and Saulo et al (2012) for examples of this. For a version

in continuous time, see Cochrane (2017).
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The parameters α and β can be viewed as measures of the fiscal and monetary multipliers.

For instance, an increase in the government deficit with one percent will, other things equal,

increase output by approximately α percent.

For inflation, we assume the relationship

dπt
dt

= κxt , (2.2)

where κ is a positive parameter. This tells us that inflation increases whenever output is above

its equilibrium level, and decreases whenever output is below its equilibrium level. It’s based

on the discrete time Philips Curve as derived in Blanchard et al (2010), which has the form

πt = µπt−1 − κ(ut − un), where ut is the unemployment rate and un its equilibrium level. By

assuming a simple linear relationship between unemployment deviation and output deviation,

the continuous time version of this Philips curve can be transformed into (2.2).7

Notice that the fiscal deficit and the nominal interest rate appear in equation (2.1), but not

in equation (2.2). This implies that the policy makers can control output through the fiscal

deficit and the nominal interest, while their control over inflation is only through output. That

is, their control over output is more direct than is their control over inflation. In particular,

inflation will decrease if, and only if, output is below zero, regardless of policy. Hence, in the

case of excess inflation, the benefits of bringing inflation down must be balanced against the

cost of low output. This trade-off will be important when we interpret the numeric results of

our model. We stress that this key assumption is not unique for our model. Similar assumptions

can be found in Gaĺı (2008), Woodford (2003) and Blanchard et al (2010). The trade-off is often

captured mathematically by a “sacrifice ratio”, which denotes how much excess unemployment

(or low output) is needed to bring inflation down by one percent. See Blanchard et al (2010)

for a discussion on this.

Given the decision rules on the government deficit and inflation, the system given by the

differential equations (2.1) and (2.2) has a unique solution only if a fixed point on output and

inflation is provided. To this end, we will assume some initial condition on (x0, π0).

Remark 3.1: We will now describe a potential problem with the dynamics that we have

assumed. It may be reasonable to assume that, other things equal, deviations in the level of

7Assuming µ = 1, which would mean rational expectations, we get the difference equation πt − πt−1 =

−κ(ut − un). To get from unemployment to output, we apply the following argument, which is also from

Blanchard et al (2010). If output deviation is currently positive, unemployment deviation must be negative,

since additional labor is needed to produce the extra goods. The opposite is true if output deviation is negative.

This relation is generally known as Okun’s Law. Now, a decrease in unemployment shifts the balance of power

in the labor market in the favor of the suppliers of labor, which puts upwards pressure on wages. Firms must

react to the higher wages by either lowering profits or increasing the growth rate of the prices on their goods.

In competitive markets where profit margins are low, the latter option must dominate, and so the growth in

prices accelerates. Hence, we may write the Philips relation as πt − πt−1 = −κ(−xt), which in continuous time

becomes (2.2).
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output from its equilibrium level (not the percentage deviation) is linear in deviations in the

level of the government’s budget deficit. We can write this as

Xt − X̄ = γ(Gt − Ḡ)

where Xt is the level of output, Gt is the level of government spending and (X̄, Ḡ) are the

equilibrium levels. Every euro of government deficit results in γ euros of extra output. Rewrite

this as
Xt − X̄
X̄

= γ
Ḡ

X̄

Gt − Ḡ
Ḡ

to obtain an expression relating the percentage deviation of output to the percentage deviation

of the government deficit. Using the log deviation notation from before, this can be written

approximately as

xt = γ
Ḡ

X̄
gt

which in differential form is

dxt = γ
Ḡ

X̄
dgt .

This is probably the most intuitive relationship between output and the government deficit.

But in (2.1) we have assumed that the differential of output depends on the level of government

deficit, not the differential. Our assumption is convenient because it allows for easily expressing

the policy game as a linear quadratic model. It is a questionable assumption made for reasons

of tractability. �

2.4 The Noncooperative Solution

In this section we derive the noncooperative solution to the model. This is the case that

we interpret as no policy coordination. We will find that a fully analytic solution cannot be

obtained, which motivates the numeric solutions of section 5. The solution that we obtain is

stationary (i.e. the decision rules and intertemporal utility functions are independent of time),

and for notational simplicity we can therefore omit the time index in some of the following

equations. We will let (g∗, i∗) refer to the decision rules that solve the problem.

Each agent solves a separate maximization problem. For each t ∈ [0,∞), the government’s

dynamic programming equation is

0 =

max
g

{
−λFxx2 − λFππ2 − λFg

2
g2 − ρFVF (x, π) +

∂VF
∂x

(x, π)(αg − β(i− π)) +
∂VF
∂π

(x, π)κx

}
and the central bank’s dynamic programming equation is

0 =
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max
i

{
−λMxx

2 − λMππ
2 − λMi

2
i2 − ρMVM(x, π) +

∂VM
∂x

(x, π)(αg − β(i− π)) +
∂VM
∂π

(x, π)κx

}
where VF (x, π) and VM(x, π) are the value functions (i.e. the intertemporal utility functions

when we apply the decision rules (g∗, i∗)). The maximization problems yield the decision rules

g∗ =
α

λFg

∂VF
∂x

(2.3)

and

i∗ =
−β
λMi

∂VM
∂x

. (2.4)

We now need to find the value functions. To this end, we substitute the decision rules into the

partial differential equations of the value functions to obtain

0 = −λFxx2 − λFππ2 − ρFVF (x, π) +
∂VF
∂x

(x, π)βπ +
∂VF
∂π

(x, π)κx

∂VF
∂x

(x, π)

(
∂VF
∂x

(x, π)
α2

2λFg
+
∂VM
∂x

(x, π)
β2

λMi

)
and

0 = −λMxx
2 − λMππ

2 − ρMVM(x, π) +
∂VM
∂x

(x, π)βπ +
∂VM
∂π

(x, π)κx

∂VM
∂x

(x, π)

(
∂VM
∂x

(x, π)
β2

2λMi

+
∂VF
∂x

(x, π)
α2

λFg

)
.

To proceed, we need to make a conjecture on the value functions. Since our model is linear-

quadratic, we will look for a solution among all decision rules such that the value functions are

quadratic in (x, π), that is

Vk(x, π) = Akx
2 +Bkπ

2 + Ckxπ +Dkx+ Ekπ + Fk ,

where k ∈ {F,M}. Moreover, a close investigation of our model shows that the value functions

have no constant nor linear terms, and that the quadratic terms must be nonpositive. Hence,

it suffices to consider value functions of the form

Vk(x, π) =
Ak
2
x2 +

Bk

2
π2 + Ckxπ

where Ak and Bk are negative for both k. To see that Fk = 0 must hold, it is enough to

recognize that if the current state of the system is (x, π) = (0, 0), then the value function must

be zero because no losses will occur. To see that Dk = Ek = 0, it is enough to recognize that

any deviation of the state of the system from (x, π) = (0, 0), no matter how small or in what

direction, must make the value function negative because losses occur.

Given the above conjectures and the system of equations in the value functions, we can

derive a system of nonlinear equations in the parameters of the value functions. The system

can only be solved numerically. The derivation of the system is left for the appendix.
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Even though we can’t find the value functions analytically, we can derive conditions for

global asymptotic stability of the system in (x, π) in the noncooperative solution.8 If we substi-

tute (2.3) and (2.4) into the dynamics for output and inflation, we obtain a system of differential

equations given by

dxt
dt

=
α2

λFg
(AFxt + CFπt)−

β2

λMi

(AMxt + CMπt) + βπt

and
dπt
dt

= κπt .

The system is globally asymptotically stable if, and only if,

α2

λFg
AF +

β2

λMi

AM < 0

and

− α2

λFg
CF −

β2

λMi

CM − β > 0 .

(i.e. the trace is negative and the determinant is positive). When we solve the system in the

variables AF , AM , BF , BM , CF and CM numerically, we restrict ourselves to solutions such

that the resulting system of differential equations in xt and πt is globally asymptotically stable.

This makes sense because otherwise one or several variables may explode towards infinity. One

consequence of this restriction is that although there can in principle be many solutions to the

model, some may be ruled out.

2.5 The Cooperative Solution

In this section we derive the cooperative solution of the model. This is the case that we interpret

as policy coordination. The solution is found by employing the dynamic programming algorithm

of de Paz et al (2013). As in the noncooperative solution, we are unable to find a fully analytic

solution.

The coalition formed by the government and the central bank has the intertemporal loss

function

Jt(xt, πt) = λ̄

∫ ∞
t

e−ρF (s−t)LF,s(xs, πs, gs)ds+ (1− λ̄)

∫ ∞
t

e−ρM (s−t)LM,s(xs, πs, is)ds .

and is subject to the dynamics given by (2.1) and (2.2) and initial constraints on x0 and π0.

Here, λ̄ is a parameter in the open unit interval. Its value determines which agent has more

influence over the decision making of the coalition.

8For conditions on global asymptotic stability in systems of differential equations, see Sydsæter et al (2008).
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The dynamic programming equation of the coalition is

max
g,i

{
λ̄

(
−λFxx2 − λFππ2 − λFg

2
g2 +

∂VF
∂x

(x, π)(αg − β(i− π)) +
∂VF
∂π

(x, π)κx

)
(2.5)

+(1− λ̄)

(
−λMxx

2 − λMππ
2 − λMi

2
i2 +

∂VM
∂x

(x, π)(αg − β(i− π)) +
∂VM
∂π

(x, π)κx

)}
= (1− λ̄)ρMVM(x, π) + λ̄ρFVF (x, π) + (1− λ̄)

dVM(x, π)

dt
+ λ̄

dVF (x, π)

dt
,

where VF (x, π) and VM(x, π) are again the value functions. The decision rules that solve the

maximization problem in the dynamic programming equation is an equilibrium solution in the

sense defined by Ekeland and Lazrak (2010).9

The function to be maximized in (2.5) is strictly concave in (g, i) and it is straightforward

to derive

g∗ =
α

λ̄λFg

(
λ̄
∂VF
∂x

(x, π) + (1− λ̄)
∂VM
∂x

(x, π)

)
(2.6)

and

i∗ =
−β

(1− λ̄)λMi

(
λ̄
∂VF
∂x

(x, π) + (1− λ̄)
∂VM
∂x

(x, π)

)
. (2.7)

Note that the government deficit and the nominal interest rate always have different signs.

This implies that if the government employs an expansionary policy, the central bank does the

same. The same applies for a contractionary policy. Put differently, the authorities are never

pushing the economy in different directions at the same time. This result was not obtained in

the noncooperative solution.

If we substitute the controls into the partial differential equations of the value functions, we

obtain

0 = −λFxx2 − λFππ2 − ρFVF (x, π) +
∂VF
∂x

(x, π)βπ +
∂VF
∂π

(x, π)κx

+

(
θ
∂VF
∂x

(x, π) + (1− θ)∂VM(x, π)

∂x
(x, π)

)
((

α2

2λ̄λFg
+

β2

(1− λ̄)λMi

)
∂VF
∂x

(x, π)− (1− λ̄)α2

2θ2λFg

∂VM
∂x

(x, π)

)
and

0 = −λMxx
2 − λMππ

2 − ρMVM(x, π) +
∂VM
∂x

(x, π)βπ +
∂VM
∂π

(x, π)κx

+

(
λ̄
∂VF
∂x

(x, π) + (1− λ̄)
∂VM(x, π)

∂x
(x, π)

)
((

β2

2(1− λ̄)λMi

+
α2

λ̄λFg

)
∂VM
∂x

(x, π)− λ̄β2

2(1− λ̄)2λMi

∂VF
∂x

(x, π)

)
.

9See de Paz et al (2013) for mathematical details and a proof. For a proof of the corresponding stochastic

case, see the appendix of Chapter 3 to this thesis.
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We now need to make a conjecture on the value function. As in the noncooperative solution,

we will assume a quadratic form. We can then derive a system of equations in the parameters

of the value functions. This is left for the appendix.

We next want to check for global asymptotic stability in the system in (xt, πt) in the coop-

erative solution. To this end, we substitute the decision rules (2.6) and (2.7) into the dynamics

for output and inflation to obtain a system of differential equations given by

dxt
dt

=

(
α2

λ̄λFg
+

β2

(1− λ̄)λMi

)
((AFxt + CFπt) + (AMxt + CMπt)) + βπt

and
dπt
dt

= κxt .

This system is globally asymptotically stable if, and only if,(
α2

λ̄λFg
+

β2

(1− λ̄)λMi

)
(AF + AM) < 0

and

−
(

α2

λ̄λFg
+

β2

(1− λ̄)λMi

)
(CF + CM)− β > 0 .

As in the noncooperative solution, we look for numeric solutions such that the system of partial

differential equations in xt and πt satisfies asymptotic global stability.

2.6 The Effects of Asymmetric Time Preferences

In this section we solve the noncooperative and cooperative solutions numerically and inves-

tigate the benefits of coordination when the government has a higher discount rate than the

central bank. We assign parameter values that are standard in the literature and investigate

the response of the economy to disequilibrium. We restrict ourselves to solutions such that

the resulting system of differential equations in output and inflation is globally asymptotically

stable. Even then, there can in principle be more than one solution that satisfies the restric-

tions. In that case, some other argument must be employed to select one particular solution

and discard the others. For all the parameterizations that we use here, there is only solution

that satisfies the restriction of global asymptotic stability. Hence, no additional argument is

necessary.

In all our numeric solutions, the initial conditions on output and inflation are set to x0 = 0.02

and π0 = 0.05. That is, output is initially two percent above its equilibrium level and inflation

is initially five percent above its equilibrium level. The fact that the initial values have the

same sign is significant. Recall that inflation decreases if, and only if, output is negative. Since

output is initially positive, the government and central bank can only bring inflation down by
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first driving output down into the negative, i.e. by causing a recession. This creates a trade-off

between the need to bring down inflation and the need to stabilize output.

We will first look at a base parameterization. In this scenario, the government and the

central bank have the same discount rates. This parameterization will be our benchmark. We

will then investigate a deviation from the benchmark, in which the discount rates differ. In

each scenario, we will compare the noncooperative and cooperative solutions.

2.6.1 The Base Parameterization

The base parameterization uses the following values. For the coefficient on the fiscal deficit, we

set α = 0.5. Thus, a one percent increase in the fiscal deficit increases output by half a percent.

For the coefficient on the nominal interest rate, we set β = 0.5. In the New Keynesian model

in Gaĺı (2008), this variable is the intertemporal elasticity of substitution in the optimization

problem of the household. Hence, we should set β close to empirical estimates of that preference

parameter. In a meta-analysis by Havanek et al (2013) it is concluded that a typical value of

the intertemporal elasticity of substitution is around one half, which motivates our decision.

We set κ = 0.25 and ρF = ρM = 0.1. These values are from van Arlee et al (2001) and

van Arlee et al (2002). We also set λ̄ = 0.5, so that the government and the central bank have

equal influence over the cooperative solution. Finally, we set λFx = λFπ = λFg = λMx = λMπ =

λMi = 1. This implies that output stability and inflation stability are equally prioritized by

both agents.

Figure 2.1 shows the response functions under this parameterization. The corresponding

Table 2.1 shows the solutions of the value functions and their parameters. In both solutions,

output initially decreases sharply and becomes negative. This causes inflation to gradually

decrease, and both state variables slowly converge to the equilibrium levels. The initial decrease

in output is caused by a negative government deficit and a positive nominal interest rate. In the

cooperative solution, the government and central bank are somewhat less aggressive in using

their policy instruments, and hence the drop in output is slower.

In this simple parameterization, there are certain symmetries in the model (α = β, ρF = ρM ,

etc). Because of this, policy coordination does not have a major effect on the behaviour of the

economy. Moreover, there are no significant gains from policy coordination; the value functions

do not change (after rounding) when coordination is introduced.

Also, notice that among the parameters in the value functions, given in Table 2.1, the

magnitude is far greater for BF and BM than for the others. This is because of the trade-off

discussed above. Deviation in inflation is much more costly than deviation in output, because

inflation can only be stabilized by suffering costs in terms of output deviation.
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Figure 2.1: The Base Parameterization
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Table 2.1: The Base Parameterization

Cooperative noncooperative

VF -0.013 -0.013

VM -0.013 -0.013

AF -1.50 -1.69

AM -1.50 -1.69

BF -8.47 -8.14

BM -8.47 -8.14

CF -1.55 -2.10

CM -1.55 -2.10
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2.6.2 Asymmetric Discount Rates

We now depart from the base parameterization by setting ρF = 0.4. This implies that the

government has a higher discount rate than the central bank and is therefore more focused

on losses in the near future than losses in the far future. The response functions are given in

Figure 2.2.

We now see a striking result in the noncooperative solution. The central bank is much

more aggressive in using its policy instrument than is the government. This implies that the

central bank is suffering most of the burden in bringing output down into the negative. The

reason is that the central bank is willing to suffer a high initial cost in terms of a high nominal

interest rate in order to bring down future costs in terms of high inflation. The government, on

the other hand, cares less about future cost and more about the present, and is therefore not

prepared to make that sacrifice to the same extent. As a result, the central bank has a much

greater loss in its value function.

Moreover, the authorities enact contradictory policies in their attempt to stabilize the econ-

omy. Specifically, they disagree on how short run losses in terms of output should be balanced

against long run losses in terms of inflation. The central bank is eager to avoid losses in the long

term from excess inflation and is willing to, in the short term, tolerate a large sacrifice in terms

of low output as a method of bringing inflation down. Hence, it attempts to push the economy

into a short but severe recession by enacting contractionary monetary policy. The government,

on the other hand, being more preoccupied with short run losses, is not prepared to allow a

severe recession in the short run. Consequently, it embarks on an expansionary fiscal policy to

counter the central bank. The authorities are, in effect, “cancelling out” each other’s actions.

Since any use of policy instruments is costly, there is clearly room for Pareto improvements in

the noncooperative solution.

In the cooperative solution, the situation is quite different. Here the government and the

central bank share the burden of stabilizing the economy much more equally. As a result, the

government’s loss increases and the central bank’s loss decreases. The sum of losses decreases,

so policy coordination is beneficial.

In the introduction to this chapter, we referred to the literature for discussions on the fact

that without policy coordination, the government and the central bank may pursue contradic-

tory policies when their time preferences differ. We now see that our model can capture this

scenario. In the noncooperative solution, contradictory policies were used because the govern-

ment and central bank have different discount rates, and in the cooperative solution this issue

was resolved.
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Figure 2.2: Asymmetric Discount Rates
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Table 2.2: Asymmetric Discount Rates

Cooperative noncooperative

VF -0.007 -0.006

VM -0.014 -0.019

AF -1.26 -1.05

AM -1.59 -2.29

BF -5.16 -3.97

BM -9.33 -11.60

CF -0.74 -0.36

CM -1.72 -4.10
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2.7 Further Numeric Results

In this section, we provide some additional numeric results, which are not related to time

preferences. We look at the effect of coordination under three other types of asymmetries.

Unless mentioned otherwise, we always make use of the base parameterization values from the

previous section.

2.7.1 Asymmetric Variable Targets

In this scenario, we depart from the base parameterization by setting λFπ = 0.2 and λMx = 0.2.

This implies that the government now prioritizes output stability over inflation stability, and

vice versa for the central bank. The response functions are given in Figure 2.3.

In the noncooperative solution, the government deficit is initially negative, but becomes

positive after some time has passed. Meanwhile, the nominal interest rate remains positive

throughout. This implies that for some time, the government and the central bank are steering

output in different directions. The reason is that once output is sufficiently negative, the

government will want to increase it because it prioritizes output stability. The central bank, on

the other hand, will want to keep output low in order to decrease inflation, because it prioritizes

inflation stability. The result is that they are canceling out each other’s actions, as in the case

of asymmetric discount rates. In the cooperative solution, the government deficit is negative

the whole time. Thus, no such inefficiencies occur. The result is that the sum of the value

functions improves, from -0.025 in the noncooperative solution to -0.019 in the cooperative

solution.

2.7.2 Asymmetric Influence

We now look at the case where the weight λ̄ is increased to 0.8, so that the government has

a greater influence over the cooperative solution than does the central bank. The response

functions are given in Figure 2.4.

The noncooperative solution is now identical to what it is in the base parameterization, as

λ̄ does not matter in that type of solution. In the cooperative solution, the central bank suffers

most of the loss from stabilization. Hence, its loss increases relative to the noncooperative

solution whereas the government’s loss decreases. This advantage arises from the fact that

in the cooperative solution, most of the trajectory of the government deficit and the nominal

interest rate is determined by the government. Since the government does not suffer losses from

the nominal interest rate, it prefers to use that instrument rather than its own.



2.7. Further Numeric Results 30

2.7.3 Asymmetric Instrument Efficiencies

Finally, we look at the case when the government is more efficient in stabilizing the economy

than is the central bank. We achieve this by setting α = 1.0. The government deficit now has a

greater effect on output than has the nominal interest rate. The response functions are given in

Figure 2.5. We see that in both the noncooperative and cooperative solutions, the government

deficit is employed to a greater extent than the nominal interest rate. This is because the

payoff in terms of output movement is greater when the government deficit is used than when

the nominal interest rate is used.
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Figure 2.3: Asymmetric Variable Targets
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Table 2.3: Asymmetric Variable Targets

Cooperative noncooperative

VF -0.006 -0.005

VM -0.013 -0.020

AF -1.39 -1.27

AM -1.58 -1.70

BF -4.74 -3.48

BM -8.81 -12.18

CF -0.73 -0.04

CM -1.75 -4.60
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Figure 2.4: Asymmetric Influence
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Table 2.4: Asymmetric Influence

Cooperative noncooperative

VF -0.010 -0.013

VM -0.016 -0.013

AF -0.76 -1.70

AM -2.67 -1.69

BF -7.34 -8.13

BM -10.07 -8.15

CF -0.68 -2.11

CM -2.98 -2.07
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Figure 2.5: Asymmetric Instrument Efficiencies
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Table 2.5: Asymmetric Instrument Efficiencies

Cooperative noncooperative

VF -0.016 -0.012

VM -0.010 -0.010

AF -1.23 -1.45

AM -0.62 -0.69

BF -8.09 -8.15

BM -7.52 -6.99

CF -1.22 -1.49

CM -0.54 -0.61
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2.8 Conclusion

In this chapter, we constructed a differential game where the government and the central bank

act to steer the economy to equilibrium. Our objective was to compute the noncooperative and

cooperative solutions when the government and the central bank have different time prefer-

ences. Our numeric results show that when time preferences differ, the noncooperative solution

has room for Pareto improvement, and that such improvements are obtained by cooperation.

We also showed that the contradictory policies enacted in the noncooperative solution are re-

moved in the cooperative solution. Our results underline the importance of policy coordination,

previously discussed in Hanif and Arby (2003) and Abdel-Haleim (2016). Our study seems to

be the first to model in a differential game setting the issue of policy coordination when the

government and the central bank have different time preferences.

There are some drawbacks to our model. One is the ambiguity of what the loss functions

are a measure of. If the loss functions are a measure of welfare, we face the problem that there

are two separate measures of welfare, one used by government and one used by the central

bank. This issue was discussed in the introduction. Another problem, discussed in Remark 3.1

is an unintuitive aspect of the dynamics that we assume.

An extension to our model could follow van Aarle et al (2002) in having more state variables.

For example, the model could include unemployment and real wages.

2.9 Appendix

2.9.1 The Noncooperative Solution

Under our assumptions, the partial differential equations in the value functions become

0 = −λFxx2 − λFππ2 − ρF
(
AF
2
x2 +

BF

2
π2 + CFxπ

)
+

α2

2λFg
(AFx+ CFπ)2

+
β2

λMi

(AMx+ CMπ)(AFx+ CFπ) + (BFπ + CFx)κx+ (AFx+ CFπ)βπ

and

0 = −λMxx
2 − λMππ

2 − ρM
(
AM
2
x2 +

BM

2
π2 + CMxπ

)
+

β2

2λMi

(AMx+ CMπ)2

+
α2

λFg
(AMx+ CMπ)(AFx+ CFπ) + (BMπ + CMx)κx+ (AMx+ CMπ)βπ .

All terms are multiplied by x2, π2 or xπ, so we can derive a system in six equations in the

variables AF , AM , BF , BM , CF and CM . Due to nonlinearities in the system, no analytic

solution can be obtained, so we need to employ numeric solutions.
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The system in six equations is the following. The first three equations are terms multiplied

by x2, π2 and xπ respectively in the partial differential equation of VF (x, π). The last three

equations are terms multiplied by x2, π2 and xπ respectively in the partial differential equation

of VM(x, π). We obtain

0 = −λFx −
ρF
2
AF + κCF +

α2

2λFg
A2
F +

β2

λMi

AFAM ,

0 = −λFπ −
ρF
2
BF + βCF +

α2

2λFg
C2
F +

β2

λMi

CMCF ,

0 = −ρFCF + κBF + βAF +
α2

λFg
AFCF +

β2

λMi

(AMCF + AFCM) ,

0 = −λMx −
ρM
2
AM + κCM +

β2

2λMi

A2
M +

α2

λFg
AMAF ,

0 = −λMπ −
ρM
2
BM + βCM +

β2

2λMi

C2
M +

α2

λFg
CMCF

and

0 = −ρMCM + κBM + βAM +
β2

λMi

AMCM +
α2

λFg
(AMCF + AFCM) .

We solve it numerically, given the restriction of global asymptotic stability, as discussed in

Section 4.

2.9.2 The Cooperative Solution

Under our assumptions, the partial differential equations in the value functions become

0 = −λFxx2 − λFππ2 − ρF
(
AF
2
x2 +

BF

2
π2 + CFxπ

)
+ (BFπ + CFx)κx+ (AFx+ CFπ)βπ

+
(
λ̄(AFx+ CFπ) + (1− λ̄)(AMx+ CMπ)

)((
α2

2λ̄λFg
+

β2

(1− λ̄)λMi

)
(AFx+ CFπ)− (1− λ̄)α2

2θ2λFg
(AMx+ CMπ)

)
and

0 = −λMxx
2− λMππ

2− ρM

(
AM
2
x2 +

BM

2
π2 +CMxπ

)
+ (BMπ+CMx)κx+ (AMx+CMπ)βπ

+
(
λ̄(AFx+ CFπ) + (1− λ̄)(AMx+ CMπ)

)((
β2

2(1− λ̄)λMi

+
α2

λ̄λFg

)
(AMx+ CMπ)− λ̄β2

2(1− λ̄)2λMi

(AFx+ CFπ)

)
.

In each equation, all terms are multiplied by x2, π2 or xπ. Hence, these two equations contain

a system in six equations in the variables AF , AM , BF , BM , CF and CM . Due to nonlinearities

in the system, no analytic solution can be obtained, so we need to employ numeric solutions.
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The system in six equations is the following. The first three equations are terms multiplied

by x2, π2 and xπ respectively in the partial differential equation of VF (x, π). The last three

equations are terms multiplied by x2, π2 and xπ respectively in the partial differential equation

of VM(x, π). We obtain

0 = −λFx −
ρF
2
AF + κCF +

(
α2

2λ̄λFg
+

β2

(1− λ̄)λMi

)
A2
F −

(1− λ̄)α2

2λ̄2λFg
A2
M

+

(
(2λ̄− 1)α2

2λ̄2λFg
+

β2

(1− λ̄)λMi

)
AFAM ,

0 = −λFπ −
ρF
2
BF + βCF +

(
α2

2λ̄λFg
+

β2

(1− λ̄)λMi

)
C2
F −

(1− λ̄)α2

2λ̄2λFg
C2
M

+

(
(2λ̄− 1)α2

2λ̄2λFg
+

β2

(1− λ̄)λMi

)
CFCM ,

0 = κBF + βAF − ρFCF + 2

(
α2

2λ̄λFg
+

β2

(1− λ̄)λMi

)
AFCF −

(1− λ̄)α2

λ̄2λFg
AMCM

+

(
(2λ̄− 1)α2

2λ̄2λFg
+

β2

(1− λ̄)λMi

)
(AMCF + AFCM) ,

0 = −λMx −
ρM
2
AM + κCM +

((
β2

2(1− λ̄)λMi

+
α2

λ̄λFg

)
A2
M −

λ̄β2

2(1− θ)2λMi

A2
F

+

(
(1− 2λ̄)β2

2(1− λ̄)2λMi

+
α2

λ̄λFg

)
AMAF ,

0 = −λMπ + βCM −
ρM
2
BM +

((
β2

2(1− λ̄)λMi

+
α2

λ̄λFg

)
C2
M −

λ̄β2

2(1− λ̄)2λMi

C2
F

+

(
(1− 2λ̄)β2

2(1− λ̄)2λMi

+
α2

λ̄λFg

)
CMCF

and

0 = κBM + βAM − ρMCM + 2

((
β2

2(1− λ̄)λMi

+
α2

λ̄λFg

)
AMCM −

λ̄β2

(1− λ̄)2λMi

AFCF

+

(
(1− 2λ̄)β2

2(1− λ̄)2λMi

+
α2

λ̄λFg

)
(AMCF + AFCM) .

We solve it numerically, given the restriction of global asymptotic stability, as discussed in

Section 5.



Chapter 3

A Life Insurance Model with Multiple

Agents and Asymmetric Time

Preferences

3.1 Introduction

Over the last 15 years, many papers have been published in continuous time life insurance

models. Much of the work has been based on the seminal paper by Pliska and Ye (2007),

although the basic framework goes back to Yaari (1965) and Richard (1975). The models in

this literature typically set up three separate decisions or trade-offs for an agent to make. First,

there’s the trade-off between consumption in the present and consumption in the future (i.e.

savings in the present). Secondly, there’s the investment of savings into either an asset with a

fixed return or an asset with a random return. Thirdly, there’s the expenditure on an insurance

premium which, at the time of the agent’s death, results in an insurance being paid out to his

descendants. Hence, the continuous time life insurance model can appropriately be referred

to as a consumption-investment-premium model. We will refer to it simply as a life insurance

model.

The papers that are part of the literature on the life insurance model, can generally be

classified into two categories. On the one hand, there are those papers that expand on the

basic models by Richard (1975) and Pliska and Ye (2007), by allowing the agent to have

inconsistent time preferences. On the other hand, there are those papers that expand on the

basis model by having a household that consists of several agents, each of which may purchase

his own life insurance.

The issue of inconsistent time preferences, and its implications, has already been discussed

in the introduction to this thesis. In the case of a household with multiple agents, it is natural

to define the household’s intertemporal utility function as a weighted sum of the intertemporal

37
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utility functions of the individual agents. However, this task is complicated by the fact that in

life insurance models, agents are mortal. There is the issue of determining how the household’s

intertemporal utility function changes when one agent dies so that the set of household members

changes. There is also the issue of determining how the knowledge that the set of members will

change at some point in the future affects the behavior in the present.

In this chapter, we construct a life insurance model which combines the two features of, on

the one hand, households with inconsistent time preferences and, on the other hand, households

with multiple agents. Specifically, we assume that the household consists of two agents, and

that each agent has his own unique discount rate. This implies that although each agent has

time preferences that are consistent, the household taken as a whole does not. Thus, we will

derive a cooperative solution where the decision rules determine expenditures on consumption,

investment and premium for a household that has inconsistent time preferences because the

members of the household discount future utilities at different rates. This type of model seems

to not have been investigated previously in the literature on life insurance models.

We will assume that the agents have constant but different mortality rates. The assumption

of constant mortality rates is made for reasons of tractability. It ensures that the solutions that

we derive will be independent of time, as was the case in the Macroeconomic model of the

previous chapter. This means that the probability of dying at a particular distance of time into

the future is the same regardless of what is the current time. Hence, if the solution satisfies a

given property at a given point in time, that property will hold for every other point in time as

well. This simplifies the task of deriving properties of the solution, because the decision rules

and value functions are independent of time.

Constant mortality rates are nonstandard in the literature. The most common approach

is that no specific mortality rate is assumed in the analytic section of the paper, and that

the mortality rate given by Gompertz law is assumed in the numeric section. According to

Gompertz law, the mortality rate at time t is e
t−m
n /n, where n and m are constants. This

implies that the solution will be a function of time, meaning that the behavior of an agent

is affected by his age. One exception to this is found in Bayraktar and Young (2013), where

the assumption is that the members of the household have the same constant discount and

mortality rates. The present study extends their setup by allowing asymmetric discount and

mortality rates.

The rest of this chapter is organized as follows. In Section 2 we provide a literature review

on life insurance models. In Section 3 we formally describe the model and in Section 4 we try to

solve the model analytically. We shall find that a fully analytic solution can be obtained only

in special cases, which motivates the numeric solutions of Section 5. In Section 6, we provide

some concluding remarks.
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3.2 Literature Review

3.2.1 The Standard Models

We’ve already mentioned the early contribution of Richard (1975). He builds upon the model

of Merton (1971), in which an agent withdraws money for consumption expenditures from his

budget over a fixed time interval [0, T ], while simultaneously distributing his savings amongst

an asset with a fixed return and a number of assets with random return. Richard (1975) added

to this model that the agent dies at a random time τ ∈ [0, T ], turning the problem into one of

random terminal time. He also added a running wage income and gave the agent the option of

purchasing life insurance by continuously paying a premium that is withdrawn from the budget,

hence turning the model into a life insurance model. At the time of death, a payment is made

to the descendants of the agent as a function of the rate at which the premium is being paid

at that time. The agent is made interested in purchasing life insurance by the introduction of

a bequest function which is activated at the time of death. The bequest function takes as an

argument the current wealth plus the insurance payment, i.e. the total amount of money that

the deceased agent leaves behind to his descendants.

The wealth dynamics of the model of Richard (1975) can be written as1

dxt = (r + εt(µ− r))xtdt+ (It − ct − qt)dt+ εtσxtdzt

and the agent’s intertemporal utility function can be written as

Jt(xt, cs, qs, εs) = Et

[∫ τ

t

U(s, cs)ds+B(xτ + qτ/ητ , τ) | xt
]

where, for simplicity, we have assumed that the number of risky assets is one.2 Here, xt is

the wealth, ct is the rate at which money is spent on consumption, qt is the rate at which the

insurance premium is paid, and εt is the fraction of wealth that is invested in the risky asset (as

opposed to in the safe asset). Out of those, wealth is the state variable and the remaining three

are control variables. Utility is obtained from consumption through the function U(s, cs) and

from the money left for the descendants (the bequest) through the function B(xτ + qτ/ητ , τ).

As for the parameters, r is the rate of return of the safe asset, µ is the expected rate of return of

the risky asset and σ is the volatility parameter of the risky asset. The functions It and ηt are

exogenously determined nonrandom functions for the rate of wage income and the premium-

insurance ratio. The latter is defined as the rate at which money is being spent on the insurance

premium divided by the amount of money that is paid out in case of death.

1The notation given here is that which has become standard in the literature on life insurance models. It

differs somewhat from that in Richard’s paper.
2One may equally well assume an arbitrary number of risky assets, as did Merton (1971), although the

calculations become more complicated. In general, the presence of multiple risky assets does not contribute

anything meaningful to a model on life insurance.
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The wealth dynamics in the model of Richard (1975) have been the basis for much of the

literature on life insurance models, with only slight variations added by later authors. As for

the intertemporal utility function, there’s been more variation. An important extension comes

from Pliska and Ye (2007). They removed the assumption of τ being bounded to the interval

[0, T ], thus allowing the agent to live beyond time T . This solved a problem inherent in the

model of Richard (1975), first pointed out by Leung (1994), namely that when τ is bounded to

be smaller than or equal to T , the model does not have an interior solution that lasts until T .

Instead, Pliska and Ye (2007) interpret T as a time of retirement. The agent may live beyond

this time, but he no longer receives a wage income and makes no more decisions with respect

to consumption, investment and life insurance. In fact, their intertemporal utility function

is constructed in such a way that, if the agent is still alive at time T , a terminal function is

activated and the problem ends. This terminal function takes wealth as an argument, but not

an insurance payment. That is, it is assumed that the agent only purchases life insurance up

to the point of his retirement. If he dies after retirement, no insurance is paid out because no

premium is being paid anymore.

The intertemporal utility function in the model of Pliska and Ye (2007) can be written as

Jt(xt, cs, qs, εs) = Et

[∫ min(τ,T )

t

U(s, cs)ds+B(xτ + qτ/ητ , τ)1τ<T + L(xT )1τ>T | xt

]

where L(xT ) is the terminal function and 1A is an indicator function for event A. Thus, if the

agent dies before time T , an insurance payment is received (provided that a premium is being

paid).

One downside of the model of Pliska and Ye (2007) is that the terminal function is assumed to

be independent of the probability distribution of τ . This is problematic because since the model

effectively ends at T , but the agent may still be alive, it is reasonable to assume that L(xT )

represents the intertemporal utility function at time T , the sum of utilities obtained over the

interval [T, τ ], discounted back to T . But if this is so, then the expected length of that interval

should affect the value of that discounted sum of utilities. That is, the function L(xT ) should

depend on the probability distribution of τ . It should also depend on the other parameters of

the model. This is typically not the case in papers that have used this type of intertemporal

utility function. Instead, L(xT ) is assumed to depend on a separate parameter, and it is not

imposed that this parameter has any particular relationship with the other parameters.

One way around this issue is to assume that there is no terminal time T at which the

problem ends (T is infinite), and that the agent continues to consume, invest and purchase life

insurance until his death, whenever it may come. That is, there is no retirement. Thus, some

authors have tackled the life insurance problem by assuming an intertemporal utility function

with an infinite planning horizon. See for example Bruhn and Steffensen (2011), Bayraktar

and Young (2013) and Koo and Lim (2021) for models of this kind. Of course, assuming that
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the agent may potentially live forever is unrealistic,3 and one can still specify a maximum age,

beyond which the agent cannot survive, by using a truncated probability distribution for τ .

However, problems arise here too. When time approaches the maximum time of death, the

agent knows for sure that he will die soon, and the incentive to buy ever more life insurance

explodes.4 Moreover, using probability distributions over the whole interval [0,∞) can be useful

for reasons of tractability, as we shall see. For these reasons, the present study uses an infinite

planning horizon and assumes that the time of death is distributed over the whole interval

[0,∞).

3.2.2 Models with Multiple Agents

In the literature on life insurance models with more than one agent, an important contribution

is Bruhn and Steffensen (2011). They developed a procedure for finding the cooperative solution

for a household with an arbitrary number of agents. Each agent has his own mortality rate

and wage income, and each agent purchases his own life insurance. When one agent dies, the

life insurance that he has purchased is added to the household’s budget, to be used by the

remaining agents until, eventually, all agents have died. They also assume that, unlike in the

framework of Richard (1975) and Pliska and Ye (2007), there is no utility from a bequest.

Instead, the incentive to purchase life insurance arises from the fact that it is in the interest of

each agent that every other agent is insured. Given that the household acts as a whole (i.e. that

the solution is cooperative), and that each agent has at least some influence over the decision

rules decided upon, it follows that the agents can prompt each other to purchase life insurance.

Of course, when all agents except one has died, the survivor has no incentive to purchase any

life insurance.

Bayraktar and Young (2013) solve a model with a household consisting of two agents,

assuming that there is just a single premium and a single quantity of consumption that both

agents benefit from. They also solve the model for when life insurance is paid for with a single

lump sum payment, rather than the continuously paid premium that is standard. On the other

hand, Kwak et al (2011) assume that the household consists of one parent and one child, and

that only the parent receives a wage income and may purchase life insurance. An interesting

aspect of this model is that the parent and the child have power utility functions with different

coefficients.

A recent contribution is Wei et al (2020). They consider a household with two agents

3If we interpret the “agent” of the model not as one individual but as a series of individuals, each one of a

new generation, than this problem goes away. But another problem arises, namely that we may have infinitely

many generations, which is also unrealistic.
4From the point of view of a purchaser of life insurance, this may not be an unreasonable assumption. After

all, a person who suspects he will die soon does indeed have incentive to purchase a very large life insurance.

But of course, from the perspective of the insurance company, the incentive runs in the opposite direction, which

puts a limit on the ability of the agent to purchase ever more insurance when his time of death approaches.
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whose respective times of death are positively correlated. This is a realistic assumption for a

household that consists of two people of similar age. Interestingly, they find that the stronger

the correlation, the less life insurance is purchased by each agent. This is likely because after

the first agent has died, the probability that the second agent will die soon increases (due to the

correlation), which gives the second agent less time to transform the increase in wealth brought

forth by the insurance payment into utility. Hence, the value of the life insurance payment in

terms of the expected intertemporal utility that it yields is lower when the times of death are

correlated.

3.2.3 Models with Inconsistent Time Preferences

All the multiple agent models described above assume that the household has consistent time

preferences. That is, all members of the household are assumed to have exponential discount

functions with the same coefficient. Hence, the issue of inconsistent time preferences is not

dealt with.

Regarding life insurance models with inconsistent time preferences, Maŕın-Solano et al

(2013) found the intertemporal equilibrium for a single agent with an arbitrary discount func-

tion. That paper can be regarded as an extension of the consumption-investment model in

Maŕın-Solano and Navas (2010) into life insurance. One of their findings is that the amount

of life insurance that is purchased increases in the agent’s risk aversion. Similar models were

solved by de Paz et al (2014) and Chen and Li (2020). All of those papers use the intertemporal

utility function of Pliska and Ye (2007). As for the intertemporal utility function of Richard

(1975), intertemporal equilibrium under inconsistent time preferences were derived in Purcal et

al (2020) and Lim and Koo (2021). The latter of these also investigated the effects of taxation

on the purchase of life insurance. Several papers find that inconsistent time preferences reduce

the purchase of life insurance.

3.2.4 Literature Summary

Table (3.1) summarizes essential aspects of some of the papers mentioned above. The columns,

starting from the left, gives the paper, the utility function, the time preferences (consistent or

inconsistent), the mortality rate and the intertemporal utility function.

3.3 The Model

Our model contains a household with two agents. Each agent i ∈ {1, 2} has a time of death

τi ∈ [0,∞] that follows an exponential distribution with mortality rate (or intensity) λi. That

is,

P (τi < t) = 1− e−λit . (3.1)
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Table 3.1: Literature Summary

Paper Utility F. Time Pref. Mortality R. Int. Utility F.

Richard (1975) Power Consistent Not Specified Richard

Pliska and Ye (2007) Power Consistent Linear Pliska and Ye

Huang and Milevsky (2008) Power Consistent Gompertz Law Other

Kwak et al (2011) Power Consistent Linear Multiple Agents

Bruhn and Steffensen (2011) Power Consistent Gompertz Law Multiple Agents

Pirvu and Zhang (2012) Power Consistent Gompertz Law Pliska and Ye

Bayraktar and Young (2013) Exponential Consistent Constant Multiple Agents

Maŕın-Solano et al (2014) Power / Exp. Inconsistent Gompertz Law Pliska and Ye

de Paz et al (2014) Power / Exp. Inconsistent Gompertz Law Pliska and Ye

Purcal et al (2018) Power Inconsistent Other Richard

Chen and Li (2020) Logarithm Inconsistent Gompertz Law Pliska and Ye

Wei et al (2020) Power Consistent Gompertz Law Multiple Agents

Purcal et al (2020) Power Inconsistent Other Richard

Koo and Lim (2021) Power Inconsistent Constant Inf. Horizon

This Study Power Inconsistent Constant Multiple Agents

Hence, to place our model in its proper place in the literature, we have an infinite horizon

model with no retirement and no terminal function. This is different from the commonly used

intertemporal utility functions in Pliska and Ye (2007) and in Richard (1975), but similar to,

for example, Bruhn and Steffensen (2011).

We assume that the agents share control over the household budget, and that they both

add to the budget through their individual wage incomes. At each point in time, each agent

withdraws money from the budget to use for his own individual consumption. Moreover, the

two members of the household jointly decide how much of their wealth to allocate to investment

in the risky asset, as opposed to in the safe asset. There are no constraints on the investments:

the household may freely borrow in one asset in order to invest more than their whole net worth

in the other asset.

Each agent purchases his own life insurance by continuously paying a premium. Thus,

money is withdrawn from the budget to pay for two separate premiums, one for each agent.

At time τ̄ = min(τ1, τ2), one of the agents die and the other will be the sole member of the

household until he too dies. If the agent who dies first is paying a premium, the insurance

payment will be added to the household’s wealth. Hence, the wealth process jumps at τ̄ , with

the jump being equal to the insurance payment. Specifically, if agent i dies first, so that τ̄ = τi,

we have

x(τ̄) = x(τ̄−) + qi(τ̄
−)/ηi .
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Also, notice that since this is a continuous time model, the event that the agents die at the

same time, i.e. τ1 = τ2, has zero probability and can therefore be ignored.5

It is useful to think of the “state of the household” at any time t to be one of four potential

states. In the initial state, which lasts for t ∈ [0, τ̄ ], both agents are alive. We will refer to this

as state A. Then there are two states in which one agent is alive and the other is dead. Which

one of these states that is realized depends on which agent dies first. We will refer to these as

states B. Finally, there’s the state in which both agents are dead. See Table 3.2 for a summary

of the potential states.

Table 3.2: Potential Household States

t < τ1 t > τ1

t < τ2 Both agents are alive Only agent 2 is alive

t > τ2 Only agent 1 is alive Both agents are dead

Let’s first look at state A. The intertemporal function of the household is given by

JAt (xt, c1,s, c2,s, q1,s, q2,s, εs) (3.2)

= Et

[∫ τ̄

t

e−ρ1(s−t) c
1−γ
1,s

1− γ
ds+ e−ρ1(τ̄−t)V B

1 (xτ̄ + q2,τ̄/η2)1τ2=τ̄

+

∫ τ̄

t

e−ρ2(s−t) c
1−γ
1,s

1− γ
ds+ eρ2(τ̄−t)V B

2 (xτ̄ + q1,τ̄/η1)1τ1=τ̄ | τ̄ > t, xt

]
,

which is the sum of the intertemporal utility functions of the two agents. The wealth dynamics

are given by

dxt = (r + εt(µ− r))xtdt− (c1,t + c2,t + q1,t + q2,t)dt+ (I1 + I2)dt+ εtσxtdzt , (3.3)

where t ∈ [0, τ̄ ]. The notation is as follows.

• xt is the wealth, i.e. the net worth of household. It is the only state variable in the model.

• ci,t is the rate at which money is withdrawn for consumption by agent i.

• qi,t is the rate at which the premium is being paid by agent i. The amount that is insured

is then given by qi,t/ηi, where ηi is the premium-insurance ratio.

• Ii is the fixed rate of wage income of agent i.

5The case of simultaneous deaths is analyzed in Wei et al (2020).
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• εt is the fraction of wealth that is invested in the risky asset.6

• ρi is the discount rate of agent i. If ρ1 6= ρ2, then the household as a whole has inconsistent

time preferences.

• zt is a standard Brownian motion.

• r, µ and σ determine the return of the safe asset, the expected return of the risky asset

and the volatility of the risky asset.7

• 1A is an indicator variable for the event A.

• V B
i (·) is the intertemporal utility that agent i expects to receive when and if he is the

sole survivor (after time τ̄) because the other agent dies first, given that the equilibrium

decision rule is followed after time τ̄ . It is the value function of the model in the state B.

Hence, our model has three different sources of randomness: the Brownian motion zt and the

exponentially distributed random variables τ1 and τ2. Note that given how we have defined these

variables, they are mutually independent. For example, observing zt provides no information

that can be used to forecast τ1 and τ2. Moreover, the property of memorylessness of the

exponential probability distribution implies that the additional amount of time that agent i

expects to live is the same for every t < τi.

Let’s now look at state B, in which only one agent is alive. If only agent i is alive, he has

the intertemporal utility function

JBt (xt, ci, ε) = Et

[∫ τi

t

e−ρi(s−t)
c1−γ
i,s

1− γ
ds | τi > t , xt

]
, (3.4)

and the dynamics are

dxt = (r + εt(µ− r))xtdt− ci,tdt+ I1dt+ εtσxtdzt , (3.5)

where t ∈ [τ̄ , τi]. In this case there are only two decisions to be made: the rate at which to

spend money on consumption and how to allocate investments between the risky and the safe

asset. No life insurance is purchased because there is no descendant who can benefit from it.

Hence, there is no variable qi,t. Also, in contrast to the state where both agents are alive, there

is now only one wage income because the deceased agent receives no wage income.

Finally, in the fourth state, no agent is alive so no decisions are made, and there are no

decision rules to be found.
6In Wei et al (2020) it is assumed that each of the two agents makes a separate investment decision. That

is, there is one control variable ε1,t and one ε2,t. They show that each of these variables can only be solved for

in terms of the other, so that what matters is the total investment ε1,t + ε2,t. Hence, one may equally well make

the substitution εt = ε1,t + ε2, which is the approach we have taken here.
7We are assuming that the price of a share in the risky asset follows a geometric Brownian motion where

µ and σ are the drift and volatility coefficients. See Chang (2004) or Merton (1971) for how this assumption

impacts the dynamics of the wealth process.
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3.4 Solving The Model

We will now find the cooperative solution to the model described above. To solve the model, we

apply the method that was used by Bruhn and Steffensen (2011) and Wei et al (2020). First,

we solve the problem for state B, where only one agent is alive. Then, having obtained the

value functions for those two problems, we insert them into the intertemporal utility function

of state A, where both agents are alive, equation (3.2), and solve the problem for that state.

Hence, the model is solved using a kind of two-stage backward induction.

3.4.1 The Household With One Agent

We want to solve the problem with the intertemporal utility function (3.4) and the wealth

dynamics (3.5). To proceed, we use the trick of transforming the intertemporal utility function

from one with random terminal time into one with no terminal time (i.e. infinite horizon).

Various versions of this trick is used in much of the literature on life insurance models, and

goes back at least to Yaari (1965). The purpose is to remove one source of randomness, the

time of death, thus turning the problem into one of a more familiar kind, in which the planning

horizon is either fixed or, as in our case, infinite. The set of steps necessary to transform

the intertemporal utility function into the desired form differs somewhat between the various

papers in literature depending on the particular assumptions of the models. For the present

model, the transformed intertemporal utility function of the states when one agent is alive is

given below in Proposition 1, which is proved in the appendix.

Proposition 1 Suppose that the intertemporal utility function is given by (3.4) and that the

time of death τi follows the exponential distribution (3.1). Then the intertemporal utility func-

tion can also be written as

JBt (xt, ci,s, εs) = Et

[∫ ∞
t

e−(ρi+λi)(s−t)
c1−γ
i,s

1− γ
ds | xt

]
. (3.6)

This intertemporal utility function can be interpreted as an infinite sum of utilities dis-

counted at the rate of ρi + λi. We will say that ρi + λi is the effective discount rate of the

problem with one agent. The intertemporal utility function (3.6) has an effective discount rate

that is constant. This implies that a commitment solution is an intertemporal equilibrium.

Hence, this is a trivial problem to solve. The equilibrium decision rules are

ci,t =

(
λi + ρi − (1− γ)r

γ
− 1− γ

2

(µ− r)2

(σγ)2

)
(xt + Ii/r)

and

εt =
µ− r
γσ2

xt + Ii/r

xt
,
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which implies that the value function for this problem is

V B
i (xt) =

(
λi + ρi − (1− γ)r

γ
− 1− γ

2

(µ− r)2

(σγ)2

)−γ
(xt + Ii/r)

1−γ

1− γ
. (3.7)

We also note that the stochastic process for wealth becomes

dxt =

(
1− ρi − λi

γ
+

(µ− r)2

γσ2

1 + γ

2γ

)
xtdt+ (3.8)(

1− ρi − λi
γr

+
(µ− r)2

γσ2

1− γ
2γr

)
Iidt+

µ− r
γσ

xtdzt .

Due to the presence of the second term on the right hand side of (3.8), there’s no guarantee

that wealth will stay positive. On the other hand, if we set Ii = 0 (so that there is no wage

income), the term disappears and we obtain a geometric Brownian motion, which implies that

wealth stays positive almost surely.

We note that the rate at which money is withdrawn for consumption, and the amount of

money invested in the risky asset, are both linear in xt + Ii/r. Moreover, since

1

r
=

∫ ∞
t

e−r(s−t)ds

for any t, we see that Ii/r is the present value of the future sum of wage incomes, as discounted

by the rate of return of the safe asset. Richard (1975) refers to this term as the agent’s “human

capital”. We can think of xt + Ii/r as the present value of wealth that is not contingent upon

any investment decision.

3.4.2 The Household With Two Agents

We now proceed to the model for state A, where both agents are alive. That is, when the in-

tertemporal utility function is (3.2) and the wealth dynamics are (3.3). As before, we transform

the intertemporal utility function from one with random terminal time into one with infinite

horizon. The result is given in Proposition 2, which is proved in the appendix.

Proposition 2 Suppose that the intertemporal utility function is given by (3.3) and that, for

each i, the time of death τi follows the exponential distribution (3.1). Then the objective function

can also be written as

JAt (xt, c1,s, c2,s, q1,s, q2,s, εs) (3.9)

= Et

[∫ ∞
t

e−(ρ1+λ1+λ2)(s−t) c
1−γ
1,s + λ2C

−γ
1 (xs + I1/r + q2,s/η2)1−γ

1− γ
ds

+

∫ ∞
t

e−(ρ2+λ1+λ2)(s−t) c
1−γ
2,s + λ1C

−γ
2 (xs + I2/r + q1,s/η1)1−γ

1− γ
ds | xt

]
,

where

Ci =
λi + ρi − (1− γ)r

γ
− 1− γ

2

(µ− r)2

(σγ)2
.
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We see that the intertemporal utility function can be interpreted as the sum of the two sums

of discounted utility, each with a rather complicated utility function which depends on both

consumptions and wealth, and effective discount rates of ρi + λ1 + λ2. Provided that ρ1 6= ρ2,

the two sums have different discount rates, which implies that a commitment solution to the

problem will not be an intertemporal equilibrium.

We want to find an intertemporal equilibrium solution for the problem with the intertem-

poral utility function JAt (xt, c1,s, c2,s, q1,s, q2,s, εs) and wealth dynamics given by (3.3). In the

following, we will let {c∗1,t, c∗2,t, q∗1,t, q∗2,t, ε∗t} denote the decision rules that solve this problem.

Moreover, we will let

V A
i (xt) = Et

[∫ ∞
t

e−(ρi+λ1+λ2)(s−t) c
∗
i,s1− γ + λ−iC

−γ
i (x∗s + Ii/r + q∗−i,s/η−i)

1−γ

1− γ
ds | xt

]
(3.10)

denote the value function of agent i, i.e. the expected sum of discounted utility of agent i

when the decision rules {c∗1,t, c∗2,t, q∗1,t, q∗2,t, ε∗t} are applied. We will now present a proposition

that gives the dynamic programming equation for this problem. Since the intertemporal utility

function given by equation (3.9) is the sum of two sums of discounted utility, each with its

own discount rate, the dynamic programming equation is non-standard. The proof is in the

appendix.

Proposition 3 Let the intertemporal utility function of the household be given by (3.9), the

wealth dynamics by (3.3) and the value functions by (3.10). Then the solution to the dynamic

programming equation

max
c1,c2,q1,q2,ε

{
c1−γ

1 + λ2C
−γ
1 (x+ I1/r + q2/η2)1−γ

1− γ
+
c1−γ

2 + λ1C
−γ
2 (x+ I2/r + q1/η1)1−γ

1− γ

+

(
dV BA

1

dx
(x) +

dV BA
2

dx
(x)

)
(rx+ ε(µ− r)x− c1 − c2 − q1 − q2 + I1 + I2)

+

(
d2V A

1

dx2
(x) +

d2V A
2

dx2
(x)

)
(εσx)2

2

}
= Et

[
dV A

1

dt
(xt) |xt

]
+ (ρ1 + λ1 + λ2)V A

1 (xt) + Et

[
dV A

2

dt
(xt) |xt

]
+ (ρ2 + λ1 + λ2)V A

2 (xt)

is an equilibrium decision rule.

The decision rule implicit in Proposition 3 is an equilibrium decision rule in the sense that

it satisfies the definition due to Ekeland and Pirvu (2008) and Ekeland and Lazrak (2010). In

the introductory chapter to this thesis, we mentioned the intuition behind the solution concept

that they suggested. The mathematical details of the definition are discussed in the appendix

in Section 7.
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To proceed with the solution, we have to make a conjecture on the value functions. Given

the structure of the dynamics and the utility functions, it is natural to make the conjecture8

V A
i (x) =

A−γi (x+Bi)
1−γ

1− γ
. (3.11)

This implies that the value functions for the model when both agents are alive have the same

functional form as the value functions for the problems when one agent is alive. Indeed, the

conjecture we make here is standard in the literature when the utility function for each agent

is given by a power function. (See, for example, Brunh and Steffensen (2011) and Wei et al

(2020)). Of course, in general, we should expect to obtain A1 6= A2 and B1 6= B2.

With the conjecture (3.11), the left hand side of the dynamic programming equation in

Proposition 3 is

max
c1,c2,q1,q2,ε

{
c1−γ

1 + λ2C
−γ
1 (x+ I1/r + q2/η2)1−γ

1− γ
+
c1−γ

2 + λ1C
−γ
2 (x+ I2/r + q1/η1)1−γ

1− γ

+((A1(x+B1))−γ + (A2(x+B2))−γ)(rx+ ε(µ− r)x− c1 − c2 − q1 − q2 + I1 + I2)

−γ((A−γ1 (x+B1))1−γ + (A−γ2 (x+B2))1−γ)
(εσx)2

2

}
.

The maximization problem implicit in this equation yields the decision rules

c∗i = ((A1(x+B1))−γ + (A2(x+B2))−γ)−1/γ ,

q∗i = ηi

(
λi
ηi

)−1/γ ((
C−i

A1(x+B1)

)γ
+

(
C−i

A2(x+B2)

)γ)−1/γ

− ηi(x+ i−i/r)

and

ε∗ =
µ− r
γσ2x

(A1(x+B1))−γ + (A2(x+B2))−γ

(A1(x+B1))−γ−1 + (A2(x+B2))−γ−1
.

Thus, we have obtained expressions for {c∗1, c∗2, q∗1, q∗2, ε∗} in terms of the constants {A1, A2, B1, B2},
which are functions of the parameters of the model.

In order to find the equilibrium decision rules, what remains for us is to find the set of

constants {A1, A2, B1, B2}. Specifically, we would like to derive a system of equations that can

be solved analytically or (if necessary) numerically. This is the method we employed in Chapter

2. However, this is not straightforward, and we have not been able to solve this problem for

the general case. Instead, in the remainder of this chapter, we will focus on the particular case

of when there is no wage income, so that I1 = I2 = 0. For the interested reader, the appendix

includes a discussion on the difficulties of finding the set of constants for the general case.

8Chang (2004) has an extensive discussion on how to infer the general form of the value functions from the

dynamics and the utility functions.
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3.4.3 The Case of No Wage Income

When there is no wage income, it can be inferred that the correct conjecture on the value

functions is such that B1 = B2 = 0.9 In other words, we obtain

V A
i (x) =

A−γi x1−γ

1− γ
.

As a consequence, the decision rules {c∗1, c∗2, q∗1, q∗2, ε∗} become

c∗i = (A−γ1 + A−γ2 )−1/γx ,

q∗i = ηiC
−1
−i (λi/ηi)

1/γ(A−γ1 + A−γ2 )x− ηix

and

ε∗ =
µ− r
γσ2

.

We now only have to find two constants, namely A1 and A2. For this, we need a system with

two equations. To proceed, we take the time derivatives of the value functions, which gives us

the two equations that we need.10 The equations that we obtain are

0 =
(c∗i,t)

1−γ + λ−i,tC
−γ
i (xt + I1/r + q∗−i,t/η−i,t)

1−γ

1− γ
− (ρi + λ1 + λ2)V A

i,t(xt) + E

[
dV A

i,t(x)

dt
|xt

]

for i ∈ {1, 2}. If we insert our conjectures on the value functions and the optimal strategies (as

functions of A1 and A2), and divide by x1−γ
t /(1− γ), we obtain the system

0 =
(

1 + λ−iC
−1
i (λ−i/η−i)

1−γ
γ

)
A−γi (A−γ1 + A−γ2 )

1−γ
γ (3.12)

−(1− γ)
(
2 + η1C

−1
2 (λ1/η1)1/γ + η2C

−1
1 (λ2/η2)1/γ

)
(A−γ1 + A−γ2 )−1/γ

+

(
(1− γ)(r + η1 + η2)− (ρi + λ1 + λ2) + (1− γ)

(µ− r)2

2γσ2

)
.

In this system, the variable x has been removed, leaving us with only the parameters of the

model, and with A1 and A2 (which are functions of the parameters). Hence, although the

system yields no analytic solution, we can use it to solve the model numerically.

Since we cannot find an explicit solution for A1 and A2, not much can be said analytically

about the impact of the parameters of the model on the decision rules {c∗1, c∗2, q∗1, q∗2, ε∗}. We

need to defer such investigations to the numeric analysis in the next section. However, we can

make the following observations (for the case of no wage income).

9Again, see Chang (2004) for how to make inferences on the form of the value functions.
10If the agents have the same discount rate (ρ1 = ρ2), one can solve the problem with two agents by working

with a single value function for the whole household. This is the approach taken in, for example, Wei et al

(2020).
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• The two agents have the exact same consumption, even though their discount rates differ.

Hence, differences in discount rates do not result in differences in consumption. The same

result is found in a similar but deterministic model in de Paz et al (2013).

• Consumption and premium are both linear in the wealth, and the fraction of wealth

invested in the risky asset is constant. These are standard results in the literature.

• The premiums are potentially negative. A negative premium implies that the household

receives a flow of income in exchange for making a lump sum payment to the insurance

company at the time of death of the first agent. This is an undesirable result. However,

in the numeric solutions in Section 5, the parameter values are such that the premiums

are always positive.

3.4.4 The Case of No Wage Income and Logarithmic Utility Func-

tions

In closing this section, we will make some observations on the special case γ = 1, which

corresponds to logarithmic utility functions. In this case, the system (3.12) simplifies to

0 = (1 + λ−iC
−1
i )A−1

i − (ρi + λ1 + λ2) ,

and the constant Ci = λi + ρi. This yields the analytic solution

Ai = ρi + λi .

Hence, the equilibrium decision rules become

c∗i = ((ρ1 + λ1)−1 + (ρ2 + λ2)−1)−1x ,

q∗i =
λi

ρ−i + λ−i
((ρ1 + λ1)−1 + (ρ2 + λ2)−1)−1x− ηix

and

ε∗ =
µ− r
σ2

.

We see that in this case, consumption depends only on the discount rates and mortality rates,

and is independent of all other parameters, for example the premium-insurance ratio. The

premium qi decreases in ηi, as should be expected, but is independent of η−i.

3.5 Numeric Solutions

In this section, we use numeric solutions to investigate the behavior of the household when

both agents are alive (state A) and there is no wage income. That is, we infer properties of
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the decision rules {c∗1, c∗2, q∗1, q∗2, ε∗} when I1 = I2 = 0. The reason for imposing that there is no

wage income is, as was mentioned in the previous section, that only under this condition are

we able to derive a system of equations that can be used to find numeric expressions for the

control variables.

In looking for a numeric solution, we can impose the conditions A1 > 0 and A2 > 0, which

must hold because the value functions must have the appropriate sign. This is so because if

0 < γ < 1, the instantaneous utility function is always positive, which means that the value

functions must be positive, while if γ > 1 the instantaneous utility function is always negative,

so the value functions must be negative. Hence, we can limit our search to solutions such that

A1 and A2 are positive.

For our base specification, we have taken parameter values primarily from Koo and Lim

(2021), which is a recent paper that also utilizes constant mortality rates and an infinite planning

horizon. The parameter values are γ = 1.2, ρ1 = ρ2 = 0.7, λ1 = λ2 = 0.1, η1 = η2 = 0.04,

r = 0.3, µ = 0.06 and σ = 0.02. Also, we set x = 1 throughout the analysis.11 Hence, in

our base specification, the two agents are identical in that they have the same discount rate,

mortality rate and premium-insurance ratio. In the following numeric solutions, we will create

asymmetries by varying one or several parameters at a time, keeping all others fixed to their

benchmark values, which allows us to investigate the effects of specific asymmetries on the

behavior of the household.

3.5.1 Asymmetric Discount Rates

In order to investigate the effects of asymmetric discount rates on the behavior of the household,

we vary ρ1, the discount rate of agent 1. The results are given in Table 3.3. The column,

starting from the left, gives the discount rate of agent 1, followed by the consumptions (recall

that c1 = c2), the premiums, the investment in the risky asset and the expected rate of change

in wealth (i.e. the drift of the wealth process). We also provide the value functions of state A

for each agent. First, we note that consumption increases in ρ1, which is to be expected. The

Table 3.3: Asymmetric Discount Rates.

ρ1 c1, c2 q1 q2 ε E(dx) V A
1 (x) V A

2 (x)

0.4 0.370678 1.14154 1.83948 0.625 -3.67363 -9.81568 -6.63464

0.5 0.419134 1.296 1.73556 0.625 -3.82108 -7.94254 -6.25283

0.6 0.464632 1.44103 1.65025 0.625 -3.97179 -6.63464 -5.90945

0.7 0.51072 1.58793 1.58793 0.625 -4.14856 -5.59913 -5.59913

11Notice that since the decision rules are linear, the wealth dynamics will have the form of the a geometric

Brownian Motion, meaning that, in general, there will be no steady state value of wealth.
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more impatient is the household, the more it will consume. As a result, wealth will decrease

faster, as can be seen in the column for the expected rate of change in wealth.

Secondly, we note that when ρ1 increases, the premium of agent 1 increases. The agent

spends more on life insurance when he is less patient. For agent 2, on the other hand, the

premium decreases. We see that when one agent becomes less patient, the household shifts

spending to the premium of that agent from the premium of the other agent. The two premiums

converge when ρ1 = 0.7, because in this case the agents have the same discount rate. We also

note that the total amount of spending on premiums, q1 +q2, increases in ρ1, although the effect

is not that large. Hence, we may say that when the household as a whole becomes less patient,

it spends more money on both consumption and premiums, which leads to a faster depletion

of its wealth.

Thirdly, we note that the change in the discount rate of agent 1 has no impact on the

fraction of wealth that is invested in the risky asset. This we already knew from the discussion

in Section 4.

Remark 5.1: The fact that the household purchases less life insurance when it becomes more

patient may seem counter-intuitive. Afterall, shouldn’t more patience imply more willingness

to invest into a future life insurance payment? The answer to this seeming paradox is that

given how the wealth dynamics of our model are set up, the life insurance payment depends

only on the premium at the time of death, and is independent of the premium at any previous

time. Hence, what the agent is purchasing with the premium is the life insurance what would

be paid out should he die right now (as opposed to at anytime in the future). This is reflected

by the fact that, in the transformed objective, the life insurance payment appears in what is

effectively the utility function. The premium is therefore, strictly speaking, no different from

consumption: the agent withdraws money from the budget to receive utility in the present.

This interesting aspect of the model is present already in Richard (1975) and in Pliska and Ye

(2007), as well as in most papers based on those two.12 However, it has rarely been discussed

in the literature. �

3.5.2 Asymmetric Mortality Rates

In order to investigate the effects of asymmetric mortality rates on the behavior of the house-

hold, we vary λ1, the mortality rate of agent 1. The results are given in Table 3.4. First, we

see that consumption increases in the mortality rate. The sooner an agent expects to die, the

more he consumes. This is an intuitive result. What is, perhaps, less intuitive is that, if one

agent’s mortality rate increases, the other agent also consumes more. (Again, recall that the

agents always have the same consumption).

12As was mentioned earlier, a different approach can be found in Bayraktar and Young (2013), where the

premium is a lump-sum payment.
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Table 3.4: Asymmetric Mortality Rates.

λ1 c1, c2 q1 q2 ε E(dx) V BA
1 (x) V BA

2 (x)

0.05 0.487987 0.832979 1.61809 0.625 -3.3783 -6.07669 -5.75045

0.1 0.51072 1.58793 1.58793 0.625 -4.14856 -5.59913 -5.59913

0.15 0.53291 2.3415 1.55966 0.625 -4.91822 -5.18614 -5.45495

Secondly, the premium of agent 1 increases quickly in λ1, while the premium of agent 2

decreases, and much more slowly. To understand why this happens, we need to grasp that an

increase in the mortality rate of agent 1 affects the premiums through three different channels.

• The probability that agent 1 will die before agent 2 increases. This provides incentive to

increase q1 so that agent 2 will receive a higher life insurance payment.

• There’s a decrease in V A
1 (x), the intertemporal utility that agent 1 expects to receive

when and if he becomes the sole survivor. This provides incentive to decrease q2, since

the life insurance payment received by agent 1 is less valuable in terms of utility. That is,

when agent 1 expects to live a shorter amount of time, then he has less time to transform

the insurance payment that he receives when agent 2 dies into utility. Mathematically,

this effect is due to the presence of the constant C1 in the objective function (3.9).

• The effective discount rates increase, which provides incentive to increase both premiums.

The change in the premiums that we observe in Table 3.4 is the net effect of those three

separate effects. The first contributes to the increase in q1, and the second effect is the cause of

the decrease in q2. The third effect contributes to the fact that the total spending on premiums,

q1 + q2, increases.

3.5.3 Asymmetric Premium-Insurance Ratios

In order to investigate the effects of asymmetric premium-insurance ratios on the behavior of

the household, we vary η1, the premium-insurance ratio of agent 1. The results are given in

Table 3.5. Again, we see that consumption increases, although only slightly. This is because

when life insurance for agent 1 becomes more expensive, the household shifts spending from

premiums to consumption. Note that this is not an intertemporal shift, i.e. the household

is not trading future wealth for present consumption. As we discussed above, the premium

is effectively the purchase of present utility, as is consumption. Hence, when the household

reduces the premium of agent 1 in order to increase consumption, it is shifting spending from

one source of present utility to another. Moreover, the household is not just shifting money to

consumption, but also to life insurance for agent 2, although the effect is small.
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Table 3.5: Asymmetric Insurace-Premium Ratios.

η1 c1, c2 q1 q2 ε E(dx) V BA
1 (x) V BA

2 (x)

0.04 0.51072 1.58793 1.58793 0.625 -4.14856 -5.59913 -5.59913

0.08 0.51351 0.838637 1.59683 0.625 -3.41373 -5.52617 -5.59913

0.12 0.516265 0.538758 1.60561 0.625 -3.12815 -5.45495 -5.59913

The main effect of the increase in η1 is, however, a decrease in overall spending on present

utility, i.e. a decrease in c1 + c2 + q1 + q2, and consequently an increase in saving. Hence,

the drift term of the wealth process becomes smaller (in absolute terms). The household is

consuming its wealth at a slower rate.

3.5.4 Isolating the Effect of Which Agent Dies First

Suppose that we increase the parameter λ1, keeping all other parameters constant. As we

discussed above, this change affects the household through three different channels. However,

if we increase λ1 and simultaneously decrease ρ1 by the same amount, two of these channels

are mostly neutralized. This is because the effective discount rate of agent 1 is unchanged

(including the one which in (3.9) appears inside the constant C1, which is the effective discount

of the state when only agent 1 is alive). For agent 2, the effective discount rate which appears

inside the constant C2 is also unchanged, while the one which appears explicitly in (3.9), namely

ρ2 +λ1 +λ2 is not. However, the channel that is not affected at all is the probability that agent

1 will die before agent 2. This implies that a change in the behavior of the household will be

primarily the result of a change in that probability. Thus, we will have (almost) isolated the

effect of one of the three channels.

In Table 3.6 we vary λ1 and ρ1 in such a way that the sum λ1 + ρ1 is constant. Hence, the

effective discount rate of agent 1 is not changing. When the discount rate increases, agent 1 has

incentive to increase consumption. But at the same time his life expectancy is increasing, which

provides incentive to increase saving. The net effect is a very modest change in consumption,

which is due to the fact that one of the effective discount rates of agent 2 has decreased slightly

(since it contains λ1). In contrast, we see a very large decrease in the premium of agent 1.

The reason is that the probability that agent 1 will die first is decreasing, which increases the

probability that the premium he spends will not result in the household receiving an insurance

payment.
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Table 3.6: The Effect of Which Agent Dies First.

λ1 ρ1 c1, c2 q1 q2 ε E(dx) V BA
1 (x) V BA

2 (x)

0.2 0.6 0.51351 2.87649 1.59683 0.625 -5.45158 -5.52617 -5.59913

0.1 0.7 0.51072 1.58793 1.58793 0.625 -4.14856 -5.59913 -5.59913

0.05 0.75 0.505108 0.863607 1.57004 0.625 -3.39512 -5.67386 -5.67386

3.6 Conclusion

In this chapter, we have solved a life insurance model for a household with two agents. The

new feature of our model is that we allow the agents to have different constant discount rates,

and we derive a cooperative solution. Thus, our model combines the treatment of inconsistent

time preferences and the presence of a household with more than one agent, something which

seems to not have been done previously in life insurance models. In solving the model, we

assumed that for each agent, the time of death is exponentially distributed, so that each agent

has constant discount and mortality rates. This assumption proved to be useful for reason of

tractability.

Expansions of the model might go in several directions.

• More than two agents. A model with an arbitrary number of agents in the household was

constructed in Bruhn and Steffensen (2011), but without taking the issue of inconsistent

time preferences into consideration.

• Nonconstant mortality rates. For example, one might assume that the mortality rates

follow Gompertz’s Law, as has often been the case in the literature.

• Nonconstant discount rates. This would imply not only that the household as a whole

has inconsistent time preferences, but also that each agent on his own has inconsistent

time preferences.

3.7 Appendix

3.7.1 Proof of Proposition 1

First, we acknowledge that for s > t and i ∈ {1, 2}, the expectation of 1τi>s conditional on

τi > t can be rewritten as

E [1τi>s | τi > t] = P (τi > s | τi > t) =
P (τi > s , τi > t)

P (τi > t)
=
P (τi > s)

P (τi > t)
= e−λi(s−t). (3.13)
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Then, to rewrite (3.5) into (3.6) we apply the following steps.

JBi,t(xt; ci,s, εs) = Et

[∫ τi

t

e−ρi(s−t)
c1−γ
i,s

1− γ
ds | τi > t, xt

]
(3.14)

= Et

[∫ ∞
t

e−ρi(s−t)
c1−γ
i,s

1− γ
1τi>sds | τi > t, xt

]

= Et

[∫ ∞
t

e−ρi(s−t)
c1−γ
i,s

1− γ
E [1τi>s | τi > t] ds | xt

]

= Et

[∫ ∞
t

e−(ρi+λi)(s−t)
c1−γ
i,s

1− γ
ds | xt

]
.

In the second equality, we change the limit of integration from τi to infinity and insert the

random variable 1τi>s. The third equality follows because τi is independent of the Brownian

motion zt. The fourth equality follows from (3.13).

3.7.2 Proof of Proposition 2

First, we acknowledge that for s > t and i ∈ {1, 2}, the expectation of 1τ̄>s conditional on

τ̄ > t can be rewritten as

E [1τ̄>s | τ̄ > t] = P (τ̄ > s | τ̄ > t) = P (τ1 > s, τ2 > s | τ1 > t, τ2 > t) (3.15)

= P (τ1 > s | τ1 > t)P (τ2 > s | τ2 > t) =
e−λ1s

e−λ1t
e−λ2s

e−λ2t
= e−(ρ1+λ1+λ2)(s−t) .

Then, to rewrite (3.2) into (3.9), first note that the expectation in (3.2) contains four terms

which can be treated separately. For the first term, we have

Et

[∫ τ̄

t

e−ρ1(s−t) c
1−γ
1,s

1− γ
ds | τ̄ > t, xt

]
(3.16)

= Et

[∫ ∞
t

e−ρ1(s−t) c
1−γ
1,s

1− γ
1τ̄>sds | τ̄ > t, xt

]

= Et

[∫ ∞
t

e−ρ1(s−t) c
1−γ
1,s

1− γ
E [1τ̄>s | τ̄ > t] ds | xt

]

= Et

[∫ ∞
t

e−(ρ1+λ1+λ2)(s−t) c
1−γ
1,s

1− γ
ds | xt

]
,

where the third follows from (3.15). For the second term in (3.2) we have

Et
[
e−ρ1(τ̄−t)V B

1 (xτ̄ + q2,τ̄/η2)1τ2=τ̄ | τ̄ > t, xt
]
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= Et
[
e−ρ1(τ2−t)V B

1 (xτ2 + q2,τ2/η2)1τ2<τ1 | τ1 > t, τ2 > t, xt
]

= Et

[∫ ∞
t

λ2e
−λ2(s−t)e−ρ1(s−t)V B

1 (xs + q2,s/η2)1s<τ1ds|τ1 > t, xt

]
= Et

[∫ ∞
t

λ2e
−λ2(s−t)e−ρ1(s−t)V B

1 (xs + q2,s/η2)E [1s<τ1 | τ1 > t] ds | xt
]
.

Recognizing that E [1s<τ1 | τ1 > t] = e−λ1(s−t) and, from (3.7), that

V B
1 (xt + q2,t/η2)

=

(
λ1 + ρ1 − (1− γ)r

γ
− 1− γ

2

(µ− r)2

(σγ)2

)−γ
(xt + q2,t/η2 + I1/r)

1−γ

1− γ

= C−γ1

(xt + q2,t/η2 + I1/r)
1−γ

1− γ
,

the second term in (3.2) becomes

Et

[∫ ∞
t

λ2e
−(ρ1+λ1+λ2)(s−t)C−γ1

(xt + q2,t/η2 + I1/r)
1−γ

1− γ
ds | xt

]
. (3.17)

Combining (3.16) and (3.17) we obtain

Et

[∫ ∞
t

e−(ρ1+λ1+λ2)(s−t) c
1−γ
1,s + λ2C

−γ
1 (xs + I1/r + q2,s/η2)1−γ

1− γ
ds | xt

]
. (3.18)

In a similar way, we can combine the third and fourth terms in (3.2) to obtain

Et

[∫ ∞
t

e−(ρ2+λ1+λ2)(s−t) c
1−γ
2,s + λ1C

−γ
2 (xs + I2/r + q1,s/η2)1−γ

1− γ
ds

∣∣∣∣∣ xt
]
. (3.19)

Combining (3.18) and (3.19) we obtain (3.9), the transformed intertemporal utility function.

3.7.3 Proof of Proposition 3

In short, we need to derive the dynamic programming for an intertemporal equilibrium solution

to a problem with stochastic dynamics, in which the intertemporal utility function is the sum

of two sums of utility, each with its own constant discount rate. In a deterministic setting and

with an arbitrary number of agents, this was done in de Paz et al (2013). Here, we present the

corresponding proof for the case of two agents and with stochastic dynamics. As was mentioned

in the introduction to the thesis, our definition of an equilibrium solution is due to Ekeland and

Pirvu (2008) and Ekeland and Lazrak (2010), and we will construct the dynamic programming

equation in such a way that it satisfies this definition.

For notational simplicity, we will define

Ui(ci,s, q−i,s, xs) =
c1−γ
i,s + λ−iC

−γ
i (xs + Ii/r + q−i,s/η−i)

1−γ

1− γ
,
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for i ∈ {1, 2}. First, we recognize that for each t > 0, we have

JAt (xt, c
∗
1, c
∗
2, q
∗
1, q
∗
2, ε
∗) = V A

1 (xt) + V A
2 (xt) .

That is, the value of the intertemporal utility function when we apply the decision rule

{c∗1, c∗2, q∗1, q∗2, ε∗} is equal to the sum of the value functions. Next, for a given t, we consider

the decision rules that are given by {c̄1, c̄2, q̄1, q̄2, ε̄} if s ∈ [t, t + ∆t] and {c∗1, c∗2, q∗1, q∗2, ε∗} if

s > t + ∆t, and we let x̄s be the trajectory of the wealth process when the household follows

{c̄1, c̄2, q̄1, q̄2, ε̄}. The intertemporal utility function when this decision rule is applied is

JBA(xt; c̄1, c̄2, q̄1, q̄2, ε̄) =

= Et

[
2∑
i=1

∫ t+∆t

t

e−(ρi+λ1+λ2)(s−t)Ui(c̄i,s, q̄−i,s, x̄s)ds

+
2∑
i=1

∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)Ui(c
∗
i,s, q

∗
−i,s, x

∗
s)ds | xt

]
.

The idea behind this decision rule is that [t, t + ∆t] is the period in which the household is

able to commit its future selves to a certain behavior. We can refer to this a the “period of

commitment”. Hence, the household at t is in control of behavior over a nonzero interval of

time, as in the discrete time case, and can therefore influence the intertemporal utility function.

Next, suppose that for any {c̄1, c̄2, q̄1, q̄2, ε̄}, it is the case that

lim
∆t→0+

JAt (xt, c
∗
1, c
∗
2, q
∗
1, q
∗
2, ε
∗)− JAt (xt, c̄1, c̄2, q̄1, q̄2, ε̄)

∆t
≥ 0 .

If this condition is satisfied, we say that {c∗1, c∗2, q∗1, q∗2, ε∗} is the equilibrium decision rule. This

is the definition of an equilibrium solution due to Ekeland and Lazrak (2010).

By taking the limit of ∆t, the period of commitment vanishes, and the numerator approaches

zero. But the expression is scaled up by the denominator, so that the behavior within the

period of commitment remains influential. The intuition is that if {c∗1, c∗2, q∗1, q∗2, ε∗} is indeed

the equilibrium decision rule, the expression must be nonnegative because no other decision

rule can result in a larger value of the intertemporal utility function. Of course, if we set

{c̄1, c̄2, q̄1, q̄2, ε̄} = {c∗1, c∗2, q∗1, q∗2, ε∗}, the expression evaluates to zero. Hence, we can also define

the equilibrium decision rule to be any {c̄1, c̄2, q̄1, q̄2, ε̄} that solves

0 = max
c̄1,c̄2,q̄1,q̄2,ε̄

{
lim

∆t→0+

JAt (xt, c̄1, c̄2, q̄1, q̄2, ε̄)− JAt (xt, c
∗
1, c
∗
2, q
∗
1, q
∗
2, ε
∗)

∆t

}
, (3.20)

which provides us with a dynamic programming equation for finding the equilibrium solution.

To make the dynamic programming equation workable, we need to rewrite it into something

more familiar. To this end, we notice that

JAt (xt, c̄1, c̄2, q̄1, q̄2, ε̄)− JAt (xt, c
∗
1, c
∗
2, q
∗
1, q
∗
2, ε
∗) = (3.21)
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= Et

[
2∑
i=1

∫ t+∆t

t

e−(ρi+λ1+λ2)(s−t)(Ui(c̄i,s, q̄−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds+

+
2∑
i=1

∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)(Ui(c
∗
i,s, q

∗
−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds | xt

]
.

Moreover,

Et

[∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)Ui(c
∗
i,s, q

∗
−i,s, x̄s)ds | xt

]
= (3.22)

+Et

[
V A
i (x̄t+∆t) +

∫ ∞
t+∆t

(e−(ρi+λ1+λ2)(s−t) − e−(ρi+λ1+λ2)(s−t−∆t))Ui(c
∗
i,s, q

∗
−i,s, x̄s)ds | xt

]
and

Et

[∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)Ui(c
∗
i,s, q

∗
−i,s, x

∗
s)ds | xt

]
= (3.23)

+Et

[
V A
i (x∗t+∆t) +

∫ ∞
t+∆t

(e−(ρi+λ1+λ2)(s−t) − e−(ρi+λ1+λ2)(s−t−∆t))Ui(c
∗
i,s, q

∗
−i,s, x

∗
s)ds | xt

]
.

Combining (3.22) and (3.23) we have

Et

[∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)(Ui(c
∗
i,s, q

∗
−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds | xt

]
= (3.24)

Et
[
V A
i x̄t+∆t)− V A

i (x∗t+∆t)+

(o(∆)− (ρi + λ1 + λ2)∆t)

∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)(Ui(c
∗
i,s, q

∗
−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds | xt

]
,

where we have used the Taylor expansion e(ρi+λ1+λ2)∆t = 1 + (ρi + λ1 + λ2)∆t + o(∆t), and

o(∆t) is terms that converge to zero at a faster rate than ∆t. Combining this with (3.21) and

dividing by ∆t, we have

JAt (xt, c̄1, c̄2, q̄1, q̄2, ε̄)− JAt (xt, c
∗
1, c
∗
2, q
∗
1, q
∗
2, ε
∗)

∆t
=

= Et

[
2∑
i=1

1

∆t

∫ t+∆t

t

e−(ρi+λ1+λ2)(s−t)(Ui(c̄i,s, q̄−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds+

2∑
i=1

(
V A
i (x̄t+∆t)− V A

i (xt)

∆t
−
V A
i (x∗t+∆t)− V A

i (xt)

∆t

)
+

2∑
i=1

(o(∆)/∆t− ρi − λ1 − λ2)

∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)(Ui(c
∗
i,s, q

∗
−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds | xt

]
.

When we take the limit ∆t → 0∗, we can treat each of the terms in the above expression

separately. We have

lim
∆t→0+

Et

[
1

∆t

∫ t+∆t

t

e−(ρi+λ1+λ2)(s−t)(Ui(c̄i,s, q̄−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds |xt
]

=
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= Ui(c̄i,t, q̄−i,t, x̄t)− Ui(c∗i,t, q∗−i,t, x∗t ) ,

which follows from L’Hopital’s Rule. We have

lim
∆t→0+

Et

[
V A
i (x̄t+∆t)− V A

i (xt)

∆t
|xt
]

= −(ρi + λ1 + λ2)Vi(xt)+

+
dV A

i

dxt
(xt)(rxt + ε̄t(µ− r)xt − c̄1,t − c̄2,t − q̄1,t − q̄2,t + I1 + I2) +

d2V A
1

dx2
(x)

(ε̄tσxt)
2

2

and

lim
∆t→0+

Et

[
V A
i (x∗t+∆t)− V A

i (xt)

∆t
= −(ρi + λ1 + λ2)V A

i (xt) |xt
]

+

+
dV A

i

dxt
(xt)(rxt + ε∗t (µ− r)xt − c∗1,t − c∗2,t − q∗1,t − q∗2,t + I1 + I2) +

d2V A
1

dx2
(x)

(ε∗tσxt)
2

2
.

For the last terms, we have

0 = lim
∆t→0+

Et [(o(∆)/∆t− ρi − λ1 − λ2)

∫ ∞
t+∆t

e−(ρi+λ1+λ2)(s−t)(Ui(c
∗
i,s, q

∗
−i,s, x̄s)− Ui(c∗i,s, q∗−i,s, x∗s))ds | xt

]
because the utility functions converge. Hence, putting everything together we obtain

lim
∆t→0+

JAt (xt, c̄1, c̄2, q̄1, q̄2, ε̄)− JAt (xt, c
∗
1, c
∗
2, q
∗
1, q
∗
2, ε
∗)

∆t
(3.25)

=
2∑
i=1

(Ui(c̄i,t, q̄−i,t, x̄t)− Ui(c∗i,t, q∗−i,t, x∗t ))

+
2∑
i=1

(
dV A

i

dxt
(xt)(rxt + ε̄t(µ− r)xt − c̄1,t − c̄2,t − q̄1,t − q̄2,t + I1 + I2) +

d2V A
1

dx2
(x)

(ε̄tσxt)
2

2

)

−
2∑
i=1

(
dV A

i

dxt
(xt)(rxt + ε∗t (µ− r)xt − c∗1,t − c∗2,t − q∗1,t − q∗2,t + I1 + I2) +

d2V A
1

dx2
(x)

(ε∗tσxt)
2

2

)
.

Finally, by recognizing that

dV A
i

dxt
(xt)(rxt + ε∗t (µ− r)xt − c∗1,t − c∗2,t − q∗1,t − q∗2,t + I1 + I2) +

d2V A
1

dx2
(x)

(ε∗tσxt)
2

2

+Ui(c
∗
i,t, q

∗
−i,t, x

∗
t ) = Et

[
dV A

i

dt
(xt) |xt

]
+ (ρi + λ1 + λ2)V A

i (xt)

we obtain Proposition 3.
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3.7.4 In Search of a Solution when there is Wage Income

In order to find the constants {A1, A2, B1, B2}, we attempt the following method. We first

create a system of two equations by taking the time derivative of (3.10) for both agents. With

{c∗1, c∗2, q∗1, q∗2, ε∗} as we derived for the case when there is wage income, the system becomes

0 = (rx+ I1 + I2 + (η1 + η2)x)

((A1(x+B1))−γ + (A2(x+B2))−γ)
1−γ
γ

1− γ
(Ai(x+Bi))

−γ − (ρi + λ1 + λ2)
x+Bi

1− γ

+
(µ− r)2

γσ2

(A1(x+B1))−γ + (A2(x+B2))−γ

(A1(x+B1))−γ−1 + (A2(x+B2))−γ−1
− 2((A1(x+B1))−γ + (A2(x+B2))−γ)−1/γ

−(x+Bi)
(µ− r)2

2γσ2

(
(A1(x+B1))−γ + (A2(x+B2))−γ

(A1(x+B1))−γ−1 + (A2(x+B2))−γ−1

)2

+η1

(
λ1

η1

)1/γ ((
C1

A1(x+B1)

)γ
+

(
C1

A2(x+B2)

)γ)−1/γ

+η2

(
λ2

η2

)1/γ ((
C2

A1(x+B1)

)γ
+

(
C2

A2(x+B2)

)γ)−1/γ

for i ∈ {1, 2}. At this point, what we would like to do is to separate each equation in the system

into two equations, based on which terms are multiplied by x and which are not. We would

then obtain the four equations that we need to solve for the four parameters in {A1, A2, B1, B2}.
However, there is no way to separate the terms in the equations based on powers of x. The

reason is the presence of the terms B1 and B2, which are part of our conjecture for the value

functions. It is clear that the system if solvable if B1 = B2, because in that case one can divide

by x + Bi in order to remove the complicating factors. But attempting to prove conditions

under which B1 = B2 is not straightforward.



Chapter 4

Fish War Models with Asymmetric

Agents and Quasi-Hyperbolic Time

Preferences

4.1 Introduction

There exists a large literature dealing with the economics of international fisheries agreements.

The need for such research is due to the fact that, at the international political level, the

management of territories of water and the harvest (and preservation) of their fish stocks is an

important issue. It’s long been understood that the management of fish stock suffers from a

prisoners’ dilemma situation; in the absence of enforced quotas for the harvest of fish, a problem

of overfishing and, in the long run, depletion of the stock, tends to arise.

Many authors have used coalition games to model fishing agreements, as such games allow

for the investigation of incentives for coordination contra non-coordination among the agents

in the model. Kronback et al (2015), in surveying the literature on such fishing games, divide

these papers into the three categories of characteristic function games, partition function games

and dynamic games. The application of dynamic games to fishing agreements can be traced

back to Mirman (1979) and Levhari and Mirman (1980). Their model is known as the Great

Fish War, and has been expanded upon by many authors. Much of the literature is in discrete

time.1

In the standard dynamic fish war game, the agents are assumed to derive utility (or profit)

from the harvest of fish. The dynamics, usually referred to as the game’s growth function, are

assumed to be nonlinear. Since the harvest in the present period decreases the total fish stock

that remains for harvest in future periods, there arises a trade-off between extraction in the

present and in the future. Moreover, since each agent is assumed to derive utility only from

1For a model in continuous time, see Clark (1990).
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his own harvest, and not from that of the other agents, each agent has an incentive to overfish

in the present, else he risks losing utility to the other agents. For this reason, fish war models

have often been solved for both noncooperative and cooperative solutions, as this allows for

measuring whether there is incentive to deviate from cooperation. In the original paper by

Levhari and Mirman (1980), it was shown that (under a set of particular assumptions) the

noncooperative solution had a smaller steady state stock of fish than the cooperative solution.

This result extends to many other papers in the literature.

Most papers on the fish war assume symmetric agents with consistent time preferences. That

is, all agents are assumed to have the same discount and utility functions, and the discount

function is assumed to be exponential, so that the discount rate is constant. This has the

advantage of simplifying the mathematical treatment necessary for finding solutions. The

disadvantage is lack of realism. There is no reason to assume that the economic agents that

engage in fishing are “copies” of one another and react to external circumstances in exactly

the same way. However, going beyond any of these assumptions bring complications in finding

solutions, as we have seen in previous chapters. A coalition in which the members have different

discount rates will have a nonconstant discount rate. Hence, the aggregated time preferences

of the coalition are inconsistent. Moreover, if the discount functions are nonexponential, the

individual agents too will have inconsistent time preferences. The first paper to use asymmetric

(but constant) discount rates in a fish war model seems to be Breton and Keoula (2014). They

were able to derive analytic solutions under both noncooperation and cooperation, under the

assumption that the agents have logarithmic utility functions.

In this chapter, we go a step further and allow the agents to have asymmetric quasi-

hyperbolic discount functions. We will study this type of time preference in three fish war

models. In the first, we maintain the assumption of logarithmic utility functions and the stan-

dard growth function for fish war models. Hence, our first model is identical to that of Breton

and Keoula (2014) except for the discount functions.

In the second model, we introduce stochastics with autocorrelated random events into the

analysis, and we use general power utility functions. For reasons of tractability, power utility

functions have rarely been used in fish war models. When power utility functions are combined

with the nonlinear growth function that is standard in a fish war model, the result is that

explicit solutions are very difficult (maybe impossible) to find. In Antoniadou et al (2013),

this problem was circumvented by imposing a particular relationship between the parameter of

relative risk aversion of the utility function and a parameter in the growth function. Although

this is completely unmotivated from an economic point of view, it at least enhances tractability.

In our model we will use a different method, namely that of a linear growth function, i.e.

exponential growth of the fish stock. This too is done partially for reasons of tractability,

although an economic motivation can be provided: for low levels of the fish stock, it is not

inconceivable that the growth is approximately exponential. (For higher levels, one has to
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imagine that the growth levels off, so that the growth path forms an s-shaped curve.)

In the third model, we reintroduce the nonlinear growth function that is standard, and we

also allow the agents to have power utility functions with different coefficients. Hence, this

model allows for asymmetry in both the utility and discount functions. Due to the difficulties

in using analytic methods, we rely heavily on numeric methods in this part of the chapter. This

third model is solved in finite horizon and only for the cooperative solution, and the first two

models are solved in infinite horizon for both cooperation and noncooperation.

In order to solve these models, we first develop a general theoretical framework within which

our models appear as particular cases. We derive discrete time dynamic programming equations

for finding noncooperative and cooperative intertemporal equilibria in dynamic games in which

the agents have different and general utility and discount functions. We also allow the dynamics

of the game to be stochastic and the random events to be autocorrelated, and we allow for both

a finite and an infinite planning horizon. Our first two fish war models are solved using this

theory. The third model is solved using a form of backward induction which is not based on

dynamic programming equations and value functions. This method is described in the appendix

to this chapter.

As mentioned, all of our models assume quasi-hyperbolic discount functions. This is per-

haps the simplest type of discount function that preserve the property of inconsistent time

preferences. It was introduced by Phelps and Pollak (1968) and has been extensively studied

within the field of behavioral economics. According to this model, if δ ∈ (0, 1) is the standard

geometric discount factor, the intertemporal utility function for the agent at time t is defined

as

Jt = ut + β(δut+1 + δ2ut+2 + δ3ut+3 + · · · ) ,

where β ∈ (0, 1] andut is the utility obtained at time t. That is, the discount function for agent

i is θi,t = βiδ
t
i , for t ≥ 1, and θi,0 = 1. Therefore, the agent at time t applies not only the fixed

discount factor δ, but also a “future discount factor” β > 0 to all future periods. Clearly, if

β 6= 1, the agent has inconsistent time preferences because the discount rate is not constant.

A decrease in β increases the agent’s bias toward the immediate present, as opposed to any

other period. It doesn’t make the agent less patient in general, as a decrease in δ would do. It

changes the ratio of the discount function between utility in the present and utility in the any

future period, but not between two future periods. Hence, a quasi-hyperbolic discount function

differs both from a simple geometric discount function and from more complicated discount

functions, such as sums of exponentials with different coefficients.

The main motivation for using power utility functions, which is nonstandard in fish war

models, is that it allows for analyzing the relationship between risk and risk aversion. It’s a

peculiar property of logarithmic utility functions that they make agents indifferent to risk (at

least in the context of the standard fish war models). For fish war models this is especially

unfortunate, since logarithmic utility functions are so important for tractability. It should not
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come as a surprise, then, that the survey paper Kronback et al (2015) identifies risk in fishing

games as an “underexplored area”.

The rest of this chapter is organized as follows. Section 2 is devoted to developing the the-

oretical framework that we make use of in later sections. We derive the dynamic programming

equations first for the general case and then for the particular case of quasi-hyperbolic discount-

ing, for which the theory simplifies in an intuitive way. In Section 3 we apply the theory to

solving a standard fish war model with asymmetric quasi-hyperbolic discounting. The section

ends with some numeric results, in which we investigate how the bias toward the present in

the discount functions affect coalitional stability and the steady state fish stock and harvest.

In Section 4 we solve the second model, as described above. Again, we end the section with

numeric results, looking in particular at the role of the discount functions. In Section 5 we solve

the third model and investigate how the behavior of the coalition is affected by risk, asymmetry

in preferences for harvest smoothing, and finally the discount functions. Section 6 concludes

the chapter.

4.2 The Theory

We shall develop a theoretical framework for solving a stochastic game with N agents discount-

ing the future at different and nonconstant rates. First we will develop the general theory, and

later on we will look at the particular case of quasi-hyperbolic discounting. We will look at

both finite and infinite planning horizon games.

Fujii and Karp (2008) derived a dynamic programming equation for the general problem of

an agent whose preferences at time t are described by

Jt = ut + θ1ut+1 + θ2ut+2 + θ3ut+3 + · · · ,

which we interpret as an infinite sum of utilities discounted at potentially nonconstant rates.

They assumed that the dynamics were deterministic and applied their theory to finding an

intertemporal equilibrium solution to a model on climate change. The theory that we will

develop in this section is an extension that generalizes the dynamic programming equation

in Fujii and Karp (2008) to a stochastic setting and several agents, both in a finite and an

infinite planning horizon. A first informal derivation of such a stochastic dynamic programming

equation in the case of just one decision maker was given in Maŕın-Solano and Navas (2010).

In that paper, the probability distributions of future random events were implicitly assumed

to be independent of past and present random events, as well as of past and present state and

control variables.

The main elements of the game are the following:

• N agents, indexed by i = 1, . . . , N .
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• The planning horizon T , that can be finite or infinite. Hence, time is represented by

t ∈ {0, . . . , T}.

• The state variables, Xt ∈ X ⊆ Rn, representing the state of the system at every t, which

evolves in accordance with the dynamics Xt+1 = f(Xt, ct(Xt, Zt), Zt+1).

• The decision rules, ci,t ∈ Ui ⊆ Rmi , representing the behavior of agent i in period t. Let

us denote U = U1× · · · ×UN . Without loss of generality, and to simplify the notation, we

will take m1 = · · · = mN = 1. Hence, we will write cs = (c1,s, c2,s, · · · , cN,s) ⊆ R× · · · ×R.

The extension to the multidimensional case is straightforward.

• The random variables Zt ∈ Z, where Z is a finite set, representing the uncertainties in the

evolution of the state variables. We will assume that the probability that Zt+1 = z ∈ Z,

may depend on the outcome zt at time t, on the state and decision variables Xt and ct as

well as explicitly on time t. Thus, we will write Pt+1(Zt+1| zt, xt, ct).

• The function ui(xt, ci,t, c−i,t) gives the utility obtained by agent i at time t if his control

variable is ci,t and the control variables of the other agents are c−i,t.

We assume that functions ui, i = 1, . . . , N , and f are continuous in the state and control

variables.

4.2.1 Noncooperative solution in finite horizon

In a noncooperative setting, each t-agent has to maximize, at every time t, his expected in-

tertemporal utility function (i.e. the sum of expected future utilities discounted back to t),

provided that the other agents follow the equilibrium decision rule for all s ≥ t and that he

himself follows the equilibrium decision rule for s > t. Hence, for player i, if c∗i,t = φi,t(xt), is

the decision rule of the noncooperative solution, each t-agent i will set ci,t so as to maximize

Ji,t(xt, zt, ci,t, φt(Xs, Zs)) = (4.1)

ui(xt, ci,t, φ−i,t(xt, zt)) + E

[
T∑

s=t+1

θi,s−tui(Xs, φi,s, φ−i,s(Xs, Zs))|xt, zt

]
subject to

Xs+1 = f(Xs, ci,s, φ−i,s(Xs, Zs), Zs+1) , Xt = xt , Zt = zt , (4.2)

where θi,t is the discount factor of agent i and s = t + 1, . . . , T − 1. If θi,t = δti , for every t,

we recover the problem in which each agent has a constant discount rate. Otherwise, we have

a problem with nonconstant discount rates. (For the case of one agent, see Björk et al (2021)

and references therein.)
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First, let us assume that the probability that Zt+1 = z ∈ Z, may depend on the outcome zt

at time t, as well as explicitly on time t, but is independent on the state and control variables

xt and ct. That is, the probability that Zt = z can be written as Pt(z| zt). We search for a set

of decision rules c∗i,t = φi,t(xt, zt), characterized by the property that no agent wants to deviate

from it in any time period. The value function for the t-agent i is given by

Vi,t(xt, zt) (4.3)

sup
{ci,t}

E

[
ui(xt, ci,t, φ−i,t(xt, zt) +

T∑
s=t+1

θi,s−tui(Xs, φi,s(Xs, Zs), φ−i,s(Xs, Zs)|xt, zt)

]
.

The computation of the expectation in (4.3) is based on conditional probabilities of the form

p∗(zt+1, zt+2, . . . , zT | zt) = PT (zT | zT−1) · PT−1(zT−1| zT−2) · · ·Pt+1(zt+1| zt), which denotes the

probability at time t of the series of events {zt+1, zt+2, . . . , zT} conditional on zt.

In the final period T , the value function of agent i is

Vi,T (xT ) = sup
{ci,T }

{ui(xT , ci,T , φ−i,T (xT )} , (4.4)

as usual. The decision rule φi,T (xT ) is the maximizer of the right hand term of the above

equation. Note that the value function at time T depends on the state xT , but not on the event

zT . The reason is that since T is the last period, there is no future event ZT+1 which may

depend on ZT . Hence, ZT is only relevant to the decision rule c∗i,T in so far as it contributes to

XT .

At time T − 1,

Vi,T−1(xT−1, zT−1) = sup
{ci,T−1}

E [ui(xT−1, ci,T−1, φ−i,T−1(xT−1, zT−1))

+θi,1ui(XT , φi,T (XT ), φ−i,T (XT ))|xT−1, zT−1] ,

where the expectation is calculated over ZT given zT−1, since ui(XT , φi,T (XT ), φ−i,T (XT )) de-

pends on XT = f(xT−1, ci,T−1, φ−i,T−1(xT−1, zT−1), ZT ) which depends on ZT . We can write

Vi,T−1(xT−1, zT−1) = ui(xT−1, φi,T−1(xT−1, zT−1), φ−i,T−1(xT−1, zT−1))

+θi,1E [ui(XT , φi,T (XT ), φ−i,T (XT ))|xT−1, zT−1]

= ui(xT−1, φi,T−1(xT−1, zT−1), φ−i,T−1(xT−1, zT−1)) + θi,1L
i,T−1
T ,

where we define Li,T−1
T = E [ui(XT , φi,T (XT ), φ−i,T (XT ))|xT−1, zT−1]. More generally, for τ > s,

we may define

Lsi,τ = E[· · · [E[E[ui(Xτ , φi,τ (Xτ , Zτ ), φ−i,τ (Xτ , Zτ ))|Xτ−1, Zτ−1]|Xτ−2, Zτ−2] · · · ]|xs, zs] .
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That is, Li,sτ is the undiscounted utility that agent i expects at time s to receive at time τ when

the equilibrium decision rule is employed. It follows that the value function of agent i at time

t can be written as

Vi,t(xt, zt) = sup
{ci,t}

{
ui(xt, ci,t, φ−i,t(xt, zt)) +

T−1∑
s=t+1

θi,s−tL
t
i,s + θi,T−tL

t
i,T

}
. (4.5)

In a similar way,

Vi,t+1(xt+1, zt+1) =
T−1∑
s=t+1

θi,s−t−1L
t+1
i,s + θi,T−t−1L

t+1
i,T

and therefore

E [Vi,t+1(Xt+1, Zt+1)|xt, zt] =
T−1∑
s=t+1

θi,s−t−1L
t+1
i,s + θi,T−t−1L

t+1
i,T . (4.6)

By solving for Lt+1
i,T in (4.6) and substituting into (4.5), we obtain

θi,T−t−1Vi,t(xt, zt) = sup
{ci,t}
{θi,T−t−1ui(xt, ci,t, φ−i,t(xt, zt)) (4.7)

+
T−1∑
s=t+1

(θi,T−t−1θi,s−t − θi,T−tθi,s−t−1)Lti,s + θi,T−tE[Vi,t+1(Xt+1,, Zt+1)|xt, zt]

}
.

Equations (4.4) and (4.7), for every i ∈ {1, . . . , N}, together with (4.2), constitute the dynamic

programming equation for the problem (4.1)-(4.2), and the corresponding decision rules are the

noncooperative solution to the game.

The previous result can easily be extended to the case when the probabilities Pt+1[Zt+1 =

z] = Pt+1(z | xt, ct, zt) depend, not only on time t and the previous outcome zt, but also on

the state and control variables xt and ct. Given the decision rules φi,0(x0, z0), . . . , φi,T (xT , zT ),

for i = 1, . . . , N , the state Xt depends on the outcomes of Z0, . . . , Zt, i.e., Xt = Xt(Z0, . . . , Zt).

Hence, we can write p∗(zt+1, zt+2, . . . , zT | zt, xt, φt(xt, zt)) = PT (zT | zT−1, xT−1, φT−1(xT−1, zT−1))·
PT−1(zT−1| zT−2, xT−2, φT−2(xT−2, zT−2)) · · · · ·Pt+1(zt+1| zt, xt, φt(xt, zt)), and the expectation in

(4.1) becomes

∑
zt+1,...,zT

T∑
s=t

θi,s−tui(Xs, ci,s, φ−i,s(Xs, Zs))p
∗(zt+1, . . . , zT | zt, xt, φt(xt, zt)) .

In other words, for the decision rule φt(xt, zt), we sum over all potential outcomes of the random

events that may result from that decision rule, and weight the intertemporal utility function

of each outcome by its probability. Since the probabilities p∗, and hence the expected values,

depend on the decision rules chosen, we will denote the above expectation as Eci,t,...,ci,T . We

define the value function of the t-agent i as

Vi,t(xt, zt) = sup
{ci,t}

Eci,t,c∗i,t+1...,c
∗
i,T

[ui(xt, ci,t, φ−i,t(xt, zt))+
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T∑
s=t+1

θi,s−tui(Xs, φi,s(Xs, Zs), φ−i,s(Xs, Zs))|xt, zt)

]
,

where the supremum is computed with respect to the decision rule ci,t, provided that the future

s-agents follow the equilibrium decision rule φs(xs, zs), for s = t+ 1, . . . , T . In the final period

T , the value function of agent i, Vi,T (xT , zT ) = Vi,T (xT ), is given by (4.4). For s ≥ τ , we define

Lτi,s (4.8)

=
∑

zt+1,zt+2,...,zT

p∗(zt+1, zt+2, . . . , zT | zt, xt, φt(xt, zt))ui(Xs, φi(s,Xs, Zs), φ−i(s,Xs, Zs)) .

This implies that Li,sτ is the undiscounted utility that agent i expects at time s to receive at

time τ , given that he follows the equilibrium decision rule φi,s(xs, zs) at times s = t+ 1, . . . , T

and that all other agents follow φ−i,s(xs, zs) at times s = t, . . . , T .

Proposition 4 For every initial state x0, the value function Vi, i = 1, . . . , N , of problem

(4.1)-(4.2) can be obtained as the solution to the dynamic programming algorithm

θi,T−t−1Vi,t(xt, zt) = sup
{ci,t}
{θi,T−t−1ui(xt, ci,t, φ−i,t(xt, zt))+ (4.9)

T−1∑
s=t+1

(θi,T−t−1θi,s−t − θi,T−tθi,s−t−1)Lti,s + θi,T−tEci,t [Vi,t+1(Xt+1,, Zt+1)|xt, zt]

}
,

for t = 0, . . . , T − 1, and Vi,T (xT ) = sup{ci,T } {ui(xT , ci,T , φ−i,T (xT )}. For every i = 1, . . . , N ,

equations (4.9) and (4.2) are the dynamic programming equations, and the corresponding deci-

sion rules c∗i,s = φi,s(Xs, Zs) are the noncooperative solution solving the problem (4.1)-(4.2).

Proof: Let c∗i,T = φi,T (xT ) be the solution to Vi,T (xT ) = sup{ci,T } {ui(xT , ci,T , φ−i,T (xT )}. Then

Vi,T (xT ) = ui(xT , φi,T (xT ), φ−i,T (xT )). For t = T − 1,

Vi,T−1(xT−1, zT−1) = sup
{ci,T−1}

Eci,T−1
[ui(xT−1, ci,T−1, φ−i,T−1(xT−1, zT−1)

+θi,1ui,T (XT , φi,T (XT ), φ−i,T (XT ))|xT−1, zT−1] = sup
{ci,T−1}

{ui(xT−1, ci,T−1, φ−i,T−1(xT−1, zT−1)

+Eci,T−1
[θi,1ui(XT , φi,T (XT ), φ−i,T (XT ))|xT−1, zT−1]

}
.

Let φi,T−1(xT−1, zT−1) be the optimum. Since

Eci,T−1
[ui(XT , φi,T (XT ), φ−i,T (XT ))|xT−1, zT−1]

=
∑
zT

PT ( z|xT−1, ci,T−1, zT−1)ui(XT , φi,T (XT ), φ−i,T (XT )) ,

then, using (4.8),

Vi,T−1(xT−1, zT−1) = ui(XT−1, φi,T−1(xT−1, zT−1)φ−i,T−1(xT−1, zT−1))
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+θi,1
∑
zT

PT−1( z|xT−1, ci,T−1, zT−1)ui(XT , φi,T (XT ), φ−i,T (XT ))

= ui(XT−1, φi,T−1(xT−1, zT−1)φ−i,T−1(xT−1, zT−1)) + θi,1L
T−1
i,T .

In general,

Vi,t+1(xt+1, zt+1) =
T∑

s=t+1

θi,s−t−1L
t+1
i,s (4.10)

and

Vi,t(xt, zt) = sup
{ci,t}

{
ui(xt, ci,t, φ−i,t(xt, zt)) +

T∑
s=t+1

θi,s−tEci,t
[
Lt+1
i,s |xt, zt

]}
. (4.11)

By taking the expectation of Vi,t+1(Xt+1, Zt+1) conditioned to xt, zt in (4.10), solving Lti,T ,

substituting in (4.11), and using (4.2), we obtain (4.9). �

It may be useful to provide some intuition for the dynamic programming equation presented

in Proposition 4. In comparison with a standard dynamic programming equation (with a

constant discount rate), the main new feature is the sum of the L-terms, each of which contains

the expected utility of some future period when the equilibrium decision rule is employed. These

terms correct for the fact that the discount rates may be nonconstant, and ensures that the

solution derived is an intertemporal equilibrium. If they are removed, the decision rule for time

t will be based on the assumption that the discount rate is constant and equal to θi,T−1/θi,T−t−1

for all future periods. Indeed, if the discount rates are in fact constant, the L-terms vanish,

and the dynamic programming equation becomes more similar to that of the standard case.

4.2.2 Noncooperative solution in infinite horizon

In the case when the planning horizon is infinite, let us restrict our attention to stationary

problems, in which the probabilities Pt+1(Zt+1 | xt, ct, zt) are independent of t. This implies

that the intertemporal utility functions are also independent of t. The problem for the t-agent

i is to set ci,t so as to maximize

Ji,t(xt, zt, ci,t, φs(xs, zs)) = (4.12)

E

[
ui(xt, ci,t, φ−i,t(xt, zt)) +

∞∑
s=t+1

θi,s−tui(Xs, ci,s, φ−i,s(Xs, Zs)) |xt , zt

]
subject to (4.2) and with the future decision rule of agent i and the decision rules of the

remaining agents given.

It is well-known that, in the case of standard exponential discounting, θi,τ = δτi , equilibrium

decision rules are stationary, in the sense that they do not depend explicitly on time. Hence,

we can write the value functions and the decision rules as Vi(x, z) and φi(x, z), as they are
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time-independent for every i = 1, . . . , N . In Carmon and Schwartz (2009) this result was

extended, in problems with one agent, to the class of exponentially representable discount

functions θτ =
∑∞

k=1 ckβ
τ
k , where the sum converges absolutely, and the sequence {βk}∞k=1 is

positive, strictly decreasing and β1 < 1. For this class of discount functions, it was proved that

there exist equilibrium decision rules that are stationary from some time t onward (t-stationary

decision rules), and an algorithm for their computation was provided. However, outside this

class, optimal t-stationary policies do not exist, in general. In order to avoid this problem, we

will assume that there exists a finite time T̄ such that, for every t ≥ T̄ , θi,τ = θi,T̄ δ
τ−T̄
i , for

δ < 1. Roughly speaking, this implies that the discount function becomes exponential after

a certain amount of time has passed. This condition is also important in the construction of

the dynamic programming algorithm (see Karp (2007) and Fujii and Karp (2008)). Using that

θi,τ/θi,τ−1 = δi for τ > T̄ , from Proposition 4 (see also the proof of Proposition 1 in Fujii and

Karp (2008) in a deterministic setting), we can write the dynamic programming equation 4.9

as

Vi(x, z) = sup
{ci}
{ui(x, ci, φ−i(x, z))+

∞∑
s=1

(
θi,s −

θi,T
θi,T−1

θi,s−1

)
L0
i,s + δiEci [Vi(f(x, ci, φ−i(x, z), Z), Z)|x, z]

}
.

Next, observe that

∞∑
s=1

(
θi,s −

θi,T
θi,T−1

θi,s−1

)
L0
i,s =

T̄∑
s=1

(θi,s − δθi,s−1)L0
i,s .

Hence, the dynamic programming equation becomes

Vi(x, z) = sup
{ci}
{ui(x, ci, φ−i(x, z))+ (4.13)

T̄∑
s=1

(θi,s − δiθi,s−1)L0
i,s(xs, zs) + δiEci [V (f(x, ci, φ−i(x, z), Z), Z)|x, z]

}
.

Note also that our condition on the discount function simplifies the discussion concerning

the existence of a well-defined bounded value function (4.12): since the discount rate becomes

constant after a finite time T̄ , the well-known conditions for a problem with a constant discount

rate of time preference apply. Equation (4.13) generalizes the dynamic programming equation

derived, for the case of one agent in a deterministic setting, in Fujii and Karp (2008).

4.2.3 Cooperative solution in finite horizon

Under cooperation, intertemporal equilibrium decision rules can be obtained by combining the

previous derivations and results. For simplicity, we constrain ourselves to the case in which
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probabilities are independent of the state and control variables. The extension to the more

general case proceeds in a similar way to that in the previous sections.

The problem to be solved is the following. The intertemporal utility function of the coalition

is

Jt(xt, zt, cs) =
N∑
i=1

λiJi,t(xt, zt, cs) =
N∑
i=1

E

[
T∑
s=t

θi,s−tui(Xs, cs)|xt, zt)

]
and the dynamics are

Xs+1 = f(Xs, cs, Zs+1) , Xt = xt , Zt = zt .

We search for equilibrium decision rules, c∗t = (c∗1,t, . . . , c
∗
N,t) = (φ1,t(xt, zt), . . . , φN(xt, zt)),

characterized by the property that at no time period does the coalition have incentive to

deviate from it. The value function of the coalition at time t is given by

Vt(xt, zt) =
N∑
i=1

λiJi,t(xt, zt, φs(xs, zs)) =
N∑
i=1

λiE

[
T∑
s=t

θi,s−tui(Xs, φs(Xs, Zs)) |xt, zt

]
,

with Xs+1 = f(Xs, φs(Xs, Zs), Zs+1), for s = t, . . . , T − 1 and Xt = xt, Zt = zt given. Alterna-

tively, we can write

Vt(xt, zt) =
N∑
i=1

λiVi,t(xt, zt) ,

where

Vi,t(xt, zt) = Ji,t(xt, zt, φs(xs, zs)) = E

[
T∑
s=t

θi,s−tui(Xs, φs(Xs, Zs)) |xt, zt

]
,

We proceed backward in time. In the final period, for t = T ,

VT (xT , zT ) = sup
{cT }

N∑
i=1

λiui(xT , cT ) .

Let cT = φT (xT ) be the solution to the above problem.

For t = T − 1,

VT−1(xT−1, zT−1) = sup
{cT−1}

{
N∑
i=1

λiE [ui(xT−1, cT−1) + θi,1ui(XT , φT (XT ) |xT−1, zT−1 ]

}
,

with XT = f(xT−1, cT−1, ZT ), for xT−1, zT−1 given. Let cT−1 = φT−1(xT−1, zT−1) be the solution

to this maximization problem. Then,

VT−1(xT−1, zT−1) =
N∑
i=1

λiVi,T−1(xT−1, zT−1) ,
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where

Vi,T−1(xT−1, zT−1) = [ui(xT−1, φT−1(xT−1, zT−1)) + θi,1E [ui(XT , φT (xT )) |xT−1, zT−1 ] .

As in the noncooperative solution, we define LT−1
i,T = E [ui(XT , φT (XT )) |xT−1, zT−1], so that

Vi,T−1(xT−1, zT−1) = ui(xT−1, φT−1(xT−1, zT−1)) + θi,1L
T−1
i,T .

Similarly, if we define

Lsi,τ = E[· · · [E[E[ui(Xτ , φτ (Xτ , Zτ )) |Xτ−1, Zτ−1] |Xτ−2, Zτ−2] · · · ] |xs, zs ]

for τ = s+ 1, . . . , T , then

Vt(xt, zt) = sup
{ct}

{
N∑
i=1

(
λiui(xt, ct) +

T−1∑
s=t+1

θi,s−tλiL
t
i,s + θi,T−tλiL

t
i,T

)}
. (4.14)

Next, note that

E [Vi,t+1(Xt+1, Zt+1) |xt, zt) ] = E

[
T∑

s=t+1

θi,s−t−1L
t+1
i,s |xt, zt)

]

=
T∑

s=t+1

θi,s−t−1L
t
i,s =

T−1∑
s=t+1

θi,s−t−1L
t
i,s + θi,T−t−1L

t
i,T .

Therefore,

Lti,T =
1

θi,T−t−1

(
E [Vi,t+1(Xt+1, Zt+1) |xt, zt) ]−

T−1∑
s=t+1

θi,s−t−1L
t
i,s

)
,

and, by substituting in (4.14), we obtain

Vt(xt, zt) = sup
{ct}

{
N∑
i=1

λi

(
ui(xt, ct) +

θi,T−t
θi,T−t−1

E [Vi,t+1(Xt+1, Zt+1) |xt, zt) ]

+
T−1∑
s=t+1

(
θi,s−t −

θi,T−t
θi,T−t−1

θi,s−t−1

)
Lti,s

)}
.

Therefore, cooperative decision rules if agents discount the future at different and nonconstant

discount rates satisfy the dynamic programming equation

φt(xt, zt) = arg sup
{ct}

{
N∑
i=1

λi (ui(xt, ct)+ (4.15)

T−1∑
s=t+1

(
θi,s−t −

θi,T−t
θi,T−t−1

θi,s−t−1

)
Lti,s +

θi,T−t
θi,T−t−1

E [Vi,t+1(f(xt, ct, Zt+1), Zt+1) |xt, zt) ]

)}
for t = 0, . . . , T − 1, where

Lti,s = E[· · · [E[E[ui(Xs, φs(Xs, Zs)) |Xs−1, Zs−1] |Xs−2, Zs−2] · · · ] |xt, zt ] , (4.16)

and

VT (xT , zT ) = sup
{cT }

N∑
i=1

λiui(xT , cT ) . (4.17)
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4.2.4 Cooperative solution in infinite horizon

If the planning horizon is infinite, we consider the case in which the probabilities

Pt+1(zt+1|xt, ct, zt) are independent of t. In addition, as in the case of the noncooperative

solution, we assume that there exists a finite time T̄ such that, for every t ≥ T̄ , θi,τ = θi,T̄ δ
τ−T̄
i ,

for δ < 1. Therefore,
θi,τ
θi,τ−1

= δi, for τ > T̄ . In addition, note that

∞∑
s=1

(
θi,s −

θi,T
θi,T−1

θi,s−1

)
L0
i,s =

T̄∑
s=1

(θi,s − δθi,s−1)L0
i,s .

Hence, in the search of stationary decision rules in an autonomous problem in infinite horizon,

equation (4.15) becomes

φ(x, z) = arg sup
{c}

{
N∑
i=1

λi (ui(x, c)+ (4.18)

T̄∑
s=1

(θi,s − δθi,s−1)L0
i,s + δiE [Vi(f(x, c, Z), Z) |x , z]

)}
.

4.2.5 Quasi-hyperbolic asymmetric discounting

In the models in Section 3 and Section 4 of this chapter, we shall apply the theory that we

have developed here to problems in which the planning horizon is infinite and the discount

functions are quasi-hyperbolic. This is a special case of the more general model for which

we have already derived dynamic programming equations. Starting from the more general

discount function that we studied above, a quasi-hyperbolic discount function is obtained by

setting T̄ = 1. In this subsection, we will look at how this simplifies the theory, and describe

in detail the algorithms which we will use in the applications.

First, we look at the noncooperative solution. With the planning horizon being infinite and

the problem stationary, the decision rules solve

Vi(x, z) = sup
{ci}

{
ui(x, ci, φ−i(x, z)) + δi(βi − 1)L0

i,1(x, z) (4.19)

+δiEci [Vi(f(x, ci, φ−i(x, z), Z), Z)|x, z]} ,

i.e.,

Vi(x, z) = sup
{ci}
{ui(x, ci, φ−i(x, z)) + Eci [δi(βi − 1)ui(f(x, φ(x, z), Z), φ(f(x, φ(x, z), Z))

+δiVi(f(x, ci, φ−i(x, z), Z), Z)|x, z]} . (4.20)

The main thing to notice here is that in (4.19) the sum of the L-terms have been simplified

considerably compared to the case of a general discount function that we derived previously.
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Instead of a sum of terms, we have only the one term δi(βi − 1)L0
i,1. The reason is that after

one time period has passed, the discount rate is constant at δi − 1. Hence, there is no need for

additional L-terms to correct for a nonconstant discount rate.

It is easy to check that the dynamic programming equation (4.20) can be rewritten as

Vi(x, z) = sup
{ci}

{
ui(x, ci, φ−i(x, z)) + βiδiEci

[
V̄i(f(x, ci, φ−i(x, z), Z), Z)|x, z

]}
, (4.21)

where V̄i, for i = 1, . . . , N , are such that

V̄i(x, z) = ui(x, φ(x, z)) + δiE
[
V̄i(f(x, φ(x, z), Z), Z)|x, z

]
. (4.22)

The functions V̄i will be important. We will refer to them as the auxiliary functions of the model.

In order to find the infinite horizon noncooperative decision rules φi(x, z) (i = 1, . . . , N), we

may proceed with the following algorithm.

1. Use (4.21) to find the decision rules in terms of the auxiliary functions.

2. Given the results in step 1, use (4.22) to solve for the auxiliary functions.

3. Having found the auxiliary functions, use the results from step 1 to find the decision rules.

4. Having found the decision rules and auxiliary functions, use (4.21) to find the value

functions.

Next, we look at the cooperative solution. For the case of an infinite planning horizon and

a stationary problem, the decision rules satisfy the dynamic programming equation

N∑
i=1

λiVi(x, z) = (4.23)

sup
{c}

{
N∑
i=1

λi
(
ui(x, c) + δi(βi − 1)L0

i,1 + δiE [Vi(f(x, c, Z), Z) |x, z) ]
)}

,

where

Vi(x, z) = ui(x, φ(x, z)) + βiδiE
[
V̄i(f(x, φ(x, z), Z), Z)|x, z

]
(4.24)

and

V̄i(x, z) = ui(x, φ(x, z)) + δiE
[
V̄i(f(x, φ(x, z), Z), Z)|x, z

]
. (4.25)

When solving for infinite horizon cooperative equilibrium decision rules φi,t(xt, zt) (i = 1, . . . , N),

we may proceed with the following algorithm.

1. Use the dynamic programming equation (4.23) to derive the decision rules as functions

of the value functions.
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2. Given those decision rules, use (4.24) to solve for the auxiliary functions in terms of the

value functions.

3. Given the results derived in the previous two steps, use (4.25) to solve for the auxiliary

functions.

4. Having found the auxiliary functions, use the results from step 2 to solve for the value

functions.

5. Having found the value functions, use the results from step 1 to solve for the equilibrium

decision rules.

4.3 The Standard Fish War Model

In this section we will apply the theory developed in the previous section to solve for nonco-

operative and cooperative solutions in an infinite horizon fish war model with two agents and

deterministic dynamics. We will assume that the utility function for agent i is

ui(ci,t) = ln ci,t ,

where ci,t is the harvest of agent i in period t. The growth function of the stock of fish is

xt+1 = b(xt − c1,t − c2,t)
α ,

where xt is the stock at the beginning of time period t. The logic of the growth function is that

we first substract the period’s total harvest from the stock of fish, and then raise what remains

of the fish stock to the power of α and multiply by b. We impose the parameter constraints

α ∈ (0, 1) and b > 0. This ensures that, in the absence of any harvest, the stock converges to

b
1

1−α , which is called the saturation level. In addition, we require all variables to be nonnegative

and the initial condition x0 > 0.

As we mentioned in the introduction, this model has been studied in several papers, notably

by Breton and Keoula (2014), where the model was solved under the assumption of asymmetric

and constant discount rates. In the present study, we maintain the assumption of asymmetric

time preferences, but also allow both agents to have quasi-hyperbolic time preferences. Hence,

the discount function for agent i is θi,t = βiδ
t
i , for t ≥ 1, and θi,t = 1 for t = 0, where all

parameters are in the unit interval. If β1 = β2 = 1, our model simplifies to the one with

asymmetric but constant discount rates that was solved in Breton and Keoula (2014). If in

addition δ1 = δ2, the model simplifies to the standard one in which the agents have the same

constant discount rate. If we impose that δ1 = δ2 and that one of the agents have a constant

discount rate (i.e. that β1 = 1 or β2 = 1), we obtain a model studied in Turan (2019). Our

model can be viewed as a generalization of all of the above.
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4.3.1 The Noncooperative Solution

To find the noncooperative solution, we will make use of the dynamic programming equations

(4.21)-(4.22), which for this model become2

Vi(x) = sup
{ci}

{
ln ci + βiδiV̄i(b(x− ci − φ−i(x))α)

}
and

V̄i(x) = lnφi(x) + δiV̄i(b(x− φ1(x)− φ2(x))α) ,

where i ∈ {1, 2}. We are interested in finding the decision rules φi(x) and the value functions

Vi(x). Following standard procedures, we will assume that Vi(x) = Ai lnx + Bi and V̄i(x) =

Āi lnx+ B̄i. The dynamic programming equations then become

Ai lnx+Bi = sup
{ci}

{
ln ci + βiδiĀi ln b+ βiδiĀiα ln(x− ci − φ−i(x)) + βiδiB̄i

}
(4.26)

and

Āi lnx+ B̄i = lnφi(x) + δiĀi ln b+ δiĀiα ln(x− φ1(x)− φ2(x)) + δiB̄i . (4.27)

The maximization problem implicit in (4.26) yields the first order conditions

1

ci
=

βiδiαĀi
x− ci − φ−i(x)

. (4.28)

Obviously ci = φi(x). Therefore, we can combine the first order conditions to obtain the linear

decision rules

φi(x) =
βiδiαĀi

(1 + β1δ1αĀ1)(1 + β2δ2αĀ2)− 1
x . (4.29)

Next, we want to find the parameters of the auxiliary functions V̄i(x). To this end, we substitute

the decision rules into (4.27) to obtain

Āi lnx+ B̄i = ln

(
βiδiαĀi

(1 + β1δ1αĀ1)(1 + β2δ2αĀ2)− 1
x

)
+ δiĀi ln b+ δiB̄i (4.30)

+δiĀiα ln

(
x− β1δ1αĀ1

(1 + β1δ1αĀ1)(1 + β2δ2αĀ2)− 1
x− β2δ2αĀ2

(1 + β1δ1αĀ1)(1 + β2δ2αĀ2)− 1
x

)
.

By gathering terms that are multiples of lnx, it is easy to show that

Āi =
1

1− δiα
.

Then, the noncooperative decision rules become

φi(x) =

βiδiα
1−δiα

1−δ1α(1−β1)
1−δ1α

1−δ2α(1−β2)
1−δ2α − 1

x .

2Note that since our growth function is assumed to be deterministic, we can neglect to write out the random

variables and the expectation operator that are present in (4.21)-(4.22).
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Moreover, by gathering terms that are not multiples of lnx, (i.e. the constant terms in ((4.30))),

we obtain

(1− δi)B̄i = ln

(
βiδiαĀi

(1 + β1δ1αĀ1)(1 + β2δ2αĀ2)− 1

)
+ δiĀi ln b (4.31)

+δiĀiα ln

(
1− β1δ1αĀ1

(1 + β1δ1αĀ1)(1 + β2δ2αĀ2)− 1
− β1δ1αĀ1

(1 + β1δ1αĀ1)(1 + β2δ2αĀ2)− 1

)
.

which allows us to solve for B̄1 and B̄2 in terms of Ā1 and Ā2. Hence, we have found the auxiliary

functions. It remains to find expressions for the value functions Vi(x). This is necessary for

investigating coalitional stability. The dynamic programming equation (4.26) can be written

as

Ai lnx+Bi = lnφi(x) + βiδiĀi ln b+ βiδiĀiα ln(x− φ1(x)− φ2(x)) + βiδiB̄i ,

which gives Vi(x) as a function of Āi and B̄i. By gathering terms that are multiples of ln x, we

obtain

Ai = 1 + βiδiαĀi = 1 +
βiδiα

1− δiα
.

Finally, by gathering terms that are not multiples of ln x, we obtain a long, and not very

informative, expression for Bi, which we will not provide here.

It is noteworthy that in order to find the decision rules, it is only necessary to solve for Āi,

which, as we have seen, is relatively straightforward. The more complicated part of solving

for B̄i and then Bi is only necessary for finding the value functions in order to make welfare

comparisons.

It is also noteworthy that a complete solution can be obtained analytically. In no step of

the process are we forced to resort to numeric solutions. However, the expressions that we

obtain are quite complicated, and it is therefore difficult to see how specific parameters affect

the solution without numeric tests.

4.3.2 The Cooperative Solution

To find the cooperative solution, we will make use of the dynamic programming equations

(4.23)-(4.24). For this model, the dynamic programming equations become

2∑
i=1

λiVi(x)

= sup
{ci}

{
2∑
i=1

λi

(
ln ci + δi(βi − 1) ln(φi(b(x− ci − φ−i(x))α)) + δiVi(b(x− ci − φ−i(x))α)

)}
,

and

Vi(x) = ln(φ(x)) + βiδiV̄i(b(x− ci − φ−i(x))α) ,
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where i ∈ {1, 2}. Again, we are interested in finding the decision rules φi(x) and the value

functions Vi(x). As in the case of noncooperation, we may assume that Vi(x) = Ai lnx + Bi

and V̄i(x) = Āi lnx+ B̄i. We also guess in advance that φi(x) = aix, i.e. that harvest is linear

in the fish stock.3 The above equations then become

N∑
i=1

λi(Ai lnx+Bi) (4.32)

= sup
{ci}

{
N∑
i=1

λi

(
ln ci + δi(βi − 1) ln bai + δiAiα ln b+ (βi − 1 + Ai)δiα ln(x− ci − a−ix) + δiBi

)}
and

Ai lnx+Bi = ln aix+ βiδiĀi ln b+ βiδiĀiα ln(x− a1x− a2x) + βiδiB̄i . (4.33)

The maximization problem implicit in (4.32) yields the first order conditions

λi
ci

=
λ1δ1α(β1 − 1 + A1) + λ2δ2α(β2 − 1 + A2)

x− ci − a−ix
.

Obviously ci = aix. Therefore, we can combine the first order conditions to obtain

ai =
λi(λ−i +D)− λ−i

(λ1 +D)(λ2 +D)− 1
,

which implies the linear decision rules

φi(x) =
λi(λ−i +D)− λ−i

(λ1 +D)(λ2 +D)− 1
x ,

where, for notational simplicity, we have introduced the parameter D = λ1δ1α(β1 − 1 + A1) +

λ2δ2α(β2 − 1 + A2). Next, we want to find the parameters of the value functions Vi(x). To

this end, we substitute the decision rules into (4.33) to obtain expressions that relate the value

functions to the auxiliary functions. By gathering terms that are multiples of lnx, we obtain

Ai = 1 + βiδiαĀi ,

which gives us Ai in terms of Āi. Moreover, by gathering terms that are not multiples of ln x,

(i.e. the constant terms in (4.33)), we obtain

Bi = ln ai + βiδi(B̄i + Āi ln b+ Āiα ln(1− a1 − a2)) , (4.34)

which, given that ai is as derived above, allows us to solve for Bi in terms of Ā1 and Ā2. Hence,

to find the value functions, it suffices to find Āi and B̄i for both i. To this end, we make use of

equation (4.25), which for this model is

Āi lnx+ B̄i = ln aix+ δi(Āi ln b+ Āiα ln(x− a1x− a2x) + B̄i) .

3The reason for guessing linear decision rules in advance is that it allows for separating terms in the dynamic

programming equations, in such a way that the procedure of solving the model is greatly simplified.
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By gathering terms that are multiples of lnx, it is easy to show that

Āi =
1

1− δiα
,

which implies that

Ai = 1 +
βiδiα

1− δiα
,

and hence

D = λ1δ1α(β1 + β1δ1α(1− δ1α)−1) + λ2δ2α(β2 + β2δ2α(1− δ2α)−1) .

Thus, having found D, we have also found a complete analytic expression for the decision rules.

Moreover, by gathering terms that are not multiples of ln x, we obtain

B̄i = ln ai + δi(Āi ln b+ Āiα ln(1− a1 − a2) + B̄i) , (4.35)

which gives us B̄i in terms of Āi. To obtain expressions for the value functions, we can use

equation (4.35) to obtain B̄i and then equation (4.34) to obtain Bi. Together with Ai, for

which we have a simple analytic expression, this is sufficient for deriving a complete analytic

expression for the value functions. However, as in the case of the noncooperative solution, the

expressions are too complicated to be very informative.

4.3.3 Numeric Solutions

The central feature of our model is the inclusion of quasi-hyperbolic time preferences, which are

captured by the parameters β1 and β2. Hence, we are interested in the effect of those variables

on the behavior of the agents.

We will analyze two aspects of the model. The first is the steady state level of the fish stock

and the corresponding levels of harvest, in both the noncooperative and cooperative solutions.

The steady state level can be obtained by solving the equation x = b(x− φ1(x)− φ2(x))α. (Of

course, the solution must be greater than zero and smaller than the saturation level.)

The second aspect is the issue of coalitional stability of the cooperative solution. The

coalition of the cooperative solution is stable if, for each agent, the intertemporal utility function

is greater than or equal to what it would be if they switched to the noncooperative solution.

If this condition holds, no agent has incentive to leave the coalition. If we let the superscripts

C and NC denote cooperative and noncooperative, the criteria for coalitional stability can be

written as

V C
i (x) = ACi lnx+BC

i ≥ ANCi lnx+BNC
i = V NC

i (x)

for both i. It’s been shown above that ACi = ANCi . Hence, stability depends in fact only on

BC
i and BNC

i and is independent of the fish stock. This result is also obtained in Breton and

Keoula (2014), where stability is defined in the same way as here.
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It should be mentioned that our criteria for stability is not an obvious choice, because

it assumes, unrealistically, that if one agent deviates from cooperation then the other one

immediately deviates too, in the same period. However, if one agent deviates from cooperation,

the other agent should be able to respond only in the next period. This increases the incentive

to deviate from cooperation. Following standard procedures in fish war models, we will ignore

this complication.

The parameter values are as follows. Following Breton and Keoula (2014) we set α = 0.7

and δ1 = δ2 = 0.8. We also set b = 5, which implies a saturation level of around 213. Regarding

the weights of the cooperative solution we set λ1 = λ2 = 1. Finally, we set β2 = 1. By varying

β1 we will trace out the effect of quasi-hyperbolic discounting.

In Table 4.1 we display the steady state fish stock and harvest levels for various values of

β1 (keeping all other parameters constant), for the noncooperative and cooperative solutions.

As above, the superscripts C and NC are used to denote whether the solution is cooperative

or noncooperative. In Table 4.2 we display the value functions for various values of β1 and

determine whether the coalition of the cooperative solution is stable.

Table 4.1: Steady State Fish Stock and Harvest Levels

β1 xNC xC φNC1 (xNC) φC1 (xC) φNC2 (xNC) φC2 (xC)

1.0 9.176 30.94 2.804 6.807 2.804 6.807

0.9 8.21 28.67 2.426 6.488 2.696 6.488

0.8 7.179 26.39 2.038 6.15 2.548 6.15

0.7 6.088 24.11 1.645 5.792 2.35 5.792

0.6 4.946 21.85 1.256 5.413 2.093 5.413

0.5 3.773 19.61 0.883 5.016 1.766 5.016

Table 4.2: Steady State Value Function Levels

β1 V NC
1 (xNC) V C

1 (xC) V NC
1 (xC) V NC

2 (xNC) V C
2 (xC) V NC

2 (xC) Stable

1.0 7.731 11.17 10.49 7.731 11.17 10.49 Yes

0.9 6.477 10.08 9.16 7.625 10.99 10.47 Yes

0.8 5.212 8.998 7.839 7.452 10.79 10.41 Yes

0.7 3.929 7.924 6.532 7.183 10.57 10.31 Yes

0.6 2.623 6.862 5.243 6.773 10.31 10.15 Yes

0.5 1.278 5.815 3.975 6.147 10.02 9.892 Yes

In the first row, where β1 = 1, the agents have the same harvest as each other in both

the noncooperative solution and cooperative solution. This is in fact the standard model: the
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agents are symmetric and have consistent time preferences. We see that in this case the coalition

is stable, a result which is also obtained in Breton and Keoula (2012).

When β1 decreases, the harvest decreases for both agents and in both solutions. In the

cooperative solution, the reason for this is that when agent 1 becomes less patient, the coalition

as a whole becomes less patient. This prompts the coalition to increase the fraction of the stock

that is harvested in each period, which in turn decreases the steady state stock. The net effect of

this is a decrease in the amount that is harvested. Notice also that in the cooperative solution,

the agents have the same harvest, regardless of the level of β1. Indeed, from the analytic section,

we already know that the distribution of harvest across the agents in the cooperative solution

is independent of time preferences. That is, a1 and a2 are affected by the discount functions in

exactly the same way. The decrease in harvest also means that the value functions decrease.

The decrease is much larger for agent 1 (compare V C
1 (xC) to V C

2 (xC)), since in his case there’s

also a decrease in the valuation of future harvest.

In the noncooperative solution, there is also an increase in the fraction of the fish stock

that is harvested when β1 decreases. However, this time the agents react in different ways to

the change in the time preferences of agent 1. The harvest drops faster for agent 1 than for

agent 2. Indeed, for agent 1 there’s actually a decrease in the fraction of the stock that he

himself harvests. That is, when agent 1 becomes more biased towards the present, he reacts

by harvesting a smaller amount of the stock. (The total fraction still increases because agent 2

increases his own fraction.) This is a counter-intuitive result.

The steady state stock is much larger in the cooperative solution than in the noncooperative

solution, for all values of β1. Moreover, the coalition is always stable (compare V C
i (xC) to

V NC
i (xC) for both i), meaning that the greater ecological welfare associated with a larger

steady state stock can be maintained. This suggests that the property of coalitional stability

is not very sensitive to inconsistent time preferences in one agent.

Finally, we also note that although both agents gain from cooperation, the impatient agent

gains much more (compare V C
i (xC) to V NC

i (xNC) for both i). The more impatient agent 1

becomes, the greater is the steady state stock under cooperation compared to noncooperation.

When β1 = 0.5, the steady state stock increases by a factor of about five under cooperation,

while it only increases by a factor of about three when β1 = 1.0. Hence, the benefits of

cooperation increase to the extent that one agent has a greater time preference bias than

the other agent. In other words, the benefits of cooperation are greater when there’s a large

asymmetry in time preference bias.
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4.4 A Fish War Model with a Linear Autocorrelated

Stochastic Growth Function and Power Utility Func-

tions

In this section we generalize the model of the previous section by using the general power utility

function

ui(ci,t) =
(ci,t)

1−γ

1− γ
.

We will also change the growth function to

Xt+1 = (1 + g + σZt+1)(xt − c1,t − c2,t) (4.36)

where Zt is a stochastic variable and σ is a nonnegative volatility parameter. Starting from the

growth function of the previous section, (4.36) can be obtained by setting b = 1 + g + σZt+1

and α = 1. Hence, we are both generalizing the growth function by introducing stochastics and

restricting it by imposing linearity.

The logic of the growth function (4.36) is that the harvest is first subtracted from the fish

stock, and then the random variable is applied to the fish stock that remains. Linearity has

the implication that there is no saturation level. If E [Zt] = 0 for any t and Zt and there is no

harvest, the fish stock will, in expectation, grow exponentially forever at the rate g. This is,

no doubt, an undesirable aspect of the model. The reason for the restriction is tractability; it

allows us to assume linear strategies.

The presence of the stochastic variable Zt introduces several issues. One issue is its distri-

bution. We need to truncate the distribution in such a way that for any σ and g, it is the case

that 1 + g + σZt ≥ 0 almost surely. If this condition does not hold, the fish stock can become

negative which is nonsensical. We also impose that the unconditional distribution of Zt is the

same for every t.

A second issue is dependence of Zt+1 on Zt. If there is no such dependence, then knowing

the outcome of past and present random events provides no information which is relevant for

forecasting future random events, and there is no autocorrelation in the stochastic process Xt.

This has the convenient consequence that the Zt are identically and independently distributed.

The value functions and the decision rules will depend on the fish stock only, as was the case

in the deterministic model of the previous section. That is, we obtain Vi(x) and φi(x) rather

than Vi(x, z) and φi(x, z), which simplifies the mathematical derivations.

However, the theory we that we developed in Section 2 allows for Zt+1 to be dependent

on Zt. We should make use of this result. The key issue, though, is that when the value

functions are Vi(x, z), we have two state variables. Coming up with valid conjectures for the

value functions is not straightforward in this case. One way to get around this problem is to

assume that the outcome space of Zt is finite. In that case, we can solve the model separately
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for each potential outcome of Zt, and then compare the solutions. In each solution, Zt is treated

as a parameter rather than a variable. For simplicity, we will assume that Zt ∈ {−1, 1} for all

t. Hence, in solving the model we will write the value functions as Vi(x), but with the implicit

understanding that the functions depend on a parameter z which is equal to one or minus one.

Although this makes for a very simplistic stochastic variable, it is sufficient for analyzing the

effects of dependence.

We will model the autocorrelation in the growth function as follows. Let p denote the

probability that Zt+1 = Zt. We then have the probabilities P{Zt+1 = 1|Zt = 1} = P{Zt+1 =

−1|Zt = −1} = p and P{Zt+1 = 1|Zt = −1} = P{Zt+1 = −1|Zt = 1} = 1 − p. It follows

that the conditional expectations are E [Zt+1|Zt = 1] = 2p− 1 and E [Zt+1|Zt = −1] = 1− 2p.

The unconditional expectation of Zt (for any value of p) is zero. If p = 0.5, there is no

dependence of Zt+1 on Zt. If p > 0, Zt+1 on Zt are positively correlated, and if p < 0.5 they are

negatively correlated. If p is equal to one or zero, there is no uncertainty in the model because

autocorrelation is perfect. Hence, we can view p as a measure of autocorrelation.

It should be noted that the extent to which the future is uncertain is determined by both

σ and p. It is clear σ scales the ’jump’ that the fish stock takes at the end of each period,

and thus it affects the variance of the fish stock. On the other hand, for a given level of σ,

the variance of the next “jump” varies with p. Hence, there is no obvious way of measuring

uncertainty in a single number. If p = 0.5, all random events are mutually independent, and

all uncertainty depends on σ. If σ = 0, uncertainty is removed so p is irrelevant and the model

is deterministic.

4.4.1 The Noncooperative Solution

To find the noncooperative solution, we will make use of the dynamic programming equations

(4.21)-(4.22), which for this model become

Vi(x) = sup
{ci}

{
(ci)

1−γ

1− γ
+ βiδiE

[
V̄i((1 + g + σZ)(x− ci − φ−i(x)))

]}
,

and

V̄i(x) =
(φi(x))1−γ

1− γ
+ δiE

[
V̄i((1 + g + σZ)(x− φi(x)− φ−i(x)))

]
,

where i ∈ {1, 2}. We are interested in finding the decision rules φi(x) and the value functions

Vi(x). Following standard procedures, we will assume that Vi(x) = A−γi x1−γ/(1 − γ) and

V̄i(x) = Ā−γi x1−γ/(1− γ). We then obtain the dynamic programming equations

A−γi x1−γ

1− γ
= sup
{ci}

{
(ci)

1−γ

1− γ
+ βiδi

Ā−γi
1− γ

E
[
(1 + g + σZ)1−γ] (x− ci − φ−i(x))1−γ

}
(4.37)

and

Ā−γi x1−γ

1− γ
=

(φi(x))1−γ

1− γ
+ δi

Ā−γi
1− γ

E
[
(1 + g + σZ)1−γ] (x− ci − φ−i(x))1−γ . (4.38)
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The maximization problem implicit in (4.37) yields the first order conditions

c−γi = βiδiĀ
−γ
i E

[
(1 + g + σZ)1−γ] (x− ci − φ−i(x))−γ . (4.39)

Obviously ci = φi(x). Therefore, we can combine the first order conditions to obtain the linear

decision rules

φi(x) =
Dix

(1 +D1)(1 +D2)− 1
(4.40)

where Di =
(
βiδiĀ

−γ
i E [(1 + g + σZ)1−γ]

)−1/γ
. Next, we want to find the parameters of the

auxiliary functions V̄i(x). To this end, we substitute the decision rules into (4.38) to obtain

Āi
−γ

=

(
Di

(1 +D1)(1 +D2)− 1

)1−γ

+δiĀi
−γ
E
[
(1 + g + σZ)1−γ](1− D1 +D2

(1 +D1)(1 +D2)− 1

)1−γ

.

This provides a system of two equations which can be solved numerically for Ā1 and Ā2. We

can then substitute the solutions of the system into (4.40) to obtain numeric solutions for the

decision rules. To obtain a numeric solution for the value functions, we substitute the solutions

to the system into (4.37) to obtain

(1− γ)Vi(x) =

(
Dix

(1 +D1)(1 +D2)− 1

)1−γ

+βiδiĀi
−γ
E
[
(1 + g + σZ)1−γ](x− (D1 +D2)x

(1 +D1)(1 +D2)− 1

)1−γ

.

which gives us Vi(x) in terms of Āi. The value functions depend on the fish stock, which is a

random variable. Since the decision rules are linear, the stock will in expectation remain steady

if, and only if,

G ≡ (1 + g)

(
1− D1 +D2

(1 +D1)(1 +D2)− 1

)
= 1 .

If G is greater (smaller) than one, the stock will in expectation explode to infinity (converge to

zero).

The numeric solutions will depend on the expectation E [(1 + g + σZ)1−γ]. This is where

the parameter z comes in. If z = 1 we have

E
[
(1 + g + σZ)1−γ] = (1 + g + σ)1−γp+ (1 + g − σ)1−γ(1− p) .

If z = −1 we have

E
[
(1 + g + σZ)1−γ] = (1 + g + σ)1−γ(1− p) + (1 + g − σ)1−γp .

This is the channel through which the correlation parameter p affects the decision rules and

value functions.



87
Chapter 4. Fish War Models with Asymmetric Agents and Quasi-Hyperbolic Time

Preferences

4.4.2 The Cooperative Solution

To find the cooperative solution, we will make use of the equations (4.23)-(4.25). For this

model, the dynamic programming equations become

2∑
i=1

λiVi(x) = sup
{ci}

{
2∑
i=1

λi

(
(ci)

1−γ + δi(βi − 1)E [φi((1 + g + σZ)(x− ci − φ−i(x)))1−γ]

1− γ

+δiE [Vi((1 + g + σZ)(x− ci − φ−i(x)))])} ,

Vi(x) =
φ(x)1−γ

1− γ
+ βiδiE

[
V̄i((1 + g + σZ)(x− ci − φ−i(x)))

]
,

and

V̄i(x) =
φ(x)1−γ

1− γ
+ δiE

[
V̄i((1 + g + σZ)(x− ci − φ−i(x)))

]
.

where i ∈ {1, 2}. Again, we are interested in finding the decision rules φi(x) and the value

functions Vi(x). As in the case of noncooperation, we may assume that Vi(x) = A−γi x1−γ/(1−γ)

and V̄i(x) = Ā−γi x1−γ/(1− γ). We also impose in advance that φi(x) = aix, i.e. that harvest is

linear in the fish stock. The above equations then become

2∑
i=1

λi
A−γi x1−γ

1− γ
(4.41)

= sup
{ci}

{
2∑
i=1

λi

(
(ci)

1−γ

1− γ
+ ((βi − 1)a1−γ

i + A−γi )δiE
[
(1 + g + σZ)1−γ] (x− ci − a−ix)1−γ

1− γ

)}
,

A−γi x1−γ

1− γ
=

(aix)1−γ

1− γ
+ βiδiĀ

−γ
i E

[
(1 + g + σZ)1−γ] (x− aix− a−ix)1−γ

1− γ
(4.42)

and
Ā−γi x1−γ

1− γ
=
φ(x)1−γ

1− γ
+ δiĀ

−γ
i E

[
(1 + g + σZ)1−γ] (x− aix− a−ix)1−γ

1− γ
. (4.43)

The maximization problem implicit in (4.41) yields the first order conditions

λic
−γ
i

= (λ1δ1((β1− 1)a1−γ
1 +A−γ1 ) +λ2δ2((β2− 1)a1−γ

2 +A−γ2 ))E
[
(1 + g + σZ)1−γ] (x− ci−a−ix)−γ .

Obviously ci = aix. Therefore, the first order conditions are

λia
−γ
i

= (λ1δ1((β1 − 1)a1−γ
1 +A−γ1 ) + λ2δ2((β2 − 1)a1−γ

2 +A−γ2 ))E
[
(1 + g + σZ)1−γ] (1− a1 − a2)−γ .

For given A1 and A2, these first order conditions form a system of two equations in a1 and

a2, which we can solve numerically. Since we don’t know the values of A1 and A2, a solution

to the system will be a correspondence which maps (A1, A2) onto (a1, a2). Fortunately, it is
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clear from the first order conditions that λ1a
−γ
1 = λ2a

−γ
2 . This implies that, when solving the

system, if we can find just one of the functions a1(A1, A2) and a2(A1, A2), the other function

follows immediately. It also implies that

φ1(x) = (λ1/λ2)1/γφ2(x) ,

which tells us how the behavior of one agent relates to that of the other agent.

By using the correspondence derived from (4.42) we obtain

A−γi = (ai(A1, A2))1−γ + βiδiĀ
−γ
i E

[
(1 + g + σZ)1−γ] (1− a1(A1, A2)− a2(A1, A2))1−γ ,

which allows us to solve for a second correspondence which maps (A1, A2) to (Ā1, Ā2). Then,

using both correspondences we can write (4.43) as

(Āi(A1, A2))−γ

= (ai(A1, A2))1−γ + δi(Āi(A1, A2))−γE
[
(1 + g + σZ)1−γ] (1− a1(A1, A2)− a2(A1, A2))1−γ ,

which is a system in A1 and A2. By solving the system, we obtain the parameters of the value

functions. The decision rules can then be obtained by using the first correspondence and set

φi(x) = ai(A1, A2)x. Then, by setting up the expression

G ≡ (1 + g)(1− a1(A1, A2)− a2(A1, A2)) ,

we can check whether the fish stock will in expectation explode to infinity or converge to zero.

As in the noncooperative solution, we will solve the model twice, one time for z = 1 and

one time for z = −1, with the purpose of measuring the effect of the correlation parameter p.

4.4.3 Numeric Solutions

As in the previous section, we are interested in the effects of β1 and β2 on the behavior of the

agents. We are also interested in the effects of autocorrelation, determined by p.

The parameter values are as follows. In order to test the effects of quasi-hyperbolic prefer-

ences, we set γ = 0.6, δ1 = δ2 = 0.8, g = 0.01, σ = 0.05, p = 0.5, λ1 = λ2 = 1 and β2 = 1.

As in the previous section, we will vary β1. Since there is no unique steady state level of the

fish stock, we set x = 1. This implies that the fraction of the current stock that is harvested is

equal to the amount that is harvested.

In Table 4.3 we see how the agents react to a decrease in β1. In both solutions, and for all

values of β1, the growth coefficient G is smaller than one, implying that the fish stock converges

to zero. In the cooperative solution, the agents have the same harvest. The harvest increases

when β1 decreases and, as a consequence, the growth coefficient decreases. We can interpret

this as meaning that when the coalition as a whole becomes less patient, it decides to exhaust

the fish stock faster.
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Table 4.3: Fish Stock and Harvest Levels

β1 GNC GC φNC1 (x) φC1 (x) φNC2 (x) φC2 (x)

1.0 0.31 0.36 0.34 0.32 0.34 0.32

0.8 0.34 0.32 0.36 0.34 0.29 0.34

0.6 0.39 0.28 0.38 0.36 0.22 0.36

Table 4.4: Value Function Levels

β1 V NC
1 (x) V C

1 (x) V NC
2 (x) V C

2 (x) Stable

1.0 3.29 3.83 3.29 3.83 Yes

0.8 3.13 3.33 3.20 3.83 Yes

0.6 2.95 2.81 3.08 3.78 No

In the noncooperative solution, on the other hand, the growth coefficient moves in the

opposite direction, and the stock is exhausted at a slower rate. The reason is a sharp drop in

the harvest of agent 2. It is interesting to note that although it is the time preference of agent

1 that is changing, it is agent 2 who is adjusting his behavior the most.

We can also see, looking at Table (4.4), that stability cannot be maintained when β1 de-

creases. At some point, agent 1 has incentive to break the coalition. The reason is that in the

noncooperative solution, the decrease in β1 results in both an increase in the growth coefficient

and an increase in the fraction of the stock that is harvested by agent 1. Both of these factors

are beneficial for agent 1, and they are absent in the cooperative solution. The result in that

although the value function of agent 1 decreases in the both solutions (due to a lower valuation

of future harvest), it decreases slower in the noncooperative solution. Hence, eventually V C
1 (x)

is overtaken by V NC
1 (x).

We will now look at the effects of autocorrelation. Recall that when p > 0.5, it is probable

that Zt+1 = Zt. In the following, we set β1 = 1.0, so that the agents are symmetric. We

also increase the volatility of the fish stock by setting σ = 0.15, which raises the usefulness of

reliable forecasting. In each of the following three tables, we set a specific value for p, and we

provide the value functions for z = 1 and for z = −1.

In Table 4.5 there is no autocorrelation, and knowing the value of Zt is irrelevant for fore-

casting Zt+1. Hence, the value functions are not affected by z. In Table 4.6 the autocorrelation

is positive. Here we see that when z = 1, the value functions are higher than they were without

autocorrelation. This is because the next random event is likely to be beneficial from the point

of view of the agents. Likewise, when z = −1 the value functions are lower than they were

without autocorrelation. The same pattern can be observed in Table 4.7. The stronger the
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Table 4.5: Value Function Levels When p = 0.5

z V NC
1 (x) V C

1 (x) V NC
2 (x) V C

2 (x) Stable

1 3.29 3.83 3.29 3.83 Yes

-1 3.29 3.83 3.29 3.83 Yes

Table 4.6: Value Function Levels When p = 0.7

z V NC
1 (x) V C

1 (x) V NC
2 (x) V C

2 (x) Stable

1 3.33 4.03 3.33 4.03 Yes

-1 3.23 3.65 3.23 3.65 Yes

Table 4.7: Value Function Levels When p = 0.9

z V NC
1 (x) V C

1 (x) V NC
2 (x) V C

2 (x) Stable

1 3.37 4.33 3.37 4.33 Yes

-1 3.18 3.46 3.18 3.46 Yes

autocorrelation, the more do the value functions react to the value of the most recent random

event.

The most striking result, however, is that as p increases, the change in the value functions

is much larger in the cooperative solution than in the noncooperative solution. For example,

for z = 1, the value of V NC
1 (x) changes from 3.29 to 3.33 and then to 3.37, while the value of

V C
1 (x) changes from 3.83 to 4.03 and then to 4.33. When z = −1, we see a similar pattern.

There’s no obvious economic interpretation to this observation, but one interesting guess is the

following. When agents cooperate, they are better disposed at taking advantage of forecasts.

That is, cooperation allow them to better use the ability to forecast the future to make accurate

predictions of future utilities. Conversely, when they don’t cooperate, they are unable to take

full advantage of the ability to forecast the future.

4.5 A Fish War Model with Power Utility Functions and

Nonlinear Growth Function

In this section, we return to the nonlinear growth function that is standard in the fish war

model, but maintain the stochastic element of Section 3. We also keep the assumption of

general power utility functions, but add the additional feature of asymmetric utility functions.



91
Chapter 4. Fish War Models with Asymmetric Agents and Quasi-Hyperbolic Time

Preferences

The utility functions of agent i is now

u(ci,t) =
(ci,t)

1−γi

1− γi
,

where γ1 may differ from γ2. The growth function is

Xt+1 = b((1 + σZt+1)(xt − c1,t − c2,t))
α ,

where we impose the same parameter restrictions as previously. The logic of this growth

function is that we first subtract the total harvest from the fish stock, then apply the random

event, and finally raise the remaining stock to the power of α and multiply by b.

When it is not the case that γ1 = γ2 = 1 (which would imply logarithmic utility functions),

is it difficult to find valid conjectures for the value functions of this model. Hence, the algorithm

which we employed in the previous sections will not suffice. Instead, we will solve the model

using fully numeric backward induction, without imposing any particular functional form on the

value functions. The algorithm which we employ for this purpose is described in the appendix.

Throughout this section, we will only solve for the cooperative solution. We will also assume

that the random event Zt follows the same binary distribution as in the previous section, but

without autocorrelation, so that Zt ∈ {−1, 1} and P{Zt = 1} = 0.5 for all t. Moreover, we

impose that the model has a finite planning horizon and that some given level of the fish stock

must remain in the sea when the horizon has been reached. Hence, we specify a terminal time

T and a minimum terminal fish stock x̄T . Intuitively, we can imagine that the agents have been

contracted the right to freely harvest over the period [0, T ], conditional on that a minimum

level of fish remains when the period has ended. Thus, when time T has been reached, the

agents are free to harvest until the point where the fish stock reaches x̄T , at which point they

must stop.

4.5.1 Attempting an Analytic Solution

Before solving the model numerically, let us first make an attempt at an analytic solution using

backward induction. This will clarify why finding a valid conjecture on the value functions is

difficult.

Supposing x̄T = 0, the coalition at time T solves the problem

max
c1,T ,c2,T

{
λ1

c1−γ1
1,T

1− γ1

+ λ2

c1−γ2
2,T

1− γ2

}
subject to

c1,T + c2,T ≤ xT .

Clearly, we can solve for c1,T and c2,T explicitly if, and only if, we impose γ1 = γ2 = γ, i.e. the

agents have the same utility function, in which case we obtain

ci,T =
λ
−1/γ
−i

λ
−1/γ
1 + λ

−1/γ
2

xT .
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From this, it follows that

Vi,T (xT ) =

(
λ
−1/γ
−i

λ
−1/γ
1 + λ

−1/γ
2

)1−γ
x1−γ
T

1− γ
.

With this solution, the problem to be solved at time T − 1 is

max
c1,T−1,c2,T−1

{
λ1

c1−γ
1,T−1

1− γ
+ λ2

c1−γ
2,T−1

1− γ

+
λ1β1δ1λ

(γ−1)/γ
2 + λ2β2δ2λ

(γ−1)/γ
1

λ
(γ−1)/γ
1 + λ

(γ−1)/γ
2

E
[
(1 + σZT )α(1−γ)

] (xT−1 − c1,T−1 − c2,T−1)α(1−γ)

1− γ

}
This can be solved for c1,T−1 and c2,T−1 if we impose that α(1 − γ) = 1.4 That is, we must

assume a particular relationship between a parameter that determines the growth of the fish

stock and a parameter that determines the preferences of the agents, as was done in Antoniaduo

et al (2013). This is a restrictive option.

Without knowing the functional form for the decision rules, we cannot know the functional

forms for the value functions. Hence, without imposing restrictions, we cannot proceed further

with analytic methods. This motivates the numeric solutions.

4.5.2 Risk and Risk Aversion under Nonlinear Growth Functions

In this subsection, we set γ1 = γ2 = γ and α(1−γ) 6= 1, so that numeric solutions are necessary.

We are interested in how the presence of risk interacts with the utility functions to produce

behavior. These factors depend on the parameters γ and σ.

First, let’s recall an important aspect of power utility functions. The parameter γ determines

not only risk aversion, but also the preference for harvest smoothing. That is, it determines to

what extent the agent prefers to have the same amount of harvest in every period, as opposed

to concentrating harvest to a single period. The smaller is γ, the smaller is the preference for

smoothing. In the extreme case when γ = 0, the marginal utility is constant, so the agent is

indifferent between, on the one hand, harvesting a given amount of fish in a single period and,

on the other hand, spreading the same amount evenly over all time periods. Now, in our model

the agents are impatient (the discount functions decline over time) and prefer, all other things

equal, harvest in the current period over harvest in any later period. Hence, if the preference

for harvest smoothing is low, it follows that harvest will be concentrated mostly to the initial

period. If the preference for harvest smoothing is high, extraction will be spread more evenly

over the whole interval from 0 to T .

Given the above, how will an increase in risk (i.e. an increase in σ) affect harvest? Risk

implies that future planned harvest is uncertain. Only present harvest is free of risk. By moving

4Imposing α = 1 would also be sufficient. Then we obtain a linear model, as in the previous section.
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harvest from the future to the present, the coalition reduces risk, which is beneficial from the

point of view of risk aversion. But this implies concentrating harvest in a single period, which

is undesirable for an agent for whom smoothing is important. If the preference for smoothing is

high, preserving a “risk buffer” for future periods becomes important. The risk buffer ensures

that even if some of the stock is lost due to random events, there will still be enough fish in

the last few periods to smooth effectively. If the preference for smoothing is low, however, the

cost of reducing risk by moving harvest to the present is low.

The point is that, although the agents are risk averse for any γ > 0, they will not always

react to more risk by harvesting more, as one would expect based on risk aversion alone. When

γ increases, both risk aversion and the preference for harvest smoothing goes up, and they push

the behavior of the agents in different directions. The net effect on behavior will depend on

which one of these preferences dominate.

With this in mind, let’s look at Table 4.8 and Table 4.9. As in section 3, we set α = 0.7,

b = 5 and λ1 = λ2 = 1. We also set x0 = 200, x̄T = 0 and T = 4. Regarding the discount

functions, we set δ1 = δ2 = 0.8 and β1 = β2 = 1.0, implying symmetric and constant discount

functions. (Time preferences will not be important in this part of our analysis.)

In each table we provide the development of harvest and the fish stock for every time period

and for three levels of σ. Since these variables are random, we provide the expected values

(which, in actuality, will not be realized since Zt ∈ {−1, 1} and E[Zt] = 0). Table 4.8 is for low

risk aversions, and therefore also low preference for harvest smoothing, and Table 4.9 is for high

risk aversions. We see that when risk aversion is low, the coalition reacts to risk by increasing

harvest and thus depleting the stock faster. When risk aversion is high, the opposite occurs.

That is, the coalition acts contrary to how one would expect based solely on the concept of risk

aversion. We see that as σ grows, the increased preference for harvest smoothing dominates the

increased risk aversion, and the net effect is that the coalition acts as one might expect they

would if risk aversion had decreased. If we were to set γ = 1, the logarithmic case, the two

tendencies would exactly cancel out. This is why, in the standard fish war model, risk becomes

irrelevant. When γ ∈ [0, 1), harvest in the present is increased as a response to risk. When

γ > 1, harvest in the present is decreased as a response to risk.

What we see in Table 4.8 and Table 4.9 is, in fact, an illustration of a general problem in

a discounted utility model using power utility functions. Namely: two separate aspects of an

agent’s subjective preferences, risk aversion and smoothing preference, are determined by the

same parameter. We may recall that for power utility functions, the parameter γ is both the

coefficient of relative risk aversion and the inverse of the intertemporal elasticity of substitution.

The result obtained here is similar to one in Antoniadou et al (2013). They solve a more

restricted model, and only for a noncooperative solution, but reach a similar conclusion:

If the coefficient of relative risk aversion is higher than unity, then, for a given

number of symmetric players, each player will conserve the resource once uncertainty
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(or an increase in risk) is introduced.

However, they do not characterize this behavior as the net effect of preferences over risk and

smoothing, as we have done here.

Table 4.8: The Effect of Risk under Low Risk Aversion: γ = 0.4

Sigma Variable t = 0 t = 1 t = 2 t = 3 t = 4

ci,t 84 21 10 7 7

0.2 ci,t/xt 0.42 0.38 0.36 0.37 0.47

xt 200 55 28 19 15

ci,t 87 19 9 6 5

0.4 ci,t/xt 0.43 0.40 0.39 0.40 0.45

xt 200 47 23 15 11

ci,t 91 15 7 4 4

0.6 ci,t/xt 0.46 0.42 0.41 0.40 0.50

xt 200 36 17 10 8

Table 4.9: The Effect of Risk under High Risk Aversion: γ = 2.0

Sigma Variable t = 0 t = 1 t = 2 t = 3 t = 4

ci,t 48 34 26 21 19

0.2 ci,t/xt 0.24 0.26 0.30 0.34 0.49

xt 200 129 88 61 39

ci,t 44 32 26 22 22

0.4 ci,t/xt 0.22 0.24 0.27 0.32 0.50

xt 200 134 95 68 44

ci,t 38 30 25 24 25

0.6 ci,t/xt 0.19 0.21 0.24 0.31 0.49

xt 200 140 103 77 51

4.5.3 Asymmetric Utility Functions

Next, let’s look at the how asymmetric utility functions affect the allocation of harvest. To this

end, we set γ1 = 1.1 and γ2 = 0.9, which means that agent 1 has a slightly higher preference

for harvest smoothing than agent 2. We also set σ = 0.0, so that there is no randomness in the

model, and β1 = β2 = 0.8 so that the agents have symmetric quasi-hyperbolic time preferences.
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The fact that there is no risk implies that γ1 and γ2 only influence behavior through their effect

on the preference for harvest smoothing, and not through risk aversion.

Table 4.10: Asymmetric Utility Functions: γ1 = 1.1 and γ2 = 0.9

Variable t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

c1,t 33 21 15 13 12 11 11 12

c2,t 72 42 27 22 20 20 19 20

c1,t/xt 0.17 0.17 0.17 0.18 0.20 0.21 0.25 0.38

c2,t/xt 0.36 0.35 0.31 0.31 0.33 0.38 0.43 0.63

xt 200 121 86 71 61 53 44 32

The results are given in Table 4.10. We see that the agent with the lower preference for

smoothing (agent 2) has a higher harvest in every period. That is, c2,t > c1,t for all t. However,

we also see that the relative size of the harvest of agent 2 decreases. That is, c1(t)/c2(t) increases

as we approach the end of the planning horizon. We can interpret this in the following way.

The presence of time preference means that the agents will want to allocate harvest in the

present as opposed to in the future. This is counterbalanced by the preference for smoothing.

The agent with the higher preference for smoothing will want to keep a lower present harvest

so that the difference between harvests in the present and in the future will be lower. Since

this must hold in every “present” (every t) except for in the last period, the result is that the

agent with the lower preference for smoothing has a higher harvest throughout.

From a purely mathematical point of view, we can explain this in another way. If the agents

have different utility functions, then, for a given level of harvest, one utility function will in

general be higher than the other. Thus, equating the marginal utility of harvest for agent 1

with that of agent 2 implies that they will have different levels of harvest.

4.5.4 Time Preferences

We will now investigate the role of the discount functions in the general model with power

utility functions and nonlinear growth function. We return to the case of identical agents, and

set γ1 = γ2 = 1.2. We will vary δ1 and δ2, to change the degree to which the coalition is

“generally impatient”. We will vary β1 and β2, to change the degree to which the coalition has

quasi-hyperbolic time preferences, and compare the two cases.

Let’s first look at Table 4.11, in which we gradually lower δ1 and δ2 in order to make the

coalition less patient. In this table, it is most instructive to look at the fraction of the fish

stock that an agent harvests, which is equal to ci,t/xt. We see that, within most time periods,

the fraction increases as δi decreases. The exception is the final period, in which each agent

always consumes half the remaining stock. As a consequence of this, an impatient coalition will
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harvest more in the early periods and less in the later periods, compared to a patient coalition.

This makes sense from an economic perspective.

Table 4.11: The Effect of General Impatience (δi)

δi Variable t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

ci,t 36 28 23 21 19 19 20 23

0.9 ci,t/xt 0.18 0.19 0.19 0.21 0.22 0.25 0.31 0.50

xt 200 149 119 101 87 76 64 46

ci,t 42 30 23 20 18 17 17 19

0.8 ci,t/xt 0.21 0.22 0.22 0.23 0.24 0.27 0.31 0.49

xt 200 139 106 87 74 64 54 39

ci,t 48 32 23 19 16 15 15 16

0.7 ci,t/xt 0.24 0.25 0.25 0.26 0.27 0.29 0.34 0.50

xt 200 129 93 73 60 52 44 32

ci,t 54 33 22 17 14 13 11 12

0.6 ci,t/xt 0.27 0.28 0.28 0.29 0.29 0.32 0.33 0.48

xt 200 118 79 59 48 41 33 25

ci,t 61 33 21 15 11 9 8 9

0.5 ci,t/xt 0.30 0.31 0.32 0.33 0.31 0.32 0.35 0.50

xt 200 106 66 46 35 28 23 18

Next, let’s look at Table 4.12, in which we gradually lower β1 and β2 in order to make the

coalition’s time preferences more quasi-hyperbolic. In contrast to in Table 4.11, the fraction

ci,t/xt does not develop in an intuitive way. It sometimes increases, sometimes decreases, in

ways which are not easy to interpret. The mathematical reason for this is likely that βi interacts

with γ, α and t in complicated ways. An economic interpretation is difficult to provide.

4.6 Conclusion

The theoretical framework that we developed in Section 2 has many potential applications.

Here, we used it to solve two fish war models. The first was the standard one, with the

addition of asymmetric quasi-hyperbolic discount functions, and the second was nonstandard

due to it having power utility functions and a linear growth function. The first one generalizes

the fish war model of Breton and Keoula (2014) by adding quasi-hyperbolic discount functions.

The natural next step, then, is to solve the model for a more general discount function. In

principle, this can be done with the framework of Section 2.
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Table 4.12: The Effect of Quasi-hyperbolic Time Preferences (βi)

βi Variable t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

ci,t 42 30 23 20 18 17 17 19

1.0 ci,t/xt 0.21 0.22 0.22 0.23 0.24 0.27 0.31 0.49

xt 200 139 106 87 74 64 54 39

ci,t 43 31 24 19 17 17 17 17

0.9 ci,t/xt 0.21 0.23 0.23 0.23 0.24 0.28 0.34 0.49

xt 200 137 103 83 71 61 50 35

ci,t 43 30 24 20 18 17 16 16

0.8 ci,t/xt 0.21 0.22 0.23 0.24 0.25 0.29 0.33 0.48

xt 200 138 105 85 71 59 48 33

ci,t 41 30 24 21 19 17 16 15

0.7 ci,t/xt 0.20 0.21 0.22 0.24 0.27 0.29 0.36 0.50

xt 200 141 108 87 71 58 45 30

ci,t 56 29 20 18 16 15 14 12

0.6 ci,t/xt 0.28 0.25 0.24 0.25 0.27 0.31 0.37 0.48

xt 200 114 84 71 59 49 38 25

ci,t 48 29 25 20 17 15 13 10

0.5 ci,t/xt 0.24 0.23 0.26 0.27 0.29 0.33 0.37 0.48

xt 200 128 98 75 59 46 35 21

However, it should be pointed out that a more interesting expansion of the standard fish

war model lies in generalizing utility functions rather than discount functions. In particular,

finding more tractable ways of going beyond the restrictive assumption of logarithmic utilities

should be useful. For this purpose, we provided the numeric solutions in the third fish war

application of this chapter. The numeric algorithm that we used there can also be used in

further research, since it can be employed to (in principle) any type of utility, discount and

growth functions. However, a downside of the algorithm is that it requires a finite planning

horizon, which is nonstandard in fish war models.

4.7 Appendix

The algorithm that we use in Section 6 was written and compiled in the C++ programming

language. It consists of the following steps.

1. Create a matrix in which the number of columns is equal to T + 1 (the number of
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time periods for which to choose harvest) and the number of rows is equal to 1 plus

the maximum amount of the resource stock that can be obtained by the coalition. The

maximum amount of stock is the one obtained in the last period if there is no extraction

and all random events are positive, i.e. Zt = 1 and c1,t = c2,t = 0 for all t. The matrix

then contains every combination of time and stock that can potentially be realized. The

reason for adding 1 to the maximum amount of the stock is that the stock may be equal

to zero.

2. For period T (the last period in which extraction is performed), loop through all the

potential states, and record for each state the pair {c1,T , c2,T} that maximizes the sum

of utilities of period T . All data are recorded as integers. That is, the variables are

discretized in such a way that the size of a step is equal to 1.

3. For period T − 1, loop through all the potential states, and for each state find the pair

{c1,T−1, c2,T−1} that maximizes the sum of utilities of T − 1 and T , discounted back to

T −1.5 In doing so, we need to calculate the value of xT that results from each particular

{c1,T−1, c2,T−1}, and then find the {c1,T , c2,T} that is optimal given the obtained xT (which

we recorded in the previous step). We also need to take into account that for each

{c1,T−1, c2,T−1} there are two potential xT that may be realized: one if ZT = 1 and one if

ZT = −1.

4. Perform the equivalent procedure for every period from T −2 down to 0. In each period t,

and for each potential state xt, we get the optimal {c1,t, c2,t} given that all future harvests

have already been determined as functions of the future stock. In doing so, we need to

take into account all the different series of shocks that may be realized from t + 1 to T

and weight the utilities of each series by the probability of it being realized. Note that

given the assumptions on Zt that we make in Section 6, every series will have the same

probability. This simplifies calculations.

As the algorithm proceeds back in time from T , each new period requires a larger amount of

calculations than the previous one. This is because the number of utilities that must be added

increases by one for each new period, and because the number of potential series of random

events increases exponentially. In period T − 1, there is only one random event remaining, so

the number of potential series is two. In period T − 2, there are four potential series, and in

period T − k there are 2k potential series. Each one must be considered in order to obtain

the decision rule. This implies that as T increases, the time required to run the algorithm can

quickly become very long.

5If instead we want to find the commitment solution, we would discount every utility back to period 0. This

can be done with a minor change in the code.
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Concluding Remarks

5.1 Main Themes of the Thesis

In summarizing the content of this thesis, we will briefly mention some of the main themes that

we have encountered throughout the three main chapters.

• In each of the main chapters, we’ve dealt with the issue of aggregation of preferences

across time and across individuals. In solving for noncooperative solutions, we defined

the intertemporal utility function of an agent to be equal the sum of all his present and

future utilities, discounted back to the present. This is aggregation across time. In solving

for cooperative solutions, we defined the intertemporal utility function of a group of agents

to be a weighted sum of the intertemporal utility functions of the individual agents. This

is aggregation of preferences across agents.

• In most of the models treated in the thesis, we have dealt with agents that have inconsis-

tent time preferences. In some cases, these “agents” have been interpreted as coalitions

of agents. This was the case in the cooperative solutions of Chapter 2 and Chapter 3. In

Chapter 4, we extended the property of inconsistent time preferences down to the level

of the individual agent. In order to find solutions in continuous time, we made use of the

definition of an intertemporal equilibrium solution due to Ekeland and Lazrak (2008).

• Most of our models were solved using dynamic programming equations, in which the

value functions were the intertemporal utility functions when the equilibrium decision

rule is applied. The only exception to this was the numeric solution of the third model in

Chapter 4. In Chapter 3 and Chapter 4 we derived new dynamic programming equations,

while in Chapter 2 we employed a dynamic programming equation developed in de Paz

et al (2013).

There is certainly room for extensions and improvements of the models that we have covered

here. We’ve mentioned some of them in the conclusion sections in each chapter. The chapter

99
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which has the most potential for improvement is probably Chapter 2, in which the model can

be greatly expanded by including additional Macroeconomic aggregates. In this regard, there

are plenty of examples in the literature to take inspiration from. In Chapter 3 and Chapter

4, there are the possibilities of experimenting with more complex forms of utility and discount

functions, with the purpose of finding interesting results.

5.2 The Philosophical Aspects of a Theory of Inconsis-

tent Time Preferences

We’ve explained that an intertemporal equilibrium solution is obtained by finding a decision

rule such that, at each point in time, it is optimal for the agent to follow this decision rule given

that he follows it at all later points in time. This is what makes an intertemporal equilibrium

solution different from a commitment solution. The agent at time t is in full control of his

actions at t, but can control his action at t + 1, ..., T only indirectly. The control is indirect

because the agent at time t + 1 will do what he considers to be optimal given the state that

he finds him himself in, and this state is partially a result of the actions of the agent at time t.

This is in contrast with the commitment solution, in which the agent at time 0 has full control

over the agents at 1, ..., T .

We recall that it is customary to refer to the agent at time t as the “t-agent”. In this thesis,

we have occasionally used this terminology. We can think of the t-agent as having a will of

his own which, if time preferences are inconsistent, differs from that of the “(t + 1)-agent”.

Indeed, given the mathematics of an intertemporal equilibrium, it is perfectly reasonable to

think of each t-agent as being a separate individual all together. This individual cares first and

foremost about his own utility, but he is also interested in the utility of the agents that follow

him, although this altruism decreases with distance in time. Hence, we can view the game

as consisting of a series of agents that act one at a time, rather than a single agent who acts

repeatedly.

There’s an interesting philosophical lesson in this interpretation of the mathematical theory.

It reminds us that, ultimately, there’s no such thing as a “self” that survives over time. The

person who leaves his home for work in the morning is not the same as the one who returns

in the evening. They are two separate individuals with different personalities, and with desires

and interests that don’t necessarily coincide. But they have a peculiar relationship with one

another. The present self is interested in the actions and utility of the future self, and he is

frustrated because he knows that his influence and control over the future self is limited. The

future self, on the other hand, is completely unable to influence the state that the present self

finds himself in, but he is not bothered by this fact. He does not care about the utility or

disutility of the present self because “the past is in the past”. Given this, we may say that in a

theory of inconsistent time preferences, there’s no such thing as progression of the self through
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time. There is the present self, and there is the future self. The former does not become the

latter.

We close the thesis with the following quote, supposedly due to the 13th century Buddhist

priest Dogen Zenji. They are appropriate for a theory of inconsistent time preferences, for

reasons which, by now, should be clear to the reader.

The spring does not become the summer. The summer does not become the autumn.

There is spring. Then there is summer. When you burn wood there are ashes. But

the wood does not become the ashes. There is wood. And then there are ashes.
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