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Dedicatòria i agraïments 

Hola, soc la Lorena Alonso Parrilla, autora d’aquesta tesi. Abans de començar a llegir, 

m’agradaria poder presentar-me, ja que penso que potser això pot ajudar a algú en un futur; a 

vegades és important sentir-se identificat per a perdre la por i fer el primer pas endavant. Soc una 

matemàtica a la qui agrada la matemàtica aplicada centrada en la Biomedicina. Així, el 2011 vaig 

acabar la llicenciatura de Matemàtiques a la UB, el 2013 vaig aconseguir un màster d’Estadística 

Aplicada a la UNED i el 2016 vaig completar un màster en Biomatemàtica, bioinformàtica i genòmica 

computacional a la UOC. Des de l’últim any de carrera vaig estar treballant com a programadora web 

i analista de dades i, acabat els màsters, vaig a entrar al Barcelona Supercomputing Center (BSC) 

com a Research Engineer al grup del David Torrents. Dos anys després, el 2018, vaig començar el 

doctorat en Biomedicina en el mateix grup. I ara, el 2022, ja tinc més de 35.7 anys, visc amb la meva 

parella que m’ha acompanyat en tota aquesta aventura des de gairebé principis de la carrera, i tinc 

un fill amb poc més de 0.5 anys. Aquesta tesi, són els apunts i els resultats d’aquests quatre últims 

anys d’estudi, i han estat escrits intentant que pugui ser un document entenedor per sí mateix, 

proporcionant diversos materials i fonts de consulta. Per aquest motiu, es fa un gran èmfasi en 

introduïr i aprofundir en els conceptes de Biologia i metodologies informàtiques, ja que resulta 

fonamental per a entendre les anàlisi i els resultats obtinguts. 

  

Feta la presentació, només tinc paraules d’agraïment cap a totes aquelles persones que han 

facilitat que aquesta tesi surti endavant. Primer de tot, agraïr els que han posat diners per a que jo i 

aquest projecte de I+D+i (R&D i Innovació) sortim endavant, amb la beca BES-2017-081635 

finançada pel MCIN i per “FSE Invertint en el teu futur”. Vull agraïr al BSC les bones condicions que 

ens donen com a centre, no només a nivell laboral, sino també a nivell de visibilitat, instal·lacions i, 

perquè si no fos perquè tenim el Mare Nostrum, aquesta tesi no tindria sentit. A tota la gent del 

centre, des de recursos humans, gestió documental i de beques, support, helpdesk, finances,... ja 

que si no fos perquè estan allà, per la seva amabilitat, ajuda, paciència i bon tarannà, moltes de les 

gestions, instal·lacions de software, hardware que s’han hagut de fer durant la tesi haurien estat més 

complexes, haurien portat més temps, i per tant, haurien dificultat l’avanç de la recerca i l’obtenció de 

resultats. Gràcies per facilitar la vida d’aquesta estudiant. En especial vull expressar el meu 

agraïment a la gent del departament de Life Sciences, que fan un gran esforç dia a dia per a crear el 

millor ambient d’aprenentatge per a tots, per fomentar el diàleg científic, els vincles i col·laboracions 

amb els diferents departaments, i per donar-nos un espai de treball on podem practicar la divulgació 

científica; tots aquests esforços ens ajuden a crèixer des del primer dia. A més, en particular al Dr. 

Jose Luis Gelpi, vull agraïr-li que hagi estat el meu tutor de tesi. De veritat que considero que he 

tingut molta sort perquè, per a tot el que he necessitat quant a seguiment i gestions amb la 

universitat, m’ho ha facilitat moltíssim i això... és molt d’agraïr.  

  

Bueno, Dr. David Torrents, que sé que no t’agraden aquest tipus de formalismes però 

acceptes que de tant en tant jo sigui molt clàssica, gràcies per acollir-me i donar-me la possibilitat de 

poder fer el doctorat al teu grup. Sé que ha de ser un repte obrir la porta a un personatge com jo, per 

la meva particular forma de ser, fer i expressar-me; i per la gran falta de coneixements que tenia. No 

pots arribar a imaginar lo feliç que he estat en aquests darrers 6 anys en el grup, m’has obert les 

portes de casa i a sobre m’has donat totes les eines i facilitats per a que aprengués. Mai m’ha faltat 

ajuda al voltant perquè tu t’has encarregat de posar-me a treballar amb els millors mestres que tenies 

a l’agenda i gràcies a això, he pogut aprendre moltes coses. Tant ha estat així que ara, fins i tot, ja 

puc parlar de ciència amb tu amb més tranquilitat. Tot i així, sabem que encara tinc molt a aprendre i 

que de tant en tant encara dic alguna barbaritat. Gràcies per fer de guia, conseller, a vegades casi un 

pare, per donar-me reptes, trencar-me la ment i els esquemes quan estava més segura i per donar-

me confiança quan estava menys convençuda, però sobretot, gràcies per donar-me aquesta 

oportunitat. M’he sentit tan bé des del primer dia, que per primera vegada a la vida, he volgut 

continuar en una feina durant tants anys. Ara el problema serà que quan una està tan bé en algun 

lloc, doncs no vol marxar. 
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I tot això no hauria estat possible sense el Txema, la Montse i la Romina, que van ser els 

encarregats de fer-me una entrevista de feina per a fer de Research Engineer en un projecte 

europeu; el TIGER. És molt curiós que des del primer moment em vaig sentir ben còmoda amb 

vosaltres. Recordo aquella entrevista com si fos ahir i semblava que us coneixia de fa molt de temps. 

Us estic súper agraïda d’haver-me triat com a candidata per a poder entrar al grup, per tota la guia i 

tota l’ajuda que m’heu donat durant aquest temps. Feu que treballar sigui un plaer al vostre costat. 

Però a banda de tot això, gràcies per la vostra paciència, comprensió i per aguantar el meu nervi o 

rebeldia de tant en tant. Si d’alguna cosa estic segura és que si tingués que repetir la mateixa 

història, us triaria com a companys i guies de camí. En particular, Txema, he aprés tantes coses de 

tu, a nivell laboral i com a persona, de veritat que em fascina trobar-me a algú que tingui tanta 

empenta i esperit crític i de superació; ha estat dur seguir-te el ritme a vegades però m’ha encantat 

fer projecte, reunions i discusions amb tu. Gràcies per tot el que m’has ensenyat. Romina, em va 

encantar començar el projecte amb tu, aprenent i barallant-nos amb la plataforma, les dades i les 

màquines virtuals. És un gust trobar-se pel camí a una persona tan predisposada sempre a donar un 

cop de mà i amb aquest somriure a la cara. Gràcies per ajudar-me amb les primeres batalles, per fer-

me companyia i per escoltar-me quan estava de queixa. La teva pau, comprensió i el teu somriure, 

sempre han estat de gran ajuda. I Montse, què més a dir que un se sent molt afortunat de que 

estiguis sempre allà. Lo teu és impressionant; per a una conversa de feina, per a arreglar un codi, per 

a veure què fer amb unes dades, per a processar algo al mare, per donar suport moral... la pregunta 

és què faríem sense tu? Gràcies per tot això i per estar sempre per nosaltres. 

 

But talking about TIGER without mentioning all the people involved in the project doesn’t have 

any sense. For this reason, I want to thank all the T2Dsystems Consortium for trusting in me to 

participate in this huge project, which has represented a major challenge for me. Particularly I want to 

thank them also for their patience, since they have been listening my updates on the platform in each 

follow-up session without showing any signal of boredom; this has been a very good practice for me. 

Thank you for helping me to grow up. Here I must specially thank Dr. Miriam Cnop for giving support 

and pushing the project until the publication, Dr. Jorge Ferrer for his support in some calls when David 

was not able to attend and for facilitating us the publication of the cASE method, and many thanks to 

Anthony, it has been a pleasure to share this project with you and Ignasi, to be with you in our regular 

meetings, and a pleasure to work with you during your visit to the BSC. 

  

Perquè sí, quan un comença un projecte s’hi va trobant a més gent pel camí. I així vaig tenir 

la sort de conèixer a l’Ignasi; que en aquella època era encara un estudiant de PhD. Curiós va ser el 

fet que em parlava en anglés i jo pensava... amb aquest nom i aquests cognoms... i en anglés... Anda 

que no em vaig posar contenta a Sitges quan vaig veure que parlaves català! Em vas caure súper bé 

(compte, no només per parlar català ehh); la cosa que des d’aquell moment vaig sentir que ja hi havia 

algú més a l’equip. I déu ni do quin “fitxatge”! La veritat que estic encantada d’haver-te conegut i 

treballar junts amb el TIGER, però més contenta estic des que vas entrar al BSC de postdoc. Gràcies 

per donar-me la oportunitat de poder treballar amb tu en el projecte d’epistàsia; ha estat dur, perquè 

ets súper crític i no et talles ni un pèl a l’hora de dir que algo està malament, però amb tu un sempre 

està segur perquè sap que aquí s’està fent ciència de la bona. A banda que és molt divertit, de tant 

en tant, fer un gràfic curiós que et faci explotar el cervell. Pues què et puc dir havent estat tan gran 

mestre... si és que fins i tot m’has ensenyat a llegir papers, amb la teva idea de fer un journal club, 

Ignasi! Saps que segueixo amb gust les teves passes... fins i tot hem tingut un nen gairebé alhora xD. 

De tot cor, moltes gràcies per posar-me en bon camí. 

 

Claro, no puedo seguir adelante sin agradecer al Dr. Juan Ramón González el haberme 

ofrecido la posibilidad de colaborar en su proyecto de inversiones y, por habernos dado el empujón 

inicial y el soporte necesario con epistasia. Debo confesar que fue muy estimulante, a la vez que 
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esperanzador, encontrar a un matemático trabajando en genómica. Otro ejemplo a seguir! Mil gracias 

Juan Ramón. 

  

And project by project I also get to the hands of Cecilia, my desktop mate in the office; and 

what a mate! Since you get to the BSC I’ve enjoyed a lot learning by your side. Your love for science 

is so big that you make it so easy to participate and to discuss about everything. I can imagine that it 

was the reason for you to decide joining the Journal Club. It was very nice to broaden the discussion 

with both Dani and you to other germline topics. Thank you guys for sharing all those Monday 

mornings with me, talking about science in English, learning how to read, explain and criticize (in a 

positive manner) a paper. All this time shared with you has been of great profit for me; very enriching 

but also funny. Last Ceci, thank you for helping me in collaboration with Ignasi, to improve my writing 

skills while writing the Mathematics review; your organized way of behaving encompassed with the 

discipline in your work and speech have been a great guidance for me. 

  

Y así ha ido avanzando esta tesis; como algunos comentaban en el grupo, he sido muy 

afortunada de compartir proyecto y contar con el apoyo y guía de 3 postDocs; y no están nada 

equivocados. Sin embargo, esa afirmación está incompleta porque mi fortuna no sólo es haber 

contado con la ayuda de Txema, Ignasi y Cecilia, sino también de contar con todo un grupo de 

investigadores que siempre están dispuestos a echar una mano, a discutir de ciencia y no ciencia,  a 

compartir su trabajo y a dar su opinión crítica sobre el trabajo que uno presenta. Además sin importar 

el formato ya sea oficial o extraoficial, en un meeting de grupo, en una pausa para el café… siempre 

disponibles para ayudar a mejorar en el trabajo y como persona. En este grupo se aprende hasta a 

comer más sano! Gracias a todos los ya mencionados y a Mercè, Elias, Sílvia, Marta, Juan, Alex, 

Jordi, Luisa, Ana, Michelle, Lydia, Álvaro, Migue, Ramón e Iván por todos esos momentos 

compartidos, por ser un ejemplo y referente día tras día, por esos cafeticos y esas charlas 

apasionantes de ciencia, política, del día a día…, por escucharme cuando lo necesité, por darme 

vuestro apoyo cuando estaba de bajón, por aclararme las dudillas que me iban saliendo sobre la 

marcha, por aceptarme en el grupo y por la paciencia que habéis tenido conmigo (cuántas veces se 

me tuvo que repetir lo que hacía la RNA-polimerasa! xD)… gracias en definitiva por estar ahí, ser 

cada uno como sois y ser grandes maestros para mi. De corazón os digo que cada uno de vosotros 

ha contribuido en mayor o menor grado a que todo esto salga adelante; esta tesis y yo. 

 

Y ya casi al final de mi trayectoria de estudiante de doctorado, he tenido la suerte de contar 

con el apoyo del tribunal de tesis, a los que quiero agradecer su amabilidad al recibir mi propuesta, 

su disponibilidad para hacer posible la defensa, con toda la faena adicional que esto conlleva, y sobre 

todo, desde la admiración a su trabajo, quiero darles las gracias por concederme el honor de poder 

discutir con ellos sobre genética, en particular, centrándonos en las líneas de investigación que 

compartimos. Així, inclouré aquí al Dr. Rafael de Cid, a qui ja li estic súper agraïda per ser el primer 

en dir-me que sí i haver fet que els nervis d’aconseguir un tribunal de tesi, no siguin tants. És una sort 

que el tema de la fibrosi quística sigui del teu gust! xD. A la Dra. Ana Viñuela, el Dr. Ferran Reverter, 

que en un tiempo récord aceptaron formar parte de mi tribunal, facilitándome todos los trámites 

requeridos por la universidad. Al Dr. Àlex Sànchez-Pla, que aún solapándose la defensa de tesis con 

la presentación de sus oposiciones de cátedra, se ofreció para formar parte de mi tribunal como 

suplente. Y la Dra. Alicia Huerta-Chagoya, que pese a no poder ofrecerle una plaza en el tribunal 

principal, muy amablemente me ayudó a completar el tribunal suplente en un tiempo récord también. 

 

Finalmente, quiero dar las gracias a los de siempre; mis dioses creadores: mi papá y mi 

mamá, que no tuvieron suficiente con crearme y criarme sino que además me escuchan, me 

acompañan y me apoyan a cada paso que doy. Y así les da igual si les doy una chapa de mates, de 

expresión de tejidos o de pañales… son los grandes pilares de mi vida; sin ellos no hubiera podido 

llegar aquí. Al nen, que ha aguantado estoicamente a mi lado una vez más la inmersión en otra etapa 

de estudio; qué paciencia conmigo! Gracias una vez más por tu apoyo, comprensión y cariño. A mi 
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pequeño Andreu, que aguantó 2 días más dentro de mi panza para que yo acabara de escribir hasta 

la última línea de mi primera versión de tesis, acompañándome y sufriendo desde dentro la última 

etapa de este camino, y haciendo siestecitas una vez fuera para que yo pudiera continuar. A mis 

amigos, a los que están o han estado acompañándome durante el camino de tesis y no tesis; en 

especial a mis dos soles, porque siempre es de gran ayuda y fortalece el tener a alguien que te 

acepta y con quien compartir hasta el silencio que sale del corazón. Y a Auron, porque siempre está 

para ayudarme a desconectar de lo que haga falta. 

 

En general, a todos los que mencioné y a todas las personas que han compartido espacio-

tiempo conmigo durante la tesis y también antes, porque... todos los que nos rodean pueden ser 

nuestros maestros si estamos dispuestos a observarlos y a aprender de ellos. A todos aquellos que 

marcaron mi camino y contribuyeron a que hoy sea tan tan tan feliz escribiendo esto... muchas 

gracias. Y... espero no haberme olvidado de nadie con esta cabeza loca que tengo, GRACIAS por 

compartir estos años conmigo. Un gusto aprender a vuestro lado; llevo conmigo al futuro TODO lo 

que fuí capaz de aprender de vuestras enseñanzas, feliz de haber estado rodeada de tan grandes 

personas. Y como diría un gran señor pero a mi manera… quiero acabar esta sección con un: 

Seguim! ^^ 

 

 

 

 

 

“Hasta el viaje más largo empieza con un solo paso” 

Proverbio japonés 
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Abstract 

One of the major and most challenging goals of Biomedicine during the last centuries has 

been the study of the human biological mechanisms, and its relation with traits and diseases. 

Particularly, in the case of complex diseases, such as Type 2 Diabetes (T2D), asthma or Alzheimer, 

special interest has been devoted to understanding the underlying molecular mechanisms that affect 

the development of complex diseases, and the biological processes involved in the preservation of 

these diseases across generations (genetic basis). In this direction, during the last decades, the 

advance of computing as well as the development of new DNA-related technologies has largely 

contributed to the faster development of methods, tools, and resources, which have enhanced the 

genetic study of traits and diseases. As a result of this revolution, new specialised fields such as 

Biomedicine, Bioinformatics, and Computational genomics have emerged to find the genomic basis of 

disease using computational tools. Hence, the identification of the genetic factors behind complex 

diseases has evolved into a multidisciplinary effort, which combines disciplines as diverse as Biology, 

Mathematics, Physics, Chemistry, and Information technology.  

 

The Computational genomics field, in the context of Biomedicine, focuses on the study of the 

relationship between genomic changes (variants) and the predisposition or the offset of disease with 

the final aim of understanding, predict and prevent diseases and, ultimately, to design better 

treatments. In this direction, numerous contributions have been made in this field to discover variants 

associated with the risk of developing a disease, and to interpret these associations in terms of 

function. Notably, some of these contributions, such as the assembly and annotation of the human 

reference genome, improvements on disease characterization, the better understanding of the effects 

of genomic variation in different populations, or the introduction of Genome Wide Association Studies 

(GWAS), have represented very relevant landmarks for the advance on the understanding of the 

genetic basis of diseases. Particularly, the broad use of GWAS, which mostly relies on the statistical 

comparison between the variants present in groups of diseased and non-diseased individuals, have 

led to the discovery of thousands of genomic variants associated with a great diversity of complex 

traits and diseases. 

 

Despite the great success of GWAS, the multiple limitations surrounding this type of 

approaches, has converted the study of complex diseases into a still challenging problem. 

Particularly, there are many elements, such as the need of analysing large cohorts of individuals, or 

the difficulties to generate a complete model to capture the whole complexity of common traits, which 

limit the discovery power of GWAS. Therefore, reducing the explanation of disease heritability, based 

on GWAS findings, to a small fraction. Moreover, the lack of biological and functional interpretation of 

the results obtained from GWAS has complicated its translation into something meaningful to be 

applied in the clinics. Consequently, many statistical and computational efforts have been devoted to 

improve GWAS discovery power, and to develop new analytical frameworks to find new disease-

susceptibility variants. Additionally, other biological approaches, such as transcriptomics and 

epigenetics have emerged as a key to facilitate the interpretation of GWAS outcomes. Finally, the 

need for accessibility to this valuable genomic, transcriptomic and epigenetic information has led to 

the generation of a wide diversity of publicly available databases. 

 

This is the case of Type 2 diabetes (T2D), which is a complex metabolic disorder mainly 

known to be caused by islet beta-cell dysfunction usually surrounded by a background of insulin 

resistance. T2D is an example of a common disease that has been broadly studied from the 

perspective of different omic layers. Particularly, the genetic study of T2D has led to the discovery of 

more than 700 genomic variants significantly associated with the disease, thousands of genes with a 

putative effect on the disorder, and thousands of target genomic regions with potential regulatory 

effects. However, although the genomic explanation of its heritability is estimated around 70%, 

approximately only 20% has been already explained and, most importantly, the use of these markers 
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to detect the predisposition of an individual to develop the disease is still far for the clinics. 

Additionally, most of these genomic signals lack functional explanation, thus representing a challenge 

for the understanding of disease pathophysiology. 

 

Consequently, the general objective of this thesis is to broaden the genetic understanding of 

complex diseases, focusing on the analysis of T2D, by finding new disease-susceptibility loci and 

improving the functional interpretation of genetic markers. In this direction, the objectives of this thesis 

can be summarised in:  

1) Discover epistatic groups of variants associated with T2D, applying combined machine 

learning and statistical approaches, and analyse their underlying molecular mechanisms to 

enhance the early detection of the disease and a better comprehension of its 

pathophysiology.  

2) Generate a comprehensive database of human pancreatic islets gene expression regulatory 

variation, which integrates genomic, transcriptomic and epigenetic data related to diseases, 

genes and variants to improve the functional study of T2D and other islets related traits 

(Alonso, Piron, Morán, & et al., 2021). 

 

Additionally, this thesis recapitulates the participation in two studies with the objectives:  

3) Support the relevance of inversions and their effect in islets expression to improve the genetic 

knowledge about the shared-susceptibility of complex diseases (González et al., 2020). 

4) Review current GWAS statistical frames to promote the development of new methods and 

tools that can enhance the study of complex diseases (Alonso, Morán, Salvoro, & Torrents, 

2021). 

 

Therefore, I start this document with a detailed introduction that aims to facilitate the 

comprehension and motivation of this study, followed by the hypotheses related to milestones 1-2), 

and the corresponding list of objectives. This section is followed by a report made by Dr. David 

Torrents, the director of this thesis, summarising my trajectory during the PhD, and detailing my 

contributions to the studies related to milestones 1-4) during this period. This report is followed by a 

brief summary of the studies presented in this thesis.  

 

Then, for the study of milestone 1), an unpublished manuscript is provided summarising the 

preliminary results obtained from the analysis of variant-variant interactions and its association with 

T2D using machine learning and statistical approaches. Therefore, describing and discussing the last 

advances done, specifying the methods used, and discussing the outcomes and limitations of the 

preliminary analyses. Next, a publication is provided to support the results obtained from the study of 

milestone 2). Thus, detailing and discussing the human pancreatic islets gene expression variation 

results that constitute the core of the database. Additionally, two appendix sections have been 

provided in this document to include the publication and review related to milestones 3-4). 

 

Finally, the global results obtained from the study of milestones 1) and 2) are summarised 

and discussed, and a list of conclusions is provided to briefly recapitulate the main outcomes of this 

thesis. 
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1. Introduction 

1.1. Biomedicine and the study of human diseases  

1.1.1. Motivation: The study of the genetic basis of human diseases 

The understanding of the biological mechanisms that affect the risk of developing a disease, 

and its preservation through different generations, has been a subject of study broadly approached 

during the last century by the Biomedicine field, and in particular during the last two decades (Quirke 

& Gaudillière, 2008). In this direction, different analytical frames and strategies have been designed 

and applied to improve the comprehension of human diseases, combining different disciplines. 

Particularly, during the last decades, the computational and technological revolutions have enhanced 

these studies by providing more sophisticated tools, and computational and analytical methods, to 

facilitate and support these complex analyses. The broad use of these technological advances have 

boosted the generation of a large volume of diverse types of data to study human genetics, making it 

necessary to improve information data storage techniques, management, integration, distribution, and 

analytical tools. Thus, leading to the creation of new specialised fields, such as Bioinformatics, a 

multidisciplinary field, which focuses on the creation and use of computational and statistical 

frameworks to analyse and interpret multi-omics biological data.  

 

One of the main goals of the Bioinformatics field, specifically from the Computational 

Genomics point of view, is to study disease heritability by deciphering the contribution of genomic 

variation on the risk of developing a disease, and understanding how much of this genomic variation 

can be inherited by the offspring generation. Heritability is the common term used in the 

Computational genomics field to refer to the study of the estimated variance of a trait or disease that 

can be exclusively explained from the genetic point of view. In this direction, during the last decades, 

several efforts have been made to reach a better understanding of the genetic basis of diseases. 

Notably, the better comprehension of the human genetic architecture, and the identification and 

characterization of genetic markers, has been essential to improve the prediction of disease risk and 

diagnosis. As a result, the elucidated conclusions from the different types of analyses conducted in 

the Computational Genomics field can be, in such a way, translated to the clinics to early detect, 

prevent and, ultimately, to treat diseases. More specifically, all this knowledge has revealed some of 

the molecular and functional basis of human disorders, thus leading to the generation of better 

detection protocols, and becoming crucial in the development of new treatments (Timpson, 

Greenwood, Soranzo, Lawson, & Richards, 2018).  

1.1.2. Fundamentals of genetics and genetic inheritance 

Although the use of statistical and computational tools to perform the analyses conducted in 

the Bioinformatics field do not require any biological previous knowledge, a good insight in the 

biological basis of genetics is crucial for the preparation of the analyses, as well as for the 

interpretation of the results obtained. Therefore, the comprehensive biological knowledge of how 

conditions are transferred from one generation to the next, named genetic inheritance patterns, 

facilitates the understanding of genetic studies.  

 

In this direction, in 1865, the fundamentals for explaining the basis of this genetic inheritance 

were firstly described by Mendel (S. Abbott & Fairbanks, 2016). Particularly, Mendel studies were 

focused on the hybridisation of 34 varieties of peas presenting clear observable differences in various 

traits of the plants. As a result from eight years of experiments, seven hybrid characters, such as the 

difference in the form and colour of the seeds, were observed in the first, second, and subsequent 

generations. The analysis of the prevalence or recession from each of these hybrid particularities lead 

to the classification of these features between dominant, in case they prevail, or recessive in case of 
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remission or loss across the generations. Consequently, since that point, mutations were defined as 

cell permanent and temporary associations, which follow the different Mendelian inheritance 

patterns, based on the predominance and recession of the character and its appearance in each 

generation (Alliance, Screening, & Services, 2009). 

 

Notably, the advances of Mendel’s work to understand the genetic inheritance were related to 

changes and mutations in the fertilised cell, but the principal component of the cell susceptible to 

mutations was still missing. For this reason, many theoretical studies suggested that changes in 

genes or proteins, which were known to be functional elements in the cell, could be leading to the 

generation of the different traits. However, it was not until 1943 when Oswald Avery experimentally 

proved that the sodium deoxyribonucleate or DNA, stored in the nucleus of the cell, was the main 

responsible of the genetic differences or mutations (Avery, Macleod, & McCarty, 1944; Cobb, 2014). 

This result was revealed from observing and analysing the transformation of specific types of cultured 

Pneumococcus, and led to the conclusion that genes were made of DNA instead of proteins, as it was 

previously thought. Moreover, since that point, the DNA sequence was defined as the ‘transforming 

principle’ and, consequently, it was stated that any chemical DNA alteration was the cause of 

different cell types and biological functions, therefore making them predictable, and transmissible in 

series.  

 

The complete understanding of what is a DNA alteration requires a better comprehension of 

the DNA molecule. Fortunately, at that point, the structure of the DNA molecule had already been 

theoretically defined by Phoebus Levene in 1919 (Levene et al., 1919). Thus, facilitating the 

experimental validation of the tetranucleotide theory, and the confirmation of the nucleic acid as a 

paired sequence, where each base pair (bp) was generated from the combination of four nitrogenous 

bases: adenine (A), thymine (T), cytosine (C) and guanine (G). Each of these bases, as published by 

Erwin Chargaff in 1950, based on his chromatography studies of the DNA (Chargaff, 1950), pair in 

the DNA sequences as follows A-T and C-G, following the rules which now receive his name (Figure 

1).  

 

 
Figure 1. The structure of the DNA molecule: The DNA molecule is composed by two right-handed helical 

paired sequences, from which each base pair is a nitrogenous base: adenine (A), thymine (T), cytosine (C) and 

guanine (G). These bases pair following the Chargaff rules, which state that 1) A pair with T, and C pair with G, 

so that the proportion of A must be the same as the proportion of T, and the proportion of C must be the same as 

the proportion of G, and 2) Each DNA strand follows the first rule. 

 

Moreover, in 1953 (Watson & Crick, 1953), Rosalind Franklin, James Watson, and Francis Crick 

defined the DNA structure to be composed by two right-handed helical chains coiled in the same 

axis but in the opposite direction, where each of the helix pairs connect through hydrogen bonds 

following the Chargaff rules. Therefore, as Avery explained, any alteration of the DNA molecule can 

result in differences in the biological behaviour of the nucleic acids in each of these chains, and 

consequently lead to an observable trait. 

 

As a result of all these discoveries, today we know that DNA is a molecule defined by a paired 

sequence of nitrogenous bases, which contains the basic information for each cell type. Thus, being 

responsible for the different cell specialised functions. For this reason, any chemical alteration on the 

nitrogenous bases of its sequences can lead to a biologically functional transformation that can be 

observed as a trait characterising an individual, or a disease. Particularly, the variation leading to a 

trait or a disease can be inherited by the offspring. Consequently, these changes or mutations are 
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predictable and, therefore, their genetic study can lead to a better understanding of diseases, and the 

improvement of disease prognosis. 

1.1.3. DNA alterations and inheritance patterns 

The discovery of the DNA molecule and its relevance to explain diseases and traits, based on 

its transformation, motivates the study of the genomic mechanisms from which mutations can be 

acquired during the individual life. Particularly, to study how genomic variation can be transmitted to 

the next generations it is fundamental to remember that the DNA is organized in 23 homologous 

chromosomes, from which the first 22 are the autosomes, and the other one, the sexual 

chromosome, defines the sex of the individual (X and Y). Moreover, any position in the human 

genome (locus) has two copies (or alleles): one inherited from the father A and one inherited from 

the mother B. Thus, humans are diploid organisms, and each chromosome has two identical haploid 

copies. These copies are named sister chromatids, join in a genomic region named centromere, 

and end in non-coding and highly repetitive regions named telomeres, which provide their structural 

stability. Since humans are multicellular organisms, this DNA organisation is preserved among all the 

different human cells. Particularly, a human being starts its existence with only one cell (zygote) but 

can reach over 30 trillion (3x10
13

) of specialised cells when adults (A. Abbott, 2016; Sender, Fuchs, & 

Milo, 2016). As a result, cell mutations can be potentially acquired when the DNA molecule stored in 

its nucleus is exposed to transformations, which corresponds, depending on the stage of the cell, to 

the moment when the zygote is created (germline mutation), or when a copy of a new cell is 

generated (somatic mutation).  

 

The DNA alterations occur during the division processes of the cell: mitosis (somatic) and 

meiosis (germline). However, the meiosis process is crucial to understand how mutations are 

inherited by the offspring and, therefore, for the study of the genetic inheritance of human disorders. 

Meiosis is a three step process (Figure 2) where: 

1) First, each parental DNA haploid sequence is complemented with its corresponding chromatid 

sister. 

2) Then, the maternal and paternal chromatids combine, during the meiotic homologous 

recombination step.  

3) After the recombination, the chromatid sisters separate their centromeric regions, thus 

generating 4 alleles named germ cells (or gametes).  

 

 
Figure 2. The genetic variability of the zygote. During the meiosis process, in diploid organisms, the DNA 

recombines generating four gametes that will constitute the DNA of haploid germ cells. The genetic material of 

two germ cells is combined during fertilisation to generate a new cell in the offspring (zygote) that inherits the 

variability present in the parental cells. 

 

The combination of one maternal and one paternal gamete (fertilisation) leads to the generation of a 

new cell (zygote) (Burton, Tobin, & Hopper, 2005). As a consequence, the DNA content of the new 

cell inherits the variability already present in the parental germ cells and de novo changes occurring 

during the meiotic process. Each of these changes, already existing or de novo generated, are usually 

referred to as germline genomic variation. This type of variability, which can derive in different traits 

and/or diseases, represents the baseline susceptibility in complex diseases.  

 



 

33 

Particularly, during the homologous recombination, each parental DNA molecule is divided in 

fragments, called linkage disequilibrium (LD) regions or LD blocks (Slatkin, 2008). This 

fragmentation usually occurs in the chromosome recombination hot spots, which are regions of the 

genome more susceptible to be fragmented and recombined. As a result, LD regions contain groups 

of variants with a higher probability to be preserved as a block for each parent. Therefore, a group of 

alleles that are inherited together from a single parent is the haplotype, and since the combination of 

alleles in all loci defines the individual genotype, genomic variation can be studied based on the 

observation of the individual genotype. Indeed, based on human diploidism, each locus can have 3 

possible combinations of alleles AA, AB, BB that can be grouped in homozygous (hom.), if the alleles 

are the same, and heterozygous (het.) if the alleles are different. Specifically, given a reference, for 

example a non-mutated cell in a population, compared to a mutated cell in the same population, these 

combinations can turn into homozygous reference if both nucleotides are the same and match the 

reference, homozygous alternate (hom. alt. or BB) if both nucleotides are the same but mismatch 

the reference, or heterozygous (het. or AB) when both nucleotides are different at that position, one 

matching and one mismatching the reference allele. Moreover, the way the alleles A, B are inherited 

(inheritance patterns), which define the different inheritance models (additive, recessive, 

dominant, or heterodominant), can lead to a different effect on the individual phenotype (Alliance et 

al., 2009). As a result, the evaluation of predisposition to diseases through the study of germline 

variant genotypes is affected by multiple factors such as LD regions, or inheritance models. Based on 

these factors, the study of the genotypes of germline variants, and its probability of being inherited in 

the offspring, can help to gain insight into the effect of genomic variation in the different traits or 

disorders, and to facilitate the early detection and prevention of diseases. 

1.1.4. Genetic variants classification 

The relevance of the study of genomic variation inside a population motivates the 

classification of variants to reduce the complexity of the explanation of genetic studies outcomes. 

Hence, variants can be categorised, in general, by their size and their presence in the population, 

measured by their minor allele frequency (MAF). As a result, in terms of their length, variants with 

only one nucleotide change are referred as Single Nucleotide Variants (SNVs), those involving a 

deletion or insertion between one and 50 nucleotides are short Indels, and the rest of genomic 

variants are referred as Structural Variants (SVs) (Escaramís, Docampo, & Rabionet, 2015). In 

particular, SVs are DNA regions presenting a change in copy number (deletions, insertions, 

duplications, or copy number variation), orientation (inversions), or chromosomal location 

(translocations) (Figure 3.A). Moreover, looking at the genomic variant frequency among the 

population, variants with a MAF<1% are referred to as rare variants, those with a presence 

1%<=MAF<5% are called low-frequency variants, and the rest (MAF=>5%) are known as common 

variants (Bomba, Walter, & Soranzo, 2017; Eichler, 2019; Ku, Loy, Salim, Pawitan, & Chia, 2010; 

The International HapMap Consortium, 2005) (Figure 3.B). Finally, being the most common type of 

human variation, both low-frequency and common SNVs are known as Single Nucleotide 

Polymorphisms (SNPs). The use of this classification facilitates the interpretation of genomic 

population studies, improves the characterisation of disease-related variants, and promotes a better 

understanding of the genetic basis of human disorders. 
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Figure 3. Classification of variants by length and presence in the population. Genetic variants can be 

classified by their length, and by their frequency among the population of study. The panels display: 

A) Variant classification by length in base pairs (bp). The original sequence is the one with a stickman on the left, 

and each mutated sequence is displayed below the original sequence. The light grey boxes represent the original 

chromosome position in the genome for the observed variant (light blue), and the dark grey boxes represent a 

different region of the genome. The dark blue boxes represent new inserted nucleotide sequences. 

B) Variant classification by the minor allele frequency (MAF). 

1.1.5. The effect of genetic variants and disease characterization 

The fact that different DNA alterations can result in observable traits and diseases, motivates 

the establishment of a categorisation of variants based on their effect on a specific phenotype. 

Particularly, in terms of relation with disease, germline variants can be classified as protective, if their 

contribution to the risk of developing a disease is negative, risk variants if they contribute positively to 

that risk, or neutral if the variant has a negligible or no effect on the phenotype of study. 

Consequently, in terms of this genomic association with a disease of study, protective variants reduce 

the individual predisposition to develop the disease, and risk variants increase this predisposition. 

Moreover, despite the large variety of traits that can be observed in the human population worldwide, 

from the genomic point of view, these attributes or diseases can only be characterised as monogenic 

or polygenic depending on the number of genomic variants affecting the individual phenotype, and 

their behaviour. Therefore, in a Mendelian or monogenic disorder, although diverse genes can be 

involved in its development, the effect of genomic variation in only one of these genes is enough to 

mediate the disease. In contrast, if the contribution of multiple genetic variants, affecting various 

genes simultaneously, and diverse environmental factors is needed to develop the diseased 

phenotype, then it is named complex, polygenic, or common disease (Figure 4) (Manolio, Brooks, 

& Collins, 2008). 
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Figure 4. Disease and variants classification based on the effect and behaviour of disease-related 

variation. Genomic variants define the individual phenotype, thus leading to the development of A) different 

traits, and B) diseases. A disease susceptible variant is classified as protective (blue panel), if it helps to the 

prevention of the disease. In contrast, if the variant mediates the disease, it is defined as a risk variant (grey 

panel). In a Mendelian or monogenic disease, it is only necessary to have one variant affecting a particular gene, 

from the diverse genes related to the disease, to its development. In complex diseases, hundreds of variants with 

a low effect, affecting multiple genes simultaneously, in combination with diverse environmental factors, are 

needed to develop the disease. 

 

In particular, monogenic diseases are usually rare diseases, which affect less than 5% of the 

population such as cystic fibrosis or polycystic kidney disease. In contrast, complex diseases, such as 

diabetes, asthma, or Alzheimer’s disease, are broadly extended among the global population, usually 

affecting thousands, and even millions of individuals worldwide. Thus, converting the study of the 

genetic inheritance of complex diseases into one of the major goals of Biomedicine. Particularly, the 

better comprehension and characterisation of this genetic component, the more we will know about 

the molecular biology behind, and the better chances to design improved prognosis, prevention, and 

treatment protocols for this type of disorders. 

1.1.6. From genomic variation to its functional interpretation 

The study of the genetic inheritance of complex diseases, based on the analysis of the 

contribution of germline variation to the disease, is fundamental to find the genomic mechanisms 

underlying this type of disorders. However, apart from the discovery of disease-associated genetic 

markers, it is also necessary to understand their molecular mechanisms, since it is essential for the 

identification of drug targets and new therapies. Nevertheless, further knowledge is needed to convert 

DNA alterations into functional alterations that could explain the disease. In this direction, it is crucial 

to find the relation between germline variation and cell function. Particularly, as cell function derives 

from proteins, and genes are DNA segments containing the instructions for protein production, they 

are of special interest for the study of the effect of genomic variation on function.  

 

The relation between genomic variation, genes, proteins, and function can be explained 

through the central dogma of biology, which constitutes the basis of molecular biology, and was 

published by Francis Crick in 1958 (Crick, 1958). This dogma stands on the fact that the DNA 

molecule is continuously transcribed into RNA, which then will be further translated into proteins. 

During the transcription, each DNA strand is copied to generate a RNA strand, transforming thymine 

in uracil (U). Then, the RNA is translated into amino acids, which are groups of three bases, to 

generate the different proteins that are involved in the diversity of cell functions. Each protein is 

composed from at least 20 amino acids (Figure 5.A). Therefore, DNA alterations associated with a 

complex phenotype can result in a change of a gene which can alter the protein function (Figure 5.B).   
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Figure 5. Central dogma of biology. The DNA molecule (top) is transcribed into RNA (middle) to then be 

translated into an amino acids sequence (bottom).  

A) The genes, which contain the instructions for protein production in the DNA, result in groups of at least 20 

amino acids that generate a protein.  

B) DNA alterations can be translated into an amino acid change, which alters the protein function. 

 

As a result, the relation between variants and genes or functional regions enhances the 

detection of the pathways mediating the disease or its connection with the symptoms. For this reason, 

after the identification of disease-susceptibility loci, the use of genomic annotations to find candidate 

functional regions or putatively associated genes, targeted by the alterations, has been broadly 

extended. Moreover, humans have hundreds of different types of specialised cells, which multiply 

during the mitotic process, to facilitate the human development, growth, and regeneration (Arendt, 

2008; Vickaryous & Hall, 2006). The specialisation of each of these cells enhances the performance 

of the specific tasks that each human organ or tissue requires to ensure its function. Thus, suggesting 

that the study of the deterioration of specific types of cells or disease-related tissues, based on the 

presence of genomic variation, can help to improve the explanation of the functional interconnections 

between genetic variability and common diseases.  

1.1.7. Preparation of different omic data for genetic studies 

The relevance of the DNA molecule to understand how a chemical transformation of any of its 

chains relates to a different trait or disease, how frequently are those changes inherited through 

different generations, and which are the functional interconnections between this genomic variation 

and diseases, evidence the importance of exactly determining the DNA sequence of an individual. As 

a result, a wide diversity of experimental methods and computational tools has been developed during 

the last decades to allow the inspection of the DNA and RNA sequences. Thus, including methods 

which facilitate the analysis of specific positions, such as microarrays, or tools that determine the 

complete sequence of a region, such sequencing technologies. Particularly, the introduction of 

sequencing and microarray methodologies changed the paradigm enhancing the advance of genetic 

studies. In contrast with previous studies, which focused on the analysis of cell function to find the 

pathways related to disease, studies based on the use of these new methods start with the 

identification of variants associated with disease to, then, find a putative relation with cell function that 

mediate human disorders. 
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1.1.7.1. DNA sequencing 

The analysis of the DNA sequence of an individual is crucial for the discovery of any possible 

alteration in its chains that can derive in the different phenotypes. Therefore, after many efforts, in 

1977, the Sanger sequencing method emerged finding the way of determining an individual DNA 

sequence (Sanger, Nicklen, & Coulson, 1977). To improve the accuracy of the results obtained by 

applying this method, other complementary techniques, or correspondingly priming the opposite 

strand with the same process, were further recommended. Notably, the many advantages supposed 

by the simplicity of the performance of this methodology, the fewer artifact bands observed in the 

process, and the possibility to sequence between 15 to about 300 nucleotides from the priming site, 

enhanced its commercialisation process by Applied Biosystems in 1986. This commercialisation, and 

the continuous updates of DNA sequencing methods, promoted its broader use to gain insight in 

genomics, thus, including de novo assemblies of the genome, individuals resequencing, and other 

clinical and biochemical applications (Shendure et al., 2017). 

1.1.7.2. DNA microarrays 

The fact that changes on the DNA sequence can affect some specific cell functions, and lead 

to a diseased phenotype, evidenced the need of techniques to compare different cells or individuals’ 

DNA. Despite many molecular biology based methods were developed to facilitate this analysis in a 

separate manner, it was not until 1983, when Tse Wen Chang published the basis to generate DNA 

microarrays, a method that allowed the simultaneous analysis of multiple cells (Tse-Wen Chang, 

1983). This technology facilitates the comparison between the different tested cells, with lower 

reagent consumption, and minimising the test time. The many advantages of this method led to its 

rapid commercialisation by Affymetrix, Agilent, Applied Microarrays, Arrayjet, Illumina, and others. 

Moreover, the generalisation of this methodology led to diversifying the analyses performed, therefore 

extending them for example, to the analysis of gene expression levels, methylation, or alternative 

splicing (Gonzalo & Sánchez, 2018; Schena, Shalon, Davis, & Brown, 1995). 

1.1.7.3. RNA sequencing 

 Despite the great success of DNA sequencing and microarrays, the expensive cost of Sanger 

sequencing and its difficulties to uniquely map to the genome, and the limitations of microarrays 

derived from the need of previous genome sequence knowledge, or the difficulties to precisely 

compare measures between independent experiments, motivated the introduction of high 

throughput and Next Generation Sequencing methods (Z. Wang, Gerstein, & Snyder, 2009). 

Particularly, in 2009, Zhong Wang presented the RNA sequencing (RNA-seq) methodology as an 

alternative to previous methods. This method facilitated the mapping and quantification of the 

transcriptome in reads with between 30 and 400 bases. RNA-seq technology presented many 

advantages in contrast with previous methods, such as the no need of a priori knowledge of the 

genomic sequence of a model organism, not having upper quantification limits, the reduction of 

background signals, more accuracy, and a lower cost. In contrast, some challenges and complications 

surrounded this method, such as many difficulties related to library constructions, the need for big 

storage, and requirement of new methodologies to process large amounts of data. Despite these 

disadvantages, the development of RNA-seq was revealed as fundamental, therefore enhancing the 

commercialisation of this methodology by several companies, such as Illumina, Qiagen and 

ThermoFisher Scientific. As a result, the analysis of RNA-seq was crucial to offer a global view of the 

transcriptome of various species, to revise gene annotation, to identify novel transcribed regions, to 

detect new splicing events, and to find sequence variations. Thus becoming essential for interpreting 

the functional elements of the genome, specific cells and tissues, and being promoted as the key for 

understanding development and disease. 
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1.1.7.4. Single-cell sequencing 

 Although the application of RNA-seq and expression microarrays on large numbers of cells to 

analyse complete expression profiles, and to understand how many and which genes are particularly 

expressed in a tissue or an organ resulted successful, the heterogeneity of the functions of the cells 

present in any tissue or organ limited the discovery to the average expression of the genes studied. 

These limitations evidenced the need of simultaneously analysing a diversity of cell types in more 

complex organisms, to calculate the expression in any single cell type. In that direction, Ernest 

Kawasaki proposed single-cell sequencing technology in 2004 (Kawasaki, 2004). This technology is 

based on collecting enough RNA for probe array production from a variety of cells that can be 

representative of a single cell population in a tissue or organ. The expected scientific advances from 

the use of this technology lead to its commercialisation by Fluidigm, Clonetech, and 10xgenomics. 

Particularly, the use of single-cell sequencing has led to a better understanding of the biology of cells, 

and to gain insight in some diseases with highly heterogeneous tissue-related cells, such as cancer. 

1.1.7.5. Genotyping arrays 

The broad use of sequencing methods led to the easy characterization and identification of 

SNPs, and, as a consequence, to the development of genotyping arrays or SNP arrays in 1998 (D. 

G. Wang et al., 1998). Genotyping arrays facilitated the screening of SNP genotypes in a large-scale. 

Particularly, their broad commercialisation by different producers, such as Affymetrix, Agilent, Illumina 

and Niblegen, together with the knowledge about the existence of over 1.4 million SNPs (International 

Human Genome Sequencing Consortium, 2001), has facilitated the creation of genotyping arrays that 

can evaluate more than one million SNPs for thousands of individuals at the same time (Lamy, Grove, 

& Wiuf, 2011). Thus converting the use of genotyping array technology into a more economical and 

viable technique for the study of human genetics, and enhancing ancestry assessment, allele-specific 

expression studies, association with disease, and somatic changes detection (LaFramboise, 2009). 

Moreover, the use of SNP arrays can mediate the identification of genetic markers related to disease 

based on familial studies, the analysis of linkage disequilibrium in isolated populations, association 

analysis in case-control individuals, loss-of-heterozygosity studies, to measure genetic distances 

between populations, and can also be used for parental and pedigree assignment (Vignal, Milan, 

SanCristobal, & Eggen, 2002).  

1.1.7.6. The evolution of sequencing and microarrays 

In summary, sequencing and microarray processes focus on recovering the exact nucleotide 

sequence from a DNA molecule. This facilitates the identification of molecular elements with a 

potential relation with disease, and improves the knowledge of the biological functions of different 

cells. As a result of the success of the broad use and commercialisation of these technologies, all of 

them have been continuously evolving since their presentation. As a result, the quality of the material 

produced has improved, for example increasing the number of base pairs obtained in a sequence, 

and including the information of thousands of cells for single-cell analyses (Shendure et al., 2017). 

Moreover, the sequencing cost has been reduced from 3 billion dollars to less than 1 thousand dollars 

to obtain a complete individual DNA sequence (‘The Cost of Sequencing a Human Genome’, 2021). 

All these improvements have converted the use of these technologies into something fundamental for 

the advance on the genomic study of complex diseases. 

1.2. Genetic studies and complex diseases 

 The great advances promoted by the development of experimental methods and 

computational tools in the Biomedicine field have enhanced the genomic study of diseases. 

Particularly, the introduction of these new technologies has represented a change in the paradigm of 

genomic studies, thus, facilitating the simultaneous analysis of multiple individuals to find variants 

associated with complex disorders, which can be further analysed to understand their functional 
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implications in disease predisposition. In this direction, the broad use of these methods by large 

Consortia has resulted in a big progress where many milestones have been achieved. These 

advances include the procurement of the first assembly of the Human reference Genome, which 

has been of great relevance for the discovery of disease-susceptibility loci, but also to improve their 

functional interpretation. Moreover, these technologies have allowed the generation of genetic 

variability maps, which have played a key role in the study of population variability, and have 

improved the detection of disease-associated signals. These achievements have represented an 

enormous progress in disease comprehension. However, at the same time, all these subjects are still 

nowadays a matter of study, discussion, and improvement, thus representing the starting point, and a 

solid basis for most of the current genomic studies. 

1.2.1. The Human Genome Project and the human genome sequence 

The development of sequencing technology and its commercialisation led the International 

Human Genome Sequencing Consortium (HGSC), in 1990, to announce the Human Genome 

Project (HGP), which had the global goal of obtaining the first assembly of the Human reference 

Genome sequence (Venter et al., 1998). As a result of this large Consortia effort, by the nearly end 

of 2004 the project was finished with approximately covering 99% of the euchromatin genome. That 

corresponds to 2.85 billion (2.85x10
9
) paired bases of the human genome (International Human 

Genome Sequencing Consortium, 2004). The inspection from the accurate sequence obtained (10x) 

showed that approximately 5.3% of the euchromatic genome are segmental duplications, and it 

contains more than 1.4 million SNPs (which occur at a rate of 1 per 1,300 bases). This valuable 

information was fundamental for the creation of new diagnostic tests based on the SNP association 

with diseases or traits. Moreover, a gene catalogue of 22,287 gene loci (34,214 transcripts, 19,438 

known genes, 2,188 predicted genes, and an estimate of 20,000–25,000 protein-coding genes), and a 

list of transposable elements, GC content, and CpG islands were generated, thus, constituting a 

comprehensive human genomic database, and providing the scientific community with a great 

resource of functional information.  

 

Different assemblies of the hg correcting previous errors have been released till now. 

Particularly, the last more known and broadly accepted by the scientific community are GRCh37.p13 

or hg19 from 2013, and GRCh38.p13 or hg38 from 2019. However, these versions are still missing 

the remaining 8% of the genome. Thanks to the advances made by PacBio and Oxford nanopore 

sequencing technology (Eid et al., 2009; Jain et al., 2018), as well as the new developments in 

assembly, polishing, and validation, the Telomere-to-Telomere (T2T) Consortium announced the 

release of a new version of the hg sequence (T2T-CHM13v1.1 assembly) addressing the remaining 

gaps (The Telomere-to-Telomere Consortium, 2022). As a result, 3.055 billion (3.055x10
9
) bp 

sequence of the hg are now known, including pericentromeric and subtelomeric regions, novel genes 

and segmental duplications, ampliconic gene arrays, ribosomal DNA (rDNA) arrays, the X 

chromosome, and 16,569 bp of mitochondrial genome.  

 

The broad use of the different human reference genome assemblies, as well as the large 

genetic databases generated by the HGSC and the T2T Consortium, has benefited multiple genetic 

studies. Particularly, the discovery of a list with more than 1.4 million SNPs has facilitated the 

improvement of genotyping arrays, thus enhancing the detection of disease-associated loci. 

Moreover, the creation of a genes catalogue has promoted the functional interpretation of the disease-

susceptibility loci in terms of gene function. Additionally, the generation of a database of functional 

regions has enhanced the analysis to find putative relations between genomic variation and disease 

regulatory mechanisms. All this knowledge has derived in a better understanding of the biology 

behind the human genome, and multiple benefits for human health. For this reason, as the current 

assembly is monoploid, meaning that it is based on only one human haplotype, in 2021 a new 

initiative from the Human Pangenome Reference Consortium raised to sequence 350 genomes with 
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the aim of properly capturing the genomic diversity in human population (Miga & Wang, 2021; 

Reardon, 2021). 

1.2.2. Genetic variability maps 

The extensive use of genotyping arrays for the study of the genomic variation across different 

populations has promoted the achievement of very relevant milestones, such as the development of 

large population genetic variability maps. These haplotype reference panels contain the 

haplotype of thousands of individuals evaluated in different loci, thus procuring a valuable source of 

information for downstream genomic analyses. Particularly, population maps are crucial to find 

differences between individuals from the same population, and to compare the genetic variability 

between different ancestries. Thus, facilitating for example the understanding of how those 

differences can affect disease predisposition or protection.  

 

To generate the first haplotype reference panel, the International HapMap Consortium set out 

in 2002 the International HapMap Project (The International HapMap Consortium, 2003). This 

project aimed to genotype at least one common SNP every 5 Kilobases in euchromatic regions in 270 

individuals from four different ancestries in Africa (Yoruba), Asia (China and Japan), and Europe 

(Utah). As a result, in the Phase I of the project, approximately 1.3 million SNPs were genotyped. In 

the Phase II, published in 2007, a further 2.1 million SNPs were successfully genotyped on the same 

individuals, finding one SNP every 1 kb (The International HapMap Consortium, 2007). The 

resounding success of the HapMap study was followed by diverse initiatives aiming to extend the 

discovery of genetic markers in different populations, and to provide a deeper characterization of 

those genetic markers in the population. These projects involved the inclusion of larger sample sizes 

in the analyses, the incorporation of much lower frequency variants, the analysis of single-

populations, and the combination of different sequencing techniques (whole-genome sequencing 

(WGS) and whole-exome sequencing (WES)) with genotyping array data. The success of these 

initiatives required its promotion by large consortiums such as the 1,000 Genomes Project 

Consortium (1000G) (The 1000 Genomes Project Consortium, 2015), the Genome of the 

Netherlands Consortium (GoNl) (The Genome of the Netherlands Consortium, 2014), the UK10K 

Consortium (The UK10K Consortium, 2015), the Haplotype Reference Consortium (HRC) (The 

Haplotype Reference Consortium, 2016), and the TopMed program (Taliun et al., 2021) (Suppl. 

Table 1).  

 

As a result of all these efforts, it is known that more than 99.9% of the bases in a human 

single cell are shared in all people. Therefore, the genomic differences presented by the comparison 

of an individual genome with the reference comprehend between 4.1-5.0 million sites (The 1000 

Genomes Project Consortium, 2015). However, it has been estimated that, in the world's human 

population, about 10 million sites vary such that both alleles are observed at a frequency of ≥1%, thus 

constituting 90% of the variation in the population (The International HapMap Consortium, 2003). 

Interestingly, after the alignment with the reference genome, more than 400 million variants, including 

SNPs and short Indels, have been lastly reported (Taliun et al., 2021). 

1.2.3. Discovery of variants associated with complex diseases 

Common diseases are broadly extended among the worldwide population, affecting between 

thousands and millions of individuals, thus converting their genetic study into a major health problem. 

Nevertheless, the fact that complex diseases are the consequence of the combination of multiple 

genetic and environmental factors (Manolio et al., 2008), has complicated their study, as well as their 

underlying biological understanding (Craig, 2008; Mitchell, 2012). First, the genetic component of 

complex diseases is affected by the contribution of the small effects of multiple genomic variants, thus 

defining its polygenic nature (McCarthy et al., 2008). Particularly, the heritability of most complex 

diseases has been estimated between 20-80%. However, still only a small fraction of this estimation 
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has been already recapitulated, thus constituting the missing heritability problem (Manolio et al., 

2009). In addition to this complex genetic nature of common diseases, the multiple environmental 

factors affecting the disease such as clinical variables, or population structure obscure their analysis. 

Thus, converting the discovery of variants associated with complex diseases into a still challenging 

computational problem, which demands robust statistical models such as those underlying Genome 

Wide Association Studies (GWAS) or Machine Learning (ML) approaches. 

1.2.3.1. Genome Wide Association Studies (GWAS) 

To address the study of the genetic inheritance of complex diseases, Genome-Wide 

Association Studies (GWAS) have been broadly applied during almost the last two decades (R. J. 

Klein et al., 2005). In short, this study seeks disease-associated variants, as those that are 

significantly more (or less) present in patients, compared with control non-diseased individuals 

(Figure 6). Therefore, it is common to start from genotyping array data to evaluate millions of variants, 

simultaneously, to find possible genotype-phenotype associations. Particularly, GWAS are statistical 

approaches which analyse the genotype of thousands of individuals from the population of study 

(cohort) in search for disease association.  

 

 
Figure 6. GWAS schema. In a binary GWAS, thousands of individuals from the population of study are first 

classified in diseased (white stickmen) and non-diseased (blue stickmen). Then, their genotypes are statistically 

compared. Each variant is tested in a single independent manner to find putative associations with the disease 

based on the comparison of its allelic frequency among the case-control populations (dotted square).  

 

The diversity of GWAS models facilitates the analysis of these associations with quantitative 

and qualitative measures, which define the phenotypes of complex traits or diseases (see Genome 

Wide Association Studies review). GWAS involves the use of contingency tables, logistic 

regression, regression model extensions, and Bayesian regression approaches. All these methods 

test the association in a single independent manner for each variant included in the analysis. For this 

reason, the outcomes obtained from a GWAS, also named summary statistics, include, for each 

variant, a multiple testing corrected p-value standing from the association test with the disease, 

and the corresponding measure of its effect (odds ratio (OR) or beta) on the risk of developing the 

disease. 

 

The combination of the success of GWAS and the general interest for its applicability in the 

study of complex diseases, has led to the development of several tools to enhance, improve, and 

facilitate the performance of this method (Uffelmann et al., 2021). Consequently, this methodology 

has been broadly applied to analyse the effect of genomic variation on a wide diversity of complex 

traits and common diseases, thus promoting the discovery of thousands of variants significantly 
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associated with the trait or disease inspected, where each variant contributes with a small fraction to 

the explanation of the risk to develop disease (McCarthy et al., 2008). As a result of GWAS success, 

large catalogues of variants associated with complex diseases have been created and made 

publicly available (Beck, Hastings, Gollapudi, Free, & Brookes, 2014; Buniello et al., 2019; K. 

Watanabe et al., 2019). Hence, providing the research community with a great resource of information 

that includes the association results for more than 276 thousand variants associated with more than 4 

thousand traits or diseases (Buniello et al., 2019). 

1.2.3.2. GWAS limitations 

Despite the vast contribution of GWAS to the characterization of complex diseases, there are 

many limitations surrounding this methodology (Génin, 2020; Tam et al., 2019; Visscher et al., 2017; 

Wray et al., 2013). The diversity of factors contributing to GWAS limitations are enclosed in each of 

the steps involved in this type of study, thus including the input data, the statistical methods, and the 

results obtained from the analyses. However, the way all those factors affect the discovery 

encompass problems mostly related to the statistical power, and the challenges surrounding the 

inclusion of complex association models in the study. Moreover, the results obtained from these 

methods lack of functional interpretation, thus defining the boundaries for the understanding of the 

molecular mechanisms underlying disease (see Genome Wide Association Studies review). 

1.2.3.2.1. Statistical power 

There are many causes that affect the statistical power of a GWAS to find a significant 

disease-susceptibility loci association. These factors include the allelic frequency of the variant on 

the trait of study, the sample size, the number of variants that are included in the analysis, the 

underlying genetic model, the genetic heterogeneity of the trait in the population of study, and the 

variability present inside the population. 

 

The power to detect a disease-associated locus is usually related to the effect of the variant 

on the trait of study. More precisely, variants with a higher effect on the disease are easier to capture. 

However, their allelic frequency tends to be lower in the population, usually in an inverse correlation 

with their effect (McCarthy et al., 2008). Therefore, favouring the detection of common variants, with 

usually a modest effect (OR between 1.05-1.3), than low-frequency variants or rare variants (Tam et 

al., 2019). In the same manner, this reasoning also applies to the higher detection of SNPs and short 

Indels, in contrast with SVs, which tend to be underrepresented in GWAS (see Polymorphic 

Inversions and TIGER publications).  

 

To overcome the detection power limitation, based on the sample size, different approaches 

such as the analysis of larger sample sizes, meta-analysis, or the use of WGS data has been 

proposed (Wainschtein et al., 2022). The expensive costs of WGS have benefited the use of large-

scale initiatives or meta-analysis. Particularly, large Consortia have been established to analyse 

bigger cohorts and to generate public and private genetic biobanks (Swede, Stone, & Norwood, 

2007), thus facilitating the availability of genotype and phenotype data of thousands of individuals 

(see TIGER publication). The accession to these larger individual cohorts has reinforced the 

possibility of improving GWAS discovery, granted a better phenotype classification, and facilitated the 

opportunity of identifying more genetically homogeneous groups (see Polymorphic Inversions and 

unpublished Epistasis). Moreover, meta-analyses, which are based on the statistical combination of 

publicly available GWAS summary statistics results, have been commonly used in the same direction. 

Hence, resulting in an improvement on the discovery based on the reduction of false-positive findings, 

and a gain of detection power due to the increase of sample size (see TIGER publication). 

 

Additionally, the probabilities of finding a GWAS signal associated with the disease increase 

with the number of genetic markers that can be tested. Particularly, under the LD background 

surrounding this type of study, where an associated common signal resulting from GWAS can be 
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masking a real rare causal variant in LD with the first, the maximisation of the number of genetic 

markers evaluated becomes crucial. Fortunately, the advances made to generate haplotype and 

genotype reference population panels, have facilitated this task. Thus, the common practice to 

increase the number of variants analysed in a GWAS, is to apply to the genotyping array information 

available for each individual in the study a quality control, followed by phasing and imputation 

techniques (see Polymorphic Inversions and TIGER publications, and unpublished Epistasis). 

The main goal of using these methodologies is to infer the genotype for multiple individual variants, 

from which the genotype is missing or unknown in the genotyping array data (Lo, 2014; Marchini, 

2019). As a result, the use of imputation has facilitated the inclusion of millions of variants in GWAS 

analysis, thus improving the discovery power of these approaches and, consequently, enhancing the 

identification of new loci significantly associated with complex disorders. 

 

Moreover, it has been settled that the power to detect a genomic variant associated with a 

complex disease through GWAS maximises when the test matches the underlying inheritance model 

of the causal allele (Lettre, Lange, & Hirschhorn, 2007). However, the common practice in GWAS is to 

analyse variants under the additive model (see unpublished Epistasis). Indeed, despite the 

recognized contribution of GWAS analyses under the additive model to the explanation of a large 

fraction of complex diseases heritability, there are many genomic variants that follow a non-additive 

inheritance model (recessive, dominant, or heterodominant). Therefore, the variants following non-

additive models tend to be poorly detected or completely disregarded in the vast majority of current 

GWAS. Consequently, the simultaneous test of different genetic models has been suggested as a 

successful approach to gain statistical power to detect disease susceptibility loci and, therefore, to 

improve the knowledge based on the genetic architecture of complex diseases (Guindo-Martínez, 

Amela, & et al., 2021; Pozarickij, Williams, & Guggenheim, 2020). 

 

Finally, the genetic heterogeneity of an observed trait in the population, as well as the 

variability present in the population of study, also affects the GWAS discovery power. In the case 

of disease heterogeneity, the multiple clinical variables related to complex diseased phenotypes, as 

well as comorbidities, can dilute specific clinical groups related signals, thus reducing the detection to 

the most common susceptibility loci between groups of the same disease (see Polymorphic 

Inversions publication). For this reason, although this strategy has been a valuable resource to find 

some of the genetic mechanisms underlying complex diseases, the discovery of variants related to 

more specific groups of individuals has been proposed as a crucial step towards precision medicine. 

As a result, different initiatives have emerged to create subclassifications of diseased individuals 

based on clinical variables. These patient stratifications have facilitated the possibility to perform more 

homogeneous GWAS based on these sub-phenotypes and to find their etiological differences 

(Ahlqvist et al., 2018; Ahlqvist, Prasad, & Groop, 2020; Mansour Aly et al., 2021). In a similar manner, 

the different allele frequencies and LD patterns emerging from the different ancestral backgrounds 

have also limited the possibility of extending or replicating the results in other populations. Therefore, 

constituting an impairment for underrepresented populations, and reducing the genetic understanding 

of complex diseases to the most commonly studied populations, such as European ancestry 

populations (see Polymorphic Inversions and TIGER publications, and unpublished Epistasis). 

However, despite the narrowed GWAS discovery behind this population genetic heterogeneity, multi-

ancestry studies have shown that still a big fraction of common variants are shared across different 

ancestries (J. Chen et al., 2021; M.-H. Chen et al., 2020). In contrast, those studies have also 

supported the relevance of ancestry-specific analysis to find the genetic particularities of each 

population. Thus, opening a new avenue for population-specific GWAS, and a more global 

representation of different ancestry populations in genetic studies. 

1.2.3.2.2. Complex interaction models 

Despite the undeniable success of GWAS to find variants associated with disease, the 

statistical models usually applied to perform the phenotype-genotype association tests have limited its 
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discovery. Particularly, although the software specifically developed to perform these analyses has 

facilitated this task, the large number of variants that are expected to be analysed simultaneously in a 

GWAS converts the genomic study of disease association into a computational challenging problem. 

As a result, although complex traits are known to be affected by the combination of multiple genetic 

and environmental components, current GWAS evaluates the effect of single independent variants 

(Tam et al., 2019). Consequently, the identification of genomic loci under more complex models, such 

as gene-gene interactions (GxG) (see unpublished Epistasis), and gene-environment 

interactions (GxE), are usually not considered from the analysis, thus limiting GWAS discovery, and 

contributing to the missing heritability problem (Manolio et al., 2009). 

 

At the genomic level, common diseases are caused by the simultaneous combination of 

multiple variants each with a low contribution or effect on the disease (McCarthy et al., 2008). 

However, GxG interactions are usually reduced to consider the effects of variants additively, thus, 

ignoring the study of variants dependency (epistasis), the effect of their functional interconnections, 

and its association with diseased phenotypes (Mackay, 2014), or reducing it to the test of a small 

fraction of variants usually underlying a shared biological explanation. The main cause of this problem 

is the computational challenge that represents the analysis of epistasis, where for example billions 

(10
12

) of tests are needed just to analyse the complete set of pairwise interactions between 500,000 

SNPs (Marchini, Donnelly, & Cardon, 2005). Subsequently, diverse techniques such as 

multidimensionality reduction analysis, or variants filtering to restrict the analysis to sets of 

variants previously known to be related to biological regulatory functions, have been developed and 

applied to approach this problem (Manduchi, Chesi, Hall, Grant, & Moore, 2018; Josep Maria 

Mercader et al., 2008). Interestingly, regardless of the limitations derived from the reduction of the 

discovery dataset, a few genetic variants have been discovered which, despite having only modest 

significance on a phenotype individually, have an increased effect when considered jointly (Cordell, 

2009; Kirino et al., 2013; Monir & Zhu, 2017) (see unpublished Epistasis). 

 

Additionally, the role of multiple environmental and clinical variables on the development of a 

disease is known to have an effect on complex diseases. Therefore, the focus of GxE interaction is 

the analysis of the environmental factors, such as diet, lifestyle, psychosocial stress or airborne 

agents, and their relation with different genotype groups, in terms of disease associations (Bookman 

et al., 2011; Dempfle et al., 2008). GxE studies are usually approached by Environment-Wide 

Association Studies (EWAS), which are an extension of GWAS where the environmental variables 

can be simultaneously tested with the genotype. However, the difficulties to measure some 

environmental variables, as well as the uncertainty to understand which features can be contributing 

to a disease, and the complexity of the underlying models, usually surrounded by a computationally 

expensive background, have limited their use and discovery (McAllister et al., 2017; Thomas, 2010; 

Zheng et al., 2020). Indeed, GxE studies have opened a gate for future studies given its relevance to 

understand the genomic differences between populations, which can be interpreted as the result from 

an adaptation process to a particular environment, or to the exposures to certain conditions. 

1.2.3.2.3. Lack of functional interpretation 

The study of the effects of genomic variation on the predisposition to develop a complex trait 

or disease involves a discovery phase, where multiple variants are proposed to be associated with the 

disease of study, followed by a functional interpretation step to identify the biological mechanisms 

and pathways that mediate disease. This last step is crucial to find the proteins that are involved in the 

disease and to find new drugs and therapies. However, despite technological advances have 

enhanced the discovery, the interpretation is still a challenge in genetic studies. Particularly, from the 

millions of variants simultaneously tested in a GWAS, the few hundreds or thousands of them which 

are significantly associated with the disease lack of functional interpretation. Thus, limiting the 

understanding of the biological consequences of a GWAS variant in relation with the disease.  
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Notably, this lack of functional interpretation, combined with the fact that most susceptibility 

locus lie outside the coding regions and are assumed to influence transcript regulation rather than 

gene function (McCarthy, 2010), hinders the analysis of GWAS outcomes (Tam et al., 2019). For this 

reason, many studies have advanced in the direction of developing and applying different 

methodologies to facilitate the translation of the genomic markers obtained from GWAS into relevant 

biological or clinical information (see TIGER publication). As a result, the functional annotation of 

variants, as well as the assessment of its association with transcriptional changes, and their overlap 

with epigenetic marks, constitutes a valuable tool for the understanding of the functional impact of 

variants on the disease. Therefore, expression analyses, gene, pathway, regulatory elements and 

epigenetic marks enrichment, are the most common approaches used to gain insight on this 

missing biological understanding (Cano-Gamez & Trynka, 2020; Lichou & Trynka, 2020; Manolio, 

2013) (see chapter 1.2.4., Polymorphic Inversions and TIGER publications, and unpublished 

Epistasis). Additionally, the experimental assay of the results in cell lines and other organisms is 

applied to support or reject GWAS findings, and Polygenic Risk Scores (PRS), although still 

incomplete, have been recently applied to GWAS summary statistics to mediate the translation of the 

statistical outcomes into something actionable in clinics (Kullo et al., 2022; Kumuthini et al., 2022; 

Lambert, Abraham, & Inouye, 2019).  

1.2.3.3. Machine learning (ML) approaches 

The undeniable relevance of the genomic study of complex diseases to find an explanation 

for the missing heritability, and to find the relation between the different omic layers to better 

comprehend this type of diseases, as well as GWAS limitations, has promoted the use of new 

analytical frameworks during the last decades. Notably, although different statistical and 

computational approaches were already available to analyse these problems, the use of machine 

learning (ML) and neural networks algorithms have been lately popularised in the Biomedicine field. 

All these methods rely on mathematical and statistical approaches, which can be applied to solve 

classification, clustering, regression and ranking problems. Particularly, for the scope of the genomic 

study of complex diseases, are both useful in terms of making predictions, but also to find the 

underlying biological mechanisms of diseases.  

 

In short, ML methods are fundamentally based in the comparison of the variables (features) 

in a large number of observations from a subset of the input data. During this process, the method is 

able to learn about the necessary decisions to solve a particular problem, based on the features. 

Then, the same decisions can be applied in an independent dataset to solve the same problem 

(Greener, Kandathil, Moffat, & Jones, 2021). As a result, the use of this methodology in the 

Biomedicine field has shown its effectiveness to approach disease heterogeneity problems such as 

the classification of diabetic and obese individuals based on clinical variables (S. B. Cho, Kim, & 

Chung, 2019; Lin et al., 2021), GWAS loci prioritization (Nicholls et al., 2020), finding main effects and 

interaction associations with disease (Szymczak et al., 2009), and the study of epistasis (Behravan et 

al., 2018; Y. M. Cho et al., 2004; Manduchi et al., 2018; Niel, Sinoquet, Dina, & Rocheleau, 2015; 

Sheppard et al., 2021; Verma et al., 2018; Wei, Hemani, & Haley, 2014) (see unpublished 

Epistasis). 

1.2.3.4. ML limitations 

Although the numerable contribution of ML methods to the better understanding of complex 

diseases has made them gaining popularity in the biomedical field, there are still many computational 

and statistical challenges surrounding these procedures (Chicco, 2017; Sarker, 2021). The factors 

involved in ML limitations are related to the input data, the methods, and the outcomes of the study. 

Most of these limitations affect the effectiveness and the reliability of the methodology, and, therefore, 

the ability of the method to discover the correct genetic, clinical, or molecular markers associated with 

a complex disease, or to do a proper classification of patients. As a consequence, the data-

preprocessing, the selection of a correct learner, and the preparation of the ML pipeline are crucial 
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for the analysis. Additionally, the outcomes obtained from ML algorithms are difficult to interpret, and 

usually lack of functional interpretation, thus representing an additional layer of complexity for the 

understanding of the underlying molecular mechanisms of disease predisposition. 

1.2.3.4.1. Data pre-processing 

There are many factors surrounding the data that can affect the ability of the ML method to 

discover the genetic and clinical variables associated with complex diseases, such as the amount of 

available data, data type, data imbalance, the presence of outliers, and data missingness 

(Chicco, 2017; Sarker, 2021). As a consequence, the data pre-processing step is crucial to prepare 

and curate the data previous to the application of a ML algorithm. This step is a complex process that 

requires a solid background to understand the data included in the study, the problems related to the 

type of the data, and a good comprehension of the ML model. Particularly, the data pre-processing 

step benefits the learning process ensuring the effectiveness of the methodology, and preventing from 

false positive results.  

 

ML models are restricted to the analysis of large datasets of observations with at least ten 

times the number of features (Chicco, 2017). However, despite the large volumes of genomic data 

generated during the last decades, this is not always possible. For instance, if the features correspond 

to the number of susceptibility loci to be evaluated, there can be millions of features, while, in contrast, 

the number of observations or patients presenting those features will be measured in thousands. As a 

result, it is necessary to understand the effects of applying ML techniques in smaller datasets, such as 

the overfitting problem. Overfitting can occur during the training process when the model instead of 

learning memorises the features of the training set, so that it obtains excellent results during the 

training, but has a poor performance in any other independent dataset (Figure 7). 

 

 
Figure 7. ML overfitting problem. Overfitting is a common ML problem, which occurs during the training step. 

When a ML model presents overfitting, instead of learning the relation between the variables and the output, it 

memorises the training features, thus resulting in poor performance in any other independent dataset. In this 

example, the model is expected to define a decision frontier (blue line) to classify dots in two categories (grey and 

blue). The left graph represents the results obtained from a good learner. In contrast, the right picture displays 

the overfitting case. 

 

To avoid the overfitting problem derived from the scarcity of data, a common practice is to apply 

multi-dimensionality reduction techniques, which cover a wide variety of frameworks that range 

from statistical methods, such as K centroids or Principal Component Analysis (PCA) (Monaco et 

al., 2021), to more biological based approaches where the features are filtered based on prior 

biological knowledge (Manduchi et al., 2018). As a result of the use of multi-dimensionality reduction 

techniques, it is possible to reduce the number of features included in the data but preserve their 

relations, thus facilitating the application of ML algorithms. 

 

 Additionally, the presence of imbalance affects the performance of the ML model in such a 

way that the method is biased towards the selection of features related to the more representative 

class, thus to the detriment of the underrepresented class. To overcome this problem, there are 

different approaches that can be applied such as under-sampling by removing elements from the 

over-represented classes, and correcting the imbalance through class-weighting techniques (Chicco, 
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2017). However, both methodologies are prone to have an impact on the results and the applicability 

of the method. For instance, in terms of the applicability, an extreme reduction of observations can 

lead to problems related to data insufficiency. On the other hand, although class-weighting techniques 

are of particular interest, not all the ML methods include this characteristic, thus limiting the 

methodology. Moreover, in case of extreme imbalance, the weighting is not always an insurance to 

obtain the best results. Remarkably, a good understanding of the data and the model facilitates the 

choice of the best way to deal with the presence of data imbalance, and therefore, to improve the 

effectiveness of the method. 

 

A similar problem occurs with any possible data-related issue that can result in trend 

decisions for the ML model, such as missingness, redundancy, or the presence of outliers 

(Chicco, 2017). Particularly, there are several statistical and computational frameworks that can be 

applied to for example deal with inconsistent values and outliers, such as normalisation in case of 

numeric features, or value removal. In contrast, in the case of missingness and redundancy, there 

are some ML models which are prepared to manage this type of data issues. Nonetheless, as not all 

the methods accept missingness or redundancy, statistical techniques such as inference, 

transformations, and value approximation are commonly used to prepare a cleaner dataset without 

falling into a data insufficiency problem. As a consequence, the preparation of the input dataset based 

on the correction of all these problems is one of the keys to improve the results that can be obtained 

from the ML analysis, and to ensure a good performance. 

 

Last, the different types of data affect the selection of a ML learning model. Particularly, the 

data can be classified in structured, unstructured, semi-structured and metadata (Suppl. Table 2) 

(Sarker, 2021), and not all the ML models are specifically designed to deal with all types of data. 

Therefore, the proper identification of the type of data included in the study will result in a better 

decision between using a ML method or an alternative approach, and consequently, in an improved 

resolution of the problem.  

1.2.3.4.2. ML algorithms 

Despite the existence of a large variety of types of ML algorithms, not all of them are 

applicable to all studies. For example, based on genomic features, different types of learners can be 

used to classify a group of individuals in diseased and non-diseased, or to find different subgroups of 

diseased individuals. There are many factors that affect the selection of the most appropriate ML 

algorithm to approach a particular problem that needs to be solved in a specific dataset of study. 

These factors include the type of learning, the input data, and the class of the problem. Moreover, 

ML methods are defined as training-test approaches where there is a learning step (training) for the 

method to find and understand the input variables relation with the output, followed by an evaluation 

step (test). Therefore, after the selection of the most suitable group of learners to approach a 

genomic problem, there are different parameters that need to be adjusted inside the ML pipeline to 

obtain the best performance. These parameters include the split of the input data in the training and 

test sets, and the hyperparameters of the model. 

 

Based on the type of learning, a ML model can be classified as supervised, unsupervised, 

semi-supervised, reinforced, multitask, ensemble learning or instance-based learning (Chicco, 

2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). As a matter of fact, the classification of 

diseases and non-diseased individuals can be approached with a supervised learner, while the 

creation of different subgroups of diseased individuals needs the use of unsupervised methods 

(Suppl. Table 3). However, the classification of ML models based on the type of learning includes a 

wide range of learners that can be applied to solve an extensive variety of problems. Thus, 

highlighting the relevance of a better characterisation of ML approaches based on the type of 

problem to be solved. The most common type of problems approached by ML algorithms are 

classification, regression, clustering, feature engineering and dimensionality reduction, 
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association rule learning, or reinforcement learning techniques (Suppl. Figure 1). Moreover, 

inside these last groups there are different learners. For example, there are different types of ML 

classifiers, which can be divided in binary, if there are only two classification labels, such as diseased 

and non-diseased, multiclass, when there are more than two classification labels, and multi-label if 

there is a hierarchical structure in the classification labels, so that the same object of study can belong 

to different classes, such as species (Sarker, 2021).  

 

Additionally, the parameters that can be adjusted in the ML pipeline and the algorithm have 

an effect on the effectiveness of the method to solve a genomic problem. Particularly, to use a ML 

algorithm the first step is to split the input dataset in two independent subsets named training set 

and test set. This split needs to be done in a proportion that ensures the procurement of a large 

amount of observations for the training, but keeps enough data to evaluate the results in a sufficiently 

heterogeneous dataset. Therefore, the split can be added to the hyperparameter adjustment step, 

where the basic properties of the model are calibrated, previous to the training step, to prevent 

overfitting, and to obtain the best results from the analysis. In this process a grid search including all 

the possible combinations of hyperparameter values is tested using a K-fold cross-validation (K-

fold CV) algorithm (Chicco, 2017; Greener et al., 2021). As a result, the best hyperparameters for the 

model are defined by those resulting in the best median global performance (Figure 8).  

 

 
Figure 8. ML algorithm pipeline. The input dataset is divided into training (light grey) and test subsets (dark 

blue). The first step implies a K-fold cross-validation (K-fold CV) algorithm, which in the figure corresponds to a 5-

fold CV. This K-fold CV algorithm is used to do a grid search hyperparameter adjustment, therefore, to obtain the 

best performance of the model, and to prevent overfitting. In the first step of the 5-fold CV, the training set is 

divided into 5 data subsets. Then, in each step of the 5-fold CV, these subsets are shuffled to create the 

corresponding train (light blue) and validation (medium blue) subsets. Each hyperparameter value combination is 

fitted on the train subset, and then evaluated in the validation subset. Finally, the best hyperparameters are used 

to fit the initial train set, in the training step, and the performance is evaluated using the test set, during the test 

step. 

 

The selection of a group of similar learners and the best hyperparameters for each particular 

genomic problem in an specific dataset, has a direct effect on the performance, complexity, and 

success of the study (Greener et al., 2021). Remarkably, supervised and unsupervised learners have 

been broadly used ML approaches for the biology and medical community in the study of complex 

diseases to solve a wide diversity of problems. In particular, classification learners have been broadly 

applied to find the most relevant group of variables, which can be clinical or genomic, involved in the 

development of a disease, to classify diseased individuals into subgroups of patients, or to detect 

groups of genomic variants associated with disease (Ahlqvist et al., 2018; Behravan et al., 2018) (see 

unpublished Epistasis). 

1.2.3.4.3. Lack of functional interpretation 

The study of the genetic basis of complex disease predisposition involves the discovery of 

multiple disease susceptibility loci, and its functional interpretation to understand the underlying 
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molecular mechanisms to develop the disease. In this direction, the results obtained from a ML model 

provide the most relevant features for the method to solve the problem. Additionally, from the 

evaluation of the outcomes obtained from the model on the test set, a diverse range of measures for 

its reliability can be calculated. Finally, relying on the model, the interpretation of the results of ML 

methods is based on the comprehension of the putative relation between the features obtained as an 

outcome from the learner and the disease of study (Suppl. Table 4) (T. Chen & Guestrin, 2016; Dey, 

2016; Greener et al., 2021; Sarker, 2021). For example, in the classification of a group of patients in 

diseased and non-diseased, which can be analysed with a binary classification learner, the outcomes 

of the model are the most relevant genomic variants to do the classification, each one with their 

corresponding associated score (see unpublished Epistasis). Then, as a result of the prediction on 

the test set, each individual can be classified as case (positive) or control (negative). Therefore, the 

comparison between the predicted values with the real observed values, determines if the prediction 

is true or false. Consequently, there are only four expected possibilities to measure the goodness of 

the outcomes, which correspond to true negative (TN), true positive (TP), false negative (FN), and 

false positive (FP). These values can be used to evaluate a global estimate of its effectiveness 

(Figure 9; Suppl. Table 5).  

 
Figure 9. Evaluation of the results of the predictions made by a ML binary classifier. Only four possibilities 

can be expected from the predictions. If the value of the prediction matches the real value, it can be a True 

Positive (TP) or True Negative (TN) (green blocks). A TP corresponds to a diseased individual (case) which has 

been correctly classified. A TN corresponds to a non-diseased individual (control) properly predicted. If the 

prediction is incorrect, a control predicted as a case will be a False Positive (FP), and a case predicted as a 

control will be False Negative (FN) (red blocks).  

 

All these outcomes, provide a global view of the performance of the model, and facilitate its 

interpretation in terms of the association with the disease. However, these are far from the functional 

interpretation, thus representing a limitation to understand the biological pathways affecting to the 

development of the disease. Therefore, to find the overlying molecular mechanisms of the 

associations found, in a similar manner than GWAS, the results obtained from the ML model need to 

be complemented with other related genomic, transcriptomic, and epigenetic studies. 

1.2.4. Molecular basis of complex diseases and functional interpretation 

The great progress made on the genetic study of complex diseases, which has involved the 

creation of large catalogues with thousands of variants with a putative effect on the predisposition to 

hundreds of complex traits and diseases, has facilitated the advance towards a better detection, 

prevention, and treatment protocols (Beck et al., 2014; Buniello et al., 2019; K. Watanabe et al., 

2019). However, although different strategies, such as GWAS or ML methods, have been broadly 

applied contributing to the discovery of these variants associated with complex diseases, these 

methods lack of functional explanation. Therefore, evidencing the relevance of the application of 

complementary methodologies, which focus on the translation of genomic variation in function, to 

find new drugs and therapeutic targets.  

 

The analysis of the effect of genomic variation on cell functions is one of the main subjects of 

study from the transcriptomics and epigenetics fields. Transcriptomics focus on the analysis of all 
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the biological processes that are related to the transcription of the DNA into RNA, and epigenetics 

studies the reversible modifications on a cell DNA that affect the regulatory mechanisms of gene 

expression (transcription factors). Therefore, starting from the detection of DNA alterations 

associated with a complex phenotype as a result from the genomics field, a posterior transcriptomic 

analysis can be applied to find putative effects of these variations on genes and gene expression. 

Additionally, an epigenetic analysis can be performed to further understand if genomic variation has 

an effect on the regulatory mechanisms, thus possibly causing an effect on gene expression. 

Consequently, the integrative analysis of genomics, transcriptomics, and epigenetics, has been 

suggested to play a key role towards a better understanding of the biological pathways underlying 

genetic variability. Thus, converting the analysis of gene expression, gene expression regulatory 

elements, and gene expression regulatory variation, in crucial steps to find the biological underlying 

mechanisms involved in variant-disease associations. 

1.2.4.1. Gene expression 

As genes are directly related to protein production and cell specific functions, the genomic 

alterations with an effect on gene expression can result in cell dysfunction, and, possibly, increase the 

risk of developing a disease. Particularly, gene expression is a complex process by which the DNA 

information is transcribed and translated to messenger RNA (mRNA). The amounts of mRNA 

produced in a cell during this process are used to direct protein synthesis, other post-translational 

processing, and modifications such as alternative splicing, which allows the same gene to code for 

different proteins, and therefore, leading to different biological functions. Thus, to evaluate the effects 

of variation of gene expression in cellular function and the phenotype it is necessary to quantify gene 

expression (Buccitelli & Selbach, 2020). 

 

Gene expression analysis focuses on the study of the profile of the transcriptome to 

measure the relative and absolute values of the transcript. Particularly, RNA-seq and gene expression 

arrays technologies are used to estimate the levels of mRNA (Dalkiliç, 2009). As a result, gene 

expression analysis facilitates the estimation of the levels of mRNA, or expression for downstream 

analyses. These results facilitate the functional interpretation of disease-associated locus based on 

the study of its putative effect on gene expression. Thus, converting the study of gene expression 

variation in a crucial step to improve the understanding of complex diseases.  

1.2.4.2. Gene expression regulation 

During the gene expression process, the mRNA production is controlled at different levels by 

regulatory proteins, which encompass to coordinate and control the transcription and translation 

processes. For this reason, some alterations of the DNA sequence encoding the regulatory elements 

regions involved in gene expression regulation can result in a functional impact on gene expression, 

thus affecting the biological functions, and possibly mediating disease. Particularly, during gene 

expression regulation the RNA polymerase, which will transcribe the DNA to mRNA, is attracted to 

the promoter region of the gene located in the transcription start site (TSS) in 5’-UTR. In parallel, 

the TFs facilitate the activation or repression of the transcription by binding to their specific DNA-

binding domains or motifs. These regions are usually located in the promoter region or in more 

distant enhancers upstream 5’-UTR or downstream 3’-UTR. In case of activation of the transcription, 

the promoter is the responsible regulatory element of allowing it to start. On the other hand, the 

enhancers activate or increase the rate of transcription from the target gene promoter but also can 

drive the transcription independent of their target promoter (T. K. Kim & Shiekhattar, 2015; Lambert et 

al., 2018; Smith, Lam, Markova, Yee, & Ahituv, 2012) (Figure 10). Hence, playing a key role in gene 

expression regulation, transcription factors (TFs), epigenetic marks and chromatin topology, 

RNA-binding proteins, and non-coding RNAs are some of the most relevant targets to evaluate the 

functional impact of variation in complex diseases (Buccitelli & Selbach, 2020; García-Sánchez & 

Marqués-García, 2016). 
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Figure 10. Gene expression regulatory process schema. The RNA polymerase is attracted by the promoter 

(dark blue), which will start the transcription of the gene, if the transcription factor (TF) activates it, by binding to 

its specific binding-site. The neighbouring enhancers (light blue) to the targeted promoter increase or activate the 

transcription rate. 

 

Modifications in TFs, which define any protein involved in the transcription process or that has 

the ability of regulating expression, the chromatin, which is a substance wrapping the DNA, or 

histones, which are the major proteins in chromatin, and act as packaging elements for the DNA, can 

result in alterations of cell function with an effect on the phenotype (Buccitelli & Selbach, 2020; 

Deplancke, Alpern, & Gardeux, 2016; García-Sánchez & Marqués-García, 2016; Pope & Medzhitov, 

2018). Hence, different experimental methods have been developed and used to approach the study 

of gene expression regulation at a genomic level. For example, as open chromatin regions are a 

potential site of TF binding, the use of chromatin immunoprecipitation followed by sequencing 

(ChIP-seq) is crucial for the identification of TF binding sites (Smith et al., 2012). Additionally, the 

application of assays for transposase-accessible chromatin sequencing (ATAC-seq) allows the 

identification of enhancers without any prior knowledge of TF binding and chromosome conformation 

capture (Buccitelli & Selbach, 2020; T. K. Kim & Shiekhattar, 2015; Lambert et al., 2018). As a result, 

the use of these methodologies in genomic studies has facilitated a better comprehension of the role 

of chromatin and its modifications, the relationship between functional regulatory elements and 

features of chromatin accessibility and histone modification, their correlation with active chromatin 

marks such as H3K4me1 or H3K27ac, and the gene silencing process occurring in DNA 

methylation, thus improving the functional interpretation of genomic variation and its potential effects 

on disease. 

 

Remarkably, although gene expression can be ubiquitous or cell-type specific, some of the 

regulatory elements such as gene expression signatures, enhancers, and promoters are cell-type 

specific (Long, Prescott, & Wysocka, 2016; Nica & Dermitzakis, 2013; Pope & Medzhitov, 2018). 

Thus, suggesting the relevance of the study of disease related cell-type regulatory elements to 

improve the understanding of the mechanisms mediating disease (see TIGER publication). 

 

1.2.4.4. cis-regulatory expression 

The understanding of the relationship between genomic variation association results and TFs 

cannot always be directly inferred from the proximity of a disease association signal with a gene 

binding site (Deplancke et al., 2016), thus, enforcing the need of other types of gene expression 

analyses, such as expression quantitative trait loci (eQTL) or allele-specific expression (ASE). 

Particularly, eQTL studies focus their analysis in finding the association between genetic locus with 

gene expression levels, and ASE assesses the allelic imbalance contribution of genetic variants to 
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gene expression. Consequently, these complementary analyses are fundamental to find a putative 

functional interpretation of GWAS signals in terms of disease susceptibility (Cleary & Seoighe, 2021; 

Nica & Dermitzakis, 2013) (see TIGER publication). 

1.2.4.4.1. Expression quantitative trait loci (eQTL) studies 

The connection between regulatory elements, gene expression, and disease, evidences the 

need of analysing the effects of genomic variation in gene expression. Particularly, eQTL analyses 

focus on the discovery of variants statistically associated with changes in gene expression 

levels. Thus, suggesting possible links between genomic variation and gene regulation (Albert & 

Kruglyak, 2015a; Nica & Dermitzakis, 2013). Briefly, the study of eQTL association is comparable to a 

quantitative GWAS, where the genotype of multiple individuals is simultaneously tested in different 

loci to find their association with gene expression levels. However, in contrast with GWAS, the 

number of individuals required in eQTL studies to obtain significant results ranges between tens to 

hundreds. This reduction on the sample size, which is mainly caused by the stronger effect sizes 

attributable to the evaluation of a quantitative trait, facilitates the inspection of the association between 

genomic variation and gene expression.  

 

The gene associations captured by eQTLs are classified by their proximity to their associated 

genes, thus separating them on cis and trans. In particular, variants with 1Mb on either side of a 

gene’s TSS are called cis and those with at least 5Mb of the TSS are considered trans. The majority 

of cis-eQTLs have been found to act with a higher effect size (Cookson, Liang, Abecasis, Moffatt, & 

Lathrop, 2009). However, although with lower effects, trans-eQTLs are more numerous and act with 

more tissue specificity (Grundberg et al., 2012). Nonetheless, the possibility to capture trans-eQTLs is 

usually a computational challenge mainly due to the human genome architecture and the relatively 

modest effect sizes. Notably, the correlation between the discovery power and the sample size, for 

both cis and trans eQTLs, still represents a limitation for trans-eQTLs discovery (The GTEx 

Consortium, 2020). Therefore, although up to 70% of the variance between individuals gene 

expression has been attributed to trans-eQTLs, the multiple difficulties in their study has promoted 

that the vast majority of eQTL studies focus in their cis contribution (Umans, Battle, & Gilad, 2021). 

 

Moreover, in terms of cell function, gene expression signatures and regulatory elements are 

cell-type specific, therefore suggesting that the regulatory effects of eQTL are also tissue-dependent 

(Long et al., 2016; Nica & Dermitzakis, 2013). As a consequence, to understand the effects of genetic 

variability on disease, the Genotype-Tissue Expression (GTEx) project emerged in 2017 with the 

large-scale initiative of generating a comprehensive public resource to facilitate the study of the 

effects of genomic variation in tissue-specific gene expression and regulation (The GTEx Consortium, 

2017). In the last release of this project, 15,201 RNA-sequencing samples from 49 tissues of 838 

post-mortem donors were analysed, thus facilitating the characterization of genetic associations for 

gene expression and splicing in cis and trans. This study revealed that eQTLs in tissues with higher 

cell specificity, such as brain, testis, lymphoblastoid cell lines, whole blood, or liver, result in stronger 

effect sizes and a subsequent increase in the association detection power. Nevertheless, despite this 

tissue-specificity condition, there is a high order of eQTL similarity between different tissues (The 

GTEx Consortium, 2020). Moreover, they found that the majority of genes are affected by local 

genetic variation, eQTLs are usually enriched in enhancers and related elements, and that although 

presenting differences between ancestries, common regulatory effects are largely shared between 

populations (Stranger et al., 2012).  

 

As a result, the study of eQTL based on its tissue-specificity can lead to better results, in 

terms of power of detection based on the effect size, as well as in terms of disease interpretation. 

Particularly, if the regulatory signal is associated with a relevant tissue for the disease, a GWAS and 

eQTL correlation can be considered as a sign of a putative causal relation (see TIGER publication). 

Therefore, the integration of GWAS and eQTL signals can be used to discover target genes and 
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pathways underlying putative relations with the biological mechanisms mediating disease. Thus, 

facilitating the functional interpretation of GWAS results, but also enhancing the prioritisation of 

GWAS signals. Particularly, across all GTEx tissues, 43% of disease-associated loci colocalize with a 

known eQTL (Umans et al., 2021).  

1.2.4.4.2. Allele-specific expression (ASE) studies 

ASE emerged as a way of analysing the relation between genomic variation, gene regulatory 

elements, gene expression, and disease (Cleary & Seoighe, 2021). Particularly, ASE is a 

phenomenon that occurs, in a cis manner, when two alleles in the same heterozygous loci present 

different expression levels. Thus, creating an allelic imbalance where, in some cases, one of the 

alleles can appear totally silenced. This imbalance suggests a possible variation effect on gene 

expression regulation and a consequent contribution in human phenotypes and complex disease 

susceptibility. Particularly, ASE can contribute to disease susceptibility when the prioritisation of 

expression is towards the disease allele instead of the functional allele (Lee, Kang, Gandal, Eskin, & 

Geschwind, 2019; Luft, Young, Meynert, & Taylor, 2020). In contrast, it can protect from disease by 

compensating variation through a higher expression of the functional allele (N. de Klein et al., 2020). 

 

ASE analyses are usually performed at the level of the individual, therefore complementing 

the results obtained in other expression studies such as eQTL, by capturing signals that can be 

masked by the group analyses. Particularly, ASE pipelines have three steps involving the detection of 

heterozygous positions, a filtering to improve the accuracy of the identified heterozygous loci, and a 

final estimation of the regulatory effects of variation (Cleary & Seoighe, 2021). For this reason, these 

types of studies require individual high coverage sequencing, mapping, and alignment, to detect the 

heterozygous loci. Thus, deriving in many complications mostly related to the accuracy to detect the 

heterozygous positions. However, many strategies have been developed to improve these tasks, like 

the use of genotyping array data to remove false positive heterozygous positions (Van De Geijn, 

Mcvicker, Gilad, & Pritchard, 2015). Therefore, ASE studies result in the association between allelic 

imbalance and expression, where the haplotypes of multiple expressed heterozygous SNPs are 

simultaneously tested for unequal representation of the two alleles (see TIGER publication). 

 

Interestingly, the different advances made in the genomic field have opened the possibility to 

improve this individual analysis (Cleary & Seoighe, 2021). For example, the availability of population-

based phasing facilitates the inspection of other regulatory variants present in the same region. This 

information can be used to identify the association between the imbalance and nearby putative 

regulatory variants (see TIGER publication). In addition, the availability of multiple individuals' 

information can be used to extend the expression imbalance analysis to find correlations with the 

allele at the regulatory variant. In this case, allelic imbalance can be combined with an overlapping or 

colocalizing eQTL to confirm its cis effect on the gene. As a result, ASE results can be used to 

facilitate GWAS interpretation by fine-mapping functional genetic variants, or to prioritise the results 

by including variants enriched in active regions in the genome.  

1.2.4.5. Public genomic functional interpretation databases 

The remarkable progress made by the genomic, transcriptomic, and epigenetic fields to 

understand the underlying molecular mechanisms of genetic variability and complex diseases, has 

promoted the generation of publicly available databases containing this valuable resource of 

information. Complementary to the Human Genome Project database (International Human Genome 

Sequencing Consortium, 2004), these large databases aim to provide the community with powerful 

tools that facilitate the functional assessment and interpretation of the genomic outcomes of GWAS 

(see TIGER publication). Particularly, the catalogue of resources include databases that contribute, 

among others, with genes and isoforms description and categorization, gene and gene products 

functional descriptions, protein and macromolecular complexes roles, lists of TFs with annotated 

elements and binding interfaces, lists of TFs and their corresponding regulatory interactions, 
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global and tissue-specific gene expression regulators, or epigenetic feature profiles (Suppl. 

Table 6). The use of the annotations provided by these projects has facilitated the functional 

interpretation of a large proportion of disease-associated variants. However, there is still a fraction of 

variants, which have not been captured in these analyses, that remains with missing explanation. 

Thus, opening a new avenue to further explore the molecular mechanisms underlying complex 

diseases. 

1.3. The study of type 2 diabetes and the relevance of pancreatic islets 

 The advances made in the genomics field, combined with transcriptomics and epigenetics 

have facilitated the study of different complex diseases. This is the case of Type 2 Diabetes (T2D), 

where the parallel efforts done in its study from a large diversity of complementary scopes, such as 

the clinical, biological, genomic, and pharmacologic, has led to a better understanding of its aetiology, 

as well as, to the development of different treatments. However, the complexity and the heterogeneity 

of this common disorder, which affects over 463 million individuals worldwide, needs further analysis 

to have a complete explanation of its heritability, and to enhance the early detection in clinics. 

Therefore, a better understanding of the metabolic, genomic, and epidemiological mechanisms 

underlying the disease, the environmental factors related to this disorder, as well as an improved 

comprehension on the genetic heterogeneity of T2D, is essential for the advance in its study 

towards personalised medicine. 

1.3.1. Metabolic pathophysiology 

T2D is a complex metabolic disorder usually observed as a result of a dysfunction in the 

regulation and use of glucose due to defects on the insulin signalling pathway. Glucose is the primary 

energy resource for our body and consequently, one of the main reasons for food intake. Particularly, 

glucose is ingested during digestion, entering the blood system, and activating the different 

mechanisms that promote the glucose uptake process. However, glucose cannot be directly 

uptaken by our organism. Indeed, insulin, which is a hormone generated by the pancreas, needs to 

be secreted to activate the glucose uptake mechanisms. Thus, in a common scenario, once insulin 

has been secreted proportionally to blood glucose concentrations, the glucose uptake from different 

organs is facilitated (Defronzo, 2009; Galicia-Garcia et al., 2020). There are many organs involved in 

the glucose uptake process, including the stomach, pancreas, liver, gut, primary muscle, kidneys, 

adipose tissue, and brain (Kaku, 2010). More specifically, the beta-cells present in the pancreatic 

Langerhans Islets are the primary insulin secretors of our body, thus allowing glucose homeostasis.  

 

As a result of the diversity of organs and mechanisms involved in the glucose uptake process, 

there are different ways of dysfunction that can lead to the development of T2D. For example, 

dysfunctions in beta-cells can result in a decrease in glucose responsiveness and an insulin 

secretion (IS) impairment (Galicia-Garcia et al., 2020; Kaku, 2010). Moreover, blood insulin 

concentrations can be exceptionally insufficient to activate the major target organs. This condition, 

which is referred to as insulin resistance (IR), is promoted by different mechanisms and can result in 

several regulatory problems. Consequently, T2D is known to be a common multifactorial metabolic 

disorder related to pancreatic beta-cell IS dysfunctions, and usually surrounded by a background of IR 

(Bartolomé, 2022; Del Guerra et al., 2005; Eizirik, Pasquali, & Cnop, 2020; Gloyn et al., 2022). 

 

In addition, dysfunctions in each of the main organs during the glucose uptake process, 

including the adipose tissue, skeletal muscle, liver, gut, the pancreatic beta and alpha cells, kidney 

and brain, derive different consequences for the disease (Suppl. Table 7) (Cnop et al., 2005; Cornell, 

2015; Defronzo, 2009; Del Guerra et al., 2005; Eizirik et al., 2020; Galicia-Garcia et al., 2020; Gilon, 

2020; Rhodes, 2005). However, despite the many differences in the mechanisms of the main organs 

that are involved in the glucose uptake and IS process, it is reasonable to find a straight relation 

between them. Particularly, the connections between their consequences on dysfunctionality such as 
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glucotoxicity, lipotoxicity, IIS and hypoglycemia, share an important role in the development of T2D. 

Therefore, converting the transcriptomic analysis of these tissues into a great resource to find a 

functional explanation of T2D susceptibility loci (see TIGER publication). 

1.3.2. Genetics 

The synchronised multi organ behaviour, and the large variety of functions surrounding the 

metabolic pathophysiology of T2D, has a direct reflection in the polygenic nature of the disease. 

More specifically, T2D is a complex disease where multiple variants affecting different genes with 

small effects, contribute to the disease progress (McCarthy et al., 2008). As a result, although more 

than 3 thousand genes have been found associated with diabetes, there are some well-known 

genes which are particularly involved in the glucose uptake and IS process (Table 1) (Cornell, 2015; 

Defronzo, 2009; Eizirik et al., 2020; Galicia-Garcia et al., 2020; Rhodes, 2005; Rouillard et al., 2016; 

Stelzer et al., 2016). 

 

Table 1. Genes involved in the glucose uptake and IS process. 

GENE NAME DESCRIPTION FUNCTION PROBLEM 

IAPP Islet Amyloid Polypeptide Co-secreted with insulin 
IAPP hypersecretion can 

lead to progressive beta-cell 
failure 

GLUT4 or 
SLC2A4 

Glucose Transporter Type 
4 or Solute Carrier Family 

2 Member 4 

Major transporter involved 
in the uptake of glucose 

into skeletal muscle 

Mutation can result in an 
under expression of GLUT4, 
and defects in its pathway 
reduce the glucose intake 

and can lead to 
hyperglycemia 

GLP-1 or 
GLP1R, and 

GIP 

Glucagon Like Peptide 1 
Receptor and Gastric 
Inhibitory Polypeptide 

Stimulate the release of 
insulin and the IS after food 

intake. GLP-1 is also 
involved in the regulation of 

satiety, gastric emptying, 
and glucagon secretion 

Deficiencies in GLP-1 
contribute to T2D 

progression and beta-cell 
resistance to GIP, thus 
inducing glucotoxicity 

SGLT2, and 
GLUT2 or 
SLC2A2 

Solute Carrier Family 5 
Member 2, and Glucose 
Transporter Type 2 or 
Solute Carrier Family 2 

Member 2 

Glucose reabsorption and 
transport in the kidneys 

Mutations can lead to 
reabsorption excess and 

hyperglycemia 

 

These findings highlight the relevance of the glucose transport and exocytosis of the insulin 

granules pathways in the study of T2D, as well as, the importance of a good understanding of the 

genetic basis of the disease to a better explanation of its pathophysiology (Del Guerra et al., 2005).  

 

Some studies have revealed that T2D and beta-cell dysfunction cluster in families, thus 

suggesting a putative genetic predisposition in some individuals to develop the disease (Cornell, 

2015; Defronzo, 2009; Kaku, 2010). This suggested genetic predisposition has converted the genomic 

study of T2D into a major motivation towards the early detection and prevention of the disease. In this 

direction, first-degree relatives familial and twin studies have revealed that T2D has an estimated 

heritability from 0.3 to 0.72 in monozygotic twins (Newman et al., 1987; R. M. Watanabe et al., 1999; 

Willemsen et al., 2015). Therefore, to discover the genomic variants that can predispose to develop 

the disease, the genetic component of T2D has been broadly analysed during the last decades 

through GWAS and large GWAS meta-analyses. This type of studies have played a central role in the 

discovery of more than 700 signals associated with T2D and related glycemic traits (Bonàs-Guarch 

et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM 

Consortium, The AGEN-T2D Consortium, The SAT2D Consortium, The MAT2D Consortium, & The 
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T2D-GENES Consortium, 2014; Vujkovic et al., 2020). Most of these GWAS signals correspond to 

common variants with a low effect on the disease which only explain a 20% of T2D heritability 

(DeForest & Majithia, 2022), and which although combined in a polygenic score result in a good 

prediction (AUC=0.901), still cannot be used at a clinical level for the early detection of the disease, 

and most importantly, do not improve the prediction based on clinical variables (Collins, Doudna, 

Lander, & Rotimi, 2021; Kullo et al., 2022; Kumuthini et al., 2022; Liu, Zhuang, Wang, Huang, & Liu, 

2021; McGuire et al., 2020; Padilla-Martínez, Collin, Kwasniewski, & Kretowski, 2020).  (see 

unpublished Epistasis).  

 

Remarkably, despite the lack of functional interpretation of GWAS, diverse transcriptomic 

and epigenetic studies have led to the generation of large lists of putative candidate genes, causal 

variants, and regulatory elements, which have facilitated the better understanding of the disease 

(Akerman et al., 2017; Miguel-Escalada et al., 2019; Morán et al., 2012; Pasquali et al., 2014; 

Solimena et al., 2018; Thurner et al., 2018; van de Bunt et al., 2015). Remarkably, the generation of 

publicly available resources, which integrate these large-scale genetic data, has been crucial to 

facilitate the access to this valuable resource of information and to promote the study of T2D (Flannick 

& Florez, 2016; Flannick, Johansson, & Njølstad, 2016) (see TIGER publication). 

1.3.3. Environmental factors 

As a complex disease, T2D is characterised by the effect of multiple genetic and 

environmental factors with a straight connection between them and the metabolic pathways 

affecting the development of the disease. Thus, converting the study of environmental factors that rely 

on the mechanisms involved in the glucose uptake process into a major interest for the better 

understanding of this metabolic disorder. For example, obesity and age have been proved to play an 

important role in terms of disease development and treatment. However, in addition to age, physical 

activity and food intake, there are many other environmental factors related to diet and lifestyle that 

have been suggested to have a direct effect on the disease. Thus, the study of obesity, overeating, 

lack of exercise, smoking, stress, alcohol intake, nervous and endocrine systems disorders, 

and ageing, are of special interest to gain a better comprehension of this complex metabolic disorder 

(Galicia-Garcia et al., 2020; Kaku, 2010). 

 

In particular, the fact that one-third of obese individuals develop T2D, defines obesity as 

one of the main factors driving the development of the disease (Rhodes, 2005). This relation between 

obesity and T2D is usually associated with liver and muscle IR, which can result in a progressive 

beta-cell failure. More explicitly, the liver and muscle IR generate an increased metabolic load 

demand for insulin, which is usually impossible to cover by the beta-cells, thus causing its failure 

(Cnop et al., 2005; Cornell, 2015; Rhodes, 2005). Moreover, different studies have revealed the 

important role of age in the progressive beta-cell failure (Defronzo, 2009). Particularly, the effect of 

age in the beta-cell mass decrease directly affects the beta-cell function and, consequently, the IS 

(Cornell, 2015; Rhodes, 2005). Thus, converting the study of pancreatic islets into a relevant tissue to 

find a functional explanation of T2D and other related traits susceptibility loci (see Polymorphic 

Inversions and TIGER publication). 

1.3.4. Epidemiology and Treatments 

The combination of the environmental and genetic factors that affect the metabolic pathways 

involved in the glucose uptake process favours the development of T2D, and confers its high 

incidence and prevalence in the population. Particularly, according to the Epidemiological 

International Diabetes Federation, over 463 million adults suffered from T2D worldwide in 2019. 

Moreover, T2D prevalence is projected to increase by 25% in 2030 and 51% in 2045 globally, 

independently of the different ethnic predispositions to develop the disease (Galicia-Garcia et al., 

2020; Saeedi et al., 2019). Additionally to the high prevalence and incidence of this disease, there are 
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several comorbidities associated with T2D. Particularly, T2D is a major risk factor for the 

development of cardiovascular disease, hypertension, chronic kidney disease, renal disease, 

depression, thyroid gland diseases, chronic obstructive pulmonary disease, lower limb 

amputations, and blindness (Cornell, 2015; Defronzo, 2009; Nowakowska et al., 2019). As a result, 

T2D has led to over 4.2 million deaths in 2019. Consequently, T2D is considered a major global 

health problem which has been further discussed in terms of its prevention and treatment.  

 

Particularly, the effect of diet and exercise has been broadly studied in T2D in terms of 

predisposition, prevention but also, as a treatment for the disease (Hu, 2011; Magkos, Hjorth, & 

Astrup, 2020). For example, the inclusion of healthy lifestyle changes benefits the prevention and 

delay of T2D (Nathan et al., 2009). More specifically it has been proved that weight loss (~15 Kg) 

and fitness can contribute to a remission of the disease in over 80% of the patients, thus reducing its 

prevalence worldwide. As a consequence, although the most severe diabetic cases still need to be 

treated with insulin replacement therapies, to maintain the glycemic control, different therapies are 

still being proposed to prevent and treat this complex disorder (Nathan et al., 2009; Rhodes, 2005). 

More specifically, it is known that the reduction of islet cell oxidative stress can partly reverse the 

functional impairment of diabetic islets (Del Guerra et al., 2005). Additionally, beta-cell 

transplantation and regeneration therapies are currently being proposed as promising to treat and 

even to cure insulin-deficient diabetes (Ji, Lu, Xie, Yuan, & Chen, 2022). However, the many different 

challenges surrounding these methods still prevent its broad application in the clinics. 

1.3.5. Disease heterogeneity 

The diversity of factors affecting T2D defines its heterogeneous nature. Particularly, the 

understanding of this disease heterogeneity is fundamental to improve its prognosis and treatment 

under the scope of personalised medicine. In this direction, many efforts have been conducted to 

generate a classification of T2D patients in subgroups based on a wide range of clinical and 

genomic measures. As a result, this disease heterogeneity has been associated by recent studies 

with the heterogeneous contribution of different processes and pathways to the disease (Ahlqvist et 

al., 2018; McCarthy, 2017), the major clinical parameters involved in the development of the disease 

(Ahlqvist et al., 2020), and by clustering the genomic variants shared by diabetic individuals (Ahlqvist 

et al., 2018, 2020; Dimas et al., 2014; H. Kim et al., 2022; Mahajan, Wessel, et al., 2018; Mansour Aly 

et al., 2021; Scott et al., 2017; Udler et al., 2018). These last classifications are the promise of the 

future steps to a better understanding of the disease pathogenicity and towards precision medicine. 
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2. Hypothesis and Objectives 

  

HYPOTHESIS AND OBJECTIVES 
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2. Hypothesis and Objectives 

Complex diseases are a global major health problem that affects millions of individuals 

worldwide. Therefore, as the understanding of the effects of genetic variation in the development of 

complex diseases can contribute to a better disease prognosis, its genomic study has been one of the 

major goals of Biomedicine. More specifically, the knowledge obtained from the study of disease 

predisposition can facilitate the early detection, prevention and posterior treatment. In this direction, a 

more detailed explanation of the underlying genetic and molecular mechanisms of complex diseases 

is known to be a crucial step towards precision medicine. Particularly, in the case of T2D, its genomic 

study through GWAS has identified more than 700 genetic variants associated with this complex 

disease. However, although T2D heritability is estimated to be around 70%, these findings still only 

explain approximately 20% of it, do not enhance the early detection of the disease when compared 

with clinical measures, and most of them still lack of functional interpretation. For these reasons, there 

is still room to improve the identification of new associated variants, as well as to determine their 

functional mechanisms. This thesis aims at directly contributing to these two fronts. On one side, we 

searched for candidate variant interactions that are associated with disease (T2D), contributing with 

new genes for the generation of polygenic risk scores, as well as with insights and functional 

interpretation of the potential functional interaction.  On the other side, we also aimed at generating 

resources to facilitate and improve the functional interpretation of associated variants, which 

constitutes one of the major bottlenecks with the study of complex diseases. 

 

Accordingly, our hypothesis can be summarised as: 

 

● Hypothesis 1: part of the explanation of the missing heritability of complex diseases is 

attributable to methodological limitations of GWAS. These limitations can be partially 

overcome by considering potential variant-variant interactions. 

● Hypothesis 2: the integration of homogenized gene expression variation results from 

pancreatic islets with other functional databases into a comprehensive resource can benefit 

the functional interpretation of T2D disease-susceptibility loci. 

 

To disentangle these hypotheses the main objectives of this thesis are: 

 

● Objective 1: to provide new variants associated with T2D by exploring the variant-variant 

interaction space with Machine Learning approaches combined with statistical methods. 

● Objective 2: to infer potential functional interpretation of the candidate variant interactions 

identified as linked to the disease. 

● Objective 3: to contribute to the functional interpretation of variants through the performance 

of a large-scale expression analysis on pancreatic islet samples and the integration of the 

results with comprehensive data on T2D association studies. 

● Objective 4: to generate a comprehensive database and a web portal for the entire 

community that grants the efficient access and interpretation of pancreatic islets expression 

regulatory variation. 

 

 

  



 

61 

  



 

62 

3. Report from the director 
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3. Report from the director 

 
The director of this thesis, Dr. David Torrents Arenales informs that: 

 

Lorena Alonso Parrilla is presenting her PhD. Thesis entitled “From the discovery of epistatic 

events in Type 2 Diabetes Mellitus to the related study of gene expression regulatory variation”, which 

has been developed at the Barcelona Supercomputing Center (BSC). During her PhD., Lorena has 

contributed to two studies, including one published as a co-first author. These studies represent the 

main work of her thesis. Additionally, she has coordinated and pushed a review on GWAS 

methodology, and has also participated in an external collaboration that ended up in another 

publication. These two last studies are included in the Appendix of this thesis. In general, Lorena’s 

contribution to the studies has consisted in the performance of bioinformatic analysis to respond to 

biological questions, to provide the community with a web platform to enable and facilitate the 

interpretation of Type 2 Diabetes gene expression variation, and to explain the mathematical models 

underlying GWAS. 

 

Here below, you can find the scientific contribution made by the PhD. Student in each of the 

studies, as well as the impact factor of the journals. 

3.1. Epistasis (Unpublished) 

3.1.1. Title 

The role of epistasis to improve the missing heritability explanation and to refine the predictions in 

Type 2 Diabetes 

3.1.2. Authors 

Lorena Alonso, Ignasi Morán, and David Torrents. 

3.1.3. Contribution 

An important research line in our group is the analysis and the discovery of epistasis in the 

genetics of complex diseases at genome wide level. This line is composed of two different fronts, 

each using different methodologies. Whereas Dr. Moran is coordinating the overall line, Lorena 

Alonso is responsible for one of these fronts, which is based on the analysis of Epistatic events using 

Machine learning approaches. Because this study corresponds to the last activity during Lorena’s 

thesis, it is still not published, although the results obtained so far are promising and already pointing 

towards the submission of a potential publication soon. 

3.2. TIGER publication 

3.2.1. Title 

TIGER: The gene expression regulatory variation landscape of human pancreatic islets 

3.2.2. Authors 

Lorena Alonso*, Anthony Piron*, Ignasi Morán*, Marta Guindo-Martínez, Sílvia Bonàs-Guarch, 

Goutham Atla, Irene Miguel-Escalada, Romina Royo, Montserrat Puiggròs, Xavier Garcia-Hurtado, 

Mara Suleiman, Lorella Marselli, Jonathan L.S. Esguerra, Jena-Valéry Turatsinze, Jason M. Torres, 

Vibe Nylander, Ji Chen, Lena Eliasson, Matthieu Defrance, Ramon Amela, MAGIC, Hindrik Mulder, 
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Anna L. Gloyn, Leif Groop, Piero Marchetti, Decio L. Eizirik, Jorge Ferrer, Josep M. Mercader
#
, Miriam 

Cnop
#
, and David Torrents

#
. 

* These authors contributed equally 
#
 These senior authors contributed equally 

3.2.3. Journal 

Cell Reports, 2021 

Impact factor (Scientific Journal Rankings 2021): 4.845 (Q1) 

Citations (Google scholar): 15  

3.2.4. Contribution 

This study emerges within the Horizon 2020 T2DSystems project, which was devoted to study 

Type 2 Diabetes from a genetic and clinical point of view, focusing on Pancreatic Islets. Lorena joined 

the group at the moment when this project started, and she soon became very active at different 

levels. 

 

In particular, Lorena’s contribution to that project was focused on the construction of the 

Translational human pancreatic Islet Genotype-tissue Expression Resource (TIGER), and the creation 

of a publicly accessible portal to facilitate the access to this valuable resource of information. Her work 

can be summarised in three blocks which consist of: 1) the preparation of the data, pipelines, and the 

analytical environments to obtain islet gene expression regulatory variation results, 2) the creation of a 

database to collate the genomic, transcriptomic, and epigenetic results obtained from different 

analyses conducted in human pancreatic islets, as well as other relevant publicly available genomic 

information, and 3) the population of the database and the creation of the TIGER Portal to make this 

valuable resource of information accessible for the research community. 

 

In terms of data collection, she was granted access to all the available human islet samples, 

from the different groups participating in the project, that were planned to be included and analysed in 

the study. That consisted of 514 samples from pancreatic islet donors distributed in 5 cohorts. From 

each sample the RNA-seq paired reads, genotyping array information and metadata was gathered. 

Then, she used different tools for sample harmonisation and quality control processes to ensure the 

quality of the samples, avoid samples presenting contamination or mismatching samples, and to 

ensure the good quality of the genotyping array data at the level of the individual and at the level of 

the sample. All this work was done under the direct guidance and supervision of Dr. Mercader. 

 

After this process, to perform islet gene expression regulatory variation analyses, first she 

prepared the genotyping array data to recover the individual's genotype using phasing tools. Then, 

she used these haplotypes to increase the number of variants included in the expression analyses to 

a genome-wide level by using imputation tools, separately for each cohort. She merged the imputation 

results into a single cohort containing over 22 million variants ready for the eQTL (mainly done by 

Anthony Piron) and cASE (mainly done by Ignasi Morán) expression analyses. She used the ASE 

pipeline, under the guidance and supervision of Dr. Morán, to analyse the RNA-seq of all the human 

islets included in the project, and prepared the results for cASE analysis. Moreover, she used the 

RNA-seq data to obtain the gene expression counts needed to calculate eQTL, cASE, and 

homogeneous pancreatic islet expression. The eQTL and cASE analyses were performed by Anthony 

Piron and Dr. Morán, respectively. All this work was guided and supervised by Dr. Mercader. She 

homogenised and normalised the TPM expression counts to obtain homogeneous pancreatic islet 

gene expression, and then scaled them to be comparable with the 54 tissue expression counts from 

the GTEx. This work was guided and supervised by Dr. Morán. 

 



 

66 

Finally, to create a comprehensive islet expression publicly available database, she was 

granted access to the results from epigenetic and transcriptomic studies from human islets, from the 

different groups participating in the project. Moreover, she downloaded publicly available T2D GWAS 

meta-analysis results, variant, gene, pathway, disease association and functional impact genomic 

databases. She collated all this information with the results obtained from eQTL, cASE, islets gene 

expression, and GTEx tissues expression. She used this data to populate an Elasticsearch database, 

which was made accessible through an ICGC-code based web portal. She prepared the environments 

to install the database and the portal under the supervision of Romina Royo. She adapted the 

website, and provided it with different graphical and visualisation tools to facilitate the integration and 

interpretability of this wealth of data. The quality control of the portal was supervised by Dr. Mercader, 

and correspondingly, by any of the co-authors providing the data. 

3.3. Polymorphic Inversions publication 

3.3.1. Title 

Polymorphic Inversions Underlie the Shared Genetic Susceptibility of Obesity-Related Diseases 

3.3.2. Authors 

Juan R. González, Carlos Ruiz-Arenas, Alejandro Cáceres, Ignasi Morán, Marcos López-Sánchez, 

Lorena Alonso, Ignacio Tolosana, Marta Guindo-Martínez, Josep M. Mercader, Tonu Esko, David 

Torrents, Josefa González, and Luis A. Pérez-Jurado. 

3.3.3. Journal 

The American Journal of Human Genetics, 2020 

Impact factor (Scientific Journal Rankings 2021): 5.042 (Q1) 

Citations (Google scholar): 6  

3.3.4. Contribution 

 This project was part of a long trajectory of collaborations with Dr. González (ISGlobal, 

Barcelona) resulting in a publication in 2020. 

 

 Lorena’s contribution to this study was focused on the provision of support for the functional 

interpretation of the resulting inversions obtained from obesity-diabetic associations. Particularly, she 

provided the genotype probabilities for different sets of variants, located in obesity-diabetes inversion 

regions, from the 70KforT2D diabetes cohorts. This information was used by Dr. González to perform 

association analysis and support the findings obtained from the UKB, which suggested that obesity-

diabetes associated inversions can explain a fraction of T2D shared susceptibility that cannot be 

explained by single variants. Moreover, she calculated and provided the gene expression counts, 

normalised TPM and genotyping array data from 207 pancreatic islets donors. This data was then 

used by Dr. González to understand the possible transcriptomic effects of obesity-diabetes 

associations with inversions. 

3.4. Genome Wide Association Studies review 

3.4.1. Title 

In Search of Complex Disease Risk through Genome Wide Association Studies 
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3.4.2. Authors 

Lorena Alonso, Ignasi Morán, Cecilia Salvoro, and David Torrents. 

3.4.3. Journal 

Mathematics, 2021 

Impact factor (Scientific Journal Rankings 2021): 0.538 (Q2) 

Citations (Google scholar): - 

3.4.4. Contribution 

 This project was an invitation to a review, which started in 2020 and continued until its 

publication in 2021. 

 

Lorena pushed and coordinated this review exercise. She gathered and reviewed the 

information and coordinated the writing, which also involved Dr. Salvoro and Dr. Morán. This review 

presents an overview of the past and current statistical methods used in GWAS field, discuss current 

practises and their main limitations, and describes the remaining open challenges. 

 

In particular, she collected and read multiple GWAS publications and information to have an 

overview of the state-of-the-art of the methodology. She studied the different statistical approaches 

currently applied in GWAS and their limitations from a mathematical point of view. Then, she further 

explored the most common GWAS complementary methods which are broadly applied to overcome 

its limitations. Particularly, all this information was used to write a methodological review briefly 

detailing the mathematical models used in GWAS and summarising its current limitations and 

available complementary analyses. All this work was revised by Dr. Morán and Dr. Salvoro, and 

supervised by Dr. Torrents. 
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4. Summary of the studies 

  

SUMMARY OF THE STUDIES 

 



 

69 

  



 

70 

4. Summary of the studies 

4.1. Epistasis (Unpublished) 

Complex diseases develop as a result of the combination of the simultaneous effect of 

multiple environmental and genomic factors (Manolio et al., 2008). Particularly, at the genomic level, 

despite the large amount of variants that have been discovered during the last decades associated 

with complex diseases, these findings only explain a small fraction of disease heritability (Génin, 

2020). Moreover, the utilisation of this knowledge to improve the prediction of the risk of developing 

common diseases is still far from being usable within the clinical field (Kullo et al., 2022; Kumuthini et 

al., 2022; Lambert et al., 2019). This is, in part, because of the limitations and simplifications of 

Genome Wide Association Studies (GWAS) strategies (Alonso, Morán, et al., 2021; Tam et al., 2019). 

For example, due to computing limitations, GWAS considers within the analysis the effect and role of 

each single variant as independent within the disease, which is actually far from reality. In complex 

diseases, many loci (and therefore many variants) are expected to contribute to the risk and 

development cooperatively, both additively and in a synergic dependent manner (epistasis). In this 

direction, although still incomplete, polygenic risk scores have enhanced the prediction and prevention 

of complex diseases, by using the additive model to combine the GWAS effects of multiple variants 

(Kullo et al., 2022; Kumuthini et al., 2022; Lambert et al., 2019). Additionally, the analysis of the 

epistatic interaction between variants has been crucial towards a better understanding of complex 

diseases (Manduchi et al., 2018; Josep Maria Mercader et al., 2008). It is therefore necessary to 

incorporate the interaction of variants within association studies to broaden the study of complex 

diseases, to analyse not only the effect of single variants, but also of pairs, trios, and bigger groups. 

Nevertheless, the genome wide study of these interactions using classical statistical frames still 

represents a computational challenge, as the analysis of combinations of variants increases by 

several fold the computational demands (Marchini et al., 2005).  

 

In order to overcome these limitations, we designed a study that is focused on the analysis of 

epistasis in Type 2 Diabetes (T2D), by using machine learning (ML) models, in combination with 

statistical approaches. More specifically, to find groups of candidate variants associated with T2D, we 

have used XGBoost (T. Chen & Guestrin, 2016), a ML classifier based on random forest. Although 

XGboost can be used as a predictor, we are only focusing on the groups of variants associated with 

the disease that have been identified by the method. As an input for the method, we have used a 

subset from the 70KforT2D (Bonàs-Guarch et al., 2018), a large T2D dataset which was previously 

generated and analysed within the group using GWAS strategies. In particular, after a quality control 

on the individuals to ensure a good performance of the model, a group of 22,802 individuals, where 

11,401 are diabetic and 11,401 are non-diabetic were selected. Moreover, to deal with some ML 

models limitations, we have reduced the number of the initial set of variants, starting from 105,896 

variants which have some degree of association with diabetes (-log10(p-value)>2). Under this 

background, XGBoost is used to find individual variants and groups of 2, 3, and 4 variants which are 

synergically associated with diabetes. 

 

Among the thousands of groups obtained in this preliminary analysis, there are some groups 

which contain variants that can contribute additively to the disease, and other groups from which the 

effect of variants on the disease derives from the interaction. Because our initial goal is to identify 

examples of epistasis, the effect of the interaction is evaluated under a logistic regression model. We 

only kept the groups containing an interaction statistically associated with T2D (𝛼 = 0.05), thus 

resulting into 10 pairs, 1 triplet, and 1 quadruplet.  Under the premise that the effect of the sum of 

each variant separately should be smaller than the effect of the variants together, we have performed 

logistic regression analysis to demonstrate that, certainly, the variants show epistatic effect. From 

these analyses we have also observed some differences in the marginal effects of the variants when 

evaluated synergically. Remarkably, some of these variations can result in a change of sign in the 
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effect, thus involving an inverse effect of the variant; for example, changing from being protective to 

representing a risk on the predisposition to disease. Finally, we have functionally inspected the 

interactions using the summary statistic annotations of diverse large T2D GWAS meta-analyses, 

glycemic traits GWAS meta-analysis, and regulatory expression variation from pancreatic islets, which 

is a disease-related tissue (Alonso, Piron, et al., 2021; Bonàs-Guarch et al., 2018; J. Chen et al., 

2021; Mahajan, Taliun, et al., 2018; Miguel-Escalada et al., 2019; Pasquali et al., 2014; Scott et al., 

2017; The DIAGRAM Consortium et al., 2014).  The results suggest that the interactions between the 

underlying regulatory mechanisms of the variants inside the groups, as well as the connections of the 

gene pathways affected can be one of the causes to explain disease predisposition. 

 

Overall, the results obtained from this study show the relevance of including epistasis in 

current association studies to improve the explanation of the heritability of complex diseases, to 

enhance current detection and prevention protocols, and to gain insight of complex diseases 

pathophysiology.  

4.2. TIGER publication 

The simultaneous effect of multiple genomic and environmental factors affects the 

development of complex diseases (Manolio et al., 2008). At the genomic level, one of the most 

relevant and challenging parts of the study of the genetic architecture of complex diseases is the 

functional interpretation of the variants found to be statistically associated with the trait from GWAS 

studies. Particularly, to improve the comprehension of the pathophysiology of this type of disorders, it 

is necessary to find and understand which are the diverse underlying molecular mechanisms of 

disease-associated loci, usually in the form of identifying the affected gene and protein. This 

knowledge enhances the discovery of new drugs, and promotes the creation and the improvement of 

protocols for disease treatment. However, the outcomes of current association methods (i.e. GWAS) 

are limited to the provision of a list of disease susceptibility loci, and their contribution to the risk of 

disease development (Alonso, Morán, et al., 2021). Therefore, the understanding of their functional 

mechanisms requires additional approaches and efforts (Cano-Gamez & Trynka, 2020; Lichou & 

Trynka, 2020; Manolio, 2013).  

 

During the last decades, gene expression variation and regulatory regions analyses have 

promoted the development of large databases, listing numerous associations between variants (loci) 

and their change in gene expression, such as expression quantitative trait loci (eQTL), and 

cataloguing disease-related regulatory elements, such as enhancers and promoters, thus enabling a 

better understanding of complex diseases (Han et al., 2015; Jiang, Xuan, Zhao, & Zhang, 2007; 

Papatheodorou et al., 2020; The GTEx Consortium, 2020). Remarkably, as the expression analysis is 

linked to tissue-specific functions, despite the many difficulties derived from the analysis of specific 

tissues, the study of disease-related tissues has improved the functional interpretation of these 

signals. However, this information only covers the regions of the genome that have been analysed in 

these studies, thus leaving some signals without a functional explanation, and more importantly, some 

tissues or groups of cells have been disregarded or still need to be further inspected. 

 

To improve the genomic understanding of diseases related to pancreatic islets dysfunction, 

this study is focused on the analysis of genomic variation and its effect on gene expression in human 

pancreatic islets. In particular, it is accepted that Type 2 Diabetes (T2D) is mainly caused by 

dysfunctions within the beta cells of the pancreas, making this tissue a key target for the study of the 

disease (Bartolomé, 2022; Del Guerra et al., 2005; Eizirik et al., 2020; Gloyn et al., 2022). Within the 

context of the T2DSystems, a European Project, we developed the Translational human pancreatic 

Islets Genotype-tissue Expression Resource (TIGER), a large human islet regulatory expression 

database (http://tiger.bsc.es/). This database integrates, in a unique platform, the results obtained 

from the performance of extensive expression, eQTL, and combined allele-specific expression 

http://tiger.bsc.es/
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analyses (cASE), with publicly available summary statistics results from islets analyses, including 

expression array, regulatory elements, and other gene, variant, and disease functional information 

(Akerman et al., 2017; Alonso, Piron, et al., 2021; Bonàs-Guarch et al., 2018; Buniello et al., 2019; 

Frankish et al., 2019; Jassal et al., 2020; Karczewski et al., 2020; Mahajan, Taliun, et al., 2018; 

McLaren et al., 2016; Miguel-Escalada et al., 2019; Pasquali et al., 2014; Piñero et al., 2017; Scott et 

al., 2017; Solimena et al., 2018; The DIAGRAM Consortium et al., 2014; The Gene Ontology 

Consortium, 2000; The GTEx Consortium, 2020; Thurner et al., 2018). 

 

As a first effort to generate this platform, the genotypes and phenotypes (RNA-seq) of 514 

human pancreatic islets samples from mostly non-diabetic individuals were collected. As the 

inspection of expression in islets requires to know not only the expression of any given gene but also 

its comparison with the rest of the genes in the genome, we calculated, harmonised, and 

homogenised gene expression among all the non-diabetic individuals. Then, to facilitate the 

comparison between islets expression and other reference tissues, we aggregated and scaled the 

gene expression measures from islets and the Genotype-Tissue Expression project (GTEx) (The 

GTEx Consortium, 2020). In addition, to promote an exhaustive inspection of the effects of genomic 

variation in islets gene expression, the imputed genotypes of more than 22 million variants were 

prepared for cASE, and eQTL cis-regulatory expression analyses, including a 10% of Indels and 

Structural Variants, more than 1.05 million variants in the chromosome X, and more than 14 million 

rare and low-frequency variants. This resulted in over 1.11 million eQTLs and 256,981 cASE variants. 

Next, to facilitate the assessment of the overlap between variation and islet regulatory elements and 

open chromatin regions, diverse DNA methylation, human islet regulome, long non-coding RNA, 

ATAC-seq and ChIP-seq results were collated (Akerman et al., 2017; Miguel-Escalada et al., 2019; 

Pasquali et al., 2014; Thurner et al., 2018). Finally, to enhance the interpretation of the potential 

functional impact of variants, we collated the variants with the GWAS Catalog and T2D GWAS meta-

analyses summary statistics, and with their functional impact on genes (Bonàs-Guarch et al., 2018; 

Buniello et al., 2019; Mahajan, Taliun, et al., 2018; McLaren et al., 2016; Scott et al., 2017; The 

DIAGRAM Consortium et al., 2014). 

 

As a result, this platform contains information for more than 27 million variants and 59,625 

genes and facilitates the search at the level of the gene and at the level of the variant. It encloses 

tools for visualising, querying, and downloading human islet data enhancing the study of T2D and 

other islet-related diseases pathophysiology. It includes eQTL and cASE results, and associations 

with T2D and other complex diseases from the GWAS Catalog, thus simplifying the analysis of 

colocalisation. Moreover, it integrates graphs to enhance the inspection of gene expression in 

pancreatic islets and its comparison with other tissues, and a genomic browser to explore the 

genomic context information.  

 

In summary, the database generated in this study represents a unique and formidable 

resource to interrogate the molecular aetiology of beta-cell failure. 

4.3. Polymorphic Inversions publication 

The development of a complex disease is attributed to the combined effect of different genetic 

and environmental factors (Manolio et al., 2008). Genetically, despite the large catalogue of variants 

that have been discovered during the last decades associated with complex diseases, only a small 

fraction of their heritability has been explained (Génin, 2020). Thus, resulting in an impact on the 

effectiveness of current detection and prevention protocols (Kullo et al., 2022; Kumuthini et al., 2022; 

Lambert et al., 2019). This lack of explanation is usually attributed to the limitations surrounding the 

methodology used in association studies. Among others, the inclusion of structural variants in this 

type of studies, and a better control on the effect related to the presence of covariates are two of the 

causes to lose information (Génin, 2020). In particular, inversions can affect the gene function if they 
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overlap to the inversion breakpoints, thus suggesting a putative pathway to disease predisposition. 

Moreover, the analysis of disease association, under the presence of covariates and comorbidities, 

reduces the results obtained to just recover the most common variants shared between diseases or 

related conditions. Therefore, some variants with a lower frequency, which are already known to be 

associated with a certain disease, can be masking a shared susceptibility for other related diseases 

(González et al., 2020). 

 

To improve the genomic understanding of co-occurrent traits, this study evaluates the effect 

of inversions in the shared susceptibility between obesity and other related complex diseases and 

traits. 21 common inversions are assayed to test their association with 8 comorbidities and 17 related 

conditions, including obesity, hypertension, asthma, diabetes, and some mental diseases. As a result, 

3 of the inversions are found associated with different diseases. Particularly, inversions 8p23.1 and 

16q11.2 showed a shared susceptibility between obesity with diabetes, hypertension, asthma, and 

depression. In contrast, inversion 11q13.2 shares susceptibility between obesity with diabetes and 

hypertension. Remarkably, the effect of the co-occurrent association is found greater when compared 

to the individual association with the diseases. 

 

Then, the genetic relevance of these inversions is explored in the 70KforT2D (Bonàs-Guarch 

et al., 2018), an independent dataset from the discovery data. Particularly, the genotype of the SNPs 

located in the same region of the inversions are inspected to test their association with obesity and 

T2D in different subgroups of individuals. As a result, none of the SNPs overlapping the inversion 

were found significantly associated. Thus, suggesting that single variants are not driving the 

association. Additionally, at a transcriptomic level, being a disease-related tissue for Type 2 Diabetes, 

human pancreatic islets genotypes and gene expression are used to reveal  any possible relation 

between the inversions and changes in expression (Alonso, Piron, et al., 2021; van de Bunt et al., 

2015). These analyses allowed the identification of some associations between inversions 8p23.1 and 

16p11.2 and the deregulation of some well-known genes for diabetes. 

 

In brief, this study provided evidence for the presence of polymorphic inversions associated 

with several related diseases, and provides preliminary functional interpretation of these signals. 

4.4. GWAS review 

The combination of the effects of multiple environmental and genetic factors can result in the 

development of a complex disease (Manolio et al., 2008). Consequently, at a genetic level, the 

discovery of the genomic variants associated with the risk of developing complex diseases, as well as 

its functional interpretation, are one of the major goals in Biomedicine. Indeed, the knowledge about 

the variants that predispose to disease development is crucial to improve the detection and prevention 

protocols. Therefore, to facilitate the prediction of novel variants associated with complex diseases, a 

wide diversity of methods and bioinformatic tools have been developed. In particular, during the last 

two decades, Genome Wide Association Studies (GWAS) have emerged as the key to explore 

disease and trait associations at a genome-wide level (R. J. Klein et al., 2005). However, despite the 

great advances made, thanks to the use of current statistical frames, the discovery of novel variants 

associated with a disease and its interpretation are still one of the big challenges in Biomedicine. To 

encourage the mathematical community to get involved in this fundamental question and to provide 

more adjusted and powerful statistical frames, in this review, we inspect the current status in GWAS, 

detailing the underlying mathematical models, the possibilities, and the limitations (Alonso, Morán, et 

al., 2021). 

 

 The many limitations surrounding these methods, mostly resulting in a lack of statistical 

power, represent the current boundaries in the discovery. Under a background of genetic 

heterogeneity, where multiple variants each one with a small effect on the disease are needed to its 
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development (McCarthy et al., 2008), the common way to gain discovery power is to increase the 

sample size and the number of genomic variants analysed. As a result, the creation of genetic 

biobanks and large cohorts, the use of meta-analysis approaches, or the application of imputation 

techniques has enhanced the discovery (Alonso, Piron, et al., 2021; Lo, 2014; Marchini, 2019; 

Panagiotou, Willer, Hirschhorn, & Ioannidis, 2013; Swede et al., 2007). However, variants with less 

presence in the population, such as rare variants, variants from specific or isolated populations, from 

specific subgroups of individuals, and even variants which present difficulties to be included in the 

analysis, such as structural variants, despite their relevance, are still difficult to capture (Ahlqvist et al., 

2020; J. Chen et al., 2021; Génin, 2020; González et al., 2020). Moreover, current statistical frames 

only test the independent effects of each variant, while the nature of complex diseases is defined by 

the synergyc effect of multiple variants and environmental factors. To tackle this problem, genomic 

interaction studies, and environment-wide association studies (EWAS), although still challenging, 

have emerged promoting the advance towards the discovery of the effect of environmental and 

genetic interactions in complex diseases. 

 

 Additionally, to improve the understanding of disease pathophysiology, it is also necessary to 

find the relation between variation and the underlying mechanisms of genomic variation. Particularly, 

this knowledge is crucial for the development of new drugs and to improve the treatments. However, 

the outcomes obtained from the application of GWAS methodology are reduced to a list of disease-

associated variants, their effect on the disease, and a measure of reliability for the association test. As 

a result, the interpretation of the results obtained from a GWAS is merely reduced to the statistical 

level, thus resulting in a lack of biological explanation, and making it necessary to use complementary 

approaches to improve the understanding of GWAS results. In particular, the combination of 

genomics with  other omic layers such as transcriptomics and epigenetics is a valuable tool to 

translate genomic variation into function. Consequently, expression analyses, gene, pathway, 

regulatory elements and epigenetic marks enrichment are broadly used methodologies to find the 

molecular mechanisms underlying complex diseases (Cano-Gamez & Trynka, 2020; Lichou & Trynka, 

2020; Manolio, 2013).  Moreover, although still in development, other tools such as Polygenic Risk 

Scores are planned to be applied to convert genomic associations into predictions that can be applied 

in the clinics (Kullo et al., 2022; Kumuthini et al., 2022; Lambert et al., 2019). 

 

 In brief, this review details the current statistical models surrounding GWAS to promote the 

creation of new frameworks that can facilitate and improve the study of complex diseases. 
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Abstract 

 Complex diseases are affected by the combination of the simultaneous effect of multiple 

variants and environmental factors. However, the numerous statistical and computational challenges 

surrounding the classical approaches used in association studies, has reduced the discovery to a 

limited group of variants which are associated with common diseases in a single independent  

manner. As a result, the effect of multiple variants interactions or epistasis has been pointed as one of 

the causes to explain the missing heritability of complex diseases, as well as for improving the 

prediction power of the genetic signal towards the use of detection protocols in the clinics. To find 

groups of epistatic variants that are cooperatively statistically associated with Type 2 Diabetes (T2D), 

in this study, we have explored the potential of a machine learning strategy, XGBoost, combined with 

statistical approaches to analyse a group of 11,401 diabetic and 11,401 non-diabetic individuals, and 

a subset of 105,896 T2D nearly nominally associated variants (-log10(p-value)>2) derived from 

previous GWAS studies in the group. Among the different groups obtained by XGBoost statistically 

associated with T2D (pairs, triplets, and quadruplets), there are groups which affect the disease in an 

additive manner, and other groups which include variants which synergically contribute to the disease 

(epistasis). To find epistatic variants we applied a logistic regression to the results obtained from the 

machine learning approach, resulting in a group of 10 pairwise variant interactions, 1 variant triplet, 

and 1 variant quadruplet from which the association is epistatic. In agreement with the definition of 

epistatic interactions, we validated these results and found that the effect of the interaction is 

significantly stronger than the sum of the effects of each variant separately. Moreover, although 75% 

of the epistatic groups contain new susceptibility loci for T2D, the analysis of the overlap of these 

interactions with T2D and related glycemic traits GWAS meta-analyses, and islet gene expression 

regulatory variation, reveals multiple gene interaction and islet regulatory elements as the underlying 

molecular mechanisms mediating the association with T2D. Despite many improvements having to be 

applied to enhance the detection possibilities, these preliminary results evidence the potential of using 

machine learning approaches to study epistasis in complex diseases and to gain insight of their 

genetic pathophysiology, and consequently, to improve its prognosis and treatment. 
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Introduction 

 Complex diseases such as diabetes, asthma, or Alzheimer’s disease, are known to be 

affected by the combination of multiple genetic and environmental factors (Manolio et al., 2008). 

Particularly, during the last decades, the study of the genetic component of complex diseases based 

on Genome Wide Association Studies (GWAS), has led to the discovery of thousands of variants 

associated with different complex traits or diseases (Beck et al., 2014; Buniello et al., 2019; K. 

Watanabe et al., 2019). However, despite GWAS having revealed a large catalogue of disease-

associated variants, only a small fraction of the heritability of complex diseases has been uncovered 

(Génin, 2020). Moreover, regardless of the complex disease nature, where the combination of 

multiple genetic and environmental factors predispose the individual to develop the disease, these 

variants have been found associated with the disease in a single independent  manner, thus, limiting 

current detection and prevention protocols and, therefore, distancing the translation of the results into 

the clinics (Alonso, Morán, et al., 2021; Tam et al., 2019; Uffelmann et al., 2021). This is the case, for 

example, of Type 2 Diabetes (T2D), a complex metabolic disorder which affects over 465 million 

people worldwide.  

 

Particularly, the study of the genetic component of T2D during the last decades, based on 

GWAS results, has led to the discovery of more than 700 independent signals associated with the 

disease (Bonàs-Guarch et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al., 

2017; The DIAGRAM Consortium et al., 2014; Vujkovic et al., 2020). However, despite the extensive 

T2D genomic knowledge that these GWAS findings represent, there is still a lack of explanation for its 

complete genetic heritability. More specifically, the heritability of T2D based on twin studies has been 

estimated to range from 0.3 to 0.72 (Newman et al., 1987; R. M. Watanabe et al., 1999; Willemsen et 

al., 2015). However, the contribution of these loci to its missing heritability explanation is 

approximately 0.2 (DeForest & Majithia, 2022). And, more importantly, there is not enough information 

to be able to efficiently predict for a particular individual the real risk of developing the disease. In 

other words, the results obtained with classical GWAS, despite uncovering a number of genetic 

determinants and resulting in a good prediction (AUC=0.901), still cannot be used at a clinical level for 

prevention or for patient stratification, and most importantly, do not improve the prediction that can be 

obtained from the use of clinical variables (Collins et al., 2021; Kullo et al., 2022; Kumuthini et al., 

2022; Liu et al., 2021; McGuire et al., 2020; Padilla-Martínez et al., 2020). Therefore, highlighting not 

only the relevance of the genomic study of T2D but also of its current limitations.  

 

Overall, the factors contributing to the development of the disease are genomic variants, with 

the presence of gene-environment interactions and gene-gene interactions (Génin, 2020; Herzig, 

Clerget-Darpoux, & Génin, 2022). In the last case, the study of interactions in complex diseases can 

be tackled through the analysis of the non-independent effect of specific groups of variants, beyond 

the simple addition of their effects separately (Mackay, 2014). This type of phenomena, which is 

known as epistasis, has its biological basis on the known networks between regulatory elements and 

interconnected pathways, where the change (variation) of the function and impact of one gene (i.e. 

protein) can enhance the change of function in another gene, converging cooperatively into a synergic 

effect. Multiple methodologies have been applied to the study of epistasis in complex diseases, 

ranging from statistical to artificial intelligence approaches (Niel et al., 2015). In short, these methods 

are able to detect which are the groups of variants that synergically contribute to the development of 

the disease. Particularly, these methods have been applied to study epistasis in small groups of 

variants, only including loci functionally related with the disease, or selecting some variants using 

dimensionality reduction techniques (Behravan et al., 2018; Y. M. Cho et al., 2004; Kirino et al., 2013; 

Manduchi et al., 2018). The success obtained from these reductions to find variants with an increased 

effect jointly (Cordell, 2009; Kirino et al., 2013; Monir & Zhu, 2017), suggests the potential of epistasis 

to improve the knowledge about complex diseases, opening an avenue to cover the analysis of 

variant interactions at a genome-wide level. However, the numerous difficulties related to the 

detection power, and other computational problems, have limited the discovery. Specifically for T2D, 
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although certain studies have addressed some of the limitations surrounding the genome-wide 

analysis of epistasis, still no credible evidence for interaction effects has been found (Nag, McCarthy, 

& Mahajan, 2020). 

 

In order to overcome these limitations and to obtain more integrated results, we explored the 

use of machine learning approaches for the identification of groups of variants that are cooperatively 

associated with the risk of developing complex diseases. From this analysis we aim to provide clear 

examples of epistatic interactions that can improve disease risk prediction. Following previous 

research and experience built in the group this exploratory analysis is focused on T2D. Particularly, 

this study first targets the discovery of groups of interacting variants, which can contribute additively to 

T2D, or that have an effect produced by the dependency (i.e. epistatic) relation between the variants. 

For this, we analyse with XGBoost (T. Chen & Guestrin, 2016), a machine learning classifier based on 

random forest, a subset from the 70KforT2D (Bonàs-Guarch et al., 2018), a large T2D multi-cohort 

dataset. This subset contains genotypes and basic phenotypic information for 22,802 European 

individuals (11,401 cases and 11,401 controls) and 105,896 variants. The results obtained here will 

contribute to gain understanding of the effect of epistasis in complex diseases, to improve the 

explanation of the missing heritability of T2D and, ultimately, to clinically predict the risk of developing 

this disease. 
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Results 

Overall strategy 

To enhance the detection of genetic factors that can improve the prediction of the risk of 

developing a complex disease, we first focused on the discovery of candidate groups of epistatic 

variants. There are different methods that can be applied with the purpose of finding groups of 

variants which synergically contribute to the risk of developing the disease, ranging from the most 

classical statistical approaches to the application of machine learning techniques. To avoid the 

limitations related to the discovery power derived from the use of statistical methodologies, we applied 

machine learning methods (Nag et al., 2020; Niel et al., 2015). In this first preliminary approach, we 

decided to explore the effects of these synergies in T2D using a supervised machine learning 

classifier. Supervised classifiers start from a group of observations that can be separated into different 

categories, for example cases and controls, to learn which are the most informative variables to 

generate each category. Therefore, the results that we expected from the analysis consisted of a 

classification of the individuals in groups of diabetics and non-diabetics, a list of the most relevant 

variants and groups of variants that were used to do the classification, and their corresponding 

scores. The groups of variants found by the method can contain variants that have an effect on the 

disease only in an additive manner, as well as variants that act synergistically. Following our goal of 

identifying epistatic events in T2D, i.e. groups of variants where their combined effect was higher, or 

lower than the effect of the sum of their corresponding effects obtained independently, we then 

applied logistic regression analysis (Figure 1). 

 
Figure 1. General strategy. The T2D discovery dataset, which contains the imputed genotype of 105,896 

variants (-log10(p-value)>2) for 22,802 individuals (11,401 diabetic and 11,401 non-diabetic), was divided into a 
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training and a test subsets. To ensure the best performance of the model, and to prevent overfitting a 5-fold 

cross-validation algorithm was implemented to do a grid search hyperparameter adjustment. The best 

hyperparameters were used to fit the train set, in the training step, and the performance was evaluated using the 

test set, during the test step. As a result, several groups of single variants, pairs, triplets and quadruplets of 

candidate epistatic variants associated with T2D were obtained. From these, only the groups that presented a 

significant association between the interaction and T2D, under a logistic regression model, were kept. The pie 

charts show, for each group, the percentage of variants classified by Minor Allele Frequency (MAF). Common 

variants (MAF>=0.05) are represented in light blue, low-frequency (0.01<=MAF<0.05) in medium blue, and rare 

variants (MAF<0.01) in dark blue. 

 

In terms of the input data, there are many factors that can affect the performance of a 

machine learning approach, which include the number of observations that are available to do the 

training, the presence of missing values and outliers, redundancy or the existence of any type of 

imbalance which can result in trend decisions for the method (Chicco, 2017; Dey, 2016; Greener et 

al., 2021; Sarker, 2021). Therefore, a good previous knowledge of the type of the data included in the 

analysis is crucial for the correct preparation of the input dataset that will be used by the classifier; this 

will facilitate the creation of a trustworthy model to solve our problem. In our case, to find groups of 

candidate epistatic variants in T2D, we decided to use the 70KforT2D study, a large T2D genome-

wide association studies (GWAS) meta-analysed cohort within our group (Bonàs-Guarch et al., 2018). 

The data used for our analysis includes the imputed genotypes of the individuals from the five cohorts 

analysed in the 70KforT2D project, the metadata of these individuals, and the GWAS summary 

statistics (Methods T2D case-control dataset). After merging the individual genotypes in a unique 

cohort, to avoid any of the above mentioned problems and other computational limitations we did a 

data pre-processing step (Methods Dataset preparation; Suppl. Figures 1-6; Suppl. Tables 2-7). 

First, as our data is completely imbalanced for the case-control proportion (12,926 diabetic and 

57,191 controls), we kept the maximum number of diabetic individuals from the 70KforT2D that pair 

with a control sharing the same measures of (body-mass index) bmi, age, and sex (Methods Data 

imbalance). This resulted in a dataset with 22,802 individuals from which 11,401 diabetic and 11,401 

non-diabetic. Despite this is a large number of observations, our aim of performing the analysis at a 

genome-wide level, thus involving the inclusion of 15,131,345 imputed variants, results in an 

overfitting problem (Methods Maximisation of variables explanation). To prevent overfitting and to 

make our analysis possible from the computational point of view, we limited our study to only kept the 

variants with higher levels of association with T2D (i.e. with -log10(p-value)>2), as we expect them to 

be enriched in functionally relevant interacting groups. As a result, our discovery dataset consisted of 

22,802 individuals with their imputed genotypes in 105,896 genomic variants. 

 

There are different types of supervised machine learning classifiers that can be applied to find 

groups of synergic variants associated with a disease. However, the performance obtained from each 

classifier varies based on their underlying statistical models and, therefore, on the way the method 

evaluates the input data. These many factors related with the input data range from the ability of the 

method to understand and manage the type of data included in the input, to the capacity of working 

with missing values or duplicate observations (Dey, 2016; Greener et al., 2021). In our case, although 

all the individuals are of European ancestry, and despite working with imputed genotypes, the 

heterogeneity in the population of study generates missing values in some of the genotypes. 

Moreover, the genetic background of linkage disequilibrium results in correlated variants, which can 

be interpreted as duplicates by the model. Therefore, among the multiple supervised machine 

learning classifiers that were assayed, we selected the method that was better prepared to work with 

the genomic information present in our dataset, which include missing values, and correlated data. 

These methods were evaluated, in terms of precision and computational time, in a subset of the 

discovery dataset, only including the imputed genotype for 1,667 GWAS significant signals (-log10(p-

value)>7) (Methods Method selection). From all the methods assayed, XGBoost was the one which 

performed better in the classification of individuals (T. Chen & Guestrin, 2016; Pedregosa et al., 2011) 

(Suppl. Table 1). 



 

84 

 

One common problem derived from the use of machine learning methods is overfitting, which 

results in linking the results obtained to the dataset of analysis and, therefore, not allowing the 

extension to other independent datasets. To prevent the overfitting and to ensure the procurement of 

the best outcomes, we prepared a test-train model with a previous hyperparameter adjustment using 

a 5-fold cross-validation algorithm (Chicco, 2017; Greener et al., 2021). To obtain the best 

performance, the most relevant parameters to adjust in our model were the split, the learning rate, the 

number of trees, and the depth of the tree. The split corresponds to the percentage of individuals that 

are kept in the test set to do the final prediction, once the model is trained. Consequently, to ensure 

that a good proportion of individuals were used to train the model, we allowed the adjustment between 

0.2 and 0.3. The learning rate corresponds to the minimum contribution score that is required for a 

new feature to be included in the final model. Therefore, although a smaller learning rate is 

computationally expensive, as it can result in more steps for the algorithm to decide which are the 

best features, we tested different small learning rates including 0.01, 0.04, 0.07 and 0.1. As XGBoost 

is a method based on decision trees, the number of trees corresponds to the number of decision trees 

that the method will include in the resulting model after the training, and the depth corresponds to the 

maximum level of features that will result in a decision for a tree, which in our case correspond to the 

dimension of the groups of synergic variants. An increase in these two parameters involve the 

generation of a higher number of trees or more dense trees, respectively, thus resulting in more tests 

and the inclusion of more features in the final model, which is more computationally expensive and 

can result in overfitting. To maximise the performance but prevent overfitting, we tested the results 

obtained by the generation of 50, 100, 250, and 500 trees, and allowed the combination of variant in 

pairs, trios, and quadruplets (depth <=4) (Suppl. Figure 7; Suppl. Table 8) (Methods Algorithm 

preparation; Hyperparameters adjustment).  

 

Once the machine learning method was selected (i.e. XGBoost), the data was pre-processed 

and the complete machine learning pipeline was prepared, we finally executed the method. As a 

result, after adjusting for the optimal learning rate and split in each case, we explored the different 

groups of singletons, pairs, trios, and quadruplets obtained as an outcome from the different 

scenarios when varying the number of trees. In particular, we compared the Minor Allele Frequency 

(MAF) of the variants, and studied the possible relations, in terms of inclusion of variants, between the 

groups obtained in each scenario (Methods Candidate epistatic groups base genomics). After the 

inspection of the MAF we observed that a higher percentage of rare (MAF<0.01) and low-frequency 

(001<=MAF<0.05) variants were captured in the scenarios with more groups (Suppl. Figure 8). This 

can be interpreted as a possible indicator of overfitting, however, as the hyperparameters adjustment 

ensured that our models were not overfitted (Suppl.Figure 7; Suppl. Table 8), in this case it indicates 

that a deeper search of interactions enhances the ability of the method to improve the capture of 

disease heterogeneity, and broadens the study with the inclusion of rare and low-frequency variants. 

Then, to find any possible relation between the variants inside the different groups obtained in each 

scenario, we analysed their linkage disequilibrium (LD) correlation. From the inspection of the 

inclusion of smaller groups in bigger groups, we observed that between 10.98-57.22% of the variants 

are preserved through the groups in the same scenario (𝑟2 ≥ 20) (Suppl. Table 9). However, none of 

the groups were completely kept. Similar results were obtained from the analysis when only the 

number of final trees was changed, therefore, comparing groups with the same number of variants 

between the distinct scenarios, where none of the groups was replicated but some of the loci were 

preserved for single associations (5.49-9.37%), and also were retained when increasing the size of 

the group (5.49-83.63%). Therefore, the prevalence of the loci included in the different epistatic 

groups suggests the relevance of that particular genomic region in terms of association with the 

disease, while their unique way to group highlights the importance of their interconnections. More 

specifically, the scenario with 500 trees was the most inclusive, allowing the inspection of more 

groups of synergic variants, and retaining more disease-associated loci. Moreover, although doing a 

prediction with XGBoost is far from our preliminary objectives, this scenario resulted in a better 
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classification of the individuals (60.52% precision) (Suppl. Table 8). The improvement on the 

prediction can be related to the ability of the method to capture more synergic loci, including rare and 

low-frequency variants, which are expected to have a higher effect on the disease. For all these 

reasons, we decided to keep this scenario for downstream analyses, thus accounting for 367 single 

variants, 980 pairs, 1,952 triplets, and 3,607 quadruplets. 

 

The groups of variants obtained from applying our machine learning strategy include: 1) 

genetic markers which can contribute to the risk of developing the disease independently, and 

therefore in an additive manner, and 2) groups where there is a dependency relation between the 

variants that drive the effect on the disease. Although new disease-susceptibility loci can be found 

from the exploration of the genomic markers included in both groups, thus contributing with a better  

explanation of the missing heritability fraction and improving the prediction, in this first preliminary 

approach, we have focused on the study of the second group, which corresponds to epistatic variants. 

Therefore, to keep only the epistatic groups of variants, we used a logistic regression model adjusted 

by bmi, age, sex, and the first 7 PCs, to evaluate the effect of the interaction in the disease. As a 

result, we only preserved the candidate groups with a significant association with the disease driven 

by the interaction (𝛼 = 0.05 with the corresponding Bonferroni adjustment for each group size) 

(Methods Logistic regression epistasis). From the complete set of groups of synergic variants 

obtained with XGBoost, at most 1.02% included epistatic variants. Thus, resulting in 10 pairs, 1 triplet, 

and 1 quadruplet of statistical interactions, containing 20, 3, and 4 unique variants, respectively 

(Figure 1; Table 1). 

 

Table 1. Groups of epistatic variants and their effect in T2D. 

Depth 
Variant 1 

(Effect_Ref) 
Variant 2 

(Effect_Ref) 
Variant 3 

(Effect_Ref) 
Variant 4 

(Effect_Ref) 
Interaction 

Effect 
p-value 

2 

chr5:157545791 
(CAT_C) 

chr4:168037835 
(T_TAC) 

  
-0.2922 

(OR~1.33) 
4.79x10

-5
 

chr17:76790279 
(T_C) 

chr6:12027402 
(A_G) 

  
0.3210 

(OR~1.37) 
1.18x10

-6
 

chr9:89501123 
(T_G) 

chr21:25168622 
(C_T) 

  
0.3862 

(OR~1.47) 
7.88x10

-6
 

chr11:3385759 
(A_G) 

chr11:123906346 
(G_A) 

  
0.6448 

(OR~1.90) 
7.01x10

-6
 

chr2:180203761 
(T_C) 

chr7:36373191 
(A_AG) 

  
0.9698 

(OR~2.63) 
1.51x10

-5
 

chr2:107596627 
(T_G) 

chr22:26957284 
(C_A) 

  
0.7055 

(OR~2.02) 
3.75x10

-5
 

chr4:96761220 
(G_A) 

chr1:206513621 
(C_CCT) 

  
1.3485 

(OR~3.85) 
2.49x10

-7
 

chr3:35766559 
(C_T) 

chr8:98754889 
(A_C) 

  
1.4534 

(OR~4.27) 
2.14x10

-5
 

chr4:104128410 
(G_A) 

chr6:111759237 
(A_T) 

  
0.2776 

(OR~1.31) 
4.47x10

-5
 

chr10:101881887 
(G_A) 

chr17:70463870 
(C_T) 

  
-0.2977 

(OR~0.74) 
1.16x10

-6
 

3 
chr20:30314136 

(C_CTTT) 
chr10:108835343 

(G_A) 
chr5:55861786 

(C_T) 
 

0.7647 
(OR~2.14) 

2.28x10
-5

 

4 
chr1:104373712 

(CT_C) 
chr1:147362531 

(G_GT) 
chr2:147085498 

(G_A) 
chr11:97009227 

(G_T) 
-2.0809 

(OR~0.12) 
4.13x10

-6
 

Measuring the effect of epistasis in T2D 

 Current complex disease genomic predictors only rely on the addition of the effects of GWAS 

variants, thus, disregarding not only the effect of epistasis but also the possible changes in the 

marginal effects of variants derived from their synergies. To assess the impact of the interactions 

found in this study, a logistic regression was performed under two models. The first logistic regression 

model only evaluated the additive marginal effects of the groups of variants (pairwise, trio, 
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quadruplet), and the second model also included the interaction terms (full model) (Methods Logistic 

regression epistasis). The results obtained from the two models were compared to find significant 

differences for each of the terms included in the regression, thus involving the additive effect of the 

variants, and the effect of the interactions (Figure 2; Suppl. Table 10).  

 

 
Figure 2. Evaluation of the effect of the candidate epistatic groups on the risk of developing T2D. The 

groups of candidate interactions (pairwise, trio, quadruplets) were evaluated for T2D associations under two 

logistic regression models: one considering only the marginal effects in an additive manner (light blue), and the 

other also including the interaction terms (dark blue). The box plots represent the distribution of the effects (x 

axis) for each of the terms included in the logistic regression models (y axis). The dots correspond to the effects 

for the different groups. The effects captured by the full model are represented above the dashed line. 

 

First, after the inspection of pairwise interactions, few significant differences were observed 

between the mean and median marginal effects of the variants under the two logistic regression 

models. However, 50% of the pairs (5 pairs) included at least one variant which presented a change 

in the sign of the effect when adding the interaction term. Moreover, in one of these pairs, both 

variants changed their sign. In the case of the quadruplet, only one variant preserves the sign (Suppl. 

Table 11). All these cases are of particular interest, given that changes in the sign of the effect involve 

changes in the risk of disease development, thus for example transforming a protective variant into a 

risk locus, or vice versa. Additionally, the effect in the disease of any of the terms in the full model is 

greater in module when compared with marginal effects. Particularly, the variants under the additive 

model have a modest marginal effect (OR between 0.755-1.448) compared with the effects in the full 

model (OR between 0.488-1.579), where we observed more extreme effects. Last, there is a 

considerable effect on the disease derived from the full interactions, which ranges from -2.08 to 1.45 

(OR between 0.13-4.27). 

The epistatic variants functional impact and its association with T2D  

 The loci found in these epistatic associations, as well as their effect, can be used to improve 

T2D detection and prevention protocols. However, to find new potential drugs and to improve the 

treatments, it is also necessary to understand the putative molecular mechanisms underlying the 
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associations. Particularly, as some alterations at the genomic level can result in changes in cell 

function and enhance the predisposition to the development of the disease, it is crucial to find the 

genomic pathways underlying the associations between T2D and our epistatic groups of variants.  For 

this reason, we analysed the genomic, transcriptomic and epigenetic context of the variants included 

in the epistatic groups.  

 

First, to find any hint of the relation between the disease and the epistatic groups, at the 

genomic and transcriptomic levels, we explored the variants inside the groups analysing their overlap 

with T2D and related traits annotations, and with associated changes in the expression of pancreatic 

islets, a disease-related tissue. Therefore, we annotated the variants inside the epistatic groups with 

the summary statistics resulting from different T2D GWAS meta-analyses (Bonàs-Guarch et al., 2018; 

Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM Consortium et al., 2014), glycemic 

traits GWAS meta-analyses (J. Chen et al., 2021), pancreatic islets expression quantitative trait loci 

(eQTL), and islets combined allelic specific expression (cASE) analyses (Alonso, Piron, et al., 2021) 

(Methods Resources; Annotations overlap; Suppl. Figure 9). As a result, we observed that 25% of 

the groups (3 groups) contain at least one variant already known to be significantly associated with 

T2D, glycemic traits or expression in islets (p-value<5x10
-8

; 5% False Discovery Rate (FDR)).  

 

To further inspect the putative mechanisms underlying the associations with the disease, we 

extended our functional analysis to also cover the functional impact of variants in genes, and their 

overlap with human islets epigenetic marks and regulatory elements (Alonso, Piron, et al., 2021; 

McLaren et al., 2016; Miguel-Escalada et al., 2019; Pasquali et al., 2014). Additionally, to ensure that 

the functional relations found were not stochastic, we compared the genomic, transcriptomic, and 

epigenetic overlap obtained from our groups of candidate epistatic variants with control groups of 

variants randomly generated from the discovery dataset. These randomly generated groups included 

the same number of variants as the epistatic groups, and shared the same allelic frequency 

distribution (Methods Functional annotations enrichment).   

 

 
Figure 3. Percentage of significant annotations overlap. The unique list of variants present in each group of 

candidate epistatic variants (pairwise, trio, and quadruplet) were annotated with significant summary statistics 

results from T2D GWAS meta-analyses (Bonàs-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et al., 

2017; The DIAGRAM Consortium et al., 2014), glycemic traits GWAS meta-analyses (J. Chen et al., 2021), 

pancreatic islets expression analyses (Alonso, Piron, et al., 2021), islet regulatory elements (Miguel-Escalada et 

al., 2019; Pasquali et al., 2014), and functional impact annotations (McLaren et al., 2016). These annotations 

were compared with a control distribution to assess the differences. The boxplots show the distribution of the 

percentage (x axis) of variants with significant annotations (y axis) in the control distribution. The red dots display 

the proportion of epistatic candidate variants with significant annotations.  
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As a result from the comparison between the annotations from the epistatic groups and the 

annotations from the control groups, we observed that the variants included in the pairs and trio of 

epistatic variants are significantly more associated with T2D, related glycemic traits, islet expression 

variation, and more likely to fall in an islet regulatory region, than control variants (Figure 3; Table 2). 

Particularly, between 5-33.33% of these variants were significantly associated with T2D or glycemic 

traits. Interestingly, for the pairs, half of the GWAS signals were also an eQTL in pancreatic human 

islets. Moreover, the analysis of the results obtained from the annotation of the epistatic variants 

included in the pairs in terms of islet regulatory regions, revealed that 20% fall in H3K4me1 regions 

and 10% fall in H3K27ac regions. In contrast, the overlap with H3K4me3 is significantly higher in the 

control set (15.79%). Finally, although a more significant gene functional impact explanation was 

found in controls than in the candidate epistatic variants, it was mostly attributable to intronic regions. 

In the case of the quadruplet we observed a higher overlap with pancreatic islets cohesin, CTCF, and 

ATAC-seq regions (25%) when compared with controls (0%).  

 

Table 2. Percentage of unique variants significantly annotated with T2D and glycemic traits 

GWAS meta-analyses, islets expression, functional impact annotations, and epigenetic marks. 

Annotation 

Pairwise Trio Quadruplet 

discovery 
control 
median 

discovery 
control 
median 

discovery 
control 
median 

Glucose 0 0 0 0 0 0 

Insulin 0 0 33.33 0* 0 0 

T2D GWAS 5 5.26** 33.33 0* 0 0 

eQTL 15 10.53* 0 0 0 0 

cASE 0 0 0 0 0 0 

VeP modifier 45 42.10* 66.66 50* 0 33.33** 

VeP low 0 0 0 0 0 0 

VeP moderate 0 0 0 0 0 0 

VeP high 0 0 0 0 0 0 

Cohesin 0 0 0 0 25 0* 

Mediator 0 0 0 0 0 0 

Superenhan. 0 0 0 0 0 0 

Enh.cluster 0 0 0 0 0 0 

H3K4me1 20 18.75* 0 0 0 25** 

H3K4me3 0 15.79** 0 0 0 25** 

H3K27ac 10 0* 0 0 0 0 

CTCF 0 0 0 0 25 0* 

ATAC-seq 5 5** 0 0 25 0* 
* mean control random set annotations overlap percentage lower than discovery set results annotations overlap percentage (5% significance 

level) 

** mean control random set annotations overlap percentage greater than discovery set results annotations overlap percentage (5% significance 

level) 

 

 To improve the understanding of the underlying biological mechanisms mediating the 

interactions, we inspected some of the most relevant epistatic groups in terms of disease explanation. 

In particular, the simultaneous association of a locus with disease and regulatory expression in a 

disease-related tissue suggests the deregulation of the gene affected as one of the putative 

underlying mechanisms to mediate the disease. Two of the epistatic groups (16.66%) include a T2D 

GWAS significant signal, from which one has at least one variant simultaneously associated with T2D 

and cis-regulatory islet expression. This is the case of the pairwise interaction of variants rs6821617 

(chr4:104128410_G_A, MAF=0.395) and rs12215743 (chr6:111759237_A_T, MAF=0.1476) which 

contribute positively to the risk of disease development (interaction effect=0.283110 (OR~1.32), p-

value=3.91x10
-5

) (Figure 4.A). The T2D GWAS variant rs6821617 (OR=0.965 p-value=3.4x10
-8

), 

although being an intergenic variant, is an islet eQTL for BDH2 (score=-6.359, p-value=2.03x10
-10

 

1FDR), MANBA (score=-3.876, p-value=1.06x10
-4

 5FDR), and NFKB1 (score=-3.752, p-

value=1.75x10
-4

 5FDR), of which some of them have been suggested to play an important role in T2D 
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(Alonso, Piron, et al., 2021; Mahajan, Taliun, et al., 2018; McLaren et al., 2016). Particularly, the 

downregulation of BDH2 has been associated with iron homeostasis thus possibly mediating its 

relation with diabetes (Zughaier, Stauffer, & McCarty, 2014). Moreover, NFK1B is lately emerging as a 

novel potential target for the development of therapeutic strategies to treat or prevent diabetes 

(Meyerovich, Ortis, & Cardozo, 2018). Additionally, rs12215743, which is a nonsense-mediated decay 

(NMD) mRNA variants for REV3L, has been associated with expression changes in MFSD4B 

(score=-4.828, p-value=1.38x10
-6

 1FDR), a gene involved in glucose and fructose transport in rat 

kidney (Alonso, Piron, et al., 2021; Horiba et al., 2003; McLaren et al., 2016). 

 

Additionally, although variants with a modifier effect on a gene are usually non-coding or 

affect a non-coding gene, with no evidence of impact in the protein function, their effect can be 

mediated through gene expression. Thus, suggesting gene expression again as a putative 

mechanism to mediate the association with the disease. Particularly, 5 of the epistatic groups 

(41.66%) include a variant with a modifier effect on a gene and, from these, 1 group (20%) has all 

variants acting as a modifier for the gene. This is the case of the pair made by variants rs8073626 

(chr17:76790279_C_T, MAF=0.4631) and rs17697699 (chr6:12027402_A_G, MAF=0.3219) which 

represent a risk for the development of the disease (interaction effect=0.321087 (OR~1.37), p-

value=1.18x10
-6

) (Figure 4.B). rs8073626 is a NMD transcript variant, which falls in an intronic region 

of USP36, and has been detected as a human islet eQTL for the same gene (score=-5.625, p-

value=1.85x10
-8

 1FDR) (Alonso, Piron, et al., 2021; McLaren et al., 2016). This gene has been 

suggested to participate in the pathogenesis of diabetic kidney disease, thus providing potential 

intervening targets (Zhu et al., 2021). Additionally, rs17697699 is an intronic HIVEP1 variant, which 

falls in a human islet H3K4me1 region (McLaren et al., 2016; Pasquali et al., 2014). Interestingly, the 

insulin treatment induce expression of this gene, and blocking autocrine TGF-beta signalling with 

SB431542 substantially reduce its expression (Budi, Hoffman, Gao, Zhang, & Derynck, 2019). 

Moreover, HIVEP1 has also been related to the effect of maternal diabetes and obesity in the fetal 

epigenome of Hispanic population (Rizzo et al., 2020). 

 

Moreover, to gain a better insight about the decisions made to find the groups of epistatic 

variants, as well as their synergies, we performed an exhaustive analysis of the models generated by 

the machine learning method. Particularly, as XGBoost is a tree-based method, we scrutinised the 

decisions made in each tree to generate the different candidate groups of variants (Methods Model 

outcomes interpretation). From this analysis we found of particular interest the groups where the 

decision of creating the group is based on, at least, one variant having an alternate allele 

(heterozygous or alternate homozygous). There are 5 of these groups between our results (41.66%). 

This is the case of the very rare variant rs142378541 (chr4:96761220_G_A, MAF=0.007039), which 

couples with rs199607206 (chr1:206513621_C_CCT, MAF=0.4819) in case of being heterozygous or 

alternate homozygous (interaction effect=1.352184 (OR~3.86), p-value=2.30x10
-7

), but couples with 

the low-frequency variant rs76334393 (chr5:173320206_T_C, MAF=0.03595) when being 

homozygous reference (interaction effect=-0.274208 (OR~0.76), p-value=3.30x10
-1

) (Figure 4.C). 

rs142378541, which is located in an inactive open chromatin region overlapping an ATAC-seq peak 

from the human islet regulome, is an upstream gene variant for PDHA2, a gene involved in glucose 

metabolism for which beta-cell-specific deficiency has been related to the impairment of the glucose-

stimulated insulin secretion in mouse (McLaren et al., 2016; Miguel-Escalada et al., 2019; Srinivasan 

et al., 2010). In case of being heterozygous, or alternate homozygous couples with rs199607206, 

which lays in a H3K4me1 islet region upstream of SRGAP2, a gene recently related to diabetic kidney 

disease (Levi, Myakala, & Wang, 2018; McLaren et al., 2016). In contrast, when rs142378541 is 

homozygous reference, it couples with rs76334393, a downstream non-coding transcript variant for 

CPEB4 which falls in an islet H3K4me3, H3K27ac regions (McLaren et al., 2016; Miguel-Escalada et 

al., 2019). This gene, which protects against diet-induced obesity, has been associated with 

measures of insulin sensitivity and insulin resistance (Orozco et al., 2018; Pell et al., 2021). 

Particularly, this low-frequency variant is correlated (r
2
=0.1333, p-value<0.0001) with the OGTT 
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fasting and plasma insulin cis-eQTL rs72812818 for CPEB4 (Machiela & Chanock, 2015). 

Remarkably, although the interaction effect is only significant for the case of rs142378541 presenting 

a heterozygous or alternate homozygous genotype, it results in a high risk of developing the disease 

for the first couple, and a protective effect in the second couple.  

 

 



 

91 

 
Figure 4. Some examples of epistatic variants with a well-known functional interpretation in terms of 

disease. Each panel shows the human islet genomic context of the variant with diverse tracks for genes and 

transcripts and different islet regulatory regions including superenhancers, enhancer clusters, H3K4me1, 

H3K4me3, and H3K27ac (Miguel-Escalada et al., 2019; Pasquali et al., 2014). For each variant examined the 

graph only displays the tracks containing relevant functional information. The panels represent: 



 

92 

A) Genomic context for the pairwise interaction between variants rs6821617 and rs12215743.  

B) Genomic context for the pairwise interaction between variants rs8073626 and rs17697699. 

C) Genomic context for the pairwise interaction between rs142378541, which couples with variant rs199607206 

in case of not being reference homozygous, and with variant rs76334393 when reference homozygous. 
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Discussion 

 The analysis of a large cohort of T2D to find groups of epistatic variants affecting the disease, 

has led us to find 10 pairs, 1 triplet and 1 quadruplet with an interaction effect statistically associated 

with T2D. Interestingly, although some studies have suggested that a smaller effect on the disease is 

expected from interactions (Tam et al., 2019), our results showed that the effect of the interaction 

terms appears to be greater in module when compared with marginal effects (OR between 0.13-4.27). 

Furthermore, despite current polygenic predictive models of the risk to develop the disease are based 

on the sum of the marginal effects of GWAS variants (Alonso, Morán, et al., 2021), we have observed 

that these effects can vary in the presence of variant synergies. Particularly, we have found some 

variants changing their effect from being protective to represent a risk for the disease, thus supporting 

the relevance of including variant interactions in future disease association models to obtain refined 

measures of the effects on the disease, and to detect novel regions that in terms of interaction, both in 

an additive and multiplicative manner, have a higher impact on the risk of developing the disease. 

Therefore, our epistatic groups can represent a step forward for the genomic understanding of T2D in 

terms of disease predisposition, and to complement and improve the prediction scores that are 

currently applied to the clinics. 

 

 After studying the possible functional explanations that mediate the statistical associations 

between the interactions and the disease (Siemiatycki & Thomas, 1981), using genomic, 

transcriptomic, and epigenetic information (Cano-Gamez & Trynka, 2020; Lichou & Trynka, 2020; 

Manolio, 2013), we observed that 25% of the groups contain at least one variant already known to be 

significantly associated with T2D, glycemic traits or expression in islets (p-value<5x10
-8

; 5% FDR) 

(Alonso, Piron, et al., 2021; Bonàs-Guarch et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al., 

2018; Scott et al., 2017; The DIAGRAM Consortium et al., 2014). These results provide support to the 

associations found in our study and, furthermore, although most of the epistatic groups found include 

some variants from which previous knowledge in T2D is unknown, the overlaps suggest the potential 

relation between islet regulatory variation with the disease as the underlying molecular mechanisms of 

the associations. Remarkably, despite this functional relation can be attributed to the selection of the 

discovery dataset, which was enriched in variants with higher levels of association with T2D (-log10(p-

value)>2), we discarded this option by comparing the results with a control set. In fact, after this 

comparison we conclude that islets expression regulatory variation can be suggested as some of the 

possible mechanisms underlying the epistatic associations. More specifically. we observed that the 

variants included in the groups obtained of candidate epistatic variants were significantly more 

associated with T2D and related glycemic traits, and more likely to fall in an islet regulatory region, 

than control variants (Miguel-Escalada et al., 2019; Pasquali et al., 2014), thus, suggesting that the 

combined effect of variation in different genomic regions and its effects on gene regulatory expression 

can be one of the putative mechanisms to mediate the disease. Remarkably, 16.66% of the groups 

include variants that have been both associated with T2D and with changes in human pancreatic islet 

expression. Additionally, 41.66% of the groups of candidate epistatic variants are composed of 

variants which present a modifier effect on genes and, although lying on non-coding regions, have an 

effect on islet expression or overlap an islet regulatory region.  

 

Finally, although some of the single independent variants previously known to be associated 

with T2D can be thought as driving the effect of the interaction in these groups under the additive 

model (Hemani et al., 2021), we have proved that the interaction term was the one significantly 

associated with the disease through the comparison between an additive and a full logistic regression 

model. In particular, this is not possible for the groups that do not contain variants previously 

associated with the disease in a single independent manner, which correspond to  the (quadruplet 

and 80% of the pairs). Thus, evidencing again the relevance of including the interaction of variants in 

association and prediction analyses to gain insight of the genomic effect of variation in the 

development of complex diseases. 
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 However, despite the promising results presented, there are some limitations surrounding this 

study that can be improved in future epistatic analyses. First, this study focuses on the analysis of 

European ancestry individuals. Thus, affecting the possible extension of the results obtained to non-

European populations, and limiting its projection to those loci that are shared between ancestries 

(Josep Maria Mercader & Florez, 2017; Spracklen et al., 2020; Vujkovic et al., 2020). Second, the 

high computational power required to analyse millions of variants simultaneously represents a burden 

for the discovery, thus limiting our study to those variants with a higher probability to be associated 

with T2D. Third, the number of individuals included in the study also represented a methodological 

limitation for the application of a ML technique. Particularly, it is recommended that the number of 

variants do not exceed the 10% of individuals (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 

2021). Although this is especially difficult in the genomics field, where the number of variants rises to 

millions, the number of individuals is increasing in current studies. Therefore, in the future, better 

results can be obtained by using this type of approaches to improve the genetic understanding of 

complex diseases.  

 

Moreover, in terms of accomplishing our goals to publish the study of the effects of epistasis 

in T2D, all these results are still preliminary. For example, to align with other association studies we 

need proof of replication in a completely independent dataset to ensure that our results can be 

extended to the European population, and that the same methodology can be applied to analyse the 

effect of epistasis in other complex diseases and other populations. For this reason, we have planned 

to assay the replication of the epistatic variants groups obtained in the UKBiobank (UKB). Particularly, 

we are in the process of being granted permission to access the UKB data, and to start the analyses 

in this direction.  

 

Additionally, given the increase in the availability of genomic data, current genomic studies 

are emerging where disease heterogeneity is being considered to find a better explanation of the 

disease towards personalised medicine (Ahlqvist et al., 2018, 2020; Dimas et al., 2014; H. Kim et al., 

2022; Mahajan, Wessel, et al., 2018; Mansour Aly et al., 2021; McCarthy, 2017; Scott et al., 2017; 

Udler et al., 2018). Although in this first study we have focused our analysis in finding epistatic groups 

of variants in T2D, after replication and publication of the results presented in this thesis, we have also 

planned to expand the study analysing T2D subgroups to reveal the groups of epistatic variants 

shared between these subgroups of diabetic individuals, and the exclusive interactions in each 

subgroup of patients. Additionally, it will be also interesting to apply the same methodology to other 

complex diseases, and to improve our analytical frameworks to analyse the epistatic problem at a 

genome wide level. Therefore, including in the study all the variants that we have discarded for 

computational limits reasons. Moreover, all the approaches presented in this study were implemented 

under the additive model. However, although most variants follow this genetic pattern, the remaining 

variants under non-additive models can escape from the discovery (Guindo-Martínez et al., 2021). For 

this reason, it will be of particular interest to extend our models to cover all the possible inheritance 

patterns, and therefore improve the explanation of T2D heritability. Finally, the analysis of 

chromosome X has been proved of particular relevance in terms of disease explanation (Bonàs-

Guarch et al., 2018). Particularly, although we have included this chromosome in the study, further 

efforts need to be applied to improve the analysis based on its particularities, therefore enhancing the 

complete inspection of its epistatic effects on the disease. 
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Methods 

Discovery dataset 

T2D case-control dataset 

The 70KforT2D is a T2D case-control dataset which includes data from 12,926 diabetic and 

57,191 non-diabetic individuals of European ancestry (Bonàs-Guarch et al., 2018). The individuals 

included in this dataset belong to 5 studies: Resource for Genetic Epidemiology Research on Aging 

(GERA), Finland-United States Investigation of NIDDM Genetics (FUSION), Wellcome Trust Case 

Control Consortium (WTCCC), Gene Environment Association Studies initiative (GENEVA), 

Northwestern University NUgene project (NUgene) (Burton et al., 2007; Colditz & Hankinson, 2005; 

Ghosh et al., 2000; Gottesman et al., 2013; Kvale et al., 2015). The genetic information is publicly 

available through the dbGaP platform for FUSION (phs000867.v1.p1), GENEVA (phs000091.v2.p1), 

NUgene (phs000237.v1.p1), GERA (phs000788.v2.p3), and the Sanger platform for WTCCC. The 

available metadata for each individual corresponds to measures of body-mass index, sex, age and 

diabetic type. Nonetheless, there is no available information from NUgene individuals’ age, neither for 

WTCCC individuals’ age and bmi. The genotype of the individuals included in each of the 5 cohorts 

that comprehend the 70KforT2D dataset, passed a quality control, and were imputed by Sílvia Bonàs-

Guarch, to reach genome-wide level, combining the power of two reference panels (Bonàs-Guarch et 

al., 2018). 

Dataset preparation 

To ensure the good quality of the genotype information included for downstream analysis, 

only the variants with an imputation INFO score>0.7 were kept from the panel with the best imputation 

quality, thus consisting on 15,131,345 variants. To avoid many factors that affect the performance of 

the machine learning method such as data type, the amount of available data, data imbalance, the 

presence of outliers, and data missingness, many preliminary analyses were performed (Chicco, 

2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). As a result, first, to prevent trend decisions 

based on case-control imbalance, only paired metadata individuals were included from each cohort, 

where 547 case-control pairs were included from FUSION, 1,883 from GENEVA, 6,743 from GERA, 

334 from NUgene and 1,894 from WTCCC (Methods Data imbalance). Then, the datasets were 

merged with qctool (Band & Marchini, 2018), therefore creating a dataset which consists of 

15,131,345 variants and 22,802 individuals (11,401 diabetic and 11,401 non-diabetic). The genotype 

probabilities were converted into hardcalls (hardcall-threshold 0.9) with PLINK (Chang et al., 2015). 

Finally, to ensure the good performance of the model, avoid computational problems, and prevent 

overfitting, the number of variants included in the analysis was reduced by keeping only those variants 

with a -log10(p-value)>2 from the 70KforT2D GWAS summary statistics (Methods Randomness 

assessment, Maximisation of variables explanation, Variables redundancy, Missingness, Data 

availability). Thus, the discovery dataset included only 105,896 genomic variants.  

Machine learning approaches 

Method selection 

 Different supervised machine learning classifiers from the scikit-learn library in python 

(Pedregosa et al., 2011) were applied to evaluate their performance in a reference subset of the data 

(1,667 GWAS significant (-log10(p-value)>7) features and 22,802 individuals) (Dey, 2016; Greener et 

al., 2021). The methods evaluated were Nearest Neighbours, Linear SVM, RBF SVM, Gaussian 

Process, Decision Trees, Random Forest, Neural Networks, AdaBoost, Naive Bayes, QDA and 

XGBoost. The results obtained by each method were evaluated in terms of computing time, precision, 

and the data type accepted by the method (Suppl. Table 1). The unique learners prepared to work 
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with missing data were Gaussian Process and XGBoost, however as missingness over a 10% is 

present in less than a 26% of the genomic variants included in our dataset, the rest of the methods 

were tested by assigning a new class to the missing genotypes. As a result, the best performance 

was obtained in terms of computation time and precision by XGBoost (T. Chen & Guestrin, 2016). 

Algorithm preparation 

A basic train-test algorithm was prepared first splitting the discovery dataset in two 

independent datasets: a train set and a test set (Chicco, 2017; Greener et al., 2021). Then, the train 

set was used by the XGBoost algorithm (T. Chen & Guestrin, 2016) to learn and the test set to 

evaluate the results. To prevent the overfitting of the model and to obtain the best performance, a grid 

search hyperparameter adjustment was applied under a 5-fold cross-validation algorithm. The 

hyperparameters adjusted were split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees 

(50, 100, 250, 500), and depth (1, 2, 3, 4). 

Data imbalance 

 The presence of data imbalance can affect the performance of the model resulting in trend 

decisions (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). To ensure the best 

performance of the model in the presence or absence of data imbalance, a subset of 1,667 GWAS 

significant variants (-log10(p-value)>7 (Bonàs-Guarch et al., 2018)) was created. Two datasets of 

individuals were prepared, one containing all the individuals from the 70KforT2D (12,926 diabetic and 

57,191 non-diabetic individuals) (Bonàs-Guarch et al., 2018), and a paired-metadata dataset, where 

each diabetic individual was paired with a non-diabetic individual sharing bmi and age range, and 

same sex. As a result, the paired-metadata dataset included the genotype information from 11,401 

diabetic and 11,401 non-diabetic individuals. Each individual included in these datasets was provided 

with the corresponding genotype information. Each dataset was used as an input to train and test the 

XGBoost model (T. Chen & Guestrin, 2016) under a 5-fold cross-validation with hyperparameters 

adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), 

and depth (1, 2, 3, 4)). The best hyperparameters were then used to train and test the model, and 

therefore, to evaluate the outcomes in terms of precision, accuracy, Recall, F1-score, and Matthews 

Correlation Coefficient (MCC). The remaining cases and controls from the 70KforT2D (Bonàs-Guarch 

et al., 2018) were also used as an independent test set for the paired-metadata dataset (Suppl. Table 

2, Suppl. Figure 1). The results obtained evidenced a best performance of the method in the 

absence of data imbalance. Therefore, the subsequent analyses were performed with the paired-

metadata dataset.  

Randomness assessment 

 To assess the effects of randomness at the genotype and phenotype level in the results 

obtained by the method, the performance of the 1,667 GWAS significant (-log10(p-value)>7 (Bonàs-

Guarch et al., 2018)) dataset with 22,802 individuals (reference dataset), was compared to two 

random control datasets with the same number of features and individuals. The first control dataset 

has the individual's genotype randomly assigned, and the second dataset has the individual's 

phenotype randomly assigned, maintaining the proportion of cases and controls. Each of these 

datasets was generated 1,000 times. Each dataset was used as an input to train and validate the 

XGBoost model (T. Chen & Guestrin, 2016) in the 5-fold cross-validation with hyperparameters 

adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), 

and depth (1, 2, 3, 4)). The results were evaluated in terms of precision for each depth and tree pairs. 

After assessing the normality of the distribution of the precision, using a Shapiro-Wilks test 

(3<N<5000) or Anderson-Darling test (N>=5000), we performed a t-test (normal distribution), sign test 

(not normal, non-symmetric distribution), or Wilcoxon signed-rank test (not normal, symmetric 

distribution), to check if the mean precision was significantly better than random (5% significance 
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level) (Suppl. Table 3, Suppl. Figure 2). As a result, we discarded randomness as affecting the 

outcomes obtained by the method in the reference dataset. 

Maximisation of variables explanation 

 The amount of available data can affect the performance of the model, particularly, the ideal 

machine learning situation is having at least ten times the number of features in the number of 

observations (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). However, although 1,667 

GWAS significant variants (-log10(p-value)>7 (Bonàs-Guarch et al., 2018)) evaluated in 22,802 

individuals (reference dataset) represents 7.3% of the number of observations, the effect of including 

different groups of variants without limiting the discovery dataset to only GWAS significant variants is 

not clear. To ensure that the inclusion of more variants can lead to a better classification of diabetic 

patients, a comparison was performed between the reference dataset with a random control dataset. 

This control dataset was created including 1,667 variants for each individual from a subset of the 

70KforT2D (105,896 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 2018)). Each random control 

dataset was generated 1,000 times. Each dataset was used as an input to train and validate the 

XGBoost model (T. Chen & Guestrin, 2016) in the 5-fold cross-validation with hyperparameters 

adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), 

and depth (1, 2, 3, 4)). The results were evaluated in terms of precision for each depth and tree pairs. 

After assessing the normality of the distribution of the precision, using a Shapiro-Wilks test 

(3<N<5000) or Anderson-Darling test (N>=5000), we performed a t-test (normal distribution), or 

Wilcoxon Mann-Whitney test (not normal), to check if the mean precision was significantly greater in 

the random dataset (5% significance level). Moreover, the precision results obtained for the best 

hyperparameters were compared between the datasets (Suppl. Table 4, Suppl. Figure 3). As the 

number of features was a limitation to improve the discovery, and better precision results were 

obtained for the random datasets, the decision was to include in the discovery dataset as many 

variants as possible. However, computational and methodological limitations reduced the discovery 

dataset to a subset of 105,896 variants (-log10(p-value)>2). 

Variables redundancy  

To ensure that variables redundancy was not affecting the model (Chicco, 2017; Dey, 2016; 

Greener et al., 2021; Sarker, 2021), we assessed the comparison between the results obtained by the 

model between the complete discovery dataset (105,896 variants, -log10(p-value)>2 (Bonàs-Guarch 

et al., 2018), 22,802 individuals), and the same dataset after doing a linkage disequilibrium clumping 

with PLINK (Chang et al., 2015) (r
2
=0.2, 250kb, p-value=0.5, 70KforT2D summary statistics (Bonàs-

Guarch et al., 2018)). The results obtained by the 5-fold cross-validation algorithm with 

hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 

100, 250, 500), and depth (1, 2, 3, 4)) were compared in terms of precision for each depth and tree 

pairs. After assessing the normality of the distribution of the precision, using a Shapiro-Wilks test, we 

performed a t-test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the 

mean precision was significantly greater in the discovery dataset than in the clumped dataset (5% 

significance level). Moreover, the precision results obtained for the best hyperparameters were 

compared between the datasets (Suppl. Table 5, Suppl. Figure 4). No significant differences were 

observed between the datasets in terms of the mean, median, or best precision obtained. As a result, 

we prioritised the use of the complete discovery dataset to include the maximum number of signals, 

and to prevent hidden causal variants driving the effect of the interaction (Hemani et al., 2021). 

Missingness 

Although XGBoost (T. Chen & Guestrin, 2016) is a method prepared to work with missing 

values, it is known that the presence of missing values in the dataset can affect the performance of 

the model (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). Particularly, the 26% of the 

variants included in the discovery dataset (105,896 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 
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2018), 22,802 individuals) present over a 10% of missing values. Consequently, to ensure the good 

performance of the model with this proportion of missingness, a comparison was made between the 

complete discovery dataset and the same dataset reducing the number of variants to be analysed to 

those with less than a 10% of missingness. The results obtained were compared under the 5-fold 

cross-validation algorithm with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 

0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) in terms of performance. After 

assessing the normality of the distribution of the precision, using a Shapiro-Wilks test, we performed a 

t-test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the mean 

precision was significantly greater in the discovery dataset than in the dataset with less missingness 

(5% significance level). Moreover, the precision results obtained for the best hyperparameters were 

compared between the datasets (Suppl. Table 6, Suppl. Figure 5). No significant differences were 

observed between the datasets in terms of the mean, median, or best precision obtained. As a result, 

we prioritised the use of the complete discovery dataset to include the maximum number of signals, 

and to prevent hidden causal variants driving the effect of the interaction (Hemani et al., 2021). 

Data availability 

The amount of available data can affect the performance of the model, particularly, the ideal 

machine learning situation is having at least ten times the number of features in the number of 

observations (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). Given that the discovery 

dataset (105,896 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 2018), 22,802 individuals) was not 

accomplishing this rule, the results between the discovery dataset and applying PCA 

multidimensionality reduction with scikit-learn library in python (Pedregosa et al., 2011) were 

compared. For this reason, two datasets were created keeping the PCs explaining the 95% of 

variability (PCA), and just keeping the first 2,200 PCs (10% of the number of observations; PCA10). 

The performance of the algorithm was evaluated under a 5-fold cross-validation algorithm with 

hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 

100, 250, 500), and depth (1, 2, 3, 4)). The results were compared in terms of precision for each 

depth and tree pairs. After assessing the normality of the distribution of the precision, using a Shapiro-

Wilks test, we performed a t-test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to 

check if the mean precision was significantly greater in the discovery dataset than in the PCs datasets 

(5% significance level). Moreover, the precision results obtained for the best hyperparameters were 

compared between the datasets (Suppl. Table 7, Suppl. Figure 6). Although a significantly better 

precision was obtained with both PCs datasets compared with the discovery dataset, the small benefit 

in terms of precision (<2%) produced by the use of these datasets, in contrast with the loss of 

biological and genetic explanation caused by the PCA transformation, the discovery dataset was the 

one selected to continue the analysis. 

Hyperparameters adjustment 

After ensuring a good performance of the complete method with the discovery dataset 

(105,896 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 2018), 22,802 individuals), the 

hyperparameters were adjusted to prevent overfitting and to obtain the best results from the model 

(Greener et al., 2021). The parameters under evaluation were the split of the dataset in training and 

test (0.2, 0.3), the learning rate needed to create a new tree (0.01, 0.04, 0.07, 0.1), the number of 

trees that the method will construct (50, 100, 250, 500), and the depth of each tree (1, 2, 3, 4).  

Particularly, the number of trees and the depth of the tree were detected as the main causes leading 

to overfitting during the 5-fold cross-validation. For this reason, the maximum depth of a tree was 

limited to 4. To ensure that the overfitting observed during the 5-fold cross-validation was not 

extended to the prediction, the performance of the algorithm in terms of precision was compared 

between the validation set and the test set. After assessing the normality of the distribution of the 

precision, using a Shapiro-Wilks test, we performed a t-test (normal distribution), or Wilcoxon Mann-

Whitney test (not normal), to check if the mean precision was significantly different in the validation 

dataset than in the test dataset (5% significance level) (Suppl. Table 8, Suppl. Figure 7). No 
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significant differences were detected. Therefore, the rest of the hyperparameters (split and learning 

rate) were defined by taking those that lead to the best median precision in the validation set under 

the 5-fold cross-validation. All the scenarios were kept for downstream analysis based on the number 

of trees expected as an outcome. The best hyperparameters for each scenario correspond to: 

50 trees 
 Depth 1: split = 0.2, learning rate = 0.1 

 Depth 2: split = 0.2, learning rate = 0.1 

 Depth 3: split = 0.2, learning rate = 0.1 

 Depth 4: split = 0.2, learning rate = 0.1 
100 trees 

 Depth 1: split = 0.2, learning rate = 0.1 

 Depth 2: split = 0.2, learning rate = 0.1 

 Depth 3: split = 0.2, learning rate = 0.1 

 Depth 4: split = 0.2, learning rate = 0.07 
250 trees 

 Depth 1: split = 0.2, learning rate = 0.1 

 Depth 2: split = 0.2, learning rate = 0.1 

 Depth 3: split = 0.3, learning rate = 0.07 

 Depth 4: split = 0.2, learning rate = 0.07 
500 trees 

 Depth 1: split = 0.3, learning rate = 0.1 

 Depth 2: split = 0.3, learning rate = 0.1 

 Depth 3: split = 0.3, learning rate = 0.1 

 Depth 4: split = 0.2, learning rate = 0.07 

Genomic inspection of the results 

Model outcomes interpretation 

 The XGBoost method (T. Chen & Guestrin, 2016) is based on extreme gradient boosting 

trees, therefore the resulting model obtained after the training is composed of a list of the most 

relevant variants for the method to do the classification with their corresponding scores, and the 

complete set of final decision trees including the decisions. After the test step, the method provides a 

list with the predictions and the real observed values. The list of variants can be scored using two 

different measures, the weight, which is related to the number of times that the variant has been used 

to make a decision, or the gain, which corresponds to the accuracy value after adding the variant to 

the final model. The trees obtained represent at least one group of candidate interacting variants, 

where the leaves are the variants in each group, and the branches are the decisions made by the 

method. Particularly, the analysis of the complete set of decisions made during the training 

correspond to find differences between the variants genotype, thus responding to questions such as  

the variant being reference homozygous or alternate homozygous for a particular individual. 

Therefore, a list of all the unique groups of candidate epistatic variants was created, based on the 

decisions made by each of the trees, to facilitate a better genomic comprehension of the epistatic 

groups obtained as an outcome of the model, and to simplify their downstream functional assessment. 

Candidate epistatic groups base genomics 

To have a preliminary overview of the variants included in the groups of candidate epistatic 

variants for each scenario (50, 100, 250, and 500 trees), we first classified them by their minor allele 

frequency calculated with PLINK (Chang et al., 2015) (Suppl. Figure 8). Second, to understand the 

relation between the candidate variants by tree and by depth, we calculated the linkage disequilibrium 

(LD) between all the pairs of variants resulting from our analyses in terms of r
2
 with PLINK (Chang et 

al., 2015) (--r2 --ld-window-kb 500). Then we evaluated the percentage of variants in strong LD 

(r
2
>0.8) and in weak LD (r

2
>0.2) that were included in each group of candidate epistatic variants. This 

last analysis was performed considering all the variants in the first group being in LD with the variants 
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in the second group, and also accepting that only some variants from the first group were in LD with 

the variants in the second group (Suppl. Table 9). 

Genomic, transcriptomic, and epigenetic functional assessment 

Resources 

 The TIGER browser (http://tiger.bsc.es) and its database (Alonso, Piron, et al., 2021) was 

used to inspect and extensively annotate the different loci included in each group of epistatic variants. 

To prepare the annotations, the genomic information from T2D GWAS meta-analysis summary 

statistics from the 70KforT2D (Bonàs-Guarch et al., 2018), DIAGRAM DIAMANTE (Mahajan, Taliun, 

et al., 2018), DIAGRAM trans-ethnic (The DIAGRAM Consortium et al., 2014), DIAGRAM 1000G 

(Scott et al., 2017), transcriptome expression results from human pancreatic islets expression 

quantitative trait loci (eQTL) and combined allelic specific expression (cASE) (Alonso, Piron, et al., 

2021), islets epigenetic marks (Miguel-Escalada et al., 2019; Pasquali et al., 2014), and variant effect 

predictor annotations (McLaren et al., 2016), were downloaded from the TIGER resource. Moreover, 

MAGIC trans-ancestry and single-ancestry meta-analyses on glycemic traits (fasting glucose, 2h 

glucose levels, and fasting insulin levels) summary statistics were gathered (J. Chen et al., 2021). 

Annotations overlap 

To assess the overlap between the candidate epistatic variants obtained in each group (pairs, 

trios, and quadruplets), each variant was annotated using the summary statistics from different T2D 

GWAS meta-analysis (Bonàs-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et al., 2017; 

The DIAGRAM Consortium et al., 2014), European ancestry glycemic traits meta-analysis (J. Chen et 

al., 2021), and human pancreatic islets eQTL and cASE (Alonso, Piron, et al., 2021). Only the 

significant annotations were kept, therefore only allowing the inclusion of the annotations with a p-

value<5x10
-8

 for T2D and glycemic traits GWAS meta-analyses, p-value<3.453x10
-5

 for eQTL (5% 

FDR), and 5% FDR for cASE. The results obtained were used to calculate the proportion of epistatic 

variants which overlap with already known significant variants associated with T2D or glycemic traits. 

The same calculation was applied with eQTL and cASE to see the proportion of variants included in 

the epistatic groups which have an already known functional interpretation in terms of pancreatic islet 

expression (Suppl. Figure 9). 

Functional annotations enrichment 

To analyse the functional annotations enrichment of the list of epistatic variants obtained in 

each group (pairs, trios, and quadruplets) the summary statistics and available annotations from T2D 

GWAS meta-analysis (Bonàs-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et al., 2017; 

The DIAGRAM Consortium et al., 2014), European ancestry glycemic traits meta-analysis (J. Chen et 

al., 2021), human pancreatic islets expression (Alonso, Piron, et al., 2021), islet regulatory elements 

(Miguel-Escalada et al., 2019; Pasquali et al., 2014), and gene functional impact (McLaren et al., 

2016), were downloaded. For the pancreatic islets expression, only the significant annotations (5% 

FDR) of eQTL and cASE were kept. In the same manner, only the significant annotations for T2D and 

glycemic traits GWAS meta-analyses (p-value<5x10
-8

) were evaluated in the epistatic groups. For 

each group of epistatic variants a null distribution of control variants from the discovery dataset was 

generated. The control group included the same number of variants as the epistatic group, with the 

same MAF distribution. Therefore, first, the MAF distribution by decile was calculated on the discovery 

set. Second, a recount of epistatic variants included in each decile was performed to then randomly 

select 1,000 times the same amount of variants from the corresponding MAF decile in the discovery 

dataset. All the variants in the sets were annotated using GWAS and islet significant annotations. The 

proportion of annotated variants in the groups was finally compared. After assessing the normality of 

the distribution of the percentage of variants annotated, using a Shapiro-Wilks test, we performed a t-

test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the mean precision 
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was significantly different in the results dataset than in the control dataset (5% significance level) 

(Figure 3; Table 2).  

Statistical assessment 

Logistic regression epistasis 

To validate the results obtained from the machine learning algorithm, a logistic regression 

was performed in the discovery dataset (22,802 individuals, candidate groups of epistatic variants). 

The regression was applied for two statistical models, where the first (additive model) only considered 

the additive marginal effect of the variants  

𝑙𝑛 (
𝑃(T2D)

𝑃(control)
) = ∑ 𝛽𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖

𝑁
𝑖=1 , 𝑁 ∈ {2,3,4}, 

and the second (interaction model) combined the additive marginal effect of the variants with all their 

possible interactions 

𝑙𝑛 (
𝑃(T2D)

𝑃(control)
) = ∑ 𝛽𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖

𝑁
𝑖=1 + ∑ 𝛽𝑖𝑗𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑗 +∑ 𝛽𝑖𝑗𝑘𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑗𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑘

𝑁
𝑖,𝑗,𝑘=1
𝑖≠𝑗≠𝑘

+𝑁
𝑖,𝑗=1
𝑖≠𝑗

∑ 𝛽𝑖𝑗𝑘𝑙𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑗𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑘𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑙
𝑁
𝑖,𝑗,𝑘,𝑙=1
𝑖≠𝑗≠𝑘≠𝑙

, 𝑁 ∈ {2,3,4}. 

Each of the models was adjusted to capture the effect of bmi, age, sex, and the first 7 PCs. The PCs 

were calculated using PLINK (Purcell et al., 2007) multidimensional-scaling method (MDS) to account 

for the population structure. The results obtained from the machine learning algorithm with a non-

significant Bonferroni p-value association (∝= 0.05) in the interaction term, adjusted for multiple 

testing correction for each group size, were filtered. Moreover, the effect of epistasis in the candidate 

groups of epistatic variants was measured and compared between the two models. After assessing 

the normality of the distribution of the effect, using a Shapiro-Wilks test, we performed a t-test (normal 

distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the mean effect was significantly 

different in the additive model than in the interaction model for the marginal effects (5% significance 

level) (Figure 2). Some significant differences were detected in the pairwise interactions. Moreover, to 

check if there were significant differences in the distribution of the marginal effects between the two 

models, a Kolmogorov-Smirnov test was performed (Suppl. Table 10). No significant differences 

were detected. Additionally, we calculated the proportion of changes observed in the sign of the 

variants marginal effects between the two models. 
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Supplemental Materials 

Supplemental Figure 1. Evaluation of the performance of XGBoost under case-control 

imbalance.
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The performance of the method was evaluated with case-control imbalanced data 70KforT2D (12,926 diabetic 

and 57,191 non-diabetic individuals, 1,667 variants, -log10(p-value)>7 (Bonàs-Guarch et al., 2018)), and 

balanced data 22K (11,401 diabetic and 11,401 non-diabetic paired metadata individuals, 1,667 variants, -

log10(p-value)>7 (Bonàs-Guarch et al., 2018)), in terms of precision (Prec), accuracy (Acc), recall (Recall), F1-

score (F1), and Matthews Correlation Coefficient (MCC). After a 5-fold cross-validation with hyperparameters 

adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth 

(1, 2, 3, 4)), the best hyperparameters were used to test the results for each dataset. For each depth A) 1, B) 2, 

C) 3, D) 4, and number of trees (columns), each row displays the percentage obtained (y axis) for each reliability 

measure (x axis) evaluated in the imbalanced (top) and balanced (bottom) datasets. Each violin plot represents 

the distribution of the reliability measures obtained for each hyperparameter combination. The coloured dots 

correspond to the results obtained with the best hyperparameters. The squared data encapsulates the best 

results. For the balanced dataset the results on the test set (left), and a prediction on the remaining 70KforT2D 

(right) are provided. 

 

  



 

106 

Supplemental Figure 2. Evaluation of the performance of XGBoost in terms of randomness. 

 
The effect of randomness in the prediction was evaluated based on a comparison between A) the 22K GWAS significant dataset (11,401 diabetic, 11,401 non-diabetic paired 

metadata individuals, 1,667 variants, -log10(p-value)>7 (Bonàs-Guarch et al., 2018)), and 1,000 control randomizations of B) the genotype, and C) the phenotype. Each row 

shows the results obtained for the precision during the train (left) and validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), 

learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) for each scenario. The violin plots display the distribution of the percentage of 

precision (y axis) obtained by each combination of hyperparameters in terms of depth (x axis), and number of trees (columns), for each dataset. The coloured dots represent 

the results obtained with the best hyperparameters. The numbers inside the parentheses correspond to the median number of candidate interacting variants obtained during 

the training for the best hyperparameters. The squared data encapsulates the best results. 
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Supplemental Figure 3. Evaluation of the performance of XGBoost in terms of variable explanation. 

 
The effect of variable explanation in the prediction was evaluated based on the comparison between A) the 22K GWAS significant dataset (11,401 diabetic, 11,401 non-

diabetic individuals, 1,667 GWAS significant variants, -log10(p-value)>7 (Bonàs-Guarch et al., 2018)), and B) 1,000 control randomizations of the variants included in the 

discovery dataset (1,667 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 2018)). Each row shows the results obtained for the percentage of precision during the train (left) 

and validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 

500), and depth (1, 2, 3, 4)) for each dataset. The violin plots display the distribution of the percentage of precision (y axis) obtained by each combination of hyperparameters 

in terms of depth (x axis), and number of trees (columns), for each dataset. The coloured dots represent the results obtained with the best hyperparameters. The numbers 

inside the parentheses correspond to the median number of candidate interacting variants obtained during the training for the best hyperparameters. The squared data 

encapsulates the best results.  
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Supplemental Figure 4. Evaluation of the performance of XGBoost in terms of variable redundancy. 

 
The effect of variable redundancy in the prediction was evaluated based on the comparison between A) the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic 

individuals, 105,896 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 2018)), and B) the discovery dataset after LD clumping (r
2
=0.2, 250kb, p-value=0.5, 70KforT2D summary 

statistics (Bonàs-Guarch et al., 2018)). Each row shows the results obtained for the percentage of precision during the train (left) and validation (right) steps of the 5-fold cross-

validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) for each dataset. 

The violin plots display the distribution of the percentage of precision (y axis) obtained by each combination of hyperparameters in terms of depth (x axis), and number of trees 

(columns), for each dataset. The coloured dots represent the results obtained with the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation 

training step correspond to the difference between the precision of the training and the validation for the best hyperparameters. The numbers inside the parentheses in the 5-

fold cross-validation validation step correspond to the median number of candidate interacting variants obtained during the training for the best hyperparameters. The squared 

data encapsulates the best results.  

 

  



 

109 

Supplemental Figure 5. Evaluation of the performance of XGBoost in terms of missingness. 

 
The effect of missingness in the prediction was evaluated based on the comparison between A) the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic individuals, 

105,896 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 2018)), and B) the discovery dataset after filtering variants with over 10% of missing genotypes. Each row shows the 

results obtained for the percentage of precision during the train (left) and validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), 

learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) for each dataset. The violin plots display the distribution of the percentage of 

precision (y axis) obtained by each combination of hyperparameters in terms of depth (x axis), and number of trees (columns), for each dataset (rows). The coloured dots 

represent the results obtained with the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation training step correspond to the difference 

between the precision of the training and the validation for the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation validation step 

correspond to the median number of candidate interacting variants obtained during the training for the best hyperparameters. The squared data encapsulates the best results.  
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Supplemental Figure 6. Evaluation of the performance of XGBoost in terms of data availability. 

 
The effect of data availability in the prediction was evaluated based on the comparison between A) the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic individuals, 

105,896 variants, -log10(p-value)>2 (Bonàs-Guarch et al., 2018), B) the PCs of the discovery dataset explaining a 95% of the variance, and C) the PCs of the discovery 

dataset representing the 10% of the number of observations (2,200 first PCs). Each row shows the results obtained for the percentage of precision during the train (left) and 

validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), 

and depth (1, 2, 3, 4)) for each dataset. The violin plots display the distribution of the percentage of precision (y axis) obtained by each combination of hyperparameters in 

terms of depth (x axis), and number of trees (columns), for each dataset. The coloured dots represent the results obtained with the best hyperparameters. The numbers inside 

the parentheses in the 5-fold cross-validation training step correspond to the difference between the precision of the training and the validation for the best hyperparameters. 

The numbers inside the parentheses in the 5-fold cross-validation validation step correspond to the median number of candidate interacting variants obtained during the 

training for the best hyperparameters. The squared data encapsulates the best results. 
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Supplemental Figure 7. Evaluation of the performance of XGBoost in terms of overfitting. 

 
The effect of overfitting was evaluated based on the comparison between the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic individuals, 105,896 variants, -

log10(p-value)>2 (Bonàs-Guarch et al., 2018)) in the validation set under the 5-fold cross-validation and the test set. Each row shows the results obtained in terms of precision 

during the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 

4)) and test steps for different numbers of trees: A) 50, B) 100, C) 250, D) 500. The violin plots display the distribution of the percentage of precision (y axis), obtained by each 

combination of hyperparameters in terms of depth (x axis), and number of trees (row), in the training step (left) and the val idation step (middle) of the 5-fold cross-validation, 



 

112 

and in the test step (right). The coloured dots represent the results obtained with the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation 

training step correspond to the difference between the precision of the training and the validation for the best hyperparameters. The numbers inside the parentheses in the 5-

fold cross-validation validation step correspond to the median number of candidate interacting variants obtained during the training for the best hyperparameters. The numbers 

inside the parentheses in the test step represent the difference in precision between the validation and test set for the best hyperparameters. The scatterplots show the 

precision values obtained for each combination of hyperparameters, comparing the results obtained during the 5-fold cross-validation training (x axis) with the validation and 

test sets (y axis). The different colours of the dots correspond to different depths of the tree (1, 2, 3, 4). The bigger points represent the results obtained with the best 

hyperparameters in the validation (lighter colours) and the test (darker colours). The red dashed line is defined by the identity (x=y).  
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Supplemental Figure 8. Minor Allele Frequencies from the variants included in the groups 

obtained from the different scenarios (50, 100, 250, and 500 trees). 

 
As a result from applying the machine learning algorithm, diverse candidate groups of epistatic variants were 

obtained depending on the number of trees (columns). The variants included in each group (single, pairs, trios, 

and quadruplets) were analysed to calculate their Minor Allele Frequencies (MAF). The pie charts display the 

percentage of common (0.05<=MAF), low-frequency (0.01<=MAF<0.05), and rare variants observed in each 

group (rows). 
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Supplemental Figure 9. Annotations overlap. 

 
The variants present in each group of epistatic variants (pairwise, trio, and quadruplets) were annotated with significant T2D GWAS meta-analysis (Bonàs-Guarch et al., 2018; 

Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM Consortium et al., 2014), significant European ancestry glycemic traits meta-analysis (J. Chen et al., 2021), and 

significant human pancreatic islets eQTL and cASE expression results (Alonso, Piron, et al., 2021). The grey pie charts represent separately the proportion of epistatic variants 

previously associated with T2D or glycemic traits, and the proportion of epistatic variants with an already known effect on pancreatic islet expression. For each pie chart, the 

number of annotated variants inside a group is represented in a colour scale. The blue pie charts display the proportion of epistatic variants with any previously reported 

association with T2D, glycemic traits or pancreatic islet expression. 
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Supplemental Table 1. Evaluation of the performance of different machine learning methods in 

a subset of the discovery dataset (1,667 GWAS significant features, 11,401 cases, 11,401 

controls). 

Method 
Nearest 

Neighbours 

Linear 

SVM 

RBF 

SVM 
Gaussian 
Process 

Decision 

Trees 

Random 

Forest 

Neural 

Networks 
AdaBoost 

Naive 

Bayes 
QDA XGBoost 

Time 10min 25min 28min >2h 2min 2min 2min 2min 2min 2min 2min 

Score 0.52 0.54 0.5  0.54 0.53 0.55 0.56 0.55 0.51 0.56 

Other Nans Nans Nans  Nans Nans Nans Nans Nans Nans  

 

Supplemental Table 2. Evaluation of the performance of XGBoost based under case-control 

imbalance. 

Depth 

N.trees 50 100 250 500 

Dataset / 
Measures 

Best 
70K 
test 

Best 
22K 
test 

Best 
22K 

predict 

Best 
70K 
test 

Best 
22K 
test 

Best 
22K 

predict 

Best 
70K 
test 

Best 
22K 
test 

Best 
22K 

predict 

Best 
70K 
test 

Best 
22K 
test 

Best 
22K 

predict 

1 

Precision (%) 44.65 55.27 8.32 44.65 56.05 10.64 44.65 56.96 10.89 44.59 56.86 10.79 

Accuracy (%) 79.51 55.32 53.67 79.51 55.75 56.07 79.51 56.66 56.53 79.49 56.53 56.33 

Recall (%) 46.5 55.66 52.97 46.5 53.13 51.47 46.5 54.47 52.3 46.54 54.06 52 

F1-score (%) 45.56 55.46 14.38 45.56 54.56 17.63 45.56 55.69 18.03 45.54 55.42 17.87 

MCC (%) 32.96 10.63 3.5 32.95 11.52 4.64 32.96 13.33 5.38 32.92 13.07 5.09 

2 

Precision (%) 44.65 56.46 10.7 44.65 56.02 8.65 44.65 56.5 8.65 44.23 56.19 10.88 

Accuracy (%) 79.51 56.25 55.39 79.51 55.95 55.68 79.51 56.41 55.46 79.31 56.15 55.61 

Recall (%) 46.5 54.53 52.85 46.5 55.31 52.68 46.5 55.66 53.02 46.85 55.7 53.64 

F1-score (%) 45.56 55.48 17.8 45.56 55.66 14.86 45.56 56.08 14.87 45.5 55.94 18.09 

MCC (%) 32.96 12.51 4.92 32.96 11.91 4.51 32.96 12.83 4.55 32.77 12.29 5.47 

3 

Precision (%) 44.65 56.31 8.64 44.65 57.07 10.91 44.42 56.99 10.71 44.4 57.02 10.79 

Accuracy (%) 79.51 56.24 55.27 79.51 56.94 55.83 79.4 56.72 55.48 79.39 56.76 55.98 

Recall (%) 46.5 55.61 53.15 46.5 55.96 53.49 46.77 54.71 52.79 46.77 54.85 52.53 

F1-score (%) 45.56 55.96 14.86 45.56 56.51 18.12 45.56 55.83 17.81 45.55 55.91 17.9 

MCC (%) 32.96 12.48 4.5 32.96 13.87 5.54 32.89 13.44 4.94 32.87 13.53 5.14 

4 

Precision (%) 44.59 57.03 8.73 43.53 56.38 10.79 44.31 57.13 10.8 43.04 56.38 10.79 

Accuracy (%) 79.49 56.94 55.49 78.96 56.28 55.52 79.35 56.95 55.48 48.69 56.28 55.52 

Recall (%) 46.58 56.18 53.54 47.62 55.44 53.21 46.81 55.67 53.33 48.32 55.44 53.21 

F1-score (%) 45.56 56.6 15.01 45.48 55.91 17.94 45.53 56.39 17.96 45.53 55.91 17.94 

MCC (%) 32.94 13.88 4.82 32.53 12.56 5.19 32.81 13.91 5.23 32.42 12.56 5.19 
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Supplemental Table 3. Evaluation of the average performance of XGBoost in terms of 

randomness. 

Depth 

N.trees 50 100 250 500 

Dataset 
Median 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Median 
N.Feat. 

1 

Reference 54.84* 24 55.63* 42 56.65* 79 56.89* 72 

Random 
genotype 

49.98 4 50 9 50 20 50 35 

Random 
phenotype 

50.07* 4 50.06* 7 50.03 14 50.02 132 

2 

Reference 55.49* 79 56.62* 133 56.67* 165 56.55* 357 

Random 
genotype 

50.01 83 49.99 180 50 240 50.01* 404 

Random 
phenotype 

50.05* 18 50.04* 32 50.02 272 50 122 

3 

Reference 56.04* 182 56.53* 261 56.61* 365 56.5* 536 

Random 
genotype 

50 66 50.01 131 49.99 755 50 937 

Random 
phenotype 

50.03 43 50.01 89 50.02 449 50 522 

4 

Reference 56.24* 324 56.52* 389 56.5* 572 56.15* 516 

Random 
genotype 

50 423 50 348 50.02* 1,307 50 1,598 

Random 
phenotype 

50.02 100 50.03 345 50.02 546 50 801 

* mean precision greater than 50% (5% significance level) 

 

Supplemental Table 4. Evaluation of the performance of XGBoost in terms of variable 

explanation. 

Depth 

N.trees 50 100 250 500 

Dataset 
Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

1 
Reference 54.84 55.61 24 55.64 56.68 42 56.65* 57.03 79 56.89 57.01 72 

Random 54.13 55.84 26 54.38 56.44 49 55.01 57.77 123 55.89 58.63 235 

2 
Reference 55.49 56.75 79 56.62 57 133 56.67* 57 165 56.55* 56.84 357 

Random 54.38 56.45 94 54.87 57.85 177 56.12 59.17 394 57.33 60.62 639 

3 
Reference 56.04 56.82 182 56.53 57.07 261 56.61* 56.86 365 56.49** 56.84 536 

Random 54.63 57.17 225 55.44 58.28 402 56.92 59.92 739 58.24 60.83 1,069 

4 
Reference 56.25 56.75 324 56.52 56.8 389 56.5** 57.09 572 56.15** 56.82 516 

Random 54.91 57.57 450 55.88 58.43 707 57.46 60.33 1,076 58.75 61.28 1,297 
* mean reference set precision equals to mean random set precision (5% significance level) 

** mean reference set precision lower than mean random set precision (5% significance level) 
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Supplemental Table 5. Evaluation of the performance of XGBoost in terms of variable 

redundancy. 

Depth 

N.trees 50 100 250 500 

Dataset 
Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Media

n 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Media
n 

Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

1 
Clumped 54.63* 55.32 29 55.13* 56.13 64 56.24* 57.17 173 57.24* 58.07 337 

Discovery 54.67 55.4 32 55.07 56.11 72 56.06 56.84 188 56.79 57.83 363 

2 
Clumped 54.98* 55.88 109 55.94* 56.47 226 57.16* 58.28 559 58.42* 60.12 1,064 

Discovery 55.34 56.11 123 55.9 56.61 252 57.01 57.83 620 58 59.73 1,166 

3 
Clumped 55.68* 56.61 283 56.65* 57.21 509 58.36* 59.23 1,308 59.95* 61.19 2,355 

Discovery 55.79 56.69 308 56.62 57.34 617 58.04 58.63 1,359 59.53 60.27 2,745 

4 
Clumped 56.1* 57 610 57.09* 58.13 1,154 58.93* 60.07 2,504 60.72* 62.2 3,998 

Discovery 56.11 56.85 666 57.06 57.34 1,245 58.71 59.52 2,881 60.46 61.02 5,305 
* mean clumped set precision equals to mean discovery set precision (5% significance level) 

 

Supplemental Table 6. Evaluation of the performance of XGBoost in terms of missingness. 

Depth 

N.trees 50 100 250 500 

Dataset 
Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Media

n 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Media
n 

Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Media

n 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

1 
Discovery 

<10%miss 
54.63* 55.47 30 55.1* 56.19 70 56.16* 57.05 188 56.83* 58.09 362 

Discovery 54.67 55.4 32 55.07 56.11 72 56.06 56.84 188 56.79 57.83 363 

2 
Discovery 

<10%miss 
55.04* 56.37 122 55.88* 56.81 250 57.06* 58.1 612 58.32* 59.75 1,164 

Discovery 55.35 56.11 123 55.9 56.61 252 57.01 57.83 620 58 59.73 1,166 

3 
Discovery 

<10%miss 
55.88* 56.97 306 56.63* 57.06 564 57.18* 59 1,468 59.58* 61.1 2,751 

Discovery 55.79 56.69 308 56.62 57.34 617 58.04 58.63 1,359 59.53 60.27 2,745 

4 
Discovery 

<10%miss 
56.14* 56.85 670 57.32* 57.76 1,252 58.96* 59.38 2,880 60.52* 61.48 5,469 

Discovery 56.11 56.85 666 57.06 57.34 1,245 58.71 59.52 2,881 60.46 61.02 5,305 
* mean discovery (<10% missing values) set precision equals to mean discovery set precision (5% significance level) 

 

Supplemental Table 7. Evaluation of the performance of XGBoost in terms of data availability. 

Depth 

N.trees 50 100 250 500 

Dataset 
Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Median 
Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

Media
n 

Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Media

n 
N.Feat. 

Media
n 

Prec. 
(%) 

Best 
Prec. 
(%) 

Best 
Median 
N.Feat. 

 
1 

PCA10 55.26* 56.53 23 56.25** 57.51 47 57.84** 59.28 113 59.17** 60.71 207 

PCA 55.33* 56.44 24 56.32** 57.19 48 57.73** 59.21 119 59.26** 60.35 227 

Discovery 54.67 55.4 32 55.07 56.11 72 56.06 56.84 188 56.79 57.83 363 

2 

PCA10 56.55** 57.41 81 57.66** 58.63 145 59.54** 60.56 357 60.79** 61.92 629 

PCA 56.46** 57.35 85 57.4** 58.3 168 59.22** 59.87 405 60.27** 61.17 746 

Discovery 55.35 56.11 123 55.9 56.61 252 57.01 57.83 620 58 59.73 1,166 

3 

PCA10 57.27** 58.06 191 58.21** 59.3 345 60.12** 60.79 802 61.48** 62.04 1,874 

PCA 57.06** 57.62 205 57.89** 58.67 429 59.27** 59.77 911 60.35* 60.96 1,752 

Discovery 55.79 56.69 308 56.62 57.34 617 58.04 58.63 1,359 59.53 60.27 2,745 

4 

PCA10 57.21** 57.71 469 58.74** 58.97 744 60.33** 60.92 1,448 61.81** 62.04 1,874 

PCA 56.83** 57.05 534 57.59** 58.01 993 59.17** 59.65 1,969 60.1* 60.82 3,268 

Discovery 56.11 56.85 666 57.06 57.34 1,245 58.71 59.52 2,881 60.46 61.02 5,305 
* mean PCA and/or PCA10 set precision equals to mean discovery set precision (5% significance level) 

** mean PCA and/or PCA10 set precision greater than mean discovery set precision (5% significance level) 
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Supplemental Table 8. Evaluation of the performance of XGBoost in terms of overfitting. 

N.trees 50 100 250 500 

Depth 

Median 
Prec. 
5-CV 
val. 
(%) 

Median 
Prec. 
test 
(%) 

Best 
Prec. 
test 
(%) 

Median 
Prec. 
5-CV 
val. 
(%) 

Median 
Prec. 
test 
(%) 

Best 
Prec. 
test 
(%) 

Median 
Prec. 
5-CV 
val. 
(%) 

Median 
Prec. 
test 
(%) 

Best 
Prec. 
test 
(%) 

Median 
Prec. 
5-CV 
val. 
(%) 

Median 
Prec. 
test 
(%) 

Best 
Prec. 
test 
(%) 

1 54.67* 54.95 55.19 55.07* 55.64 56.33 56.06* 56.42 56.45 56.79* 56.84 57.92 

2 55.35* 55.58 55.83 55.9* 56.25 56.53 57.01* 56.97 57.65 58* 58.35 58.49 

3 55.79* 55.95 56.17 56.62* 56.53 56.87 58.04* 57.6 58.38 59.53* 59.56 59.91 

4 56.11* 55.84 56.29 57.06* 56.99 56.83 58.71* 58.3 58.21 60.46* 60.09 60.52 
* mean 5-CV validation set (5-CV val) precision equals to mean test set (test) precision (5% significance level) 

 

Supplemental Table 9. Evaluation of the relation between candidate epistatic groups of 

variants by depth and by tree. 

type depth1 trees1 depth2 trees2 N1 N2 LD all 
(r

2
>=80) 

LD all 
(r

2
>=20) 

LD some 
(r

2
>=80) 

LD some 
(r

2
>=20) 

LD some (%) 
(r

2
>=20) 

by tree 

1 50 1 100 32 72 3 3 3 3 9.37 

1 100 1 250 72 182 5 6 5 6 8.33 

1 250 1 500 182 367 8 10 8 10 5.49 

1 50 1 500 32 367 3 3 3 3 9.37 

2 50 2 100 96 195 0 0 25 29 30.20 

2 100 2 250 195 487 0 0 31 44 22.56 

2 250 2 500 487 980 0 0 79 111 22.79 

2 50 2 500 96 980 0 0 25 28 29.16 

3 50 3 100 200 400 0 0 53 62 31 

3 100 3 250 400 971 0 0 120 162 40.5 

3 250 3 500 971 1,952 0 0 283 441 45.42 

3 50 3 500 200 1,952 0 0 92 119 59.5 

4 50 4 100 391 755 0 0 174 215 54.98 

4 100 4 250 755 1,859 0 0 341 461 61.05 

4 250 4 500 1,859 3,607 0 0 907 1,350 72.62 

4 50 4 500 391 3,607 0 0 242 327 83.63 

by depth 

1 50 2 50 32 96 6 7 6 7 21.87 

2 50 3 50 96 200 0 0 25 27 28.12 

3 50 4 50 200 391 0 0 56 69 34.5 

1 100 2 100 72 195 7 9 7 9 12.5 

2 100 3 100 195 400 1 1 35 49 25.12 

3 100 4 100 400 755 0 0 114 156 39 

1 250 2 250 182 487 12 20 12 20 10.98 

2 250 3 250 487 971 0 0 92 134 27.51 

3 250 4 250 971 1,859 0 0 287 457 47.06 

1 500 2 500 367 980 36 51 36 51 13.89 

2 500 3 500 980 1,952 0 0 200 323 32.95 

3 500 4 500 1,952 3,607 0 0 693 1,117 57.22 
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Supplemental Table 10. Comparative table to evaluate the differences between the marginal 

effects in the additive logistic regression model and the model including interactions. 

Depth 
Number of 

groups 
Variable Median coeff. additive 

Median coeff. 
additive + interaction 

Kolmogorov-
Smirnov results* 

2 10 

var1 -0.1029 -0.1925** Equals 

var2 0.036 -0.004 Equals 

3 1 

var1 0.146 0.115 - 

var2 0.067 0.030 - 

var3 0.130 0.129 - 

4 1 

var1 -0.084 0.088 - 

var2 -0.204 0.457 - 

var3 -0.030 0.098 - 

va4 0.045 0.245 - 

* 5% significance level 

** mean coefficient from the additive model different to mean coefficient from the full model (5% significance level) 
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Supplemental Table 11. Logistic regression coefficients of 3 examples of variant interaction 

with a change in variants effect on T2D. 

Variants 
chr4:96761220 

chr1:206513621 

chr9:89501123 

chr21:25168622 

chr1:104373712 

chr1:147362531 

chr2:147085498 

chr11:97009227 

Log.reg. models Variables Effect p-value Effect p-value Effect p-value 

Additive model 

var1 
0.383729 

(OR~1.46) 
9.94x10

-5
 

0.125449 

(OR~1.13) 
2.42x10

-3
 

-0.013520 

(OR~0.98) 
7.48x10

-1
 

var2 
0.062412 

(OR~1.06) 
1.05x10

-1
 

0.027540 

(OR~1.02) 
3.78x10

-1
 

-0.217645 

(OR~0.80) 
3.28x10

-5
 

var3     
-0.032436 

(OR~0.96) 
2.95x10

-1
 

var4     
0.042759 

(OR~1.04) 
1.59x10

-1
 

Additive model 

+ interactions 

(Full model) 

var1 
-0.698317 

(OR~0.49) 
3.32x10

-3
 

-0.124841 

(OR~0.88) 
7.77x10

-2
 

0.161312 

(OR~1.17) 
7.37x10

-2
 

var2 
0.030166 

(OR~1.03) 
4.40x10

-1
 

-0.030208 

(OR~0.97) 
3.73x10

-1
 

0.440212 

(OR~1.55) 
3.05x10

-2
 

var3     
0.105327 

(OR~1.11) 
1.97x10

-1
 

var4     
0.253931 

(OR~1.28) 
2.41x10

-3
 

var1var2 
1.342456 

(OR~3.82) 
3.39x10

-7
 

0.381140 

(OR~1.46) 
1.28x10

-5
 

-1.209732 

(OR~0.29) 
1.10x10

-5
 

var1var3     
-0.081683 

(OR~0.92) 
4.41x10

-1
 

var2var3     
-0.671094 

(OR~0.51) 
1.03x10

-2
 

var1var4     
-0.239613 

(OR~0.78) 
2.78x10

-2
 

var2var4     
-0.723912 

(OR~0.48) 
6.54x10

-3
 

var3var4     
-0.172355 

(OR~0.84) 
9.81x10

-2
 

var1var2var3     
1.181991 

(OR~3.26) 
7.28x10

-4
 

var1var2var4     
1.803480 

(OR~6.07) 
5.00x10

-7
 

var1var3var4     
0.099748 

(OR~1.10) 
4.61x10

-1
 

var2var3var4     
0.818495 

(OR~2.26) 
1.61x10

-2
 

var1var2var3var4     
-2.102776 

(OR~0.12) 
3.49x10

-6
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7. Global Results and discussion 

Despite the large catalog of variants which have been found associated with complex 

diseases, such as diabetes, asthma, or Alzheimer’s disease, only a small fraction of the heritability 

has been explained, thus affecting current predictive models and its application to the clinics (Kullo et 

al., 2022; Kumuthini et al., 2022; Lambert et al., 2019). This is in part derived from Genome-Wide 

Association Studies (GWAS) limitations (Génin, 2020; Tam et al., 2019). Particularly, the evaluation of 

single independent variants in a background of complex diseases, where the simultaneous 

combination of multiple genetic and environmental factors are required to develop the disease, 

represents an obstacle for the discovery of variant synergies. Additionally, the outcomes from GWAS 

are limited to the summary statistics, which despite its relevance for understanding which are the 

regions involved in disease predisposition, and their effect, only can be used in predictors, thus 

disregarding the comprehension of the molecular mechanisms underlying variation and its association 

with diseases, and restricting the advance towards the discovery of new drugs and treatments. 

 

Overall this thesis contributes to the better understanding of the genomic basis of complex 

diseases focusing on these two limitations as a departure point.  On one hand, the analysis of 

epistasis constitutes a novel approach to overcome the lack of knowledge about the existence of 

variant-variant interactions associated with diseases, and their effect (Génin, 2020; Tam et al., 2019; 

Visscher et al., 2017; Wray et al., 2013). Particularly, we develop and use machine learning models to 

find groups of epistatic variants associated with Type 2 Diabetes (T2D). Moreover, progressive 

pancreatic islet dysfunction has been described to play an important role in the explanation of T2D 

pathophysiology and other related traits (Bartolomé, 2022; Del Guerra et al., 2005; Eizirik et al., 2020; 

Gloyn et al., 2022). Therefore, we analyse the cis-regulatory effects of variation in pancreatic islets 

gene expression. Additionally, we create a publicly available platform integrating the results obtained 

from these analyses with other functional information to facilitate the interpretation of disease 

susceptibility loci. In the next pages the results obtained from this thesis are discussed. 

7.1. Epistasis 

The multiple advances done in the genomic study of T2D have led to the discovery of more 

than 700 GWAS variants significantly associated with this disorder (Bonàs-Guarch et al., 2018; J. 

Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM Consortium et al., 

2014; Vujkovic et al., 2020). However, despite these efforts, the contribution of these variants to the 

development of the disease is evaluated in a single independent manner, therefore resulting in a poor 

understanding of the disease, with only a small fraction of its heritability explained (~20%) (DeForest 

& Majithia, 2022). Epistasis or variant-variant interactions has been suggested as one of the factors 

that can contribute to a better genomic explanation of complex diseases, particularly, to T2D (Génin, 

2020; Tam et al., 2019; Visscher et al., 2017; Wray et al., 2013). 

 

Capitalising the fact that each GWAS variant contributes with a small effect to disease 

development (McCarthy et al., 2008), polygenic risk scores (PRS) are currently broadly applied to 

empower GWAS based on the existence of variant synergies. Particularly, to evaluate the 

predisposition to disease, PRS additively combines the effects of GWAS variants. Compared with 

more complex approaches, such as machine learning methods, PRS represents a benefit being a 

cost-effective technique, which only requires the use of GWAS summary statistics to calculate the risk 

score of each individual genotype in a particular cohort of study. However, the use of these scores 

have not resulted in a great improvement compared to the predictions based on clinical measures 

(Padilla-Martínez et al., 2020). Moreover, although these approaches consider variant synergies, PRS 

ignores the possible functional interconnections between variants and its association with disease 

phenotypes (Mackay, 2014). 
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To approach the study of epistasis, and therefore, to discover variants which contribute to the 

development of the disease synergically, but in a dependent manner, different statistical methods and 

computational approaches have been applied. Nonetheless, the many computational and 

methodological difficulties surrounding epistatic studies have limited its progress. For example, the 

analysis of the complete set of pairwise interactions between only 500,000 SNPs using classical 

statistical methods, involves the execution of billions of tests (Marchini et al., 2005). Thus, converting 

the study of epistasis into something still unaffordable at a genome-wide level or, when discretely 

approached, reporting no evidence of epistasis as a result of the highly restrictive multiple testing 

thresholds that are needed to ensure the accuracy of the outcomes (Nag et al., 2020). 

 

As a consequence of the complexity behind genome-wide epistasis analysis, diverse 

techniques such as multidimensionality reduction analysis, or variant prioritisation based on previous 

biological knowledge have been applied (Manduchi et al., 2018; Josep Maria Mercader et al., 2008; 

Nag et al., 2020). Remarkably, some of the studies based on the use of these techniques have 

reported variants which present a modest effect on the disease when evaluated independently, but an 

increased effect when considered jointly (Cordell, 2009; Kirino et al., 2013; Monir & Zhu, 2017). 

However, the small number of variants included in these studies, have reduced the discovery to a few 

genetic loci. 

 

In contrast with classical methods, which are able to approach the epistatic problem at a 

genome-wide level (Nag et al., 2020), in this thesis, the use of a Machine Learning (ML) approach has 

limited the extension of the method to the analysis of a small group of variants. This problem is a 

consequence from the current statistical and computational limitations derived from the use of ML 

methods. More specifically, to ensure a good performance of the statistical models underlying ML 

approaches, and prevent overfitting, therefore allowing the replication in a completely independent 

dataset, the number of variants that can be included in the input dataset is recommended to be less 

than 10% of the observations (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). 

Therefore, many side analyses have been required to ensure the possibility of replication when 

trespassing this threshold. Moreover, the computational memory load that represents the evaluation 

of the multiple combinations that can be simultaneously tested for its association with the disease, has 

also represented a computational burden for the use of our ML approach in a genome-wide manner. 

Therefore, although the imputed genotype for more than 15 million variants was available for the 

analysis, we have largely reduced the number of input variants to only 105,896.  

 

The reduction in the number of input variants applied in the analysis conducted in this thesis 

can be contrasted with other studies which rely on multi-dimensionality reduction techniques or that 

reduce the number of initial variants by applying filters based on previous functional knowledge 

(Manduchi et al., 2018; Josep Maria Mercader et al., 2008; Nag et al., 2020). Particularly, the filter 

based on only keeping the variants with a certain association with the disease, despite resulting in a 

large reduction of the number of variants included, is less restrictive than other functional filters. 

Therefore, resulting in a lower dimensionality reduction, and therefore facilitating a broad inspection of 

the synergies between a larger group of variants.  

 

 Despite applying a filter based on the marginal degree of association with the disease we 

expected our interacting groups to be enriched in functionally relevant variants, it is known that the 

vast majority of disease-associated variants lie on non-coding regions, thus difficulting the functional 

interpretation of the results obtained from our analyses. Particularly, to confirm that the interaction 

pathway between variants can be mediated by the affected genes, and to suggest islet regulatory 

regions and islet expression regulatory variation as some of the underlying mechanisms mediating the 

effect of genomic variants interaction, many side analyses integrating and evaluating our outcomes 

with functional annotations including T2D and related traits GWAS meta-analyses, cis-regulatory 

expression, gene functional impact, and epigenetic marks, had been required. Importantly, although 
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from these analyses we have found that some of the single independent variants, which were 

previously known to be significantly associated with T2D, can be thought as driving the effect of the 

interaction (Hemani et al., 2021), 75% of the epistatic groups do not include any variant previously 

associated with T2D, glycemic traits, or an already known susceptibility loci for islet expression, thus 

evidencing the relevance of interactions between different genomic regions to improve the 

understanding of the disease. 

 

Remarkably, the use of ML models, in this thesis, compared with more classical methods 

(Cordell, 2009; Kirino et al., 2013; Monir & Zhu, 2017; Nag et al., 2020), has facilitated the 

suppression of the very restrictive multiple testing significance threshold (Marchini et al., 2005). The 

avoidance of this restriction, which usually results in poor detection power and limits the discovery to a 

few significant loci, has allowed the detection of 367 single variants, 980 pairs, 1,952 triplets, and 

3,607 quadruplets which contain variants synergically associated with the predisposition to T2D. 

However, the combination of this ML methodology with classical logistic regression to explore the 

existence of epistatic variants inside these groups, and to measure their effect, in the same line as the 

cited studies, although successful, has reduced the detection power of our analysis, mainly because 

of the need of applying multiple testing corrections to ensure the significance of the tests performed. 

Fortunately, the reduced number of final tests has resulted in a less restrictive threshold to ensure the 

significance, and despite this statistical burden has reduced the discovery to a few loci, we have been 

able to find 10 pairs, 1 triplet, and 1 quadruplet of epistatic variants associated with T2D, which would 

have been impossible to find by applying current methods. 

 

Finally, in this thesis we have explored the simultaneous effect of multiple variants and its 

association with T2D. Particularly, we have taken advantage of the use of Machine Learning (ML) 

approaches which, in contrast with other methods, such as PRS, have facilitated not only the 

prediction of disease predisposition based on the combination of the effects of multiple  genomic 

variants, but also the discovery of variant synergies. Remarkably, these synergies include both the 

additive and epistatic ways of variant interactions. Notably, while measuring the effect of variant 

synergies, we observed that there were significant differences between the marginal effects of the 

variants under the logistic regression additive model and the full model including interactions. More 

specifically, we found some variants from which effect not only varied in module but also in the sign, 

thus changing for example from being protective to represent a risk for the development of the 

disease. This finding represents a new challenge for current PRS which sum the marginal effect of 

variants without accounting for the possible changes in their effects derived from their synergies. 

Additionally, the creation of an input dataset with paired metadata case-control individuals, which 

although it can be argued that can result in a loose of detection power due to the reduction of 

individuals, has enhanced the discovery of genomic loci that, apart of synergically contributing to the 

development of the disease, are less representative of clinical disease-related measures. Thus, 

overcoming the limitations of the prediction of PRS, which are still far from improving the predictions 

based on clinical measures (Padilla-Martínez et al., 2020). Particularly, the use of PRS in our 

prediction dataset, which includes 2,280 cases and 2,280 controls with paired metadata, therefore, 

individuals from which less variance explanation is expected from the clinical measures, results in a 

~50% of precision, which is far from the ~60% of precision obtained from the use of our ML method. 

 

However, despite the potential of the results obtained in our study, there are some limitations 

that can be improved in future epistatic analysis. First, the restriction of the analysis to European 

ancestry individuals affects the extension of the results to non-European populations, limiting its 

explanation to common shared ancestry loci (Josep M. Mercader et al., 2017; Spracklen et al., 2020; 

Vujkovic et al., 2020). Second, the still computational challenge of analysing millions of variants 

simultaneously has limited our study to variants with a higher probability to be associated with T2D. 

The increase of computational power, or the use of other approaches, can facilitate the discovery in 

future epistatic studies. Third, the number of individuals included in the study has represented an 
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additional layer of complexity related to the methodology applied in our study. Nevertheless, as the 

number of individuals is increasing in current studies, in the future, better results can be obtained 

using the same approaches. Fourth, all the analyses performed were under the additive inheritance 

model, thus limiting the discovery to variants falling under this model or non-additive models with a 

higher effect (Guindo-Martínez et al., 2021). Fifth, although chromosome X has been included in this 

study, there are many details that need to be considered for its appropriate analysis (Bonàs-Guarch et 

al., 2018). For this reason, future epistatic studies relying on the same methodology applied in this 

project will need to improve the approaches presented to enhance the discovery power in this 

chromosome. Finally, the work presented in this thesis shows just the first preliminary results of the 

study. Therefore, there are some plans to improve the analyses performed previous to its publication, 

which include the replication of our results in a completely independent dataset. In addition to this, in a 

background of personalised medicine, this study can be observed as a first step to understand the 

effects of epistasis in T2D. Thus, opening a new avenue for the analysis of epistasis in other complex 

diseases, and to reveal the epistatic differences between subgroups of patients (Ahlqvist et al., 2018, 

2020; Dimas et al., 2014; H. Kim et al., 2022; Mahajan, Wessel, et al., 2018; Mansour Aly et al., 2021; 

McCarthy, 2017; Scott et al., 2017; Udler et al., 2018). 

7.2. TIGER 

 The great advances produced by the use of GWAS for the genomic study of complex traits 

and diseases have led to the discovery of a large number of genetic variants statistically associated 

with the disorder (Beck et al., 2014; Buniello et al., 2019; K. Watanabe et al., 2019). Particularly, for 

the case of T2D, more than 700 loci have been found significantly associated with the disease 

(Bonàs-Guarch et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al., 2017; The 

DIAGRAM Consortium et al., 2014; Vujkovic et al., 2020). However, the lack of functional 

interpretation of these signals has complicated the understanding of their underlying molecular 

mechanisms and its relation with disease. The use of genomic, transcriptomic, and epigenetic 

information to evaluate the overlap between disease associated loci and function has been suggested 

as one of the ways to improve disease knowledge (Cano-Gamez & Trynka, 2020; Lichou & Trynka, 

2020; Manolio, 2013). 

 

Remarkably, although gene expression can be ubiquitous or cell-type specific, some of the 

regulatory elements such as gene expression signatures, enhancers, and promoters are cell-type 

specific (Long et al., 2016; Nica & Dermitzakis, 2013; Pope & Medzhitov, 2018). Thus, suggesting the 

relevance of the study of disease related cell-type or tissue-specific regulatory elements to improve 

the understanding of the mechanisms mediating disease. Particularly, progressive pancreatic islet 

dysfunction has been described to play an important role in the explanation of T2D pathophysiology 

(Bartolomé, 2022; Del Guerra et al., 2005; Eizirik et al., 2020; Gloyn et al., 2022). More specifically, 

pancreatic beta-cells deterioration or death can lead to insulin secretory dysfunctions, usually 

resulting in hyperglycemia. Thus, converting pancreatic islets in a very relevant tissue for the study of 

T2D and other related traits. However, there are many restrictions which limit the access to human 

pancreatic islets and also convert their analysis into a challenge (Gloyn et al., 2022). 

 

In addition to this challenge, the fact that the vast majority of variants significantly associated 

with a complex disease lie in non-coding regions and that the relationship between variation and 

transcription factors cannot always be inferred from the proximity with a gene binding site (Deplancke 

et al., 2016), adds a layer of complexity to the functional interpretation of genomic variation. Thus, 

converting the cis inspection of the transcriptome of genomic variation in a powerful tool. As a result, 

some transcriptomic techniques, which are broadly used to understand the effect of genetic variation 

on gene expression, such as expression quantitative trait loci (eQTL) or allele-specific expression 

(ASE), have become crucial for the functional understanding of genomic variation (Albert & Kruglyak, 

2015b; Cleary & Seoighe, 2021; Nica & Dermitzakis, 2013). Nevertheless, despite large databases 
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have been generated containing the outcomes from the study of the effects of variation in the 

transcriptome of different tissues, such as the GTEx initiative (The GTEx Consortium, 2020), which 

can be complemented by many expression studies in pancreatic islets (Fadista et al., 2014; Solimena 

et al., 2018; van de Bunt et al., 2015; Viñuela et al., 2020), these studies only recapitulate the effects 

of the groups of variants that have been analysed in their studies, which although representing a large 

amount of variation, are still incomplete.  

 

Complementarily to the genomic and transcriptomic analysis of the effects of variation, 

epigenetic assays such as chromatin immunoprecipitation followed by sequencing (ChIP-seq) or 

assays for transposase-accessible chromatin sequencing (ATAC-seq) have been suggested to play a 

key role for the identification of transcription factor binding sites, and the identification of enhancers, 

and therefore for the cis-regulatory interpretation of GWAS outcomes (Buccitelli & Selbach, 2020; T. 

K. Kim & Shiekhattar, 2015; Lambert et al., 2018; Smith et al., 2012). As a result, in a same manner 

than expression, cis-regulatory maps have been broadly studied in different cell types (The ENCODE 

Project Consortium, 2012), including pancreatic islets (Hall et al., 2014; Miguel-Escalada et al., 2019; 

Pasquali et al., 2014; Thurner et al., 2018). Overall, many efforts have been devoted to generate large 

islets transcriptomic and epigenetic databases, which are the promise to promote the genetic 

understanding of T2D and other islet related diseases. However, although many efforts have been 

devoted to the generation of genomic browsers and other public platforms which facilitate the access 

to this valuable information (Beck et al., 2014; Buniello et al., 2019; Haeussler et al., 2019; The GTEx 

Consortium, 2020; K. Watanabe et al., 2019), only a few of these resources are specific for T2D, such 

as the T2D Knowledge Portal (Flannick & Florez, 2016), or for pancreatic islets (Mularoni, Ramos-

Rodríguez, & Pasquali, 2017). Remarkably, despite the vast majority of genomic studies highlighting 

the relevance of the integration of different omic layers to improve the understanding of disease 

development, none of them has yet analysed and integrated diverse pancreatic islets omics in a 

unique publicly accessible database. 

 

In contrast with previous pancreatic islets studies, which were boosted from one independent 

research centre, in this thesis we have benefited from the collaboration of a large consortia, the 

T2DSystems, which involved, among many other participants, five research centres with wide 

expertise in the analysis of human pancreatic islets. As a result from this huge collaboration, we have 

been procured access to the largest pancreatic human islet cohort, which included the RNA-seq, the 

genotype and the metadata of 514 pancreatic islets samples, from which 307 samples were novel. 

This collaboration reduced some of the problems that can be derived from the access to this valuable 

resource of data (Gloyn et al., 2022), and facilitated the collection, harmonisation and quality control 

of the data. As a result of this process, although some of the samples being discarded, 404 islet 

samples were kept, thus representing a large increase in the sample size compared with previous 

islets expression studies (Fadista et al., 2014; van de Bunt et al., 2015), and therefore, a potential 

increase in the association detection power derived not only from the study of cell-type specific 

expression but also from the increment of samples (Long et al., 2016; Nica & Dermitzakis, 2013). 

However, in parallel to these efforts and during the development of this thesis, another large cohort of 

pancreatic islets was created accounting with 420 samples and with an overlap of 206 samples with 

our cohort (Viñuela et al., 2020).  

 

Remarkably, current islets studies including the above mentioned recently published study 

from Viñuela (Fadista et al., 2014; Miguel-Escalada et al., 2019; Pasquali et al., 2014; Solimena et al., 

2018; Thurner et al., 2018; van de Bunt et al., 2015; Viñuela et al., 2020), only focus in one type of 

analysis. More specifically, capitalising on the benefits of the study of this particular cell-type and its 

relevance to improve the functional explanation of islet-related diseases, most of these previous 

projects targeted the transcriptomic analysis of gene expression or the study of epigenetic marks. In 

contrast, in this thesis, we aimed to generate the Translational Human Pancreatic Islets Genotype-

Tissue Expression Resource (TIGER), a unique platform which integrates the outcomes obtained 
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from homogeneous islets gene expression, one of the biggest, if not the biggest, islet eQTL meta-

analysis, and a new trustworthy method to measure allele specific expression, combined with already 

published epigenetic marks, and T2D GWAS meta-analysis summary statistics, in a publicly available 

database, thus constituting a unique and formidable resource for the functional interpretation of 

pancreatic islets and related diseases.  

 

In this thesis, we have taken advantage of this large resource of pancreatic islets to calculate 

and homogenise islets gene expression, and to include this information in the public platform in a 

visual way so that it facilitates the comparison between the expression in islets of a given gene with 

the rest of the genes in the genome. Although this information is also available in other platforms, 

such as the GTEx (The GTEx Consortium, 2020), the GTEx platform does not allow the comparison 

with other genes and, most importantly, do not include pancreatic islets expression. Additionally, as it 

can be argued that the GTEx project includes the gene expression counts for a wide diversity of 

tissues while we are only recapitulating this information for a specific tissue, we have scaled islets 

expression to be compared with other reference tissues. As a result, the TIGER platform not only 

shows if a gene is expressed in pancreatic islets but also allows the comparison of expression across 

all the GTEx tissues. Remarkably, despite there is a high order of eQTL similarity between different 

tissues (The GTEx Consortium, 2020), the study of cell dysfunction based on eQTL tissue-specificity 

can lead to a better disease interpretation. Therefore, the integration of islets with other reference 

tissues in TIGER facilitates the comparison between the different T2D-related tissues (pancreas, 

brain, intestine, adipose tissue, muscle, kidney, liver and pancreatic islets) (Cnop et al., 2005; Cornell, 

2015; Defronzo, 2009; Del Guerra et al., 2005; Eizirik et al., 2020; Galicia-Garcia et al., 2020; Gilon, 

2020; Rhodes, 2005) and, therefore, promotes the detection of the best tissue to functional interpret 

disease susceptibility loci. 

 

In comparison with previous and the most recent islet eQTL studies (Fadista et al., 2014; van 

de Bunt et al., 2015; Viñuela et al., 2020), in this thesis we benefited from an improved imputation 

using GUIDANCE (Guindo-Martínez et al., 2021). Particularly, these studies imputed the genotype 

using 1000 Genomes reference panel (The 1000 Genomes Project Consortium, 2015), while we used 

multiple reference panels including 1000 Genomes, UK10K, GoNl and HRC (Boomsma et al., 2014; 

The 1000 Genomes Project Consortium, 2015; The Haplotype Reference Consortium, 2016; The 

UK10K Consortium, 2015). As after the imputation we merged the results to recover each variant from 

the panel reporting the best imputation quality (INFO>0.7), this allowed us to include a higher number 

of good quality genetic markers, compared with the previous published studies. More specifically, 

while previous published studies included between 5.8 million and 8 million variants, we imputed over 

22 million unique genetic variants with high-quality across all of the samples, of which approximately 

10% are Indels and small SVs, more than 1.05 million variants in chromosome X, above 4 million low-

frequency variants, and over 10 million rare variants. Notably, only in the last study (Viñuela et al., 

2020) and this thesis rare variants were included, while in the rest of previous studies those were 

disregarded (Fadista et al., 2014; van de Bunt et al., 2015), despite their interest given their expected 

higher effect on the risk of developing the disease (McCarthy et al., 2008). This maximisation of 

genetic variants improved the detection power of the expression analyses resulting in over 1 million 

eQTLs and 256,981 ASE associated variants. 

 

Notably, current variation expression analyses use a wide variety of tools to colocalise their 

outcomes with GWAS summary statistics to find possible connections with disease or to check the 

overlap with regulatory elements. However, this type of analyses are computationally expensive and 

even, in some cases, it is complex to get granted access to the data. As a result, for example, it is 

common that colocalisation analyses only use the summary statistics from the latest published study, 

thus disregarding the signals that have been only captured in other cohorts. In this thesis, we have 

facilitated the colocalisation analysis by aggregating the results from the largest T2D GWAS meta-

analyses from European ancestry (Bonàs-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et 
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al., 2017; The DIAGRAM Consortium et al., 2014). Moreover, the integration in the platform of a 

genomic browser (Down, Piipari, & Hubbard, 2011), containing different islets epigenetic marks, and a 

wide diversity of elements from the human islet regulome (Hall et al., 2014; Miguel-Escalada et al., 

2019; Pasquali et al., 2014; Thurner et al., 2018) not only promotes the easy and fast check for the 

overlap with islet regulatory annotations but also allows the comparison with unpublished tracks. 

 

In summary, the large number of expression regulatory variation results obtained in human 

pancreatic islets in this project, as well as the database and the platform created during this thesis, 

represent a valuable resource for the study of diabetes, related traits, and other disorders were 

pancreatic islets have a central pathogenic role (Figure 11.A). Particularly, from the last 90 days 

report obtained from the website (8th July 2022), we know that 325 users from all over the world have 

been accessing the portal, with over 500 sessions during this period (Figure 11.B-C). Interestingly, 

most of these users seem to be familiarised with the platform, as they have accessed it directly 

through the URL. However, we are still capturing new users through Google organic search and other 

referrals such as ncbi.nlm.nih.gov (Figure 11.D). Thus suggesting a real interest on the platform and 

all the results that it includes. More specifically, this portal has been proved successful to provide 

support to many recently published genetic studies (Bone et al., 2021; Dorsey-Trevino, Kaur, 

Mercader, Florez, & Leong, 2022; O’Connor et al., 2022; Sulaiman et al., 2022; Zheng et al., 2020). 

 

 
Figure 11. TIGER data portal. We integrated genomic, transcriptomic and epigenetic human islet results, with 

other publicly available disease, gene, and variant information in the publicly available TIGER Data Portal. The 
different graphs represent: 
A) The general overview of the content inside the TIGER resource. 
B) The number of users accessing the portal during the last 90 days (8th July 2022) and the average duration of 
the session. The straight blue line represents the number of users (y axis) accessing the platform by week (x 
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axis). The dashed blue line represents the number of users that accessed the platform in the same week 3 
months ago.  
C) Sessions by country (left) and by time of day (right). The map on the (top left) has coloured in blue the 
countries with users accessing the platform during the last 90 days (8th July 2022). The blue scale represents the 
countries with more (dark blue) or less (light blue) access to the portal. The bar plots (bottom left) show the 
distribution of sessions (x axis) on the top 5 of the countries (y axis). The heatmap (right) displays the accession 
times (y axis) by the day of the week (x axis) to the platform. The blue scale represents the range of time with 
more (dark blue) or less (light blue) sessions detected. 
D) How users are acquired. The bar plots represent the number of users (y axis) accessing the platform by week 
(x axis) during the last 90 days (8th July 2022). The different blue colours represent the way of accessing the 
platform: direct access through the URL tiger.bsc.es (dark blue), Google organic search (medium blue), or other 
referrals (light blue). 
 

However, despite the potential interest of the outcomes generated in this study, there are 

many limitations that should be focused in the future. First, although the overlap between the samples 

analysed in a previously published eQTL study and TIGER facilitates the confirmation of some results, 

it also complicates replication (Viñuela et al., 2020). For this reason, future studies should only focus 

on non-overlapping samples. Second, despite this being presumably one of the largest, if not the 

largest, pancreatic islets datasets analysed for the effects of expression, the integration of additional 

datasets in the study will increase the prediction power of the analysis. Third, the samples included in 

the study were only from European ancestry, thus complicating the extension of the results to non-

European populations, and limiting it to the shared variants between populations (Josep Maria 

Mercader & Florez, 2017; Spracklen et al., 2020; Vujkovic et al., 2020). For this reason, future studies 

should collect data from different ancestries. Fourth, despite pancreatic islets being made by a 

heterogeneous group of cells, the use of bulk RNA-seq data in our study limits the discovery to only 

capture the effects of expression of the more representative cells or the average between the different 

groups of cells. Hence, the use of single-cell sequencing will enhance the expression study in each 

particular group of cells and allow its comparison (Kawasaki, 2004). Fifth, the fact that the largest T2D 

GWAS meta-analysis (Mahajan, Taliun, et al., 2018) doesn’t include SVs or Indels limited our 

colocalization study.  Therefore, the inclusion of Indels and SVs in future T2D GWAS will improve the 

understanding of T2D pathophysiology. Sixth, despite the expression analyses included the study of a 

large fraction of coding elements there are still some elements that are uncovered, such as 

microRNA. Therefore, the inclusion of these elements in future expression studies can be useful to 

gain insight of T2D pathophysiology (Taylor et al., 2022). 
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8. Conclusions 

8.1. Epistasis 

1) The analysis of epistasis, using machine learning approaches, revealed thousands of groups of 

variants which combined additively or in a synergic dependent manner have an effect on disease 

development. 

2) The study of variants interaction was crucial to find 75% novel loci associated with complex 

diseases (20 out of 27), thus improving the genetic understanding of T2D. 

3) By analysing the effect of epistasis under a full logistic regression model we found 30% of the 

variants inside the epistatic groups (8 out of 27) changing the sign of its individual effect, therefore, 

affecting current detection and prevention protocols.  

4) The regulation of gene expression of disease-associated genes is suggested as one the putative 

underlying mechanisms of epistasis and its association with complex diseases. 

8.2. TIGER 

5) The study of pancreatic islets promotes the translation of genomic variation in gene function and, 

therefore, the better understanding of T2D and other islets related disorders pathophysiology. 

6) The use of integrative approaches in expression analyses has been crucial to improve the 

identification of additional genetic markers and to discovery over 1.05 million eQTLs and 256,981 

cASE variants. 

7) The combination of T2D GWAS results with eQTL and cASE is necessary to support the 

expression findings, and to facilitate the functional interpretation of GWAS. 

8) The creation of a publicly available database that integrates different omic layers of information is 

essential to ensure the shareability of the results, and to provide the research community with 

powerful and useful tools to complement and support their studies. 
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11. Supplemental Material 

 
Supplemental Figure 1. Machine Learning algorithms based on the type of problem to be solved. Each 

machine learning (ML) algorithm is specialised in a different type of analysis. Thus, the selection of a ML method, 

although challenging, represents one of the most important steps in a study. For this reason, in this figure are 

represented the most common ML models based on the learning type and the specific type of problem that can 

be usually solved with them. Consequently, this list presents the most suitable and broadly used ML approaches 

in Biomedicine for classification, regression, clustering, or dimensionality reduction. The models represented in 

dark blue in the diagram have been used in this thesis and will be explained in this section. The models with a 

yellow border can be used for classification and regression. The models with a red border can be used for 

classification and clustering. 
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Supplemental Table 1. Population haplotype reference panels. 

PROJECT YEAR DATA TYPE N.INDIVIDUALS 
POPULATIONS 
(ANCESTRY) 

N.SNPs 
OTHER 

VARIANTS 

HapMap 2007 
Genotyping 

array 
270 

4 populations 
(Africa, Asia and 

Europe) 
3.1 million  

GoNl 2014 WGS 
769 (250 parent-

offspring) 
Netherland 

(Europe - Dutch) 
20.4 million 

1.2 million 
insertions and 

deletions 

1000G 2015 

Sequencing 
and 

genotyping 
array data 

2,504 

26 populations 
(Africa, East 
Asia, Europe, 

South Asia and 
the Americas) 

84.7 million 
3.6 million 
Indels and 
60,000 SVs 

UK10K 2015 
WGS and 

WES 

~10,000 (3,781 
healthy and 6,000 with 
rare disease, severe 

obesity, and 
neurodevelopmental 

disorders) 

United Kingdom 
(Europe - British) 

42 million 

∼3.5 million 
Indels and 

18,739 large 
deletions 

HRC 2016 WGS 64,976 

20 studies 
(mostly Europe, 
but also Africa, 

East Asia, South 
Asia and the 
Americas) 

39,235,157  

TopMed 2021 WGS 
53,831 (130,000 

individuals projected) 
> 80 studies 381,343,078 

28,980,753 
Indels 

 

Supplemental Table 2. Data types. 

DATA TYPE DESCRIPTION EXAMPLES 

Structured 
Well formatted, ordered, organised and easily 

accessible data 
SQL databases, csv files 

Unstructured 
No formatted data which usually complicates 

the analysis 
Text, multimedia 

Semi-structured 
Data presenting some organisation facilitating 

the analysis 
Non-SQL databases, HTML, 

JSON, XML 

Metadata 

Data describing the input dataset which can 
include some related relevant information. It 

can be used to improve the performance of the 
ML method 

Information related to the origin of 
the data 
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Supplemental Table 3. Machine Learning models based on the learning type. 

LEARNING TYPE DESCRIPTION EXAMPLES ALGORITHM 

Supervised Labelled 
Groups of patients that 

can be classified in cases 
and controls 

Decision Tree, 
Naïve Bayes, 

Support Vector 
Machine 

Unsupervised Unlabelled 
Groups of patients from 
which a classification will 

be obtained 

K-means 
clustering, Principal 

Component 
Analysis 

Semi-supervised 
A combination of supervised and 

unsupervised learning 

Find groups of patients 
and then find a way of 

classifying them in these 
groups 

A combination of 
supervised and 
unsupervised 

learners 

Reinforced 
Learning only based on obtaining 

a better outcome 
Automation or 

optimization problems 
 

Multitask 
Help other learners with 

simultaneous multiple tasks 
outcomes 

-  

Ensemble 
Combination of learners in a 

unique learner 
- Boosting, Bagging 

Instance-based 

An already learned pattern which 
will be applied only to test new 
data by comparing it with the 

already known training instances 

- 
K-Nearest 
Neighbour 
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Supplemental Table 4. Supervised Machine Learning classifiers and dimensionality reduction techniques applied in this thesis. 

MODEL PROBLEM BASIS DESCRIPTION ADVANTAGES DISADVANTAGES SCHEMA 

Naive Bayes 
Classification 
and clustering 

Conditional 
probability 

Creates trees based on 
their probability of 

happening 

Binary and multi-class 
classification 

Small amount of training 
data 

Easy to interpret 

Strong assumptions of 
features independence 

 

Quadratic 
Discriminant 

Analysis 
(QDA) 

Classification 

Conditional 
densities 

and Bayes 
rule 

Creates a decision 
boundary based on 
features quadratic 

combinations 

Easily computed 
No hyperparameter tuning 

 

 

K-Nearest 
Neighbour 

(KNN) 

Classification 
and regression 

Similarity 
measures 

Creates a decision 
based on the majority 

vote to a nearest 
neighbour 

Robust to noise 

Needs to be adjusted for 
the optimal number of 

neighbours to be 
considered 

 

Support 
Vector 

Machine 
(SVM) 

Classification, 
regression and 

other tasks 

Principle of 
margin 

calculation 

Creates hyperplanes to 
separate classes 
maximising the 

distance between the 
margin and the classes 

Effective in high-
dimensional spaces 

Problems with noisy data 
and overlapping target 

classes 

 

Decision 
Tree (DT) 

Classification 
and regression 

Sorting by 
value 

Creates trees where 
each node represents 
an attribute of a group 

and each branch 
represents the value 

that the node can take 

Easy to interpret 
Accepts numerical and 

categorical features 

Tends to overfit 
Noisy 

Weak classifier 
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MODEL PROBLEM BASIS DESCRIPTION ADVANTAGES DISADVANTAGES SCHEMA 

Random 
Forest (RF) 

Ensemble 
classification 

and regression 

Sorting by 
value 

Creates multiple 
decision trees and uses 

the majority voting or 
averages to obtain the 

result 

Accepts numerical and 
categorical features 

Minimises the overfitting 
Increases the prediction 

accuracy 

Reduces the interpretability 

 

Adaptive 
Boosting 

(AdaBoost) 

Ensemble 
classification 

Iteration 

Creates a classifier 
based on the 

combination of many 
poor classifiers. It 

improves by learning 
from their errors 

Improves the efficiency of 
the classifier 

 

Can trigger overfits 
Sensitive to noisy data and 

outliers 

 

Extreme 
Gradient 
Boosting 

(XGBoost) 

Ensemble 
classification 

and regression 

Sorting by 
value 

Creates multiple 
decision trees, 

minimising the loss 
function and performing 

regularisation 

Accepts numerical and 
categorical features 

Minimises the overfitting 
Increases the prediction 

accuracy 
Scalable 

Fast 
Handles sparse data 
Handles missing data 

Can struggle to learn in 
cases where a lot of noise 

is present 

 

Gaussian 
Process 

Classification 
and regression 

Probability 
distribution 

Creates a probability 
distribution over 

functions 

The prediction interpolates 
the observations 

Gives an estimate of its 
uncertainty 

Can be adjusted for 
different kernels 

Computationally expensive 
Not sparse 

Lose efficiency in high 
dimensional spaces (more 

than few dozens of 
features)  
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MODEL PROBLEM BASIS DESCRIPTION ADVANTAGES DISADVANTAGES SCHEMA 

Neural 
Networks 

(NN) 

Classification 
and clustering 

Linear 
regression 

Creates different node 
layers with all the 

nodes connected to 
another. If the output of 

any node is above a 
threshold value it gets 
activated and sends 
data to the next layer 

Flexible 
Accepts variable input size 

Accepts non-linear data 
Handles missing data 

 

Long training times 
High computing memory 

requirements 
The output contains 

uncertainty 

 

Pearson 
correlation 

Dimensionality 
reduction 

Linear 
correlation 

Finds correlation 
between features to 
find variables with no 

linear correlation 

Reduces overfitting 
Problems with missing 

data 

 

Principal 
Component 

Analysis 
(PCA) 

Dimensionality 
reduction 

Covariance 
matrix 

eigenvalues 

Identifies the highest 
eigenvalues of a 

covariance matrix to 
project in a subspace 

of equal or fewer 
dimensions 

Reduces overfitting 
 

Problems with missing 
data 

Independent variables 
become less interpretable 

Information loss 
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Supplemental Table 5. ML binary classifiers effectiveness and reliability measures. 

MEASURE FORMULA DESCRIPTION 
IMBALANCE 
BEHAVIOUR 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Measures the goodness of the classification among the predicted 
diseased individuals. This magnitude explains the proportion of truly 
predicted diseased individuals among the whole group of diseased 

predictions made. Therefore, it is related to the statistical type error I but 
presenting a clear dependency on the prior distribution of the data. 

Not recommended 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Measures the goodness of the predictions among the total group of 
individuals. This quantity is explained by the ratio of true predictions 

among the total number of predictions made. 
Not recommended 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Measures the goodness of the classification among the diseased 
individuals group. It is also named true positive rate (TPR) or sensitivity. 

This parameter is calculated by assessing the proportion of truly 
diseased classified patients among the whole group of diseased 

individuals. It is the complement of the type II error rate (1 - type II error 
rate). 

Not recommended 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Measures the goodness of the classification among the non-diseased 
individuals group. It is also known as false positive rate (FPR). It is 

estimated by measuring the proportion of the predicted individuals that 
truly do not have the disease over the group of non-diseased individuals. 

Not recommended 

F1-score 
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Harmonic mean of precision and recall. It is also known as balanced 
accuracy. 

Balanced measure 
but not 

recommended 

Matthews 
correlation 
coefficient 

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Balanced measure with its results ranging between -1 and 1. 
Consequently, a perfect prediction is obtained when the coefficient is 1, 

and a completely bad prediction in case of a -1 coefficient. 
Balanced measure 

ROC curve 
and 

AUROC 

 It is calculated based on recall (y axis) and 
fallout fallout=1-specificity (x axis). 

Represents the sensitivity versus specificity. The evaluation of the ROC 
curve is done by computing the Area Under the ROC curve (AUROC). 

This curve tends to maximise the correctly classified positive values. It is 
useful to compare the results that can be obtained from different models 

and to discard suboptimal models. 

Not recommended 

Precision-
Recall 
curve 

It is calculated based on precision (y axis) 
and recall (x axis). 

Is a measure of the success of the prediction. The evaluation of this 
curve is commonly done by calculating the area under the curve. Thus, a 

high area represents both high recall and high precision, therefore, 
accurate results. 

Particularly useful in 
the presence of data 

imbalance 
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Supplemental Table 6. Some popular publicly available databases with functional information. 

TYPE CONTENT EXAMPLES 

Genes and isoforms 
categorization and 

description 

Annotated genomics, transcript, protein sequence 
records, protein-coding genes, pseudogenes, long 

non-coding RNAs (lncRNAs), and small non-
coding RNAs (sncRNAs) 

RefSeq (O’Leary et al., 
2016), GENCODE 

(Frankish et al., 2019; 
Harrow et al., 2012) 

Gene and gene 
products functional 

descriptions 

Gene functional information at different levels: 
biological process, molecular function and cellular 

component 

GeneOntology (The 
Gene Ontology 

Consortium, 2000, 2021) 

Protein and 
macromolecular 
complexes roles 

Human pathways and processes including signal 
transduction, transport, DNA replication, 
metabolism and other cellular processes 

Reactome Pathway 
database (Croft et al., 

2011; Jassal et al., 
2020) 

TF with annotated 
elements and binding 

interfaces 

Curated DNA binding sites and annotations of 
binding interfaces with their corresponding TFs 

transcription binding 

FootprintDB (Sebastian, 
Contreras-Moreira, 
Araid, Agustín, & 
Zaragoza, 2014) 

TF regulatory elements 
and regulatory 

interactions 

cis- and trans- regulatory elements, and TF-target 
interactions 

TRED (Jiang et al., 
2007), TRRUST (Han et 

al., 2015) 

Global and tissue-
specific gene 

expression regulators 

Genomic variants association with gene and 
transcript expression 

GTEx (The GTEx 
Consortium, 2020), 

Gene Expression Atlas 
(Papatheodorou et al., 

2020) 

Epigenomic features 
profiles 

DNA methylation, histone modifications, chromatin 
accessibility and small RNA transcripts 

Epigenomic Roadmap 
Project (The Roadmap 

Epigenomics 
Consortium, 2015) 
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Supplemental Table 7. Main organs dysfunction that can derive T2D. 

ORGAN FUNCTION PROBLEM CAUSES CONSEQUENCE OTHER ORGANS 

Adipose 
tissue 

Use insulin to do 
triglyceride synthesis and 
induce the uptake of free 

fatty acid (FFA) 

IR  

Impaired glucose uptake, causing elevated 
glucose levels in plasma (glucotoxicity), 

consequent impaired insulin secretion (IIS), 
and promoting an enhanced FFA release 

(lipotoxicity) 

The elevated levels of 
FFA induce hepatic 

and muscle IR 

Pancreatic 
beta-cells 

Secrete insulin IS 

IR, lipotoxicity, and 
glucotoxicity increase the 

demand on beta-cell IS, thus 
fasting the beta-cell failure 

progress and apoptosis 

Beta-cells deterioration or death can lead to 
insulin secretory dysfunctions resulting in 

elevated glucose levels in blood 
(hyperglycemia) 

 

Skeletal 
muscle 

One of the major receptors 
of glucose in the glucose 

uptake process 
IR 

Obesity and low levels of 
physical activity contribute to 

muscle IR 

Bad insulin signalling and IR can lead to 
hyperglycemia 

Progressive beta-cell 
failure 

Liver 
Main organ in the glucose 
production process under 

insulin regulation 
IR  Overproduction of glucose 

Progressive beta-cell 
failure 

Gut 

After glucose ingestion, it 
releases hormones that 
stimulate IS, promoting 
satiety, slowing gastric 
emptying, and inhibiting 

glucagon secretion 

    

Pancreatic 
alpha-cells 

The major source of 
glucagon in response to 
low levels of glucose in 
blood (hypoglycemia) 

Impaired 
glucagon 
secretion 

 Hyperglycemia 
Progressive beta-cell 

failure 

Kidneys 

Small producers of 
glucose and filters of 

glucose to the urine in 
case of excess 

  Hyperglycemia 
Progressive beta-cell 

failure 

Brain 

Main organ involved in 
food intake, appetite 

regulation, and a major 
responsible for glucose 

utilisation 

IR  
Suppress the inhibition of appetite and 

reduce satiety, promoting an imbalanced 
feeding and usually inducing obesity 

Progressive beta-cell 
failure 
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11.Appendix: Polymorphic Inversions Publication 

  

POLYMORPHIC INVERSIONS 

PUBLICATION 
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12. Appendix: Genome Wide Association Studies review publication 

  

GENOME WIDE ASSOCIATION STUDIES 

REVIEW PUBLICATION 
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