UNIVERSITAT s

BARCELONA

From the discovery of epistatic events in Type 2
Diabetes Mellitus to the study of related gene
expression regulatory variation

Lorena Alonso Parrilla

©0Gle

Aquesta tesi doctoral esta subjecta a la llicencia Reconeixement- NoComercial —
SenseObraDerivada 4.0. Espanya de Creative Commons.

Esta tesis doctoral esta sujeta a la licencia _Reconocimiento - NoComercial — SinObraDerivada
4.0. Espaia de Creative Commons.

This doctoral thesis is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 4.0. Spain License.




TESI DOCTORAL

FROM THE DISCOVERY OF EPISTATIC EVENTS IN
TYPE 2 DIABETES MELLITUS TO THE STUDY OF
RELATED GENE EXPRESSION REGULATORY
VARIATION

Lorena Alonso Parrilla
2018-2022




FROM THE DISCOVERY OF EPISTATIC EVENTS IN TYPE 2 DIABETES MELLITUS TO THE STUDY OF RELATED GENE
EXPRESSION REGULATORY VARIATION







From the discovery of epistatic events in Type 2
Diabetes Mellitus to the study of related gene
expression regulatory variation

Programa de doctorat: Biomedicina (HDKO5)
Tesi realitzada a: Barcelona Supercomputing Center
Memoria presentada per: Lorena Alonso Parrilla

s

Doctorand: Lorena Alonso Patrrilla

(Db, P

Supervisor: David Torrents Arenales Tutor: Jose Luis Gelpi Buchaca

garcelona UNIVERSITAToe

upercomputing

Center » i+ BARCELONA
entro Nacional de Supercomputacion e






DEDICATORIA | AGRAIMENTS
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Hola, soc la Lorena Alonso Parrilla, autora d’aquesta tesi. Abans de comencar a llegir,
m’agradaria poder presentar-me, ja que penso que potser aixo pot ajudar a algld en un futur; a
vegades és important sentir-se identificat per a perdre la por i fer el primer pas endavant. Soc una
matematica a la qui agrada la matematica aplicada centrada en la Biomedicina. Aixi, el 2011 vaig
acabar la llicenciatura de Matematiques a la UB, el 2013 vaig aconseguir un master d’Estadistica
Aplicada a la UNED i el 2016 vaig completar un master en Biomatematica, bioinformatica i gendomica
computacional a la UOC. Des de I'liltim any de carrera vaig estar treballant com a programadora web
i analista de dades i, acabat els masters, vaig a entrar al Barcelona Supercomputing Center (BSC)
com a Research Engineer al grup del David Torrents. Dos anys després, el 2018, vaig comencar el
doctorat en Biomedicina en el mateix grup. | ara, el 2022, ja tinc més de 35.7 anys, visc amb la meva
parella que m’ha acompanyat en tota aquesta aventura des de gairebé principis de la carrera, i tinc
un fill amb poc més de 0.5 anys. Aquesta tesi, son els apunts i els resultats d’aquests quatre ultims
anys d’estudi, i han estat escrits intentant que pugui ser un document entenedor per si mateix,
proporcionant diversos materials i fonts de consulta. Per aquest motiu, es fa un gran eémfasi en
introduir i aprofundir en els conceptes de Biologia i metodologies informatiques, ja que resulta
fonamental per a entendre les analisi i els resultats obtinguts.

Feta la presentacid, només tinc paraules d’agraiment cap a totes aquelles persones que han
facilitat que aquesta tesi surti endavant. Primer de tot, agrair els que han posat diners per a que jo i
aquest projecte de I+D+i (R&D i Innovacid) sortim endavant, amb la beca BES-2017-081635
finangada pel MCIN i per “FSE Invertint en el teu futur”. Vull agrair al BSC les bones condicions que
ens donen com a centre, no només a nivell laboral, sino també a nivell de visibilitat, instal-lacions i,
perqué si no fos perqué tenim el Mare Nostrum, aquesta tesi no tindria sentit. A tota la gent del
centre, des de recursos humans, gesti6 documental i de beques, support, helpdesk, finances,... ja
gue si no fos perque estan alla, per la seva amabilitat, ajuda, paciéncia i bon taranna, moltes de les
gestions, instal-lacions de software, hardware que s’han hagut de fer durant la tesi haurien estat més
complexes, haurien portat més temps, i per tant, haurien dificultat 'avan¢ de la recerca i I'obtencio de
resultats. Gracies per facilitar la vida d’aquesta estudiant. En especial vull expressar el meu
agraiment a la gent del departament de Life Sciences, que fan un gran esforg dia a dia per a crear el
millor ambient d’aprenentatge per a tots, per fomentar el diadleg cientific, els vincles i col-laboracions
amb els diferents departaments, i per donar-nos un espai de treball on podem practicar la divulgacioé
cientifica; tots aquests esforgcos ens ajuden a creixer des del primer dia. A més, en particular al Dr.
Jose Luis Gelpi, vull agrair-li que hagi estat el meu tutor de tesi. De veritat que considero que he
tingut molta sort perque, per a tot el que he necessitat quant a seguiment i gestions amb la
universitat, m’ho ha facilitat moltissim i aix0... €s molt d’agrair.

Bueno, Dr. David Torrents, que sé que no t'agraden aquest tipus de formalismes pero
acceptes que de tant en tant jo sigui molt classica, gracies per acollir-me i donar-me la possibilitat de
poder fer el doctorat al teu grup. Sé que ha de ser un repte obrir la porta a un personatge com jo, per
la meva particular forma de ser, fer i expressar-me; i per la gran falta de coneixements que tenia. No
pots arribar a imaginar lo felic que he estat en aquests darrers 6 anys en el grup, m’has obert les
portes de casa i a sobre m’has donat totes les eines i facilitats per a que aprengués. Mai m’ha faltat
ajuda al voltant perqué tu t'’has encarregat de posar-me a treballar amb els millors mestres que tenies
a I'agenda i gracies a aix0, he pogut aprendre moltes coses. Tant ha estat aixi que ara, fins i tot, ja
puc parlar de ciencia amb tu amb més tranquilitat. Tot i aixi, sabem que encara tinc molt a aprendre i
gue de tant en tant encara dic alguna barbaritat. Gracies per fer de guia, conseller, a vegades casi un
pare, per donar-me reptes, trencar-me la ment i els esquemes quan estava més segura i per donar-
me confianca quan estava menys convencuda, perd sobretot, gracies per donar-me aquesta
oportunitat. M’he sentit tan bé des del primer dia, que per primera vegada a la vida, he volgut
continuar en una feina durant tants anys. Ara el problema sera que quan una esta tan bé en algun
lloc, doncs no vol marxar.



| tot aixd no hauria estat possible sense el Txema, la Montse i la Romina, que van ser els
encarregats de fer-me una entrevista de feina per a fer de Research Engineer en un projecte
europeu; el TIGER. Es molt curiés que des del primer moment em vaig sentir ben comoda amb
vosaltres. Recordo aquella entrevista com si fos ahir i semblava que us coneixia de fa molt de temps.
Us estic super agraida d’haver-me triat com a candidata per a poder entrar al grup, per tota la guia i
tota I'ajuda que m’heu donat durant aquest temps. Feu que treballar sigui un plaer al vostre costat.
Pero a banda de tot aix0, gracies per la vostra paciéncia, comprensié i per aguantar el meu nervi o
rebeldia de tant en tant. Si d’alguna cosa estic segura és que si tingués que repetir la mateixa
historia, us triaria com a companys i guies de cami. En particular, Txema, he aprés tantes coses de
tu, a nivell laboral i com a persona, de veritat que em fascina trobar-me a algd que tingui tanta
empenta i esperit critic i de superacid; ha estat dur seguir-te el ritme a vegades perd m’ha encantat
fer projecte, reunions i discusions amb tu. Gracies per tot el que m’has ensenyat. Romina, em va
encantar comencar el projecte amb tu, aprenent i barallant-nos amb la plataforma, les dades i les
maquines virtuals. Es un gust trobar-se pel cami a una persona tan predisposada sempre a donar un
cop de ma i amb aquest somriure a la cara. Gracies per ajudar-me amb les primeres batalles, per fer-
me companyia i per escoltar-me quan estava de queixa. La teva pau, comprensio i el teu somriure,
sempre han estat de gran ajuda. | Montse, qué més a dir que un se sent molt afortunat de que
estiguis sempre alla. Lo teu és impressionant; per a una conversa de feina, per a arreglar un codi, per
a veure que fer amb unes dades, per a processar algo al mare, per donar suport moral... la pregunta
és que fariem sense tu? Gracies per tot aix0 i per estar sempre per nosaltres.

But talking about TIGER without mentioning all the people involved in the project doesn’t have
any sense. For this reason, | want to thank all the T2Dsystems Consortium for trusting in me to
participate in this huge project, which has represented a major challenge for me. Particularly | want to
thank them also for their patience, since they have been listening my updates on the platform in each
follow-up session without showing any signal of boredom; this has been a very good practice for me.
Thank you for helping me to grow up. Here | must specially thank Dr. Miriam Cnop for giving support
and pushing the project until the publication, Dr. Jorge Ferrer for his support in some calls when David
was not able to attend and for facilitating us the publication of the cASE method, and many thanks to
Anthony, it has been a pleasure to share this project with you and Ignasi, to be with you in our regular
meetings, and a pleasure to work with you during your visit to the BSC.

Perqué si, quan un comenga un projecte s’hi va trobant a més gent pel cami. | aixi vaig tenir
la sort de coneixer a I'lgnasi; que en aquella época era encara un estudiant de PhD. Curiés va ser el
fet que em parlava en anglés i jo pensava... amb aquest nom i aquests cognoms... i en anglés... Anda
gue no em vaig posar contenta a Sitges quan vaig veure que parlaves catalal Em vas caure super bé
(compte, no només per parlar catala ehh); la cosa que des d’aquell moment vaig sentir que ja hi havia
algu més a l'equip. | déu ni do quin “fitxatge”! La veritat que estic encantada d’haver-te conegut i
treballar junts amb el TIGER, perd més contenta estic des que vas entrar al BSC de postdoc. Gracies
per donar-me la oportunitat de poder treballar amb tu en el projecte d’epistasia; ha estat dur, perqué
ets super critic i no et talles ni un pél a I'hora de dir que algo esta malament, perd amb tu un sempre
esta segur perque sap que aqui s’esta fent ciéncia de la bona. A banda que és molt divertit, de tant
en tant, fer un grafic curiés que et faci explotar el cervell. Pues qué et puc dir havent estat tan gran
mestre... si és que fins i tot m’has ensenyat a llegir papers, amb la teva idea de fer un journal club,
Ignasi! Saps que segueixo amb gust les teves passes... fins i tot hem tingut un nen gairebé alhora xD.
De tot cor, moltes gracies per posar-me en bon cami.

Claro, no puedo seguir adelante sin agradecer al Dr. Juan Ramén Gonzalez el haberme
ofrecido la posibilidad de colaborar en su proyecto de inversiones y, por habernos dado el empujén
inicial y el soporte necesario con epistasia. Debo confesar que fue muy estimulante, a la vez que



esperanzador, encontrar a un matematico trabajando en genémica. Otro ejemplo a seguir! Mil gracias
Juan Ramon.

And project by project | also get to the hands of Cecilia, my desktop mate in the office; and
what a mate! Since you get to the BSC I've enjoyed a lot learning by your side. Your love for science
is so big that you make it so easy to participate and to discuss about everything. | can imagine that it
was the reason for you to decide joining the Journal Club. It was very nice to broaden the discussion
with both Dani and you to other germline topics. Thank you guys for sharing all those Monday
mornings with me, talking about science in English, learning how to read, explain and criticize (in a
positive manner) a paper. All this time shared with you has been of great profit for me; very enriching
but also funny. Last Ceci, thank you for helping me in collaboration with Ignasi, to improve my writing
skills while writing the Mathematics review; your organized way of behaving encompassed with the
discipline in your work and speech have been a great guidance for me.

Y asi ha ido avanzando esta tesis; como algunos comentaban en el grupo, he sido muy
afortunada de compartir proyecto y contar con el apoyo y guia de 3 postDocs; y no estan nada
equivocados. Sin embargo, esa afirmacion esta incompleta porque mi fortuna no sélo es haber
contado con la ayuda de Txema, Ignasi y Cecilia, sino también de contar con todo un grupo de
investigadores que siempre estan dispuestos a echar una mano, a discutir de ciencia y no ciencia, a
compartir su trabajo y a dar su opinion critica sobre el trabajo que uno presenta. Ademas sin importar
el formato ya sea oficial o extraoficial, en un meeting de grupo, en una pausa para el café... siempre
disponibles para ayudar a mejorar en el trabajo y como persona. En este grupo se aprende hasta a
comer mas sano! Gracias a todos los ya mencionados y a Merce, Elias, Silvia, Marta, Juan, Alex,
Jordi, Luisa, Ana, Michelle, Lydia, Alvaro, Migue, Ramén e Ivan por todos esos momentos
compartidos, por ser un ejemplo y referente dia tras dia, por esos cafeticos y esas charlas
apasionantes de ciencia, politica, del dia a dia..., por escucharme cuando lo necesité, por darme
vuestro apoyo cuando estaba de bajon, por aclararme las dudillas que me iban saliendo sobre la
marcha, por aceptarme en el grupo y por la paciencia que habéis tenido conmigo (cuantas veces se
me tuvo que repetir lo que hacia la RNA-polimerasa! xD)... gracias en definitiva por estar ahi, ser
cada uno como sois y ser grandes maestros para mi. De corazén os digo que cada uno de vosotros
ha contribuido en mayor o menor grado a que todo esto salga adelante; esta tesis y yo.
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Abstract

One of the major and most challenging goals of Biomedicine during the last centuries has
been the study of the human biological mechanisms, and its relation with traits and diseases.
Particularly, in the case of complex diseases, such as Type 2 Diabetes (T2D), asthma or Alzheimer,
special interest has been devoted to understanding the underlying molecular mechanisms that affect
the development of complex diseases, and the biological processes involved in the preservation of
these diseases across generations (genetic basis). In this direction, during the last decades, the
advance of computing as well as the development of new DNA-related technologies has largely
contributed to the faster development of methods, tools, and resources, which have enhanced the
genetic study of traits and diseases. As a result of this revolution, new specialised fields such as
Biomedicine, Bioinformatics, and Computational genomics have emerged to find the genomic basis of
disease using computational tools. Hence, the identification of the genetic factors behind complex
diseases has evolved into a multidisciplinary effort, which combines disciplines as diverse as Biology,
Mathematics, Physics, Chemistry, and Information technology.

The Computational genomics field, in the context of Biomedicine, focuses on the study of the
relationship between genomic changes (variants) and the predisposition or the offset of disease with
the final aim of understanding, predict and prevent diseases and, ultimately, to design better
treatments. In this direction, numerous contributions have been made in this field to discover variants
associated with the risk of developing a disease, and to interpret these associations in terms of
function. Notably, some of these contributions, such as the assembly and annotation of the human
reference genome, improvements on disease characterization, the better understanding of the effects
of genomic variation in different populations, or the introduction of Genome Wide Association Studies
(GWAS), have represented very relevant landmarks for the advance on the understanding of the
genetic basis of diseases. Particularly, the broad use of GWAS, which mostly relies on the statistical
comparison between the variants present in groups of diseased and non-diseased individuals, have
led to the discovery of thousands of genomic variants associated with a great diversity of complex
traits and diseases.

Despite the great success of GWAS, the multiple limitations surrounding this type of
approaches, has converted the study of complex diseases into a still challenging problem.
Particularly, there are many elements, such as the need of analysing large cohorts of individuals, or
the difficulties to generate a complete model to capture the whole complexity of common traits, which
limit the discovery power of GWAS. Therefore, reducing the explanation of disease heritability, based
on GWAS findings, to a small fraction. Moreover, the lack of biological and functional interpretation of
the results obtained from GWAS has complicated its translation into something meaningful to be
applied in the clinics. Consequently, many statistical and computational efforts have been devoted to
improve GWAS discovery power, and to develop new analytical frameworks to find new disease-
susceptibility variants. Additionally, other biological approaches, such as transcriptomics and
epigenetics have emerged as a key to facilitate the interpretation of GWAS outcomes. Finally, the
need for accessibility to this valuable genomic, transcriptomic and epigenetic information has led to
the generation of a wide diversity of publicly available databases.

This is the case of Type 2 diabetes (T2D), which is a complex metabolic disorder mainly
known to be caused by islet beta-cell dysfunction usually surrounded by a background of insulin
resistance. T2D is an example of a common disease that has been broadly studied from the
perspective of different omic layers. Particularly, the genetic study of T2D has led to the discovery of
more than 700 genomic variants significantly associated with the disease, thousands of genes with a
putative effect on the disorder, and thousands of target genomic regions with potential regulatory
effects. However, although the genomic explanation of its heritability is estimated around 70%,
approximately only 20% has been already explained and, most importantly, the use of these markers
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to detect the predisposition of an individual to develop the disease is still far for the clinics.
Additionally, most of these genomic signals lack functional explanation, thus representing a challenge
for the understanding of disease pathophysiology.

Consequently, the general objective of this thesis is to broaden the genetic understanding of
complex diseases, focusing on the analysis of T2D, by finding new disease-susceptibility loci and
improving the functional interpretation of genetic markers. In this direction, the objectives of this thesis
can be summarised in:

1) Discover epistatic groups of variants associated with T2D, applying combined machine
learning and statistical approaches, and analyse their underlying molecular mechanisms to
enhance the early detection of the disease and a better comprehension of its
pathophysiology.

2) Generate a comprehensive database of human pancreatic islets gene expression regulatory
variation, which integrates genomic, transcriptomic and epigenetic data related to diseases,
genes and variants to improve the functional study of T2D and other islets related traits
(Alonso, Piron, Moran, & et al., 2021).

Additionally, this thesis recapitulates the participation in two studies with the objectives:
3) Support the relevance of inversions and their effect in islets expression to improve the genetic
knowledge about the shared-susceptibility of complex diseases (Gonzélez et al., 2020).
4) Review current GWAS statistical frames to promote the development of new methods and
tools that can enhance the study of complex diseases (Alonso, Moran, Salvoro, & Torrents,
2021).

Therefore, | start this document with a detailed introduction that aims to facilitate the
comprehension and motivation of this study, followed by the hypotheses related to milestones 1-2),
and the corresponding list of objectives. This section is followed by a report made by Dr. David
Torrents, the director of this thesis, summarising my trajectory during the PhD, and detailing my
contributions to the studies related to milestones 1-4) during this period. This report is followed by a
brief summary of the studies presented in this thesis.

Then, for the study of milestone 1), an unpublished manuscript is provided summarising the
preliminary results obtained from the analysis of variant-variant interactions and its association with
T2D using machine learning and statistical approaches. Therefore, describing and discussing the last
advances done, specifying the methods used, and discussing the outcomes and limitations of the
preliminary analyses. Next, a publication is provided to support the results obtained from the study of
milestone 2). Thus, detailing and discussing the human pancreatic islets gene expression variation
results that constitute the core of the database. Additionally, two appendix sections have been
provided in this document to include the publication and review related to milestones 3-4).

Finally, the global results obtained from the study of milestones 1) and 2) are summarised
and discussed, and a list of conclusions is provided to briefly recapitulate the main outcomes of this
thesis.
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1. Introduction

1.1. Biomedicine and the study of human diseases

1.1.1. Motivation: The study of the genetic basis of human diseases

The understanding of the biological mechanisms that affect the risk of developing a disease,
and its preservation through different generations, has been a subject of study broadly approached
during the last century by the Biomedicine field, and in particular during the last two decades (Quirke
& Gaudilliere, 2008). In this direction, different analytical frames and strategies have been designed
and applied to improve the comprehension of human diseases, combining different disciplines.
Particularly, during the last decades, the computational and technological revolutions have enhanced
these studies by providing more sophisticated tools, and computational and analytical methods, to
facilitate and support these complex analyses. The broad use of these technological advances have
boosted the generation of a large volume of diverse types of data to study human genetics, making it
necessary to improve information data storage techniques, management, integration, distribution, and
analytical tools. Thus, leading to the creation of new specialised fields, such as Bioinformatics, a
multidisciplinary field, which focuses on the creation and use of computational and statistical
frameworks to analyse and interpret multi-omics biological data.

One of the main goals of the Bioinformatics field, specifically from the Computational
Genomics point of view, is to study disease heritability by deciphering the contribution of genomic
variation on the risk of developing a disease, and understanding how much of this genomic variation
can be inherited by the offspring generation. Heritability is the common term used in the
Computational genomics field to refer to the study of the estimated variance of a trait or disease that
can be exclusively explained from the genetic point of view. In this direction, during the last decades,
several efforts have been made to reach a better understanding of the genetic basis of diseases.
Notably, the better comprehension of the human genetic architecture, and the identification and
characterization of genetic markers, has been essential to improve the prediction of disease risk and
diagnosis. As a result, the elucidated conclusions from the different types of analyses conducted in
the Computational Genomics field can be, in such a way, translated to the clinics to early detect,
prevent and, ultimately, to treat diseases. More specifically, all this knowledge has revealed some of
the molecular and functional basis of human disorders, thus leading to the generation of better
detection protocols, and becoming crucial in the development of new treatments (Timpson,
Greenwood, Soranzo, Lawson, & Richards, 2018).

1.1.2. Fundamentals of genetics and genetic inheritance

Although the use of statistical and computational tools to perform the analyses conducted in
the Bioinformatics field do not require any biological previous knowledge, a good insight in the
biological basis of genetics is crucial for the preparation of the analyses, as well as for the
interpretation of the results obtained. Therefore, the comprehensive biological knowledge of how
conditions are transferred from one generation to the next, named genetic inheritance patterns,
facilitates the understanding of genetic studies.

In this direction, in 1865, the fundamentals for explaining the basis of this genetic inheritance
were firstly described by Mendel (S. Abbott & Fairbanks, 2016). Particularly, Mendel studies were
focused on the hybridisation of 34 varieties of peas presenting clear observable differences in various
traits of the plants. As a result from eight years of experiments, seven hybrid characters, such as the
difference in the form and colour of the seeds, were observed in the first, second, and subsequent
generations. The analysis of the prevalence or recession from each of these hybrid particularities lead
to the classification of these features between dominant, in case they prevail, or recessive in case of
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remission or loss across the generations. Consequently, since that point, mutations were defined as
cell permanent and temporary associations, which follow the different Mendelian inheritance
patterns, based on the predominance and recession of the character and its appearance in each
generation (Alliance, Screening, & Services, 2009).

Notably, the advances of Mendel's work to understand the genetic inheritance were related to
changes and mutations in the fertilised cell, but the principal component of the cell susceptible to
mutations was still missing. For this reason, many theoretical studies suggested that changes in
genes or proteins, which were known to be functional elements in the cell, could be leading to the
generation of the different traits. However, it was not until 1943 when Oswald Avery experimentally
proved that the sodium deoxyribonucleate or DNA, stored in the nucleus of the cell, was the main
responsible of the genetic differences or mutations (Avery, Macleod, & McCarty, 1944; Cobb, 2014).
This result was revealed from observing and analysing the transformation of specific types of cultured
Pneumococcus, and led to the conclusion that genes were made of DNA instead of proteins, as it was
previously thought. Moreover, since that point, the DNA sequence was defined as the ‘transforming
principle’ and, consequently, it was stated that any chemical DNA alteration was the cause of
different cell types and biological functions, therefore making them predictable, and transmissible in
series.

The complete understanding of what is a DNA alteration requires a better comprehension of
the DNA molecule. Fortunately, at that point, the structure of the DNA molecule had already been
theoretically defined by Phoebus Levene in 1919 (Levene et al., 1919). Thus, facilitating the
experimental validation of the tetranucleotide theory, and the confirmation of the nucleic acid as a
paired sequence, where each base pair (bp) was generated from the combination of four nitrogenous
bases: adenine (A), thymine (T), cytosine (C) and guanine (G). Each of these bases, as published by
Erwin Chargaff in 1950, based on his chromatography studies of the DNA (Chargaff, 1950), pair in
the DNA sequences as follows A-T and C-G, following the rules which now receive his name (Figure
1).

m A - - -

P al P P Ca r=a, A=1  Chargaff rules
' A 9 ' 5 5 ' ™ ' 5 l 5 1. %A=%T and %C=%G
‘T T.A A A. 'T T A 2. The first law apply to both strands

Figure 1. The structure of the DNA molecule: The DNA molecule is composed by two right-handed helical
paired sequences, from which each base pair is a nitrogenous base: adenine (A), thymine (T), cytosine (C) and
guanine (G). These bases pair following the Chargaff rules, which state that 1) A pair with T, and C pair with G,
so that the proportion of A must be the same as the proportion of T, and the proportion of C must be the same as
the proportion of G, and 2) Each DNA strand follows the first rule.

Moreover, in 1953 (Watson & Crick, 1953), Rosalind Franklin, James Watson, and Francis Crick
defined the DNA structure to be composed by two right-handed helical chains coiled in the same
axis but in the opposite direction, where each of the helix pairs connect through hydrogen bonds
following the Chargaff rules. Therefore, as Avery explained, any alteration of the DNA molecule can
result in differences in the biological behaviour of the nucleic acids in each of these chains, and
consequently lead to an observable trait.

As a result of all these discoveries, today we know that DNA is a molecule defined by a paired
sequence of nitrogenous bases, which contains the basic information for each cell type. Thus, being
responsible for the different cell specialised functions. For this reason, any chemical alteration on the
nitrogenous bases of its sequences can lead to a biologically functional transformation that can be
observed as a trait characterising an individual, or a disease. Particularly, the variation leading to a
trait or a disease can be inherited by the offspring. Consequently, these changes or mutations are
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predictable and, therefore, their genetic study can lead to a better understanding of diseases, and the
improvement of disease prognosis.

1.1.3. DNA alterations and inheritance patterns

The discovery of the DNA molecule and its relevance to explain diseases and traits, based on
its transformation, motivates the study of the genomic mechanisms from which mutations can be
acquired during the individual life. Particularly, to study how genomic variation can be transmitted to
the next generations it is fundamental to remember that the DNA is organized in 23 homologous
chromosomes, from which the first 22 are the autosomes, and the other one, the sexual
chromosome, defines the sex of the individual (X and Y). Moreover, any position in the human
genome (locus) has two copies (or alleles): one inherited from the father A and one inherited from
the mother B. Thus, humans are diploid organisms, and each chromosome has two identical haploid
copies. These copies are named sister chromatids, join in a genomic region named centromere,
and end in non-coding and highly repetitive regions named telomeres, which provide their structural
stability. Since humans are multicellular organisms, this DNA organisation is preserved among all the
different human cells. Particularly, a human being starts its existence with only one cell (zygote) but
can reach over 30 trillion (3x1013) of specialised cells when adults (A. Abbott, 2016; Sender, Fuchs, &
Milo, 2016). As a result, cell mutations can be potentially acquired when the DNA molecule stored in
its nucleus is exposed to transformations, which corresponds, depending on the stage of the cell, to
the moment when the zygote is created (germline mutation), or when a copy of a new cell is
generated (somatic mutation).

The DNA alterations occur during the division processes of the cell: mitosis (somatic) and
meiosis (germline). However, the meiosis process is crucial to understand how mutations are
inherited by the offspring and, therefore, for the study of the genetic inheritance of human disorders.
Meiosis is a three step process (Figure 2) where:

1) First, each parental DNA haploid sequence is complemented with its corresponding chromatid
sister.

2) Then, the maternal and paternal chromatids combine, during the meiotic homologous
recombination step.

3) After the recombination, the chromatid sisters separate their centromeric regions, thus
generating 4 alleles named germ cells (or gametes).
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Figure 2. The genetic variability of the zygote. During the meiosis process, in diploid organisms, the DNA
recombines generating four gametes that will constitute the DNA of haploid germ cells. The genetic material of
two germ cells is combined during fertilisation to generate a new cell in the offspring (zygote) that inherits the
variability present in the parental cells.

The combination of one maternal and one paternal gamete (fertilisation) leads to the generation of a
new cell (zygote) (Burton, Tobin, & Hopper, 2005). As a consequence, the DNA content of the new
cell inherits the variability already present in the parental germ cells and de novo changes occurring
during the meiotic process. Each of these changes, already existing or de novo generated, are usually
referred to as germline genomic variation. This type of variability, which can derive in different traits
and/or diseases, represents the baseline susceptibility in complex diseases.
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Particularly, during the homologous recombination, each parental DNA molecule is divided in
fragments, called linkage disequilibrium (LD) regions or LD blocks (Slatkin, 2008). This
fragmentation usually occurs in the chromosome recombination hot spots, which are regions of the
genome more susceptible to be fragmented and recombined. As a result, LD regions contain groups
of variants with a higher probability to be preserved as a block for each parent. Therefore, a group of
alleles that are inherited together from a single parent is the haplotype, and since the combination of
alleles in all loci defines the individual genotype, genomic variation can be studied based on the
observation of the individual genotype. Indeed, based on human diploidism, each locus can have 3
possible combinations of alleles AA, AB, BB that can be grouped in homozygous (hom.), if the alleles
are the same, and heterozygous (het.) if the alleles are different. Specifically, given a reference, for
example a non-mutated cell in a population, compared to a mutated cell in the same population, these
combinations can turn into homozygous reference if both nucleotides are the same and match the
reference, homozygous alternate (hom. alt. or BB) if both nucleotides are the same but mismatch
the reference, or heterozygous (het. or AB) when both nucleotides are different at that position, one
matching and one mismatching the reference allele. Moreover, the way the alleles A, B are inherited
(inheritance patterns), which define the different inheritance models (additive, recessive,
dominant, or heterodominant), can lead to a different effect on the individual phenotype (Alliance et
al., 2009). As a result, the evaluation of predisposition to diseases through the study of germline
variant genotypes is affected by multiple factors such as LD regions, or inheritance models. Based on
these factors, the study of the genotypes of germline variants, and its probability of being inherited in
the offspring, can help to gain insight into the effect of genomic variation in the different traits or
disorders, and to facilitate the early detection and prevention of diseases.

1.1.4. Genetic variants classification

The relevance of the study of genomic variation inside a population motivates the
classification of variants to reduce the complexity of the explanation of genetic studies outcomes.
Hence, variants can be categorised, in general, by their size and their presence in the population,
measured by their minor allele frequency (MAF). As a result, in terms of their length, variants with
only one nucleotide change are referred as Single Nucleotide Variants (SNVs), those involving a
deletion or insertion between one and 50 nucleotides are short Indels, and the rest of genomic
variants are referred as Structural Variants (SVs) (Escaramis, Docampo, & Rabionet, 2015). In
particular, SVs are DNA regions presenting a change in copy number (deletions, insertions,
duplications, or copy number variation), orientation (inversions), or chromosomal location
(translocations) (Figure 3.A). Moreover, looking at the genomic variant frequency among the
population, variants with a MAF<1% are referred to as rare variants, those with a presence
1%<=MAF<5% are called low-frequency variants, and the rest (MAF=>5%) are known as common
variants (Bomba, Walter, & Soranzo, 2017; Eichler, 2019; Ku, Loy, Salim, Pawitan, & Chia, 2010;
The International HapMap Consortium, 2005) (Figure 3.B). Finally, being the most common type of
human variation, both low-frequency and common SNVs are known as Single Nucleotide
Polymorphisms (SNPs). The use of this classification facilitates the interpretation of genomic
population studies, improves the characterisation of disease-related variants, and promotes a better
understanding of the genetic basis of human disorders.
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Figure 3. Classification of variants by length and presence in the population. Genetic variants can be
classified by their length, and by their frequency among the population of study. The panels display:

A) Variant classification by length in base pairs (bp). The original sequence is the one with a stickman on the left,
and each mutated sequence is displayed below the original sequence. The light grey boxes represent the original
chromosome position in the genome for the observed variant (light blue), and the dark grey boxes represent a
different region of the genome. The dark blue boxes represent new inserted nucleotide sequences.

B) Variant classification by the minor allele frequency (MAF).

1.1.5. The effect of genetic variants and disease characterization

The fact that different DNA alterations can result in observable traits and diseases, motivates
the establishment of a categorisation of variants based on their effect on a specific phenotype.
Particularly, in terms of relation with disease, germline variants can be classified as protective, if their
contribution to the risk of developing a disease is negative, risk variants if they contribute positively to
that risk, or neutral if the variant has a negligible or no effect on the phenotype of study.
Consequently, in terms of this genomic association with a disease of study, protective variants reduce
the individual predisposition to develop the disease, and risk variants increase this predisposition.
Moreover, despite the large variety of traits that can be observed in the human population worldwide,
from the genomic point of view, these attributes or diseases can only be characterised as monogenic
or polygenic depending on the number of genomic variants affecting the individual phenotype, and
their behaviour. Therefore, in a Mendelian or monogenic disorder, although diverse genes can be
involved in its development, the effect of genomic variation in only one of these genes is enough to
mediate the disease. In contrast, if the contribution of multiple genetic variants, affecting various
genes simultaneously, and diverse environmental factors is needed to develop the diseased
phenotype, then it is named complex, polygenic, or common disease (Figure 4) (Manolio, Brooks,
& Collins, 2008).

34



A) Traits B) Diseases

Protective Reduce the predisposition

Increase the

predisposition Hundreds of variants

+
Environmrent

1‘&@5@

Figure 4. Disease and variants classification based on the effect and behaviour of disease-related
variation. Genomic variants define the individual phenotype, thus leading to the development of A) different
traits, and B) diseases. A disease susceptible variant is classified as protective (blue panel), if it helps to the
prevention of the disease. In contrast, if the variant mediates the disease, it is defined as a risk variant (grey
panel). In a Mendelian or monogenic disease, it is only necessary to have one variant affecting a particular gene,
from the diverse genes related to the disease, to its development. In complex diseases, hundreds of variants with
a low effect, affecting multiple genes simultaneously, in combination with diverse environmental factors, are
needed to develop the disease.

Rare diseases
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In particular, monogenic diseases are usually rare diseases, which affect less than 5% of the
population such as cystic fibrosis or polycystic kidney disease. In contrast, complex diseases, such as
diabetes, asthma, or Alzheimer’s disease, are broadly extended among the global population, usually
affecting thousands, and even millions of individuals worldwide. Thus, converting the study of the
genetic inheritance of complex diseases into one of the major goals of Biomedicine. Particularly, the
better comprehension and characterisation of this genetic component, the more we will know about
the molecular biology behind, and the better chances to design improved prognosis, prevention, and
treatment protocols for this type of disorders.

1.1.6. From genomic variation to its functional interpretation

The study of the genetic inheritance of complex diseases, based on the analysis of the
contribution of germline variation to the disease, is fundamental to find the genomic mechanisms
underlying this type of disorders. However, apart from the discovery of disease-associated genetic
markers, it is also necessary to understand their molecular mechanisms, since it is essential for the
identification of drug targets and new therapies. Nevertheless, further knowledge is needed to convert
DNA alterations into functional alterations that could explain the disease. In this direction, it is crucial
to find the relation between germline variation and cell function. Particularly, as cell function derives
from proteins, and genes are DNA segments containing the instructions for protein production, they
are of special interest for the study of the effect of genomic variation on function.

The relation between genomic variation, genes, proteins, and function can be explained
through the central dogma of biology, which constitutes the basis of molecular biology, and was
published by Francis Crick in 1958 (Crick, 1958). This dogma stands on the fact that the DNA
molecule is continuously transcribed into RNA, which then will be further translated into proteins.
During the transcription, each DNA strand is copied to generate a RNA strand, transforming thymine
in uracil (U). Then, the RNA is translated into amino acids, which are groups of three bases, to
generate the different proteins that are involved in the diversity of cell functions. Each protein is
composed from at least 20 amino acids (Figure 5.A). Therefore, DNA alterations associated with a
complex phenotype can result in a change of a gene which can alter the protein function (Figure 5.B).
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Figure 5. Central dogma of biology. The DNA molecule (top) is transcribed into RNA (middle) to then be
translated into an amino acids sequence (bottom).

A) The genes, which contain the instructions for protein production in the DNA, result in groups of at least 20
amino acids that generate a protein.

B) DNA alterations can be translated into an amino acid change, which alters the protein function.

As a result, the relation between variants and genes or functional regions enhances the
detection of the pathways mediating the disease or its connection with the symptoms. For this reason,
after the identification of disease-susceptibility loci, the use of genomic annotations to find candidate
functional regions or putatively associated genes, targeted by the alterations, has been broadly
extended. Moreover, humans have hundreds of different types of specialised cells, which multiply
during the mitotic process, to facilitate the human development, growth, and regeneration (Arendt,
2008; Vickaryous & Hall, 2006). The specialisation of each of these cells enhances the performance
of the specific tasks that each human organ or tissue requires to ensure its function. Thus, suggesting
that the study of the deterioration of specific types of cells or disease-related tissues, based on the
presence of genomic variation, can help to improve the explanation of the functional interconnections
between genetic variability and common diseases.

1.1.7. Preparation of different omic data for genetic studies

The relevance of the DNA molecule to understand how a chemical transformation of any of its
chains relates to a different trait or disease, how frequently are those changes inherited through
different generations, and which are the functional interconnections between this genomic variation
and diseases, evidence the importance of exactly determining the DNA sequence of an individual. As
a result, a wide diversity of experimental methods and computational tools has been developed during
the last decades to allow the inspection of the DNA and RNA sequences. Thus, including methods
which facilitate the analysis of specific positions, such as microarrays, or tools that determine the
complete sequence of a region, such sequencing technologies. Particularly, the introduction of
sequencing and microarray methodologies changed the paradigm enhancing the advance of genetic
studies. In contrast with previous studies, which focused on the analysis of cell function to find the
pathways related to disease, studies based on the use of these new methods start with the
identification of variants associated with disease to, then, find a putative relation with cell function that
mediate human disorders.
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1.1.7.1. DNA sequencing

The analysis of the DNA sequence of an individual is crucial for the discovery of any possible
alteration in its chains that can derive in the different phenotypes. Therefore, after many efforts, in
1977, the Sanger sequencing method emerged finding the way of determining an individual DNA
sequence (Sanger, Nicklen, & Coulson, 1977). To improve the accuracy of the results obtained by
applying this method, other complementary techniques, or correspondingly priming the opposite
strand with the same process, were further recommended. Notably, the many advantages supposed
by the simplicity of the performance of this methodology, the fewer artifact bands observed in the
process, and the possibility to sequence between 15 to about 300 nucleotides from the priming site,
enhanced its commercialisation process by Applied Biosystems in 1986. This commercialisation, and
the continuous updates of DNA sequencing methods, promoted its broader use to gain insight in
genomics, thus, including de novo assemblies of the genome, individuals resequencing, and other
clinical and biochemical applications (Shendure et al., 2017).

1.1.7.2. DNA microarrays

The fact that changes on the DNA sequence can affect some specific cell functions, and lead
to a diseased phenotype, evidenced the need of techniques to compare different cells or individuals’
DNA. Despite many molecular biology based methods were developed to facilitate this analysis in a
separate manner, it was not until 1983, when Tse Wen Chang published the basis to generate DNA
microarrays, a method that allowed the simultaneous analysis of multiple cells (Tse-Wen Chang,
1983). This technology facilitates the comparison between the different tested cells, with lower
reagent consumption, and minimising the test time. The many advantages of this method led to its
rapid commercialisation by Affymetrix, Agilent, Applied Microarrays, Arrayjet, lllumina, and others.
Moreover, the generalisation of this methodology led to diversifying the analyses performed, therefore
extending them for example, to the analysis of gene expression levels, methylation, or alternative
splicing (Gonzalo & Sanchez, 2018; Schena, Shalon, Davis, & Brown, 1995).

1.1.7.3. RNA sequencing

Despite the great success of DNA sequencing and microarrays, the expensive cost of Sanger
sequencing and its difficulties to uniquely map to the genome, and the limitations of microarrays
derived from the need of previous genome sequence knowledge, or the difficulties to precisely
compare measures between independent experiments, motivated the introduction of high
throughput and Next Generation Sequencing methods (Z. Wang, Gerstein, & Snyder, 2009).
Particularly, in 2009, Zhong Wang presented the RNA sequencing (RNA-seq) methodology as an
alternative to previous methods. This method facilitated the mapping and quantification of the
transcriptome in reads with between 30 and 400 bases. RNA-seq technology presented many
advantages in contrast with previous methods, such as the no need of a priori knowledge of the
genomic sequence of a model organism, not having upper quantification limits, the reduction of
background signals, more accuracy, and a lower cost. In contrast, some challenges and complications
surrounded this method, such as many difficulties related to library constructions, the need for big
storage, and requirement of new methodologies to process large amounts of data. Despite these
disadvantages, the development of RNA-seq was revealed as fundamental, therefore enhancing the
commercialisation of this methodology by several companies, such as lllumina, Qiagen and
ThermoFisher Scientific. As a result, the analysis of RNA-seq was crucial to offer a global view of the
transcriptome of various species, to revise gene annotation, to identify novel transcribed regions, to
detect new splicing events, and to find sequence variations. Thus becoming essential for interpreting
the functional elements of the genome, specific cells and tissues, and being promoted as the key for
understanding development and disease.
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1.1.7.4. Single-cell sequencing

Although the application of RNA-seq and expression microarrays on large numbers of cells to
analyse complete expression profiles, and to understand how many and which genes are particularly
expressed in a tissue or an organ resulted successful, the heterogeneity of the functions of the cells
present in any tissue or organ limited the discovery to the average expression of the genes studied.
These limitations evidenced the need of simultaneously analysing a diversity of cell types in more
complex organisms, to calculate the expression in any single cell type. In that direction, Ernest
Kawasaki proposed single-cell sequencing technology in 2004 (Kawasaki, 2004). This technology is
based on collecting enough RNA for probe array production from a variety of cells that can be
representative of a single cell population in a tissue or organ. The expected scientific advances from
the use of this technology lead to its commercialisation by Fluidigm, Clonetech, and 10xgenomics.
Particularly, the use of single-cell sequencing has led to a better understanding of the biology of cells,
and to gain insight in some diseases with highly heterogeneous tissue-related cells, such as cancer.

1.1.7.5. Genotyping arrays

The broad use of sequencing methods led to the easy characterization and identification of
SNPs, and, as a consequence, to the development of genotyping arrays or SNP arrays in 1998 (D.
G. Wang et al., 1998). Genotyping arrays facilitated the screening of SNP genotypes in a large-scale.
Particularly, their broad commercialisation by different producers, such as Affymetrix, Agilent, lllumina
and Niblegen, together with the knowledge about the existence of over 1.4 million SNPs (International
Human Genome Sequencing Consortium, 2001), has facilitated the creation of genotyping arrays that
can evaluate more than one million SNPs for thousands of individuals at the same time (Lamy, Grove,
& Wiuf, 2011). Thus converting the use of genotyping array technology into a more economical and
viable technique for the study of human genetics, and enhancing ancestry assessment, allele-specific
expression studies, association with disease, and somatic changes detection (LaFramboise, 2009).
Moreover, the use of SNP arrays can mediate the identification of genetic markers related to disease
based on familial studies, the analysis of linkage disequilibrium in isolated populations, association
analysis in case-control individuals, loss-of-heterozygosity studies, to measure genetic distances
between populations, and can also be used for parental and pedigree assignment (Vignal, Milan,
SanCristobal, & Eggen, 2002).

1.1.7.6. The evolution of sequencing and microarrays

In summary, sequencing and microarray processes focus on recovering the exact nucleotide
sequence from a DNA molecule. This facilitates the identification of molecular elements with a
potential relation with disease, and improves the knowledge of the biological functions of different
cells. As a result of the success of the broad use and commercialisation of these technologies, all of
them have been continuously evolving since their presentation. As a result, the quality of the material
produced has improved, for example increasing the number of base pairs obtained in a sequence,
and including the information of thousands of cells for single-cell analyses (Shendure et al., 2017).
Moreover, the sequencing cost has been reduced from 3 billion dollars to less than 1 thousand dollars
to obtain a complete individual DNA sequence (‘The Cost of Sequencing a Human Genome’, 2021).
All these improvements have converted the use of these technologies into something fundamental for
the advance on the genomic study of complex diseases.

1.2. Genetic studies and complex diseases

The great advances promoted by the development of experimental methods and
computational tools in the Biomedicine field have enhanced the genomic study of diseases.
Particularly, the introduction of these new technologies has represented a change in the paradigm of
genomic studies, thus, facilitating the simultaneous analysis of multiple individuals to find variants
associated with complex disorders, which can be further analysed to understand their functional
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implications in disease predisposition. In this direction, the broad use of these methods by large
Consortia has resulted in a big progress where many milestones have been achieved. These
advances include the procurement of the first assembly of the Human reference Genome, which
has been of great relevance for the discovery of disease-susceptibility loci, but also to improve their
functional interpretation. Moreover, these technologies have allowed the generation of genetic
variability maps, which have played a key role in the study of population variability, and have
improved the detection of disease-associated signals. These achievements have represented an
enormous progress in disease comprehension. However, at the same time, all these subjects are still
nowadays a matter of study, discussion, and improvement, thus representing the starting point, and a
solid basis for most of the current genomic studies.

1.2.1. The Human Genome Project and the human genome sequence

The development of sequencing technology and its commercialisation led the International
Human Genome Sequencing Consortium (HGSC), in 1990, to announce the Human Genome
Project (HGP), which had the global goal of obtaining the first assembly of the Human reference
Genome sequence (Venter et al., 1998). As a result of this large Consortia effort, by the nearly end
of 2004 the project was finished with approximately covering 99% of the euchromatin genome. That
corresponds to 2.85 billion (2.85x109) paired bases of the human genome (International Human
Genome Sequencing Consortium, 2004). The inspection from the accurate sequence obtained (10x)
showed that approximately 5.3% of the euchromatic genome are segmental duplications, and it
contains more than 1.4 million SNPs (which occur at a rate of 1 per 1,300 bases). This valuable
information was fundamental for the creation of new diagnostic tests based on the SNP association
with diseases or traits. Moreover, a gene catalogue of 22,287 gene loci (34,214 transcripts, 19,438
known genes, 2,188 predicted genes, and an estimate of 20,000—-25,000 protein-coding genes), and a
list of transposable elements, GC content, and CpG islands were generated, thus, constituting a
comprehensive human genomic database, and providing the scientific community with a great
resource of functional information.

Different assemblies of the hg correcting previous errors have been released till now.
Particularly, the last more known and broadly accepted by the scientific community are GRCh37.p13
or hg19 from 2013, and GRCh38.p13 or hg38 from 2019. However, these versions are still missing
the remaining 8% of the genome. Thanks to the advances made by PacBio and Oxford nanopore
sequencing technology (Eid et al., 2009; Jain et al., 2018), as well as the new developments in
assembly, polishing, and validation, the Telomere-to-Telomere (T2T) Consortium announced the
release of a new version of the hg sequence (T2T-CHM13v1.1 assembly) addressing the remaining
gaps (The Telomere-to-Telomere Consortium, 2022). As a result, 3.055 billion (3.055x109) bp
sequence of the hg are now known, including pericentromeric and subtelomeric regions, novel genes
and segmental duplications, ampliconic gene arrays, ribosomal DNA (rDNA) arrays, the X
chromosome, and 16,569 bp of mitochondrial genome.

The broad use of the different human reference genome assemblies, as well as the large
genetic databases generated by the HGSC and the T2T Consortium, has benefited multiple genetic
studies. Particularly, the discovery of a list with more than 1.4 million SNPs has facilitated the
improvement of genotyping arrays, thus enhancing the detection of disease-associated loci.
Moreover, the creation of a genes catalogue has promoted the functional interpretation of the disease-
susceptibility loci in terms of gene function. Additionally, the generation of a database of functional
regions has enhanced the analysis to find putative relations between genomic variation and disease
regulatory mechanisms. All this knowledge has derived in a better understanding of the biology
behind the human genome, and multiple benefits for human health. For this reason, as the current
assembly is monoploid, meaning that it is based on only one human haplotype, in 2021 a new
initiative from the Human Pangenome Reference Consortium raised to sequence 350 genomes with
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the aim of properly capturing the genomic diversity in human population (Miga & Wang, 2021;
Reardon, 2021).

1.2.2. Genetic variability maps

The extensive use of genotyping arrays for the study of the genomic variation across different
populations has promoted the achievement of very relevant milestones, such as the development of
large population genetic variability maps. These haplotype reference panels contain the
haplotype of thousands of individuals evaluated in different loci, thus procuring a valuable source of
information for downstream genomic analyses. Particularly, population maps are crucial to find
differences between individuals from the same population, and to compare the genetic variability
between different ancestries. Thus, facilitating for example the understanding of how those
differences can affect disease predisposition or protection.

To generate the first haplotype reference panel, the International HapMap Consortium set out
in 2002 the International HapMap Project (The International HapMap Consortium, 2003). This
project aimed to genotype at least one common SNP every 5 Kilobases in euchromatic regions in 270
individuals from four different ancestries in Africa (Yoruba), Asia (China and Japan), and Europe
(Utah). As a result, in the Phase | of the project, approximately 1.3 million SNPs were genotyped. In
the Phase I, published in 2007, a further 2.1 million SNPs were successfully genotyped on the same
individuals, finding one SNP every 1 kb (The International HapMap Consortium, 2007). The
resounding success of the HapMap study was followed by diverse initiatives aiming to extend the
discovery of genetic markers in different populations, and to provide a deeper characterization of
those genetic markers in the population. These projects involved the inclusion of larger sample sizes
in the analyses, the incorporation of much lower frequency variants, the analysis of single-
populations, and the combination of different sequencing techniques (whole-genome sequencing
(WGS) and whole-exome sequencing (WES)) with genotyping array data. The success of these
initiatives required its promotion by large consortiums such as the 1,000 Genomes Project
Consortium (1000G) (The 1000 Genomes Project Consortium, 2015), the Genome of the
Netherlands Consortium (GoNI) (The Genome of the Netherlands Consortium, 2014), the UK10K
Consortium (The UK10K Consortium, 2015), the Haplotype Reference Consortium (HRC) (The
Haplotype Reference Consortium, 2016), and the TopMed program (Taliun et al., 2021) (Suppl.
Table 1).

As a result of all these efforts, it is known that more than 99.9% of the bases in a human
single cell are shared in all people. Therefore, the genomic differences presented by the comparison
of an individual genome with the reference comprehend between 4.1-5.0 million sites (The 1000
Genomes Project Consortium, 2015). However, it has been estimated that, in the world's human
population, about 10 million sites vary such that both alleles are observed at a frequency of 21%, thus
constituting 90% of the variation in the population (The International HapMap Consortium, 2003).
Interestingly, after the alignment with the reference genome, more than 400 million variants, including
SNPs and short Indels, have been lastly reported (Taliun et al., 2021).

1.2.3. Discovery of variants associated with complex diseases

Common diseases are broadly extended among the worldwide population, affecting between
thousands and millions of individuals, thus converting their genetic study into a major health problem.
Nevertheless, the fact that complex diseases are the consequence of the combination of multiple
genetic and environmental factors (Manolio et al., 2008), has complicated their study, as well as their
underlying biological understanding (Craig, 2008; Mitchell, 2012). First, the genetic component of
complex diseases is affected by the contribution of the small effects of multiple genomic variants, thus
defining its polygenic nature (McCarthy et al., 2008). Particularly, the heritability of most complex
diseases has been estimated between 20-80%. However, still only a small fraction of this estimation
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has been already recapitulated, thus constituting the missing heritability problem (Manolio et al.,
2009). In addition to this complex genetic nature of common diseases, the multiple environmental
factors affecting the disease such as clinical variables, or population structure obscure their analysis.
Thus, converting the discovery of variants associated with complex diseases into a still challenging
computational problem, which demands robust statistical models such as those underlying Genome
Wide Association Studies (GWAS) or Machine Learning (ML) approaches.

1.2.3.1. Genome Wide Association Studies (GWAS)

To address the study of the genetic inheritance of complex diseases, Genome-Wide
Association Studies (GWAS) have been broadly applied during almost the last two decades (R. J.
Klein et al., 2005). In short, this study seeks disease-associated variants, as those that are
significantly more (or less) present in patients, compared with control non-diseased individuals
(Figure 6). Therefore, it is common to start from genotyping array data to evaluate millions of variants,
simultaneously, to find possible genotype-phenotype associations. Particularly, GWAS are statistical
approaches which analyse the genotype of thousands of individuals from the population of study
(cohort) in search for disease association.

Cases (diseased)

Population c

Figure 6. GWAS schema. In a binary GWAS, thousands of individuals from the population of study are first
classified in diseased (white stickmen) and non-diseased (blue stickmen). Then, their genotypes are statistically
compared. Each variant is tested in a single independent manner to find putative associations with the disease
based on the comparison of its allelic frequency among the case-control populations (dotted square).

The diversity of GWAS models facilitates the analysis of these associations with quantitative
and qualitative measures, which define the phenotypes of complex traits or diseases (see Genome
Wide Association Studies review). GWAS involves the use of contingency tables, logistic
regression, regression model extensions, and Bayesian regression approaches. All these methods
test the association in a single independent manner for each variant included in the analysis. For this
reason, the outcomes obtained from a GWAS, also named summary statistics, include, for each
variant, a multiple testing corrected p-value standing from the association test with the disease,
and the corresponding measure of its effect (odds ratio (OR) or beta) on the risk of developing the
disease.

The combination of the success of GWAS and the general interest for its applicability in the
study of complex diseases, has led to the development of several tools to enhance, improve, and
facilitate the performance of this method (Uffelmann et al., 2021). Consequently, this methodology
has been broadly applied to analyse the effect of genomic variation on a wide diversity of complex
traits and common diseases, thus promoting the discovery of thousands of variants significantly
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associated with the trait or disease inspected, where each variant contributes with a small fraction to
the explanation of the risk to develop disease (McCarthy et al., 2008). As a result of GWAS success,
large catalogues of variants associated with complex diseases have been created and made
publicly available (Beck, Hastings, Gollapudi, Free, & Brookes, 2014; Buniello et al., 2019; K.
Watanabe et al., 2019). Hence, providing the research community with a great resource of information
that includes the association results for more than 276 thousand variants associated with more than 4
thousand traits or diseases (Buniello et al., 2019).

1.2.3.2. GWAS limitations

Despite the vast contribution of GWAS to the characterization of complex diseases, there are
many limitations surrounding this methodology (Génin, 2020; Tam et al., 2019; Visscher et al., 2017;
Wray et al., 2013). The diversity of factors contributing to GWAS limitations are enclosed in each of
the steps involved in this type of study, thus including the input data, the statistical methods, and the
results obtained from the analyses. However, the way all those factors affect the discovery
encompass problems mostly related to the statistical power, and the challenges surrounding the
inclusion of complex association models in the study. Moreover, the results obtained from these
methods lack of functional interpretation, thus defining the boundaries for the understanding of the
molecular mechanisms underlying disease (see Genome Wide Association Studies review).

1.2.3.2.1. Statistical power

There are many causes that affect the statistical power of a GWAS to find a significant
disease-susceptibility loci association. These factors include the allelic frequency of the variant on
the trait of study, the sample size, the number of variants that are included in the analysis, the
underlying genetic model, the genetic heterogeneity of the trait in the population of study, and the
variability present inside the population.

The power to detect a disease-associated locus is usually related to the effect of the variant
on the trait of study. More precisely, variants with a higher effect on the disease are easier to capture.
However, their allelic frequency tends to be lower in the population, usually in an inverse correlation
with their effect (McCarthy et al., 2008). Therefore, favouring the detection of common variants, with
usually a modest effect (OR between 1.05-1.3), than low-frequency variants or rare variants (Tam et
al., 2019). In the same manner, this reasoning also applies to the higher detection of SNPs and short
Indels, in contrast with SVs, which tend to be underrepresented in GWAS (see Polymorphic
Inversions and TIGER publications).

To overcome the detection power limitation, based on the sample size, different approaches
such as the analysis of larger sample sizes, meta-analysis, or the use of WGS data has been
proposed (Wainschtein et al., 2022). The expensive costs of WGS have benefited the use of large-
scale initiatives or meta-analysis. Particularly, large Consortia have been established to analyse
bigger cohorts and to generate public and private genetic biobanks (Swede, Stone, & Norwood,
2007), thus facilitating the availability of genotype and phenotype data of thousands of individuals
(see TIGER publication). The accession to these larger individual cohorts has reinforced the
possibility of improving GWAS discovery, granted a better phenotype classification, and facilitated the
opportunity of identifying more genetically homogeneous groups (see Polymorphic Inversions and
unpublished Epistasis). Moreover, meta-analyses, which are based on the statistical combination of
publicly available GWAS summary statistics results, have been commonly used in the same direction.
Hence, resulting in an improvement on the discovery based on the reduction of false-positive findings,
and a gain of detection power due to the increase of sample size (see TIGER publication).

Additionally, the probabilities of finding a GWAS signal associated with the disease increase
with the number of genetic markers that can be tested. Particularly, under the LD background
surrounding this type of study, where an associated common signal resulting from GWAS can be
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masking a real rare causal variant in LD with the first, the maximisation of the number of genetic
markers evaluated becomes crucial. Fortunately, the advances made to generate haplotype and
genotype reference population panels, have facilitated this task. Thus, the common practice to
increase the number of variants analysed in a GWAS, is to apply to the genotyping array information
available for each individual in the study a quality control, followed by phasing and imputation
techniques (see Polymorphic Inversions and TIGER publications, and unpublished Epistasis).
The main goal of using these methodologies is to infer the genotype for multiple individual variants,
from which the genotype is missing or unknown in the genotyping array data (Lo, 2014; Marchini,
2019). As a result, the use of imputation has facilitated the inclusion of millions of variants in GWAS
analysis, thus improving the discovery power of these approaches and, consequently, enhancing the
identification of new loci significantly associated with complex disorders.

Moreover, it has been settled that the power to detect a genomic variant associated with a
complex disease through GWAS maximises when the test matches the underlying inheritance model
of the causal allele (Lettre, Lange, & Hirschhorn, 2007). However, the common practice in GWAS is to
analyse variants under the additive model (see unpublished Epistasis). Indeed, despite the
recognized contribution of GWAS analyses under the additive model to the explanation of a large
fraction of complex diseases heritability, there are many genomic variants that follow a non-additive
inheritance model (recessive, dominant, or heterodominant). Therefore, the variants following non-
additive models tend to be poorly detected or completely disregarded in the vast majority of current
GWAS. Consequently, the simultaneous test of different genetic models has been suggested as a
successful approach to gain statistical power to detect disease susceptibility loci and, therefore, to
improve the knowledge based on the genetic architecture of complex diseases (Guindo-Martinez,
Amela, & et al., 2021; Pozarickij, Williams, & Guggenheim, 2020).

Finally, the genetic heterogeneity of an observed trait in the population, as well as the
variability present in the population of study, also affects the GWAS discovery power. In the case
of disease heterogeneity, the multiple clinical variables related to complex diseased phenotypes, as
well as comorbidities, can dilute specific clinical groups related signals, thus reducing the detection to
the most common susceptibility loci between groups of the same disease (see Polymorphic
Inversions publication). For this reason, although this strategy has been a valuable resource to find
some of the genetic mechanisms underlying complex diseases, the discovery of variants related to
more specific groups of individuals has been proposed as a crucial step towards precision medicine.
As a result, different initiatives have emerged to create subclassifications of diseased individuals
based on clinical variables. These patient stratifications have facilitated the possibility to perform more
homogeneous GWAS based on these sub-phenotypes and to find their etiological differences
(Ahlgvist et al., 2018; Ahlqvist, Prasad, & Groop, 2020; Mansour Aly et al., 2021). In a similar manner,
the different allele frequencies and LD patterns emerging from the different ancestral backgrounds
have also limited the possibility of extending or replicating the results in other populations. Therefore,
constituting an impairment for underrepresented populations, and reducing the genetic understanding
of complex diseases to the most commonly studied populations, such as European ancestry
populations (see Polymorphic Inversions and TIGER publications, and unpublished Epistasis).
However, despite the narrowed GWAS discovery behind this population genetic heterogeneity, multi-
ancestry studies have shown that still a big fraction of common variants are shared across different
ancestries (J. Chen et al.,, 2021; M.-H. Chen et al., 2020). In contrast, those studies have also
supported the relevance of ancestry-specific analysis to find the genetic particularities of each
population. Thus, opening a new avenue for population-specific GWAS, and a more global
representation of different ancestry populations in genetic studies.

1.2.3.2.2. Complex interaction models

Despite the undeniable success of GWAS to find variants associated with disease, the
statistical models usually applied to perform the phenotype-genotype association tests have limited its
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discovery. Particularly, although the software specifically developed to perform these analyses has
facilitated this task, the large number of variants that are expected to be analysed simultaneously in a
GWAS converts the genomic study of disease association into a computational challenging problem.
As a result, although complex traits are known to be affected by the combination of multiple genetic
and environmental components, current GWAS evaluates the effect of single independent variants
(Tam et al., 2019). Consequently, the identification of genomic loci under more complex models, such
as gene-gene interactions (GxG) (see unpublished Epistasis), and gene-environment
interactions (GxE), are usually not considered from the analysis, thus limiting GWAS discovery, and
contributing to the missing heritability problem (Manolio et al., 2009).

At the genomic level, common diseases are caused by the simultaneous combination of
multiple variants each with a low contribution or effect on the disease (McCarthy et al., 2008).
However, GXG interactions are usually reduced to consider the effects of variants additively, thus,
ignoring the study of variants dependency (epistasis), the effect of their functional interconnections,
and its association with diseased phenotypes (Mackay, 2014), or reducing it to the test of a small
fraction of variants usually underlying a shared biological explanation. The main cause of this problem
is the computational challenge that represents the analysis of epistasis, where for example billions
(1012) of tests are needed just to analyse the complete set of pairwise interactions between 500,000
SNPs (Marchini, Donnelly, & Cardon, 2005). Subsequently, diverse techniques such as
multidimensionality reduction analysis, or variants filtering to restrict the analysis to sets of
variants previously known to be related to biological regulatory functions, have been developed and
applied to approach this problem (Manduchi, Chesi, Hall, Grant, & Moore, 2018; Josep Maria
Mercader et al., 2008). Interestingly, regardless of the limitations derived from the reduction of the
discovery dataset, a few genetic variants have been discovered which, despite having only modest
significance on a phenotype individually, have an increased effect when considered jointly (Cordell,
2009; Kirino et al., 2013; Monir & Zhu, 2017) (see unpublished Epistasis).

Additionally, the role of multiple environmental and clinical variables on the development of a
disease is known to have an effect on complex diseases. Therefore, the focus of GXE interaction is
the analysis of the environmental factors, such as diet, lifestyle, psychosocial stress or airborne
agents, and their relation with different genotype groups, in terms of disease associations (Bookman
et al., 2011; Dempfle et al., 2008). GxE studies are usually approached by Environment-Wide
Association Studies (EWAS), which are an extension of GWAS where the environmental variables
can be simultaneously tested with the genotype. However, the difficulties to measure some
environmental variables, as well as the uncertainty to understand which features can be contributing
to a disease, and the complexity of the underlying models, usually surrounded by a computationally
expensive background, have limited their use and discovery (McAllister et al., 2017; Thomas, 2010;
Zheng et al., 2020). Indeed, GXE studies have opened a gate for future studies given its relevance to
understand the genomic differences between populations, which can be interpreted as the result from
an adaptation process to a particular environment, or to the exposures to certain conditions.

1.2.3.2.3. Lack of functional interpretation

The study of the effects of genomic variation on the predisposition to develop a complex trait
or disease involves a discovery phase, where multiple variants are proposed to be associated with the
disease of study, followed by a functional interpretation step to identify the biological mechanisms
and pathways that mediate disease. This last step is crucial to find the proteins that are involved in the
disease and to find new drugs and therapies. However, despite technological advances have
enhanced the discovery, the interpretation is still a challenge in genetic studies. Particularly, from the
millions of variants simultaneously tested in a GWAS, the few hundreds or thousands of them which
are significantly associated with the disease lack of functional interpretation. Thus, limiting the
understanding of the biological consequences of a GWAS variant in relation with the disease.
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Notably, this lack of functional interpretation, combined with the fact that most susceptibility
locus lie outside the coding regions and are assumed to influence transcript regulation rather than
gene function (McCarthy, 2010), hinders the analysis of GWAS outcomes (Tam et al., 2019). For this
reason, many studies have advanced in the direction of developing and applying different
methodologies to facilitate the translation of the genomic markers obtained from GWAS into relevant
biological or clinical information (see TIGER publication). As a result, the functional annotation of
variants, as well as the assessment of its association with transcriptional changes, and their overlap
with epigenetic marks, constitutes a valuable tool for the understanding of the functional impact of
variants on the disease. Therefore, expression analyses, gene, pathway, regulatory elements and
epigenetic marks enrichment, are the most common approaches used to gain insight on this
missing biological understanding (Cano-Gamez & Trynka, 2020; Lichou & Trynka, 2020; Manolio,
2013) (see chapter 1.2.4., Polymorphic Inversions and TIGER publications, and unpublished
Epistasis). Additionally, the experimental assay of the results in cell lines and other organisms is
applied to support or reject GWAS findings, and Polygenic Risk Scores (PRS), although still
incomplete, have been recently applied to GWAS summary statistics to mediate the translation of the
statistical outcomes into something actionable in clinics (Kullo et al., 2022; Kumuthini et al., 2022;
Lambert, Abraham, & Inouye, 2019).

1.2.3.3. Machine learning (ML) approaches

The undeniable relevance of the genomic study of complex diseases to find an explanation
for the missing heritability, and to find the relation between the different omic layers to better
comprehend this type of diseases, as well as GWAS limitations, has promoted the use of new
analytical frameworks during the last decades. Notably, although different statistical and
computational approaches were already available to analyse these problems, the use of machine
learning (ML) and neural networks algorithms have been lately popularised in the Biomedicine field.
All these methods rely on mathematical and statistical approaches, which can be applied to solve
classification, clustering, regression and ranking problems. Particularly, for the scope of the genomic
study of complex diseases, are both useful in terms of making predictions, but also to find the
underlying biological mechanisms of diseases.

In short, ML methods are fundamentally based in the comparison of the variables (features)
in a large number of observations from a subset of the input data. During this process, the method is
able to learn about the necessary decisions to solve a particular problem, based on the features.
Then, the same decisions can be applied in an independent dataset to solve the same problem
(Greener, Kandathil, Moffat, & Jones, 2021). As a result, the use of this methodology in the
Biomedicine field has shown its effectiveness to approach disease heterogeneity problems such as
the classification of diabetic and obese individuals based on clinical variables (S. B. Cho, Kim, &
Chung, 2019; Lin et al., 2021), GWAS loci prioritization (Nicholls et al., 2020), finding main effects and
interaction associations with disease (Szymczak et al., 2009), and the study of epistasis (Behravan et
al., 2018; Y. M. Cho et al., 2004; Manduchi et al., 2018; Niel, Sinoquet, Dina, & Rocheleau, 2015;
Sheppard et al.,, 2021; Verma et al, 2018; Wei, Hemani, & Haley, 2014) (see unpublished
Epistasis).

1.2.3.4. ML limitations

Although the numerable contribution of ML methods to the better understanding of complex
diseases has made them gaining popularity in the biomedical field, there are still many computational
and statistical challenges surrounding these procedures (Chicco, 2017; Sarker, 2021). The factors
involved in ML limitations are related to the input data, the methods, and the outcomes of the study.
Most of these limitations affect the effectiveness and the reliability of the methodology, and, therefore,
the ability of the method to discover the correct genetic, clinical, or molecular markers associated with
a complex disease, or to do a proper classification of patients. As a consequence, the data-
preprocessing, the selection of a correct learner, and the preparation of the ML pipeline are crucial
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for the analysis. Additionally, the outcomes obtained from ML algorithms are difficult to interpret, and
usually lack of functional interpretation, thus representing an additional layer of complexity for the
understanding of the underlying molecular mechanisms of disease predisposition.

1.2.3.4.1. Data pre-processing

There are many factors surrounding the data that can affect the ability of the ML method to
discover the genetic and clinical variables associated with complex diseases, such as the amount of
available data, data type, data imbalance, the presence of outliers, and data missingness
(Chicco, 2017; Sarker, 2021). As a consequence, the data pre-processing step is crucial to prepare
and curate the data previous to the application of a ML algorithm. This step is a complex process that
requires a solid background to understand the data included in the study, the problems related to the
type of the data, and a good comprehension of the ML model. Particularly, the data pre-processing
step benefits the learning process ensuring the effectiveness of the methodology, and preventing from
false positive results.

ML models are restricted to the analysis of large datasets of observations with at least ten
times the number of features (Chicco, 2017). However, despite the large volumes of genomic data
generated during the last decades, this is not always possible. For instance, if the features correspond
to the number of susceptibility loci to be evaluated, there can be millions of features, while, in contrast,
the number of observations or patients presenting those features will be measured in thousands. As a
result, it is necessary to understand the effects of applying ML techniques in smaller datasets, such as
the overfitting problem. Overfitting can occur during the training process when the model instead of
learning memorises the features of the training set, so that it obtains excellent results during the
training, but has a poor performance in any other independent dataset (Figure 7).

Learning Overfitting

Figure 7. ML overfitting problem. Overfitting is a common ML problem, which occurs during the training step.
When a ML model presents overfitting, instead of learning the relation between the variables and the output, it
memorises the training features, thus resulting in poor performance in any other independent dataset. In this
example, the model is expected to define a decision frontier (blue line) to classify dots in two categories (grey and
blue). The left graph represents the results obtained from a good learner. In contrast, the right picture displays
the overfitting case.

To avoid the overfitting problem derived from the scarcity of data, a common practice is to apply
multi-dimensionality reduction techniques, which cover a wide variety of frameworks that range
from statistical methods, such as K centroids or Principal Component Analysis (PCA) (Monaco et
al.,, 2021), to more biological based approaches where the features are filtered based on prior
biological knowledge (Manduchi et al., 2018). As a result of the use of multi-dimensionality reduction
techniques, it is possible to reduce the number of features included in the data but preserve their
relations, thus facilitating the application of ML algorithms.

Additionally, the presence of imbalance affects the performance of the ML model in such a
way that the method is biased towards the selection of features related to the more representative
class, thus to the detriment of the underrepresented class. To overcome this problem, there are
different approaches that can be applied such as under-sampling by removing elements from the
over-represented classes, and correcting the imbalance through class-weighting techniques (Chicco,
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2017). However, both methodologies are prone to have an impact on the results and the applicability
of the method. For instance, in terms of the applicability, an extreme reduction of observations can
lead to problems related to data insufficiency. On the other hand, although class-weighting techniques
are of particular interest, not all the ML methods include this characteristic, thus limiting the
methodology. Moreover, in case of extreme imbalance, the weighting is not always an insurance to
obtain the best results. Remarkably, a good understanding of the data and the model facilitates the
choice of the best way to deal with the presence of data imbalance, and therefore, to improve the
effectiveness of the method.

A similar problem occurs with any possible data-related issue that can result in trend
decisions for the ML model, such as missingness, redundancy, or the presence of outliers
(Chicco, 2017). Particularly, there are several statistical and computational frameworks that can be
applied to for example deal with inconsistent values and outliers, such as normalisation in case of
numeric features, or value removal. In contrast, in the case of missingness and redundancy, there
are some ML models which are prepared to manage this type of data issues. Nonetheless, as not all
the methods accept missingness or redundancy, statistical techniques such as inference,
transformations, and value approximation are commonly used to prepare a cleaner dataset without
falling into a data insufficiency problem. As a consequence, the preparation of the input dataset based
on the correction of all these problems is one of the keys to improve the results that can be obtained
from the ML analysis, and to ensure a good performance.

Last, the different types of data affect the selection of a ML learning model. Particularly, the
data can be classified in structured, unstructured, semi-structured and metadata (Suppl. Table 2)
(Sarker, 2021), and not all the ML models are specifically designed to deal with all types of data.
Therefore, the proper identification of the type of data included in the study will result in a better
decision between using a ML method or an alternative approach, and consequently, in an improved
resolution of the problem.

1.2.3.4.2. ML algorithms

Despite the existence of a large variety of types of ML algorithms, not all of them are
applicable to all studies. For example, based on genomic features, different types of learners can be
used to classify a group of individuals in diseased and non-diseased, or to find different subgroups of
diseased individuals. There are many factors that affect the selection of the most appropriate ML
algorithm to approach a particular problem that needs to be solved in a specific dataset of study.
These factors include the type of learning, the input data, and the class of the problem. Moreover,
ML methods are defined as training-test approaches where there is a learning step (training) for the
method to find and understand the input variables relation with the output, followed by an evaluation
step (test). Therefore, after the selection of the most suitable group of learners to approach a
genomic problem, there are different parameters that need to be adjusted inside the ML pipeline to
obtain the best performance. These parameters include the split of the input data in the training and
test sets, and the hyperparameters of the model.

Based on the type of learning, a ML model can be classified as supervised, unsupervised,
semi-supervised, reinforced, multitask, ensemble learning or instance-based learning (Chicco,
2017; Dey, 2016; Greener et al.,, 2021; Sarker, 2021). As a matter of fact, the classification of
diseases and non-diseased individuals can be approached with a supervised learner, while the
creation of different subgroups of diseased individuals needs the use of unsupervised methods
(Suppl. Table 3). However, the classification of ML models based on the type of learning includes a
wide range of learners that can be applied to solve an extensive variety of problems. Thus,
highlighting the relevance of a better characterisation of ML approaches based on the type of
problem to be solved. The most common type of problems approached by ML algorithms are
classification, regression, clustering, feature engineering and dimensionality reduction,
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association rule learning, or reinforcement learning techniques (Suppl. Figure 1). Moreover,
inside these last groups there are different learners. For example, there are different types of ML
classifiers, which can be divided in binary, if there are only two classification labels, such as diseased
and non-diseased, multiclass, when there are more than two classification labels, and multi-label if
there is a hierarchical structure in the classification labels, so that the same object of study can belong
to different classes, such as species (Sarker, 2021).

Additionally, the parameters that can be adjusted in the ML pipeline and the algorithm have
an effect on the effectiveness of the method to solve a genomic problem. Particularly, to use a ML
algorithm the first step is to split the input dataset in two independent subsets named training set
and test set. This split needs to be done in a proportion that ensures the procurement of a large
amount of observations for the training, but keeps enough data to evaluate the results in a sufficiently
heterogeneous dataset. Therefore, the split can be added to the hyperparameter adjustment step,
where the basic properties of the model are calibrated, previous to the training step, to prevent
overfitting, and to obtain the best results from the analysis. In this process a grid search including all
the possible combinations of hyperparameter values is tested using a K-fold cross-validation (K-
fold CV) algorithm (Chicco, 2017; Greener et al., 2021). As a result, the best hyperparameters for the
model are defined by those resulting in the best median global performance (Figure 8).
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Figure 8. ML algorithm pipeline. The input dataset is divided into training (light grey) and test subsets (dark
blue). The first step implies a K-fold cross-validation (K-fold CV) algorithm, which in the figure corresponds to a 5-
fold CV. This K-fold CV algorithm is used to do a grid search hyperparameter adjustment, therefore, to obtain the
best performance of the model, and to prevent overfitting. In the first step of the 5-fold CV, the training set is
divided into 5 data subsets. Then, in each step of the 5-fold CV, these subsets are shuffled to create the
corresponding train (light blue) and validation (medium blue) subsets. Each hyperparameter value combination is
fitted on the train subset, and then evaluated in the validation subset. Finally, the best hyperparameters are used
to fit the initial train set, in the training step, and the performance is evaluated using the test set, during the test
step.

The selection of a group of similar learners and the best hyperparameters for each particular
genomic problem in an specific dataset, has a direct effect on the performance, complexity, and
success of the study (Greener et al., 2021). Remarkably, supervised and unsupervised learners have
been broadly used ML approaches for the biology and medical community in the study of complex
diseases to solve a wide diversity of problems. In particular, classification learners have been broadly
applied to find the most relevant group of variables, which can be clinical or genomic, involved in the
development of a disease, to classify diseased individuals into subgroups of patients, or to detect
groups of genomic variants associated with disease (Ahlgvist et al., 2018; Behravan et al., 2018) (see
unpublished Epistasis).

1.2.3.4.3. Lack of functional interpretation

The study of the genetic basis of complex disease predisposition involves the discovery of
multiple disease susceptibility loci, and its functional interpretation to understand the underlying
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molecular mechanisms to develop the disease. In this direction, the results obtained from a ML model
provide the most relevant features for the method to solve the problem. Additionally, from the
evaluation of the outcomes obtained from the model on the test set, a diverse range of measures for
its reliability can be calculated. Finally, relying on the model, the interpretation of the results of ML
methods is based on the comprehension of the putative relation between the features obtained as an
outcome from the learner and the disease of study (Suppl. Table 4) (T. Chen & Guestrin, 2016; Dey,
2016; Greener et al., 2021; Sarker, 2021). For example, in the classification of a group of patients in
diseased and non-diseased, which can be analysed with a binary classification learner, the outcomes
of the model are the most relevant genomic variants to do the classification, each one with their
corresponding associated score (see unpublished Epistasis). Then, as a result of the prediction on
the test set, each individual can be classified as case (positive) or control (negative). Therefore, the
comparison between the predicted values with the real observed values, determines if the prediction
is true or false. Consequently, there are only four expected possibilities to measure the goodness of
the outcomes, which correspond to true negative (TN), true positive (TP), false negative (FN), and
false positive (FP). These values can be used to evaluate a global estimate of its effectiveness
(Figure 9; Suppl. Table 5).

Predicted

Control

Observed

True negative (TN): when a control is predicted as control.

False positive (FP): if a control individual is misclassified as case.
True positive (TP): when a case is predicted as case.

False negative (FN): when a case is misclassified as control.

Case

Case

Control

Figure 9. Evaluation of the results of the predictions made by a ML binary classifier. Only four possibilities
can be expected from the predictions. If the value of the prediction matches the real value, it can be a True
Positive (TP) or True Negative (TN) (green blocks). A TP corresponds to a diseased individual (case) which has
been correctly classified. A TN corresponds to a non-diseased individual (control) properly predicted. If the
prediction is incorrect, a control predicted as a case will be a False Positive (FP), and a case predicted as a
control will be False Negative (FN) (red blocks).

All these outcomes, provide a global view of the performance of the model, and facilitate its
interpretation in terms of the association with the disease. However, these are far from the functional
interpretation, thus representing a limitation to understand the biological pathways affecting to the
development of the disease. Therefore, to find the overlying molecular mechanisms of the
associations found, in a similar manner than GWAS, the results obtained from the ML model need to
be complemented with other related genomic, transcriptomic, and epigenetic studies.

1.2.4. Molecular basis of complex diseases and functional interpretation

The great progress made on the genetic study of complex diseases, which has involved the
creation of large catalogues with thousands of variants with a putative effect on the predisposition to
hundreds of complex traits and diseases, has facilitated the advance towards a better detection,
prevention, and treatment protocols (Beck et al., 2014; Buniello et al., 2019; K. Watanabe et al.,
2019). However, although different strategies, such as GWAS or ML methods, have been broadly
applied contributing to the discovery of these variants associated with complex diseases, these
methods lack of functional explanation. Therefore, evidencing the relevance of the application of
complementary methodologies, which focus on the translation of genomic variation in function, to
find new drugs and therapeutic targets.

The analysis of the effect of genomic variation on cell functions is one of the main subjects of
study from the transcriptomics and epigenetics fields. Transcriptomics focus on the analysis of all
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the biological processes that are related to the transcription of the DNA into RNA, and epigenetics
studies the reversible modifications on a cell DNA that affect the regulatory mechanisms of gene
expression (transcription factors). Therefore, starting from the detection of DNA alterations
associated with a complex phenotype as a result from the genomics field, a posterior transcriptomic
analysis can be applied to find putative effects of these variations on genes and gene expression.
Additionally, an epigenetic analysis can be performed to further understand if genomic variation has
an effect on the regulatory mechanisms, thus possibly causing an effect on gene expression.
Consequently, the integrative analysis of genomics, transcriptomics, and epigenetics, has been
suggested to play a key role towards a better understanding of the biological pathways underlying
genetic variability. Thus, converting the analysis of gene expression, gene expression regulatory
elements, and gene expression regulatory variation, in crucial steps to find the biological underlying
mechanisms involved in variant-disease associations.

1.2.4.1. Gene expression

As genes are directly related to protein production and cell specific functions, the genomic
alterations with an effect on gene expression can result in cell dysfunction, and, possibly, increase the
risk of developing a disease. Particularly, gene expression is a complex process by which the DNA
information is transcribed and translated to messenger RNA (mRNA). The amounts of mRNA
produced in a cell during this process are used to direct protein synthesis, other post-translational
processing, and modifications such as alternative splicing, which allows the same gene to code for
different proteins, and therefore, leading to different biological functions. Thus, to evaluate the effects
of variation of gene expression in cellular function and the phenotype it is necessary to quantify gene
expression (Buccitelli & Selbach, 2020).

Gene expression analysis focuses on the study of the profile of the transcriptome to
measure the relative and absolute values of the transcript. Particularly, RNA-seq and gene expression
arrays technologies are used to estimate the levels of mRNA (Dalkilic, 2009). As a result, gene
expression analysis facilitates the estimation of the levels of mMRNA, or expression for downstream
analyses. These results facilitate the functional interpretation of disease-associated locus based on
the study of its putative effect on gene expression. Thus, converting the study of gene expression
variation in a crucial step to improve the understanding of complex diseases.

1.2.4.2. Gene expression regulation

During the gene expression process, the mRNA production is controlled at different levels by
regulatory proteins, which encompass to coordinate and control the transcription and translation
processes. For this reason, some alterations of the DNA sequence encoding the regulatory elements
regions involved in gene expression regulation can result in a functional impact on gene expression,
thus affecting the biological functions, and possibly mediating disease. Particularly, during gene
expression regulation the RNA polymerase, which will transcribe the DNA to mRNA, is attracted to
the promoter region of the gene located in the transcription start site (TSS) in 5°-UTR. In parallel,
the TFs facilitate the activation or repression of the transcription by binding to their specific DNA-
binding domains or motifs. These regions are usually located in the promoter region or in more
distant enhancers upstream 5-UTR or downstream 3’-UTR. In case of activation of the transcription,
the promoter is the responsible regulatory element of allowing it to start. On the other hand, the
enhancers activate or increase the rate of transcription from the target gene promoter but also can
drive the transcription independent of their target promoter (T. K. Kim & Shiekhattar, 2015; Lambert et
al., 2018; Smith, Lam, Markova, Yee, & Ahituv, 2012) (Figure 10). Hence, playing a key role in gene
expression regulation, transcription factors (TFs), epigenetic marks and chromatin topology,
RNA-binding proteins, and non-coding RNAs are some of the most relevant targets to evaluate the
functional impact of variation in complex diseases (Buccitelli & Selbach, 2020; Garcia-Sanchez &
Marqués-Garcia, 2016).
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Figure 10. Gene expression regulatory process schema. The RNA polymerase is attracted by the promoter
(dark blue), which will start the transcription of the gene, if the transcription factor (TF) activates it, by binding to
its specific binding-site. The neighbouring enhancers (light blue) to the targeted promoter increase or activate the
transcription rate.

Modifications in TFs, which define any protein involved in the transcription process or that has
the ability of regulating expression, the chromatin, which is a substance wrapping the DNA, or
histones, which are the major proteins in chromatin, and act as packaging elements for the DNA, can
result in alterations of cell function with an effect on the phenotype (Buccitelli & Selbach, 2020;
Deplancke, Alpern, & Gardeux, 2016; Garcia-Sanchez & Marqués-Garcia, 2016; Pope & Medzhitov,
2018). Hence, different experimental methods have been developed and used to approach the study
of gene expression regulation at a genomic level. For example, as open chromatin regions are a
potential site of TF binding, the use of chromatin immunoprecipitation followed by sequencing
(ChIP-seq) is crucial for the identification of TF binding sites (Smith et al.,, 2012). Additionally, the
application of assays for transposase-accessible chromatin sequencing (ATAC-seq) allows the
identification of enhancers without any prior knowledge of TF binding and chromosome conformation
capture (Buccitelli & Selbach, 2020; T. K. Kim & Shiekhattar, 2015; Lambert et al., 2018). As a result,
the use of these methodologies in genomic studies has facilitated a better comprehension of the role
of chromatin and its modifications, the relationship between functional regulatory elements and
features of chromatin accessibility and histone modification, their correlation with active chromatin
marks such as H3K4mel or H3K27ac, and the gene silencing process occurring in DNA
methylation, thus improving the functional interpretation of genomic variation and its potential effects
on disease.

Remarkably, although gene expression can be ubiquitous or cell-type specific, some of the
regulatory elements such as gene expression signatures, enhancers, and promoters are cell-type
specific (Long, Prescott, & Wysocka, 2016; Nica & Dermitzakis, 2013; Pope & Medzhitov, 2018).
Thus, suggesting the relevance of the study of disease related cell-type regulatory elements to
improve the understanding of the mechanisms mediating disease (see TIGER publication).

1.2.4.4. cis-regulatory expression

The understanding of the relationship between genomic variation association results and TFs
cannot always be directly inferred from the proximity of a disease association signal with a gene
binding site (Deplancke et al., 2016), thus, enforcing the need of other types of gene expression
analyses, such as expression quantitative trait loci (eQTL) or allele-specific expression (ASE).
Particularly, eQTL studies focus their analysis in finding the association between genetic locus with
gene expression levels, and ASE assesses the allelic imbalance contribution of genetic variants to
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gene expression. Consequently, these complementary analyses are fundamental to find a putative
functional interpretation of GWAS signals in terms of disease susceptibility (Cleary & Seoighe, 2021;
Nica & Dermitzakis, 2013) (see TIGER publication).

1.2.4.4.1. Expression quantitative trait loci (eQTL) studies

The connection between regulatory elements, gene expression, and disease, evidences the
need of analysing the effects of genomic variation in gene expression. Particularly, eQTL analyses
focus on the discovery of variants statistically associated with changes in gene expression
levels. Thus, suggesting possible links between genomic variation and gene regulation (Albert &
Kruglyak, 2015a; Nica & Dermitzakis, 2013). Briefly, the study of eQTL association is comparable to a
guantitative GWAS, where the genotype of multiple individuals is simultaneously tested in different
loci to find their association with gene expression levels. However, in contrast with GWAS, the
number of individuals required in eQTL studies to obtain significant results ranges between tens to
hundreds. This reduction on the sample size, which is mainly caused by the stronger effect sizes
attributable to the evaluation of a quantitative trait, facilitates the inspection of the association between
genomic variation and gene expression.

The gene associations captured by eQTLs are classified by their proximity to their associated
genes, thus separating them on cis and trans. In particular, variants with 1Mb on either side of a
gene’s TSS are called cis and those with at least 5Mb of the TSS are considered trans. The majority
of cis-eQTLs have been found to act with a higher effect size (Cookson, Liang, Abecasis, Moffatt, &
Lathrop, 2009). However, although with lower effects, trans-eQTLs are more numerous and act with
more tissue specificity (Grundberg et al., 2012). Nonetheless, the possibility to capture trans-eQTLs is
usually a computational challenge mainly due to the human genome architecture and the relatively
modest effect sizes. Notably, the correlation between the discovery power and the sample size, for
both cis and trans eQTLs, still represents a limitation for trans-eQTLs discovery (The GTEXx
Consortium, 2020). Therefore, although up to 70% of the variance between individuals gene
expression has been attributed to trans-eQTLs, the multiple difficulties in their study has promoted
that the vast majority of eQTL studies focus in their cis contribution (Umans, Battle, & Gilad, 2021).

Moreover, in terms of cell function, gene expression signatures and regulatory elements are
cell-type specific, therefore suggesting that the regulatory effects of eQTL are also tissue-dependent
(Long et al., 2016; Nica & Dermitzakis, 2013). As a consequence, to understand the effects of genetic
variability on disease, the Genotype-Tissue Expression (GTEXx) project emerged in 2017 with the
large-scale initiative of generating a comprehensive public resource to facilitate the study of the
effects of genomic variation in tissue-specific gene expression and regulation (The GTEx Consortium,
2017). In the last release of this project, 15,201 RNA-sequencing samples from 49 tissues of 838
post-mortem donors were analysed, thus facilitating the characterization of genetic associations for
gene expression and splicing in cis and trans. This study revealed that eQTLs in tissues with higher
cell specificity, such as brain, testis, lymphoblastoid cell lines, whole blood, or liver, result in stronger
effect sizes and a subsequent increase in the association detection power. Nevertheless, despite this
tissue-specificity condition, there is a high order of eQTL similarity between different tissues (The
GTEx Consortium, 2020). Moreover, they found that the majority of genes are affected by local
genetic variation, eQTLs are usually enriched in enhancers and related elements, and that although
presenting differences between ancestries, common regulatory effects are largely shared between
populations (Stranger et al., 2012).

As a result, the study of eQTL based on its tissue-specificity can lead to better results, in
terms of power of detection based on the effect size, as well as in terms of disease interpretation.
Particularly, if the regulatory signal is associated with a relevant tissue for the disease, a GWAS and
eQTL correlation can be considered as a sign of a putative causal relation (see TIGER publication).
Therefore, the integration of GWAS and eQTL signals can be used to discover target genes and
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pathways underlying putative relations with the biological mechanisms mediating disease. Thus,
facilitating the functional interpretation of GWAS results, but also enhancing the prioritisation of
GWAS signals. Particularly, across all GTEX tissues, 43% of disease-associated loci colocalize with a
known eQTL (Umans et al., 2021).

1.2.4.4.2. Allele-specific expression (ASE) studies

ASE emerged as a way of analysing the relation between genomic variation, gene regulatory
elements, gene expression, and disease (Cleary & Seoighe, 2021). Particularly, ASE is a
phenomenon that occurs, in a cis manner, when two alleles in the same heterozygous loci present
different expression levels. Thus, creating an allelic imbalance where, in some cases, one of the
alleles can appear totally silenced. This imbalance suggests a possible variation effect on gene
expression regulation and a consequent contribution in human phenotypes and complex disease
susceptibility. Particularly, ASE can contribute to disease susceptibility when the prioritisation of
expression is towards the disease allele instead of the functional allele (Lee, Kang, Gandal, Eskin, &
Geschwind, 2019; Luft, Young, Meynert, & Taylor, 2020). In contrast, it can protect from disease by
compensating variation through a higher expression of the functional allele (N. de Klein et al., 2020).

ASE analyses are usually performed at the level of the individual, therefore complementing
the results obtained in other expression studies such as eQTL, by capturing signals that can be
masked by the group analyses. Particularly, ASE pipelines have three steps involving the detection of
heterozygous positions, a filtering to improve the accuracy of the identified heterozygous loci, and a
final estimation of the regulatory effects of variation (Cleary & Seoighe, 2021). For this reason, these
types of studies require individual high coverage sequencing, mapping, and alignment, to detect the
heterozygous loci. Thus, deriving in many complications mostly related to the accuracy to detect the
heterozygous positions. However, many strategies have been developed to improve these tasks, like
the use of genotyping array data to remove false positive heterozygous positions (Van De Geijn,
Mecvicker, Gilad, & Pritchard, 2015). Therefore, ASE studies result in the association between allelic
imbalance and expression, where the haplotypes of multiple expressed heterozygous SNPs are
simultaneously tested for unequal representation of the two alleles (see TIGER publication).

Interestingly, the different advances made in the genomic field have opened the possibility to
improve this individual analysis (Cleary & Seoighe, 2021). For example, the availability of population-
based phasing facilitates the inspection of other regulatory variants present in the same region. This
information can be used to identify the association between the imbalance and nearby putative
regulatory variants (see TIGER publication). In addition, the availability of multiple individuals'
information can be used to extend the expression imbalance analysis to find correlations with the
allele at the regulatory variant. In this case, allelic imbalance can be combined with an overlapping or
colocalizing eQTL to confirm its cis effect on the gene. As a result, ASE results can be used to
facilitate GWAS interpretation by fine-mapping functional genetic variants, or to prioritise the results
by including variants enriched in active regions in the genome.

1.2.4.5. Public genomic functional interpretation databases

The remarkable progress made by the genomic, transcriptomic, and epigenetic fields to
understand the underlying molecular mechanisms of genetic variability and complex diseases, has
promoted the generation of publicly available databases containing this valuable resource of
information. Complementary to the Human Genome Project database (International Human Genome
Sequencing Consortium, 2004), these large databases aim to provide the community with powerful
tools that facilitate the functional assessment and interpretation of the genomic outcomes of GWAS
(see TIGER publication). Particularly, the catalogue of resources include databases that contribute,
among others, with genes and isoforms description and categorization, gene and gene products
functional descriptions, protein and macromolecular complexes roles, lists of TFs with annotated
elements and binding interfaces, lists of TFs and their corresponding regulatory interactions,
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global and tissue-specific gene expression regulators, or epigenetic feature profiles (Suppl.
Table 6). The use of the annotations provided by these projects has facilitated the functional
interpretation of a large proportion of disease-associated variants. However, there is still a fraction of
variants, which have not been captured in these analyses, that remains with missing explanation.
Thus, opening a new avenue to further explore the molecular mechanisms underlying complex
diseases.

1.3. The study of type 2 diabetes and the relevance of pancreatic islets

The advances made in the genomics field, combined with transcriptomics and epigenetics
have facilitated the study of different complex diseases. This is the case of Type 2 Diabetes (T2D),
where the parallel efforts done in its study from a large diversity of complementary scopes, such as
the clinical, biological, genomic, and pharmacologic, has led to a better understanding of its aetiology,
as well as, to the development of different treatments. However, the complexity and the heterogeneity
of this common disorder, which affects over 463 million individuals worldwide, needs further analysis
to have a complete explanation of its heritability, and to enhance the early detection in clinics.
Therefore, a better understanding of the metabolic, genomic, and epidemiological mechanisms
underlying the disease, the environmental factors related to this disorder, as well as an improved
comprehension on the genetic heterogeneity of T2D, is essential for the advance in its study
towards personalised medicine.

1.3.1. Metabolic pathophysiology

T2D is a complex metabolic disorder usually observed as a result of a dysfunction in the
regulation and use of glucose due to defects on the insulin signalling pathway. Glucose is the primary
energy resource for our body and consequently, one of the main reasons for food intake. Particularly,
glucose is ingested during digestion, entering the blood system, and activating the different
mechanisms that promote the glucose uptake process. However, glucose cannot be directly
uptaken by our organism. Indeed, insulin, which is a hormone generated by the pancreas, needs to
be secreted to activate the glucose uptake mechanisms. Thus, in a common scenario, once insulin
has been secreted proportionally to blood glucose concentrations, the glucose uptake from different
organs is facilitated (Defronzo, 2009; Galicia-Garcia et al., 2020). There are many organs involved in
the glucose uptake process, including the stomach, pancreas, liver, gut, primary muscle, kidneys,
adipose tissue, and brain (Kaku, 2010). More specifically, the beta-cells present in the pancreatic
Langerhans Islets are the primary insulin secretors of our body, thus allowing glucose homeostasis.

As a result of the diversity of organs and mechanisms involved in the glucose uptake process,
there are different ways of dysfunction that can lead to the development of T2D. For example,
dysfunctions in beta-cells can result in a decrease in glucose responsiveness and an insulin
secretion (IS) impairment (Galicia-Garcia et al., 2020; Kaku, 2010). Moreover, blood insulin
concentrations can be exceptionally insufficient to activate the major target organs. This condition,
which is referred to as insulin resistance (IR), is promoted by different mechanisms and can result in
several regulatory problems. Consequently, T2D is known to be a common multifactorial metabolic
disorder related to pancreatic beta-cell IS dysfunctions, and usually surrounded by a background of IR
(Bartolomé, 2022; Del Guerra et al., 2005; Eizirik, Pasquali, & Cnop, 2020; Gloyn et al., 2022).

In addition, dysfunctions in each of the main organs during the glucose uptake process,
including the adipose tissue, skeletal muscle, liver, gut, the pancreatic beta and alpha cells, kidney
and brain, derive different consequences for the disease (Suppl. Table 7) (Cnop et al., 2005; Cornell,
2015; Defronzo, 2009; Del Guerra et al., 2005; Eizirik et al., 2020; Galicia-Garcia et al., 2020; Gilon,
2020; Rhodes, 2005). However, despite the many differences in the mechanisms of the main organs
that are involved in the glucose uptake and IS process, it is reasonable to find a straight relation
between them. Particularly, the connections between their consequences on dysfunctionality such as
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glucotoxicity, lipotoxicity, 11IS and hypoglycemia, share an important role in the development of T2D.
Therefore, converting the transcriptomic analysis of these tissues into a great resource to find a
functional explanation of T2D susceptibility loci (see TIGER publication).

1.3.2. Genetics

The synchronised multi organ behaviour, and the large variety of functions surrounding the
metabolic pathophysiology of T2D, has a direct reflection in the polygenic nature of the disease.
More specifically, T2D is a complex disease where multiple variants affecting different genes with
small effects, contribute to the disease progress (McCarthy et al., 2008). As a result, although more
than 3 thousand genes have been found associated with diabetes, there are some well-known
genes which are particularly involved in the glucose uptake and IS process (Table 1) (Cornell, 2015;
Defronzo, 2009; Eizirik et al., 2020; Galicia-Garcia et al., 2020; Rhodes, 2005; Rouillard et al., 2016;
Stelzer et al., 2016).

Table 1. Genes involved in the glucose uptake and IS process.

GENE NAME DESCRIPTION FUNCTION PROBLEM
IAPP hypersecretion can
IAPP Islet Amyloid Polypeptide | Co-secreted with insulin |lead to progressive beta-cell
failure

Mutation can result in an
under expression of GLUT4,
and defects in its pathway
reduce the glucose intake
and can lead to
hyperglycemia

Glucose Transporter Type| Major transporter involved
4 or Solute Carrier Family | in the uptake of glucose
2 Member 4 into skeletal muscle

GLUT4 or
SLC2A4

Stimulate the release of
insulin and the IS after food
intake. GLP-1 is also
involved in the regulation of
satiety, gastric emptying,
and glucagon secretion

Deficiencies in GLP-1
contribute to T2D
progression and beta-cell
resistance to GIP, thus
inducing glucotoxicity

GLP-1 or Glucagon Like Peptide 1
GLP1R, and Receptor and Gastric
GIP Inhibitory Polypeptide

Solute Carrier Family 5

SGLT2, and Member 2, and Glucose Glucose reabsorption and Mutations can lead to
GLUT2 or Transporter Type 2 or transport in the kidneys reabsorption excess and
SLC2A2 Solute Carrier Family 2 hyperglycemia
Member 2

These findings highlight the relevance of the glucose transport and exocytosis of the insulin
granules pathways in the study of T2D, as well as, the importance of a good understanding of the
genetic basis of the disease to a better explanation of its pathophysiology (Del Guerra et al., 2005).

Some studies have revealed that T2D and beta-cell dysfunction cluster in families, thus
suggesting a putative genetic predisposition in some individuals to develop the disease (Cornell,
2015; Defronzo, 2009; Kaku, 2010). This suggested genetic predisposition has converted the genomic
study of T2D into a major motivation towards the early detection and prevention of the disease. In this
direction, first-degree relatives familial and twin studies have revealed that T2D has an estimated
heritability from 0.3 to 0.72 in monozygotic twins (Newman et al., 1987; R. M. Watanabe et al., 1999;
Willemsen et al., 2015). Therefore, to discover the genomic variants that can predispose to develop
the disease, the genetic component of T2D has been broadly analysed during the last decades
through GWAS and large GWAS meta-analyses. This type of studies have played a central role in the
discovery of more than 700 signals associated with T2D and related glycemic traits (Bonas-Guarch
et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM
Consortium, The AGEN-T2D Consortium, The SAT2D Consortium, The MAT2D Consortium, & The
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T2D-GENES Consortium, 2014; Vujkovic et al., 2020). Most of these GWAS signals correspond to
common variants with a low effect on the disease which only explain a 20% of T2D heritability
(DeForest & Majithia, 2022), and which although combined in a polygenic score result in a good
prediction (AUC=0.901), still cannot be used at a clinical level for the early detection of the disease,
and most importantly, do not improve the prediction based on clinical variables (Collins, Doudna,
Lander, & Rotimi, 2021; Kullo et al., 2022; Kumuthini et al., 2022; Liu, Zhuang, Wang, Huang, & Liu,
2021; McGuire et al., 2020; Padilla-Martinez, Collin, Kwasniewski, & Kretowski, 2020). (see
unpublished Epistasis).

Remarkably, despite the lack of functional interpretation of GWAS, diverse transcriptomic
and epigenetic studies have led to the generation of large lists of putative candidate genes, causal
variants, and regulatory elements, which have facilitated the better understanding of the disease
(Akerman et al.,, 2017; Miguel-Escalada et al., 2019; Moran et al., 2012; Pasquali et al., 2014;
Solimena et al., 2018; Thurner et al., 2018; van de Bunt et al., 2015). Remarkably, the generation of
publicly available resources, which integrate these large-scale genetic data, has been crucial to
facilitate the access to this valuable resource of information and to promote the study of T2D (Flannick
& Florez, 2016; Flannick, Johansson, & Njglstad, 2016) (see TIGER publication).

1.3.3. Environmental factors

As a complex disease, T2D is characterised by the effect of multiple genetic and
environmental factors with a straight connection between them and the metabolic pathways
affecting the development of the disease. Thus, converting the study of environmental factors that rely
on the mechanisms involved in the glucose uptake process into a major interest for the better
understanding of this metabolic disorder. For example, obesity and age have been proved to play an
important role in terms of disease development and treatment. However, in addition to age, physical
activity and food intake, there are many other environmental factors related to diet and lifestyle that
have been suggested to have a direct effect on the disease. Thus, the study of obesity, overeating,
lack of exercise, smoking, stress, alcohol intake, nervous and endocrine systems disorders,
and ageing, are of special interest to gain a better comprehension of this complex metabolic disorder
(Galicia-Garcia et al., 2020; Kaku, 2010).

In particular, the fact that one-third of obese individuals develop T2D, defines obesity as
one of the main factors driving the development of the disease (Rhodes, 2005). This relation between
obesity and T2D is usually associated with liver and muscle IR, which can result in a progressive
beta-cell failure. More explicitly, the liver and muscle IR generate an increased metabolic load
demand for insulin, which is usually impossible to cover by the beta-cells, thus causing its failure
(Cnop et al., 2005; Cornell, 2015; Rhodes, 2005). Moreover, different studies have revealed the
important role of age in the progressive beta-cell failure (Defronzo, 2009). Particularly, the effect of
age in the beta-cell mass decrease directly affects the beta-cell function and, consequently, the IS
(Cornell, 2015; Rhodes, 2005). Thus, converting the study of pancreatic islets into a relevant tissue to
find a functional explanation of T2D and other related traits susceptibility loci (see Polymorphic
Inversions and TIGER publication).

1.3.4. Epidemiology and Treatments

The combination of the environmental and genetic factors that affect the metabolic pathways
involved in the glucose uptake process favours the development of T2D, and confers its high
incidence and prevalence in the population. Particularly, according to the Epidemiological
International Diabetes Federation, over 463 million adults suffered from T2D worldwide in 2019.
Moreover, T2D prevalence is projected to increase by 25% in 2030 and 51% in 2045 globally,
independently of the different ethnic predispositions to develop the disease (Galicia-Garcia et al.,
2020; Saeedi et al., 2019). Additionally to the high prevalence and incidence of this disease, there are
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several comorbidities associated with T2D. Particularly, T2D is a major risk factor for the
development of cardiovascular disease, hypertension, chronic kidney disease, renal disease,
depression, thyroid gland diseases, chronic obstructive pulmonary disease, lower limb
amputations, and blindness (Cornell, 2015; Defronzo, 2009; Nowakowska et al., 2019). As a result,
T2D has led to over 4.2 million deaths in 2019. Consequently, T2D is considered a major global
health problem which has been further discussed in terms of its prevention and treatment.

Particularly, the effect of diet and exercise has been broadly studied in T2D in terms of
predisposition, prevention but also, as a treatment for the disease (Hu, 2011; Magkos, Hjorth, &
Astrup, 2020). For example, the inclusion of healthy lifestyle changes benefits the prevention and
delay of T2D (Nathan et al., 2009). More specifically it has been proved that weight loss (~15 Kg)
and fitness can contribute to a remission of the disease in over 80% of the patients, thus reducing its
prevalence worldwide. As a consequence, although the most severe diabetic cases still need to be
treated with insulin replacement therapies, to maintain the glycemic control, different therapies are
still being proposed to prevent and treat this complex disorder (Nathan et al., 2009; Rhodes, 2005).
More specifically, it is known that the reduction of islet cell oxidative stress can partly reverse the
functional impairment of diabetic islets (Del Guerra et al., 2005). Additionally, beta-cell
transplantation and regeneration therapies are currently being proposed as promising to treat and
even to cure insulin-deficient diabetes (Ji, Lu, Xie, Yuan, & Chen, 2022). However, the many different
challenges surrounding these methods still prevent its broad application in the clinics.

1.3.5. Disease heterogeneity

The diversity of factors affecting T2D defines its heterogeneous nature. Particularly, the
understanding of this disease heterogeneity is fundamental to improve its prognosis and treatment
under the scope of personalised medicine. In this direction, many efforts have been conducted to
generate a classification of T2D patients in subgroups based on a wide range of clinical and
genomic measures. As a result, this disease heterogeneity has been associated by recent studies
with the heterogeneous contribution of different processes and pathways to the disease (Ahlgvist et
al., 2018; McCarthy, 2017), the major clinical parameters involved in the development of the disease
(Ahlgvist et al., 2020), and by clustering the genomic variants shared by diabetic individuals (Ahlgvist
et al., 2018, 2020; Dimas et al., 2014; H. Kim et al., 2022; Mahajan, Wessel, et al., 2018; Mansour Aly
et al.,, 2021; Scott et al., 2017; Udler et al., 2018). These last classifications are the promise of the
future steps to a better understanding of the disease pathogenicity and towards precision medicine.
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2. Hypothesis and Objectives

Complex diseases are a global major health problem that affects millions of individuals
worldwide. Therefore, as the understanding of the effects of genetic variation in the development of
complex diseases can contribute to a better disease prognosis, its genomic study has been one of the
major goals of Biomedicine. More specifically, the knowledge obtained from the study of disease
predisposition can facilitate the early detection, prevention and posterior treatment. In this direction, a
more detailed explanation of the underlying genetic and molecular mechanisms of complex diseases
is known to be a crucial step towards precision medicine. Particularly, in the case of T2D, its genomic
study through GWAS has identified more than 700 genetic variants associated with this complex
disease. However, although T2D heritability is estimated to be around 70%, these findings still only
explain approximately 20% of it, do not enhance the early detection of the disease when compared
with clinical measures, and most of them still lack of functional interpretation. For these reasons, there
is still room to improve the identification of new associated variants, as well as to determine their
functional mechanisms. This thesis aims at directly contributing to these two fronts. On one side, we
searched for candidate variant interactions that are associated with disease (T2D), contributing with
new genes for the generation of polygenic risk scores, as well as with insights and functional
interpretation of the potential functional interaction. On the other side, we also aimed at generating
resources to facilitate and improve the functional interpretation of associated variants, which
constitutes one of the major bottlenecks with the study of complex diseases.

Accordingly, our hypothesis can be summarised as:

e Hypothesis 1. part of the explanation of the missing heritability of complex diseases is
attributable to methodological limitations of GWAS. These limitations can be partially
overcome by considering potential variant-variant interactions.

e Hypothesis 2: the integration of homogenized gene expression variation results from
pancreatic islets with other functional databases into a comprehensive resource can benefit
the functional interpretation of T2D disease-susceptibility loci.

To disentangle these hypotheses the main objectives of this thesis are:

e Objective 1: to provide new variants associated with T2D by exploring the variant-variant
interaction space with Machine Learning approaches combined with statistical methods.

e Objective 2: to infer potential functional interpretation of the candidate variant interactions
identified as linked to the disease.

e Objective 3: to contribute to the functional interpretation of variants through the performance
of a large-scale expression analysis on pancreatic islet samples and the integration of the
results with comprehensive data on T2D association studies.

e Objective 4: to generate a comprehensive database and a web portal for the entire
community that grants the efficient access and interpretation of pancreatic islets expression
regulatory variation.
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3. Report from the director

The director of this thesis, Dr. David Torrents Arenales informs that:

Lorena Alonso Parrilla is presenting her PhD. Thesis entitled “From the discovery of epistatic
events in Type 2 Diabetes Mellitus to the related study of gene expression regulatory variation”, which
has been developed at the Barcelona Supercomputing Center (BSC). During her PhD., Lorena has
contributed to two studies, including one published as a co-first author. These studies represent the
main work of her thesis. Additionally, she has coordinated and pushed a review on GWAS
methodology, and has also participated in an external collaboration that ended up in another
publication. These two last studies are included in the Appendix of this thesis. In general, Lorena’s
contribution to the studies has consisted in the performance of bioinformatic analysis to respond to
biological questions, to provide the community with a web platform to enable and facilitate the
interpretation of Type 2 Diabetes gene expression variation, and to explain the mathematical models
underlying GWAS.

Here below, you can find the scientific contribution made by the PhD. Student in each of the
studies, as well as the impact factor of the journals.

3.1. Epistasis (Unpublished)

3.1.1. Title

The role of epistasis to improve the missing heritability explanation and to refine the predictions in
Type 2 Diabetes

3.1.2. Authors

Lorena Alonso, Ignasi Moran, and David Torrents.

3.1.3. Contribution

An important research line in our group is the analysis and the discovery of epistasis in the
genetics of complex diseases at genome wide level. This line is composed of two different fronts,
each using different methodologies. Whereas Dr. Moran is coordinating the overall line, Lorena
Alonso is responsible for one of these fronts, which is based on the analysis of Epistatic events using
Machine learning approaches. Because this study corresponds to the last activity during Lorena’s
thesis, it is still not published, although the results obtained so far are promising and already pointing
towards the submission of a potential publication soon.

3.2. TIGER publication

3.2.1. Title

TIGER: The gene expression regulatory variation landscape of human pancreatic islets

3.2.2. Authors

Lorena Alonso*, Anthony Piron*, Ignasi Moran*, Marta Guindo-Martinez, Silvia Bonas-Guarch,
Goutham Atla, Irene Miguel-Escalada, Romina Royo, Montserrat Puiggros, Xavier Garcia-Hurtado,
Mara Suleiman, Lorella Marselli, Jonathan L.S. Esguerra, Jena-Valéry Turatsinze, Jason M. Torres,
Vibe Nylander, Ji Chen, Lena Eliasson, Matthieu Defrance, Ramon Amela, MAGIC, Hindrik Mulder,
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Anna L. Gloyn, Leif Groop, Piero Marchetti, Decio L. Eizirik, Jorge Ferrer, Josep M. Mercader”, Miriam
Cnop”, and David Torrents”.

* These authors contributed equally

* These senior authors contributed equally

3.2.3. Journal

Cell Reports, 2021
Impact factor (Scientific Journal Rankings 2021): 4.845 (Q1)
Citations (Google scholar): 15

3.2.4. Contribution

This study emerges within the Horizon 2020 T2DSystems project, which was devoted to study
Type 2 Diabetes from a genetic and clinical point of view, focusing on Pancreatic Islets. Lorena joined
the group at the moment when this project started, and she soon became very active at different
levels.

In particular, Lorena’s contribution to that project was focused on the construction of the
Translational human pancreatic Islet Genotype-tissue Expression Resource (TIGER), and the creation
of a publicly accessible portal to facilitate the access to this valuable resource of information. Her work
can be summarised in three blocks which consist of: 1) the preparation of the data, pipelines, and the
analytical environments to obtain islet gene expression regulatory variation results, 2) the creation of a
database to collate the genomic, transcriptomic, and epigenetic results obtained from different
analyses conducted in human pancreatic islets, as well as other relevant publicly available genomic
information, and 3) the population of the database and the creation of the TIGER Portal to make this
valuable resource of information accessible for the research community.

In terms of data collection, she was granted access to all the available human islet samples,
from the different groups participating in the project, that were planned to be included and analysed in
the study. That consisted of 514 samples from pancreatic islet donors distributed in 5 cohorts. From
each sample the RNA-seq paired reads, genotyping array information and metadata was gathered.
Then, she used different tools for sample harmonisation and quality control processes to ensure the
quality of the samples, avoid samples presenting contamination or mismatching samples, and to
ensure the good quality of the genotyping array data at the level of the individual and at the level of
the sample. All this work was done under the direct guidance and supervision of Dr. Mercader.

After this process, to perform islet gene expression regulatory variation analyses, first she
prepared the genotyping array data to recover the individual's genotype using phasing tools. Then,
she used these haplotypes to increase the number of variants included in the expression analyses to
a genome-wide level by using imputation tools, separately for each cohort. She merged the imputation
results into a single cohort containing over 22 million variants ready for the eQTL (mainly done by
Anthony Piron) and cASE (mainly done by Ignasi Moran) expression analyses. She used the ASE
pipeline, under the guidance and supervision of Dr. Moran, to analyse the RNA-seq of all the human
islets included in the project, and prepared the results for cASE analysis. Moreover, she used the
RNA-seq data to obtain the gene expression counts needed to calculate eQTL, cASE, and
homogeneous pancreatic islet expression. The eQTL and cASE analyses were performed by Anthony
Piron and Dr. Moran, respectively. All this work was guided and supervised by Dr. Mercader. She
homogenised and normalised the TPM expression counts to obtain homogeneous pancreatic islet
gene expression, and then scaled them to be comparable with the 54 tissue expression counts from
the GTEx. This work was guided and supervised by Dr. Moran.
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Finally, to create a comprehensive islet expression publicly available database, she was
granted access to the results from epigenetic and transcriptomic studies from human islets, from the
different groups participating in the project. Moreover, she downloaded publicly available T2D GWAS
meta-analysis results, variant, gene, pathway, disease association and functional impact genomic
databases. She collated all this information with the results obtained from eQTL, cASE, islets gene
expression, and GTEXx tissues expression. She used this data to populate an Elasticsearch database,
which was made accessible through an ICGC-code based web portal. She prepared the environments
to install the database and the portal under the supervision of Romina Royo. She adapted the
website, and provided it with different graphical and visualisation tools to facilitate the integration and
interpretability of this wealth of data. The quality control of the portal was supervised by Dr. Mercader,
and correspondingly, by any of the co-authors providing the data.

3.3. Polymorphic Inversions publication

3.3.1. Title

Polymorphic Inversions Underlie the Shared Genetic Susceptibility of Obesity-Related Diseases

3.3.2. Authors

Juan R. Gonzélez, Carlos Ruiz-Arenas, Alejandro Caceres, Ignasi Moran, Marcos Lépez-Sanchez,
Lorena Alonso, Ignacio Tolosana, Marta Guindo-Martinez, Josep M. Mercader, Tonu Esko, David
Torrents, Josefa Gonzalez, and Luis A. Pérez-Jurado.

3.3.3. Journal

The American Journal of Human Genetics, 2020
Impact factor (Scientific Journal Rankings 2021): 5.042 (Q1)
Citations (Google scholar): 6

3.3.4. Contribution

This project was part of a long trajectory of collaborations with Dr. Gonzalez (ISGlobal,
Barcelona) resulting in a publication in 2020.

Lorena’s contribution to this study was focused on the provision of support for the functional
interpretation of the resulting inversions obtained from obesity-diabetic associations. Particularly, she
provided the genotype probabilities for different sets of variants, located in obesity-diabetes inversion
regions, from the 70KforT2D diabetes cohorts. This information was used by Dr. Gonzélez to perform
association analysis and support the findings obtained from the UKB, which suggested that obesity-
diabetes associated inversions can explain a fraction of T2D shared susceptibility that cannot be
explained by single variants. Moreover, she calculated and provided the gene expression counts,
normalised TPM and genotyping array data from 207 pancreatic islets donors. This data was then
used by Dr. Gonzéalez to understand the possible transcriptomic effects of obesity-diabetes
associations with inversions.

3.4. Genome Wide Association Studies review

3.4.1. Title

In Search of Complex Disease Risk through Genome Wide Association Studies
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3.4.2. Authors

Lorena Alonso, Ignasi Moran, Cecilia Salvoro, and David Torrents.

3.4.3. Journal

Mathematics, 2021
Impact factor (Scientific Journal Rankings 2021): 0.538 (Q2)
Citations (Google scholar): -

3.4.4. Contribution

This project was an invitation to a review, which started in 2020 and continued until its
publication in 2021.

Lorena pushed and coordinated this review exercise. She gathered and reviewed the
information and coordinated the writing, which also involved Dr. Salvoro and Dr. Moran. This review
presents an overview of the past and current statistical methods used in GWAS field, discuss current
practises and their main limitations, and describes the remaining open challenges.

In particular, she collected and read multiple GWAS publications and information to have an
overview of the state-of-the-art of the methodology. She studied the different statistical approaches
currently applied in GWAS and their limitations from a mathematical point of view. Then, she further
explored the most common GWAS complementary methods which are broadly applied to overcome
its limitations. Particularly, all this information was used to write a methodological review briefly
detailing the mathematical models used in GWAS and summarising its current limitations and
available complementary analyses. All this work was revised by Dr. Moran and Dr. Salvoro, and
supervised by Dr. Torrents.
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4. Summary of the studies

4.1. Epistasis (Unpublished)

Complex diseases develop as a result of the combination of the simultaneous effect of
multiple environmental and genomic factors (Manolio et al., 2008). Particularly, at the genomic level,
despite the large amount of variants that have been discovered during the last decades associated
with complex diseases, these findings only explain a small fraction of disease heritability (Génin,
2020). Moreover, the utilisation of this knowledge to improve the prediction of the risk of developing
common diseases is still far from being usable within the clinical field (Kullo et al., 2022; Kumuthini et
al., 2022; Lambert et al., 2019). This is, in part, because of the limitations and simplifications of
Genome Wide Association Studies (GWAS) strategies (Alonso, Moran, et al., 2021; Tam et al., 2019).
For example, due to computing limitations, GWAS considers within the analysis the effect and role of
each single variant as independent within the disease, which is actually far from reality. In complex
diseases, many loci (and therefore many variants) are expected to contribute to the risk and
development cooperatively, both additively and in a synergic dependent manner (epistasis). In this
direction, although still incomplete, polygenic risk scores have enhanced the prediction and prevention
of complex diseases, by using the additive model to combine the GWAS effects of multiple variants
(Kullo et al., 2022; Kumuthini et al., 2022; Lambert et al., 2019). Additionally, the analysis of the
epistatic interaction between variants has been crucial towards a better understanding of complex
diseases (Manduchi et al.,, 2018; Josep Maria Mercader et al., 2008). It is therefore necessary to
incorporate the interaction of variants within association studies to broaden the study of complex
diseases, to analyse not only the effect of single variants, but also of pairs, trios, and bigger groups.
Nevertheless, the genome wide study of these interactions using classical statistical frames still
represents a computational challenge, as the analysis of combinations of variants increases by
several fold the computational demands (Marchini et al., 2005).

In order to overcome these limitations, we designed a study that is focused on the analysis of
epistasis in Type 2 Diabetes (T2D), by using machine learning (ML) models, in combination with
statistical approaches. More specifically, to find groups of candidate variants associated with T2D, we
have used XGBoost (T. Chen & Guestrin, 2016), a ML classifier based on random forest. Although
XGbhoost can be used as a predictor, we are only focusing on the groups of variants associated with
the disease that have been identified by the method. As an input for the method, we have used a
subset from the 70KforT2D (Bonas-Guarch et al., 2018), a large T2D dataset which was previously
generated and analysed within the group using GWAS strategies. In particular, after a quality control
on the individuals to ensure a good performance of the model, a group of 22,802 individuals, where
11,401 are diabetic and 11,401 are non-diabetic were selected. Moreover, to deal with some ML
models limitations, we have reduced the number of the initial set of variants, starting from 105,896
variants which have some degree of association with diabetes (-log10(p-value)>2). Under this
background, XGBoost is used to find individual variants and groups of 2, 3, and 4 variants which are
synergically associated with diabetes.

Among the thousands of groups obtained in this preliminary analysis, there are some groups
which contain variants that can contribute additively to the disease, and other groups from which the
effect of variants on the disease derives from the interaction. Because our initial goal is to identify
examples of epistasis, the effect of the interaction is evaluated under a logistic regression model. We
only kept the groups containing an interaction statistically associated with T2D (a = 0.05), thus
resulting into 10 pairs, 1 triplet, and 1 quadruplet. Under the premise that the effect of the sum of
each variant separately should be smaller than the effect of the variants together, we have performed
logistic regression analysis to demonstrate that, certainly, the variants show epistatic effect. From
these analyses we have also observed some differences in the marginal effects of the variants when
evaluated synergically. Remarkably, some of these variations can result in a change of sign in the
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effect, thus involving an inverse effect of the variant; for example, changing from being protective to
representing a risk on the predisposition to disease. Finally, we have functionally inspected the
interactions using the summary statistic annotations of diverse large T2D GWAS meta-analyses,
glycemic traits GWAS meta-analysis, and regulatory expression variation from pancreatic islets, which
is a disease-related tissue (Alonso, Piron, et al., 2021; Bonas-Guarch et al., 2018; J. Chen et al.,
2021; Mahajan, Taliun, et al., 2018; Miguel-Escalada et al., 2019; Pasquali et al., 2014; Scott et al.,
2017; The DIAGRAM Consortium et al., 2014). The results suggest that the interactions between the
underlying regulatory mechanisms of the variants inside the groups, as well as the connections of the
gene pathways affected can be one of the causes to explain disease predisposition.

Overall, the results obtained from this study show the relevance of including epistasis in
current association studies to improve the explanation of the heritability of complex diseases, to
enhance current detection and prevention protocols, and to gain insight of complex diseases
pathophysiology.

4.2. TIGER publication

The simultaneous effect of multiple genomic and environmental factors affects the
development of complex diseases (Manolio et al., 2008). At the genomic level, one of the most
relevant and challenging parts of the study of the genetic architecture of complex diseases is the
functional interpretation of the variants found to be statistically associated with the trait from GWAS
studies. Particularly, to improve the comprehension of the pathophysiology of this type of disorders, it
is necessary to find and understand which are the diverse underlying molecular mechanisms of
disease-associated loci, usually in the form of identifying the affected gene and protein. This
knowledge enhances the discovery of new drugs, and promotes the creation and the improvement of
protocols for disease treatment. However, the outcomes of current association methods (i.e. GWAS)
are limited to the provision of a list of disease susceptibility loci, and their contribution to the risk of
disease development (Alonso, Moran, et al., 2021). Therefore, the understanding of their functional
mechanisms requires additional approaches and efforts (Cano-Gamez & Trynka, 2020; Lichou &
Trynka, 2020; Manolio, 2013).

During the last decades, gene expression variation and regulatory regions analyses have
promoted the development of large databases, listing numerous associations between variants (loci)
and their change in gene expression, such as expression quantitative trait loci (eQTL), and
cataloguing disease-related regulatory elements, such as enhancers and promoters, thus enabling a
better understanding of complex diseases (Han et al.,, 2015; Jiang, Xuan, Zhao, & Zhang, 2007,
Papatheodorou et al., 2020; The GTEx Consortium, 2020). Remarkably, as the expression analysis is
linked to tissue-specific functions, despite the many difficulties derived from the analysis of specific
tissues, the study of disease-related tissues has improved the functional interpretation of these
signals. However, this information only covers the regions of the genome that have been analysed in
these studies, thus leaving some signals without a functional explanation, and more importantly, some
tissues or groups of cells have been disregarded or still need to be further inspected.

To improve the genomic understanding of diseases related to pancreatic islets dysfunction,
this study is focused on the analysis of genomic variation and its effect on gene expression in human
pancreatic islets. In particular, it is accepted that Type 2 Diabetes (T2D) is mainly caused by
dysfunctions within the beta cells of the pancreas, making this tissue a key target for the study of the
disease (Bartolomé, 2022; Del Guerra et al., 2005; Eizirik et al., 2020; Gloyn et al., 2022). Within the
context of the T2DSystems, a European Project, we developed the Translational human pancreatic
Islets Genotype-tissue Expression Resource (TIGER), a large human islet regulatory expression
database (http://tiger.bsc.es/). This database integrates, in a unique platform, the results obtained
from the performance of extensive expression, eQTL, and combined allele-specific expression
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analyses (CASE), with publicly available summary statistics results from islets analyses, including
expression array, regulatory elements, and other gene, variant, and disease functional information
(Akerman et al., 2017; Alonso, Piron, et al., 2021; Bonas-Guarch et al., 2018; Buniello et al., 2019;
Frankish et al., 2019; Jassal et al.,, 2020; Karczewski et al., 2020; Mahajan, Taliun, et al., 2018;
McLaren et al., 2016; Miguel-Escalada et al., 2019; Pasquali et al., 2014; Pifiero et al., 2017; Scott et
al., 2017; Solimena et al., 2018; The DIAGRAM Consortium et al., 2014; The Gene Ontology
Consortium, 2000; The GTEx Consortium, 2020; Thurner et al., 2018).

As a first effort to generate this platform, the genotypes and phenotypes (RNA-seq) of 514
human pancreatic islets samples from mostly non-diabetic individuals were collected. As the
inspection of expression in islets requires to know not only the expression of any given gene but also
its comparison with the rest of the genes in the genome, we calculated, harmonised, and
homogenised gene expression among all the non-diabetic individuals. Then, to facilitate the
comparison between islets expression and other reference tissues, we aggregated and scaled the
gene expression measures from islets and the Genotype-Tissue Expression project (GTEX) (The
GTEx Consortium, 2020). In addition, to promote an exhaustive inspection of the effects of genomic
variation in islets gene expression, the imputed genotypes of more than 22 million variants were
prepared for cASE, and eQTL cis-regulatory expression analyses, including a 10% of Indels and
Structural Variants, more than 1.05 million variants in the chromosome X, and more than 14 million
rare and low-frequency variants. This resulted in over 1.11 million eQTLs and 256,981 cASE variants.
Next, to facilitate the assessment of the overlap between variation and islet regulatory elements and
open chromatin regions, diverse DNA methylation, human islet regulome, long non-coding RNA,
ATAC-seq and ChlP-seq results were collated (Akerman et al., 2017; Miguel-Escalada et al., 2019;
Pasquali et al., 2014; Thurner et al., 2018). Finally, to enhance the interpretation of the potential
functional impact of variants, we collated the variants with the GWAS Catalog and T2D GWAS meta-
analyses summary statistics, and with their functional impact on genes (Bonas-Guarch et al., 2018;
Buniello et al.,, 2019; Mahajan, Taliun, et al., 2018; McLaren et al., 2016; Scott et al., 2017; The
DIAGRAM Consortium et al., 2014).

As a result, this platform contains information for more than 27 million variants and 59,625
genes and facilitates the search at the level of the gene and at the level of the variant. It encloses
tools for visualising, querying, and downloading human islet data enhancing the study of T2D and
other islet-related diseases pathophysiology. It includes eQTL and cASE results, and associations
with T2D and other complex diseases from the GWAS Catalog, thus simplifying the analysis of
colocalisation. Moreover, it integrates graphs to enhance the inspection of gene expression in
pancreatic islets and its comparison with other tissues, and a genomic browser to explore the
genomic context information.

In summary, the database generated in this study represents a unique and formidable
resource to interrogate the molecular aetiology of beta-cell failure.

4.3. Polymorphic Inversions publication

The development of a complex disease is attributed to the combined effect of different genetic
and environmental factors (Manolio et al., 2008). Genetically, despite the large catalogue of variants
that have been discovered during the last decades associated with complex diseases, only a small
fraction of their heritability has been explained (Génin, 2020). Thus, resulting in an impact on the
effectiveness of current detection and prevention protocols (Kullo et al., 2022; Kumuthini et al., 2022;
Lambert et al., 2019). This lack of explanation is usually attributed to the limitations surrounding the
methodology used in association studies. Among others, the inclusion of structural variants in this
type of studies, and a better control on the effect related to the presence of covariates are two of the
causes to lose information (Génin, 2020). In particular, inversions can affect the gene function if they
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overlap to the inversion breakpoints, thus suggesting a putative pathway to disease predisposition.
Moreover, the analysis of disease association, under the presence of covariates and comorbidities,
reduces the results obtained to just recover the most common variants shared between diseases or
related conditions. Therefore, some variants with a lower frequency, which are already known to be
associated with a certain disease, can be masking a shared susceptibility for other related diseases
(Gonzélez et al., 2020).

To improve the genomic understanding of co-occurrent traits, this study evaluates the effect
of inversions in the shared susceptibility between obesity and other related complex diseases and
traits. 21 common inversions are assayed to test their association with 8 comorbidities and 17 related
conditions, including obesity, hypertension, asthma, diabetes, and some mental diseases. As a result,
3 of the inversions are found associated with different diseases. Particularly, inversions 8p23.1 and
16g11.2 showed a shared susceptibility between obesity with diabetes, hypertension, asthma, and
depression. In contrast, inversion 11q13.2 shares susceptibility between obesity with diabetes and
hypertension. Remarkably, the effect of the co-occurrent association is found greater when compared
to the individual association with the diseases.

Then, the genetic relevance of these inversions is explored in the 70KforT2D (Bonas-Guarch
et al., 2018), an independent dataset from the discovery data. Particularly, the genotype of the SNPs
located in the same region of the inversions are inspected to test their association with obesity and
T2D in different subgroups of individuals. As a result, none of the SNPs overlapping the inversion
were found significantly associated. Thus, suggesting that single variants are not driving the
association. Additionally, at a transcriptomic level, being a disease-related tissue for Type 2 Diabetes,
human pancreatic islets genotypes and gene expression are used to reveal any possible relation
between the inversions and changes in expression (Alonso, Piron, et al., 2021; van de Bunt et al.,
2015). These analyses allowed the identification of some associations between inversions 8p23.1 and
16p11.2 and the deregulation of some well-known genes for diabetes.

In brief, this study provided evidence for the presence of polymorphic inversions associated
with several related diseases, and provides preliminary functional interpretation of these signals.

4.4, GWAS review

The combination of the effects of multiple environmental and genetic factors can result in the
development of a complex disease (Manolio et al., 2008). Consequently, at a genetic level, the
discovery of the genomic variants associated with the risk of developing complex diseases, as well as
its functional interpretation, are one of the major goals in Biomedicine. Indeed, the knowledge about
the variants that predispose to disease development is crucial to improve the detection and prevention
protocols. Therefore, to facilitate the prediction of novel variants associated with complex diseases, a
wide diversity of methods and bioinformatic tools have been developed. In particular, during the last
two decades, Genome Wide Association Studies (GWAS) have emerged as the key to explore
disease and trait associations at a genome-wide level (R. J. Klein et al., 2005). However, despite the
great advances made, thanks to the use of current statistical frames, the discovery of novel variants
associated with a disease and its interpretation are still one of the big challenges in Biomedicine. To
encourage the mathematical community to get involved in this fundamental question and to provide
more adjusted and powerful statistical frames, in this review, we inspect the current status in GWAS,
detailing the underlying mathematical models, the possibilities, and the limitations (Alonso, Moran, et
al., 2021).

The many limitations surrounding these methods, mostly resulting in a lack of statistical
power, represent the current boundaries in the discovery. Under a background of genetic
heterogeneity, where multiple variants each one with a small effect on the disease are needed to its

73



development (McCarthy et al., 2008), the common way to gain discovery power is to increase the
sample size and the number of genomic variants analysed. As a result, the creation of genetic
biobanks and large cohorts, the use of meta-analysis approaches, or the application of imputation
techniques has enhanced the discovery (Alonso, Piron, et al., 2021; Lo, 2014; Marchini, 2019;
Panagiotou, Willer, Hirschhorn, & loannidis, 2013; Swede et al., 2007). However, variants with less
presence in the population, such as rare variants, variants from specific or isolated populations, from
specific subgroups of individuals, and even variants which present difficulties to be included in the
analysis, such as structural variants, despite their relevance, are still difficult to capture (Ahlgvist et al.,
2020; J. Chen et al., 2021; Génin, 2020; Gonzalez et al., 2020). Moreover, current statistical frames
only test the independent effects of each variant, while the nature of complex diseases is defined by
the synergyc effect of multiple variants and environmental factors. To tackle this problem, genomic
interaction studies, and environment-wide association studies (EWAS), although still challenging,
have emerged promoting the advance towards the discovery of the effect of environmental and
genetic interactions in complex diseases.

Additionally, to improve the understanding of disease pathophysiology, it is also necessary to
find the relation between variation and the underlying mechanisms of genomic variation. Particularly,
this knowledge is crucial for the development of new drugs and to improve the treatments. However,
the outcomes obtained from the application of GWAS methodology are reduced to a list of disease-
associated variants, their effect on the disease, and a measure of reliability for the association test. As
a result, the interpretation of the results obtained from a GWAS is merely reduced to the statistical
level, thus resulting in a lack of biological explanation, and making it necessary to use complementary
approaches to improve the understanding of GWAS results. In particular, the combination of
genomics with other omic layers such as transcriptomics and epigenetics is a valuable tool to
translate genomic variation into function. Consequently, expression analyses, gene, pathway,
regulatory elements and epigenetic marks enrichment are broadly used methodologies to find the
molecular mechanisms underlying complex diseases (Cano-Gamez & Trynka, 2020; Lichou & Trynka,
2020; Manolio, 2013). Moreover, although still in development, other tools such as Polygenic Risk
Scores are planned to be applied to convert genomic associations into predictions that can be applied
in the clinics (Kullo et al., 2022; Kumuthini et al., 2022; Lambert et al., 2019).

In brief, this review details the current statistical models surrounding GWAS to promote the
creation of new frameworks that can facilitate and improve the study of complex diseases.

74






EPISTASIS
UNPUBLISHED






5. Epistasis (Unpublished)

The role of epistasis to improve the understanding and to refine the
predictions in Type 2 Diabetes

Tables and Figures list

Figures

Figure 1. General strategy.

Figure 2 Evaluation of the effect of the candidate epistatic groups on the risk of developing T2D.
Figure 3. Percentage of significant annotations overlap.

Figure 4. Some examples of epistatic variants with a well-known functional interpretation in terms of
disease.

Supplemental Figure 1. Evaluation of the performance of XGBoost under case-control imbalance.
Supplemental Figure 2. Evaluation of the performance of XGBoost in terms of randomness.
Supplemental Figure 3. Evaluation of the performance of XGBoost in terms of variable explanation.
Supplemental Figure 4. Evaluation of the performance of XGBoost in terms of variable redundancy.
Supplemental Figure 5. Evaluation of the performance of XGBoost in terms of missingness.
Supplemental Figure 6. Evaluation of the performance of XGBoost in terms of data availability.
Supplemental Figure 7. Evaluation of the performance of XGBoost in terms of overfitting.
Supplemental Figure 8. Minor Allele Frequencies from the variants included in the groups obtained
from the different scenarios (50, 100, 250, and 500 trees).

Supplemental Figure 9. Annotations overlap.

Tables

Table 1. Groups of epistatic variants and their effect in T2D.

Table 2. Percentage of unique variants significantly annotated with T2D and glycemic traits GWAS
meta-analyses, islets expression, functional impact annotations, and epigenetic marks.

Supplemental Table 1. Evaluation of the performance of different machine learning methods in a
subset of the discovery dataset (1,667 GWAS significant features, 11,401 cases, 11,401 controls).
Supplemental Table 2. Evaluation of the performance of XGBoost under case-control imbalance.
Supplemental Table 3. Evaluation of the performance of XGBoost in terms of randomness.
Supplemental Table 4. Evaluation of the performance of XGBoost in terms of variable explanation.
Supplemental Table 5. Evaluation of the performance of XGBoost in terms of variable redundancy.
Supplemental Table 6. Evaluation of the performance of XGBoost in terms of missingness.
Supplemental Table 7. Evaluation of the performance of XGBoost in terms of data availability.
Supplemental Table 8. Evaluation of the performance of XGBoost in terms of overfitting.
Supplemental Table 9. Evaluation of the relation between candidate epistatic groups of variants by
depth and by tree.

Supplemental Table 10. Evaluation of the differences between the marginal effects in the additive
logistic regression model and the model including interactions.

Supplemental Table 11. Logistic regression coefficients of 3 examples of variant interaction with a
change in variants effect on T2D.

78



Abstract

Complex diseases are affected by the combination of the simultaneous effect of multiple
variants and environmental factors. However, the numerous statistical and computational challenges
surrounding the classical approaches used in association studies, has reduced the discovery to a
limited group of variants which are associated with common diseases in a single independent
manner. As a result, the effect of multiple variants interactions or epistasis has been pointed as one of
the causes to explain the missing heritability of complex diseases, as well as for improving the
prediction power of the genetic signal towards the use of detection protocols in the clinics. To find
groups of epistatic variants that are cooperatively statistically associated with Type 2 Diabetes (T2D),
in this study, we have explored the potential of a machine learning strategy, XGBoost, combined with
statistical approaches to analyse a group of 11,401 diabetic and 11,401 non-diabetic individuals, and
a subset of 105,896 T2D nearly nominally associated variants (-logl0(p-value)>2) derived from
previous GWAS studies in the group. Among the different groups obtained by XGBoost statistically
associated with T2D (pairs, triplets, and quadruplets), there are groups which affect the disease in an
additive manner, and other groups which include variants which synergically contribute to the disease
(epistasis). To find epistatic variants we applied a logistic regression to the results obtained from the
machine learning approach, resulting in a group of 10 pairwise variant interactions, 1 variant triplet,
and 1 variant quadruplet from which the association is epistatic. In agreement with the definition of
epistatic interactions, we validated these results and found that the effect of the interaction is
significantly stronger than the sum of the effects of each variant separately. Moreover, although 75%
of the epistatic groups contain new susceptibility loci for T2D, the analysis of the overlap of these
interactions with T2D and related glycemic traits GWAS meta-analyses, and islet gene expression
regulatory variation, reveals multiple gene interaction and islet regulatory elements as the underlying
molecular mechanisms mediating the association with T2D. Despite many improvements having to be
applied to enhance the detection possibilities, these preliminary results evidence the potential of using
machine learning approaches to study epistasis in complex diseases and to gain insight of their
genetic pathophysiology, and consequently, to improve its prognosis and treatment.
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Introduction

Complex diseases such as diabetes, asthma, or Alzheimer's disease, are known to be
affected by the combination of multiple genetic and environmental factors (Manolio et al., 2008).
Particularly, during the last decades, the study of the genetic component of complex diseases based
on Genome Wide Association Studies (GWAS), has led to the discovery of thousands of variants
associated with different complex traits or diseases (Beck et al., 2014; Buniello et al., 2019; K.
Watanabe et al.,, 2019). However, despite GWAS having revealed a large catalogue of disease-
associated variants, only a small fraction of the heritability of complex diseases has been uncovered
(Génin, 2020). Moreover, regardless of the complex disease nature, where the combination of
multiple genetic and environmental factors predispose the individual to develop the disease, these
variants have been found associated with the disease in a single independent manner, thus, limiting
current detection and prevention protocols and, therefore, distancing the translation of the results into
the clinics (Alonso, Morén, et al., 2021; Tam et al., 2019; Uffelmann et al., 2021). This is the case, for
example, of Type 2 Diabetes (T2D), a complex metabolic disorder which affects over 465 million
people worldwide.

Particularly, the study of the genetic component of T2D during the last decades, based on
GWAS results, has led to the discovery of more than 700 independent signals associated with the
disease (Bonas-Guarch et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al.,
2017; The DIAGRAM Consortium et al., 2014; Vujkovic et al., 2020). However, despite the extensive
T2D genomic knowledge that these GWAS findings represent, there is still a lack of explanation for its
complete genetic heritability. More specifically, the heritability of T2D based on twin studies has been
estimated to range from 0.3 to 0.72 (Newman et al., 1987; R. M. Watanabe et al., 1999; Willemsen et
al.,, 2015). However, the contribution of these loci to its missing heritability explanation is
approximately 0.2 (DeForest & Majithia, 2022). And, more importantly, there is not enough information
to be able to efficiently predict for a particular individual the real risk of developing the disease. In
other words, the results obtained with classical GWAS, despite uncovering a number of genetic
determinants and resulting in a good prediction (AUC=0.901), still cannot be used at a clinical level for
prevention or for patient stratification, and most importantly, do not improve the prediction that can be
obtained from the use of clinical variables (Collins et al., 2021; Kullo et al., 2022; Kumuthini et al.,
2022; Liu et al., 2021; McGuire et al., 2020; Padilla-Martinez et al., 2020). Therefore, highlighting not
only the relevance of the genomic study of T2D but also of its current limitations.

Overall, the factors contributing to the development of the disease are genomic variants, with
the presence of gene-environment interactions and gene-gene interactions (Génin, 2020; Herzig,
Clerget-Darpoux, & Génin, 2022). In the last case, the study of interactions in complex diseases can
be tackled through the analysis of the non-independent effect of specific groups of variants, beyond
the simple addition of their effects separately (Mackay, 2014). This type of phenomena, which is
known as epistasis, has its biological basis on the known networks between regulatory elements and
interconnected pathways, where the change (variation) of the function and impact of one gene (i.e.
protein) can enhance the change of function in another gene, converging cooperatively into a synergic
effect. Multiple methodologies have been applied to the study of epistasis in complex diseases,
ranging from statistical to artificial intelligence approaches (Niel et al., 2015). In short, these methods
are able to detect which are the groups of variants that synergically contribute to the development of
the disease. Particularly, these methods have been applied to study epistasis in small groups of
variants, only including loci functionally related with the disease, or selecting some variants using
dimensionality reduction techniques (Behravan et al., 2018; Y. M. Cho et al., 2004; Kirino et al., 2013;
Manduchi et al., 2018). The success obtained from these reductions to find variants with an increased
effect jointly (Cordell, 2009; Kirino et al., 2013; Monir & Zhu, 2017), suggests the potential of epistasis
to improve the knowledge about complex diseases, opening an avenue to cover the analysis of
variant interactions at a genome-wide level. However, the numerous difficulties related to the
detection power, and other computational problems, have limited the discovery. Specifically for T2D,
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although certain studies have addressed some of the limitations surrounding the genome-wide
analysis of epistasis, still no credible evidence for interaction effects has been found (Nag, McCarthy,
& Mahajan, 2020).

In order to overcome these limitations and to obtain more integrated results, we explored the
use of machine learning approaches for the identification of groups of variants that are cooperatively
associated with the risk of developing complex diseases. From this analysis we aim to provide clear
examples of epistatic interactions that can improve disease risk prediction. Following previous
research and experience built in the group this exploratory analysis is focused on T2D. Particularly,
this study first targets the discovery of groups of interacting variants, which can contribute additively to
T2D, or that have an effect produced by the dependency (i.e. epistatic) relation between the variants.
For this, we analyse with XGBoost (T. Chen & Guestrin, 2016), a machine learning classifier based on
random forest, a subset from the 70KforT2D (Bonas-Guarch et al., 2018), a large T2D multi-cohort
dataset. This subset contains genotypes and basic phenotypic information for 22,802 European
individuals (11,401 cases and 11,401 controls) and 105,896 variants. The results obtained here will
contribute to gain understanding of the effect of epistasis in complex diseases, to improve the
explanation of the missing heritability of T2D and, ultimately, to clinically predict the risk of developing
this disease.
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Results

Overall strategy

To enhance the detection of genetic factors that can improve the prediction of the risk of
developing a complex disease, we first focused on the discovery of candidate groups of epistatic
variants. There are different methods that can be applied with the purpose of finding groups of
variants which synergically contribute to the risk of developing the disease, ranging from the most
classical statistical approaches to the application of machine learning techniques. To avoid the
limitations related to the discovery power derived from the use of statistical methodologies, we applied
machine learning methods (Nag et al., 2020; Niel et al., 2015). In this first preliminary approach, we
decided to explore the effects of these synergies in T2D using a supervised machine learning
classifier. Supervised classifiers start from a group of observations that can be separated into different
categories, for example cases and controls, to learn which are the most informative variables to
generate each category. Therefore, the results that we expected from the analysis consisted of a
classification of the individuals in groups of diabetics and non-diabetics, a list of the most relevant
variants and groups of variants that were used to do the classification, and their corresponding
scores. The groups of variants found by the method can contain variants that have an effect on the
disease only in an additive manner, as well as variants that act synergistically. Following our goal of
identifying epistatic events in T2D, i.e. groups of variants where their combined effect was higher, or
lower than the effect of the sum of their corresponding effects obtained independently, we then
applied logistic regression analysis (Figure 1).
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Figure 1. General strategy. The T2D discovery dataset, which contains the imputed genotype of 105,896
variants (-log10(p-value)>2) for 22,802 individuals (11,401 diabetic and 11,401 non-diabetic), was divided into a
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training and a test subsets. To ensure the best performance of the model, and to prevent overfitting a 5-fold
cross-validation algorithm was implemented to do a grid search hyperparameter adjustment. The best
hyperparameters were used to fit the train set, in the training step, and the performance was evaluated using the
test set, during the test step. As a result, several groups of single variants, pairs, triplets and quadruplets of
candidate epistatic variants associated with T2D were obtained. From these, only the groups that presented a
significant association between the interaction and T2D, under a logistic regression model, were kept. The pie
charts show, for each group, the percentage of variants classified by Minor Allele Frequency (MAF). Common
variants (MAF>=0.05) are represented in light blue, low-frequency (0.01<=MAF<0.05) in medium blue, and rare
variants (MAF<0.01) in dark blue.

In terms of the input data, there are many factors that can affect the performance of a
machine learning approach, which include the number of observations that are available to do the
training, the presence of missing values and outliers, redundancy or the existence of any type of
imbalance which can result in trend decisions for the method (Chicco, 2017; Dey, 2016; Greener et
al., 2021; Sarker, 2021). Therefore, a good previous knowledge of the type of the data included in the
analysis is crucial for the correct preparation of the input dataset that will be used by the classifier; this
will facilitate the creation of a trustworthy model to solve our problem. In our case, to find groups of
candidate epistatic variants in T2D, we decided to use the 70KforT2D study, a large T2D genome-
wide association studies (GWAS) meta-analysed cohort within our group (Bonas-Guarch et al., 2018).
The data used for our analysis includes the imputed genotypes of the individuals from the five cohorts
analysed in the 70KforT2D project, the metadata of these individuals, and the GWAS summary
statistics (Methods T2D case-control dataset). After merging the individual genotypes in a unique
cohort, to avoid any of the above mentioned problems and other computational limitations we did a
data pre-processing step (Methods Dataset preparation; Suppl. Figures 1-6; Suppl. Tables 2-7).
First, as our data is completely imbalanced for the case-control proportion (12,926 diabetic and
57,191 controls), we kept the maximum number of diabetic individuals from the 70KforT2D that pair
with a control sharing the same measures of (body-mass index) bmi, age, and sex (Methods Data
imbalance). This resulted in a dataset with 22,802 individuals from which 11,401 diabetic and 11,401
non-diabetic. Despite this is a large number of observations, our aim of performing the analysis at a
genome-wide level, thus involving the inclusion of 15,131,345 imputed variants, results in an
overfitting problem (Methods Maximisation of variables explanation). To prevent overfitting and to
make our analysis possible from the computational point of view, we limited our study to only kept the
variants with higher levels of association with T2D (i.e. with -log10(p-value)>2), as we expect them to
be enriched in functionally relevant interacting groups. As a result, our discovery dataset consisted of
22,802 individuals with their imputed genotypes in 105,896 genomic variants.

There are different types of supervised machine learning classifiers that can be applied to find
groups of synergic variants associated with a disease. However, the performance obtained from each
classifier varies based on their underlying statistical models and, therefore, on the way the method
evaluates the input data. These many factors related with the input data range from the ability of the
method to understand and manage the type of data included in the input, to the capacity of working
with missing values or duplicate observations (Dey, 2016; Greener et al., 2021). In our case, although
all the individuals are of European ancestry, and despite working with imputed genotypes, the
heterogeneity in the population of study generates missing values in some of the genotypes.
Moreover, the genetic background of linkage disequilibrium results in correlated variants, which can
be interpreted as duplicates by the model. Therefore, among the multiple supervised machine
learning classifiers that were assayed, we selected the method that was better prepared to work with
the genomic information present in our dataset, which include missing values, and correlated data.
These methods were evaluated, in terms of precision and computational time, in a subset of the
discovery dataset, only including the imputed genotype for 1,667 GWAS significant signals (-log10(p-
value)>7) (Methods Method selection). From all the methods assayed, XGBoost was the one which
performed better in the classification of individuals (T. Chen & Guestrin, 2016; Pedregosa et al., 2011)
(Suppl. Table 1).
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One common problem derived from the use of machine learning methods is overfitting, which
results in linking the results obtained to the dataset of analysis and, therefore, not allowing the
extension to other independent datasets. To prevent the overfitting and to ensure the procurement of
the best outcomes, we prepared a test-train model with a previous hyperparameter adjustment using
a 5-fold cross-validation algorithm (Chicco, 2017; Greener et al.,, 2021). To obtain the best
performance, the most relevant parameters to adjust in our model were the split, the learning rate, the
number of trees, and the depth of the tree. The split corresponds to the percentage of individuals that
are kept in the test set to do the final prediction, once the model is trained. Consequently, to ensure
that a good proportion of individuals were used to train the model, we allowed the adjustment between
0.2 and 0.3. The learning rate corresponds to the minimum contribution score that is required for a
new feature to be included in the final model. Therefore, although a smaller learning rate is
computationally expensive, as it can result in more steps for the algorithm to decide which are the
best features, we tested different small learning rates including 0.01, 0.04, 0.07 and 0.1. As XGBoost
is a method based on decision trees, the number of trees corresponds to the number of decision trees
that the method will include in the resulting model after the training, and the depth corresponds to the
maximum level of features that will result in a decision for a tree, which in our case correspond to the
dimension of the groups of synergic variants. An increase in these two parameters involve the
generation of a higher number of trees or more dense trees, respectively, thus resulting in more tests
and the inclusion of more features in the final model, which is more computationally expensive and
can result in overfitting. To maximise the performance but prevent overfitting, we tested the results
obtained by the generation of 50, 100, 250, and 500 trees, and allowed the combination of variant in
pairs, trios, and quadruplets (depth <=4) (Suppl. Figure 7; Suppl. Table 8) (Methods Algorithm
preparation; Hyperparameters adjustment).

Once the machine learning method was selected (i.e. XGBoost), the data was pre-processed
and the complete machine learning pipeline was prepared, we finally executed the method. As a
result, after adjusting for the optimal learning rate and split in each case, we explored the different
groups of singletons, pairs, trios, and quadruplets obtained as an outcome from the different
scenarios when varying the number of trees. In particular, we compared the Minor Allele Frequency
(MAF) of the variants, and studied the possible relations, in terms of inclusion of variants, between the
groups obtained in each scenario (Methods Candidate epistatic groups base genomics). After the
inspection of the MAF we observed that a higher percentage of rare (MAF<0.01) and low-frequency
(001<=MAF<0.05) variants were captured in the scenarios with more groups (Suppl. Figure 8). This
can be interpreted as a possible indicator of overfitting, however, as the hyperparameters adjustment
ensured that our models were not overfitted (Suppl.Figure 7; Suppl. Table 8), in this case it indicates
that a deeper search of interactions enhances the ability of the method to improve the capture of
disease heterogeneity, and broadens the study with the inclusion of rare and low-frequency variants.
Then, to find any possible relation between the variants inside the different groups obtained in each
scenario, we analysed their linkage disequilibrium (LD) correlation. From the inspection of the
inclusion of smaller groups in bigger groups, we observed that between 10.98-57.22% of the variants
are preserved through the groups in the same scenario (r? = 20) (Suppl. Table 9). However, none of
the groups were completely kept. Similar results were obtained from the analysis when only the
number of final trees was changed, therefore, comparing groups with the same number of variants
between the distinct scenarios, where none of the groups was replicated but some of the loci were
preserved for single associations (5.49-9.37%), and also were retained when increasing the size of
the group (5.49-83.63%). Therefore, the prevalence of the loci included in the different epistatic
groups suggests the relevance of that particular genomic region in terms of association with the
disease, while their unique way to group highlights the importance of their interconnections. More
specifically, the scenario with 500 trees was the most inclusive, allowing the inspection of more
groups of synergic variants, and retaining more disease-associated loci. Moreover, although doing a
prediction with XGBoost is far from our preliminary objectives, this scenario resulted in a better
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classification of the individuals (60.52% precision) (Suppl. Table 8). The improvement on the
prediction can be related to the ability of the method to capture more synergic loci, including rare and
low-frequency variants, which are expected to have a higher effect on the disease. For all these
reasons, we decided to keep this scenario for downstream analyses, thus accounting for 367 single
variants, 980 pairs, 1,952 triplets, and 3,607 quadruplets.

The groups of variants obtained from applying our machine learning strategy include: 1)
genetic markers which can contribute to the risk of developing the disease independently, and
therefore in an additive manner, and 2) groups where there is a dependency relation between the
variants that drive the effect on the disease. Although new disease-susceptibility loci can be found
from the exploration of the genomic markers included in both groups, thus contributing with a better
explanation of the missing heritability fraction and improving the prediction, in this first preliminary
approach, we have focused on the study of the second group, which corresponds to epistatic variants.
Therefore, to keep only the epistatic groups of variants, we used a logistic regression model adjusted
by bmi, age, sex, and the first 7 PCs, to evaluate the effect of the interaction in the disease. As a
result, we only preserved the candidate groups with a significant association with the disease driven
by the interaction (a = 0.05 with the corresponding Bonferroni adjustment for each group size)
(Methods Logistic regression epistasis). From the complete set of groups of synergic variants
obtained with XGBoost, at most 1.02% included epistatic variants. Thus, resulting in 10 pairs, 1 triplet,
and 1 quadruplet of statistical interactions, containing 20, 3, and 4 unique variants, respectively
(Figure 1; Table 1).

Table 1. Groups of epistatic variants and their effect in T2D.

Depth Variant 1 Variant 2 Variant 3 Variant 4 Interaction p-value
(Effect_Ref) (Effect_Ref) (Effect_Ref) (Effect_Ref) Effect
chr5:157545791 | chr4:168037835 -0.2922 4.79%10°
(CAT C) (T_TAC) (OR-1.33) :
chrl7:76790279 | chr6:12027402 0.3210 1 18x10°
T Q) (A_G) (OR~1.37) X
chr9:89501123 | chr21:25168622 0.3862 ®
(T_G) C._T) (OR~1.47) | 18810
chr11:3385759 |chr11:123906346 0.6448 7 01x10°
(A_G) G_A) (OR~1.90)
chr2:180203761 | chr7:36373191 0.9698 1 51510°
) (T C) (A_AG) (OR~2.63) :
chr2:107596627 | chr22:26957284 0.7055 375510
(T_G) (C_A) (OR~2.02)
chr4:96761220 |chr1:206513621 1.3485 0 49%10”
(G_A) (C_CCT) (OR~3.85) :
chr3:35766559 | chr8:98754889 1.4534 5
o) (A_C) (OR-4.27) | 21410
chra:104128410 | chr6:111759237 0.2776 5
G_A) (A T) (OR~1.31) 4.41x10
chr10:101881887 | chr17:70463870 -0.2977 1 16x10°
G A C T (OR~0.74)
5 | chr20:30314136 [chr10:108835343) chr5:55861786 0.7647 5 28x10°
(C_CTTT) G A) C T (OR~2.14) :
, | ohr1:104373712 [chr1:147362531 | chr2:147085498 | chr11:97009227|  -2.0809 41310°
(CT_C) (G_GT) (G_A) (G_T) (OR~0.12)

Measuring the effect of epistasis in T2D

Current complex disease genomic predictors only rely on the addition of the effects of GWAS
variants, thus, disregarding not only the effect of epistasis but also the possible changes in the
marginal effects of variants derived from their synergies. To assess the impact of the interactions
found in this study, a logistic regression was performed under two models. The first logistic regression
model only evaluated the additive marginal effects of the groups of variants (pairwise, trio,
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guadruplet), and the second model also included the interaction terms (full model) (Methods Logistic
regression epistasis). The results obtained from the two models were compared to find significant
differences for each of the terms included in the regression, thus involving the additive effect of the
variants, and the effect of the interactions (Figure 2; Suppl. Table 10).
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Figure 2. Evaluation of the effect of the candidate epistatic groups on the risk of developing T2D. The
groups of candidate interactions (pairwise, trio, quadruplets) were evaluated for T2D associations under two
logistic regression models: one considering only the marginal effects in an additive manner (light blue), and the
other also including the interaction terms (dark blue). The box plots represent the distribution of the effects (x
axis) for each of the terms included in the logistic regression models (y axis). The dots correspond to the effects
for the different groups. The effects captured by the full model are represented above the dashed line.

First, after the inspection of pairwise interactions, few significant differences were observed
between the mean and median marginal effects of the variants under the two logistic regression
models. However, 50% of the pairs (5 pairs) included at least one variant which presented a change
in the sign of the effect when adding the interaction term. Moreover, in one of these pairs, both
variants changed their sign. In the case of the quadruplet, only one variant preserves the sign (Suppl.
Table 11). All these cases are of particular interest, given that changes in the sign of the effect involve
changes in the risk of disease development, thus for example transforming a protective variant into a
risk locus, or vice versa. Additionally, the effect in the disease of any of the terms in the full model is
greater in module when compared with marginal effects. Particularly, the variants under the additive
model have a modest marginal effect (OR between 0.755-1.448) compared with the effects in the full
model (OR between 0.488-1.579), where we observed more extreme effects. Last, there is a
considerable effect on the disease derived from the full interactions, which ranges from -2.08 to 1.45
(OR between 0.13-4.27).

The epistatic variants functional impact and its association with T2D

The loci found in these epistatic associations, as well as their effect, can be used to improve
T2D detection and prevention protocols. However, to find new potential drugs and to improve the
treatments, it is also necessary to understand the putative molecular mechanisms underlying the
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associations. Particularly, as some alterations at the genomic level can result in changes in cell
function and enhance the predisposition to the development of the disease, it is crucial to find the
genomic pathways underlying the associations between T2D and our epistatic groups of variants. For
this reason, we analysed the genomic, transcriptomic and epigenetic context of the variants included
in the epistatic groups.

First, to find any hint of the relation between the disease and the epistatic groups, at the
genomic and transcriptomic levels, we explored the variants inside the groups analysing their overlap
with T2D and related traits annotations, and with associated changes in the expression of pancreatic
islets, a disease-related tissue. Therefore, we annotated the variants inside the epistatic groups with
the summary statistics resulting from different T2D GWAS meta-analyses (Bonas-Guarch et al., 2018;
Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM Consortium et al., 2014), glycemic
traits GWAS meta-analyses (J. Chen et al., 2021), pancreatic islets expression quantitative trait loci
(eQTL), and islets combined allelic specific expression (CASE) analyses (Alonso, Piron, et al., 2021)
(Methods Resources; Annotations overlap; Suppl. Figure 9). As a result, we observed that 25% of
the groups (3 groups) contain at least one variant already known to be significantly associated with
T2D, glycemic traits or expression in islets (p-value<5x10'8; 5% False Discovery Rate (FDR)).

To further inspect the putative mechanisms underlying the associations with the disease, we
extended our functional analysis to also cover the functional impact of variants in genes, and their
overlap with human islets epigenetic marks and regulatory elements (Alonso, Piron, et al., 2021;
McLaren et al., 2016; Miguel-Escalada et al., 2019; Pasquali et al., 2014). Additionally, to ensure that
the functional relations found were not stochastic, we compared the genomic, transcriptomic, and
epigenetic overlap obtained from our groups of candidate epistatic variants with control groups of
variants randomly generated from the discovery dataset. These randomly generated groups included
the same number of variants as the epistatic groups, and shared the same allelic frequency
distribution (Methods Functional annotations enrichment).
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Figure 3. Percentage of significant annotations overlap. The unique list of variants present in each group of
candidate epistatic variants (pairwise, trio, and quadruplet) were annotated with significant summary statistics
results from T2D GWAS meta-analyses (Bonas-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et al.,
2017; The DIAGRAM Consortium et al., 2014), glycemic traits GWAS meta-analyses (J. Chen et al., 2021),
pancreatic islets expression analyses (Alonso, Piron, et al., 2021), islet regulatory elements (Miguel-Escalada et
al., 2019; Pasquali et al., 2014), and functional impact annotations (McLaren et al., 2016). These annotations
were compared with a control distribution to assess the differences. The boxplots show the distribution of the
percentage (x axis) of variants with significant annotations (y axis) in the control distribution. The red dots display
the proportion of epistatic candidate variants with significant annotations.
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As a result from the comparison between the annotations from the epistatic groups and the
annotations from the control groups, we observed that the variants included in the pairs and trio of
epistatic variants are significantly more associated with T2D, related glycemic traits, islet expression
variation, and more likely to fall in an islet regulatory region, than control variants (Figure 3; Table 2).
Particularly, between 5-33.33% of these variants were significantly associated with T2D or glycemic
traits. Interestingly, for the pairs, half of the GWAS signals were also an eQTL in pancreatic human
islets. Moreover, the analysis of the results obtained from the annotation of the epistatic variants
included in the pairs in terms of islet regulatory regions, revealed that 20% fall in H3K4me1 regions
and 10% fall in H3K27ac regions. In contrast, the overlap with H3K4me3 is significantly higher in the
control set (15.79%). Finally, although a more significant gene functional impact explanation was
found in controls than in the candidate epistatic variants, it was mostly attributable to intronic regions.
In the case of the quadruplet we observed a higher overlap with pancreatic islets cohesin, CTCF, and
ATAC-seq regions (25%) when compared with controls (0%).

Table 2. Percentage of unique variants significantly annotated with T2D and glycemic traits
GWAS meta-analyses, islets expression, functional impact annotations, and epigenetic marks.

Pairwise Trio Quadruplet

Annotation . control . control . control

discovery median discovery median discovery median
Glucose 0 0 0 0 0 0
Insulin 0 0 33.33 0* 0 0
T2D GWAS 5 5.26** 33.33 0* 0 0
eQTL 15 10.53* 0 0 0 0
cASE 0 0 0 0 0 0

VeP modifier 45 42.10* 66.66 50* 0 33.33**
VeP low 0 0 0 0 0 0
VeP moderate 0 0 0 0 0 0
VeP high 0 0 0 0 0 0
Cohesin 0 0 0 0 25 0*
Mediator 0 0 0 0 0 0
Superenhan. 0 0 0 0 0 0
Enh.cluster 0 0 0 0 0 0

H3K4mel 20 18.75* 0 0 0 25**
H3K4me3 0 15.79** 0 0 0 25**

H3K27ac 10 0* 0 0 0 0
CTCF 0 0 0 0 25 0*
ATAC-seq 5 (553 0 0 25 0*

* mean control random set annotations overlap percentage lower than discovery set results annotations overlap percentage (5% significance
level)

** mean control random set annotations overlap percentage greater than discovery set results annotations overlap percentage (5% significance
level)

To improve the understanding of the underlying biological mechanisms mediating the
interactions, we inspected some of the most relevant epistatic groups in terms of disease explanation.
In particular, the simultaneous association of a locus with disease and regulatory expression in a
disease-related tissue suggests the deregulation of the gene affected as one of the putative
underlying mechanisms to mediate the disease. Two of the epistatic groups (16.66%) include a T2D
GWAS significant signal, from which one has at least one variant simultaneously associated with T2D
and cis-regulatory islet expression. This is the case of the pairwise interaction of variants rs6821617
(chr4:104128410_G_A, MAF=0.395) and rs12215743 (chr6:111759237_A_ T, MAF=0.1476) which
contribute positively to the risk of disease development (interaction effect=0.283110 (OR~1.32), p-
value=3.91x10°) (Figure 4.A). The T2D GWAS variant rs6821617 (OR=0.965 p-value=3.4x10),
although being an intergenic variant, is an islet eQTL for BDH2 (score=-6.359, p-value=2.03x10™"°
1FDR), MANBA (score=-3.876, p-value=1.06x10" 5FDR), and NFKB1 (score=-3.752, p-
value=1.75x10™ 5FDR), of which some of them have been suggested to play an important role in T2D
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(Alonso, Piron, et al., 2021; Mahajan, Taliun, et al., 2018; McLaren et al., 2016). Particularly, the
downregulation of BDH2 has been associated with iron homeostasis thus possibly mediating its
relation with diabetes (Zughaier, Stauffer, & McCarty, 2014). Moreover, NFK1B is lately emerging as a
novel potential target for the development of therapeutic strategies to treat or prevent diabetes
(Meyerovich, Ortis, & Cardozo, 2018). Additionally, rs12215743, which is a nonsense-mediated decay
(NMD) mRNA variants for REV3L, has been associated with expression changes in MFSD4B
(score=-4.828, p-valuezl.38x10'6 1FDR), a gene involved in glucose and fructose transport in rat
kidney (Alonso, Piron, et al., 2021; Horiba et al., 2003; McLaren et al., 2016).

Additionally, although variants with a modifier effect on a gene are usually non-coding or
affect a non-coding gene, with no evidence of impact in the protein function, their effect can be
mediated through gene expression. Thus, suggesting gene expression again as a putative
mechanism to mediate the association with the disease. Particularly, 5 of the epistatic groups
(41.66%) include a variant with a modifier effect on a gene and, from these, 1 group (20%) has all
variants acting as a modifier for the gene. This is the case of the pair made by variants rs8073626
(chrl7:76790279_C_T, MAF=0.4631) and rs17697699 (chr6:12027402_A G, MAF=0.3219) which
represent a risk for the development of the disease (interaction effect=0.321087 (OR~1.37), p-
value:1.18x10'6) (Figure 4.B). rs8073626 is a NMD transcript variant, which falls in an intronic region
of USP36, and has been detected as a human islet eQTL for the same gene (score=-5.625, p-
value=1.85x10® 1FDR) (Alonso, Piron, et al., 2021; McLaren et al., 2016). This gene has been
suggested to participate in the pathogenesis of diabetic kidney disease, thus providing potential
intervening targets (Zhu et al., 2021). Additionally, rs17697699 is an intronic HIVEP1 variant, which
falls in a human islet H3K4mel region (McLaren et al., 2016; Pasquali et al., 2014). Interestingly, the
insulin treatment induce expression of this gene, and blocking autocrine TGF-beta signalling with
SB431542 substantially reduce its expression (Budi, Hoffman, Gao, Zhang, & Derynck, 2019).
Moreover, HIVEP1 has also been related to the effect of maternal diabetes and obesity in the fetal
epigenome of Hispanic population (Rizzo et al., 2020).

Moreover, to gain a better insight about the decisions made to find the groups of epistatic
variants, as well as their synergies, we performed an exhaustive analysis of the models generated by
the machine learning method. Particularly, as XGBoost is a tree-based method, we scrutinised the
decisions made in each tree to generate the different candidate groups of variants (Methods Model
outcomes interpretation). From this analysis we found of particular interest the groups where the
decision of creating the group is based on, at least, one variant having an alternate allele
(heterozygous or alternate homozygous). There are 5 of these groups between our results (41.66%).
This is the case of the very rare variant rs142378541 (chr4:96761220_G_A, MAF=0.007039), which
couples with rs199607206 (chrl:206513621 C_CCT, MAF=0.4819) in case of being heterozygous or
alternate homozygous (interaction effect=1.352184 (OR~3.86), p-value=2.30x10"), but couples with
the low-frequency variant rs76334393 (chr5:173320206 T _C, MAF=0.03595) when being
homozygous reference (interaction effect=-0.274208 (OR~0.76), p-value:3.30x10'1) (Figure 4.C).
rs142378541, which is located in an inactive open chromatin region overlapping an ATAC-seq peak
from the human islet regulome, is an upstream gene variant for PDHA2, a gene involved in glucose
metabolism for which beta-cell-specific deficiency has been related to the impairment of the glucose-
stimulated insulin secretion in mouse (McLaren et al., 2016; Miguel-Escalada et al., 2019; Srinivasan
et al., 2010). In case of being heterozygous, or alternate homozygous couples with rs199607206,
which lays in a H3K4mel islet region upstream of SRGAP2, a gene recently related to diabetic kidney
disease (Levi, Myakala, & Wang, 2018; McLaren et al., 2016). In contrast, when rs142378541 is
homozygous reference, it couples with rs76334393, a downstream non-coding transcript variant for
CPEB4 which falls in an islet H3K4me3, H3K27ac regions (McLaren et al., 2016; Miguel-Escalada et
al., 2019). This gene, which protects against diet-induced obesity, has been associated with
measures of insulin sensitivity and insulin resistance (Orozco et al., 2018; Pell et al., 2021).
Particularly, this low-frequency variant is correlated (r2:0.1333, p-value<0.0001) with the OGTT
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fasting and plasma insulin cis-eQTL rs72812818 for CPEB4 (Machiela & Chanock, 2015).
Remarkably, although the interaction effect is only significant for the case of rs142378541 presenting
a heterozygous or alternate homozygous genotype, it results in a high risk of developing the disease
for the first couple, and a protective effect in the second couple.
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Figure 4. Some examples of epistatic variants with a well-known functional interpretation in terms of
disease. Each panel shows the human islet genomic context of the variant with diverse tracks for genes and
transcripts and different islet regulatory regions including superenhancers, enhancer clusters, H3K4mel,
H3K4me3, and H3K27ac (Miguel-Escalada et al., 2019; Pasquali et al., 2014). For each variant examined the
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A) Genomic context for the pairwise interaction between variants rs6821617 and rs12215743.

B) Genomic context for the pairwise interaction between variants rs8073626 and rs17697699.

C) Genomic context for the pairwise interaction between rs142378541, which couples with variant rs199607206
in case of not being reference homozygous, and with variant rs76334393 when reference homozygous.
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Discussion

The analysis of a large cohort of T2D to find groups of epistatic variants affecting the disease,
has led us to find 10 pairs, 1 triplet and 1 quadruplet with an interaction effect statistically associated
with T2D. Interestingly, although some studies have suggested that a smaller effect on the disease is
expected from interactions (Tam et al., 2019), our results showed that the effect of the interaction
terms appears to be greater in module when compared with marginal effects (OR between 0.13-4.27).
Furthermore, despite current polygenic predictive models of the risk to develop the disease are based
on the sum of the marginal effects of GWAS variants (Alonso, Moran, et al., 2021), we have observed
that these effects can vary in the presence of variant synergies. Particularly, we have found some
variants changing their effect from being protective to represent a risk for the disease, thus supporting
the relevance of including variant interactions in future disease association models to obtain refined
measures of the effects on the disease, and to detect novel regions that in terms of interaction, both in
an additive and multiplicative manner, have a higher impact on the risk of developing the disease.
Therefore, our epistatic groups can represent a step forward for the genomic understanding of T2D in
terms of disease predisposition, and to complement and improve the prediction scores that are
currently applied to the clinics.

After studying the possible functional explanations that mediate the statistical associations
between the interactions and the disease (Siemiatycki & Thomas, 1981), using genomic,
transcriptomic, and epigenetic information (Cano-Gamez & Trynka, 2020; Lichou & Trynka, 2020;
Manolio, 2013), we observed that 25% of the groups contain at least one variant already known to be
significantly associated with T2D, glycemic traits or expression in islets (p-value<5x10’8; 5% FDR)
(Alonso, Piron, et al., 2021; Bonas-Guarch et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al.,
2018; Scott et al., 2017; The DIAGRAM Consortium et al., 2014). These results provide support to the
associations found in our study and, furthermore, although most of the epistatic groups found include
some variants from which previous knowledge in T2D is unknown, the overlaps suggest the potential
relation between islet regulatory variation with the disease as the underlying molecular mechanisms of
the associations. Remarkably, despite this functional relation can be attributed to the selection of the
discovery dataset, which was enriched in variants with higher levels of association with T2D (-log10(p-
value)>2), we discarded this option by comparing the results with a control set. In fact, after this
comparison we conclude that islets expression regulatory variation can be suggested as some of the
possible mechanisms underlying the epistatic associations. More specifically. we observed that the
variants included in the groups obtained of candidate epistatic variants were significantly more
associated with T2D and related glycemic traits, and more likely to fall in an islet regulatory region,
than control variants (Miguel-Escalada et al., 2019; Pasquali et al., 2014), thus, suggesting that the
combined effect of variation in different genomic regions and its effects on gene regulatory expression
can be one of the putative mechanisms to mediate the disease. Remarkably, 16.66% of the groups
include variants that have been both associated with T2D and with changes in human pancreatic islet
expression. Additionally, 41.66% of the groups of candidate epistatic variants are composed of
variants which present a modifier effect on genes and, although lying on non-coding regions, have an
effect on islet expression or overlap an islet regulatory region.

Finally, although some of the single independent variants previously known to be associated
with T2D can be thought as driving the effect of the interaction in these groups under the additive
model (Hemani et al., 2021), we have proved that the interaction term was the one significantly
associated with the disease through the comparison between an additive and a full logistic regression
model. In particular, this is not possible for the groups that do not contain variants previously
associated with the disease in a single independent manner, which correspond to the (quadruplet
and 80% of the pairs). Thus, evidencing again the relevance of including the interaction of variants in
association and prediction analyses to gain insight of the genomic effect of variation in the
development of complex diseases.
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However, despite the promising results presented, there are some limitations surrounding this
study that can be improved in future epistatic analyses. First, this study focuses on the analysis of
European ancestry individuals. Thus, affecting the possible extension of the results obtained to non-
European populations, and limiting its projection to those loci that are shared between ancestries
(Josep Maria Mercader & Florez, 2017; Spracklen et al., 2020; Vujkovic et al., 2020). Second, the
high computational power required to analyse millions of variants simultaneously represents a burden
for the discovery, thus limiting our study to those variants with a higher probability to be associated
with T2D. Third, the number of individuals included in the study also represented a methodological
limitation for the application of a ML technique. Particularly, it is recommended that the number of
variants do not exceed the 10% of individuals (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker,
2021). Although this is especially difficult in the genomics field, where the number of variants rises to
millions, the number of individuals is increasing in current studies. Therefore, in the future, better
results can be obtained by using this type of approaches to improve the genetic understanding of
complex diseases.

Moreover, in terms of accomplishing our goals to publish the study of the effects of epistasis
in T2D, all these results are still preliminary. For example, to align with other association studies we
need proof of replication in a completely independent dataset to ensure that our results can be
extended to the European population, and that the same methodology can be applied to analyse the
effect of epistasis in other complex diseases and other populations. For this reason, we have planned
to assay the replication of the epistatic variants groups obtained in the UKBiobank (UKB). Particularly,
we are in the process of being granted permission to access the UKB data, and to start the analyses
in this direction.

Additionally, given the increase in the availability of genomic data, current genomic studies
are emerging where disease heterogeneity is being considered to find a better explanation of the
disease towards personalised medicine (Ahlgvist et al., 2018, 2020; Dimas et al., 2014; H. Kim et al.,
2022; Mahajan, Wessel, et al., 2018; Mansour Aly et al., 2021; McCarthy, 2017; Scott et al., 2017,
Udler et al., 2018). Although in this first study we have focused our analysis in finding epistatic groups
of variants in T2D, after replication and publication of the results presented in this thesis, we have also
planned to expand the study analysing T2D subgroups to reveal the groups of epistatic variants
shared between these subgroups of diabetic individuals, and the exclusive interactions in each
subgroup of patients. Additionally, it will be also interesting to apply the same methodology to other
complex diseases, and to improve our analytical frameworks to analyse the epistatic problem at a
genome wide level. Therefore, including in the study all the variants that we have discarded for
computational limits reasons. Moreover, all the approaches presented in this study were implemented
under the additive model. However, although most variants follow this genetic pattern, the remaining
variants under non-additive models can escape from the discovery (Guindo-Martinez et al., 2021). For
this reason, it will be of particular interest to extend our models to cover all the possible inheritance
patterns, and therefore improve the explanation of T2D heritability. Finally, the analysis of
chromosome X has been proved of particular relevance in terms of disease explanation (Bonas-
Guarch et al., 2018). Particularly, although we have included this chromosome in the study, further
efforts need to be applied to improve the analysis based on its particularities, therefore enhancing the
complete inspection of its epistatic effects on the disease.
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Methods

Discovery dataset

T2D case-control dataset

The 70KforT2D is a T2D case-control dataset which includes data from 12,926 diabetic and
57,191 non-diabetic individuals of European ancestry (Bonas-Guarch et al., 2018). The individuals
included in this dataset belong to 5 studies: Resource for Genetic Epidemiology Research on Aging
(GERA), Finland-United States Investigation of NIDDM Genetics (FUSION), Wellcome Trust Case
Control Consortium (WTCCC), Gene Environment Association Studies initiative (GENEVA),
Northwestern University NUgene project (NUgene) (Burton et al., 2007; Colditz & Hankinson, 2005;
Ghosh et al., 2000; Gottesman et al., 2013; Kvale et al., 2015). The genetic information is publicly
available through the dbGaP platform for FUSION (phs000867.v1.pl), GENEVA (phs000091.v2.p1),
NUgene (phs000237.v1.pl), GERA (phs000788.v2.p3), and the Sanger platform for WTCCC. The
available metadata for each individual corresponds to measures of body-mass index, sex, age and
diabetic type. Nonetheless, there is no available information from NUgene individuals’ age, neither for
WTCCC individuals’ age and bmi. The genotype of the individuals included in each of the 5 cohorts
that comprehend the 70KforT2D dataset, passed a quality control, and were imputed by Silvia Bonas-
Guarch, to reach genome-wide level, combining the power of two reference panels (Bonas-Guarch et
al., 2018).

Dataset preparation

To ensure the good quality of the genotype information included for downstream analysis,
only the variants with an imputation INFO score>0.7 were kept from the panel with the best imputation
quality, thus consisting on 15,131,345 variants. To avoid many factors that affect the performance of
the machine learning method such as data type, the amount of available data, data imbalance, the
presence of outliers, and data missingness, many preliminary analyses were performed (Chicco,
2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). As a result, first, to prevent trend decisions
based on case-control imbalance, only paired metadata individuals were included from each cohort,
where 547 case-control pairs were included from FUSION, 1,883 from GENEVA, 6,743 from GERA,
334 from NUgene and 1,894 from WTCCC (Methods Data imbalance). Then, the datasets were
merged with qctool (Band & Marchini, 2018), therefore creating a dataset which consists of
15,131,345 variants and 22,802 individuals (11,401 diabetic and 11,401 non-diabetic). The genotype
probabilities were converted into hardcalls (hardcall-threshold 0.9) with PLINK (Chang et al., 2015).
Finally, to ensure the good performance of the model, avoid computational problems, and prevent
overfitting, the number of variants included in the analysis was reduced by keeping only those variants
with a -log10(p-value)>2 from the 70KforT2D GWAS summary statistics (Methods Randomness
assessment, Maximisation of variables explanation, Variables redundancy, Missingness, Data
availability). Thus, the discovery dataset included only 105,896 genomic variants.

Machine learning approaches

Method selection

Different supervised machine learning classifiers from the scikit-learn library in python
(Pedregosa et al., 2011) were applied to evaluate their performance in a reference subset of the data
(1,667 GWAS significant (-log10(p-value)>7) features and 22,802 individuals) (Dey, 2016; Greener et
al.,, 2021). The methods evaluated were Nearest Neighbours, Linear SVM, RBF SVM, Gaussian
Process, Decision Trees, Random Forest, Neural Networks, AdaBoost, Naive Bayes, QDA and
XGBoost. The results obtained by each method were evaluated in terms of computing time, precision,
and the data type accepted by the method (Suppl. Table 1). The unique learners prepared to work
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with missing data were Gaussian Process and XGBoost, however as missingness over a 10% is
present in less than a 26% of the genomic variants included in our dataset, the rest of the methods
were tested by assigning a new class to the missing genotypes. As a result, the best performance
was obtained in terms of computation time and precision by XGBoost (T. Chen & Guestrin, 2016).

Algorithm preparation

A basic train-test algorithm was prepared first splitting the discovery dataset in two
independent datasets: a train set and a test set (Chicco, 2017; Greener et al., 2021). Then, the train
set was used by the XGBoost algorithm (T. Chen & Guestrin, 2016) to learn and the test set to
evaluate the results. To prevent the overfitting of the model and to obtain the best performance, a grid
search hyperparameter adjustment was applied under a 5-fold cross-validation algorithm. The
hyperparameters adjusted were split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees
(50, 100, 250, 500), and depth (1, 2, 3, 4).

Data imbalance

The presence of data imbalance can affect the performance of the model resulting in trend
decisions (Chicco, 2017; Dey, 2016; Greener et al.,, 2021; Sarker, 2021). To ensure the best
performance of the model in the presence or absence of data imbalance, a subset of 1,667 GWAS
significant variants (-log10(p-value)>7 (Bonas-Guarch et al., 2018)) was created. Two datasets of
individuals were prepared, one containing all the individuals from the 70KforT2D (12,926 diabetic and
57,191 non-diabetic individuals) (Bonas-Guarch et al., 2018), and a paired-metadata dataset, where
each diabetic individual was paired with a non-diabetic individual sharing bmi and age range, and
same sex. As a result, the paired-metadata dataset included the genotype information from 11,401
diabetic and 11,401 non-diabetic individuals. Each individual included in these datasets was provided
with the corresponding genotype information. Each dataset was used as an input to train and test the
XGBoost model (T. Chen & Guestrin, 2016) under a 5-fold cross-validation with hyperparameters
adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500),
and depth (1, 2, 3, 4)). The best hyperparameters were then used to train and test the model, and
therefore, to evaluate the outcomes in terms of precision, accuracy, Recall, F1-score, and Matthews
Correlation Coefficient (MCC). The remaining cases and controls from the 70KforT2D (Bonas-Guarch
et al., 2018) were also used as an independent test set for the paired-metadata dataset (Suppl. Table
2, Suppl. Figure 1). The results obtained evidenced a best performance of the method in the
absence of data imbalance. Therefore, the subsequent analyses were performed with the paired-
metadata dataset.

Randomness assessment

To assess the effects of randomness at the genotype and phenotype level in the results
obtained by the method, the performance of the 1,667 GWAS significant (-log10(p-value)>7 (Bonas-
Guarch et al.,, 2018)) dataset with 22,802 individuals (reference dataset), was compared to two
random control datasets with the same number of features and individuals. The first control dataset
has the individual's genotype randomly assigned, and the second dataset has the individual's
phenotype randomly assigned, maintaining the proportion of cases and controls. Each of these
datasets was generated 1,000 times. Each dataset was used as an input to train and validate the
XGBoost model (T. Chen & Guestrin, 2016) in the 5-fold cross-validation with hyperparameters
adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500),
and depth (1, 2, 3, 4)). The results were evaluated in terms of precision for each depth and tree pairs.
After assessing the normality of the distribution of the precision, using a Shapiro-Wilks test
(3<N<5000) or Anderson-Darling test (N>=5000), we performed a t-test (hormal distribution), sign test
(not normal, non-symmetric distribution), or Wilcoxon signed-rank test (not normal, symmetric
distribution), to check if the mean precision was significantly better than random (5% significance
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level) (Suppl. Table 3, Suppl. Figure 2). As a result, we discarded randomness as affecting the
outcomes obtained by the method in the reference dataset.

Maximisation of variables explanation

The amount of available data can affect the performance of the model, particularly, the ideal
machine learning situation is having at least ten times the number of features in the number of
observations (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). However, although 1,667
GWAS significant variants (-logl0(p-value)>7 (Bonas-Guarch et al., 2018)) evaluated in 22,802
individuals (reference dataset) represents 7.3% of the number of observations, the effect of including
different groups of variants without limiting the discovery dataset to only GWAS significant variants is
not clear. To ensure that the inclusion of more variants can lead to a better classification of diabetic
patients, a comparison was performed between the reference dataset with a random control dataset.
This control dataset was created including 1,667 variants for each individual from a subset of the
70KforT2D (105,896 variants, -log10(p-value)>2 (Bonas-Guarch et al., 2018)). Each random control
dataset was generated 1,000 times. Each dataset was used as an input to train and validate the
XGBoost model (T. Chen & Guestrin, 2016) in the 5-fold cross-validation with hyperparameters
adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500),
and depth (1, 2, 3, 4)). The results were evaluated in terms of precision for each depth and tree pairs.
After assessing the normality of the distribution of the precision, using a Shapiro-Wilks test
(3<N<5000) or Anderson-Darling test (N>=5000), we performed a t-test (normal distribution), or
Wilcoxon Mann-Whitney test (not normal), to check if the mean precision was significantly greater in
the random dataset (5% significance level). Moreover, the precision results obtained for the best
hyperparameters were compared between the datasets (Suppl. Table 4, Suppl. Figure 3). As the
number of features was a limitation to improve the discovery, and better precision results were
obtained for the random datasets, the decision was to include in the discovery dataset as many
variants as possible. However, computational and methodological limitations reduced the discovery
dataset to a subset of 105,896 variants (-log10(p-value)>2).

Variables redundancy

To ensure that variables redundancy was not affecting the model (Chicco, 2017; Dey, 2016;
Greener et al., 2021; Sarker, 2021), we assessed the comparison between the results obtained by the
model between the complete discovery dataset (105,896 variants, -log10(p-value)>2 (Bonas-Guarch
et al., 2018), 22,802 individuals), and the same dataset after doing a linkage disequilibrium clumping
with PLINK (Chang et al., 2015) (r2=0.2, 250kb, p-value=0.5, 70KforT2D summary statistics (Bonas-
Guarch et al, 2018)). The results obtained by the 5-fold cross-validation algorithm with
hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50,
100, 250, 500), and depth (1, 2, 3, 4)) were compared in terms of precision for each depth and tree
pairs. After assessing the normality of the distribution of the precision, using a Shapiro-Wilks test, we
performed a t-test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the
mean precision was significantly greater in the discovery dataset than in the clumped dataset (5%
significance level). Moreover, the precision results obtained for the best hyperparameters were
compared between the datasets (Suppl. Table 5, Suppl. Figure 4). No significant differences were
observed between the datasets in terms of the mean, median, or best precision obtained. As a result,
we prioritised the use of the complete discovery dataset to include the maximum number of signals,
and to prevent hidden causal variants driving the effect of the interaction (Hemani et al., 2021).

Missingness

Although XGBoost (T. Chen & Guestrin, 2016) is a method prepared to work with missing
values, it is known that the presence of missing values in the dataset can affect the performance of
the model (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). Particularly, the 26% of the
variants included in the discovery dataset (105,896 variants, -log10(p-value)>2 (Bonas-Guarch et al.,
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2018), 22,802 individuals) present over a 10% of missing values. Consequently, to ensure the good
performance of the model with this proportion of missingness, a comparison was made between the
complete discovery dataset and the same dataset reducing the number of variants to be analysed to
those with less than a 10% of missingness. The results obtained were compared under the 5-fold
cross-validation algorithm with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04,
0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) in terms of performance. After
assessing the normality of the distribution of the precision, using a Shapiro-Wilks test, we performed a
t-test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the mean
precision was significantly greater in the discovery dataset than in the dataset with less missingness
(5% significance level). Moreover, the precision results obtained for the best hyperparameters were
compared between the datasets (Suppl. Table 6, Suppl. Figure 5). No significant differences were
observed between the datasets in terms of the mean, median, or best precision obtained. As a result,
we prioritised the use of the complete discovery dataset to include the maximum number of signals,
and to prevent hidden causal variants driving the effect of the interaction (Hemani et al., 2021).

Data availability

The amount of available data can affect the performance of the model, particularly, the ideal
machine learning situation is having at least ten times the number of features in the number of
observations (Chicco, 2017; Dey, 2016; Greener et al., 2021; Sarker, 2021). Given that the discovery
dataset (105,896 variants, -log10(p-value)>2 (Bonas-Guarch et al., 2018), 22,802 individuals) was not
accomplishing this rule, the results between the discovery dataset and applying PCA
multidimensionality reduction with scikit-learn library in python (Pedregosa et al.,, 2011) were
compared. For this reason, two datasets were created keeping the PCs explaining the 95% of
variability (PCA), and just keeping the first 2,200 PCs (10% of the number of observations; PCA10).
The performance of the algorithm was evaluated under a 5-fold cross-validation algorithm with
hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50,
100, 250, 500), and depth (1, 2, 3, 4)). The results were compared in terms of precision for each
depth and tree pairs. After assessing the normality of the distribution of the precision, using a Shapiro-
Wilks test, we performed a t-test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to
check if the mean precision was significantly greater in the discovery dataset than in the PCs datasets
(5% significance level). Moreover, the precision results obtained for the best hyperparameters were
compared between the datasets (Suppl. Table 7, Suppl. Figure 6). Although a significantly better
precision was obtained with both PCs datasets compared with the discovery dataset, the small benefit
in terms of precision (<2%) produced by the use of these datasets, in contrast with the loss of
biological and genetic explanation caused by the PCA transformation, the discovery dataset was the
one selected to continue the analysis.

Hyperparameters adjustment

After ensuring a good performance of the complete method with the discovery dataset
(105,896 variants, -logl0(p-value)>2 (Bonas-Guarch et al., 2018), 22,802 individuals), the
hyperparameters were adjusted to prevent overfitting and to obtain the best results from the model
(Greener et al., 2021). The parameters under evaluation were the split of the dataset in training and
test (0.2, 0.3), the learning rate needed to create a new tree (0.01, 0.04, 0.07, 0.1), the number of
trees that the method will construct (50, 100, 250, 500), and the depth of each tree (1, 2, 3, 4).
Particularly, the number of trees and the depth of the tree were detected as the main causes leading
to overfitting during the 5-fold cross-validation. For this reason, the maximum depth of a tree was
limited to 4. To ensure that the overfitting observed during the 5-fold cross-validation was not
extended to the prediction, the performance of the algorithm in terms of precision was compared
between the validation set and the test set. After assessing the normality of the distribution of the
precision, using a Shapiro-Wilks test, we performed a t-test (normal distribution), or Wilcoxon Mann-
Whitney test (not normal), to check if the mean precision was significantly different in the validation
dataset than in the test dataset (5% significance level) (Suppl. Table 8, Suppl. Figure 7). No
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significant differences were detected. Therefore, the rest of the hyperparameters (split and learning
rate) were defined by taking those that lead to the best median precision in the validation set under
the 5-fold cross-validation. All the scenarios were kept for downstream analysis based on the number
of trees expected as an outcome. The best hyperparameters for each scenario correspond to:
50 trees

e Depth 1: split = 0.2, learning rate = 0.1

e Depth 2: split = 0.2, learning rate = 0.1

e Depth 3: split = 0.2, learning rate = 0.1

o Depth 4: split = 0.2, learning rate = 0.1
100 trees

e Depth 1: split = 0.2, learning rate = 0.1

e Depth 2: split = 0.2, learning rate = 0.1

e Depth 3: split = 0.2, learning rate = 0.1

o Depth 4: split = 0.2, learning rate = 0.07
250 trees

e Depth 1: split = 0.2, learning rate = 0.1

e Depth 2: split = 0.2, learning rate = 0.1

o Depth 3: split = 0.3, learning rate = 0.07

o Depth 4: split = 0.2, learning rate = 0.07
500 trees

e Depth 1: split = 0.3, learning rate = 0.1

e Depth 2: split = 0.3, learning rate = 0.1

e Depth 3: split = 0.3, learning rate = 0.1
Depth 4: split = 0.2, learning rate = 0.07

Genomic inspection of the results

Model outcomes interpretation

The XGBoost method (T. Chen & Guestrin, 2016) is based on extreme gradient boosting
trees, therefore the resulting model obtained after the training is composed of a list of the most
relevant variants for the method to do the classification with their corresponding scores, and the
complete set of final decision trees including the decisions. After the test step, the method provides a
list with the predictions and the real observed values. The list of variants can be scored using two
different measures, the weight, which is related to the number of times that the variant has been used
to make a decision, or the gain, which corresponds to the accuracy value after adding the variant to
the final model. The trees obtained represent at least one group of candidate interacting variants,
where the leaves are the variants in each group, and the branches are the decisions made by the
method. Particularly, the analysis of the complete set of decisions made during the training
correspond to find differences between the variants genotype, thus responding to questions such as
the variant being reference homozygous or alternate homozygous for a particular individual.
Therefore, a list of all the unique groups of candidate epistatic variants was created, based on the
decisions made by each of the trees, to facilitate a better genomic comprehension of the epistatic
groups obtained as an outcome of the model, and to simplify their downstream functional assessment.

Candidate epistatic groups base genomics

To have a preliminary overview of the variants included in the groups of candidate epistatic
variants for each scenario (50, 100, 250, and 500 trees), we first classified them by their minor allele
frequency calculated with PLINK (Chang et al., 2015) (Suppl. Figure 8). Second, to understand the
relation between the candidate variants by tree and by depth, we calculated the linkage disequilibrium
(LD) between all the pairs of variants resulting from our analyses in terms of r* with PLINK (Chang et
al.,, 2015) (--r2 --ld-window-kb 500). Then we evaluated the percentage of variants in strong LD
(r*>0.8) and in weak LD (r*>0.2) that were included in each group of candidate epistatic variants. This
last analysis was performed considering all the variants in the first group being in LD with the variants
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in the second group, and also accepting that only some variants from the first group were in LD with
the variants in the second group (Suppl. Table 9).

Genomic, transcriptomic, and epigenetic functional assessment

Resources

The TIGER browser (http://tiger.bsc.es) and its database (Alonso, Piron, et al., 2021) was
used to inspect and extensively annotate the different loci included in each group of epistatic variants.
To prepare the annotations, the genomic information from T2D GWAS meta-analysis summary
statistics from the 70KforT2D (Bonas-Guarch et al., 2018), DIAGRAM DIAMANTE (Mahajan, Taliun,
et al., 2018), DIAGRAM trans-ethnic (The DIAGRAM Consortium et al., 2014), DIAGRAM 1000G
(Scott et al.,, 2017), transcriptome expression results from human pancreatic islets expression
guantitative trait loci (eQTL) and combined allelic specific expression (CASE) (Alonso, Piron, et al.,
2021), islets epigenetic marks (Miguel-Escalada et al., 2019; Pasquali et al., 2014), and variant effect
predictor annotations (McLaren et al., 2016), were downloaded from the TIGER resource. Moreover,
MAGIC trans-ancestry and single-ancestry meta-analyses on glycemic traits (fasting glucose, 2h
glucose levels, and fasting insulin levels) summary statistics were gathered (J. Chen et al., 2021).

Annotations overlap

To assess the overlap between the candidate epistatic variants obtained in each group (pairs,
trios, and quadruplets), each variant was annotated using the summary statistics from different T2D
GWAS meta-analysis (Bonas-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et al., 2017;
The DIAGRAM Consortium et al., 2014), European ancestry glycemic traits meta-analysis (J. Chen et
al., 2021), and human pancreatic islets eQTL and cASE (Alonso, Piron, et al.,, 2021). Only the
significant annotations were kept, therefore only allowing the inclusion of the annotations with a p-
value<5x10® for T2D and glycemic traits GWAS meta-analyses, p-value<3.453x10™ for eQTL (5%
FDR), and 5% FDR for cASE. The results obtained were used to calculate the proportion of epistatic
variants which overlap with already known significant variants associated with T2D or glycemic traits.
The same calculation was applied with eQTL and cASE to see the proportion of variants included in
the epistatic groups which have an already known functional interpretation in terms of pancreatic islet
expression (Suppl. Figure 9).

Functional annotations enrichment

To analyse the functional annotations enrichment of the list of epistatic variants obtained in
each group (pairs, trios, and quadruplets) the summary statistics and available annotations from T2D
GWAS meta-analysis (Bonas-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et al., 2017;
The DIAGRAM Consortium et al., 2014), European ancestry glycemic traits meta-analysis (J. Chen et
al., 2021), human pancreatic islets expression (Alonso, Piron, et al., 2021), islet regulatory elements
(Miguel-Escalada et al., 2019; Pasquali et al., 2014), and gene functional impact (McLaren et al.,
2016), were downloaded. For the pancreatic islets expression, only the significant annotations (5%
FDR) of eQTL and cASE were kept. In the same manner, only the significant annotations for T2D and
glycemic traits GWAS meta-analyses (p-value<5x10'8) were evaluated in the epistatic groups. For
each group of epistatic variants a null distribution of control variants from the discovery dataset was
generated. The control group included the same number of variants as the epistatic group, with the
same MAF distribution. Therefore, first, the MAF distribution by decile was calculated on the discovery
set. Second, a recount of epistatic variants included in each decile was performed to then randomly
select 1,000 times the same amount of variants from the corresponding MAF decile in the discovery
dataset. All the variants in the sets were annotated using GWAS and islet significant annotations. The
proportion of annotated variants in the groups was finally compared. After assessing the normality of
the distribution of the percentage of variants annotated, using a Shapiro-Wilks test, we performed a t-
test (normal distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the mean precision
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was significantly different in the results dataset than in the control dataset (5% significance level)
(Figure 3; Table 2).

Statistical assessment

Logistic regression epistasis

To validate the results obtained from the machine learning algorithm, a logistic regression
was performed in the discovery dataset (22,802 individuals, candidate groups of epistatic variants).
The regression was applied for two statistical models, where the first (additive model) only considered
the additive marginal effect of the variants

n( P(T2D) ) = YN Bvariant;, N € {2,3,4},

P(control)
and the second (interaction model) combined the additive marginal effect of the variants with all their
possible interactions

P(T2D) _ %N . N i i N . . .
(m) = Yi=1 Pivariant; + Y j—1 fijvariant;variant; + Y., j k=1 Bijxvariant;variant;variant, +
i#] i#j2k
IZ}'.k.l=1 Bijrivariant;variant;variant,variant;, N € {2,3,4}.

i#jzk#l

Each of the models was adjusted to capture the effect of bmi, age, sex, and the first 7 PCs. The PCs
were calculated using PLINK (Purcell et al., 2007) multidimensional-scaling method (MDS) to account
for the population structure. The results obtained from the machine learning algorithm with a non-
significant Bonferroni p-value association («x= 0.05) in the interaction term, adjusted for multiple
testing correction for each group size, were filtered. Moreover, the effect of epistasis in the candidate
groups of epistatic variants was measured and compared between the two models. After assessing
the normality of the distribution of the effect, using a Shapiro-Wilks test, we performed a t-test (normal
distribution), or Wilcoxon Mann-Whitney test (not normal), to check if the mean effect was significantly
different in the additive model than in the interaction model for the marginal effects (5% significance
level) (Figure 2). Some significant differences were detected in the pairwise interactions. Moreover, to
check if there were significant differences in the distribution of the marginal effects between the two
models, a Kolmogorov-Smirnov test was performed (Suppl. Table 10). No significant differences
were detected. Additionally, we calculated the proportion of changes observed in the sign of the
variants marginal effects between the two models.
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Supplemental Materials

Supplemental Figure 1. Evaluation of the performance of XGBoost under case-control

imbalance.
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The performance of the method was evaluated with case-control imbalanced data 70KforT2D (12,926 diabetic
and 57,191 non-diabetic individuals, 1,667 variants, -logl0(p-value)>7 (Bonas-Guarch et al., 2018)), and
balanced data 22K (11,401 diabetic and 11,401 non-diabetic paired metadata individuals, 1,667 variants, -
log10(p-value)>7 (Bonas-Guarch et al., 2018)), in terms of precision (Prec), accuracy (Acc), recall (Recall), F1-
score (F1), and Matthews Correlation Coefficient (MCC). After a 5-fold cross-validation with hyperparameters
adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth
(1, 2, 3, 4)), the best hyperparameters were used to test the results for each dataset. For each depth A) 1, B) 2,
C) 3, D) 4, and number of trees (columns), each row displays the percentage obtained (y axis) for each reliability
measure (x axis) evaluated in the imbalanced (top) and balanced (bottom) datasets. Each violin plot represents
the distribution of the reliability measures obtained for each hyperparameter combination. The coloured dots
correspond to the results obtained with the best hyperparameters. The squared data encapsulates the best

results. For the balanced dataset the results on the test set (left), and a prediction on the remaining 70KforT2D
(right) are provided.
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Supplemental Figure 2. Evaluation of the performance of XGBoost in terms of randomness.
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The effect of randomness in the prediction was evaluated based on a comparison between A) the 22K GWAS significant dataset (11,401 diabetic, 11,401 non-diabetic paired
metadata individuals, 1,667 variants, -log10(p-value)>7 (Bonas-Guarch et al., 2018)), and 1,000 control randomizations of B) the genotype, and C) the phenotype. Each row
shows the results obtained for the precision during the train (left) and validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3),
learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) for each scenario. The violin plots display the distribution of the percentage of
precision (y axis) obtained by each combination of hyperparameters in terms of depth (x axis), and number of trees (columns), for each dataset. The coloured dots represent
the results obtained with the best hyperparameters. The numbers inside the parentheses correspond to the median number of candidate interacting variants obtained during
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Supplemental Figure 3. Evaluation of the performance of XGBoost in terms of variable explanation.
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The effect of variable explanation in the prediction was evaluated based on the comparison between A) the 22K GWAS significant dataset (11,401 diabetic, 11,401 non-
diabetic individuals, 1,667 GWAS significant variants, -log10(p-value)>7 (Bonas-Guarch et al.,
discovery dataset (1,667 variants, -log10(p-value)>2 (Bonas-Guarch et al.,
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encapsulates the best results.

2018)), and B) 1,000 control randomizations of the variants included in the
2018)). Each row shows the results obtained for the percentage of precision during the train (left)
and validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250,
500), and depth (1, 2, 3, 4)) for each dataset. The violin plots display the distribution of the percentage of precision (y axis) obtained by each combination of hyperparameters
in terms of depth (x axis), and number of trees (columns), for each dataset. The coloured dots represent the results obtained with the best hyperparameters. The numbers
inside the parentheses correspond to the median number of candidate interacting variants obtained during the training for the best hyperparameters. The squared data
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Supplemental Figure 4. Evaluation of the performance of XGBoost in terms of variable redundancy.
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The effect of variable redundancy in the prediction was evaluated based on the comparison between A) the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic
individuals, 105,896 variants, -log10(p-value)>2 (Bonas-Guarch et al., 2018)), and B) the discovery dataset after LD clumping (r>=0.2, 250kb, p-value=0.5, 70KforT2D summary
statistics (Bonas-Guarch et al., 2018)). Each row shows the results obtained for the percentage of precision during the train (left) and validation (right) steps of the 5-fold cross-
validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) for each dataset.
The violin plots display the distribution of the percentage of precision (y axis) obtained by each combination of hyperparameters in terms of depth (x axis), and number of trees
(columns), for each dataset. The coloured dots represent the results obtained with the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation
training step correspond to the difference between the precision of the training and the validation for the best hyperparameters. The numbers inside the parentheses in the 5-
fold cross-validation validation step correspond to the median humber of candidate interacting variants obtained during the training for the best hyperparameters. The squared
data encapsulates the best results.
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Supplemental Figure 5. Evaluation of the performance of XGBoost in terms of missingness.

A)
22K
-log10(p-val)>2
11,401 cases
11,401 controls
105,896 variants

B)
22K
-log10(p-val)>2
<10% missing
11,401 cases
11,401 controls
78,640 variants

The effect of missingness in the prediction was evaluated based on the comparison between A) the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic individuals,
105,896 variants, -log10(p-value)>2 (Bonas-Guarch et al., 2018)), and B) the discovery dataset after filtering variants with over 10% of missing genotypes. Each row shows the
results obtained for the percentage of precision during the train (left) and validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3),
learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3, 4)) for each dataset. The violin plots display the distribution of the percentage of
precision (y axis) obtained by each combination of hyperparameters in terms of depth (x axis), and number of trees (columns), for each dataset (rows). The coloured dots
represent the results obtained with the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation training step correspond to the difference
between the precision of the training and the validation for the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation validation step
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correspond to the median number of candidate interacting variants obtained during the training for the best hyperparameters. The squared data encapsulates the best results.
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Supplemental Figure 6. Evaluation of the performance of XGBoost in terms of data availability.
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The effect of data availability in the prediction was evaluated based on the comparison between A) the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic individuals,
2018), B) the PCs of the discovery dataset explaining a 95% of the variance, and C) the PCs of the discovery
dataset representing the 10% of the number of observations (2,200 first PCs). Each row shows the results obtained for the percentage of precision during the train (left) and
validation (right) steps of the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500),
and depth (1, 2, 3, 4)) for each dataset. The violin plots display the distribution of the percentage of precision (y axis) obtained by each combination of hyperparameters in
terms of depth (x axis), and number of trees (columns), for each dataset. The coloured dots represent the results obtained with the best hyperparameters. The numbers inside
the parentheses in the 5-fold cross-validation training step correspond to the difference between the precision of the training and the validation for the best hyperparameters.
The numbers inside the parentheses in the 5-fold cross-validation validation step correspond to the median number of candidate interacting variants obtained during the
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Supplemental Figure 7. Evaluation of the performance of XGBoost in terms of overfitting.
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The effect of overfitting was evaluated based on the comparison between the 22K discovery dataset (11,401 diabetic, 11,401 non-diabetic individuals, 105,896 variants, -
log10(p-value)>2 (Bonas-Guarch et al., 2018)) in the validation set under the 5-fold cross-validation and the test set. Each row shows the results obtained in terms of precision
during the 5-fold cross-validation with hyperparameters adjustment (split (0.2, 0.3), learning rate (0.01, 0.04, 0.07, 0.1), number of trees (50, 100, 250, 500), and depth (1, 2, 3,
4)) and test steps for different numbers of trees: A) 50, B) 100, C) 250, D) 500. The violin plots display the distribution of the percentage of precision (y axis), obtained by each
combination of hyperparameters in terms of depth (x axis), and number of trees (row), in the training step (left) and the validation step (middle) of the 5-fold cross-validation,
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and in the test step (right). The coloured dots represent the results obtained with the best hyperparameters. The numbers inside the parentheses in the 5-fold cross-validation
training step correspond to the difference between the precision of the training and the validation for the best hyperparameters. The numbers inside the parentheses in the 5-
fold cross-validation validation step correspond to the median number of candidate interacting variants obtained during the training for the best hyperparameters. The numbers
inside the parentheses in the test step represent the difference in precision between the validation and test set for the best hyperparameters. The scatterplots show the
precision values obtained for each combination of hyperparameters, comparing the results obtained during the 5-fold cross-validation training (x axis) with the validation and
test sets (y axis). The different colours of the dots correspond to different depths of the tree (1, 2, 3, 4). The bigger points represent the results obtained with the best
hyperparameters in the validation (lighter colours) and the test (darker colours). The red dashed line is defined by the identity (x=y).
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Supplemental Figure 8. Minor Allele Frequencies from the variants included in the groups
obtained from the different scenarios (50, 100, 250, and 500 trees).
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As a result from applying the machine learning algorithm, diverse candidate groups of epistatic variants were
obtained depending on the number of trees (columns). The variants included in each group (single, pairs, trios,
and quadruplets) were analysed to calculate their Minor Allele Frequencies (MAF). The pie charts display the
percentage of common (0.05<=MAF), low-frequency (0.01<=MAF<0.05), and rare variants observed in each
group (rows).
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Supplemental Figure 9. Annotations overlap.
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The variants present in each group of epistatic variants (pairwise, trio, and quadruplets) were annotated with significant T2D GWAS meta-analysis (Bonas-Guarch et al., 2018;
Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM Consortium et al., 2014), significant European ancestry glycemic traits meta-analysis (J. Chen et al., 2021), and
significant human pancreatic islets eQTL and cASE expression results (Alonso, Piron, et al., 2021). The grey pie charts represent separately the proportion of epistatic variants
previously associated with T2D or glycemic traits, and the proportion of epistatic variants with an already known effect on pancreatic islet expression. For each pie chart, the
number of annotated variants inside a group is represented in a colour scale. The blue pie charts display the proportion of epistatic variants with any previously reported
association with T2D, glycemic traits or pancreatic islet expression.

114



Supplemental Table 1. Evaluation of the performance of different machine learning methods in
a subset of the discovery dataset (1,667 GWAS significant features, 11,401 cases, 11,401

controls).

Nearest |Linear| RBF |Gaussian|Decision |[Random] Neural Naive
Method Neighbours| SVM | SVM | Process | Trees Forest |Networks AdaBoost Bayes QDA [ XGBoost
Time 10min 25min|28min| >2h 2min 2min 2min 2min 2min |2min| 2min
Score 0.52 054 | 0.5 0.54 0.53 0.55 0.56 0.55 |0.51 0.56
Other Nans Nans |Nans Nans Nans Nans Nans Nans [Nans

Supplemental Table 2. Evaluation of the performance of XGBoost based under case-control
imbalance.

N.trees

50

100

250

500

Depth

Dataset /
Measures

Best
70K
test

Best
22K
test

Best
22K
predict

Best
70K
test

Best
22K
test

Best
22K
predict

Best
70K
test

Best
22K
test

Best
22K
predict

Best
70K
test

Best
22K
test

Best
22K
predict

Precision (%)

44.65

55.

27| 8.32

44.65

56.05

10.64 |44.65

56.96

10.89 | 44.59

56.86| 10.79

Accuracy (%)

79.51

55.

32| 53.67

79.51

55.75

56.07 | 79.51

56.66

56.53 | 79.49

56.53| 56.33

Recall (%)

46.5

55.

66 | 52.97

46.5

53.13

51.47 | 46.5

54.47

52.3 |46.54

54.06| 52

Fl-score (%)

45.56

55.46

14.38

45.56

54.56

17.63 |45.56

55.69

18.03 | 45.54

55.42| 17.87

MCC (%)

32.96

10.

63| 3.5

32.95

11.52

4.64 |32.96

13.33

5.38 [32.92

13.07| 5.09

Precision (%)

44.65

56.46

10.7

44.65

56.02

8.65 |44.65

56.5

8.65 |44.23

56.19| 10.88

Accuracy (%)

79.51

56.

25| 55.39

79.51

55.95

55.68 | 79.51

56.41

55.46 | 79.31

56.15| 55.61

Recall (%)

46.5

54.

53| 52.85

46.5

55.31

52.68 | 46.5

55.66

53.02 |46.85

55.7 | 53.64

Fl-score (%)

45.56

55.48

17.8

45.56

55.66

14.86 |45.56

56.08

14.87 | 45.5

55.94| 18.09

MCC (%)

32.96

12.51

4.92

32.96

11.91

4.51 |32.96

12.83

4.55 |32.77

12.29| 5.47

Precision (%)

44.65

56.31

8.64

44.65

57.07

10.91 |44.42

56.99

10.71 | 44.4

57.02| 10.79

Accuracy (%)

79.51

56.24

55.27

79.51

56.94

55.83 | 79.4

56.72

55.48 | 79.39

56.76| 55.98

Recall (%)

46.5

55.61

53.15

46.5

55.96

53.49 |46.77

54.71

52.79 |46.77

54.85| 52.53

Fl-score (%)

45.56

55.96

14.86

45.56

56.51

18.12 |45.56

55.83

17.81 |45.55

55.91| 17.9

MCC (%)

32.96

12.48

4.5

32.96

13.87

5.54 132.89

13.44

4.94 132.87

13.53| 5.14

Precision (%)

44.59

57.03

8.73

43.53

56.38

10.79 |44.31

57.13

10.8 |43.04

56.38| 10.79

Accuracy (%)

79.49

56.94

55.49

78.96

56.28

55.52 |79.35

56.95

55.48 | 48.69

56.28| 55.52

Recall (%)

46.58

56.

18| 53.54

47.62

55.44

53.21 |46.81

55.67

53.33 | 48.32

55.44] 53.21

Fl-score (%)

45.56)

56.6

15.01

45.48

55.91

17.94 |45.53

56.39

17.96 |45.53

55.91| 17.94

MCC (%)

32.94

13.88

4.82

32.53

12.56

5.19 |32.81

13.91

5.23 [|32.42

12.56( 5.19
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Supplemental Table 3. Evaluation of the average performance of XGBoost in terms of

randomness.
N.trees 50 100 250 500
Depth Median Best Median Best Median Best Median Best
Dataset Prec. Median Prec. Median Prec. Median Prec. Median
(%) N.Feat. (%) N.Feat. (%) N.Feat. (%) N.Feat.
Reference 54.84* 24 55.63* 42 56.65* 79 56.89* 72
Random
1 genotype 49.98 4 50 9 50 20 50 35
Random
phenotype 50.07* 4 50.06* 7 50.03 14 50.02 132
Reference 55.49* 79 56.62* 133 56.67* 165 56.55* 357
Random
2 genotype 50.01 83 49.99 180 50 240 50.01* 404
Random . .
phenotype 50.05 18 50.04 32 50.02 272 50 122
Reference 56.04* 182 56.53* 261 56.61* 365 56.5*% 536
Random
3 genotype 50 66 50.01 131 49.99 755 50 937
Random
phenotype 50.03 43 50.01 89 50.02 449 50 522
Reference 56.24* 324 56.52* 389 56.5* 572 56.15* 516
Random "
4 genotype 50 423 50 348 50.02 1,307 50 1,598
Random
phenotype 50.02 100 50.03 345 50.02 546 50 801

* mean precision greater than 50% (5% significance level)

Supplemental Table 4. Evaluation of the performance of XGBoost in terms of variable

explanation.
N.trees 50 100 250 500
Depth Median | Best Best Median | Best Be_st Median | Best Be_st Median| Best Be_st
Dataset Prec. | Prec.|Median| Prec. |Prec. |[Median| Prec. |Prec.|Median| Prec. |Prec.|Median
(%) (%) | N.Feat. (%) (%) |N.Feat.] (%) (%) IN.Feat.] (%) (%) | N.Feat.
1 Reference| 54.84 |55.61| 24 55.64 |56.68| 42 |56.65*[57.03] 79 56.89 |57.01| 72
Random | 54.13 |55.84| 26 54.38 |56.44| 49 55.01 [57.77] 123 | 55.89 |58.63| 235
5 Reference| 55.49 |56.75| 79 56.62 | 57 133 | 56.67*| 57 165 | 56.55*[56.84| 357
Random | 54.38 |56.45| 94 54.87 |57.85| 177 | 56.12 [59.17[ 394 | 57.33 |160.62| 639
3 Reference| 56.04 |56.82| 182 56.53 |57.07| 261 |56.61*[56.86] 365 [|56.49**|156.84| 536
Random | 54.63 |57.17| 225 55.44 |58.28| 402 | 56.92 [59.92| 739 | 58.24 ]60.83]| 1,069
4 Reference| 56.25 |56.75| 324 56.52 | 56.8 | 389 | 56.5** [57.09] 572 [56.15**|56.82| 516
Random | 54.91 [57.57| 450 55.88 |58.43| 707 | 57.46 [60.33|] 1,076 | 58.75 |61.28| 1,297

* mean reference set precision equals to mean random set precision (5% significance level)
** mean reference set precision lower than mean random set precision (5% significance level)
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Supplemental Table 5. Evaluation of the performance of XGBoost in terms of variable

redundancy.
N.trees 50 100 250 500
Depth Median | Best | Best |Median|Best N?:;ita'Median Best| Best Mendla Best| Best
Dataset Prec. |Prec.|Median| Prec. |Prec. n Prec. |Prec.|Median Prec Prec.|Median
0, 0, 0, 0, 0, 0, . 0,
(%) (%) |N.Feat.] (%) | (%) N.Eeat. (%) | (%) |N.Feat. (%) (%) |N.Feat.
1 Clumped | 54.63* |55.32| 29 |55.13*[56.13| 64 |56.24*|57.17| 173 |57.24*|58.07| 337
Discovery | 54.67 | 55.4 32 55.07 |56.11] 72 56.06 |56.84] 188 | 56.79 |57.83] 363
9 Clumped | 54.98* |55.88| 109 |55.94*|56.47| 226 |57.16*|58.28| 559 |58.42*(60.12| 1,064
Discovery | 55.34 [56.11| 123 | 55.9 [56.61] 252 | 57.01 |57.83| 620 58 |59.73| 1,166
3 Clumped | 55.68* |56.61| 283 |56.65*[57.21| 509 |58.36*|59.23| 1,308 | 59.95*|61.19| 2,355
Discovery | 55.79 |56.69| 308 | 56.62 [57.34] 617 | 58.04 |58.63| 1,359 | 59.53 |60.27| 2,745
4 Clumped 56.1* 57 610 |]57.09*[58.13]| 1,154 | 58.93*60.07| 2,504 | 60.72*| 62.2 | 3,998
Discovery | 56.11 |56.85| 666 | 57.06 [57.34| 1,245 | 58.71 [59.52| 2,881 | 60.46 [61.02| 5,305
* mean clumped set precision equals to mean discovery set precision (5% significance level)
Supplemental Table 6. Evaluation of the performance of XGBoost in terms of missingness.
N.trees 50 100 250 500
Median|Best Bes.t Median| Best | Best Media Best Bes.t Median|Best| Best
Depth Media . n Media :
Dataset Prec. |Prec. n Prec. |Prec.|Median Prec Prec. n Prec. |Prec.|Median
0, 0, 0 0 . 0 0, 0,
%) | %) [\ Feat| © | 0 [N.Feat. (%) (%) |\ Feat| © | 0 [N.Feat.
1 Discovery |54 63¢|55.47| 30 | 55.1* [56.19| 70 |[56.16*|57.05| 188 |56.83*[58.00| 362
Discovery | 54.67 |55.4| 32 55.07 |56.11| 72 56.06 [56.84] 188 | 56.79 |57.83] 363
, | PESovery |55.04%[56.37| 122 |55.88|56.81| 250 |57.06%|58.1| 612 [58.32¢ [50.75| 1,164
Discovery | 55.35 |56.11] 123 | 55.9 [56.61| 252 | 57.01 |57.83] 620 58 [59.73| 1,166
3 Discovery |55 88+ |56.97| 306 |56.63|57.06| 564 [57.18+| 59 | 1,468 [59.58* [61.1 2,751
Discovery | 55.79 |56.69] 308 | 56.62 [57.34] 617 | 58.04 [58.63] 1,359 | 59.53 [60.27| 2,745
4 Discovery |56 14« |56.85| 670 |57.32+|57.76| 1,252 |58.96*|59.38| 2,880 | 60.52 [61.48| 5,469
Discovery | 56.11 |56.85| 666 | 57.06 [57.34| 1,245 | 58.71 |59.52| 2,881 | 60.46 [61.02| 5,305

* mean discovery (<10% missing values) set precision equals to mean discovery set precision (5% significance level)

Supplemental Table 7. Evaluation of the performance of XGBoost in terms of data availability.

N.trees 50 100 250 500
De |[Median|Best| Best |Median|Best] Best Media Best Bes_t Media Best| Best
pth ; ; n Media n -
Dataset Prec. |Prec.|Median| Prec. |Prec.|Median Prec. Prec. n Prec. Prec.|Median
(%) | (%) IN.Feat.] (%) | (%) |N.Feat. (%) (%) N.Feat| (%) (%) IN.Feat.
PCA10 55.26*|56.53| 23 |56.25**|57.51| 47 |57.84**|59.28] 113 |59.17**|60.71| 207
1 PCA 55.33*|56.44] 24 |56.32**[57.19] 48 |57.73**[59.21] 119 |59.26**|60.35| 227
Discovery | 54.67 [55.4| 32 55.07 |56.11] 72 56.06 [56.84] 188 | 56.79 [57.83] 363
PCA10 56.55**|57.41] 81 |57.66**|58.63] 145 |59.54**|60.56] 357 [60.79**[61.92] 629
2 PCA 56.46**|57.35| 85 57.4** | 58.3| 168 |59.22**[59.87| 405 |60.27**[61.17| 746
Discovery | 55.35 [56.11] 123 55.9 |56.61] 252 | 57.01 |57.83] 620 58 [59.73] 1,166
PCA10 57.27**|58.06] 191 |58.21**59.3| 345 ]60.12**[60.79] 802 ]61.48**[62.04| 1,874
3 PCA 57.06**|57.62| 205 |57.89*%|58.67| 429 |59.27**[59.77] 911 |60.35*[60.96| 1,752
Discovery | 55.79 |56.69] 308 | 56.62 |57.34] 617 | 58.04 [58.63| 1,359 | 59.53 [60.27| 2,745
PCA10 57.21**|57.71] 469 |58.74*%|58.97| 744 |60.33**[60.92| 1,448 |61.81**|62.04| 1,874
4 PCA 56.83**|57.05| 534 |57.59*%|58.01] 993 |59.17**[59.65| 1,969 | 60.1* [60.82| 3,268
Discovery | 56.11 |56.85| 666 | 57.06 |57.34| 1,245 | 58.71 [59.52| 2,881 | 60.46 [61.02| 5,305

* mean PCA and/or PCAL10 set precision equals to mean discovery set precision (5% significance level)
** mean PCA and/or PCA10 set precision greater than mean discovery set precision (5% significance level)
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Supplemental Table 8. Evaluation of the performance of XGBoost in terms of overfitting.

N.trees 50 100 250 500
Median Median| Best Median Median| Best Median Median| Best Median Median| Best
Prec. Prec. | Prec. Prec. Prec. | Prec. Prec. Prec. | Prec. Prec. Prec. | Prec.

Depth | 5-CV 5-CV 5-CV 5-CV

val. test test val. test test val. test test val. test test
o | @ | oy | @ g | @[] g | ]
1 54.67*| 54.95 | 55.19] 55.07* | 55.64 | 56.33 | 56.06*| 56.42 | 56.45| 56.79* | 56.84 | 57.92
2 55.35*| 55.58 | 55.83 ] 55.9* | 56.25 | 56.53 | 57.01*| 56.97 | 57.65 58* 58.35 | 58.49
3 55.79*| 55.95 | 56.17 | 56.62* | 56.53 | 56.87 | 58.04*| 57.6 | 58.38| 59.53* | 59.56 | 59.91
4 56.11*| 55.84 | 56.29 ] 57.06* | 56.99 | 56.83 | 58.71*| 58.3 | 58.21 | 60.46* | 60.09 | 60.52

* mean 5-CV validation set (5-CV val) precision equals to mean test set (test) precision (5% significance level)

Supplemental Table 9. Evaluation of the relation between candidate epistatic groups of
variants by depth and by tree.

type |depthl|trees1|depth2|trees2| N1 | N2 I(_rE:saJ)l I(‘rgzil)l L'?rzi?};?e Ll?rzic;?e LD ?g;g (%)
1 50 1 100 32 72 3 3 3 3 9.37
1 100 1 250 72 182 5 6 5 6 8.33
1 250 1 500 182 | 367 8 10 8 10 5.49
1 50 1 500 32 367 3 3 3 3 9.37
2 50 2 100 96 195 0 0 25 29 30.20
2 100 2 250 195 | 487 0 0 31 44 22.56
2 250 2 500 | 487 | 980 0 0 79 111 22.79

by tree 2 50 2 500 96 980 0 0 25 28 29.16
3 50 3 100 200 | 400 0 0 53 62 31
3 100 3 250 | 400 | 971 0 0 120 162 40.5
3 250 3 500 971 |1,952 0 0 283 441 45.42
3 50 3 500 200 |1,952 0 0 92 119 59.5
4 50 4 100 391 | 755 0 0 174 215 54.98
4 100 4 250 755 11,859 0 0 341 461 61.05
4 250 4 500 |1,859]|3,607 0 0 907 1,350 72.62
4 50 4 500 391 |3,607 0 0 242 327 83.63
1 50 2 50 32 96 6 7 6 7 21.87
2 50 3 50 96 200 0 0 25 27 28.12
3 50 4 50 200 | 391 0 0 56 69 345
1 100 2 100 72 195 7 9 7 9 12.5
2 100 3 100 195 | 400 1 1 35 49 25.12
3 100 4 100 400 | 755 0 0 114 156 39

by depth
1 250 2 250 182 | 487 12 20 12 20 10.98
2 250 3 250 487 | 971 0 0 92 134 27.51
3 250 4 250 971 11,859 0 0 287 457 47.06
1 500 2 500 367 | 980 36 51 36 51 13.89
2 500 3 500 980 |1,952 0 0 200 323 32.95
3 500 4 500 |1,952]|3,607 0 0 693 1,117 57.22
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Supplemental Table 10. Comparative table to evaluate the differences between the marginal
effects in the additive logistic regression model and the model including interactions.

Depth Number of Variable Median coeff. additive _l\/_ledlar_l coeff. . K_olmogorov- .
groups additive + interaction| Smirnov results
varl -0.1029 -0.1925** Equals
2 10
var2 0.036 -0.004 Equals
varl 0.146 0.115 =
3 1 var2 0.067 0.030 =
var3 0.130 0.129 -
varl -0.084 0.088 -
var2 -0.204 0.457 -
4 1
var3 -0.030 0.098 -
vad 0.045 0.245 -

* 5% significance level
** mean coefficient from the additive model different to mean coefficient from the full model (5% significance level)
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Supplemental Table 11. Logistic regression coefficients of 3 examples of variant interaction
with a change in variants effect on T2D.

Variants

chr4:96761220
chr1:206513621

chr9:89501123
chr21:25168622

chr1:104373712
chr1:147362531
chr2:147085498
chr11:97009227

Log.reg. models Variables Effect p-value Effect p-value Effect p-value
0.383729 5| 0.125449 3 | -0.013520 1
1 . . .
var (OR~1.46) 9.94x10 (OR-1.13) 2.42x10 (OR~0.98) 7.48x10
0.062412 1| 0.027540 1 | -0.217645 5
2 . . .
N var (OR~1.06) 1.05x10 (OR=1.02) 3.78x10 (OR~0.80) 3.28x10
Additive model 0.032436
-U. -1
var3 (OR~0.96) 2.95x10
0.042759 1
4 .
var (OR~1.04) 1.59x10
-0.698317 3| -0.124841 > | 0.161312 2
1 .32x1 7.77x1 7.37x1
var (OR~0.49) | 332107 (OR-0.88) X10° 1 or-1.17) | 73710
0.030166 1| -0.030208 1| 0.440212 o
2 . . .
var (OR~1.03) 4.40x10 (OR=0.97) 3.73x10 (OR~1.55) 3.05x10
0.105327 1
var3 (OR~1.11) 1.97x10
0.253931 3
4 .
var (OR~1.28) 2.41x10
1.342456 2| 0.381140 5 | -1.209732 5
lvar2 . . .
varlvar (OR~3.82) 3.39x10 (OR~1.46) 1.28x10 (OR~0.29) 1.10x10
-0.081683 1
varlvar3 (OR~0.92) 4.41x10
-0.671094 2
2 .
it d| var2var3 (OR~0.51) 1.03x10
drive mode 20.239613 5
+ interactions varlvar4 2.78x10
(OR~0.78)
(Full model) 0723912
2var4 Y . 3
var2var (OR~0.48) 6.54x10
var3var4 igézgssf) 9.81x10
varlvar2var3 (:é)];i'l;gé) 7.28x10™
1.803480 7
lvar2var4 .
varlvar2var (OR~6.07) 5.00x10
varlvar3var4 ((())g%?ig) 4.61x10™
0.818495 2
2 4 .
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SUMMARY

Genome-wide association studies (GWASs) identified hundreds of signals associated with type 2 diabetes
(T2D). To gaininsight into their underlying molecular mechanisms, we have created the translational human
pancreatic islet genotype tissue-expression resource (TIGER), aggregating >500 human islet genomic da-
tasets from five cohorts in the Horizon 2020 consortium T2DSystems. We impute genotypes using four
reference panels and meta-analyze cohorts to improve the coverage of expression quantitative trait loci
(eQTL) and develop a method to combine allele-specific expression across samples (CASE). We identify
>1 million islet eQTLs, 53 of which colocalize with T2D signals. Among them, a low-frequency allele that
reduces T2D risk by half increases CCND2 expression. We identify eight cASE colocalizations, among
which we found a T2D-associated SLC30A8 variant. We make all data available through the TIGER portal
(http://tiger.bsc.es), which represents a comprehensive human islet genomic data resource to elucidate
how genetic variation affects islet function and translates into therapeutic insight and precision medicine
for T2D.

:, Cell R 37,109807, Octaber 12, 2021 ® 2021 The Authors. 1
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INTRODUCTION

Diabetes is a complex metabolic disease, characterized by
elevated blood glucose levels, that affects >463 million people
worldwide. Type 2 diabetes (T2D) accounts for >85% of diabetes
cases and is strongly related to age, obesity, and sedentary life-
style. Epidemiologic studies forecast increases in global preva-
lence up to 25% by 2030 (Khan et al., 2020; Saeedi et al,
2019; Wild etal., 2004). This makes the study and understanding
of diabetes a top research and heaithcare priority. Progressive
pancreatic islet dysfunction is central to the majority of all types
of diabetes and thereby key to gain insight into disease
pathophysiology.

Great efforts have been dedicated to uncover the link between
genetic variation and complex disease susceptibility through
large-scale genetic studies. For T2D, >700 genetic loci have
been identified to date (Bonas-Guarch et al., 2018; Mahajan
et al., 2018; Sprackien et al., 2020; Vujkovic et al, 2020). The
vast majority of variants in these loci do not disrupt protein cod-
ing sequences (Miguel-Escalada et al, 2019; Pasquali et al,
2014). Thus, the mechanisms by which these variants influence
predisposition to disease remain to be elucidated. As the num-
ber of newly identified risk variants keeps increasing, their func-
fional interpretation constitutes the main bottleneck to gain
insight into the underlying molecular mechanisms and, thus, to
develop more effective and targeted preventive and therapeutic
strategies (Claussnitzer et al., 2020).

To provide functional interpretation of non-coding variation,
large international efforts have generated and integrated
genomic, transariptomic, and epigenomic data from a large va-
riety of healthy and diseased samples to build comprehensive
and genome-wide maps of functional annotations. Among
others, the Genotype-Tissue Expression (GTEx) project uses
expression quantitative trait loci (¢QTL) analysis to link genetic
variation with gene expression across 54 different human tissues
(Aguet etal., 2020). The Roadmap Epigenomics Mapping project
(Bernstein et al.,, 2010) and the International Human Epigenome
project (Bujold et al., 2016) also provide a broad characterization
of epigenomic signatures in a variety of tissues and cell types.

The functional interpretation of genetic variants, which are
usually associated with moderate or small effect sizes, requires
tools and resources that focus on cells and tissues that are
affected in the disease of interest. The islets of Langerhans,
which are clusters of specialized endocrine cells that are essen-
fial to maintain glucose homeostasis, play a central role in the eti-
ology of T2D (Eizirik et al., 2020; Krentz and Gloyn, 2020).
Because human islets are difficult to obtain (Barovic et al,
2019; Burgarella et al., 2013; Meier et al., 2015), large muiti-tis-
sue resources such as GTEx do not contain islet data and at
best use whole pancreas as a proxy, despite the fact that 97%
of the pancreatic tissue consists of exocrine cells that mask islet
signals. Hence, the development of publicly available resources
and tools that include data on islets is essential to translate T2D
genetic signals into molecular and physiological mechanisms.

The firststudies of @QTL in humanislets pinpointed genes that
may be influenced by genetic variants and thus possibly mediate
T2D risk (van de Bunt et al., 2015; Fadista et al., 2014), Despite
the small number of samples, they identified a few loci linked
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to differential expression of islet genes, which were enriched in
genome-wide association study (GWAS) signals for T2D and
related traits. More recently, the InsPIRE Consortium generated
a large islet eQTL study with a sample size of 420 islet donors,
which identified 46 T2D GWAS signals that colocalize with islet
eQTL (Vinuela et al., 2020).

To further expand the understanding of human islet regulatory
genomicsand itsrole in T2D, the Horizon 2020 T2DSystems con-
sortium gathered an extensive collection of human islet samples
with gene expression, epigenomic data, and genotypic and
phenotypic information, with a total of 514 samples, 207 of which
were analyzed by the InsPIRE Consortium. In this study, we
discovered 40 T2D risk signals that colocalize with eQTL or
ASE signals by improving genotype imputation methods and an-
alyses and by developing a new method to combine allele-spe-
cific expression (CASE) across samples, knowledge previously
unknown.

Importantly, the results from this study are made publidy
available to the community through the Translational human
pancreatic Islet Genotype tissue-Expression Resource (TIGER,
http://bsc.tiger.es) portal (Figure 1A). This portal integrates the
newly generated data with publicly available T2D genomic and
genetic resources to facilitate the translation of genetic signails
into their functional and molecular mechanisms.

RESULTS

A catalog of genetic variation and gene expression in
human pancreatic islets

To study gene expression and the effects of genetic variation in
human pancreatic islets, we obtained newly generated and pub-
lished human islet data from 514 organ donors of European
background, distributed across 5 cohorts (Center for Genomic
Regulation, Lund University, University of Oxford/University of
Alberta, Universita di Pisa, and Université Libre de Bruxelles)
(Method details). The large majority of these samples came
from non-diabetic adult donors, and only 30 were from diabetic
organ donors (Table S1).

The DNA of 307 samples was isolated, sequenced, and
genotyped (Table S1; Method details) and aggregated to be
harmonized with the existing data from 207 samples. After
quality control, filtering of RNA sequencing (RNA-seq) and gen-
otyping array data (Method details), we had both high-quality
genotypes and RNA-seq data for 404 human islet samples (Fig-
ure 1B), including 21 from diabetic donors.

To fully characterize the genetic variation present in the sam-
ples, genotype imputation was performed separately for each
cohort using 4 different reference panels, as previously
described (Bonas-Guarch et al., 2018; Guindo-Martinez et al.,
2021), 1000 Genomes Project (The 1000 Genomes Project Con-
sortium et al., 2015), Genome of the Netherlands (GoNL)
(Boomsma et al,, 2014), the Haplotype Reference Consortium
(McCarthy et al., 2016), and UK10K (Walter et al., 2015). The re-
sults were integrated by selecting, for each variant, the imputed
genotypes from the reference panel that achieved the best impu-
tation quality (IMPUTE2 info score > 0.7; Method details). We
have previously demonstrated that this approach results in
increased overall coverage of genetic variation, as well as an
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increased number of significant associations, including those
that are covered by only one of the reference panels (Guindo-
Martinez et al., 2021). This allowed imputation of >22 million
unique high-quality genetic variants across all of the samples,
10% of which were indeis and small structural variants (SVs),
and >1.05 million variants in chromosome X (Figures 1C and
1D; Table S2). Notably, this strategy allowed the accurate impu-
tation of 4 million low-frequency (minor allele frequency [MAF]
between 0.05 and 0.01) and 10 milion rare .01 > MAF >
0.001) variants.

In addition, we performed bulk RNA-seq in 514 human islet
samples, 460 of which were retained after stringent quality con-
trol, including >52 billion raw short reads. We uniquely aligned
>48 billion reads (median of 93 milion per sample) (Table S3),
which allowed us to observe >22,000 genes expressed at >0.5
transcripts per million (TPM) (Method details).

An atias of eQTLs in human pancreatic islets

To explore the association between genetic variation and gene
expression, we performed an eQTL meta-analysis across 4 co-
horts. We performed a cis-eQTL analysis in 404 samples, using
data from each cohort independently. For each analysis, we cor-
rected for known covariates (age, sex, and body mass index
(BMI)), 7 genetic ancestry principal components, and probabilistic
estimation of expression residuals (PEER) factors for hidden con-
founding factors (Stegle et al., 2012). The eQTL results from each
of the 4 cohorts were then meta-analyzed (Figure 2A). This re-
sulted in >1.11 milion significant eQTLs in >21,115 eGenes
(12,802 protein coding genes, 8,313 non-coding) at a 5% false
discoveryrate(FDR)after Benjamini-Hochberg comrection for mul-
tiple testing (Benjamini and Hochberg, 1995) (Figure 28). The
quantile-quantile plot showed no baseline inflation in the results.
More than 12% of all significanteQTLs were small indels or larger
SVs, and this type of variation was the top associated variant for

stronger effect than single nucleotide vari-
ants (Chianget al,, 2017).

To assay the potential functional impact
of the identified eQTL variants, we tested
for their enichment in human islet regulatory regions, defined
by a variety of pancreatic islet chromatin assays (Miguel-Esca-
lada et al., 2019). We observed that eQTL variants overiapped
with gene promoters with very strong fold enrichment when
compared with a control set of genetic variants (3.1-fold for
1% FDR eQTL variants, p = 3 x 10~"%9) (Method details), as
well as with strong enhancers (Miguel-Escalada et al., 2019) -
fold, p = 1.4 x 1079, and open-chromatin regions (1.4-fold,
p =39 x 107*% (Figures 2C and S1). These results are consis-
tent with eQTL studies in other tissues (Aguet et al., 2020).

Next, we contrasted the TIGER human isletresults with the lat-
est GTEx eQTL datasets, which comprised 54 human tissues,
including whole pancreas, but not islets (Aguet et al., 2020). Of
all significant human islet eQTLs, 64.7% were also significant
in at least 1 GTEXx tissue, whereas 35.3% were exclusive to hu-
man islets (Figure 2D, left panel). Only 30.5% of human islet
eQTLs were also significant in whole pancreas in GTEx, an
overiap that is similar to the rest of the GTEx tissues (26%
mean overlap with T2D-related tissues, 29% with other tissues),
highlighting that whole pancreas isnot a better proxy for pancre-
atic islets than other tissues. In addition, when considering rare
and low-frequency variants, the proportion of TIGER islet exclu-
sive eQTLs increased to 76.5% (Figure 2D, right panel). These
observations highlight again the importance of assaying human
islets, since a sizeable proportion of the eQTLs cannot be found
in other tissues. Interestingly, these observations also held true
when we compared TIGER results with recently published
InsPIRE eQTLs (Vifiuela et al., 2020). Because of its imputation
approach, TIGER interogated a larger number of genomic vari-
ants (Figure S2A), Overall, 56.1% of the significant eQTLs were
exclusive to our analysis (not assayed or non-significant in
InsPIRE; Vifuela et al., 2020) (Figure S28). Identification of
eQTLs driven by low-frequency or rare variants may be more
clinically effective, as significant low-frequency variants tend to
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have larger effects on disease risk and gene expression (Flan-
nick, 2019). Notably, the proportion of TIGER exclusive eQTLs
increased to 74.7% for low-frequency variants (Figure S2C),
despite similar sample sizes between the studies. Overall, we
identified 125,918 low-frequency eQTLs compared to 113,285
low-frequency eQTLs identified in the InsPIRE study (Fig-
ure S2C). This resulted in 20,742 eGenes, including the 69% of
the 14,881 eGenes described in InsPIRE(Figure S2D). For eQTLs
with variants present in both studies, the statistical strength of
the association was correlated, as was the direction of effect
for those <5% FDR significant in at least 1 of the 2 studies (Fig-
ures S2E and S2F). This indicates that the findings in the 2
studies are consistent, even when considering signals that did
not reach significance in 1 of the 2.

Gene Ontology analysis of the significant human islet eQTL
genes revealed signaling (including G protein-coupled receptor
signaling) and metabolic regulation terms (Figure S3). In
contrast, comparing TIGER-specific eQTL genes against those

4 Cell Reports 37, 109807, October 12, 2021

aiso present in GTEx tissues revealed strong enrichment for
these terms as well as “response to stimulus™ or “regulation of
cell activation,” and immune system terms (including “lympho-
cyte/T cell activation” and “regulation of immune system pro-
cess”) (Figure 2E). This suggests that these eQTLs involve B
cell physiology genes, including some related to immune pro-
cesses with potential relevance for T1ID (Ramos-Rodriguez
et al, 2019).

Islet eQTLs colocalize with T2D GWAS signals
To assess whether the identified eQTLs can help to identify
effector transcripts for T2D risk variants, we investigated the
intersection between cis-eQTLs and known T2D associations
(Bonas-Guarch et al., 2018; Mahajan et al., 2018; Vujkovic
et al., 2020) by performing colocalization analyses using COLOC
(Giambartolomei et al., 2014) (Method details).

This analysis uncovered 49 eQTL variants associated with the
expression of 53 genes that significantly colocalized with T2D
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Table 1. Human pancreatic islet colocalization of eQTL meta-analysis with T2D GWAS

COLOC T2D GWAS eQTL
Chr  SNP Gene PP.H4.abf SNP.PP.H4 EAF EA NEA OR p p Diraction
1 51127215 PTGFRN 1.00 0.99 0.42 T C 0985 23E-13 48E-15 ~—-—
1 1127215 co101 1.00 0.96 0.42 T (o] 0985 23E-13 1.26-7 -
1 51493694 NBPF7 0.81 0.09 o1 T (o] 109 21E-16 1.0E-5 M+
1 rs340874 RP11-478J18.2 0.98 1.00 0.56 c T 107 56E-26 1.3E-6 -+
1 rs4659836 TBCE o8& 0.12 0.65 A G 104 47E-9 29E-7 o
3 rs3887925 ST6GALT 1.00 1.00 0.55 T C 106 1.4E-17 21E-13  ++++
3 rs3887925 AC007690.1 1.00 1.00 0.55 T C 106 14E-17 S2E-9 -
3 rs7640294 SERBP1P3 0.97 0.06 0.56 A C 104 30E-8 1.6E-9 R
4 rs1531583 CPLXT 087 0.13 004 T G 112 1.26-12 1.2E-6 -
4 rs1580278 BDH2 0.81 0.73 0.53 A C 096 29E-10 1.1E-9 -
4 rs58730668  ACSLT 0.89 0.04 014 Cc T 093 10E-13 2S5E-5 -+
6 rs6557267 RGS17 0.94 0.08 0.42 T C 104 6.0E-8 8.26-8 =
8 rs1058592 RP11-582J165  0.81 0.12 0.35 A G 103 45E-5 41E-15 ——
8 rs77292833  LRP12 0.84 0.05 012 G C 096 16E-5 8.1E-8 -
9 rs10811660  CDKN2B-AST 0.99 0.48 017 A G 085 66E-79 1.6E-7 -
9 rs10963924  SAXO7 0.8 0.09 0.43 [ G 104 926-10 16E-5 -
10 rs827237 PCBD1 0.99 0.19 0.21 T Cc 104 23E-7 2%€-10 ——
n rs15818 HMBS 0.84 0.08 0.4 G A 103  45E-5 2.56-7 -
n rs529623 FXYD2 0.2 0.83 0.52 Cc T 087 S58E-6 34E-7 i+
n rsS7635800 HSD17B12 0.95 0.24 0.29 A G 105 8S5E-13 11E-19 ——
12 rs731304 ABCC9 0.80 0.19 0.24 A G 087 1.1E-5 Q0E-11 ++++
12 rs76895063 CCND2 0.36 1.00 0.02 G T 062 S3E-70 1.7E-6 +++7
12 rs77864822  AMST 0.99 0.81 0.07 G A 093 226-8 29E-14  ++++
12 rs77864822  RP11-528M18.2  0.95 0.17 0.07 G A 093 22E-8 3.6E-6 e+
13 rs34584161  CDKB 1.00 0.98 0.24 G A 095 29E-10 13E-17 ~—-—
13 rs488321 KL 0.98 0.27 0.83 Cc T 095 68E-10 4.3E-6 -
14 810151752 ACTR10 0.86 0.26 0.59 G A 097 T7.2E-8 4.0E-6 4+
14 rs1803283 RP11-600F24.7  0.81 0.02 0.65 T C 104 1.4E-7 2.5E-5 -+
15 rs13737 RP11-817013.8 0.84 0.10 0.24 11 G 096 7.3E-10 23E-6 4+
17 rs7218809 usP3s 0.96 0.41 0.51 T c 097 1.5E-6 24E-10 ++++
17 rs8070260 ZNHIT3 0.94 0.13 0.53 G A 097 1.1E-5 4.1E-8 i
18 rs303760 NPC1 0.85 0.08 0.36 T C 103 3.8-6 2E-24 —-

Colocalizations not reported in Vifiuela et al. 2020). The R COLOC package reparts the approximate Bayesian factor posterior probability (PP.H4.ab)
that there is one common causal variant and the posterior probability (SNP.PP. H4) that the SNP is the associated causal variant. The GWAS estab-
fishes the ink between the SNP and T2D; the effect alleles ([EA) with a frequency (EAF) are shown with the associated effect odds ratio OR) and the p
value. The GWAS data are as reported by the DIAGRAM Consortium (Mahajan et al., 2018), The eQTL pvalus is reported with the direction of the effect:
up- ("+") or downregulation (''-") direction for the effect allelein the 4 meta-analysis cohorts (order: CRG, Oxford, Lund, and Pisa). “?" means that not
enough samples are available in the cohart for the minor allele to compute a p value.

GWAS loci (Table S4), 32 of which were not previously reported
(Table 1; Figure S4; Data S1). Among the 49 colocalizing signais
(Data S1), rs77 864822 (MAF = 0.07) minor allele (G) was associ-
ated with higher RMST (thabdomyosarcoma 2 associated
transcript) expression and decreased T2D risk (odds ratio
[OR])=0.93, p=2.2 x 10~ 9 (Figure S4A). By interrogating the lat-
est GWAS study on glycemic traits (Chen et al., 2021), we
observed that the protective allele was associated with
decreased fasting glucose (8 = -0.024, p=4 x 10~ "), reduced
HbA1G (B = —0.087, p=4.6 x 10~%, and reduced 2-h glucose in
an oral glucose tolerance test(p = ~0.064, p=2.4 x 10~ (Table

S4). Interestingly, we identified two low-frequency variants
(Figures 3C and 3@G), which may have large effect sizes, that co-
localized with gene expression, suggesting a target gene and di-
rection of effect (ie., whether the genetic variant is associated
with increased or decreased gene expression). The variant
rs1531583 colocalized with CPLX7 expression (Figures 3A-
3C). Interestingly, the same variant was associated with
PCGF3 but not with CPLX7 gene expression in whole pancreas
in GTEx (Figure 3B), demonstrating once again the importance of
performing eQTL in the relevant tissue. A detailed analysis of
enhancer chromatin marks in human islets showed that
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173221115 (©* = 0.978 with rs1531583) and rs73221116 (° =
0.98 with rs1531583) had allele-specific H3K27ac binding, sug-
gesting that these 2 variants are the most likely causal variants of
the CPLX1 locus (Figures 3D and 3E). We also identified signifi-
cant colocalization between the low-frequency varant
rs76895963, known to be associated with nearly half reduced
T2D risk (Steinthorsdottir et al., 2014), and increased CCND2
expression in islets (Figures 3F and 3G). This variant was also
associated with reduced fasting glucose (B = -0.033, p =
0.0017), HbA1c (B = —-0.042, p = 3.6 x 10~®), and 2-h glucose
in oral glucose tolerance test (B = —0.095, p= 0.01) (Table S4).

An atias of cASE in human pancreatic islets

Preferential expression of mRNA copies containing 1 of the 2 al-
leles of a genetic variant (allele-specific expression [ASE]) can
result from cis-regulation. However, ASE can occur while the
overall amount of expression of a gene remains constant, and
therefore this type of regulation cannot be identified by conven-
tional eQTL analysis. While some methods have been developed
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Figure 3. Examples of colocalization of
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to identify ASE in gene expression datain
single (Edsgérd et al,, 2016; Mayba et al,,
2014) or multiple samples (Fan et al,
. 2020; Liang et al., 2021), these methods
did not aim to identify candidate cis-reg-
ulatory variants for the ASE effect.
We implemented a cASE pipeline for
. the analysis of ASE replicated across
multiple samples that differ in age,
gender, BMI, and environmental factors,
thereby likely to stem from cis-regulatory
genetic variants (Figure 4A). CASE anal-
ysis complements eQTL analysis, and
additionally controls for (1) environmental
and batch effects, which are important
confounding factors in eQTL studies (Akey et al., 2007; Branham
et al,, 2007; Churchill, 2002; Fare et al., 2003; kizarry et al., 2005;
Yang et al., 2002); (2) sample heterogeneity, which is prevalent in
humanislets (Leek and Storey, 2007); and (3) trans effects, since
these would affect the 2 alleles in the same manner and thus
cannot result in ASE. cASE combines ASE from each sample
into a single Z score statistic that summarizes overall ASE across
the cohort of samples (Figure S5; Method details,) (Newhallet al.,
1949). Variants that preferentially express the reference allele
result in a positive Z score and vice versa (Figure 4A).
Using this strategy, we identified 2,707 genes with 5,271 re-
porter variants showing cASE in human islets, at 5% FDR
(Figure 4B). The similar number of reference and altemate imbal-
anced variants (2,606 and 2,589, respectively) showed that
alignment biases toward the reference allele were successfully
controlled (Figures S5B-S5E).
When comparing cASE genes against a set of non-significant
genes (maiched by gene expression level, Method details), we
observed that cASE genes were enriched for islet-specific
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Combined allele specific expressed (cASE) genes
in 23 independent samples
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Figure 4. Combined ASE analysis in human islets
{A) Oveniew of the cASE analysis, with (APP as example of a gene with an imbalanced reporter variant, e 12826421.

B) Manhattan plot of cASE, positive values refer to reference-blased genes, negative to altemate.

(C) Significant cASE genes are enviched for islet-specific exp
D) Gene Ontology analysis of CASE significant genes.

to lelet-reguiatory regions. p values for 1% FDR eQTL enrichments areshown.

({E) In genes with significant cASE, the proportion of those also identified as eGenes grew with increasing cASE magnitude.
F) Total number of cis-regulated genes (top) and of islet-specific expressaed (botiom), identified only by the eQTL analysia (green), cASE (purple), and both

forange).

expression (2.1-fold, p = 2.5 X 10~* at 1% FDR) and preferen-
tially located near islet regulatory regions (1.23-fold, p = 3.7 X
10~ ™) (Figure 4C). Gene Ontology analysis (Method details) re-
vealed islet-specific terms such as “vesicle-mediated transport”
and “regulated exocytosis™ (Figure 4D), related to insulin pro-
duction and secretion in B cells. As a notable example, the islet
amyloid polypeptide gene (/APF) was among the most imbal-
anced cASE genes. /APP had 7 independent reporter SNPs at
1% FDR (Figure 4A, right pane), all of which had strong imbal-
ance toward the reference allele in the >100 independent sam-
ples that were heterozygous for the variants. Notably, there
were no significant eQTLs for this gene, highlighting the comple-
mentarity between the two methods to identify regulatory varia-
tion. These findings highlight the potential of cASE to identify
genes involved in regulating pancreatic islet physiology.

Given that eQTL and cASE analyses are complementary
methods to detect genes affected by cis-regulation, we as-
sessed the concordance between each of them. We intemo-
gated the proportion of genes with significant eQTL of all cASE
genes across absolute Z score quartiles (strength of imbalance)

and observed that the proportion of e€QTL genes increased with
increasing Z scores (Figure 4E), indicating thatstronger cASE ef-
fects were more likely to be also identified in eQTL analysis, and
showing a correlation between the 2 effects.

012,707 cASE significant genes, 2,052 (75.8%) were detected
in eQTL analyses, whereas 655 (24.2%) were detected uniquely
through cASE (Figure 4F, top panel). The same trend was
observed when considering only islet-specific genes. Among
270 islet-specific significant eGenes detected by cASE, 218
were also detected by eQTL analysis, while the remaining 52
were exclusively found by cASE (Figure 4F, bottom panel).

Mapping distal cASE variants allows cASE

colocalization analysis and implicates additional T2D
effector genes

We next developed an approach to identify distal putative cASE
regulatory variants by interogating all of the variants within the
same topologically associated domain as the reporter variant
(i.e., the variant located in the transcribed gene region). For
each candidate regulatory variant, we stratified samples
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Identification of putatively causal variants
for human islet combined ASE (CASE)
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between the heterozygous and homozygous for the candidate
variant. We then recomputed cASE of the reporter variant (Le.,
the transcribed variant) for each of the groups (Figure 5A). This
approach allowed us to prioritize the candidate variant that
had the highest reporter cASE when the candidate reguilatory
variant was also heterozygous, compared to when the regulatory
variant was homozygous (Figure 5B; Method details). This
method does not require haplotype phasing since it compares

8 Cell Reports 37, 109807, October 12, 2021

heterozygous versus homozygous and is agnostic to the direc-
tion of the association.

This analysis uncovered 256,981 putative regulatory variants
for 3,425 genes, including 570 genes that had no significant re-
porter variant by themselves, but that did reach significance
upon stratifying by the genotypeofregulatory variants (Figure 5C,
orange points). To assay the potential functional impact of the
identified reporter variants, we tested for their enrichment in
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Table 2. cASE with T2D GWAS

COLOC T2D GWAS CASE

PP.H4. SNP. Reporter
Chr SNP Gene abf PP.H4 EAF EA NEA OR »p variant Ref Alt p Z score
1 1127215 PTGFRAN 0.99 088 042 T C 095 23E-13 51127656 C T 8S5E-9 146
4 510837721 WFST 0.95 026 059 C G 1.09 16E-40 rs1046320 G A 32E-16 -209
8 rs3802177  SLC30A8 1.00 0.61 031 A G 090 63E-55 rs11558471 A G 29E-14 195
10 rs2280141  PLEKHAT 0.96 006 048 G T 095 20E-13 rs1045216 A G 1.7E-1 17.2
11 rs35251247 HSD17B12 0.95 021 029 A G 1.05 B85E-13 rs11555762 C T S1E-98 5.9
11 rs35251247 RP11-673D135 0.93 007 029 A G 1.05 85E-13 rs35251247 G A 68E-12 -175
1 sS15 KCNJ11 0.83 0% 083 T C 093 20E-26 rs5215 C T 866 -1
11 rsS29623 FXYD2 0.85 100 052 C T 097 S58E-6 rs529623 T C 34E-231 841
1 rs520823 RP11-728F11.3 091 0.81 052 ¢ T 097 S58E-6 rs869789 G A T7.2&-16 0.7
12 510879261 TSPANS 0.85 008 041 G T 105 37E-13 3763978 C G 7.26-11 -166
16 rs6600191 /TFGS 0.86 024 018 C T 094 7.0E-13 7193384 C G 1.1E-7 134
18 51788762 C78orf8 0.96 006 064 C G 097 23E-6 rs1788820 A G 326-25 -267
18 1788762 NPCT 0.96 006 064 C G 097 23E-6 51788820 A G 32E-25 -267
19 rs3111316 CALR 0.99 047 059 A G 1.05 16E-12 rs1049481 G T 1.6E-76 -—47.9

The AR COLOC package reports the appraximate Bayesian factor post erior probability (PP H4.abf) that there is one common causal variant andthe pos-
terior probability (SNP. PP H4) that the SNIP is the assodiated causal variant. The GWAS establishesthe link betwean the SNIP and T2D; the effect alleles
(EA) with a frequency (EAF) are shown with the associated effect OR and the p value. The GWAS data are as reported by the DIAGRAM Consortium
(Mahajan et al., 2018). The cASE analysis provides the allelic imbalance for the allele represented by the reporter SNP with a reference aliele (Ref)
andan altemative allele (Alt), a p value (FDR threshald of 0.006), and aZ score. An increased Zscore referstoincreased expression of the reference allele.

human islet regulatory regions (Miguel-Escalada et al,, 2019),
observing overlap with gene promoters with very strong fold
enrichment when compared with aoontrolsetofg’mﬁcmts
(4-fold for 1% FDR eQTL variants, p = 4 X 107™) (Method de-
tails), as well as with strong enhancers (Miguel-Escalada et al,,
2019) (2.5-fold, p = 7.8 x 10~*) and open-chromatin regions
(1.5-fold, p = 1.8 x 10~2") (Figure 5D). When comparing these
cis-regulatory variants with the 1.11 milion eQTLs, we found
123,748 variants were significant by both methods (3,138 with
MAF <5%), and a further 133,233 (9,190 with MAF < 5%) were
identified only by cASE (Figure 5E), showcasing the relevance
of this analysis for enriching genetic cis-regulatory discovery.
Assigning statistical significance to cASE distal regulatory var-
iants allowed us to test for colocalization between cASE regulato-
ry variants and T2D GWAS variants. For each T2D GWAS locus,
we assessed all of the regulatory variants for all of the imbalanced
genes in the region and identified 14 colocalized locus-gene pairs
(Table 2; Figure S6; Data S2). Of these, 6 had also been identified
in eQTL/T2D GWAS colocalization analyses, showing consis-
tency between the 2 methods. Interestingly, the 8 colocalizations
identified by cASE alone, WFS1, SLC30A8, RP11-613D13.5,
KCNJ11, RP11-728F11.3, TSPANS, C180rf8, and CALR, sug-
gested that these T2D variants may mediate disease risk by
causing an imbalance in allelic expression, rather than altering
overall gene expression (Figure S6). A notable example was the
highly significant cASE observed in SLC30A8 (rs11558471; p =
2.9 x 10~ ™), which showed colocalization with a well-established
T2D-associated variant (Figures 5F and 5G; Table S5) for which
there was no eQTL colocalization. Thus, cASE analysis uncovered
additional disease-relevant genomic regulation and provides a
potential biclogical mechanism underlying the association.

A web portal to explore regulatory variation and genomic
pancreatic islet information

Finally, to provide the research community with a user-friendly
open access tool to explore these findings and mine the molec-
ular basis of complex diseases influenced by pancreatic islet
biology, we created TIGER (http://tiger.bsc.es) (Figure S7). This
portal integrates the results obtained in this study with otherpub-
lic genomic, transcriptomic, and epigenomic pancreatic islet re-
sources, aswell as T2D GWAS meta-analysis summary statistics
(Method details).

The TIGER website represents homogeneous gene expres-
sion levels from 446 RNA-seq pancreatic islet samples corrected
for batch and covariate effects, and enables comparison with
GTEx expression data (Aguet et al., 2020) (Method details).

Inaddition to the eQTL and CASE results and to provide further
functional assessment, we gathered islet regulatory information
(Akerman et al., 2017; Miguel-Escalada et al,, 2019; Pasquali
et al, 2014), methylation marks (Hall et al., 2014; Thurner et al.,
2018), and chromatin modification datasets (Dunham et al.,
2012; Gaulton et al., 2010; Stitzel et al., 2010). Furthermore, to
enable the translation of genetic variation to disease risk, we in-
tegrated the latest T2D GWAS meta-analysis summary statistics
(Bonas-Guarch et al., 2018; Mahajan et al., 2014, 2018; Scott
et al,, 2017) (Figure 1A).

The TIGER database contains expression and molecular data
for 59,625 Gencode genes (version gencode.v23iift37; Frankish
et al,, 2019) and >26 million variants. The portal allows users to
perform both variant and gene-centric queries. The resuits are
displayed in a set of graphical tools and a genomic browser
(Down et al., 2011) that help visualize and interpret the molecular
context of the query. Each table can be downloaded in csv
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format, and the genomic browser integrates tools to search and
zoominon aregion, add new tracks, and export the data as pub-
lication image. As a result of these efforts, the TIGER resource
has already been used in recent studies (Hodson and Rorsman,
2020; Saponaro et al., 2020a, 2020b).

As an example, we present the visualization of MTNR1B, a
gene associated with T2D and impaired insulin secretion (Lys-
senko et al,, 2009). This gene is lowly expressed in pancreatic
islets (median 0.25 TPM), but virtually absent in whole pancreas
and other GTEX tissues (median 0 TPM), except for testis (me-
dian 0.61 TPM) and brain (median 0.06 TPM), highlighting the
utility of this resource for studying human islet-specific expres-
sion (Figures S7A and S7B). A T2D risk-associated locus has
been described and fine-mapped (Mahajan et al,, 2018) toa sin-
gle variant (rs10830963, p = 4.8 X 102, posterior probability
[PP] = 0.99; Figures S4B and S7C). Notably, this variant is
located withinislet H3K27ac peaks, suggesting potential reguia-
tory implications (Figure S7D). The close-up look at this locus il
lustrates that the TIGER portal can be easily used to interogate
gene expression and the epigenomic and genomic variationreg-
ulatory landscape, providing a very valuable resource to the
research community to study complex diseases affecting
pancreatic islets.

DISCUSSION

By analyzing a large multi-cohort dataset of pancreatic islets with
gene expression and dense genotyping data, we have uncov-
ered 1 milion significantly associated variant-gene pairs. Of all
of the associations we found, 35.3% were islet specific, high-
lighting the importance of performing tissue-specific eQTL
studies (Figure 2D). Remarkably, 17 human islet eQTLs that co-
localized with T2D GWAS signals were not associated with gene
expressionin any GTEx tissue, including whole pancreas, which
emphasizes the fact that pancreas cannotbe used as a proxy for
pancreatic islets and vice versa.

We compared our findings with those obtained in the InsPIRE
islet eQTL study that comprised 420 samples (Vifiuela et al,
2020), 207 of which were also induded in our study. We
observed that 18 (34%) of the 53 eQTLs that colocalized with
T2D GWAS signals were also identified in InsPIRE (Table S4).
The improved power in our study obtained by the use of integra-
tive approaches, such as combined reference panels genotype
imputation and meta-analysis allowed us to detect lower MAF
eQTL signals (10.4% with <5% MAF), representing a 7-fold
increment of low-frequency eQTL variants compared to this pre-
vious islet eQTL study. Importantly, the meta-analyses also allow
us to compare the heterogeneity of the associations between co-
horts and filter out signais that are not consistentacross cohorts,
thereby avoiding false positives.

We uncovered 32 T2D colocalizations, 2 of which were led by
low MAF variants, including variants associated with the expres-
sion of CCND2, RMST, and CPLX1. The variant rs76895963
(MAF = 0.02) that upregulates CCND2 is associated with a nearly
50% reduced risk of T2D (OR =0.58) (Mahajan et al., 2018; Stein-
thorsdottir et al., 2014) and is potentially implicated in the peri-
natal development of human B cells (Osonoi et al., 2020). While
the PP of the colocalization was below the threshold of 0.8, the
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SNP had a clear eQTL with the gene, and LocusCompare plots
showed convincing colocalization (Figure 3G). The variant
rs77864822 (MAF = 0.07) upregulates RMST expression and de-
creases T2D risk. RMST is a reportedly neuron-specific long
non-coding RNA involved in neurogenesis (Ng et al., 2013); itis
well expressed in human islet cells (Kaur et al, 2018), but its
function in B celis is unknown. The variant rs1531583, with the
minor T allele assoclated with increased T2D risk (Mahajan
et al., 2018), upregulates CPLX1, encoding complexin-1, again,
a reportedly neuron-specific gene. Complexin-1 plays a role in
Ca**-dependent insulin exocytosis in rodent B cells, although it
is intriguing that both CPLX7 silencing and overexpression
impaired insulin secretion (Abderrahmani et al., 2004). GWAS
often report as a target the gene that is closest to the variant,
in this case POGF3. Notably, rs153 1583 lies in anintronic region
of PCGF3 and is an eQTL for thisgene in several GTEx tissues. in
human islets, however, it is specifically associated with CPLX7
expression and not with PCGF3, challenging the hypothesis
thatthe closest geneis often the most likely target gene (Figures
3A-3E).

The imputation with 4 reference panels allowed us to analyze
different sources of genetic variation, including indels and SVs.
In our study, 12.6% of the eQTL are indels. This stresses the
fact that indels are a significant part of the genetic background
influencing RNA expression. Unfortunately, the largest available
T2D GWAS dataset (Mahajan et al, 2018) did not consider
indeis, and so we could not include them in our colocalization an-
alyses. In the near future, this approach could be used to fine-
map the contribution of indels and SVs to disease risk.

Capitalizing on this valuable pancreatic islet resource, we also
analyzed forthe firsttime cis-regulation via ASE. We developed a
method called cASE, which combines ASE across samples,
maximizing the power to detect variants assodated with ASE.
We identified variants associated with allelic imbalanced
expression while not changing overall gene expression, and
thus undetectable by eQTL. We extended the cASE resultsin co-
localization analysis and identified 14 T2D colocalizations.
Among them, 8 signals non-detected in the eQTL/T2D GWAS
colocalization included widely reported T2D-associated signals
in WFS1, SLC30A8, KCNJ11, TSPANS, C180rf8, and CALR.
For these, the lead SNP causes allelic imbalance but no overall
gene expression change. These findings suggest that a subset
of reguiatory genetic variants confer disease risk by causing
imbalance in the allelic expression of their target genes, a
mechanism for which knowledge is lacking. A particular locus
of interest was the colocalization for common variant
rs3802177 associated with SLC30A8. rs3802177 is in strong
linkage disequilibrium with rs 13266634 T2D-associated variant,
widely discussed in the literature (Carvalho et al., 2017; Gupta
and Vadde, 2020; Liet al., 2017; Sladek et al., 2007). In our study,
both variants had nearly identical p values o = 2.9 x 10~ for
rs3802177 and p = 3.3 x 10~'* for rs13266634), showing that
either or both could induce allelic imbalance. Rare loss-of-func-
tion variantsin SLC30A8 strongly reduce T2D risk (Flannicket al.,
2019) by enhancing insulin secretion (Dwivedi et al., 2019). How-
ever, the direction of effect of the common coding variants is not
known. Our cASE results suggest that imbalanced expression
toward the rs13266634-T allele is protective for T2D. Since
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SLC30A8 loss-of-function decreases risk, these results suggest
that the rs13266634-T allele may cause reduced SLC30A8
function.

This study has a number of imitations. First, there is a substan-
tial overlap of samples between the TIGER and InsPIRE studies.
For the variants that were present in both studies, ~70% of TI-
GER eQTLs were also identified in InsPIRE. The difference in
overiapping signals could be due to the lack of power to identify
associations or to heterogeneityin the samples oreQTL method-
ology used. Since TIGER has samples overlapping with InsPIRE,
we cannot consider TIGER a replication of InsPIRE resuits or vice
versa. However, results identified in both studies canbe consid-
ered confirmed. Future efforts should focus on the careful
analysis of non-overiapping islet samples from the 2 initiatives.
Power will increase further with the integration in TIGER of addi-
tional datasets by the human islet community, which we wil
warmly welcome. A second limitation of this study is that the ma-
jority of samples is of European ancestry. Hence, whereasitis a
great resource for functional follow up of variants associated
with diabetes and related traits, this resource is not useful as a
follow-up of variants that are frequent enough only in non-Euro-
pean populations (Mercader and Florez, 2017; Spraciden et al,,
2020; Vujkovic et al., 2020). Future human islet omics and ge-
netic studies shouid focus on collecting data from diverse ances-
tries. Third, the analysis of pancreatic islet bulk RNA-seq data
does not allow the comparison of different cell types that are pre-
sent in pancreatic islets. Studies using single-cell sequencing
will enable the identification of cell-type-specific eQTLs. Howev-
er, large enough sample sizes of humanislet single-cell RNA-seq
and paired genotype aray datasets are not available yet.

In summary, we generated a large expression regulatory vari-
ation resource in human pancreatic islets, a tissue with a central
pathogenic role in most, if not all, types of diabetes. The results
are available through the TIGER web portal, which constitutes a
user-friendly visualization tool that facilitates the exploration of
the datasets, democratizing human islet genomic information
to all islet researchers and clinicians. We expect that this
resource, in combination with the growing number of large-scale
genetic and functional studies, will represent a critical step for-
ward toward understanding the molecular underpinnings of
complex diseases that affect pancreatic islet biology and pro-
vide a path for the identification of novel and personalized drug
targets.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER
Depasited data
RNA-seq and genctyping aray data @in this paper) Marseli et al, 2020 EGA: EGASD0001005535
RNA-seq and genotyping array data Fadista et al,, 2014 GEO:GSES50244
RNA-seq and genctyping array data van de Bunt et al, 2015 EGAEGADOD00D 1001601
RANA-seq data Cropetal, 2014 GEO:GSES3949
RNA-seq and genctyping array data Akerman et al., 2017 EGAEGAS00001002865
RNA-seq and genotyping array data Miguel-Escalada etal, EGA pending accession number

2019; data not shown

Expression aray Solimena et al,, 2018 GEO:.GSE76896
DNA-methylation Hall et al, 2014 EGAEGADO000 1003946
Bisulphite sequencing Thumer et al., 2018 EGAEGADO000 1003947
Cahesin Miguel-Escalada etal,, 2019 EGA:EGADO000 1005203
Mediator Migusl-Escalada etal., 2019 EGAEGADO000 1005203
H3K27ac Migusl-Escalada etal., 2019 EGAEGADO0001005203
ATAC-seq Migusl-Escalada etal., 2019 EGAEGADO000 1005203
Islet regulome annotations, ChiP-seq Miguel-Escalada etal., 2019 EGAEGAD0000 1005203
and ATAC-seq processed files
Pancreatic islet enhancer clusters Pasquali et al., 2014
HaKdmet Pasquali et al,, 2014

Long non-coding RNAs IncRNAs) annatation
Pancreatic islet open chromatin DNase

Pancreatic islet open chromatin DNase

Glycemic traits data

TOKforT2D GWAS meta-analysis
summary statistics

DIAGRAM 1000G GWAS meta-
analysis Stage 1 Summary statistics
DIAGRAM Trans-ethnic T2D

GWAS meta-analysis

DIAMANTE T2D GWAS meta-analysis

GTEx Analysis V7 - Transcript TPMs
FastDMA probe full annotation

Gene Ontalogy

Reactome

DisGeNET, May 2017

GWAS Catalog version 1.0 release 2021-06-08
Ensembl Variant Effect Predictor version 87.27

RefSeq BUILD.37.3
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Akerman et al,, 2017
Stitzel et al., 2010

Gaulton et al.,, 2010

MAGIC investigators {nttp://
magicinvestigators.org.); members

of MAGIC are provided in Appendix S1
Bonas-Guarch et al, 2018

Scoftet al, 2017
Mahasjan et al, 2014
Mazhajan et al, 2018

GTEx Portal
Wuetal, 2013

The Gene Ontology Consortium, 2017
Reactome Pathway database
Pifiero et al., 2016

MacArthur et al, 2017

McLaren et al, 2016

O'Leary et al,, 2016

ENCODE (2012-2016) Open
Chromatine Dnase

ENCODE (2012-2016) Open
Chromatine Dnase

http://cg bec.es/70kfort2d/

https://diagram-consortium.org/
downloads htmi

https://diagr wsortium. arg/

https://diagram-consortium.org/
downloads htmi
https:/Awww gtexportal .org/ome/
http://bloinfo.au.tsinghua.edu.
cn/member/jgu/fastdma/
http://geneontology.org/
https://reactome.org/download-data/
https:/Awww disgenet.org/
https:/Awww ebiac.uk/gwas/downloads
https://m ensembl .org/info/
data/ftp/index. hitmi
ftp//ftp.ncbi.nim nih.gov/genomes/
Homo_sapiens/ARCHIVE/BUILD.37.3
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REAGENT or RESOURCE SOURCE IDENTIFIER

Gencode v23 lift 37 annotation Frankish et al., 2019 ftp:/Mp.ebiac.uk/pub/databases/
gencode/Gencode_human/relsass_23/
GRCh37_mapping/gencode.v23ifta7.
annotation.gtf.gz

gnomAD version 202 gnomAD database https://gnomad broadinstitute,
org/downicads

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfiled by the lead contact, Miriam
Cnop (menop@ulb. ac.be)

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA-seq and genotyping array data from PISA cohort Sequence data have been deposited at the European Genome-phenome
Archive (EGA), which is hosted by the EBI and the CRG, under accession number EGAS00001005535.

Further information about EGA can be found on https:/ega-archive. org “The European Genome-phenome Archive of human data
consented for biomedical research” (hitps://www.nature.com/ng/ournal v47/n7/full/ng.3312. html).

RNA-seq and genotyping amray data from CRG cohort should be requested through Miguel-Escalada et al. (2019) and coauthor
Goutham Atla.

The eQTL and cASEresuilts are available for browsing at TIGER (http:/tiger.bsc.es), and the full summary statistics are available for
download.

Source data and publicly available resources used for this study supporting all findings are detailed in the key resources table.

The cASE code is available through hitps://github.com/imoran-BSC/TIGER_cASE.

Any additional information required to reanalyze the data reported in this work paper is available from the Lead Contact upon
request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Islet sample collection and genotyping

TIGER data consist of 514 RNA-seq and 485 genotyped aray data of deidentified cadaveric human pancreatic islet samples from five
research centers: 1) Centre for Genomic Regulation, 2) Lund University Diabetes Centre, 3) University of Oxford/University of Alberta,
4) Department of Endocrinology and Metabolism, University of Pisa and 5) ULB Center for Diabetes Research, Universite Libre de
Bruxelles (Table S1). For the latter two centers, islets are prepared from the body and tail of the pancreas.

Ceantre for Genomic Regulation (CRG)

The DNA of 127 CRG samples was isolated, sequenced, and genotyped using llumina’s Human OmniExpress 12 vi and 2.5-8 v1.1
chips, as described in Miguel-Escalada et al. (2019). Genotype array was done in 125 samples with llumina’s Genome Studio soft-
ware providing information on a total of 624k SNPs.

Lund University Diabetes Centre (Lund)

The DNA of 89 Lund samples from cadaver donors of European ancestry provided by the Nordic Islet Transplantation Programme
was Isolated as described in Fadista et al. {20 14). The samples were genotyped using lllumina’s HumanOmniExpress 12v1 C chips
passing standard quality control metrics providing information on a total of 609k SNPs.

University of Oxford/University of Alberta (Oxford)

The DNA of 118 Oxford samples was isolated from either spleen or the exocrine fraction of the islet isolation using the Tissue DNA
Purification Kit. When no other tissue was available, DNA was extracted from human islets using the Trizol fraction remaining after
extraction of RNA as described in van de Bunt et al. (2015). The samples were genotyped using llumina’s Human Omni 2.5 exome
array following the llumina Infinium protocol providing information on a total of 2.5M SNPs.
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University of Pisa (Pisa)
The DNA of 154 Pisa samples was isolated according to previously describedin Marselii et al. (2020) and sequenced. Genotype call-
ing was done in 153 samples with llumina’s Human Omni 2.5 exome array providing information on a total of 2.6M SNPs.

ULB Center for Diabetes Research (ULB)

The 43 ULB samples were isolated in Pisa using collagenase digestion and density gradient purification from beating-heart organ
donors with no medical history of diabetes or metabolic disorders. Following islet shipment to Brussels, mRNA was extracted
and processed following the RNeasy QIAGEN protocol as described in Cnop et al. 2014).

METHOD DETAILS

Genotyping quality control
PLINK v1.9 (Purcell et al., 2007) was used to do standard quality control of the genotype data, at the variant and sample level (Bonas-
Guarch et al,, 2018). At the variant level, we discarded rare variants (Minor Allele Frequency MAF < 0.01) and applied Hardy-Weinberg
equilibrium test filtering (p < 1 x 10~%) (Graffeiman, 2015; Graffelman and Camarena, 2008). Further, we filtered the variantsbelow a
missingness threshold of 0.05. At the sample level, we discarded samples presenting a gender discordance between the reported
gender in the metadata and the genetic sex, as well as the subjects with at least a 3rd degree of relatedness, those below a miss-
ingness threshold of 0.02 and, finally, individuals not clustering within the 4 standard deviations of the first four principal components
from the multidimensional scale analysis. The ancestry of the individuals was assessed by principal components analysis compar-
isons with phase3 1000 Genomes Project populations (The 1000 Genomes Project Consortium, 2015).

After QC this resulted in a total of: 1) 103 individuals, 559,083 SNPs in the CRG cohort, 2) 88 individuals, 596,273 SNPs in the Lund
cohort, 3) 102 individuals, 1,487,651 SNPs in the Oxford cohort and 4) 144 individuals, 1,542,765 SNPs in the Pisa cohort.

Genotype phasing and imputation

The autosomal genotypes were phased with Eaglev3 (Loh et al., 2016a, 20 16b) using the Human Reference Consortium Project refer-
ence panel (McCarthy et al,, 2016). The X chromosome was phased without reference panel with SHAPET (Delaneau et al,, 2011).
Then, GUIDANCE (Guindo-Martinez et al., 2021)integrating IMPUTE2 (Marchini et al., 2007) was used for imputation, using 4 refer-
ence panels: the 1000 Genomes Project phase 3 (The 1000 Genomes Project Consortium, 2015), the Genome of the Netherlands
Project (Boomsma et al., 2014), the Haplotype Reference Consortium Project (McCarthy et al., 2016)and the UK10K Project (Walter
et al,, 2015), with an IMPUTEZ info score threshold of > 0.7. This resulted in a total of 13.7-16.3M SNPs for each cohort separately,
that were merged considering the best info score obtained across all panels, resulting in 22,983,795 genotyped and imputed genetic
variants with MAF > 0.001.

RNA-seq read mapping
RNA from 514 human donor islet samples was isolated and purified, and was used to construct RNA-seq libraries. These bulkk RNA-
seq assays generated a total of > 72 bilion pair-ended fragments of 75, 76, 100, 101, 125 bp read lengths.

To perform eQTL analysis, we aligned all samples against the transcriptome reference gencode.v23iift37 (Frankish etal., 2019) with
STAR v2.4.0 (Dobin et al., 2013), using

@ -paired-end -p 8

An alternative mapping strategy was used for RNA-seq read mapping to beused for cASE. Given that the standard reference genome
contains only one allele in polymorphic sites, standard RNA-seq read mapping can produce reference-biased alignments, leading to
falsepositivesin the study of ASE. To align RNA-seq datasetsin an alleleunbiased manner, two modified reference genomes were built,
defined asa ‘masked’ and an ‘enhanced’ genome. The ‘masked' reference genome was built by substituting with an ‘N’ the nucleotide
position of each common SNP in dbSNP142 (Pagés, 2015) (MAF > 1%), using the vcf2diploid.jar (Rozowsky et al., 2011) tool. To
construct the ‘enhanced’ reference genome, we modified the scripts developed by Satya et al. (2012)to accommodate RNA-seqreads,
which added artificial contigs to thereference genome containing all possible SNP allele combinations. For this step, we used the subset
of 4M common SNPs located within gene coordinates in the Ensembl (Yates et al,, 2020), RefSeq (0'Leary et al,, 2016) and UCSC
(Haeussler et al,, 2019) annotations, or within previously identified humanislet IncRNAs (Akerman et al., 2017) (Figure S5).

STAR v2.2.0 (Dobin et al., 2013) was used to align the RNA-seq datasets against the masked genome, using

o ~outFilterMultimapNmax 1-outFilterMismatchNmax 10
o -outSAMstrandField intronMotif~outSAMattributes All

in order to allow up to 10% of nucleotide mismatches, suppress multimapped reads, and make the output compatible with down-
stream software. Bowtie v2.0.5 (Langmead et al., 2009) was used to align the RNA-seq data against the enhanced genome, using

o -n-ceil L,0,0.03-score-min C,-14,0 -N 1 -X 50000
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toallow up to 3 nucleotide mismatches evenly distributed within the read, andlong range read pairs. Bowtie2 (Langmead and Salz-
berg, 2012) was chosen because it does not map the RNA-seq spliced reads, (only the reference allele-containing spliced sequences
were present in the enhanced genome) which prevents the generation of allelic alignment bias.

After mapping the RNA-seq datasets to the two modified reference genomes, the outputs of both alignments were combined into
one non-redundant set of reads, using the read merging C++ scripts available in our github repository (hitps:/github.com/
imoran-BSC/TIGER_cASE, scripts 02 and 03). Reads that aligned to the same genomic positions by both methods were kept, as
well asreads mapped only by one of the two methods. In addition, all reads that mapped partially to intronic regions were discarded.
The resulting set of reads was named ‘unbiased alignment’ (Figure S5A). This method successfully eliminated alignment bias in
heterozygous positions (Figure S5B), and mapped 86.2% of all RNA-seq reads. When comparing this alignment with one using
the standard reference genome and STAR v2.2.0 using a subset of the samples, we recovered an extra 8.5% more reads using
the unbiased alignment method (Figure S5C).

Sample concordance verification between genotype and gene expression

To avoid mislabeled samples leading to mismatching emors between genotype-phenotype samples, and to discard samples with
poor quality or possible contamination, we used verifyBamiD v1.1.3 (Jun et al,, 2012) with “~best,” applied to the RNA-seq align-
ments sorted and indexed with samtools v1.1 (Li et al., 2009), and comparing with their genotypes. After these steps, 404 samples
with good quality genotype and RNA-seq data and concordance remained for further analysis.

TIGER web portal development
The TIGER web portal (hitp://tiger.bsc.es) is the comprehensive integration in an ElasticSearch v1.4.4 database of a) T2D GWAS var-
iants identified in 70KforT2D (Bonas-Guarch et al., 2018), diagram DIAMANTE (Viahajan et al., 2018), diagram Trans-ethnic (Vahajan
et al,, 2014), diagram 1000G (Scott etal., 2017) T2D meta-analyses or included in the GWAS Catalog v1 release 2021-06-08 (Bunielio
et al, 2019), b) variant annotation and characterization through Variant Effect Predictor v87.27 (McLaren et al., 2016) and Gnomad
v2.0.2 (Karczewski et al., 2020), c) epigenomic marks from islet DNA-methylation sites (Hall et al., 2014; Thurner et al, 2018), chro-
matin accessibility (Dunham et al., 2012; Gaulton et al., 2010; Stitzel etal., 2010) and CHiP-seq profiles (Viguel-Escalada et al., 2019),
d)annotation from Gene Ontology (Ashbumer et al., 2000; The Gene Ontology Consortium, 2017), IncRNAs (Akerman etal., 2017) and
islet regulome (Miguel-Escalada et al., 2019; Pasquali et al,, 2014)in a publicly avallable platform. Genes are referenced to Gencode
annotation v23lift 37 (Frankish et al., 2019) and RefSeq BUILD.37.3(O'Leary et al., 2016) and enriched with DisGeNET (Piferc et al.,
2017) (May 2017) and Reactome Pathway (Jassal et al., 2020) database information. It contains results on gene expression inte-
grating the results of a) gene expression from normalized islet RNA-seq counts, microarrays (Solimena et al., 2018), and the Geno-
type-Tissue Expression database (GTEx) (Lonsdale et al., 2013), and b) computed eQTL and cASE.

The portal was built upon [ICGC software codebase], the front-end coded in angular v1.5.7 with embedded biodalliance v1.4.4
genomic browser (Down et al., 2011), plotly v1.54.1 (Plotly Technologies, 2015) and highcharts libraries and the back-end coded
in Java.

QUANTIFICATION AND STATISTICAL ANALYSIS

eQTL analysis

The cis-eQTL analysis of 404 human pancreatic islets for which both RNA-seq and genotyping data remained after QC was
performed by cohort with fastQTL v2.0 tool (Ongen et al., 2016). The analysis was run for regions one million base pairs up- or down-
stream of the transcription start site of each gene using gencode.v23ift37 (Frankish et al., 2019) version. For each cohort, we
corrected for known covariates (age, sex and BMI), 7 genomic ancestry principal components, and 15 PEER v1.3 (Stegle et al,,
2010) factors in order to account for hidden confounding factors. For the X chromosome, we used 5 PEER factors and 4 genomic
ancesfry principal components and the cis-eQTL analysis was performed stratified by sex and combined. The full command for
fastQTL is

fastQTL-log ‘chri.log’-vcf. ‘chri.bef.’-bed ‘rsem.bed’ -C ‘covariates.tsv’-threshold ‘0.01'-out ‘chri.fastQTL.gz'

Age and BMI missing metadata were imputed using the cohort mean.

The by-cohort fastQTL (Ongen et al., 2016) results were then meta-analyzed with METAL (Willer et al., 201 0) using the sample size
strategy and computing heterogeneity. For the X chromosome, the meta-analysis was run over the 4 cohorts for both sexes together
and over the 8 eQTL analysis (4 cohorts, 2 sexes). The full configuration files for METAL are given by:

SEPARATOR WHITESPACE
MARKER ensg.snp

ALLELE a0 a1

EFFECT slope

PVALUE pval
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PROCESS cohort_CRG
PROCESS cohort_OXFORD
PROCESS cohort_LUND
PROCESS cohort_PISA
OQUTFILE metal .tsv
ANALYZE HETEROGENEITY
QuIT

Identifying variant regulatory enrichments using GREGOR

To testthe eQTL and cASE variants for enrichment in islet regulatory overaps, we used the Genomic Regulatory Elements and Gwas
Overlap algoRithm (GREGOR) (Schmidt et al.,, 2015), designed to calculate such enrichment while controlling for linkage-disequilib-
rium between variants, MAF and distance to nearest gene. We used the 1% and 5% FDR set of significant eQTL variants, after se-
lecting them by linkage disequilibrium < 0.2 using PLINKV1.9 (Purcell et al., 2007) with “-indep-pairwise 100k 5 0.2". We tested
enrichment against a set of human islet regulatory regions, including gene promoters, enhancers, and open-chromatin derived
from ChiP-seq experiments in humanislets (Figures 2C and S1) (Miguel-Escalada et al., 2019). Specifically, we used an R threshold
of 0.99, a window size of 1,000,000, a min_neighbor_num of 500, and European (EUR) as the population.

Comparison of TIGER eQTLs with the GTEx and InsPIRE datasets

To assess the degree of concordance between the TIGER significant eQTLs and those reported inthe GTEx v8 dataset (Aguet et al,,
2020), we searched for exact variant-target gene matches among the dataset of significant eQTLs in all 54 GTEx tissues. To analyze
the overlap of eQTLs with low-frequency variants, we repeated the analysis, but first filtered the TIGER and GTEx eQTLs to include
only those with variants with a MAF < 0.05in the EUR population of the 1000 genomes phase-3 dataset (The 1000 Genomes Project
Consortium, 2015).

To obtain a relevant comparison with the InsPIRE (Vi uela et al., 2020) dataset, we first applied the same multiple-testing correction
method used in this study to the full nominal p values of the InsPIRE dataset. The Benjamini-Hochberg comrections for 1and 5% FOR
resulted in the nominal p-value thresholds of p = 8.55 x 10~*and p=62x 10“.oomaldhg t0974,435and 1,408,891 significant
eQTLs. Two eQTLs were considered significant by both methods if they were detected at < 5% FDR in both studies, and had an exact
match in both variant and target gene. The low-frequency variant eQTLs were determined as described above.

Colocalization analysis

COLOC 4.0 (Giambartolomei et al., 2014) R package was used for the colocalization analysis of cis-eQTLand T2D GWAS. We used
the coloc.abf method which implements a variation of the Approximate Bayes Factor computations (Wakefield, 2009). The coloc.abf
function was called with two R lists, one for the eQTL and one for the GWAS:

listpvalues = ...,N = ..., MAF = .., snp= ..., type = "quant”)

with a vector of p-values, N the sample size, MAF the minor allele frequency and snp the rsid of the variant.

In order to select regions for colocalization analyses, we selected genes associated with at least one significant eQTL SNP which
had been previously reported as a GWAS lead variant (Bonas-Guarch et al,, 2018; Mahajan et al., 2018; Vujkovic et al, 2020). The
significant eQTL SNPs were determined based on a 0.05 threshold Benjamini-Hochberg FDR (Benjamini and Hochberg, 1995). Simi-
larly, we used the p-values of the cASE analysis to perform colocalization, considering loci with an at least 5% FDR significant signal.
The colocalization was run over regions ranging from one million base pairs downstream to one million upstream of the cis-regulatory

target gene transcription start site.
The colocalization plots were generated by the locuscompare R package v1.0.0 (Liu et al., 2019) (Data S1 and S2).

Generation of an unbiased set of ASE reporter variants

To identify loci under mappability related allelic biases, a C++ script available in the github repository (https:/github.com/
imoran-BSC/TIGER_cASE, script 01) was used to generate all possible reads containing both alleles of all possible reporter
SNPs. Asplice junction database was created using the Ensembl (Yates et al., 2020), RefSeq (O'Leary et al., 2016), UCSC (Haeussler
et al., 2019) and human islet IncRNA (Akerman et al., 2017) gene annotations, to take splice junctions into account.

The resulting dataset, consisting of 240M artificial reads, was aligned using the unblased mapping strategy described above, and
the allelic ratios (i.e., the percentage of reference-allele camrying reads) were quantified. Since the same number of reads were pur-
posely generated carrying both alleles, any observed allelic imbalance would derive exclusively from mapping biases. SNPs whose
allefic ratio was not between 49%~51% were blackiisted. Additionally, all SNPs located within 100 bps of a common or low-frequency
indel present in dbSNP142 (Pagés, 2015) were also blacklisted.

The remaining curated set of 3.97M SNPs were used as bona-fide SNPs for reporting ASE.
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Identification of ASE

The number of reads containing the reference and alternate alleles RNA-seq reads overlapping each reporter SNP were quantified
using the mpileup command of samtools v1.1 (Li et al,, 2009), with the flags “-A -B -d 20000, and the ComputePileupFregs.pl script
(Satya et al., 2012). Sample-specific ASE was assessed calculating the allelic ratio, i.e., the fraction of reads containing the reference
allele over the total number of reads. We selected the set of SNPs with at least 3 heterozygous samples with > 15 RNA-seq reads (of
which > 10 non-clonal), resulting in a set of > 170k informative reporter SNPs.

A binomial test (Bernoulii, 1899) was used to assess the significance of ASE for all reporter SNPs, using the number of reads car-
rying the reference and alternate alleles. To account for any possible remaining alignment bias in the datasets, the median allelic ratio
for each possible bi-alldic SNP (AC, AG, AT, CG, CT, GT) across the genome was calculated and used as null, instead of the theo-
retical 50%. Similarly, the allelic ratios were proportionally adjusted using the sample and nucleotide-pair specific median value.

Theresulting p-values were used to calculate a sample-specific 1% and 5% FDR Benjamini-Hochberg (Benjamini and Hochberg,
1995) thresholds, to comect for multiple testing.

Assessing cASE using Stouffer's Z-score

To assess cASE in a given heterozygous variant in many independent samples, the Stouffer’s Z-score (Newhall et al., 1949) method
was used. This method combines independently obtained p-values into a Z statistic, which increases in absolute value with signif-
icance. The method allows for weighting of independent p-values and, additionally, it accounts for a positive or negative directionin
the magnitude associated with the p-values. Thus, this method allows to differentiate between significant reference and alternate
reporter variants, as well as providing a way to account for the variance inherent to differing numbers of informative RNA-seq reads
in each reporter.

For each reporter, a Z-score was calculated as follows:

72 =WZ

vEw

where w; was the total read coverage of sample /, and Z; was the transformed binomial p-value py:
- =1 —&
Z = z0 (1 2)

where the sign was positive if the value of the allelic ratio was > 50%, zero if exactly 50%, and negative otherwise, and 6~ was the
inverse of the standard normal cumulative distribution function, calculated using the gnorm function in R. A threshold of 10~ was
imposed as the minimum possible binomial p-value, in order to prevent single events with very significant p-values from dominating
the Z-score value, while still maintaining their relevance. Therefore, Stouffer’s Z-score (Newhall et al., 1949) method accounted for
consistencyin the overall reference or altemate direction of the allelic bias across samples, and considered all p-values into account,
regardiess of their sample-specific significance.

Z-scores were only caiculated if the reporter SNP was heterozygous in 3 or more samples, and only samples with aread coverage
of > 15 RNA-seq reads, of which > 10 non-clonal, were used in the calculation.

Assessing the significance of cASE Z-scores
To assess the significance of the obtained Z-scores, we performed 1,000 permutations of the reference/alternate read counts be-
tween heterozygous SNPs, and caiculated their binomial p-values and resulting control Z-scores (hitps:/github.com/
imoran-BSC/TIGER_cASE, script 04). To account for the differences in gene expression, all reporter SNPs were distributed in 5
bins: one containing all SNPs with a median coverage of 0 reads, and 4 more bins containing the remaining SNPs according to their
read coverage quartile, and the read counts of heterozygous SNPs were only shuffled within their bins. By permuting only the values
of the heterozygous SNPs while keeping the reference and altemate homozygous values invariant, the distribution of the number of
samples in heterozygosity for each SNP was kept constant.

The resulting null distribution of Z-scores was therefore attributable only to stochasticity, and so for each empiric Z-score, a p-
value was calculated from this null distribution. The Benjamini-Hochberg method (Benjamini and Hochberg, 1995) was then used
to obtain g-values from these p-values and thus comect for multiple testing.

Regulatory enrichment of cASE significant genes

To calculate these regulatory enrichments, we first generated a null distribution of control genes that were non-significant for CASE
but had similar expression levels. First, we separated the cASE significant genes in 4 bins of expression, and randomly selected the
same number of non-significant genes of the same expression quartile, 1,000 times. We then calculated, in the 1% and 5% FDR
CASE genes and in each of the 1,000 control sets, the proportion of genes that were in the islet-specifically expressed genes list (Vi-
guel-Escalada et al,, 2019) (Figure 4C, left). The same procedure was performed to calculate the enrichment for proximity to islet
enhancers, by calculating the proportion of genes located at less than 25kb from islet enhancers (Miguel-Escalada et al,, 2019).
The p-values were obtained by approximating these permuted control distributions as Gaussian distributions and deriving a p-value
using the pnorm R function.
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Gene ontology analyses and islet-specific expression
Gene ontology terms in the analyses of eQTL and cASE genes were obtained using the PANTHER (Protein ANalysis THrough Evolu-
tionary Relationships) (Thomas et al., 2003, 2006) classification system.

ForeQTL, we analyzed all 5% FDR significant genes versus a background list of all genes expressedinislets (Figure S3), and the fist
of TIGER exclusive eQTL genes versus a background of all eQTL genes shared with GTEx (Figure 2E).

For cASE, we studied 5% FDR cASE genes versus a background dataset of all genes for which the calculated cASE was non-sig-
nificant (Figure 4D). The visualization of the syntactic terms was obtained using the REVIGO web tool (Supek et al., 2011).

identifying candidate SNPs putatively leading to cASE
We aimed to characterize the set of SNPs putatively causal of cASE (referred to as ‘candidate SNPs’). To that end, we first identified
all variant pairs consisting of a cCASE-significant reporter and a candidate variant, as long as both were located within the same to-
pologically associating domain (TAD) (Dixon et al., 201 2), plus a boundary leeway of + 200kbs. Then, we separated the samples using
the candidate variant genotype in two groups: those heterozygous (Het), and those homozygous (Hom). Finally, we caiculated the
reporter Z-score of both sample groups, and selected the candidate variants with significant Z-scores for the Het individuals, which
were also non-significant for the Homs (https: /github.com/Amoran-BSC/TIGER_cASE, scripf). The underlying hypothesis was that if
the candidate variant was homozygous, it was uniikely to be causal.

Putative causal variants were also interrogated for the set of non-cASE significant reporter variants, following the same procedure
described above. This produced an additional 1,247 genes that reached cASE significance only after being considered with these
putative causal variants.

Scaling human islet gene expression values to allow comparisons with the GTEx expression datasets in TIGER

The RNA-seq expression of human islet samples was measured with RSEM v1.3.0 (Li and Dewey, 2011)in 60,261 transcripts from
Gencode database (v23ift37 annotation) (Frankish et al,, 2019) using STAR v2.5.3.a (Dobin et al., 2013) and BOWTIE v2.3.2 (Lang-
mead and Salzberg, 2012) hg19 aligned-reads as follows:

STAR-runMode genomeGenerate-genomeFastaFiles GRCh37.primary_assembly.genome.fa-sjdbGTFfile gencode.v23ift37.
annotation.gtf

rsem-prepare-reference-gtf gencode.v23iift37. annotation.gtf-bowtie2 GRCh37. primary_assembly.genome.fa
rsem-calculate-expression-paired-end-star-paired-end -p 8

We obtained measures of raw counts, counts normalized by transcript length (TPM - transcripts per million) and fragment length
(FPKM - fragments per kilobase). The batch effects and covariate differences between samples captured in the TPM measures were
removed with imma removeBatchEffect function (Ritchie et al., 201 5), using the log10 normalized expression of the genes thatwere
expressed in at least 80% of human islet samples. The results of this normalization were evaluated with Speamrman correlation,
ensuring that there was a correlation above 0.8 between all the samples independently of the cohort after correction.

TPM expression datasets from the 54 tissues available in GTEx (Lonsdale et al., 2013) (20 samples per tissue) were collected, and a
decile distribution analysis was performed excluding genes from GTEx samples that miss expression in at least 50 % of the samples.
Then, TIGER islet expression was scaled to fit these measures according to the following criteria:

(1) EachGTEx decile bin[Dg;,Da3.1) has TPM values in [T a3 Ta1.1), thusthe comesponding decilic straight willbe:yg = (Tgy.q —
Toy)x +Tejy.
(2) Eachpancreaticisletdecile bin [Dgj,Da..1) has TPM values in [Ty, Teti1), thus the corresponding decilic straight will be: ysy =
(Tergar = Teg)x + Touy.
From Equation e)mwded\mx-,%(mm,dbwm the relation between the TPM pancreatic islet values yp and the

L U0

TPM GTEx values yg by replacing (3) in (1) yg = (,!g,-—:;g)y, ~Tay (H) +Tg, the scaling factor.
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Fold enrichment over controls of significant eQTL and cASE variants, in islet regulatory chromatin regions,
related to Figures 2C and 5D. p-values for 1% FDR eQTL enrichments. A) all eQTL variants, B) Top eQTL
variants: common (>=5% MAF) and low-frequency variants (1%<MAF<5%), C) all cASE variants, D) Top cASE
variants: common (>=5% MAF) and low-frequency variants (1%<MAF<5%).
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Figure S2.
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Comparison between TIGER and InsPIRE eQTL results, related to Figure 2D. A) Overlap between the
number of genomic variants interrogated in TIGER and InsPIRE. 7.22M were in both studies (brown), while 2.88M
(28.5%) (green) were exclusive to TIGER, and 430k (orange) to InsPIRE. B) Overlap between the significant eQTL
results in both studies. 37% of TIGER results were eQTLs with TIGER-exclusive variants (light green), 19% with
variants also present in InsPIRE (green), and 44% were shared with InsPIRE (brown). C) As in B) but restricted to
eQTLs with variants of minor allele frequency <5%. D) Overlap between the eGenes detected by both studies. E)
The p-values obtained in InsPIRE correlated (Pearson’s 1=0.67, red line) with the meta-analysis p-values of TIGER,
for all eQTLs with variants present in both studies at <5% FDR significant in either study. F) For these eQTLs, the
direction of effect was also consistent between studies (Pearson’s r=0.752, red line).
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Figure S3.
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-.:U"HO‘ 20T space y

Gene ontology of the eQTL genes, related to Figure 2E. A) Gene ontology analysis of the genes with significant
eQTLs compared with a background of all genes expressed in human islets, visualized with the Gene Ontology
enRIchment anal ysis and visuaLizAtion (GOrilla) web tool. B) Same information visualized using Revigo.
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Figure S4.
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Colocalization plots of eQTL signals, related to Tables 1 and S4 . LocusCompare plots depicting A) RMST and
B) MTNRIB. Significant colocalizations between eQTL and T2D GWAS analyses. The lead variant is represented
by a purple diamond. The linkage disequilibrium between the lead variant and the other variants is given as the
square of the correlation coefficient 1* and is indicated in a color scale. The -logl0(p-values) for each variant —
which are located in a region of one mega-base pair up- and downstream from the gene franscription start site — are
depicted in three panels: (left) p-values of eQTL as x-axis and GWAS as y-axis, (bottom right) p-values of GWAS
in the gene region and (top right) p-values of eQTL in the gene region. The title shows the gene name; MAF: minor
allele frequency:; PP .H4 abf: Posterior probability of colocalization; SNP.PP.H4: posterior probability of lead variant
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Figure S5.
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Overview of the RNA-seq alignment used in cASE analysis, related to Figure 4A and STAR Methods. A)
Decision tree of the RNA-seq reads to keep or discard, after alignment using both a masked and an enhanced
reference genome. B) Mean allelic ratio resulting from the “unbiased alignment’ method compared versus an
alignment using a standard reference genome. C) As in B but showing the percentage of raw reads aligned. D)
Allelic ratio of reporter variants separated by their genotypes, across the four cohorts. E) Mean and median allelic
ratio values for each of the cohorts.
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Colocalization plots of cASE signals without an observed eQTL/T2D GWAS colocalization, related to Tables
2 and SS5. LocusCompare plots depicting significant colocalizations between cASE and T2D GWAS analyses. A)
Cl180rf18 B) RP11-728F11.3 C) TSPAN8 D) KCNJ11 E) RP11-613D13.5 F) SLC3048 G) CALR H) WFSI. The
lead variant is represented by a purple diamond. The linkage disequilibrium between the lead variant and the other
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variants is given as the square of the correlation coefficient 1* and is indicated in a color scale. The -logl0(p-values)
for each variant — which are located in a region of one mega-base pair up- and downstream from the gene
transcription start site — are depicted in three panels: (left) p-values of cASE as x-axis and GWAS as y-axis,
(bottom right) p-values of GWAS in the gene region and (top right) p-values of cASE in the gene region. The title
shows the gene name; MAF: the minor allele frequency:; PP.H4.abf: Posterior probability of colocalization;
SNP.PP.H4: posterior probability of lead variant being the associated causal variant.
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Figure S7
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TIGER platform example, related to Figures 1A, S4B and STAR Methods. A) MTNRIB normalized
log10(TPM) expression in islets; table (top) displays MTNRIB normalized TPM expression in each cohort and
across the cohorts (bold): histogram (bottom) shows log1 0(TPM) gene expression distribution in 495 human islets
samples, the red dashed line corresponds to MTNRIB log10(TPM) expression. B) MTNRIB normalized TPM
expression in islets vs other GTEx tissues where each boxplot represents one tissue; MTNRIB has higher expression
in pancreatic islets (black) compared to the whole pancreas (brown), which has almost no expression. C) Table
showing the list of variants in a 100Kb window around MTNRIB and displaying results from either eQTL or
DIAMANTE GWAS data sorted by ascending eQTL p-value; the eQTL variant rs10830963 (p=4.04x10™")
colocalizes with DIAMANTE (p=1.50x10"). D) 15Kb human islet genomic context of variant rs10830963
(chr11:92708710); islet significant regions (black/blue boxes) and peaks are represented in each track, the blue line
corresponds to rs10830963 position.
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Supplemental Data
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Colocalization plots of eQTL signals, related to Table 1 and STAR Methods.
LocusCompare plots depicting all significant colocalizations between eQTL and T2D GWAS
analyses. The lead variant is represented by a purple diamond. The linkage disequilibrium
between the lead variant and the other variants is given as the square of the correlation
coefficient r* and is indicated in a color scale. The -log10(p-values) for each variant — which are
located in a region of one mega-base pair up- and downstream from the gene transcription start
site — are depicted in three panels: (left) p-values of eQTL as x-axis and GWAS as y-axis,
(bottom right) p-values of GWAS in the gene region and (top right) p-values of eQTL in the gene
region. The title shows the gene name; MAF: minor allele frequency; PP.H4 abf: Posterior
probability of colocalization; SNP.PP.H4: posterior probability of lead variant being the
associated causal variant.
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Colocalization plots of CASE signals, related to Table 2 and STAR Methods.
LocusCompare plots depicting all significant colocalizations between cASE and T2D GWAS
analyses. The lead variant is represented by a purple diamond. The linkage disequilibrium
between the lead variant and the other variants is given as the square of the correlation
coefficient r* and is indicated in a color scale. The -log10(p-values) for each variant — which are
located in a region of one mega-base pair up- and downstream from the gene transcription start
site — are depicted in three panels: (left) p-values of CASE as x-axis and GWAS as y-axis,
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(bottom right) p-values of GWAS in the gene region and (top right) p-values of cASE in the gene
region. The title shows the gene name; MAF: the minor allele frequency; PP.H4 abf: Posterior
probability of colocalization; SNP.PP.H4: posterior probability of lead variant being the
associated causal variant.
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7. Global Results and discussion

Despite the large catalog of variants which have been found associated with complex
diseases, such as diabetes, asthma, or Alzheimer’'s disease, only a small fraction of the heritability
has been explained, thus affecting current predictive models and its application to the clinics (Kullo et
al., 2022; Kumuthini et al., 2022; Lambert et al., 2019). This is in part derived from Genome-Wide
Association Studies (GWAS) limitations (Génin, 2020; Tam et al., 2019). Particularly, the evaluation of
single independent variants in a background of complex diseases, where the simultaneous
combination of multiple genetic and environmental factors are required to develop the disease,
represents an obstacle for the discovery of variant synergies. Additionally, the outcomes from GWAS
are limited to the summary statistics, which despite its relevance for understanding which are the
regions involved in disease predisposition, and their effect, only can be used in predictors, thus
disregarding the comprehension of the molecular mechanisms underlying variation and its association
with diseases, and restricting the advance towards the discovery of new drugs and treatments.

Overall this thesis contributes to the better understanding of the genomic basis of complex
diseases focusing on these two limitations as a departure point. On one hand, the analysis of
epistasis constitutes a novel approach to overcome the lack of knowledge about the existence of
variant-variant interactions associated with diseases, and their effect (Génin, 2020; Tam et al., 2019;
Visscher et al., 2017; Wray et al., 2013). Particularly, we develop and use machine learning models to
find groups of epistatic variants associated with Type 2 Diabetes (T2D). Moreover, progressive
pancreatic islet dysfunction has been described to play an important role in the explanation of T2D
pathophysiology and other related traits (Bartolomé, 2022; Del Guerra et al., 2005; Eizirik et al., 2020;
Gloyn et al., 2022). Therefore, we analyse the cis-regulatory effects of variation in pancreatic islets
gene expression. Additionally, we create a publicly available platform integrating the results obtained
from these analyses with other functional information to facilitate the interpretation of disease
susceptibility loci. In the next pages the results obtained from this thesis are discussed.

7.1. Epistasis

The multiple advances done in the genomic study of T2D have led to the discovery of more
than 700 GWAS variants significantly associated with this disorder (Bonas-Guarch et al., 2018; J.
Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al., 2017; The DIAGRAM Consortium et al.,
2014; Vujkovic et al., 2020). However, despite these efforts, the contribution of these variants to the
development of the disease is evaluated in a single independent manner, therefore resulting in a poor
understanding of the disease, with only a small fraction of its heritability explained (~20%) (DeForest
& Majithia, 2022). Epistasis or variant-variant interactions has been suggested as one of the factors
that can contribute to a better genomic explanation of complex diseases, particularly, to T2D (Génin,
2020; Tam et al., 2019; Visscher et al., 2017; Wray et al., 2013).

Capitalising the fact that each GWAS variant contributes with a small effect to disease
development (McCarthy et al., 2008), polygenic risk scores (PRS) are currently broadly applied to
empower GWAS based on the existence of variant synergies. Particularly, to evaluate the
predisposition to disease, PRS additively combines the effects of GWAS variants. Compared with
more complex approaches, such as machine learning methods, PRS represents a benefit being a
cost-effective technigue, which only requires the use of GWAS summary statistics to calculate the risk
score of each individual genotype in a particular cohort of study. However, the use of these scores
have not resulted in a great improvement compared to the predictions based on clinical measures
(Padilla-Martinez et al., 2020). Moreover, although these approaches consider variant synergies, PRS
ignores the possible functional interconnections between variants and its association with disease
phenotypes (Mackay, 2014).
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To approach the study of epistasis, and therefore, to discover variants which contribute to the
development of the disease synergically, but in a dependent manner, different statistical methods and
computational approaches have been applied. Nonetheless, the many computational and
methodological difficulties surrounding epistatic studies have limited its progress. For example, the
analysis of the complete set of pairwise interactions between only 500,000 SNPs using classical
statistical methods, involves the execution of billions of tests (Marchini et al., 2005). Thus, converting
the study of epistasis into something still unaffordable at a genome-wide level or, when discretely
approached, reporting no evidence of epistasis as a result of the highly restrictive multiple testing
thresholds that are needed to ensure the accuracy of the outcomes (Nag et al., 2020).

As a consequence of the complexity behind genome-wide epistasis analysis, diverse
techniques such as multidimensionality reduction analysis, or variant prioritisation based on previous
biological knowledge have been applied (Manduchi et al., 2018; Josep Maria Mercader et al., 2008;
Nag et al.,, 2020). Remarkably, some of the studies based on the use of these techniques have
reported variants which present a modest effect on the disease when evaluated independently, but an
increased effect when considered jointly (Cordell, 2009; Kirino et al., 2013; Monir & Zhu, 2017).
However, the small number of variants included in these studies, have reduced the discovery to a few
genetic loci.

In contrast with classical methods, which are able to approach the epistatic problem at a
genome-wide level (Nag et al., 2020), in this thesis, the use of a Machine Learning (ML) approach has
limited the extension of the method to the analysis of a small group of variants. This problem is a
consequence from the current statistical and computational limitations derived from the use of ML
methods. More specifically, to ensure a good performance of the statistical models underlying ML
approaches, and prevent overfitting, therefore allowing the replication in a completely independent
dataset, the number of variants that can be included in the input dataset is recommended to be less
than 10% of the observations (Chicco, 2017; Dey, 2016; Greener et al.,, 2021; Sarker, 2021).
Therefore, many side analyses have been required to ensure the possibility of replication when
trespassing this threshold. Moreover, the computational memory load that represents the evaluation
of the multiple combinations that can be simultaneously tested for its association with the disease, has
also represented a computational burden for the use of our ML approach in a genome-wide manner.
Therefore, although the imputed genotype for more than 15 million variants was available for the
analysis, we have largely reduced the number of input variants to only 105,896.

The reduction in the number of input variants applied in the analysis conducted in this thesis
can be contrasted with other studies which rely on multi-dimensionality reduction techniques or that
reduce the number of initial variants by applying filters based on previous functional knowledge
(Manduchi et al., 2018; Josep Maria Mercader et al., 2008; Nag et al., 2020). Particularly, the filter
based on only keeping the variants with a certain association with the disease, despite resulting in a
large reduction of the number of variants included, is less restrictive than other functional filters.
Therefore, resulting in a lower dimensionality reduction, and therefore facilitating a broad inspection of
the synergies between a larger group of variants.

Despite applying a filter based on the marginal degree of association with the disease we
expected our interacting groups to be enriched in functionally relevant variants, it is known that the
vast majority of disease-associated variants lie on non-coding regions, thus difficulting the functional
interpretation of the results obtained from our analyses. Particularly, to confirm that the interaction
pathway between variants can be mediated by the affected genes, and to suggest islet regulatory
regions and islet expression regulatory variation as some of the underlying mechanisms mediating the
effect of genomic variants interaction, many side analyses integrating and evaluating our outcomes
with functional annotations including T2D and related traits GWAS meta-analyses, cis-regulatory
expression, gene functional impact, and epigenetic marks, had been required. Importantly, although
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from these analyses we have found that some of the single independent variants, which were
previously known to be significantly associated with T2D, can be thought as driving the effect of the
interaction (Hemani et al., 2021), 75% of the epistatic groups do not include any variant previously
associated with T2D, glycemic traits, or an already known susceptibility loci for islet expression, thus
evidencing the relevance of interactions between different genomic regions to improve the
understanding of the disease.

Remarkably, the use of ML models, in this thesis, compared with more classical methods
(Cordell, 2009; Kirino et al., 2013; Monir & Zhu, 2017; Nag et al., 2020), has facilitated the
suppression of the very restrictive multiple testing significance threshold (Marchini et al., 2005). The
avoidance of this restriction, which usually results in poor detection power and limits the discovery to a
few significant loci, has allowed the detection of 367 single variants, 980 pairs, 1,952 triplets, and
3,607 quadruplets which contain variants synergically associated with the predisposition to T2D.
However, the combination of this ML methodology with classical logistic regression to explore the
existence of epistatic variants inside these groups, and to measure their effect, in the same line as the
cited studies, although successful, has reduced the detection power of our analysis, mainly because
of the need of applying multiple testing corrections to ensure the significance of the tests performed.
Fortunately, the reduced number of final tests has resulted in a less restrictive threshold to ensure the
significance, and despite this statistical burden has reduced the discovery to a few loci, we have been
able to find 10 pairs, 1 triplet, and 1 quadruplet of epistatic variants associated with T2D, which would
have been impossible to find by applying current methods.

Finally, in this thesis we have explored the simultaneous effect of multiple variants and its
association with T2D. Particularly, we have taken advantage of the use of Machine Learning (ML)
approaches which, in contrast with other methods, such as PRS, have facilitated not only the
prediction of disease predisposition based on the combination of the effects of multiple genomic
variants, but also the discovery of variant synergies. Remarkably, these synergies include both the
additive and epistatic ways of variant interactions. Notably, while measuring the effect of variant
synergies, we observed that there were significant differences between the marginal effects of the
variants under the logistic regression additive model and the full model including interactions. More
specifically, we found some variants from which effect not only varied in module but also in the sign,
thus changing for example from being protective to represent a risk for the development of the
disease. This finding represents a new challenge for current PRS which sum the marginal effect of
variants without accounting for the possible changes in their effects derived from their synergies.
Additionally, the creation of an input dataset with paired metadata case-control individuals, which
although it can be argued that can result in a loose of detection power due to the reduction of
individuals, has enhanced the discovery of genomic loci that, apart of synergically contributing to the
development of the disease, are less representative of clinical disease-related measures. Thus,
overcoming the limitations of the prediction of PRS, which are still far from improving the predictions
based on clinical measures (Padilla-Martinez et al., 2020). Particularly, the use of PRS in our
prediction dataset, which includes 2,280 cases and 2,280 controls with paired metadata, therefore,
individuals from which less variance explanation is expected from the clinical measures, results in a
~50% of precision, which is far from the ~60% of precision obtained from the use of our ML method.

However, despite the potential of the results obtained in our study, there are some limitations
that can be improved in future epistatic analysis. First, the restriction of the analysis to European
ancestry individuals affects the extension of the results to non-European populations, limiting its
explanation to common shared ancestry loci (Josep M. Mercader et al., 2017; Spracklen et al., 2020;
Vujkovic et al., 2020). Second, the still computational challenge of analysing millions of variants
simultaneously has limited our study to variants with a higher probability to be associated with T2D.
The increase of computational power, or the use of other approaches, can facilitate the discovery in
future epistatic studies. Third, the number of individuals included in the study has represented an
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additional layer of complexity related to the methodology applied in our study. Nevertheless, as the
number of individuals is increasing in current studies, in the future, better results can be obtained
using the same approaches. Fourth, all the analyses performed were under the additive inheritance
model, thus limiting the discovery to variants falling under this model or non-additive models with a
higher effect (Guindo-Martinez et al., 2021). Fifth, although chromosome X has been included in this
study, there are many details that need to be considered for its appropriate analysis (Bonas-Guarch et
al., 2018). For this reason, future epistatic studies relying on the same methodology applied in this
project will need to improve the approaches presented to enhance the discovery power in this
chromosome. Finally, the work presented in this thesis shows just the first preliminary results of the
study. Therefore, there are some plans to improve the analyses performed previous to its publication,
which include the replication of our results in a completely independent dataset. In addition to this, in a
background of personalised medicine, this study can be observed as a first step to understand the
effects of epistasis in T2D. Thus, opening a new avenue for the analysis of epistasis in other complex
diseases, and to reveal the epistatic differences between subgroups of patients (Ahlgvist et al., 2018,
2020; Dimas et al., 2014; H. Kim et al., 2022; Mahajan, Wessel, et al., 2018; Mansour Aly et al., 2021;
McCarthy, 2017; Scott et al., 2017; Udler et al., 2018).

7.2. TIGER

The great advances produced by the use of GWAS for the genomic study of complex traits
and diseases have led to the discovery of a large number of genetic variants statistically associated
with the disorder (Beck et al., 2014; Buniello et al., 2019; K. Watanabe et al., 2019). Particularly, for
the case of T2D, more than 700 loci have been found significantly associated with the disease
(Bonas-Guarch et al., 2018; J. Chen et al., 2021; Mahajan, Taliun, et al., 2018; Scott et al., 2017; The
DIAGRAM Consortium et al., 2014; Vujkovic et al., 2020). However, the lack of functional
interpretation of these signals has complicated the understanding of their underlying molecular
mechanisms and its relation with disease. The use of genomic, transcriptomic, and epigenetic
information to evaluate the overlap between disease associated loci and function has been suggested
as one of the ways to improve disease knowledge (Cano-Gamez & Trynka, 2020; Lichou & Trynka,
2020; Manolio, 2013).

Remarkably, although gene expression can be ubiquitous or cell-type specific, some of the
regulatory elements such as gene expression signatures, enhancers, and promoters are cell-type
specific (Long et al., 2016; Nica & Dermitzakis, 2013; Pope & Medzhitov, 2018). Thus, suggesting the
relevance of the study of disease related cell-type or tissue-specific regulatory elements to improve
the understanding of the mechanisms mediating disease. Particularly, progressive pancreatic islet
dysfunction has been described to play an important role in the explanation of T2D pathophysiology
(Bartolomé, 2022; Del Guerra et al., 2005; Eizirik et al., 2020; Gloyn et al., 2022). More specifically,
pancreatic beta-cells deterioration or death can lead to insulin secretory dysfunctions, usually
resulting in hyperglycemia. Thus, converting pancreatic islets in a very relevant tissue for the study of
T2D and other related traits. However, there are many restrictions which limit the access to human
pancreatic islets and also convert their analysis into a challenge (Gloyn et al., 2022).

In addition to this challenge, the fact that the vast majority of variants significantly associated
with a complex disease lie in non-coding regions and that the relationship between variation and
transcription factors cannot always be inferred from the proximity with a gene binding site (Deplancke
et al., 2016), adds a layer of complexity to the functional interpretation of genomic variation. Thus,
converting the cis inspection of the transcriptome of genomic variation in a powerful tool. As a result,
some transcriptomic techniques, which are broadly used to understand the effect of genetic variation
on gene expression, such as expression quantitative trait loci (eQTL) or allele-specific expression
(ASE), have become crucial for the functional understanding of genomic variation (Albert & Kruglyak,
2015b; Cleary & Seoighe, 2021; Nica & Dermitzakis, 2013). Nevertheless, despite large databases
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have been generated containing the outcomes from the study of the effects of variation in the
transcriptome of different tissues, such as the GTEX initiative (The GTEx Consortium, 2020), which
can be complemented by many expression studies in pancreatic islets (Fadista et al., 2014; Solimena
et al., 2018; van de Bunt et al., 2015; Vifiuela et al., 2020), these studies only recapitulate the effects
of the groups of variants that have been analysed in their studies, which although representing a large
amount of variation, are still incomplete.

Complementarily to the genomic and transcriptomic analysis of the effects of variation,
epigenetic assays such as chromatin immunoprecipitation followed by sequencing (ChIP-seq) or
assays for transposase-accessible chromatin sequencing (ATAC-seq) have been suggested to play a
key role for the identification of transcription factor binding sites, and the identification of enhancers,
and therefore for the cis-regulatory interpretation of GWAS outcomes (Buccitelli & Selbach, 2020; T.
K. Kim & Shiekhattar, 2015; Lambert et al., 2018; Smith et al., 2012). As a result, in a same manner
than expression, cis-regulatory maps have been broadly studied in different cell types (The ENCODE
Project Consortium, 2012), including pancreatic islets (Hall et al., 2014; Miguel-Escalada et al., 2019;
Pasquali et al., 2014; Thurner et al., 2018). Overall, many efforts have been devoted to generate large
islets transcriptomic and epigenetic databases, which are the promise to promote the genetic
understanding of T2D and other islet related diseases. However, although many efforts have been
devoted to the generation of genomic browsers and other public platforms which facilitate the access
to this valuable information (Beck et al., 2014; Buniello et al., 2019; Haeussler et al., 2019; The GTEXx
Consortium, 2020; K. Watanabe et al., 2019), only a few of these resources are specific for T2D, such
as the T2D Knowledge Portal (Flannick & Florez, 2016), or for pancreatic islets (Mularoni, Ramos-
Rodriguez, & Pasquali, 2017). Remarkably, despite the vast majority of genomic studies highlighting
the relevance of the integration of different omic layers to improve the understanding of disease
development, none of them has yet analysed and integrated diverse pancreatic islets omics in a
unique publicly accessible database.

In contrast with previous pancreatic islets studies, which were boosted from one independent
research centre, in this thesis we have benefited from the collaboration of a large consortia, the
T2DSystems, which involved, among many other participants, five research centres with wide
expertise in the analysis of human pancreatic islets. As a result from this huge collaboration, we have
been procured access to the largest pancreatic human islet cohort, which included the RNA-seq, the
genotype and the metadata of 514 pancreatic islets samples, from which 307 samples were novel.
This collaboration reduced some of the problems that can be derived from the access to this valuable
resource of data (Gloyn et al., 2022), and facilitated the collection, harmonisation and quality control
of the data. As a result of this process, although some of the samples being discarded, 404 islet
samples were kept, thus representing a large increase in the sample size compared with previous
islets expression studies (Fadista et al., 2014; van de Bunt et al., 2015), and therefore, a potential
increase in the association detection power derived not only from the study of cell-type specific
expression but also from the increment of samples (Long et al., 2016; Nica & Dermitzakis, 2013).
However, in parallel to these efforts and during the development of this thesis, another large cohort of
pancreatic islets was created accounting with 420 samples and with an overlap of 206 samples with
our cohort (Vifiuela et al., 2020).

Remarkably, current islets studies including the above mentioned recently published study
from Vifiuela (Fadista et al., 2014; Miguel-Escalada et al., 2019; Pasquali et al., 2014; Solimena et al.,
2018; Thurner et al., 2018; van de Bunt et al., 2015; Vifiuela et al., 2020), only focus in one type of
analysis. More specifically, capitalising on the benefits of the study of this particular cell-type and its
relevance to improve the functional explanation of islet-related diseases, most of these previous
projects targeted the transcriptomic analysis of gene expression or the study of epigenetic marks. In
contrast, in this thesis, we aimed to generate the Translational Human Pancreatic Islets Genotype-
Tissue Expression Resource (TIGER), a unique platform which integrates the outcomes obtained
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from homogeneous islets gene expression, one of the biggest, if not the biggest, islet eQTL meta-
analysis, and a new trustworthy method to measure allele specific expression, combined with already
published epigenetic marks, and T2D GWAS meta-analysis summary statistics, in a publicly available
database, thus constituting a unique and formidable resource for the functional interpretation of
pancreatic islets and related diseases.

In this thesis, we have taken advantage of this large resource of pancreatic islets to calculate
and homogenise islets gene expression, and to include this information in the public platform in a
visual way so that it facilitates the comparison between the expression in islets of a given gene with
the rest of the genes in the genome. Although this information is also available in other platforms,
such as the GTEx (The GTEx Consortium, 2020), the GTEXx platform does not allow the comparison
with other genes and, most importantly, do not include pancreatic islets expression. Additionally, as it
can be argued that the GTEx project includes the gene expression counts for a wide diversity of
tissues while we are only recapitulating this information for a specific tissue, we have scaled islets
expression to be compared with other reference tissues. As a result, the TIGER platform not only
shows if a gene is expressed in pancreatic islets but also allows the comparison of expression across
all the GTEX tissues. Remarkably, despite there is a high order of eQTL similarity between different
tissues (The GTEx Consortium, 2020), the study of cell dysfunction based on eQTL tissue-specificity
can lead to a better disease interpretation. Therefore, the integration of islets with other reference
tissues in TIGER facilitates the comparison between the different T2D-related tissues (pancreas,
brain, intestine, adipose tissue, muscle, kidney, liver and pancreatic islets) (Cnop et al., 2005; Cornell,
2015; Defronzo, 2009; Del Guerra et al., 2005; Eizirik et al., 2020; Galicia-Garcia et al., 2020; Gilon,
2020; Rhodes, 2005) and, therefore, promotes the detection of the best tissue to functional interpret
disease susceptibility loci.

In comparison with previous and the most recent islet eQTL studies (Fadista et al., 2014; van
de Bunt et al., 2015; Vifiuela et al., 2020), in this thesis we benefited from an improved imputation
using GUIDANCE (Guindo-Martinez et al., 2021). Particularly, these studies imputed the genotype
using 1000 Genomes reference panel (The 1000 Genomes Project Consortium, 2015), while we used
multiple reference panels including 1000 Genomes, UK10K, GoNIl and HRC (Boomsma et al., 2014;
The 1000 Genomes Project Consortium, 2015; The Haplotype Reference Consortium, 2016; The
UK10K Consortium, 2015). As after the imputation we merged the results to recover each variant from
the panel reporting the best imputation quality (INFO>0.7), this allowed us to include a higher number
of good quality genetic markers, compared with the previous published studies. More specifically,
while previous published studies included between 5.8 million and 8 million variants, we imputed over
22 million unique genetic variants with high-quality across all of the samples, of which approximately
10% are Indels and small SVs, more than 1.05 million variants in chromosome X, above 4 million low-
frequency variants, and over 10 million rare variants. Notably, only in the last study (Vifiuela et al.,
2020) and this thesis rare variants were included, while in the rest of previous studies those were
disregarded (Fadista et al., 2014; van de Bunt et al., 2015), despite their interest given their expected
higher effect on the risk of developing the disease (McCarthy et al., 2008). This maximisation of
genetic variants improved the detection power of the expression analyses resulting in over 1 million
eQTLs and 256,981 ASE associated variants.

Notably, current variation expression analyses use a wide variety of tools to colocalise their
outcomes with GWAS summary statistics to find possible connections with disease or to check the
overlap with regulatory elements. However, this type of analyses are computationally expensive and
even, in some cases, it is complex to get granted access to the data. As a result, for example, it is
common that colocalisation analyses only use the summary statistics from the latest published study,
thus disregarding the signals that have been only captured in other cohorts. In this thesis, we have
facilitated the colocalisation analysis by aggregating the results from the largest T2D GWAS meta-
analyses from European ancestry (Bonas-Guarch et al., 2018; Mahajan, Taliun, et al., 2018; Scott et
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al.,, 2017; The DIAGRAM Consortium et al., 2014). Moreover, the integration in the platform of a
genomic browser (Down, Piipari, & Hubbard, 2011), containing different islets epigenetic marks, and a
wide diversity of elements from the human islet regulome (Hall et al., 2014; Miguel-Escalada et al.,
2019; Pasquali et al., 2014; Thurner et al., 2018) not only promotes the easy and fast check for the
overlap with islet regulatory annotations but also allows the comparison with unpublished tracks.

In summary, the large number of expression regulatory variation results obtained in human
pancreatic islets in this project, as well as the database and the platform created during this thesis,
represent a valuable resource for the study of diabetes, related traits, and other disorders were
pancreatic islets have a central pathogenic role (Figure 11.A). Particularly, from the last 90 days
report obtained from the website (8th July 2022), we know that 325 users from all over the world have
been accessing the portal, with over 500 sessions during this period (Figure 11.B-C). Interestingly,
most of these users seem to be familiarised with the platform, as they have accessed it directly
through the URL. However, we are still capturing new users through Google organic search and other
referrals such as nchi.nim.nih.gov (Figure 11.D). Thus suggesting a real interest on the platform and
all the results that it includes. More specifically, this portal has been proved successful to provide
support to many recently published genetic studies (Bone et al., 2021; Dorsey-Trevino, Kaur,
Mercader, Florez, & Leong, 2022; O’Connor et al., 2022; Sulaiman et al., 2022; Zheng et al., 2020).
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Figure 11. TIGER data portal. We integrated genomic, transcriptomic and epigenetic human islet results, with
other publicly available disease, gene, and variant information in the publicly available TIGER Data Portal. The
different graphs represent:

A) The general overview of the content inside the TIGER resource.

B) The number of users accessing the portal during the last 90 days (8th July 2022) and the average duration of
the session. The straight blue line represents the number of users (y axis) accessing the platform by week (x
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axis). The dashed blue line represents the number of users that accessed the platform in the same week 3
months ago.

C) Sessions by country (left) and by time of day (right). The map on the (top left) has coloured in blue the
countries with users accessing the platform during the last 90 days (8th July 2022). The blue scale represents the
countries with more (dark blue) or less (light blue) access to the portal. The bar plots (bottom left) show the
distribution of sessions (x axis) on the top 5 of the countries (y axis). The heatmap (right) displays the accession
times (y axis) by the day of the week (x axis) to the platform. The blue scale represents the range of time with
more (dark blue) or less (light blue) sessions detected.

D) How users are acquired. The bar plots represent the number of users (y axis) accessing the platform by week
(x axis) during the last 90 days (8th July 2022). The different blue colours represent the way of accessing the
platform: direct access through the URL tiger.bsc.es (dark blue), Google organic search (medium blue), or other
referrals (light blue).

However, despite the potential interest of the outcomes generated in this study, there are
many limitations that should be focused in the future. First, although the overlap between the samples
analysed in a previously published eQTL study and TIGER facilitates the confirmation of some results,
it also complicates replication (Vifiuela et al., 2020). For this reason, future studies should only focus
on non-overlapping samples. Second, despite this being presumably one of the largest, if not the
largest, pancreatic islets datasets analysed for the effects of expression, the integration of additional
datasets in the study will increase the prediction power of the analysis. Third, the samples included in
the study were only from European ancestry, thus complicating the extension of the results to non-
European populations, and limiting it to the shared variants between populations (Josep Maria
Mercader & Florez, 2017; Spracklen et al., 2020; Vujkovic et al., 2020). For this reason, future studies
should collect data from different ancestries. Fourth, despite pancreatic islets being made by a
heterogeneous group of cells, the use of bulk RNA-seq data in our study limits the discovery to only
capture the effects of expression of the more representative cells or the average between the different
groups of cells. Hence, the use of single-cell sequencing will enhance the expression study in each
particular group of cells and allow its comparison (Kawasaki, 2004). Fifth, the fact that the largest T2D
GWAS meta-analysis (Mahajan, Taliun, et al., 2018) doesn’t include SVs or Indels limited our
colocalization study. Therefore, the inclusion of Indels and SVs in future T2D GWAS will improve the
understanding of T2D pathophysiology. Sixth, despite the expression analyses included the study of a
large fraction of coding elements there are still some elements that are uncovered, such as
microRNA. Therefore, the inclusion of these elements in future expression studies can be useful to
gain insight of T2D pathophysiology (Taylor et al., 2022).
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8. Conclusions

8.1. Epistasis

1) The analysis of epistasis, using machine learning approaches, revealed thousands of groups of
variants which combined additively or in a synergic dependent manner have an effect on disease
development.

2) The study of variants interaction was crucial to find 75% novel loci associated with complex
diseases (20 out of 27), thus improving the genetic understanding of T2D.

3) By analysing the effect of epistasis under a full logistic regression model we found 30% of the
variants inside the epistatic groups (8 out of 27) changing the sign of its individual effect, therefore,
affecting current detection and prevention protocols.

4) The regulation of gene expression of disease-associated genes is suggested as one the putative
underlying mechanisms of epistasis and its association with complex diseases.

8.2. TIGER

5) The study of pancreatic islets promotes the translation of genomic variation in gene function and,
therefore, the better understanding of T2D and other islets related disorders pathophysiology.

6) The use of integrative approaches in expression analyses has been crucial to improve the
identification of additional genetic markers and to discovery over 1.05 million eQTLs and 256,981
CASE variants.

7) The combination of T2D GWAS results with eQTL and cASE is necessary to support the
expression findings, and to facilitate the functional interpretation of GWAS.

8) The creation of a publicly available database that integrates different omic layers of information is
essential to ensure the shareability of the results, and to provide the research community with
powerful and useful tools to complement and support their studies.
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11. Supplemental Material

Machine Learning
Algorithms

Classification

Linear Discriminant
Analysis (LDA)
Logistic regression
(LR)

Support Vector
Machine (SVM)

Regression

Simple and multiple

Polynomial

(AdaBoost)
Stochastic Gradient 3
Descent (SGD) classification

Supplemental Figure 1. Machine Learning algorithms based on the type of problem to be solved. Each
machine learning (ML) algorithm is specialised in a different type of analysis. Thus, the selection of a ML method,
although challenging, represents one of the most important steps in a study. For this reason, in this figure are
represented the most common ML models based on the learning type and the specific type of problem that can
be usually solved with them. Consequently, this list presents the most suitable and broadly used ML approaches
in Biomedicine for classification, regression, clustering, or dimensionality reduction. The models represented in
dark blue in the diagram have been used in this thesis and will be explained in this section. The models with a
yellow border can be used for classification and regression. The models with a red border can be used for

classification and clustering.

|
Unsupervised

L

Clustering

Partitioning

Density-

Hierarchical-based

Grid-based

Constraint-based

Dimensionality
Reduction

Variance threshold

Pe:

Recursive feature
elimination (RFE)

Made with VISME
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Supplemental Table 1. Population haplotype reference panels.

POPULATIONS

OTHER

PROJECT [YEAR|DATA TYPE| N.INDIVIDUALS (ANCESTRY) N.SNPs VARIANTS
Genotvoin 4 populations
HapMap | 2007 arr;lp 9 270 (Africa, Asia and| 3.1 million
Y Europe)
1.2 million
GoNI 2014 WGS o (250 parent- NElET 20.4 million |insertions and
offspring) (Europe - Dutch) .
deletions
Seguencin 26 populations
qand 9 (Africa, East 3.6 million
1000G | 2015 enotvoin 2,504 Asia, Europe, |84.7 million| Indels and
genotyping South Asia and 60,000 SVs
array data ;
the Americas)
~10,000 (3,781
healthy and 6,000 with ~3.5 million
WGS and | rare disease, severe | United Kingdom - Indels and
UKIOK  [leess WES obesity, and (Europe - British) A2 o 18,739 large
neurodevelopmental deletions
disorders)
20 studies
(mostly Europe,
but also Africa,
HRC 2016 WGS 64,976 East Asia, South 39,235,157
Asia and the
Americas)
TopMed |2021| wes |, 33831130000 | q) o dies [381,343,078| 28:980.753
individuals projected) Indels
Supplemental Table 2. Data types.
DATA TYPE DESCRIPTION EXAMPLES
Structured Well formatted, ordere.d, organised and easily SQL databases, csv files
accessible data
Unstructured No formatted data which usually complicates o sl

the analysis

Semi-structured

Data presenting some organisation facilitating

the analysis

Non-SQL databases, HTML,

JSON, XML

Metadata

Data describing the input dataset which can
include some related relevant information. It
can be used to improve the performance of the

ML method

Information related to the origin of

the data
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Supplemental Table 3. Machine Learning models based on the learning type.

LEARNING TYPE DESCRIPTION EXAMPLES ALGORITHM
Groups of patients that De(.:.|5|on Tree,
. P Naive Bayes,
Supervised Labelled can be classified in cases
Support Vector
and controls .
Machine
Groups of patients from clustefi_:]ei’r;?nci al
Unsupervised Unlabelled which a classification will 9. P
. Component
be obtained )
Analysis

Semi-supervised

A combination of supervised and
unsupervised learning

Find groups of patients
and then find a way of
classifying them in these
groups

A combination of
supervised and
unsupervised
learners

Reinforced

Learning only based on obtaining
a better outcome

Automation or
optimization problems

Multitask

Help other learners with
simultaneous multiple tasks
outcomes

Ensemble

Combination of learners in a
unique learner

Boosting, Bagging

Instance-based

An already learned pattern which
will be applied only to test new
data by comparing it with the
already known training instances

K-Nearest
Neighbour
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Supplemental Table 4. Supervised Machine Learning classifiers and dimensionality reduction techniques applied in this thesis.

MODEL

PROBLEM

BASIS

DESCRIPTION

ADVANTAGES

DISADVANTAGES

SCHEMA

Naive Bayes

and clustering

Classification | Conditional

probability

Creates trees based on
their probability of
happening

Binary and multi-class

classification

Small amount of training

data

Easy to interpret

Strong assumptions of
features independence

Quadratic
Discriminant
Analysis
(QDA)

Classification

Conditional
densities
and Bayes
rule

Creates a decision

boundary based on

features quadratic
combinations

Easily computed
No hyperparameter tuning

K-Nearest
Neighbour
(KNN)

Classification
and regression

Similarity
measures

Creates a decision
based on the majority
vote to a nearest
neighbour

Robust to noise

Needs to be adjusted for
the optimal number of
neighbours to be
considered

Support
Vector
Machine
(SVM)

Classification,
regression and
other tasks

Principle of
margin
calculation

Creates hyperplanes to
separate classes
maximising the
distance between the
margin and the classes

Effective in high-

dimensional spaces

Problems with noisy data
and overlapping target
classes

Decision
Tree (DT)

Classification
and regression

Sorting by
value

Creates trees where
each node represents
an attribute of a group

and each branch
represents the value
that the node can take

Easy to interpret

Accepts numerical and
categorical features

Tends to overfit
Noisy
Weak classifier
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MODEL PROBLEM BASIS DESCRIPTION ADVANTAGES DISADVANTAGES SCHEMA
Creates multiple Accepts numerical and ¥
Ensemble . decision trees and uses| categorical features P
Random classification eniig ey the majority voting or | Minimises the overfitting [Reduces the interpretabilityj
Forest (RF) X value . o ¥
and regression averages to obtain the | Increases the prediction
result accuracy
Creates a classifier
Adaptive bgseq on the Improves the efficiency of Can trigger overfits
. Ensemble . combination of many o " .
Boosting L Iteration o the classifier Sensitive to noisy data and
classification poor classifiers. It ;
(AdaBoost) . . outliers
improves by learning
from their errors
Accepts numerical and
categorical features
E Creates multiple Minimises the overfitting ¥
xtreme - o .

: Ensemble . decision trees, Increases the prediction | Can struggle to learn in '
Gradient e Sorting by A : e i
Boosting classmcatlc_)n value minimising the Ioss_ accuracy cases Where a lot of noise ¥

and regression function and performing Scalable is present
(XGBoost) e
regularisation Fast
Handles sparse data
Handles missing data
The prediction interpolates|Computationally expensive
Creates a probabilit the observations Not sparse
Gaussian | Classification | Probability alesap Y| Gives an estimate of its Lose efficiency in high
; S distribution over : . .
Process |and regression| distribution uncertainty dimensional spaces (more

functions

Can be adjusted for
different kernels

than few dozens of

features)
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SCHEMA

MODEL PROBLEM BASIS DESCRIPTION ADVANTAGES DISADVANTAGES
Creates different node
apers vl el Flexible Long training times
nodes connected to . . . . .
Neural e . Accepts variable input size| High computing memory
Classification Linear [another. If the output of ) X
Networks . . . Accepts non-linear data requirements
and clustering | regression | any node is above a L .
(NN) : Handles missing data The output contains
threshold value it gets ]
; uncertainty
activated and sends
data to the next layer
Finds correlation
Pearson |Dimensionality| Linear between features to Reduces overfittin Problems with missing
correlation reduction correlation | find variables with no 9 data
linear correlation
o Identlfles L1 TRlnEs! Problems with missing
Principal Covariance eigenvalues of a data
Component |Dimensionality : covariance matrix to Reduces overfitting .
. . matrix S Independent variables
Analysis reduction . | project in a subspace b | : bl
(PCA) eigenvalues| ™ % equal or fewer ecome less interpretable
) . Information loss
dimensions
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Supplemental Table 5. ML binary classifiers effectiveness and reliability measures.

IMBALANCE
MEASURE FORMULA DESCRIPTION BEHAVIOUR
Measures the goodness of the classification among the predicted
TP diseased individuals. This magnitude explains the proportion of truly
Precision —_— predicted diseased individuals among the whole group of diseased Not recommended
TP +FP predictions made. Therefore, it is related to the statistical type error | but
presenting a clear dependency on the prior distribution of the data.
Measures the goodness of the predictions among the total group of
TP +TN N t o . . "
Accuracy individuals. This quantity is explained by the ratio of true predictions Not recommended
TP+TN +FP+FN among the total number of predictions made.
Measures the goodness of the classification among the diseased
individuals group. It is also named true positive rate (TPR) or sensitivity.
TP This parameter is calculated by assessing the proportion of truly
Recall _— . . . : Not recommended
TP + FN diseased classified patients among the whole group of diseased
individuals. It is the complement of the type Il error rate (1 - type Il error
rate).
Measures the goodness of the classification among the non-diseased
e TN individuals group. It is also known as false positive rate (FPR). It is
Specificity TN + FP estimated by measuring the proportion of the predicted individuals that N FEETITmEReE
truly do not have the disease over the group of hon-diseased individuals.
2 X Precision X Recall Harmonic mean of precision and recall. It is also known as balanced Balanced measure
Fl-score — but not
Precision + Recall accuracy. recommended
Matthews TP X TN — FP X FN Balanced measure with its results ranging between -1 and 1.
correlation Consequently, a perfect prediction is obtained when the coefficient is 1, | Balanced measure
coefficient \/(TP + FP)(TP + FN)(TN + FP)(TN + FN) and a completely bad prediction in case of a -1 coefficient.
Represents the sensitivity versus specificity. The evaluation of the ROC
ROC curve| |, . . curve is done by computing the Area Under the ROC curve (AUROC).
It is calculated based on recall (y axis) and : - o " ;
and fallout fallout=1-specificity (x axis) This curve tends to maximise the correctly classified positive values. It is | Not recommended
AUROC P y ' useful to compare the results that can be obtained from different models
and to discard suboptimal models.
- Is a measure of the success of the prediction. The evaluation of this . .
Precision- : - . : ) Particularly useful in
It is calculated based on precision (y axis) |curve is commonly done by calculating the area under the curve. Thus, a
Recall ; . : : I the presence of data
curve and recall (x axis). high area represents both high recall and high precision, therefore,

accurate results.

imbalance
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Supplemental Table 6. Some popular publicly available databases with functional information

TYPE

Genes and isoforms

CONTENT

EXAMPLES

categorization and
description

Gene and gene

non-coding RNAs (IncRNAs), and small non-
coding RNAs (sncRNAS)

Annotated genomics, transcript, protein sequence
records, protein-coding genes, pseudogenes, long

RefSeq (O’Leary et al.,
2016), GENCODE
(Frankish et al., 2019;

products functional
descriptions

Gene functional information at different levels:

component

biological process, molecular function and cellular

Harrow et al., 2012)
GeneOntology (The
Gene Ontology

Protein and
macromolecular
complexes roles

TF with annotated

transduction, transport, DNA replication,
metabolism and other cellular processes

Human pathways and processes including signal

Consortium, 2000, 2021)
Reactome Pathway
database (Croft et al.,
2011; Jassal et al.,
2020)

elements and binding
interfaces

TF regulatory elements

Curated DNA binding sites and annotations of
binding interfaces with their corresponding TFs
transcription binding

FootprintDB (Sebastian,
Contreras-Moreira,
Araid, Agustin, &

and regulatory
interactions

cis- and trans- regulatory elements, and TF-target
interactions

Zaragoza, 2014)
TRED (Jiang et al.,
2007), TRRUST (Han et

Global and tissue-
specific gene
expression regulators

Genomic variants association with gene and
transcript expression

al., 2015)
GTEXx (The GTEX
Consortium, 2020),
Gene Expression Atlas
(Papatheodorou et al.,

Epigenomic features
profiles

DNA methylation, histone modifications, chromatin

accessibility and small RNA transcripts

2020)
Epigenomic Roadmap
Project (The Roadmap
Epigenomics

Consortium, 2015)
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Supplemental Table 7. Main organs dysfunction that can derive T2D.

ORGAN

FUNCTION

PROBLEM

CAUSES

CONSEQUENCE

OTHER ORGANS

Adipose
tissue

Use insulin to do
triglyceride synthesis and
induce the uptake of free

fatty acid (FFA)

Impaired glucose uptake, causing elevated
glucose levels in plasma (glucotoxicity),
consequent impaired insulin secretion (IIS),
and promoting an enhanced FFA release

(lipotoxicity)

The elevated levels of
FFA induce hepatic
and muscle IR

Pancreatic
beta-cells

Secrete insulin

IR, lipotoxicity, and
glucotoxicity increase the
demand on beta-cell IS, thus
fasting the beta-cell failure
progress and apoptosis

Beta-cells deterioration or death can lead to
insulin secretory dysfunctions resulting in
elevated glucose levels in blood

(hyperglycemia)

Skeletal
muscle

One of the major receptors
of glucose in the glucose
uptake process

Obesity and low levels of
physical activity contribute to
muscle IR

Bad insulin signalling and IR can lead to

hyperglycemia

Progressive beta-cell
failure

Liver

Main organ in the glucose
production process under
insulin regulation

Overproduction of glucose

Progressive beta-cell
failure

Gut

After glucose ingestion, it
releases hormones that
stimulate 1S, promoting
satiety, slowing gastric
emptying, and inhibiting

glucagon secretion

Pancreatic
alpha-cells

The major source of
glucagon in response to
low levels of glucose in
blood (hypoglycemia)

Impaired
glucagon
secretion

Hyperglycemia

Progressive beta-cell
failure

Kidneys

Small producers of
glucose and filters of
glucose to the urine in
case of excess

Hyperglycemia

Progressive beta-cell
failure

Brain

Main organ involved in
food intake, appetite
regulation, and a major
responsible for glucose

utilisation

Suppress the inhibition of appetite and
reduce satiety, promoting an imbalanced
feeding and usually inducing obesity

Progressive beta-cell
failure
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ARTICLE

Polymorphic Inversions Underlie
the Shared Genetic Susceptibility
of Obesity-Related Diseases

Juan R. Gonzalez,'*%* Carlos Ruiz-Arenas,’? Alejandro Caceres,’?* Ignasi Moran,*
Marcos Lépez-Sdnchez,®” Lorena Alonso,> Ignacio Tolosana,’ Marta Guindo-Martinez,>
Josep M. Mercader,5%.%10 Tonu Esko,'’.’2 David Toments,> Josefa Gonzdlez,!+

and Luis A. Pérez-Jurado®&7.1%

The burden of several common diseases including obesity, diabetes, hypertension, asthma, and depression is increasing in most world
populations. However, the mechanisms underlying the numerous epidemiological and genetic correlations among these disorders
remain largely unknown. We investigated whether common polymorphic inversions underlie the shared genetic influence of these dis-
orders. We performed an inversion association analysis including 21 inversions and 25 obesity-related traits on a total of 408,898 Euro-
peans and validated the results in 67,299 independent individuals. Seven inversions were associated with multiple diseases while inver-
sions at 8p23.1, 16p11.2, and 11q13.2 were strongly associated with the co-occurrence of obesity with other common diseases.
Transcriptome analysis across numerous tissues revealed strong candidate genes for obesity-related traits. Analyses in human pancreatic
islets indicated the potential mechanism of inversions in the susceptibility of diabetes by disrupting the ds-regulatory effect of SNPs
from their target genes, Our data underscore the role of inversions as major genetic contributors to the joint susceptibility to common

complex diseases.
Introduction

Obesity is a disorder with increasing but non-uniform
prevalence in the world population and one of the major
public health burdens." Obesity (MIM: 615812)-derived
morbidity and years of life lost strongly assodiate to a
broad range of highly prevalent diseases, indluding type
2 diabetes (MIM: 125853), cardiovascular disease (MIM:
608901), asthma (MIM: 600807), and (neuro)psychologi-
cal disturbance such as depression (MIM: 608516) or in-
tellectual disability, among others.” While the causes un-
derlying the multiple co-occurrences of obesity are likely
complex and diverse, common mechanisms underlying
these comorbidities, which are potential targets for
preventive or therapeutic intervention, are largely
unknown.

One of the possible genetic mechanisms of comorbidity
can be through rare copy number variants (CNVs), which
are more prevalent in people with some severe forms of
obesity™* and might confer at least part of the increased
risk for obesity via developmental delay.” Most of these
findings have been described in pediatric obesity.”’

Genomic inversions, copy-neutral changes in the orien-
tation of chromosomal segments with respect to the refer-

ence, are (also) excellent candidates for being important
contributors to the genetic architecture of common dis-
eases. Inversion polymorphisms can alter the function of
the including and neighboring genes by multiple mecha-
nisms, disrupting genes, separating their regulatory ele-
ments, affecting chromatin structure, and maintaining a
strong linkage of functional variants within an interval
that escape recombination. Therefore, by putatively
affecting multiple genes in numerous ways, inversions
are important sources of shared genomic variation under-
lying different human diseases and traits. Consequently,
human inversions show genetic influences in multiple
phenotypes. For instance, the common inversion at
8p23.1 has been independently linked to obesity,” autism
(MIM: 209850),° neuroticism (MIM: 607834),'" and
several risk behavior traits,'' while inversion at 17q21.31
has been associated with Alzheimer (MIM: 607822)"* and
Parkinson (MIM: 168600)"* diseases, heart failure,'* and
intracranial volume.'” We previously reported a ~40% of
population attributable risk for the co-occurrence of
asthma and obesity given by a common inversion poly-
morphism at 16p11.2.'® In addition, transcriptional effects
have been documented in several tissues for inversions at
17q21.31"*'7 and 16p11.2.'¢
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Figure 1. Discovery and Validation Datasets

The flow chart shows the discovery sample and the validation da-
tasets as well as the datasets used for post-genomic data analyses.
Sample size (n) used from each dataset after performing quality
control are also shown,

It is estimated that each human genome contains about
156 inversions.'® Therefore, inversions constitute a sub-
stantial source of genetic variability. Many of those poly-
morphic inversions show signatures of positive or
balancing selection associated with functional effects.'”
However, the overall impact of polymorphic inversions
on human health remains largely unknown because they
are difficult to genotype in large cohorts. We overcame
this limitation by recently reporting a subset of 20 inver-
sions that can be genotyped with SNP array data as they
are old in origin, low or not recurrent, and frequent in
the population.”” We have also included an additional
inversion in our catalog, 16p11.2, previously validated
and genotyped in diverse populations.'® Three of the in-
versions are submicroscopic (0.45-4 Mb), flanked by large
segmental duplications, and contain multiple genes. Five
are small (0.7-5 kb) and intragenic, and 13 are intergenic
of variable size (0.7-90 kb) but highly enriched in pleio-
tropic genomic regions.”’ While this is clearly not a
comprehensive set of inversions, it is probably the largest
set that can be genotyped in publicly available datasets.

In this manuscript, we aimed to study the association of
21 common polymorphic inversions in Europeans with
highly prevalent co-morbid disorders and related traits.
We particularly aimed to decipher the role of inversions
in known epidemiological co-occurrences with obesity
such as diabetes, hypertension (MIM: 145500), asthma,
and mental diseases like depression, bipolar disorder
(MIM: 125480), or neuroticism. For significant associa-
tions, we investigated whether causal pathways could be
established and the most likely underlying mechanisms.

Material and Methods

Discovery Dataset
The UK Biobank (UKB) is a population-based cohort involving
500,000 individuals aged between 37 and 73 years, recruited

across UK in the period 2006-2010. Further details on the quality
control and genotyping are described in the study design.””
Phenotypic information is recorded via questionnaires and inter-
views (e.g., demographics and health status) and SNP genotypes
were generated from the Affymetrix Axiom UK Biobank and UKBi-
LEVE arrays. We based our study on 408,898 individuals from Eu-
ropean descent and from whom inversion genotypes were called
using SNP amay data. Principal components computed by the
UK Biobank (data-field 22009) were used in the analyses to control
for population stratification.

Replication Datasets

Different public datasets with access grant to the co-authors were
used to attempt to replicate our positive findings in the association
studies (Figure 1), The next sections describe these resources.
Genetic Epidemiology Research on Aging (GERA)

The GERA cohort (dbGaP: phs000674.v1.p1) consists of more
than 100,000 adults from the Northern California Region (USA).
Only individuals with reported race (variable phv00196837.v2.p2)
equal to white were selected for the analyses (n = 56,638). The re-
sulting studied cohort is 409 male, 60% female, and ranges in age
from 18 to more than 100 years old, with an average age of 64
years at the time of the survey (2007). Individuals were genotyped
with Affymetrix Axiom_KP_UCSF_EUR. After quality control of
the inversion genotyping calling process, a total of 53,782 individ-
uals with information about sex, age, principal components for ge-
netic ancestry, and seve | diseases including obesity (9,439 cases),
diabetes (6,529 cases), hypertension (27,009 cases), asthma (8,716
cases), and depression (6,924 cases) were used in the replication
studies.

70KforT2D: Diabetes and Obesity

The 70KforT2D study (70KT2D)** includes five datasets, two pub-
licly available in EGA (NuGENE and GENEVA) and three availabe
in dbGAP (FUSION, WTCCC, and GERA). Notice that 70KforT2D
includes case subjects diagnosed with diabetes and obesity from
the GERA cohort. We used information about being diabetic or
not as described elsewhere.™ The five datasets were used to
attempt to replicate the significant findings in the UK Biobank
data on diabetes. The WTCCC dataset was removed from the
obesity and obesity/diabetes analysis since we did not have access
to body mass index (BMI) information for that study. The GERA
dataset was split in two (GERA1 and GERA2) to speed up the impu-
tation and inversion calling procedure since it isa large dataset. Af-
ter perfforming QC on inversion genotypes, a total of 67,299 indi-
viduals were used in the replication step (54,801 control subjects
and 12,498 diabetic subject). Data were accessed from the portal
cg.bsc.es/70kfort2d.

The obesity variable was created using the body mass index
(BMI) variable. We considered control individuals those having
BMI between 18.5 and 24.9 and obese people those having BMI
> 30.0. For obesity associations, we excluded individuals with dia-
betes. As aresult, a total of 34,316 individuals (23,818 control sub-
jects and 10,498 obese subjects) were used for that purpose. The
co-occurrence of obesity and diabetes was studied by comparing
individuals with no obesity and no diabetes as the reference cate-
gory with individuals being obese and diabetic simultaneously.
This ended up with a total of 23,818 control and 5,715 obese/dia-
betic individuals. Next, we further describe the studies included in
the 70KT2D dataset along with their accession numbers.

Northwestern NUgene Project: Type 2 Diabetes (NUGENE)
(dbGaP: phs000237.v1.pl) contains data from individuals from
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the Northwestern University Medical Center (USA). For this study,
T2D case subjects were included if they had been diagnosed with
type 2 diabetes, they took drugs to treat type 2 diabetes, or they pre-
sented abnomal diabetes-related blood measures. Control subjects
were included if they had not been diagnosed with type 2 diabetes,
they did not take drugs to treat type 2 diabetes, they presnted
normal diabetes-rdated blood measures, and they did not have
any family history of diabetes (either type 1 or type 2). In both
groups, subjects with type 1 diabetes were exduded. These individ-
uals were genotyped with lllumina Human1M-Duov3_B.

The Finland-United States Investigation of NIDDM Genetics -
GWAS Study (FUSION) (dbGaP: phs000100.v4.p1) aims to investi-
gate the association between genetics and type 2 diabetes in Finish
families. For this study, case subjects were included if they had been
diagnosed with type 2 diabetes, they took drugs to treat type 2 dia-
betes, or they presented abnormal diabetes-related blood measures.
Control subjects were included if they presented normal diabetes-
related blood measures and were frequency matched to the case
subjects by age, sex, and birth province. In both groups, individuals
with family history of type 1 diabetes were excluded. These individ-
uals were genotyped with lllumina HumanHap300v1.1.

GENEVA Genes and Environment Initiatives in Type 2 Diabetes
(Nurses' Health Study/Health Professionals Follow-up Study)
(dbGaP: phs000091.v2.p1) is a nested case<control (2,720 case sub-
jects and 3,180 control subjects) study from two USA female co-
horts: the Nuses’ Health Study (NHS) and the Health Professionals
Follow-up Study (HPES) with a mean age of 57 ranging from 40 to
78. These individuals were genotyped with Affymetrix AFFY_6.0.

Geographical Variation in Europe

POPRES project (dbGaP: phs000145.v4.p2, access granted to the
authors) was used to estimate inversion frequencies in European
countries and regions. This project aimed to facilitate exploratory
genetic research by assembling a DNA resource from a large num-
ber of subjects participating in multiple studies throughout the
world. We  selected European individuals  (variable
phv00173964.v2.p2) leading a total of 3,071 samples. A
geographic label (North, Center, South) was assigned to each indi-
vidual using information of variable phv00066613.v2.p2.

Transcriptomic Analyses

GTEx Analysis

We associated the 21 chromosomal inversions to changes in gene
expression in GTEX project. We determined inversion genotypes
on the GTEx 7 genotype calls from dbGAP (dbGaP:
phs000424.v7.p2, accession granted to the authoms). We included
only samples classified as European with a confidence higher than
90% by peddy.”* Inv3_003 was discarded as the calling was not
confident. Gene expression counts from RNA-seq data were down-
loaded using recount2.™ We computed the association between
gene expression and inversions using voom”® and limma.” The
linear model included the inversion coded as additive (0: NN, 1:
NI, 2: 1) and the same covariates than GTEx (first three genome-
wide PCA components, sex, and covariates from PEER). In each tis-
sue, we selected those features having more than 10 counts in at
least 109 of the samples. We corrected the association results
per tissue for multiple comparisons by using a false discovery
rate (FDR) adjusted p value per tissue.

EGCUT Biobank

Estonian Gene Expression Cohort was used to attempt to replicate
positive transcriptomic results found in GTEx. The cohort is

composed of 1,048 randomly selected samples (mean age 37 +
16.6 years; 509 females) from the 53,000 samples in the Estonian
Genome Center Biobank, University of Tartu. Whole-genome
gene-expression levels from whole blood RNA were obtained by I1-
lumina HT12v3 arrays according to manufacturer's protocols.
Low-quality samples were excluded. All probes with primer poly-
morphisms were discarded, leaving 34,282 probes. Raw gene
expression data were Log-Quantile normalized using MixupMap-
per software. DNA was genotyped with Human370CNV array.
Pancreatic Iskets

We analyzed the transcriptomic effect of inversions 8p23.1 and
16q11.2 on 118 pancreatic human islet samples using RNA-
sequencing counts and high-density genotyping data.”® DNA ge-
notype data (EGA: EGAS00001001261) was used to call inversion
genotypes using scorefnvHap, then the association between gene
expression and inversions was assessed using voom™ and
limma.*” Only genes in the inversion regions were analyzed and
un-corrected p values were reported as a measure of association.
Positional Analyses

For the positional analyses, several annotations were gathered
from the following sources: TAD boundaries from the Human
ES Cell (H1) topological domains™ promoters, enhancers,
CTCF-peaks, and ATAC-seq open-chromatin regions from the hu-
man islet regulome annotation;® islet-specificity scores were
calculated using the gene expression data from Miguel-Escalada
et al;*' and eQTL SNP-gene associations from van de Bunt
et al ** and Fadista et al.* The chromatin landscape coverage per-
centage was calculated using a sliding window of 500 kb and 1
Mb for inversions 8p23.1 and 16p11.2, respectively, using steps
of 1% of the window size, and calculating the percentage of
covered nucleotides by significant signal in each of the categories.
For the islet-specific expression analysis, we calculated the non-
islet median expression level and difference between the 75
and 50 quartiles, and we considered as islet specific any gene
that was expressed in islet >3 quartiles over the median of
non-islet expression. Visualization was done in python3 using
the matplotlib graphics library.

Statistical Methods

SNP Imputation and Inversion Calling

SNP microarray data were imputed with imputefnversion pipeline
prior to inversion calling (see Web Resources). This pipeline was
designed to impute only those SNPs inside the inversion region
or closer than 500 kb to the inversion breakpoints. This step is rec-
ommended before performing inversion calling. imputefrtversion
uses shapelTv2.r904 to phase’” Minimac3™ to impute, and
1000 Genomes as reference haplotypes. Variants with an imputa-
tion R2 < 0.3 were discarded. Genotype probabilities were used to
call inversions using scorelnvHap™ which is available at Bio-
conductor. scorelnvHap computes a similarity score between an in-
dividual's alleles and the reference alleles in each chromosomal
status. We used the development version of scorelnvHap, which in-
cludes references for 21 inversions. These methods were used to
perform inversion calling in the discovery and replication studies
as well as in individuals from POPRES.

Inversion Frequendies

Inversion frequencies were estimated in UKB and POPRES studies
using SNPassoc package.™ A trend test implemented in the R func-
tion prop.trend.test was used to assess whether invession fre-
quencies in European regions from POPRES (North, Center, South)
showed asignificant cline. Principal component analysis was used
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to visualize inversion frequencies across European regions of
POPRES dataset.

Obesity and Obesity Co-occurrence Traits

Obesity trit was created using body mass index (BMI) informa-
tion. First, BMI was categorized in five categories using World
Health Organization (WHO) classification which considers the
following categories: underweight (BMI below 18.5), normal
weight (BMI between 18.5 and 25), pre-obesity (BMI between 25
and 29.9), obesity class | (BMI between 30 and 34.9), and obesity
classes Il and 11T (BMI above 35). Obesity was considered as obesity
classes 1, 11, and 1l and was compared with nomal weight cate-
gory. The analysis of obesity co-occurrence with diabetes, hyper-
tension, asthma, depression, and neuroticism was performed by
comparing individuals with normal weight and no presence of
the disease with individuals being obese and having the disease
of interest.

Inversion Assodiation Andlyses

Each inversion was independently associated with all the traits by
using generalized linear models implemented in SNPassoc pack-
age.”” The models were adjusted for gender, age, and the first
four principal components obtained from GWAS data in order to
control for population genetic differences. The inversions were
analyzed using an additive model. Multiple comparison problem
was addressed by correcting for the total number of inversions
and the phenotypes analyzed by considering the effective number
of tests (18 independent tests) using Li and Ji method™® that ac-
counts for correlationamong traits. This ended up with a corrected
p value equal to 0.00128.

Causal Inference

Mediation analysis using mediation R package™ was used to eval-
uate whether inversion 8p23.1 mediates the association between
obesity and diabetes. Additive Bayesian network models using
abn R package’® were used to determine optimal Bayesian network
models to identify statistical dependencies between inversions
8p23.1, 16p11.2, and 11q132 and obesity, diabetes, and hyper-
tension in the UKB dataset, and validated in the GERA cohort.
The most probable network structure was estimated using exact or-
der-based approach as implemented in the mostprobable function
of abn package.

Data Availability

The data used in this work were obtained from publicly available
datasets that are accessible through public repositories: UKB study,
dbGaP, EGA, GTeX, and GEO. The inversion calling of UKB sam-
ples will be available through their platform. The invesion calling
for the other samples and the complete trmnscriptomic summary
statistics of the 21 inversions are available in our GitHub reposi-
tory (see Web Resources).

Results

Frequency and Stratification of Inversions in European
Populations

Using scorelnvHap, we first called the inversion status of in-
dividuals from the UK Biobank (UKB) with European
ancestry (n = 408,898). We confirmed the previously re-
ported frequency in the 1000 Genomes project of the 21
inversions analyzed in this work (Table 1). As inversion fre-
quencies have a strong demographic effect, we also
analyzed 12 European countries from the POPRES study
(Figure 51). We observed significant clines along north-

south latitude for several inversions (Table 1 and
Figure S2A) as well as subtle ancestral differences
(Figure S2B). Thus, population stratification was consid-
ered when performing association analyses as explained
in the methods section.

Inversions at 8p23.1, 16p11.2 Robustly Associate with
Obesity and Obesity-Related Traits

The discovery phase of the study used data from UKB. We
performed association analyses between the 21 inversions
with obesity and co-morbid diseases and traits (see Mate-
rial and Methods). These include obesity, diabetes, stroke,
hypertension, asthma, chronic obstructive pulmonary dis-
ease (COPD), depression, and bipolar disorder, along with
related traits or phenotypes classified as morphometric (4
traits), metabolic (5 traits), lipidic (2 traits), respiratory (3
traits), and behavioral (3 traits) (Figure 2). Table S1 shows
the total number of case and control subjects used to
perform the association analyses on each trait. The signif-
icant associations were further validated in the GERA inde-
pendent dataset that contains information about several
diseases. Positive results found in diabetes were validated
in the 70KT2D dataset, which includes GERA among
others (NUGENE, FUSION, GENEVA, and WTCCC) (see
Material and Methods and Figure 1 which describes the
comprehensive data analysis performed in the different
datasets).

The analyses on the UKB revealed several genetic influ-
ences of inversions on obesity and related common dis-
eases (Figure 2). We observed a total of 74 significant asso-
ciations after correcting for the number of inversions
analyzed and the effective number of tests to consider
the multiple analyzed traits (see Material and Methods).
In general, we observed higher numbers of associations
and stronger effects for the largest inversions at 8p23.1,
16p11.2, and 17q21.31, consistent with the fact that
they encapsulate more genes. Some smaller inversions
such as the ones at 11q13.2 and Xq13.2 also showed
notable effects such as shared susceptibility and strength,
respectively. We found a prominent inflation of associa-
tion suggesting common genetic influences of the inver-
sions across multiple phenotypes (Figure S3A). Some of
the associations found have already been reported, such
as those at inversion 8p23.1 with obesity” and neuroti-
cism'” and the one with inversion 16p11.2 with
obesity.'*

As a summary of the relevant findings, we observed that
inversions at 8p23.1, 16p11.2, and 11q13.2 are all strongly
associated with several obesity-related diseases (Figure 2).
Remarkably, the non-inverted (N) allele of inversion
8p23.1 (i.e, the risk allele) is independently associated
with diabetes (OR = 1.04, p = 1.1 x 10~?), hypertension
(OR = 1.04, p = 7.0 x 107'%) and asthma (OR = 1.03, p
= 7.0 x 10~5%) (Iable 2). The association with diabetes
was replicated in the 70KI2D study (Figure 3A) (OR =
1.08, p= 1.1 x 10~®)as well as the association with obesity
(OR = 1.08, p = 5.6 x 10°% and the association with
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Table 1. Characteristics of the 21 Genomic Inversions

European Populations (POPRES)

Num. Trend
Chr.Band Coordinates SNPs (Kb) Inv. Freq.™ UKB  North Center South p Value
1p22.1 chr1:92,131,841-92,132,615 6 077 12 101 89 9.1* 14.4° 0.0057*
19313 chr1:197,756,784-197,757 982 5§ 12 19.68 202 194 21.7 191 08781
2p223 chr2:33,764,554-33,765,272 6 072 15.11 155 138 13.5 11.7 03199
2q22.1 chr2:139,004,949-139,0090.203 13 425 7147 753 766* 71.9% 664 0.0003*
3q26.1 chr3:162,545,362-162,547,641 6 228 $6.16 S11  534% 55.2¢ 61.1% 00140%
6p21.33 chré:31,009,222.31,010,095 5 087 63.12 62 613~ 65.0* 728 0.0001*
6q23.1 chr6:130,848,198-130,852 318 12 412 6.56 76 713 87 8.1 06070
7pl43 chr7:31,586,765-31,592,019 11 528 2356 235 226 233 265 0.1605
7p112 chr7:54,302,450-54,376,389 180 73.9 5039 §1 521 51.2 544 04715
7qi1.22 chr7:70,426,185-70,4 38,879 10 12.7 6352 618 610 618 624 0619
7q36.1 chr7:151,010,030-151,012,107  § 208 1988 207 201 24.0 247 00775
8p23.1 chr8:8,055, 789-11,980,649 13,411 3925 5795 556 S65 54.9 536 03424
11p12 chril:41,162,296-41,167,044 7 475 1581 154 143 13.9 146 08479
11q132 chr11:66,018,563-66,019,946  § 138 3439 285 324 313 305 05287
12q1311  chr12:47,290,470-47,309,756 43 193 7.46 66 62 7.9% 10.9¢ 0.0085*
12451.27 7&!1271,532,784-71,533,&16 47 103 3698 38.87 374 36.5 333 0.1647
14g233 chr14:65,842,304-65,843,165 4 086 2942 255 265 26.9 24 09823
16p112 chr16:28,424,774-28, 788,943 361 364.17 ND 405 393+ 32.0¢ 29.1* 00007+
17q2131  chri7:43,661,775-44,372,665 3,637 711 23.96 226  151* 19.4% 221 0.0035*
21q213 chr21:28,020,663-28,021,711 11 106 5129 492  S16 521 574 00651
Xq13.2 chrX:72,215927-72,306,7 74 135 %€N0.8 133 139 124* 12.1* 8.5* 0.0400*

The table shows the coordinates, SNP content, size, and inverss

btained from 1000 G

as described in Rulz-Arenas etal., ™ the UKB and Eu-

ropean regions (north, center and south) using the mgonsdsaibed in the POPRES dataset (see Material and Methods). The pvalue mmonds toa trend testto
assess north-south linear assoclation (asterisk indicates those significant at 5% level).

hypertension, which was validated in the GERA study (OR
= 1,03, p = 0.0183) (Table 2). We also found a significant
association between the non-inverted (N) allele of inver-
sion 16p11.2 and obesity (OR = 1.05, p = 3.9 x 10°%%)
that was replicated in the GERA study (OR = 1.07, p =
14 x 107%. The significant association found in the
UKB for the inversion 11q13.2 was not validated in the
GERA study (OR = 1.03, p = 0.0712). Consistently, the
analysis of UKB study also revealed association of inver-
sions at 8p23.1 and 16p11.2 with different obesity-related
traits such as body mass index (BMI), waist circumference,
high density lipoprotein (HDL), or systolic and diastolic
blood pressure, among others (Figure 2).

Some interesting associations in the discovery sample
included those of inversion 17q21.31 with HDL, waist
circumference, waist-hip ratio, and systolic and diastolic
blood pressure (Figure 2). Interestingly, this inversion
also showed a significant role in behavioral traits such as
mood swing, depression, and bipolar disorder, which
would need further validation. While we also found signif-
icant association of the inversion 6p21.33 with asthma

(OR = 1.02, p = 0.0215) and different respiratory capacity
traits (FEV1, p = 3.4 x 10~ and FVC, p = 3.2 x 107°) the
association with asthma was not replicated in the GERA
study. The inversion 7q11.2 was associated with different
morphometric traits (BMI, waist circumference, and
waist-to-hip ratio) and will require further validation
studies.

Inversions at 8p23.1, 16p11.2, and 11q13.2 Are More
Strongly Associated with the Co-occurrence of Diseases
than with Single Diseases

Remarkably, the N-allele of the inversion 8p23.1 was
significantly associated with the co-occurrence of obesity
with diabetes (OR = 1.08, p = 3.1 x 10”7), hypertension
(OR = 1,07, p = 1.7 X 107'%), or asthma (OR = 1.08, p =
3.0 x 10~'"). These results were validated in the GERA
and 70KT2D (Table 2). For obesity/diabetes, we observed
an OR = 1.17 (p = 1.4 x 10~'?) (Table 2 and Figure 3C)
and none of the SNPs located within the inverted region
were significantly associated at a genome-wide level (min-
imum p = 3.8 x 10~5) (Figure $4A). Finally, we also found a
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Circles represent the direction (color) and the two-tailed -logl10 p value (size) of the association for different groups of traits (morpho-
metric, metabolic, lipidic, respiratory, and behavioral) and the epidemiological well-established co-occumence of obesity-related dis-
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by size and features: (1) submicroscopic are large (0.4—4 Mb) encompassing multiple genes and flanked

by segmental duplications; (2) intragenic are located within a gene, either intronic or containing one exon; and (3) intergenic are en-

riched in pleitropic regions.

significant association of the N-allele of inversion 11q13.2
with the co-occurrence of obesity with diabetes (OR =
1.05, p = 0.0011) and hypertension (OR = 1.03, p =
2.9 x 107%) (Figure 2), which was not validated in the
GERA study.

The study of inversion 16p11.2 also revealed some new
significant associations between the inversion and the
co-occurrence of obesity with several diseases (Figure 2).
The co-occurrence with diabetes at UKB (OR = 1.06, p =
7.5 x 10~%) was independently replicated in the 70KT2D
study (OR = 1.13, p = 1.2 x 10~®), where none of the
SNPs located within the inverted region were significantly

associated at a genome-wide level (minimum p: 0.0214)
(Figure S4B). In addition, the significant co-occurrence
with hypertension observed in the UKB study (OR =
1.06, 2.7 x 10~'%) was validated in the GERA study (OR
= 1.05, p = 0.0357) further confirming the robustness of
these findings (see Table 2 reporting the effect of the risk
allele N).

In order to further illustrate that the association of the
inversion is not driven by single variants, we downloaded
data from the GWAS catalog and checked whether the
GWAS signals for the analyzed traits are associated (i.e.,
tags) with the inversions. No tag-SNPs for any of these
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Table 2 Association between Inversions 8p23.1 and 16p1.2 and Different Obesity-Related Traits in UKB and Replication Datasets

Inversion 8p23.1 (Effect of Risk-Haplotype: N-Allele)

Inversion 16p11.2 (Effect of Risk-Haplotype: N-Allele)

UKB Replication UKB Replication

Disease OR C195% pValue  ORCI95% p Value OR C195% p Value ORCI95% p Value
Obesity 104 (103-105) 24x 102 108(104-1.11) 56x 10" 105(1.04106 39x 10°* 107 (1.03-1.10) 1.4 x 10~*
Diabetes 104 (101-106) 11x107° 108(1051.11) 1L1x107* 102(099-1.04) 0.1450 107 (104-1.11) 12x10°°
Hypertension 104 (103-108) 7.0 x 107 103 (100-105) 0.0183 101 (100-102) 0.0184 102 (099-1.05) 0.2127
Asthma 103 (101-104) 7.0x 10~  1.02(090-105) 0.2225 1.00 (099-101) 0.9529 1.00 (097-1.04) 0.8074
Depression 098 (097-099) 0.0119 101 (097-105) 0.6630 098 (096-100) 0.0184 101 (098-1.05)  0.5384

Jeint Occurrence of Obesity with:

Diabetes 108 (105-1.11) 3.1 x1077 1.17(112-122) 14x10°% 106(103-108) 75x 107 1.13(108-1.17) 1.2x10°%

Hypertension 107 (105-108) 1.7 x 107' 106 (102-1.11) 69x 107 106(105107) 27x 107" 1.05(1.00-1.10) 0.0357

Asthma 108 (106-110) 3.0x 107" 100(102-1.16) 9.7 x 10~ 105(103-107) 7.4x 10°° 108 (101-1.15) 0.0287

Depression

104(102-107) 14x107% 112(104-120) 38x 10~ 106(1.03-108) 14x 10~ 103 (095-1.11) 0.5241

The table shows the odds ratios (OR) and their confidence intervals at 95% (C195%) for the non-inverted allele and different diseases and the joint co-occurrence

with obesity at UKB and replication datasets. The p ¢

ds to the best g

tic model depict in the first column of each inversion.

traits were found. In particular, the results for the three in-
versions associated with the co-occurrence of obesity with
other traits showed the following results: the median R*
between SNPs in the 8p23.1 region and the inversion
was 0.36 (IQR: 0.17-0.46), 0.71 (IQR: 0.62-0.89) for the
inversion 16p11.2, and all the SNPs are not associated
(i.e., linkage equilibrium) (R* < 0.06) for the inversion
11q13.2.

Regulatory Region and Gene Disruption Are the
Mechanisms Underlying the Effect of Inversions on
Obesity and Diabetes

To investigate the possible mechanisms underlying the
shared genetic influences of the inversions with obesity
and its co-morbidities, we analyzed the transcriptional ef-
fects of the 21 inversions on different tissues from the
GTEx project (see Material and Methods). As a result of
these analyses, we found that inversion 8p23.1 modulated
the transcription in brain, pancreas, and adipose tissue of
the pseudogene FAM86B3P (HGNC: 44371), as well as
the genes MFHASI (MIM: 605352), IL19 (MIM: 605687),
HAND2 (MIM: 602407), FDFT1 (MIM: 184420),
FAM167A (MIM: 610085), ERIT (MIM: 608739), CHACI
(MIM: 614587), CCL22 (MIM: 602957), CCL19 (MIM:
CCL19), and BLK (MIM: 191305) in other tissues
(Figure 3D). Genes FDFT1 (MIM: 184420), C8orf13 (MIM:
610085), CLDN23 (MIM: 609203), NEIL2 (MIM: 608933),
MTMR9 (MIM: 606260), MSRA (MIM: 606260), and BLK
(MIM: 191305) and were also differentially expressed in
blood samples from the validation study we performed in
the independent general population cohort belonging to
EGCUT Biobank (Figure 3E). For the inversion 16p11.2,
we found a total of 30 genes differentially expressed at
5% FDR level in blood, brain, pancreas, or adipose tissue
induding TUFM (MIM: 602389), SULTIA2 (MIM:

601292), SPNS1 (MIM: 612583), EIF3CL (MIM: 603916),
and FOXO1 (MIM: 136533) among many others (Table
52). These results were also observed in the blood samples
of the validation cohort from EGCUT Biobank (Figure 55).
The genes affected by the other inversions and the
different tissues can be found in Table 52.

Inversions 8p23.1 and 16p11.2 Affect Key Genes Associated
with Diabetes in Pancreatic Islets

We conducted a more detailed analysis of gene expression
on a relevant tissue to support the association on diabetic/
obese individuals. We first genotyped the inversions and
analyzed RNA sequencing in human pancreatic islets
from 89 deceased donors (see Material and Methods).
This revealed a significant association between inversion
8p23.1 and the expression levels of CLDN23 (p = 1.3 X
10~? and ERI1 (p = 0.0356). We observed a nominally sig-
nificant interaction of inversion 8p23.1 with obese/dia-
betic status associated with the expression of IncRNA
FAM66A (HGNC: 30444) (p = 0.0254), where individuals
carrying the risk allele for obesity and diabetes also present
FAM66A downregulation (Figure 3F). In addition, results
with inversion at 16p11.2 also revealed a significant inter-
action between the inversion and obese/diabetic status for
the expression of NUPRI (MIM: 614812) (p = 0.0116) and
ATXN2L (MIM: 607931) (p = 0.0167) (Figure S6).
cis-Regulation is Disrupted by Breakpoints of Inversions
8p23.1 and 16p11.2

We also investigated whether the positional effects of the
inversions could be associated with diabetes (see Material
and Methods). Figure 4A shows the chromatin landscape
of the region of the inversion 8p23.1 as well as the location
of all genes having a significant alteration of expression,
including those that are islet-specifically expressed. A clus-
ter of islet-specific genes is located outside the rightmost
boundary of the inversion but inside the inversion’s
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Figure 3. Validation of Positive Associations between the Inversion 8p23.1 with Diabetes, Obesity, and Their Co-occurrence in the
70KT2D Dataset and Transcriptional Allelic Effects in Samples from EGCUT Biobank and GTEx Tissues

(A-C) 95% confidence intervals and meta-analysis
(A), obesity (B), and obese and diabetic individuals (C).

of datasets belonging to 70KT2D for the association of inversion 8p23.1 with diabetes

(D) Differential expressed genes at inversion genotypes (at 5% FDR) in different tissues from GTEx, showing effect of the I allele (color)

and the two-tailed -log10 p value (size) of the association.

(E) Differentially expressed genes at inversion genotypes (at 5% FDR) in blood samples from EGCUT Biobank.
(F) FAM66A gene expression interaction between diabetic status and inversion 8p23.1 in pancreatic islets samples (p = 0.0254). The box-
plots indicate the interquantile range and median of gene expression levels.

topologically associated domains (TADs). Therefore, it is
likely that the regulatory regions of these genes lie across
the inversion’s boundary, and thus their cis-regulatory
SNPs being separated from their target genes by the right
breakpoint of the inversion 8p23.1 in the case of genes
FAM66A and FAM66D (HGNC: 24159) (Figure 4A). Simi-
larly, the analysis of the inversion 16p11.2 also revealed
four eQTLs in which the cis-regulatory SNPs were separated
from their target genes by the inversion breakpoints:
TUFM, SULTIA1 (MIM: 171150), EIF3C (MIM: 603916),
and EIF3CL (Figure 4B). EIF3CL is disrupted by the inver-
sion breakpoint providing a different mechanism of action
for this gene (Figure 4B).

Obesity Mediates the Association of Inversions with
Diabetes and Hypertension

We first aimed to disentangle the shared genetic influence
of the inversion 8p23.1 in obesity and diabetes. To this
end, a Bayesian network analysis was performed on the dis-
covery study (see Material and Methods). Based on the BIC,
the most likely model was for the sequence inv8p23.1 ->
obesity -> diabetes, suggesting a mediatory effect of

obesity on the association between the inversion and dia-
betes (Figure 5A). The same network was obtained in the
GERA cohort. This was consistent with mediation analyses
showing that 38.7% (CI95%: 25.2%-59.0%) of the dia-
betes risk variance explained by the inversion 8p23.1 was
mediated by obesity (p < 107'). Then, we also investi-
gated whether inversion 8p23.1, 16p11.2, and 11q13.2
act jointly or not on obesity, diabetes, and hypertension.
The Bayesian network analysis including the three inver-
sions in the model revealed that the inversions 8p23.1
and 16p11.2 independently associated with diabetes and
hypertension being mediated by obesity (Figure 5B).

Discussion

Epidemiological studies largely support the co-occurrence
of obesity with numerous traits and diseases such as dia-
betes, hypertension, asthma, and psychiatric disorders
among others.*”*' The extent to which obesity is a cause,
a consequence, or shares common causes with these traits
is subject of intense research.’”** Here, we show that at
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least two common polymorphic inversions at 8p23.1 and
16q11.2 offer a genetic substrate to some widely observed
co-morbidities of obesity, such as those with diabetes, hy-
pertension, asthma, and depression.

The analysis of UKB dataset validated the estimated
inversion allele frequencies in European populations re-
ported in our recent analyses.”” The observed differences
of some inversion allele frequencies among major popula-
tions could explain part of the existing geographic vari-
ability in disease incidence.'” In particular, the reported
cline of the inversion at 8p23.1 and 16p11.2 could capture
a proportion of the observed North-South European differ-
ences in obesity, ™ diabetes, and hypertension®’ incidence.

The analysis of our discovery sample also confirmed pre-
vious reported associations of inversions with phenotypes,
such as neuroticisms for the inversions 17q21.31 and
8p23.1,"” obesity for inversion 8p23.1,” and the co-occur-
rence of asthma and obesity with the inversion 16p11.2.'®
In addition, we discovered and robustly validated new as-
sociations of the inversion 8p23.1 with diabetes and hy-
pertension as well as the co-occurrences of obesity with
diabetes, hypertension, and asthma. These results suggest
a relevant role of the inversion 8p23.1 in this metabolic
syndrome. **

Qur data suggest a causal path in which obesity mediates
the observed association between inversions and several
complex diseases. In particular, obesity mediates the inde-
pendent effect of inversions at 8p23.1 and 16p11.2 on dia-
betes. Transcriptome analyses have revealed candidate
genes to mediate this effect, such as BLK, involved in
pancreatic p-cell insulin metabolism whose rare mutations

~A02TLES

Figure 4. Mechanisms Underlying the
Inversion Association with Diabetes

(A) kslet-specific expression of inversion
8p23.1 genes. We observed a cluster of
islet-specific genes, mainly IncRNAs, next
to the distal inversion breakpoint that
could be separated from regulatory ele-
ments located inside the inverted region.
The bottom panel depicts an eQTLs
(rs1478898) of FAM66A ted by the
inversion distal breakpoint.™ FAM66D
has its gene body split in two by the
invession, and would also have its pro-
moter separated from its eQLT SNP
(rs140730217) by the inversion. This
could be the most likely causal candidate.
(B) Same information for the inversion
16p11.2. TUFM and EIF3C have their lead
eQTL SNP separated by the inversion
breakpoint. There is no evidence in the
centiSNP database® for SNP rs42861 to
be causal, suggesting that it should be in
LD with the causal variant. This promoter
region SNP is located in a segmental dupli-
cation block that is closer to TUFM in the

w7542
pE e

inverted haplotypes. Therefore, positional
changes made by the inversion can affect
TUFM expression by separating the gene
from regulatory sequences and subse-
quently increasing obesity risk.

are associated with young age of onset diabetes,*® or
FDFT1, linked to C-reactive protein (CRP) and lipids
levels’ and one of the strong candidates for obesity in
gene expression networks derived from mouse inter-
crosses.”’ A more specific analysis of transcriptome and
eQTLs on pancreatic islets leads to another interesting
gene: FAM66A. FAM66 is a multiple copy non<oding
gene located in the flanking segmental duplications of
the 8p23.1 inversion breakpoint highly expressed in brain
and with low-level expression in pancreas. Diabetic indi-
viduals carrying the N-allele have lower gene expression,
while no differential expression across inversion geno-
types is observed in control individuals. Consistently,
allelesspecific expression analysis of this gene shows clear
differences in expression in pancreatic cells of already
symptomatic diabetic subjects. Remarkably, a copy-num-
ber gain variant including FAM66 gene has been associated
with increased risk of diabetes.”” Qur positional analyses
also pointed out at FAM66D (8p23.1) as a candidate since
the gene body was split in two by the inversion breakpoint.

We have also shown that inversion at 16p11.2 affects the
joint effect of obesity with diabetes and hypertension and
that this effect is independent of the effect found for inver-
sion 8p23.1. Moreover, the odds ratios found for these as-
sociations are stronger than those observed when
analyzing those diseases independently. The functional
consequences of this inversion were previously reported
to be mediated by deregulation of TUFM, SULTIAI,
SULT1A2, SH2B1 (MIM: 608937), APOB48R (MIM:
605220), and EIF3C in blood.'® Position transcriptional
analysis in pancreatic islets revealed that TUFM and
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Figure 5. Mediation Effect of Obesity in the Causal Link be-
tween Inversions and Diabetes and Hypertension

(A) Mediation analysis of obesity in the association between inver-
sion 8p23.1 and diabetes, showing a proportion of the mediation
of 38% (p value < 10e—6), which is the Best Bayesian Network
when analyzing these three variables. Significant test for the pro-
portion of the median showed a p value < 1075,

(B) Best Bayesian Network based on AIC obtained after including
obesity, hypertension, diabetes, and inversions 8p23.1, 16p11.2,
and 11q13.2. Results are obtained from UKB data.

EIF3C have their lead eQTL SNPs separated in the inverted
allele. Remarkably, the eQTL SNP rs42861 of TUFM does
not seem to be causal in the centiSNP database, ™ suggest-
ing that it is in linkage disequilibrium with the causal
variant. This SNP is located in the promoter region that
is closer to TUFM in the inverted haplotypes. This supports
the hypothesis that the positional changes made by the
inversion can affect TUFM gene expression and subse-
quently have an effect increasing the risk for obesity/dia-
betes. Positional analyses also pointed out EIF3CL, a gene
also split in two by the inversion breakpoint, and with
some isoforms preferentially expressed in human pancre-
atic islets.”'

The inversions at 8p23.1 and 16p11.2 were also associ-
ated with the joint occurrence of obesity with behavioral
traits, in particular with depression. These data further sup-
port our hypothesis that polymorphic inversions are
strong candidates for the joint genetic susceptibility to
co-occurring diseases by simultaneously affecting multiple
genes. The observation that some SNPs located in both
inversion regions are not or weakly associated with the
analyzed traits, while inversion haplotypes are associated
even at genome-wide significant level for GWAS with the
strongest association found in people having more than
one disease, also indicate that inversions are main contrib-
utors to the shared genetic susceptibility of co-occurring
diseases. The fact that inverted alleles do not recombine
preserving haplotypes in strong linkage disequilibrium
highly suggest that the underlying evolutionary genetic
event that has maintained or selected functional eQTLs
in cis in these haplotypes is the inversion. Functional ana-
lyses in the appropriate tissue in case and control subjects,
as the one we performed for obesity and diabetes, will shed

light into the genes and mechanisms involved in behav-
joral or psychiatric traits.

Our hypothesis that inversions underlie the shared ge-
netic susceptibility to common diseases is particularly sup-
ported by our findings in large inversions. These inversions
encapsulate multiple genes and their associations with
phenotypes were highly significant and could be repli-
cated. Smaller inversions showed significant effects for
numerous traits in the discovery study but only one result
could be confirmed, namely the correlation of inversion at
11q13.2 with obesity and related traits and also with the
co-occurrence of obesity, hypertension, and diabetes. Simi-
larly, this study opens the door to further association
studies of these and other inversions with traits and disor-
ders not studied in this work. Additionally, the large num-
ber of significant genes associated with different tissues as
well as the significant associations found for some traits
also provides good candidate genes for some human dis-
eases that are likely under the influence of inversions.
These include, among others, autism, Alzheimer disease,
and Parkinson disease.

In conclusion, we report the largest association study of
genomic inversions and human traits that represents a
breakthrough for genomic association of comorbid disor-
ders, in which polymorphic inversions were often previ-
ously disregarded. Our results underscore the role of
some inversions as major genetic contribution to the joint
susceptibility to common diseases. The results in obesity
and diabetes reveal a mechanism in which cis-regulatory
SNPs are separated from their target genes by inversion
breakpoints. Our findings set a new framework for future
studies which are now accessible to the research commu-
nity thanks to inversion genotyping tools such as our
scorelnvHap method.””

Supplemental Data

Supplemental Data can be found online at https://doi.org/10.
1016/j.ajhg.2020.04.017.

Acknowledgments

This research has received funding from Ministerio de Ciencia, In-
novacién y Universidades (MICIU), Agencia Estatal de Investiga-
cion (AEl), and Fondo Europeo de Desarrollo Regional, UE
(RTI2018-100789-B-100) also through the “Centro de Excelencia
Severo Ochoa 2019-2023" Program (CEX2018-000806-S); and
the Catalan Government (SGR2017/801 and #016FLB 00272 to
C.R.-A.) through the CERCA Program. J.G. is funded by the Euro-
pean Commission (H2020-ERC-2014-CoG-647900) and the
MINECO/AEI/FEDER, EU (BFU2017-82937-P). The LA.P.J. lab
was funded by the Spanish Ministry of Science and Innovation (18-
CII-FEDER P13/02481), the Catalan Department of Economy and
Knowledge (SGR2014/1468, SGR2017/1974, and ICREA
Académia), and also acknowledges support from the Spanish Min-
istry of Economy and Competiveness'Progama de Excelencia Ma-
ria de Maeztu" (MDM-2014-0370). This research was conducted
using the UK Biobank Resource under Application Number

The American Joumal of Human Genetics 106, 846858, June 4, 2020 855

251



43983. The Genotype-Tissue Expression (GTEX) Project was sup-
ported by the Common Fund of the Office of the Director of the
National Institutes of Health, and by NCI, NHGRI, NHLBI,
NIDA, NIMH, and NINDS.

Dedlaration of Interests

L.A.P.-J. is a founding partner and scientific advisor of qGenomics
Laboratory. All other authors declare no conflict of interest.

Received: January 7, 2020
Accepted: April 28, 2020
Published: May 28, 2020

Web Resources

dbGaP, https://www.ncbi.nlm.nih.gov/gap

European Genome-phenome Archive (EGA), https://www.ebiac.
uk/ega

GWAS Catalog, httpsy//www.ebi ac.uk/gwas/

HUGO Gene Nomenclature Committee (HGNC), https://www.
genenames org/

imputelnversion, httpsy/github.com/isglobakbrge/imputeinversion

Inversion  Associations,  https://github.com/isglobal-brge/
inversion_analyses

OMIM, https://www.omim.org/

WHO, http://www.euro.who.int/en/health-topics /disease-
prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi

References

1. GBD 2015 Obesity Collaborators, Afshin, A., Forouzanfar,
M.H., Reitsma, M.B,, Sur, P, Estep, K., Lee, A., Marczak, L.,
Mokdad, A.H., Moradi-Lakeh, M., et al. (2017). Health Effects
of Overweight and Obesity in 195 Countries over 25 Years.
N. Engl. J. Med. 377, 13-27.

2. Dixon, ].B. (2010). The effect of obesity on health outcomes,
Mol. Cell, Endocrinol. 316, 104-108,

3. Locke, A.E., Kahali, B, Berndt, S 1., Justice, A.E., Pers, T.H., Day,
ER, Powell, C., Vedantam, S., Buchkovich, M.L,, Yang J.,
et al; LifeLines Cohort Study; ADIPOGen Consortium;
AGEN-BMI Working Group; CARDIOGRAMplusC4D Con-
sortium; CKDGen Consortium; GLGC; 1CBP; MAGIC Investi-
gators; MuTHER Consortium; MiGen Consortium; PAGE Con-
sortium; ReproGen Consortium; GENIE Consortium; and
International Endogene Consortium (2015). Genetic studies
of body mass index yield new insights for obesity biology. Na-
ture 518, 197-206.

4. SerraJuhé, C., Martos-Moreno, G.A., Bou de Pieri, F., Flores, R.,
Gonzilez, J.R.,, Rodriguez-Santiago, B, Argente, J., and Pérez-
Jurado, L.A. (2017). Novel genes involved in severe early-onset
obesity revealed by rare copy number and sequence variants,
PLoS Genet. 13, e1006657.

S. Kaminsky, E.B., Kaul, V,, Paschall, J., Church, D.M., Bunke, B.,
Kunig, D., Moreno-De-Luca, D, Moreno-De-Luca, A., Mulle,
J.G., Warren, S.T, et al. (2011). An evidence-based approach
to establish the functional and clinical significance of copy
number vadants in intellectual and developmental disabil-
ities. Genet. Med. 13, 777-784.

6. Selvanayagam, T, Walker, S., Gazzellone, M J., Kellam, B., Cy-
trynbaum, C., Stavropoulos, D.J, Li, P, Birken, C.S., Hamilton,

J., Weksberg, R., and Scherer, S.W. (2018). Genome-wide copy
number variation analysis identifies novel candidate loci asso-
clated with pediatric obesity. Eur. J. Hum. Genet. 26, 1588
1596.

7. Vuillaume, M.L., Naudion, S., Banneau, G., Diene, G., Car-
tault, A,, Cailley, D., Bouron, |, Toutain, J., Bourrouillou, G.,
Vigouroux, A., et al. (2014). New candidate loci identified by
array-CGH in a cohort of 100 children presenting with syn-
dromic obesity. Am. |. Med. Genet. A. 1644, 1965-1975.

8. Caceres, A., and Gonzilez |.R. (2015). Following the foot-
prints of polymorphic inversions on SNP data: from detection
to association tests. Nucleic Acids Res. 43, e53.

9. Gutiérrez Arumi, A. (2015). Ancestral genomic submicroscopic
inversions of human genome and their relation with multifac-
torial human diseases (Univ. Pompeu Fabra).

10. Okbay, A., Baselmans, B.M,, De Neve, ).-E,, Turley, P., Nivard,
M.G., Fontana, M.A., Meddens, S.E, Linnér, R.K,, Rietveld,
C.A,, Derringer, J., et al; LifeLines Cohort Study (2016). Ge-
netic variants associated with subjective well-being, depres-
sive symptoms, and neuroticism identified through genome-
wide analyses. Nat. Genet. 48, 624-633.

11. Karlsson Linnér, R, Birli, P, Kong, E, Meddens, SEW,
Wedow, R, Fontana, M.A., Lebreton, M., Tino, S.P., Abdel-
laoui, A, Hammerschlag, AR, et al; 23and Me Research
Team; eQTLgen Consortiuny International Cannabis Con-
sortium; and Social Science Genetic Association Consortium
(2019). Genome-wide association analyses of risk tolerance
and risky behaviors in over 1 million individuals identify hun-
dreds of loci and shared genetic influences. Nat. Genet. 51,
245-257.

12. Laws, S.M,, Friedrich, P., Diehl-Schmid, J., Mdller, J., Eisele, T.,
Biuml, )., Forstl, H., Kurz, A, and Riemenschneider, M.
(2007). Fine mapping of the MAPT locus using quantitative
trait analysis identifies possible causal variants in Alzheimer's
disease. Mol. Psychiatry 12, 510-517.

13. Zabetian, C.P,, Hutter, CM., Factor, S.A., Nutt, ].G., Higgins,
D.S., Griffith, A, Roberts, ].W,, Leis, B.C., Kay, D.M., Yearout,
D., et al. (2007). Association analysis of MAPT H1 haplotype
and subhaplotypes in Parkinson's disease. Ann. Neurol. 62,
137-144.

14. Pilbrow, A.P,, Lewis, K.A,, Perrin, M.H., Sweet, W.E, Moravec,
CS., Tang, WH.W,, Huising, M.O., Troughton, R.W., and Ca-
meron, VLA, (2016). Cardiac CRFR1 Expression s Elevated in
Human Heart Failure and Modulated by Genetic Variation
and Alternative Splidng. Endocrinology 157, 48654874,

15. lkram, M.A., Fornage, M., Smith, AV, Seshadri, S, Schmidt,
R., Debette, S., Vrooman, H.A,, Sigurdsson, S., Ropele, S,
Taal, H.R,, et al.; Early Growth Genetics Consortium; and Co-
honts for Heart and Aging Research in Genomic Epidemiology
Consortium (2012). Common variants at 622 and 17q21 are
associated with intracrnial volume. Nat. Genet. 44, 539-544,

16. Gonzalez, J.R,, Caceres, A, Esko, T., Cusco, 1., Puig M., Es-
naola, M., Reina, J., Siroux, V., Bouzigon, E., Nadif, R., et al.
(2014). A common 16p11.2 invesion underlies the joint sus-
ceptibility to asthma and obesity. Am. J. Hum. Genet. 94, 361-
372,

17. de Jong, S., Chepeley, L, Janson, E., Strengman, E, van den
Berg, L.H.,, Veldink, J.H., and Ophoff, RA. (2012). Common
inversion polymorphism at 17q21.31 affects expression of mul-
tiple genes in tissue-specific manner. BMC Genomics 13, 458,

18. Chaisson, M.J.B, Sanders, A.D., Zhao, X., Malhotra, A., Porub-
sky, D., Rausch, T, Gardner, EJ., Rodriguez, O.L., Guo, L.,

856 The American Journal of Human Genetics 706, 846-858, June 4, 2020

252



Collins, R.L., etal. (2019). Multi-platform discovery of haplo-
type-resolved structural vardation in human genomes. Nat.
Commun, 10, 1784.

19. Giner-Delgado, C, Villatoro, S., Lerga-Jaso, J., Gaya-Vidal, M.,
Oliva, M., Castellano, D., Pantano, L., Bitarllo, B.D., Iz-
quierdo, D., Noguera, L., et al. (2019). Evolutionary and func-
tional impact of common polymorphic inversions in the hu-
man genome, Nat. Commun. 10, 4222,

20. Ruiz-Arenas, C., Cdceres, A., Lopez-Sanchez, M., Tolosana, 1.,
Pérez-Jurado, L., and Gonzilez, J.R. (2019). scorelnvHap:
Inversion genotyping for genome-wide association studies.
PLoS Genet, 15, e1008203,

21. Pickrell, J.K., Berisa, T, Liu, J.Z, Ségurel, L., Tung, J.Y,, and
Hinds, D.A. (2016). Detection and interpretation of shared ge-
netic influences on 42 human traits. Nat. Genet. 48, 709-717.

22. Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P, Da-
nesh, J., Downey, P, Elliott, P., Green, |, Landray, M., et al,
(2015). UK biobank: an open access resource for identifying
the causes of a wide range of complex diseases of middle
and old age. PLoS Med. 12, €1001779.

23. Bonas-Guarch, S., Guindo-Martinez, M., Miguel-Escalada, 1,
Grarup, N., Sebastian, D., Rodriguez-Fos, E,, Sanchez, E, Pla-
nas-Felix, M., Cortes-Sdnchez, P, Gonzilez, S., et al. (2018).
Re-analysis of public genetic data reveals a rare X<hromo-
somal varant associated with type 2 diabetes. Nat. Commun.
9, 321.

24. Pedersen, BS,, and Quinlan, A.R. (2017). Who's Who? Detect-
ing and Resolving Sample Anomalies in Human DNA
Sequencing Studies with Peddy. Am. J. Hum. Genet. 100,
406413,

25. Collado-Torres, L., Nellore, A., Kammers, K., Ellis, SE.,, Taub,
M.A,, Hansen, K.D,, Jaffe, A.E, Langmead, B, and Leek J.T.
(2017). Reproducible RNA-seq analysis using recount2. Nat,
Biotechnol. 35, 319-321.

26. Law, C.W,, Chen, Y., Shi, W,, and Smyth, G.K. (2014). voom:
Precision weights unlock linear model analysis tools for
RNA-seq read counts. Genome Biol. 15, R29.

27. Ritchie, M.E., Phipson, B, Wu, D., Huy, Y, Law, CW,, Shi, W,,
and Smyth, G.K. (2015). limma powers differential expression
analyses for RNA-sequencing and microamay studies. Nucleic
Acids Res. 43, e47.

28. van de Bunt, M, Manning Fox, J.E,, Dai, X., Barrett, A,, Grey,
C., Li, L., Bennett, AJ., Johnson, P.R., Rajotte, R.V., Gaulton,
K.J., etal. (2015). Transcript Expression Data from Human Is-
lets Links Regulatory Signals from Genome-Wide Association
Studies for Type 2 Diabetes and Glycemic Traits to Their
Downstream Effectors. PLoS Genet, 11, e1005694,

29. Dixon, J.R., Selvaraj, 8., Yue, F,, Kim, A, Li, Y., Shen, Y, Hu, M.,
Liu, J.S., and Ren, B. (2012). Topological domains in mamma-
lian genomes identified by analysis of chromatin interactions.
Nature 485, 376-380.

30. Pasquali, L., Gaulton, K.J., Rodriguez-Segui, S.A., Mularoni, L.,
Miguel-Escalada, 1, Akerman, L, Tena, J.J., Morin, 1., Gémez-
Marin, C, van de Bunt, M., et al. (2014). Pancreatic islet
enhancer clusters enriched in type 2 diabetes risk-associated
variants, Nat. Genet, 46, 136-143.

31. Miguel-Escalada, 1., Bonas-Guarch, 8., Cebola, L, Ponsa-Cobas,
J., Mendieta-Esteban, J., Atla, G., Javierre, BM., Rolando,
DM.Y., Farabella, L, Morgan, C.C., et al. (2019). Human
pancreatic islet three-dimensional chromatin architecture
provides insights into the genetics of type 2 diabetes, Nat,
Genet. 51, 1137-1148,

32. Fadista, ), Vikman, P.,, Laakso, E.O., Mollet, LG., Esguerm, J.L.,
Taneem, ., Storm, P, Osmark, P, Ladenvall, C., Prasad, RB,,
et al. (2014). Global genomic and transcriptomic analysis of
human pancreatic islets reveals novel genes influencing
glucose metabolism, Proc. Natl, Acad. Sci. USA 1117, 13924
13929,

33. Delaneau, O., Zagury, J.-F., and Marchini, J. (2013). Improved
whole<hromosome phasing for disease and population ge-
netic studies. Nat, Methods 10, 5-6.

34. Das, S, Forer, L., Schinherr, S, Sidore, C., Locke, A E., Kwong,
A, Vrieze, S.1., Chew, EY,, Levy, S., McGue, M., et al. (2016).
Next-genemtion genotype imputation service and methods.
Nat, Genet. 48, 1284-1287.

35. Gonzilez, J.R., Armengol, L, Solé, X., Guind, E,, Mercader,
J.M., Estivill, X., and Moreno, V. (2007). SNPassoc: an R pack-
age to perform whole genome association studies. Bioinfor-
matics 23, 644-645.

36. Li, )., and Ji, L. (2005). Adjusting multiple testing in multilo-
cus analyses using the eigenvalues of a correlation matrix. He-
redity 95, 221-227.

37. Tingley, D., Yamamoto, T, Hirose, K., Keele, L., and Imai, K.
(2014). mediation : R Package for Causal Mediation Analysis.
J. Stat. Softw. 59, 1-38.

38. Lewis, El., and Ward, M.P. (2013). Improving epidemiologic
data analyses through multivariate regression modelling
Emerg. Themes Epidemiol. 10, 4.

39. Moyerbrilean, G.A, Kalita, CA, Harvey, C.T., Wen, X, Luca,
E, and Pique-Regi, R. (2016). Which Genetics Varants in
DNase-Seq Footprints Are More Likely to Alter Binding?
PLoS Genet. 12, e1005875.

40. Banks, J., Marmot, M., Oldfield, Z,, and Smith, J.P. (2006). Dis-
ease and disadvantage in the United States and in England.
JAMA 295, 2037-2045.

41. Stunkard, AJ., Faith, M.S,, and Allison, K.C. (2003). Depres-
sion and obesity. Biol. Psychiatry 54, 330-337.

42. MartinsSilva, T, Vaz, ].D.S,, Hutz, M.H , Salatino-Oliveira, A,
Genro, J.P, Hartwig, EP, Moreim-Mala, CR., Rohde, LA,
Borges, M.C., and Tovo-Rodrigues, L. (2019). Assessing causal-
ity in the association between attention-de ficit/hyperactivity
disorder and obesity: a Mendelian randomization study. Int.
J. Obes. 43, 2500-2508.

43. Xu, S, Gilliland, ED., and Conti, D.V. (2019). Elucidation of
causal direction between asthma and obesity: a bi-directional
Mendelian randomization study. Int. J. Epidemiol. 48, 899-
907,

44. Millard, LA.C., Davies, N.M., Tilling, K., Gaunt, TR., and
Davey Smith, G. (2019). Searching for the causal effects of
body mass index in over 300 000 participants in UK Bio-
bank, using Mendelian randomization. PLoS Genet. IS5,
€1007951.

45. Puig, M., Casillas, S., Villatoro, S., and Caceres, M. (2015), Hu-
man inversions and their functional consequences. Brief.
Funct. Genomics 14, 369-379.

46. Berghofer, A, Pischon, T, Reinhold, T, Apovian, CM.,
Sharma, AM., and Willich, S.N. (2008). Obesity prevalence
from a European perspective: a systematic review, BMC Public
Health 8, 200,

47. Wolf-Maier, K, Cooper, RS., Banegas, J.R,, Giampaoli, S.,
Hense, H.-W.,, Joffres, M., Kastarinen, M., Poulter, N, Prima-
testa, P, Rodriguez-Artalejo, E, et al. (2003). Hypertension
prevalence and blood pressure levelsin 6 European countries,
Canada, and the United States. JAMA 289, 2363-2369.

The American Joumal of Human Genetics 106, 846858, June 4, 2020 857

253



48.

49.

Povel, C.M., Boer, ] M.A,, Reiling, E., and Feskens, EJM.
(2011). Genetic variants and the metabolic syndrome: a sys-
tematic review. Obes. Rev. 12, 952-967.

Borowiec, M., Liew, CW,, Thompson, R., Boonyasrisawat, W.,
Hu, J., Mlynarski, W.M., El Khattabi, I, Kim, S.-H., Marselli, L.,
Rich, §.5, et al. (2009). Mutations at the BLK locus linked to
maturity onset diabetes of the young and beta-cell dysfunc-
tion. Proc. Natl. Acad. Sci. USA 106, 14460-14465.

. Ligthart, S., Vaez, A, Hsu, Y.-H., Stolk R, Uitterlinden,

A.G., Hofman, A, Alizadeh, B.Z, Franco, O.H,, Dehghan,
A,; Inflammation Working Group of the CHARGE Con-
sortium; PMI-WG-XCP; and LifeLines Cohort Study

(2016). Bivariate genome-wide association study identifies
novel pleiotropic loci for lipids and inflammation. BMC
Genomics 17, 443,

1. Logsdon, B.A,, Hoffman, G.E, and Mezey, J.G. (2012). Mouse

obesity network reconstruction with a variational Bayes algo-
rithm to employ aggressive false positive control. BMC Bioin-
formatics 13, 53.

52. Bailey, JN.C, Lu, L,, Chou, J.W,, Xy, J., McWilliams, D.R., Ho-

ward, TD., Freedman, B.L, Bowden, D.W,, langefeld, CD.,
and Palmer, N.D. (2013). The Role of Copy Number Variation
in African Americans with Type 2 Diabetes-Associated End
Stage Renal Disease, J. Mol. Genet. Med. 7, 61.

858 The American Journal of Human Genetics 706, 846-858, June 4, 2020

254






GENOME WIDE ASSOCIATION STUDIES

REVIEW PUBLICATION






. mathematics

Review

by

In Search of Complex Disease Risk through Genome Wide
Association Studies

Lorena Alonso 1*{, Ignasi Moran /%, Cecilia Salvoro * and David Torrents 12

check for

updates
Citatiore Alonso, L.; Moran, L;
Salvoro, C; Torrents, D In Search of
Complex Disease Risk through
Genome Wide Association Studies.
Mathematcs 2001, 9, 2083, hitpe//
doicrg/ 10,3390 /math9233083

Academic Editors: Manuel Franca,
Juana Maria Vivo and Xiaoping Liu

Received: 4 October 2021
Accepted: 25 November 2021
Published: 30 November 2021

Publisher’s Notes MDPI stay s neutral
with regard to jurisdictional claims in
published maps and institutional affil-
iatiore.

o 0

Copyright © 2021 by the authors
Licersee MDPI, Basel Switzedand
This artide is an open access article
distributed under the trms and
conditions of the Creative Commeons
Attribution (CC BY) license (httpec//
amati org/licerees/by /
40/)

! Lie Sciences Department, Barcelona S
david.toreents@bsces

2 Institucié Catalana de Recerca i Estudis Avancats (ICREA), 08010 Barcelona, Spain

* Cormespondence: lorena.alonso@bsces (L.A.); ignasi. moran@bsces (LM.); cecilia.salv oro@beces (C.5.)

p puting Center (BSC), 08034 Barcelona, Spain;

Abstract: The identification and characterisation of genomic changes (variants) that can lead to
human diseases is one of the central aims of biomedical research. The generation of catalogues of
genetic variants that have an impact on specific diseases is the basis of Personalised Medicine, where
diagnoses and treatment protocols are selected according to each patient’s profile. In this context,
the study of complex diseases, such as Type 2 diabetes or cardiovascular alterations, is fundamental
However, these diseases result from the combination of multiple genetic and environmental factors,
which makes the discovery of causal variants particularly challenging at a statistical and computa-
tional level. Genome-Wide Association Studies (GWAS), which are based on the statistical analysis
of genetic variant frequencies across non-diseased and diseased individuals, have been successful
in finding genetic variants that are associated to specific diseases or phenotypic traits. But GWAS
methodology is limited when considering important genetic aspects of the disease and has not yet
resulted in meaningful translation to clinical practice. This review presents an outlook on the study
of the link between genetics and complex phenotypes. We first present an overview of the past
and current statistical methods used in the field. Next, we discuss current practices and their main
limitations Finally, we describe the open challenges that remain and that might benefit greatly from
further mathematical developments.

Keywords: bioinformatics; genomics; GWAS; chi-square; logistic regression; generalized linear
models; Markov models; imputation; machine learning; polygenic risk scores

1. Introduction

Complex traits, such as height, blood pressure, or some types of diseases, arise from
the combination of multiple environmental and genetic factors (see Box 1 for definitions
of fundamental concepts). In these, each of the involved genetic variants is expected to
only make a marginal contribution to the whole phenotype, each explaining <1% and
often <0.5%, of phenotypic variability [1-3]. Consequently, hundreds or even thousands of
loci are likely to be involved for each trait [4-6]. Complex diseases, such as diabetes [7],
asthma [8], cardiovascular diseases [9], or Alzheimer’s disease [10], tend to appear late
in life and strongly affect the quality of life of millions of individuals around the world,
exerting a large economic and social pressure on developed global healthcare systems. For
instance, diabetes incurred in an estimated cost of USD 327 billion in 2017 in the United
States alone, a value that increased 26% with respect to 2012 [11]. To help alleviate this
burden, a long-standing goal of biomedicine has been to gain a better understanding of the
molecular mechanisms and the genetic architecture behind these diseases, enabling better
prognosis, prevention, and treatment protocols.

In addition to the multifactorial architecture of complex traits, covariate effects, popu-
lation substructure, or disease heterogeneity [12] make the identification of the underlying
causal genomic variants a statistical, mathematical, and computational challenge. The
recent increase in sample sizes and the improvement of statistical frames have helped
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increase sensibility but have also imposed computational and methodological burdens that
are becoming the bottleneck of these types of analyses. This increasing complexity has
forced many studies to reduce their overall scope, which they may accomplish by exclud-
ing the analysis of the X chromosome or by restricting the analysis of the additive model,
disregarding all other inheritance models that should be considered. This substantially
limits the chances of identifying novel genetic markers that are associated with disease, as
we recently demonstrated [13,14].

Despite these challenges, Genome-Wide Association Studies (GWAS) represent one of
the most successful approaches for identifying genetic variants that are associated with the
risk of developing particular complex diseases. In this review, we will provide an overview
of the statistical models and approaches that are currently applied to the identification of
association between genetic variants and complex diseases in biomedical research.

Box 1. Fundamental concepts

e Complex trait or disease: A multifactorial phenotype resulting from the combination of
numerous environmental and genetic factors.

e  Genome-Wide Association Study (GWAS): A statistical method to discover the genomic
variability that is associated with a complex trait or disease.

e  Genomic or geretic variant: A genomic location known to present variability within a

e  Personalised medicine: The application of preventive and treatment protocols adjusted to the
patient’s genomic profile.

e  Phenotype: A measurable characteristic in the individuals of a population, such as height, eye
colour, blood pressure, or disease state.

2. Preliminary Genome Biology Concepts

The human genome is considerably variable. Two human beings differ in 4.1-5 million
genomic sites on average, for a total of around 20 million bases (~0.6% of the total
genome) [15]. This genetic variability determines not only the differences in physical
appearance, such as height or eye colour, but also the predisposition of an idividual to
develop diseases.

Distinguishing the genetic variants that are responsible of normal human variability
from those affecting disease risk is thus fundamental to predict, diagnose, and possibly treat
diseases, contributing to personalised medicine efforts. In this scenario, GWAS represents
a resourceful strategy that can be used to identify variants that are associated with complex
diseases. Despite substantial advancements, this remains a challenging task: in complex
diseases, the contribution of each of the genetic variants to the final phenotype has been
proven to be low and to come later in life, which is in contrast to rare diseases, where
variants usually have a much stronger effect in the individual and may already be present
during early developmental stages [1,14].

In general terms, each individual inherits this variability through parental germ cells.
For example, when the genomic variation consists of a change at a single nucleotide posi-
tion, it is called a Single Nucleotide Variant (SNV), but larger, structural variants (e.g,, du-
plications, deletions) that have the potential of affecting up to millions of nucleotides also
exist (see Box 2 for definitions of genomic concepts). As a result of the meiosis process,
any genomic position (loci) is thus present in two copies (alleles). The set of alleles in
a single homologous chromosome is defined as a haplotype, and the combination of all
alleles identifies the individual’s genotype. The study of these genotypes in regard to
their relationship with diseases is one of the central aims of biomedicine. It allows us to
generate comprehensive genetic maps for each disease and to use them to easily screen, for
example, newborns and to be able to predict the disease risk for that newborn and to plan
Preventive protocols.

Most genomic variants are biallelic, meaning that only two different alleles (generally
named A and B) exist in the population. In this scenario and considering that all individuals
have two copies of the genome, at any given variable locus (position), an individual
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displays one of three possible genotypes: AA, AB, or BB. When compared to the human
reference genome [16], the allele matching the reference (e.g., A) is termed the reference
allele, while the other (e.g,, B) is termed the alternate allele. Consequently, the three possible
genotypes are labelled as the homozygous reference (hom. ref. or AA), the homozygous
alternate (iom. alt. or BB), or heterozygous (het. or AB).

Each of these genetic variants, which likely arose from single different individuals, are
spread and fixed within the population over long periods of time and follow evolutionary
rules based on the harm or benefit that each variation provides to the individual. As a
consequence of this process, variants have different frequencies within each population, as
they are carried by different proportions of individuals. Variants with frequencies > 5%
are defined as common, while variants with frequencies 1 —5% or < 1% are defined as
low-frequency and rare, respectively. SNVs with a frequency of >1% in the population
are typically called Single Nucleotide Polymorphisms (SNPs). Since complex diseases are
common, originally, only common variants were considered to be implicated (common
disease-common variant hypothesis); the possibility of extending GWAS even to low-
frequency and rare variants has shown, however, that variants across the entire frequency
spectrum are likely to be involved [3]. The effect size, which is the contribution of these
variants to the phenotype, is generally measured by an odds ratio (the odds of having the
disease with the variant divided by the odds of having the disease without it) for a binary
trait. Typically, an inverse relationship exists between the frequency of a variant and its
effect on diseases: high-impact variants are normally found at lower frequencies because
of a stronger negative selection pressure (Figure 1) [17].

! Genomic variant frequency
~ Common Low frequency Rare
000 i
600 il |
Small Moderate Stong
Phenotypic effect a

Figure 1. Relationship between allele frequency and effect size. High effect variants tend to havea
lower frequency in the population and vice versa.

Finally, it is worth noting that even though ~50% of the genome is inherited from
each parent, the nucleotides in a chromosome are not inherited independently. Instead, the
genomic material is exchanged in large, linked fragments, that are delimited by recombi-
nation hotspots, which are genomic regions that are more prone to recombination. As a
result, these large genomic fragments contain multiple alleles that are inherited as a whole
from the same parent; these alleles are said to be in linkage disequilibrium (LD).

Given this biological framework, we can now better appreciate the challenges of
studying the genomic causes of complex traits and diseases. The main aim is to identify
the genomic variability that leads to a higher risk of disease. However, it is likely that
there are thousands of genomic loci with different levels of implications and with different
frequencies in different populations. Therefore, the identification of unique causal variants
is typically obscured by multiple variants in linkage disequilibrium, and the biological
consequences of these variants are not immediately apparent. Thus, the study of complex
traits and diseases remains an open prospect.
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Box 2. Genomic concepts
e  Allele: One of the possible genomic sequences that exist in a population for a given locus.
e  Allelic Frequency: The frequency in which a certain allele is found within a population.
e  Genomic locus: A region of the genome.
e Genomic marker: A specific variant that is used as a proxy for nearby variants in high

linkage disequilibrium.

e  Genotype: The specific combination of alleles of an individual. When compared to a ref-
erence genome, the genotype of a variant may be reference homozygous, heterozygous, or
alternate homozygous.

e  Haplotype: The list of alleles that are present in the same homologous chromosome.

e  Inheritance model: A quantitative model for how the genotype of a variant might contribute
to the phenotype. The most frequently used is the additive model, but the dominant, recessive,
and heterodominant models are also utilized.

e Linkage Disequilibrium (LD): When alleles are inherited together in an individual more often
than expected by chance. This is a consequence of the inheritance of these alleles in haploty pe
blocks instead of them being independent of each other.

e Single nucleotide variant/polymorphism (SNV/SNP): The most frequent type of genomic
variant, in which the alleles differ in a single nucleotide position. SNPs are SNV's with a
frequency of>1%.

3. Genome Wide Association Studies (GWAS)
3.1. Definition

In order to take on this challenging task, GWAS was proposed as a statistical method
that could be used to identify the genomic variants that are associated with complex traits
or diseases. Specifically, GWAS are statistical analyses that aim to find the associations
between genomic variability and a particular trait or disease [17]. Previous studies have
required each functional hypothesis to be specifically tested in the context of a disease.
In contrast, GWAS allow for the exploration of the genetic architecture of diseases at the
genome-wide level, without the need of prior hypotheses beyond the existence of a genetic
component behind the disease.

These studies collect genotypes and phenotypes of a large number of participants,
generally in the order of tens of thousands, or even millions. To study a complex disease
(binary trait), participants are separated into cases (affected) and controls (non-affected)
(Figure 2). Then, a prior characterisation of the variation landscape is needed for each
of the participating individuals, ie., the genotypes and haplotypes, which are inferred
from the lists of variants that have been identified within each participant. Whereas
whole-genome sequencing currently provides the most complete map of genomic variation
for an individual, it is still a very expensive and time-consuming assay, especially when
considering the large number of participants within these types of studies. Instead, GWAS
typically use DNA hybridisation microarray technologies, a more affordable alternative
(see Box 3 for definitions of technical concepts). DNA microarrays, however, are designed
to interrogate only a limited set of pre-selected genomic variants (generally between 500 k
and 2 M) [18]. These variants are chosen to be common across the population, so that many
of the individuals can carry them, and are also chosen considering LD blocks, so that only a
single variant in each block is typically probed. In this manner, these subsets of variants are
greatly informative and can be used to infer almost the full genotype variability landscape
of each individual, as we will discuss in detail later (Section 4.2).
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Figure 2 General strategy underlying GWAS. The study of a complex disease through GWAS starts
with the selection of a large group of individuals that can be segregated into cases (affected) and
controls (non-affected). Then, each individual genotype is characterized using DNA sequencing
techniques or genotyping arrays, obtaining the genotyping information of 0.5-2 million variants
from each individual. After ensuring the quality of these data, phasing and imputation techniques
are usually applied to increase the number of variants that can be tested to 10-20 million. Each
resulting genomic variant is then independently tested to find significant differences in the genotype
frequencies between the two groups. Consequently, if a variant is significantly predominantina
group based on an adjusted p-value threshold, then the variant is said to be associated with the
disease. Disease-associated variants can then be further analysed to gain insight into their molecular,
functional, and clinical implications. As a result of this process, the knowledge obtained from GWAS
can help generate and improve the protocols for the better detection, prevention, and treatment of
complex diseases.
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Then, each genomic variant is independently tested for significant differences in the
genotype frequency between the two groups. Thus, if a variant is found to be present sig-
nificantly more frequently in cases than they are in controls (or vice versa), then that variant
is said to be associated with the disease (Figure 2). If the study is sufficiently powered, then
a few genomic loci (containing a small number of variants, typically in high LD) will be
identified as being significantly associated with the phenotype. For quantitative traits, the
individual phenotypes are usually expressed as a continuous variable, and the association
is evaluated based on the correlation between the trait and each variant genotype.

Finally, the genomic variants that are significantly associated with a trait or disease
(termed “GWAS variants”) provide a list of candidates for further functional analyses to
determine in which way they affect the function of the cell and, in the case of disease,
ultimately help provide better prevention and treatment protocols.

3.2. Analytical Frameworks for GWAS

With the increasing interest in the study of complex traits, several statistical frame-
works and tools have been developed in recent years in order to perform GWAS analy-
ses [19]. In the following subsections, we will explain how these statistical models test for
associations between genomic variability and phenoty pes. We will mainly discuss methods
to perform GWAS on binary traits (ie., diseases). However, the analysis of quantitative
traits is also presented. Moreover, given that the additive model is the most common
in GWAS, the methodology will be formulated under this model. However, in Section
3.2.1, we will showcase how to work with the non-additive inheritance models. Hence,
we will start with a simple model for binary traits by first detailing the use of contingency
tables (Section 3.2.1) and will move towards more complete models, such as logistic regres-
sion (Section 3.2.2), regression model extensions (Section 3.2.3), and Bayesian regression
analyses (Section 3.2.4).

In all of these analyses, to statistically model a GWAS, it is first necessary to define:

e  The number of individuals included in the sample of the study N. Inbinary traits,
these individuals are divided according to their phenotype, i.e,, into N, cases (diseased)
and N, controls (non-diseased), where N = N, + N,.

e A setof genomic variants {Vl,.. .,V,,,}, me {1,. MM < o} that are analysed for
each individual present in the population.

e  The genotype G; for each variant, which can take a genotype value from {AA, AB, BB} =
{hom.ref,het,hom.alt}. This genotype can be encoded differently depending on the hy-
pothesised inheritance model by defining a function f : G,-)- —+{0,1,2},where {0,1,2}
encodes for additive (f(AA) =0, f(AB) =1, f(BB) =2), {0,1,1} for dominant
(f(AA) =0, f(AB) =1, f(BB) =1), {0,0,1} for recessive (f(AA) =0, f(AB) =0,
f(BB) =1),0r{0,1,0} for heterodominant (f (AA) =0, f(AB) =1, f(BB) =0). For
the purpose of statistical testing, one of the alleles, typically the alternate, is defined as
the effect allele.

e  Based on the space defined by the genotype, each genomic variant V; can be considered as a
simple random variable V;: (1 = G, sothat Vg € G; 3w € (1 for which Vj(w) = g, with
() as the space of events.

e  The phenotype B for each individual in the population is given a trait of study, which, in the
case of binary traits, is assigned as {0,1} = {control, case} = {diseased, non — diseased}.
The phenotype can be modelled by a Bernoulli distribution P} ~ B(pj),whem P is the
unknown probability of an individual having the disease.

Then, for each tested genomic variant, two outputs are expected:

e A measurr of the statistical confidence on the association with the phenotype in the
form of a p-value.

e A measure of the effect size of having one of the alleles, which is typically expressed
by beta (g) for quantitative traits and an odds ratio (OR) for binary traits.
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3.2.1. Contingency Tables

The classical approach for finding associations between genotypes and a binary phe-
noty pe consists of constructing a 2 x 2 contingency table of the allelic counts in each group.
Once the contingency table is prepared, the allele frequencies can be measured and tested
to find any possible relation with the disease [20].

First, given a specific variant V; in a population with N individuals, where N, are
cases (diseased) and N, are controls (non-diseased) and where N = N + N, for each
individual j from the population of study, the space of the genotypes of each variant
G;j = {AA, AB, BB} = {hom.ref,het,hom.alt} can be defined. Thus, the contingency table
ot} the observed genotype counts in the population of study (Table 1) is constructed as:

Table 1. Contingency table of observed genoty pes.

AA AB BB Total
Cases Mo ref.a Mhet.a Mhom.alta Ng
Controls Mhowsref 0 Mhet Myom alto No
Total o ref Myes Mh o alt N

Moreover, given that the genotype is defined by two alleles, a function f can be defined
relating the space of genotypes G; to the space of alleles A; = {A,B} as f: G; + A;. In
this case, the contingency table of the observed allelic counts in the population of study is
obtained (Table 2):

Table 2. Contingency table of observed allelic counts.

A B Total

Cases 2Mpomref.a + Mheta Mheta + 2Mpom.akt.a 2Ng
Controls 2Mpom ref.0 + Mheto Mheto + 2Mhom.akk.0 2N,
Total 21 powy ref + Mot Myes + 2oy g 2N

Particularly, each variant V; from the population can be defined as a simple random
variable V; : (2 = A;, so thatVa € A; 3w € (), which means that Vj(w) = a, with () as the
space of events. Therefore, a probability function can be defined by p;: {a; € A;} — [0,1],
where p; = P(V; = a;). Thus, the expected allele counts E(V; = a;) = L a;p; are expressed
as (Table 3):

Table 3. Contingency table of expected allelic counts.

A B
Cases 2N, (g ref e 2N, (Mt Mgy )
T N o

Controls 2N (2l reg Hlpet) m-(”u_;f'm)

Under the assumption of independence of observing allele A or allele B in the study
population, a Fisher’s exact test can be applied to these contingency tables to test for
differences between the allelic frequencies in each group.

Moreover, if the sample size is large enough (N > 20) and under the assumption
of independence, a chi-squared test can be performed instead to check for differences

between the observed frequencies (Observed = N—“ﬁf—%ﬂ) and expected frequencies
(which derived from Table 3, Ex pected = " hior counis,,

Observed — Expected)?
Y ( = P | o
pected
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To calculate the odds ratio OR, Table 3 can be simplified and annotated as (Table 4):

Table 4. Simplified contingency table of expected allelic counts.

A B
Cases Nag Npg
Controls a0 Npg

As a result, from Table 4, the odds ratio can be expressed as OR = %“i/h"% = :'-'il’—'”%:

Given that the additive model is the most common in GWAS, the methoaology
described above, which is based on the contingency tables, has been formulated under this
model. For each individual j in the population, the space for the genotypes of each variant
Vij was defined as Gj; = {AA, AB, BB}. For the additive model, this space is encoded
by defining a function f: Gjj — {0, 1,2}, where f(AA) = 0, f(AB) = 1, f(BB) = 2
Nonetheless, depending on the encoding of the different inheritance models, this function
f takes different values: {0,1, 1} for the dominant (f(AA) =0, f(AB) =1, f(BB) =1),
{0,0,1} forrecessive (f(AA) =0, f(AB) =0, f(BB) =1),or {0,1,0} for heterodominant
(f(AA) =0, f(AB) =1, f(BB) = 0). As aresult, Table 1 can be reconstructed for the non-
additive models, as shown in Table 5:

Table 5. Contingency table of observed genoty pes for the different genetic models.

Cases
Controls
Total

Dominant Model {0,1,1) Recessive Model {1,0,0} Heterodominant Model (0,1,0}

AA AB +BB AA +AB BB AA + BB AB Total
P homref.a Mherg +Mhomadte Mhomrefa + Mhea Phomailt.a Mhomref.at Mhomalte Pihet Neo
Pham.ref.0 Miet o + Miam.ait.o Mhomref.o +Mhao Thom.alt.0 Myomref.o+ Mhomdto Vet o No
M homref Miet + Mhawait Miomres +Mhat Mhom.alt Miyomres + Mhow alt Thet N

Moreover, this encoding can be applied to further study the different genetic models
in each of the approaches that will be detailed in the following subsections.

Contingency tables were particularly successful in the first GWAS, leading to the
identification of novel associations to complex disease [21,22]. Therefore, some common
bicinformatic tools still include options to perform the chi-squared test for association [23].
However, one important issue that is not covered by the contingency table analyses is the
fact that the thousands or millions of individuals in a GWAS can share some potentially
confounding qualities, apart from the trait of interest, such as age or sex. The effects of these
known covariates need to be corrected in order to avoid the concealment of the genomic
associations to disease risk or the emergence of spurious associations.

3.2.2. Logistic Regression

Logistic regression models are broadly used for the study of GWAS to analyse the
explainability of the phenotype in terms of the genotype. Particularly, the study of asso-
ciation under this model facilitates the simultaneous analysis of multiple variables, thus
allowing the study of covariates in addition to genomic variants.

Therefore, a logistic regression model can be formulated based on the analysis of a
population with N individuals, where N, are cases (diseased) and N, are controls (non-
diseased) and where N = N; + No. For each individual j in the population of study, the
phenotype takes the values P; € {0,1} = {control,case} = {diseased, non — diseased}.
Thus, the study of an individual j being diseased can be modelled by a Bernoulli dis-
tribution P; ~ B(p;), where p; is the unknown probability of an individual having the
disease. As a result, the phenotype of the N individuals of the population can be mod-
elled by a binomial distribution P ~ Bin(pj,nj). Particularly, based on the observation
of m € {1,..., M|M < oo} genomic variants V;, i = 1,...,m, where their genotype can
take a value from the space Gjj = {AA, AB, BB} = {hom.ref, het, hom.alt }, the probability
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of an individual being diseased can be explained by the genotype as p; = E (,—"; Cq,-).
Consequently, the ratio of the probability of individual j having the disease or not, given a
particular genotype, is expressed as Tf,_n

Therefore, a logit function transformation can be applied to this ratio

Iogit(p;) =I"(1fjpi): (1)

thus fitting the logistic regression model for each variant
logit(p;) ~ Bo+ PrGij. (2

From this logistic regression model, beta coefficients g, i = {0, 1} are estimated, for
example, by applying the maximum likelihood or least squares approaches.

The genotype effect on disease risk is then measured by the odds ratio, which can be
calculated as

OR =exp(p1). (3)

Finally, the association of the genotype with the disease is determined by testing the
hypothesis of g1 # 0.

One of the advantages of the logistic regression model in GWAS analysis is the
possibility of including covariate effects. To this end, the model can be extended so that the
expected phenotype for individual j with genotype G;jj can be conditioned on t additional
covariates in withk =1,...,1t < oo, so that

P
P = E(n_) Gij'xljl xz;‘:- 8 'rxlj)‘
Correspondingly, the logistic regression model

logit (pj) ~ Bo+ B1Gij + B2Xaj +.. . + Br1 Xy

can be used to estimate the betas, which can then be tested for associations individually
(B1 B2 <o) Bm #0,m =1,...,t+1). In this case, the significant f; coefficients can
be considered as measures of the genotype and covariate effects, and the OR for each
of them can be calculated as previously detailed in Equation (3). By including possible
confounding effects as covariates in the logistic regression model, a more precise estimate
of the genotype effect on disease and thus a more robust association result can be obtained.

Due to their power and flexibility, logistic regression models have been the most
used approach in GWAS for complex diseases, leading to the discovery of novel loci and
broadening the genetic and biological understanding of a variety of diseases [24,25]. In line
with this success, many bioinformatic tools for logistic regression modelling and association
have been developed [23,26-28].

3.2.3. Further Extensions and Developments of Regression Models in GWAS

All of the strategies presented in the previous sections were designed to work with
binary phenotypes such as diseases. However, regression models can also be easily applied
to the study of quantitative traits [29]. In this case, in a study of a population with N
individuals, for each individual j, the phenotype takes the values P; € a(R) with ¢(R)
the Borel set. Thus, the study of the individual’s phenotype P; can be performed using
a linear regression model based on the genotype of m € {1,..., M|M < o} genomic
variants Vj, i = 1,...,m, where each variant genotype can take a value from the space
Gjj = {AA,AB, BB} = {hom.ref, het, hom.alt}. Therefore, the linear regression model is
expressed as

B ~ fo+ B1Gj (4)
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and the betas p; are the parameters of the model. Particularly, the genotype effect on the
risk of disease is measured by the beta g = py. Then, a hypothesis test for association is
used to check whether the genoty pe is associated with the trait g1 # 0.

Owerall, the regression methods for GWAS can be extended with a generalized linear
model (GLM) [30]. If the trait is quantitative and if the assumptions of genotype inde-
pendence, homoscedasticity, and normality of residuals hold, then a simple linear model
can be fitted. If the trait is binary, under the same assumptions, a logit transformation
can be applied, and a logistic regression model can then be fitted. When the assump-
tions are violated, different types of models can be derived, such as Poisson regression or
ANOVA methods.

As a further extension of regression methods, mixed models have recently started to
be applied in GWAS. Mixed models take their name from the regression of both fixed and
random effects on the outcome variable. In GWAS, genotypes and non-genetic covariates
are fitted as fixed effects, together with a genetic relationship matrix (GRM), which are
fitted as a random effect. The GRM carries information on the genetic relatedness between
the individuals of the study; mixed models therefore correct for genetic correlations be-
tween individuals, which are a major source of confounding in association. This way, the
need for excluding related individuals from a GWAS is overcome, thus increasing the
discovery power [31]. Similar to GLMs, mixed models can also be applied to quantitative
or binary phenotypes, and tools for linear or logistic mixed models have been developed
accordingly [32-34]. Mixed models have proven to be particularly suitable for GWAS in
large biobanks [31,34-36].

In conclusion, regression models showed a considerable ability to accommodate
different hypotheses in terms of covariates and genetic models, producing powerful and
robust results. For these reasons, regression approaches are currently the method of choice
in GWAS.

3.2.4. Bayesian Statistics

GWAS Bayesian approaches were developed in parallel to GWAS regression models
as an attempt to refine and improve their results, increasing their discovery power.

Thus, based on the study of a population with N individuals, where N, are cases
(diseased) and N, are controls (non-diseased) and where N = N, + N, for each individual
j in the population of study, the phenotype takes values Pl € {0,1} = {control, case} =
{diseased, non — diseased} for binary traits, or P e o(R), with o(R) the Borel set, for
qualitative traits.

Under these scenarios, the logistic and linear regression models can be constructed as
they are in Equations (2) and (4), respectively. Then, Bayesian results are provided in the
form of the posterior probabilities of regression estimates:

P(B1j|Gij) o< P(Gij| By )P (B15) (5)

where P(G;; | 1) is obtained from the regression model (e.g,, the likelihood of observing a
particular phenotype L(Y; |Bo, f1)) and where the prior P(f1j) can be estimated based on
B1j inference approaches, such as the Jacobian transformation, normal approximation or
uniform distributions. These calculated posterior probabilities can be used as priors to fita
regression model again. Therefore, the gjj coefficients (thus the genoty pe effect on disease)
will be better estimated, reducing the proportion of false-positive results [37,38].
Moreover, Bayesian methods can also be applied to reduce the dimensionality of
a GWAS. Dimensionality reductions are based on the assumption that the number of
variants with a non-zero effect p tends to be far smaller than the total number of analysed
variants k (k 3> p). With Bayesian approaches, the initial set of variants (Vy,..., Vi),
m € {1,..., M|M < oo} is reduced to those with a higher probability of escaping the zero
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effect, relying on the posterior probability (5). A vector 7 is constructed by applying the
indicator of the non-zero effect to each variant:

1, P(By|Gij) #0

Therefore, under the binary trait scenario, which corresponds to the logistic regression
model, the probability of an individual being diseased can be explained by the genotype as
pi= E P IG.-,- 7)) Thus, the ratio between the probability of individual j having the disease or
notglvenapmlmlar lypemllbeexpressedunderthemdellogzt(p,)~ﬂo+ﬁ1G,,('y)
Similarly, under the quantitative trait scenario, which corresponds to the linear regression mode
the explanation of the individual phenotype based on its genotype is expressed by the mode]
P; ~ Bo + B1Gij( 7). Last, a regression model is fitted to obtain the betas, which are tested to
check whether the genotype is associated with the disease [39-42]. As a result of reducing the
number of simultaneously performed tests, the nultiple-testing correction burden is also reduced,
thus increasing the detection power (Section 3.3).

Bayesian statistical methods have proven the relevance of reducing the number of
tests to improve the results that can be obtained from GWAS [43,44]. Therefore, many
bioinformatic tools have been developed and have been updated to facilitate the association
analysis based on Bayesian models [28,32].

3.3. Statistical Interpretation of GWAS Results

As it is common in statistical analy ses, a significance threshold is required to decide on
the significance of the obtained results. This level of significance is measured with a p-value
threshold, typically 0.05 or 0.01 for a 5% and 1% probability of rejecting the null hypothesis
when it is true (false positive), respectively. However, in a GWAS, huge numbers of tests
are performed (one for each genomic variant, usually in the order of millions). Therefore,
multiple testing correction with an adjusted p-value threshold is needed to determine
statistical significance.

For this purpose, the use of standard Bonferroni’s multiple-testing correction, which
consists in dividing the p-value threshold by the total number of tests, could be suggested.
However, this would assume full statistical independence between all of the performed
tests. Given that genomic variants are not independent of each other, due to linkage dise-
quilibrium (LD) as previously described, the resulting threshold would then be exceedingly
stringent. Instead, GWAS typically assume that there are a million truly independent
genomic loci, as was estimated in the European population [45]. With this assumption, the
Bonferroni correction results in a p-value threshold [46] of

0.05

s = -8
P = 1,000,000 = > * 10

which is the most commonly used threshold to accept or reject a GWAS association. This
threshold is referred to as the genome-wide significance threshold.

The unconditional (absolute) validity of this estimation has however been questioned,
and thus, the search for an adequate p-value threshold to use in GWAS has grown into
a parallel subject of study. For instance, multiple additional statistical procedures have
been proposed, such as the Sidak correction, False Discovery Rate (FDR), permutation test,
Bayesian approaches, and dimensionality reduction-based methods.

The representation of the GWAS results presents a different challenge. In order to
represent the millions of statistical results in a visual manner, the association p-values are
typically displayed in a Manhattan plot (Figure 3). In this type of scatter plot, each genomic
variant that has been tested for association is represented as a point, the X axis comprises
all of the genomic positions, and the Y axis measures the obtained érvalues, which are
typically scaled in —log1o. The significance threshold (e.g., 5 x 107°) is marked with a
horizontal line so that the results that are significant after multiple testing correction can be

268



Mathematics 2021, 9, 3083

120f26

easily spotted. The name of these plots derives from the expectation that the results would
look similar to the skyline of Manhattan, with significant loci rising as skyscrapers from
the ground. In the reality of GWAS, however, these rich skylines are seldom obtained, as it
is more common to observe only a handful of loci that reach such levels of significance.

(-]
B e # ek tmet Mt e

ASS0CIabon signhcance (- 10glp - value ))

1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 2

Ganomic postion (chromasoma)

Figure 3. Example of a Manhattan plot. The X axis show's all of the tested variants by their genomic
location, and the Y axis shows the strength of the statistical association. The significance threshold
(red line) has been increased to correct for multiple GWAS analyses in the study.

In addition to identifying significant associations between genomic variants and
phenotypes, GWAS also estimate the odds ratio (OR) for each genomic locus, an effect size
estimate of the increased odds of having the disease per risk allele count [47]. AnOR =1
thus implies no association with the disease, an OR > 1 implies that the effect allele is a
risk allele, increasing the risk of developing the disease, and an OR < 1implies a protective
allele, decreasing the risk of disease. In the case of quantitative traits, which require no
logarithm transformation, the magnitude of the effect can be directly measured using the g
coefficient of the regression. Thus, p = 0 implies no association with the trait, but g > 0
and B < 0 imply a positive or negative association with the allele, respectively.

Unfortunately, effect sizes tend to be overestimated, which is mainly due to the bias
caused by an effect named the winner’s curse. The quantification, correction, and bias-
reduction on the effect size estimator has been a GWAS-parallel subject of study [48] given
its relevance to the heritability contribution.
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Box 3. Technical concepts.

e  Beta: Anestimation of the effect size of a variant for a quantitative phenotype: the coefficients
obtained from fitting a regression of the genotypes to the phenoty pe.

e  Cohort: A group of individuals.

¢ DNA hybridisation array: A technology to identify the genotypes of a specific subset of
variants of an individual.

e  Effectsize: A measure of the contribution of a genomic variant to a specific phenotype.

¢ Imputation: A statistical method to infer missing genotypes given a reduced set of known
genoty pes and a reference panel

e  Odds Ratio: Anestimation of the effect size of a variant for a binary phenotype: the odds of
having the disease with a variant divided by the odds of having the disease without it.

e  Phasing: A statistical method to infer the haplotypes of an individual to determine which
alleles belong to the same chromosomal sequence.

e  Reference parel: A set of well characterised haplotypes of a group of individuals, used asa
reference to infer non-genotyped variants in other individuals.

e  Whole genome sequencing: A technology that provides the complete nucleotide sequence of
an individual genome.

4, Current Practice and GWAS Limitations

GWAS have had a history of success in the study of complex traits, enabling the
identification of the genomic loci involved in these phenotypes for the first time. Indeed,
GWAS have so far discovered more than 276 thousand genomic associations for more
than 4 thousand traits and diseases [4%-51]. However, almost 20 years of analyses have
also highlighted their limitations, which preclude more genomic associations from being
identified [21,22]. Here, we discuss the main critical points of GWAS in detail, and we
explain how the methodology can be extended to mitigate some of these. Next, we
describe the most common complementary approaches and the existing alternatives that
are attempting to solve these limitations.

4.1. Power and Sample Size

One of the main concerns in a GWAS is whether the study is powered enough to
detect any association with a trait. The statistical power of association for a given variant
strongly depends on the magnitude of its effect size and on its frequency in the population.
Strong effect sizes are easier to capture, and common variants generally provide higher
power. However, due to evolutionary selective pressures, effect sizes and frequencies are
generally inversely correlated, with rarer alleles showing stronger ORs. In practical terms,
current GWAS have mostly revealed associations for common variants with ORs of around
1.05-1.3 [52].

A natural way to increase power in GWAS is to increase the size of the sample under
study (N). Increasing sample size would allow the identification of smaller effects for
common variants as well as open the possibility to study rare variants. Motivated by this
need, large-scale initiatives have been established in the form of international consortia to
pool multiple resources and thus generate larger cohorts for subsequent analyses. These
efforts have pushed the discovery of new loci and our understanding of complex disease
genetics [53-56]. Further, biobanks have been established to make these large collections of
genotypic and phenotypic data available for future studies [57-59]. However, given the
sensible nature of these genomic and medical data, accessibility restrictions have been put
in place, which often hinder or discourage their reutilisation by further scientific efforts.

Another commonly used strategy to increase sample size in GWAS is meta-analysis
based on the statistical combination of previous GWAS results from different studies on
the same phenotype. Requiring only GWAS summary statistics (e.g., sample size, effect
sizes and p-values), meta-analyses are far more cost-effective than the generation of new
genoty pe—phenotype datasets and thus have been used extensively [13,60,61].

Meta-analysis approaches are based on a weighted sum of the effects obtained in each
of the studies, thus providing an estimate of the association of each genetic marker over
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all of them. For example, in a meta-analysis for M studies where each variant V; has been
assigned an effect £j; for the j-th study, a Stouffer’s Z-score can be calculated by assigning
a weight for the estimated allelic effect on each study wj; so that the allelic effect across all
the studies will be

T Bijwij

Ve

which estimates the association to disease over all tests.
In addition, the genetic heterogeneity between the different studies is measured, which
is based on Cochran’s Q-test, by the statistic

zi ~x

M 5
Qi= _}:iwi)'(zi - Bij)” ~ xdg-1
}=

for each SNV i. This measure helps to detect associations that are not consistent across the
studies, which might then be filtered out if necessary.

Despite the proven value in increasing power, large sample sizes in GWAS present
many challenges, nonetheless. The recruitment and genotyping of individuals might
be extremely expensive in terms of time and resources. Despite having received more
attention in recent years, data sharing is still limited and difficult, even in the form of
summary statistics. Further, recent studies have estimated that unprecedented sample
sizes, in the order of millions, might be needed to capture the entire spectrum of the
variants associated with a trait [62]. Different strategies other than simply increasing the
number of analysed samples might be thus more feasible to increase discovery power and
will be briefly discussed in the following sections.

4.2, Increasing the Number of Genomic Variants

Another important factor in determining the discovery power is the correlation (LD)
existing between the interrogated variants and the real, underlying causal variant [47].
Higher discovery power can be achieved by increasing the number of tested variants, thus
obtaining a higher density coverage of the genome and increasing the probability of directly
testing variants that are strongly correlated with the causal ones. However, as described
in Section 2, GWAS typically use DNA microarray technologies, which only provide the
genotypes for a limited subset (0.5 to 2 M) of all of the SNVs in a genome [63].

A technique that is commonly used to increase the number of variants that can be
tested in a GWAS is genomic imputation. Starting from genoty ping array data, genotypes
of over 10 million variants can be inferred for an entire group of individuals (also named
cohort) [64], with a reduced number of missing values [65,66].

Imputation is usually preceded by a phasing step, in which haplotypes for each
individual are inferred starting from genotypes, ty pically from array data. Then, the studied
haplotypes are statistically compared with those in reference panels, which are panels of
thousands of individuals with a deeply characterised haplotype [15,67-71]. Through this
comparison, the genotype probabilities for variants in the reference panels are imputed
into the cohort haplotypes [72]. Several methods and tools have been developed to phase
and impute [65,75-76]. Most of them are essentially based on Markov Chains (MC),
Hidden Markov Models (HMM), Markov Chain Monte Carlo (MCMC), and the expectation-
maximisation algorithm [28,77]. Other tools have also been developed to combine the
imputation results from different panels [14].

As a result, given a population with N individuals, where,m € {1,..., M|M < 0}
variants V;,i =1, ... m, are inspected for each individual j, each variant genotype can take
a value from the space of genotypes Gjj = {AA, AB, BB} = {hom.ref, het,hom.alt}. Based
on the space defined by the genotype, each genomic variant ¥; can be considered as a
simple random variable V;: (1 = Gy;, so that Vg € G;j 3w € () for which Vj(w) = g, with
(1 as the space of events. Under this scenario, the imputation model can be formalized
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by first stating that each variant genotype G;; for the individual j has a corresponding
haplotype H;j = {(0,0), (0,1),(1,0), (1,1)}, which is defined by a function f : Gj; — Hjj,
where f(AA) = (0,0), f(AB) = {(0,1),(1,0)}, f(BB) = (1,1). Thus, the haplotype space
Hj; is a partition of the genotype space Gj;. For simplicity, each haplotype H can be written
asapairset H = (Hg-”, }‘Ii(,-z)), H‘-(’-k) € {0,1}, k € {1,2}. The aim of imputation is to infer
the missing genotypes based on the posterior probability P(G,-,-IH ) foreach individual in
a LD region by comparing the individual haplotypes in that region with the N haploty pes
H = {Hy, Ha, ... ,Hy} present in a reference panel (Figure 4).

Individual eriginal genotype 1 . 0

it

Referonce population l

Individual inferred genotype 1 00—

Figure 4. Imputation schema. The genotypes originating from DNA hybridisation arrays only
provide information on a limited set of genomic variants (0.5 to 2 million sites). These missing
variant genotypes can be statistically inferred by using one or multiple reference haplotype parels in
a process named genomic imputation.

For example, in Hidden Markov Model (HMM) approaches, the posterior probability
of each genotype, given the haplotype, can be calculated as

P (Gij |H ) = Hg)zﬂlm P (Gij |Hi(j1)' Hi(jn’ H) P(I-I"(ii)' H"(I'z’ |H) ©)
j

where the term P(Hj), H{?) [H) is the prior probability for each hidden state change along

1
the sequence, and P( GijIH,(}-l ), H?), H) models the probability that the genotype will be
similar to the haplotypes that are copied from the reference. By estimating the genomic
recombination rate across the region p based on the effective population size and the

mutation rate 6, Equation (6) can be simplified to

P(G;|H,8,p) = P(G‘i IH(U Hy G)P(H-m

2)
i Hy,e) (B, H

H,p) [64].

Given that both 8 and p can be estimated from the population of study and that
the haplotypes can be inferred from the HMM, this model can be used to infer missing
genotypes in the study population.

The accuracy of the different imputation methods can be assessed by masking known
genotypes and imputing them using surrounding variants. The correlation between the
estimations and the true values can be used to measure the imputation accuracy. Based on
this method, current error rates range between 5.10 to 6.33% [28].

Genotype imputation offered the possibility of comprehensively investigating variants
throughout the genome, including rare variants, at a large scale for the first time. However,
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the imputation of rare variants still presents difficulties. Although rare variants are present
in reference panels, those are usually in low LD with the common variants from the
genotyping array; therefore, they are imputed with less accuracy. Further, rare variants
tend to be more private, and only a fraction of these can be possibly present in reference
panels; thus, only a few can be imputed. In the future, when whole genome sequencing is
affordable for large studies, the imputation process will cease to be necessary since all of
the genomic variants will be obtained from the DNA of the participants However, until
then, genotype imputation provides the most valid alternative for comprehensive GWAS.

4.3. Genetic and Population Heterogeneity

Genetic heterogeneity between individuals of shared ancestry or between those of
different ancestries is a factor that further complicates the study of polygenic traits. The
same apparent phenoty pe (especially diseases) might be the result of different combinations
of genomic variants in different individuals. Genetic heterogeneity is typically overlooked
in GWAS, as individuals with the same broad disease are considered as a homogeneous
group of cases. In this scenario, GWAS can only capture the most shared signals, and less
prevalent genomic associations might be masked.

An attempt to reduce this issue has been made by classifying cases into sub-groups
by using multiple clinical variables or by defining sub- or endo-phenotypes. For example,
adisease such as Type 2 diabetes is broadly defined by a high content of glucose in the
blood, but different clinical sub-types have recently been identified using measures such
as age of disease onset or body-mass index [78]. The rationale is that these phenotypic
sub-groups might reflect more genetically homogenous groups and may thus help us to
identify the underlying genomic loci that differentiate them. Even though this strategy
entails a decrease in the dimensional reduction of the sample size due to fragmentation, the
power to discover the underlying genomic factors could be increased due to a reduction in
the dilution of the relevant signals as a consequence of the homogeneity and less variability
in the data [79].

Genetic heterogeneity is also significant between individuals of different ancestral
backgrounds due to differences in variant frequencies (e.g., a rare variant in one ancestry
might be common in another) and LD patterns. Early GWAS were performed with indi-
viduals of predominantly European or Caucasian ancestry, which raised the question of
their relevance for individuals of other ancestries. Moreover, the possibility remained that
common variants were only associated with complex diseases because they were in LD
with rare, high-impact variants that were specific to the studied ancestry and thus that
these associations would not replicate in other ancestries.

Since then, trans-ancestry (also named trans-ethnic) studies, which analyse samples
of multiple ancestries together, have shown that the variants that were associated with
the complex traits and diseases that were identified in these studies were predominantly
consistent with those identified in ancestry-specific studies [80-82]. These findings sug-
gest that these phenotypes are indeed driven by common variants and that their genetic
architecture is mostly shared across different ancestries.

Albeit burdened with further increased sample collection and analytical complexities,
these large studies have succeeded in the development of population genomics and have
increased the genetic understanding of complex traits [82,83].

4.4. Complex Interactions

GWAS are typically applied to capture the effect of single independent variants on
a phenotype. However, complex traits are understood to be caused by multiple genomic
variants that interact with environmental variables [84,85]. Therefore, other analytical
frameworks are needed to interrogate more complex interactions, such as gene-gene
interactions (GxG) or gene—environment interactions (GxE) [86]. Given the computational
and data acquisition challenges of these studies, these have only recently become feasible,
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thus providing a novel avenue to reveal new understanding of the aetiology of complex
traits and diseases.

4.4.1. Gene—Gene Interactions (GxG) and Genomic Variant Epistasis

Complex phenotypes arise due to the combined effects of multiple genes. For ex-
ample, 16 different genes have so far been linked to the determination of the eye colour
phenotype [87]. In some cases, the effects on the phenotype of one of the genes might be
enhanced, diminished, or changed by variability in a different but interacting gene. These
effects are known as gene-gene (GxG) interactions. Particularly, the term epistasis can be
used to describe the result of the interaction of multiple genomic variants in different loci
when it is not just a linear combination of the individual gene effects.

Variant interaction models present a framework to analyse the combined effect of
multiple genomic loci on complex traits. These focus on finding groups of interacting
variants and compute the relative contribution of these subsets of variants to the total
phenotypic variability [48-90]. However, the combinatorial nature of the problem leads
to very computationally expensive analyses, given the large number of genomic variants
in a genome. For example, hundreds of billions of tests will need to be performed just to
inspect the association for pairwise combinations of 500,000 SNV's [84]. Further, additional
measures need to be applied to solve issues such as the power needed to detect epistasis [84]
or to scale the problem to a higher order interaction of genetic factors [85].

GxG interaction analysis can be extended from the methods proposed in Section 3.2.
For example, in the case of a logistic regression model, in a population with N individu-
als, for each individual j, the phenotype takes the values F; € {0,1} = {control, case} =
{diseased, non — diseased} and follows a Benoulli distribution P; ~ B(pj), wheme p; is the
unknown probability of an individual being diseased. Thus, the phenotype of the individuals of
the population follows a binomial distribution P ~ Bin (pj, n). Based on the observation of the
m € {1,..., M|M < oo} genomic variants V;, i = 1,...,m, where the variants genotype can
take a value from the space G;j = {AA, AB, BB} = {hom.ref, het, hom.alt }, the probability of

an individual being diseased givenﬂwhgemlypemnbeapressedasp;:E(,f’. G;j).Thus,ﬁor
a pair of variants G; 1, G;; o, this probability becomes p; = E( ,% Gij1, Gij,2) - Under this scenario,
the logit function can be applied to the ratio between the probability of the individual j having the
disease or not givena pair of genotypes (1). As such, the logistic regression model for the main
effects can be expressed as

logit(Yj) ~ Bo+ P1Gij1 + B2Gij2

to test whether the genotype is associated with the disease. As a result of that, the logistic
regression model with main effects and pairwise interactions can be formulated [91] as

logit (Y;) ~ Bo + B1Gij + B2Gij2 + P3Gij1 Gy

More recently, this problem has also been approached using machine learning meth-
ods, where the relationship between multiple variants and disease risk can be evaluated
at once [88,92]. Several machine learning algorithms are commonly applied for solving
classification, regression, or ranking problems, such as support vector machines, stochastic
gradient descent, nearest neighbours, naive Bayes, Gaussian processes, neural networks,
or decision trees. These methods can be applied within a supervised learning framework
to find a list of variants with an effect on the disease and their combined effects. However,
while these approaches have opened a new avenue for GxG analysis, they also suffer from
problematic computational costs.

To work around this limitation, most studies have been forced to reduce the dimen-
sion of their input set, which is generally accomplished using multifactor-dimensionality
reduction [93-95] or Bayesian inference [96,97]. Therefore, to facilitate the integration of
multi-dimensionality reduction in GXG analysis, some bioinformatic tools have integrated
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this methodology in their software [23,98]. In addition, most studies also resort to restrict-
ing the genomic variants to test a selected subset of candidates based on prior biological
knowledge, with the hypothesis that these are more likely to provide relevant biological
insights. As a result, GxG and epistatic studies are generally limited in size and scope.
This field remains open, and it is likely to provide further insights on the genomics of
complex traits.

4.4.2. Gene-Environment Interactions (GxE)

The effect on complex phenotypes resulting from the environment (defined as all the
non-genomic components) is often overlooked, but it plays a significant role in determining
both the strength and the variability of a trait or disease. For example, even if type 2
diabetes is understood to have genomic causes, one of the best clinical predictors for
risk is simply age, which is independent from the genomic components of the disease.
However, the effects of environmental variables on an individual also can depend on
their particular genomic background, e.g., the same food consumed by two individuals
might have a different impact on their weight. This effect called named gene-environment
(GxE) interaction.

Specifically, GXE interaction analyses focus on studying the environmental factors,
such as diet, lifestyle, psychosocial stress, or airborne agents, and their relation with
different genotype groups in terms of disease associations [99,100]. In an extension of
the GWAS concept, Environment-Wide Association Studies (EWAS) analyse multiple
environmental factors and compare them between different genotype subgroups of a
complex disease in large-scale GXE multi-studies [101]. The most common approaches to
study these GxE interactions are regression-based methods (Section 3.2), which are usually
preceded by a filtering step [102-104].

Thanks to these studies, the genotype group information can be used to build better
prognostic models and to identify possible high-penetrance or high-exposure subgroups
to build better treatments [99,105]. However, much larger sample sizes are needed for
the detection of interactions compared to marginal effect sample sizes. In addition, the
complexity of measuring the environmental exposure, the difficulty of incorporating envi-
ronmental measures to the models, the heterogeneity of the environmental exposures, and
the lack of publicly available data represent important hurdles that limit the advancement
of this field of study [99,100,105-107].

4.5. Biological Interpretation and Clinical Implications

GWAS have been successful in identifying multiple loci that are associated with
complex traits. However, the biological interpretation and clinical application of these
findings has proven to be very challenging.

First, because of linkage disequilibrium, GWAS can only provide associated genomic
loci, encompassing multiple correlated variants. In addition, GWAS identify statistical
associations, but it is well established that association does not imply causation. To attempt
to overcome these limitations, further computational and experimental studies need to
be pursued. Computational approaches include gene expression studies and enrichment
analyses of gene, pathway, epigenomic, and regulatory elements or Mendelian randomisa-
tion analyses, which are used to gain further biological insights [108,109]. Simultaneously,
wet-lab experiments with cell lines, model organisms, or further human studies also need
to be used to answer the biological hypotheses that are inferred from these analyses.

As an attempt to produce some clinical insight directly from GWAS results, Polygenic
Risk Scores (PRS) have recently been developed. PRS are based on the premise ofevaluating
the total risk of disease of a genome by considering all of its genomic variants with known
disease associations [110].

Particularly, PRS compute the relative risk of an individual from the population of
study to develop a disease. Therefore, in a study of a population with N individuals,
for each individual j in the population of study, givenm € {1,..., M|M < oo} genomic
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variants Vj, i =1,...,m, where the variants genotype can take a value from the genotypes
space Gjj = {AA, AB, BB} = {hom.ref, het,hom.alt }, GWAS models can be applied to
estimate the effects f; for each genotype (Section 3.2). Then, a PRS can be calculated based
on the sum of the individual genotypes G;; weighted by the estimated effects for that
genotype ﬁi’ resulting from the GWAS a.naiysis [111]. Thus, each individual score §; is

calculated using the equation S, ): G., Bi. As each individual j will have an associated

score S the score can be observed as an independent variable explaining the phenotype P
of the mdlvldual Consequently, under a similar scenario to the one explained in Section
3.2.2 for binary traits, P € {0,1} = {control, case}, with P ~ Bin (p,-,n,—) and p; being the
probability of an individual being diseased. For example, the probability of an individual
being diseased can be explained by the score as p; = E (,—% |Sj). Therefore, the logit can
be apphed to the ratio between the probability of the individual having the disease or
not, given a particular score, to fit the logistic regression model logit (p;) ~ o + p15;. For
quantitative traits, where the individual phenoty pe takes values P; € ¢(R), with a(l{
Borel set, a linear regression model could then be fitted to explain the phenotype based on
the individuals score as P; ~ fo + B15;.

The distribution of the scores across the population of study follows a normal distri-
bution, in which the left tail contains the individuals with the lowest risk of developing the
disease, and the right those with the highest risk (Figure 5). However, although the use of
PRS has shown potential, statistically significant differences in disease risk are typically
only found when comparing the individuals at the tails of the distributions (e.g., the indi-
viduals with the highest 5% of scores have a 3x higher risk of disease than those with the
lowest 5% scores), thus only providing limited insights for the majority of the population.

Polygenic Risk Score density

Low Risk High Risk

Figure 5. Relationship between risk of disease and Polygenic Risk Score. The distribution of the
scotes obtained from the individuals across the population follows a normal distribution. The left tail
of the distribution contains the individuals with the lowest risk of developing the disease, and the
right represents those with the highest risk

Overall, the combination of cell biology studies [112,113] with GWAS results have
produced a greater understanding of the biology behind complex diseases [55]. However,
the study of the specific biological mechanisms that mediate the association between
genotype and disease remains one of the main open fields of study in biomedicine, and the
advancement of personalised medicine depends on its success.

4.6. Comprehensive GWAS Strategies for New Discoveries: An Example

As detailed in the previous sections, different strategies can be put in place to achieve
good power and to produce discoveries in GWAS. Here, we describe an example of how
an improved, comprehensive methodology for GWAS can reveal novel association loci ina
previously analysed, publicly available cohort. In this study [14], 22 age-related diseases
were analysed in 62,281 subjects from the GERA cohort. Ninety-four significant loci were
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identified, of which twenty-six had never been reported before, despite the fact that the
data had already been previously analysed.

A first essential feature in driving novel discovery was an extended imputation step.
Imputation was performed using four reference panels yielding 16,059,686 variants to
test for association. The variants encompassed a broad spectrum of frequencies and
types, including 2.6 M low-frequency and 5.5 M rare variants as well as 1.6 M small
insertion/deletions (indels), which are normally absent from DNA microarrays and were
thus excluded from analysis. Indeed, 3 of the 26 new loci corresponded to low-frequency
variants, and 7 corresponded to rare variants. Further, only a fraction of the 26 new loci
would have been genome-wide significant if the imputation had been performed with only
one of the individual haplotype panels.

A second feature ensuring an increased discovery power was the use of multiple
inheritance models in association testing. Typical GWAS only consider the additive model,
according to which disease risk is proportional to the number of risk alleles in a genotype.
However, dominant, recessive, or even more complex allelic interactions are known to
exist. Indeed, 20 of the 94 loci only showed genome-wide significance when non-additive
tests were applied. When focusing on the novel findings, 13 out 26 (50%) would have
been missed if considering the additive model only, indicating again the strength of this
approach in pushing discovery. Three of the thirteen non-additive signals corresponded to
rare variants with large recessive effects (OR 4.3-19.0).

This study highlighted the value of open access and data sharing since the re-analysis
using more refined and extensive methodologies led to the discovery of novel loci and
disease insights. The entire GWAS strategy for this comprehensive methodology was
integrated into a publicly available framework named GUIDANCE in order to facilitate
further studies.

5. Conclusions

In the recent years, the increasing availability of DNA and phenotypic information
and the ease of access to computational power and tools, combined with the statistical
methods that we have discussed here, have greatly advanced our understanding of the
genomic basis of complex traits and diseases. In this review we have presented an overview
of Genome-Wide Association Studies, a broadly successful method that can be used to
find associations between genomic variation and complex traits. Specially, the application
of these methodologies has led to the discovery of more than 276 thousand genomic
associations, for more than 4 thousand traits and diseases [49-51].

However, a significant proportion of the underlying genetic causes is still known to be
missing, an effect termed missing heritability [114]. Here, we presented the main known
GWAS limitations and discussed their consequences, which might partially explain this
effect. The need for statistical power is forcing studies to increase the size of their samples,
which comes at the expense of increasing computational and statistical challenges, which
impose important limitations to these approaches [13,14,90]. However, future gene—gene,
epistasis, and gene-environment interaction studies might also be able to recapitulate some
of this missing heritability and provide new insights for a better understanding of the
genetic basis of complex traits and diseases

Despite providing knowledge and relevant candidate markers for diseases, an impor-
tant limitation of this type of analysis is still the low applicability of the results that are
obtained into clinical practice. In the case of rare diseases, variants are identified on patients
with the disease to obtain an accurate diagnosis. In contrast, in the case of complex diseases,
the aim is to generate maps of genetic predictors for disease risk and to apply them before
the disease phenotype appears, ideally as we are born, allowing the design of preventive
clinical protocols. But unfortunately, the multifactorial nature of complex diseases makes
the prediction of their risk highly challenging. Current efforts include the generation of
polygenic risk scores to predict risk and disease by combining multiple genetic signals
identified through GWAS. It is therefore necessary to improve the methodological and
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statistical frames around association studies to align with the increase of samples and with
the growing computational limitations.

Similarly, the functional interpretation of associated variants to contribute to this
applicability into the clinics is also challenging and has not been well resolved. Currently,
the vast majority of variants that are significantly associated with a specific disease or trait
through GWAS do not directly disrupt gene sequences. Rather, these are found between
genes, regulating the expression of these genes [56,115,116] and not their specific function,
as is often the case in rare diseases. This makes the functional interpretation of associated
variants a tedious task that also requires experimental validation.

Finally, it is important to be aware that around 79% of GWAS participants are of
European ancestry, despite Europeans representing only 16% of the global population [117].
As a consequence, GWAS-derived results are predictably biased; for example PRS show
lower predictive accuracies in non-Europeans [82,118]. Thus, extending GWAS to under-
represented ancestries, including minority groups and isolated or indigenous populations
might help improve our understanding of complex diseases. Indeed, some studies have
shown how African/American and Hispanic/Latino populations contribute dispropor-
tionately to GWAS discovery, providing more signals than European samples with similar
sample sizes [117]. This is likely due to their genetic specificities, in terms of allele fre-
quencies or LD patterns, which would also favour the functional interpretation and the
discovery of causal variants in known loci. Several recent initiatives in this direction
include the H3Africa consortium [119] or the human pangenome project [120].

Altogether, GWAS have proven tobe an efficient strategy to identify the genetic factors
behind complex diseases. But despite the efforts, we believe we have uncovered only the
tip of the iceberg, considering the amount of different factors, including genetic variants,
that are involved in the risk, offset, and progression of these complex diseases. Coordinated
work across disciplines, including deep mathematical and statistical expertise, are thus
required to advance and to start building clinically relevant models for disease prediction
based on solid genetic architectures.
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Abbreviations

The following abbreviations are used in this manuscript:
EWAS EnvironmentWide Association Studies
GxE Gene-environment interactions

CxG Gene-gene interactions

GLM  Generalized Linear Models

GRM  Genetic Relationship Matrix

CWAS Genome Wide Association Studies
HMM  Hidden Markov Model

LD Linkage Disequilibrium

OR (Odds Ratio

PRS Polygenic Risk Score

SNV Single Nucleotide Variation
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