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Prefacio

Esta tesis trata diferentes aspectos de Información Cuántica, una nueva

rama de la física teórica en la que se trasladan resultados ya establecidos
de la Teoría de la Información Clásica al dominio cuántico. Contiene gran

parte del trabajo que he realizado durante los últimos tres años en el grupo
de Información Cuántica del Departamento de Estructura y Constituyentes
de la Materia de la Universidad de Barcelona, y en ocasiones en colaboración

con el Instituí für Theoretische Physik de la Universidad de Idannover y el

de la Universidad de Innsbruck.

La tesis está organizada como un compendio de seis artículos: los cuatro

primeros son sobre entrelazado de tres bits cuánticos y los otros dos sobre

estimación de estados. El primer capítulo es el único escrito en español,
proporciona una introducción muy general al campo y resume los principales
resultados que han sido obtenidos. Al final hay también una breve sección con

conclusiones. Es la mejor elección para los lectores que entiendan el español
y no sepan nada de Información Cuántica. En el segundo capítulo hay una

introducción más técnica al entrelazado, el ingrediente clave en muchas apli-
caciones de información cuántica. El objetivo del tercer y cuarto capítulo es

presentar, con bastante más detalle que en el primero, los puntos más im-

portantes tratados en esta tesis: se muestra la motivación y las conclusiones
de nuestro trabajo. Finalmente, los seis artículos, donde es posible encon-

trar las derivaciones explícitas de todos los resultados, se encuentran como

apéndices.
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Preface

The main subject of this thesis is Quantum Information, a new branch

of Theoretical Physics that translates known results of Classical Information

Theory into the quantum domain. It contains most of my work during the
last three years in the Quantum Information Group of the Departament
d’Estructura i Constituents de la Materia of the University of Barcelona,
and sometimes in collaboration with the Institut für Theoretische Physik of

the University of Hannover and of the University of Innsbruck.
The thesis is organized as a compendium of six articles: the first four are

about three-qubit entanglement and the other two about State estimation.

The first chapter is the only one written in Spanish, it gives a very general
introduction to the field and summarizes the main results that have been

obtainecl. At the end there is also a brief section with conclusions. It is

the best choice for those readers that understand Spanish and do not know

anything about Quantum Information. In the second chapter there is a more

technical introduction to entanglement, the key ingredient in many quantum
information applications. The aim of the third and fourth chapter is to

present, with quite more detail than in chapter one, the main points studied
in this thesis: it shows the motivation and the conclusions of our work.

Finally, the six articles, where it is possible to find the explicit derivation of
all the results, are given as appendices.
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Capítulo 1

Resumen

1.1 Introducción

El objetivo de esta tesis ha sido el estudio de diferentes problemas en Infor-
marión Cuántica, un campo joven y dinámico en el que se fusionan aspectos
de Teoría de la Información y de la Computación con la Mecánica Cuántica.
La Teoría de la Información analiza la manera de transmitir datos desde un

emisor a un receptor, mientras que la Teoría de la Computación se centra

en el modo en que éstos son procesados de cara a realizar una determinada

tarea. Aparentemente son dos disciplinas abstractas, en las cuales el estudio

es independiente de los dispositivos físicos mediante los que se codifique o

transmita la información. Esta premisa se ha revelado sin embargo falsa,
y la contribución de los nuevos resultados en Información Cuántica ha sido

capital para este cambio de paradigma.
La unidad básica de información es el bit, y su realización física puede

darse por medio de cualquier sistema que tome dos valores definidos. Así,
el paso o no de corriente eléctrica por un transistor puede servir para repre-
sentar los dos valores que toma el bit, el “0” o el “1” de la lógica booleana.

Con esta simple unidad de información pueden describirse todos los proce-
sos de computación y de transmisión de información que se dan hoy en día.

Todo ello se realiza en dispositivos que trabajan a una escala en la cual las

leyes de la Física Clásica ofrecen una correcta descripción de los fenómenos
naturales. Es sabido, sin embargo, que al pasar a escalas microscópicas, este
formulismo deja de ser válido y es la Mecánica Cuántica la que proporciona
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una correcta interpretación de los resultados experimentales, por lo que la

Física Clásica es una aproximación de la Mecánica Cuántica que funciona
bien para escalas macroscópicas. Cabe preguntarse entonces qué pasará si

la codificación de la información se lleva a cabo en dispositivos físicos mi-

croscópicos cuya descripción debe realizarse en términos cuánticos y ver si

ello supone alguna variación en la manera en la que la información puede
procesarse. Es importante incidir en el hecho de que si se produjera este

cambio, no podemos considerar el bit y el resto de elementos que aparecen
en la Teoría de la Información como entes abstractos, tal y como se ha venido

haciendo hasta hace poco, sino claramente dependientes del entorno físico en

el que se encuentran. De ese modo se haría evidente, y citando a Landauer,
que la “información es física”.

Hasta ahora toda justificación acerca de la importancia de plantearse si

el cambio en las leyes físicas supone una variación del tratamiento de la in-

formación ha sido dada desde un planteamiento estrictamente teórico. Pero

también desde el punto de vista experimental resulta muy interesante pregun-
tarse por las consecuencias que llevará el cambio desde una descripción clásica
a una cuántica. El desarrollo tecnológico de los dispositivos electrónicos está

mejorando de manera notable y se están alcanzando resultados espectacu-
lares en la miniaturización de los componentes. De seguir la actual tendencia,
se alcanzará la frontera en la que los efectos cuánticos empiezan a manifes-
tarse. Es importante por tanto conocer la influencia que éstos tendrán en los

sistemas de información, así como saber si es posible obtener algún tipo de

ventaja en caso de que puedan ser controlados.
La Información Cuántica busca dar respuesta a estas preguntas, cono-

cer las variaciones que se derivarán del cambio de la física de los disposi-
tivos, en la transición de la Mecánica Clásica a la Cuántica. Los resultados

que hasta ahora se han obtenido en esta disciplina muestran que espectacu-
lares y novedosos procesos de tratamiento de la información pueden darse

utilizando las leyes cuánticas. A parte de ofrecer interesantes perspectivas
teóricas (también para una mejor comprensión de la Mecánica Cuántica),
el interés es básicamente de tipo práctico, de cara a conocer las modifica-
ciones que se podrán obtener si sigue el actual progreso tecnológico. De
hecho en el campo de la óptica cuántica ya se han realizado múltiples ex-

perimentos desarrolando parte de estos nuevos resultados. Conviene notar

que todo el tratamiento previo de la Teoría de la Información Clásica se en-

cuentra recogido en la versión cuántica (es un caso particular), puesto que la
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Mecánica Clásica no deja de ser, como se ha mencionado, una aproximación
de la Mecánica Cuántica. Al codificar la información en estados cuánticos,
dos son los fenómenos que aparecen sin análogo en la Teoría de la Infor-
mación Clásica: la superposición de estados y las correlaciones cuánticas o

entrelazado (en inglés entanglement). En el resto de esta sección discutiré-
mos con algo más de detalle estos dos puntos, así como las dificultades que

aparecen al intentar leer la información almacenada en un estado cuántico

debidas a la no ortogonalidad.

1.1.1 Superposición de estados: el bit cuántico

La Información Cuántica estudia cómo manipular y procesar datos que han

sido almacenados en estados cuánticos. De manera similar al bit clásico, un
estado cuántico de dos niveles representa la unidad básica de información

cuántica, el bit cuántico o qubit. Matemáticamente se tiene un vector, |-0),
perteneciente a un espacio vectorial complejo de dimensión dos, C 2

. Los

dos valores lógicos del bit serán entonces los dos elementos de una base

ortonormal en este espacio,

Dado que estamos en un espacio vectorial, podemos encontrar cualquier es-
tado superposición resultante de la combinación lineal de estos elementos,
1'0) = o:|0) + ¡3 11), donde a y (3 son dos números complejos que satisfacen

|aj 2 + \(3 \ 2 = 1. Con ello los posibles valores que puede tomar el bit cuántico

son infinitos, al contrario de lo que sucedía para el bit clásico.

Consideremos el caso en que se tiene que realizar una tarea en la que se

llama a una función /. Clásicamente los N = 2 d posibles valores de entrada

se codifican por medio de d bits, por lo que si queremos saber el valor de la

función para todas las entradas es necesario calcularla N veces. Ahora bien,
si preparamos un estado cuántico de d qubits, |^) E C 2 <S> C 2

... C 2
= C 2

,
en

el estado superposición de todos los elementos de la base, es decir

W = ¿(|0 ... 00) + |0 ... 01) + ... + |1... 11)) =¿
2

¿
l

I i), (1.2)
«=0

y aplicamos / sobre este estado, se tiene la información de todos los valores

que toma la función distribuida en el estado resultado con una única llamada
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( 1 . 3 )

a /,

W =¿
2

EI/W>-
i=O

Por medio de la superposición se tiene un paralelismo cuántico que permite en

principio acelerar la realización de diferentes tareas. Sin embargo es impor-
tante tener en cuenta que no toda la información en el estado superposición
es accesible debido a la no ortogonalidad de los estados cuánticos, por lo que
el método a la hora de procesar y leer los datos no es trivial.

1.1.2 El entrelazado cuántico

El entrelazado es un fenómeno que no puede tener análogo en una descripción
clásica de un sistema físico y que aparece en sistemas compuestos de dife-
rentes partículas. Para muchos de los estados, puros o mezcla, que describen
su preparación, se observan unas correlaciones entre las diferentes partículas
o subsistemas que no pueden explicarse por medio de ningún modelo lo-
cal clásico, es decir son intrínsicamente cuánticas y suelen también llamarse

propiedades no locales del estado. Al no tener análogo clásico, es muy im-

portante conocer qué mejoras puede suponer el poder manipular este nuevo

tipo de correlaciones, dado que no será posible encontrar ningún método al-
ternativo utilizando dispositivos clásicos capaz de realizar las mismas tareas.

De hecho muchas de los nuevos, y en ocasiones espectaculares, resultados en

Información Cuántica se basan en el aprovechamiento de estas correlaciones,
y en este sentido se suele afirmar que el entrelazado es un recurso de gran
utilidad práctica.

El típico esquema en gran parte de las aplicaciones de Información Cuánti-
ca consiste en diversos observadores que comparten un estado en el que exis-

ten correlaciones cuánticas entre ellos. En general, las diferentes partes
no pueden juntar sus subsistemas y realizar operaciones conjuntas, pero
sí que pueden manipular de manera arbitraria su subsistema local y comuni-
carse de un modo clásico. En esta situación estamos interesados en conocer

cómo pueden los diferentes observadores modificar las propiedades del estado
cuántico en el que se encuentran, y en particular las correlaciones cuánticas
entre ellos, por medio de operaciones locales y comunicación clásica.
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1.1.3 La no ortogonalidad de los estados

El bit cuántico como hemos visto puede tomar un número infinito de valores,
lo que comparado con las dos posibilidades clásicas permite agilizar ditintas
tareas por medio del llamado paralelismo cuántico, como en (1.2) y (1.3). Sin

embargo es un resultado bien conocido en Mecánica Cuántica que se pueden
distinguir con certeza sólo estados que sean ortogonales entre sí. Eso implica
que en un sistema de dimensión igual a d, únicamente d estados pueden ser

discriminados, o en el caso del bit cuántico sólo dos. Parecería por tanto

que se pierden todas las posibilidades que aparecían al codificar datos en bits

cuánticos, dado que el paralelismo cuántico queda en la práctica a un nivel en

el que no puede ser utilizado. Si bien las consecuencias no son tan dramáticas,
es cierto que la no ortogonalidad es un problema de gran importancia en

Información Cuántica. Se debe conocer entonces la mejor manera en que la

información codificada en estados cuánticos puede ser recuperada de cara a

reducir sus efectos. Es sabido que dado un estado desconocido no es posible
en general distinguirlo con certeza, pero queremos conocer la mejor manera
en la que puede ser estimado.

1.2 Resultados

El trabajo realizado en esta tesis se ha centrado de manera principal en

estudiar el entrelazado en sistemas compuestos de distintas partes, así como

en la estimación de estados cuánticos, que son dos de los problemas más

importantes en Información Cuántica. El objetivo de esta sección es recoger
de manera resumida los principales resultados encontrados.

1.2.1 Entrelazado en sistemas de tres bits cuánticos

El entrelazado es un recurso en Información Cuántica, por lo que es im-

prescindible conocer sus propiedades de cara a su aprovechamiento. Como
se ha mencionado anteriormente, se analizan sistemas de diferentes obser-

vadores que comparten un estado en el que hay correlaciones cuánticas (es
decir sin análogo clásico) entre ellos, y se estudia cómo varían estas córrela-
ciones al actuar cada parte en su subsistema y comunicarse clásicamente con

el resto. Esto permite conocer de un modo cualitativo, y también cuanti-

tativo, las propiedades de entrelazado de los distintos estados cuánticos de
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sistemas compuestos. Existen dos situaciones distintas en las que se rea-

liza este análisis: la primera es cuando las distintas partes comparten una

copia del estado cuántico, mientras que la segunda se centra en un régimen
asintótico en el que se tiene un número infinito de copias del estado, en un

análogo del límite termodinámico. Los primeros pasos en ambas direcciones

se dieron para el caso de espacios de dos partículas, tanto para estados puros
como mezcla. Podemos afirmar que las correlaciones cuánticas que se tienen

en estados puros en sistemas de dos observadores están bien entendidas,
tanto en el límite asintótico como en el caso de una única copia, mientras
que para matrices densidad existen todavía varias preguntas fundamentales

que permanecen abiertas.

En esta tesis nos hemos centrado en el estudio de las correlaciones cuánti-

cas en sistemas de tres bits cuánticos que se encuentran en un estado puro,

|d>) E C 2 (g> C 2 ®C 2
. No hemos considerado el límite asintótico, por lo que se

tiene una única copia del estado. Un estado genérico de tres bits cuánticos

pertenece a un espacio complejo de dimensión ocho, por lo que depende de

dieciséis parámetros reales, y si tomamos los estados ya normalizados, este

número se reduce a quince. Es sabido que las propiedades de entrelazado

o no locales de un estado puro de tres qubits dependen de seis parámetros
reales (cinco si están normalizados), por lo que es importante individuar, a

partir de los dieciséis (quince) parámetros que se necesitan para especificar
un estado, un conjunto de seis (cinco) que releje toda la información acerca

de sus correlaciones cuánticas. En el artículo que se encuentra en el apéndice
A se demuestra que es posible escribir cualquier estado de tres bits cuánticos

en una forma canónica en la que aparecen seis coeficientes especificando sus

propiedades no locales. De este modo dos estados, en el caso de una copia,
tienen el mismo entrelazado si y sólo si son iguales los coeficientes de sus

dos respectivas descomposiciones. Es la primera parametrización completa y
mínima de las correlaciones cuánticas de estados puros de tres bits cuánticos

que se ha obtenido. La idea en la que hemos basado la descomposición es

en buscar la manera de representar el estado en la que toda la información
sobre sus propiedades locales es minimizada, de modo que los parámetros no

locales son fácilmente reconocibles.

Siguiendo con esta idea, en el artículo del apéndice B hemos comparado
las maneras mínimas de escribir cualquier estado para obtener una repre-
sentación simple de sus correlaciones cuánticas que facilite posteriores api i-
caciones de ellas. Además se ha relacionado la parametrización encontrada
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con otras ya existentes que no eran completas o mínimas.
Las propiedades de entrelazado en estados puros de tres bits cuánticos

empieza a ser entendidas, sobre todo en el caso de una copia. En el artículo
del apéndice C, extendemos parte de la estructura ya conocida a estados

mezcla. Definimos una división del espacio de matrices densidad de tres

bits cuánticos en términos de conjuntos compactos y convexos que están
contenidos el uno en el otro. El esquema que resulta aparece como una gene-
ralización natural de varios de los conceptos y resultados ya existentes para
estados puros de tres qubits, y para estados de sistemas de dos partículas.
Además permite una traslación fácil de varias de las técnicas matemáticas

que ya se han utilizado para el estudio de las propiedades de entrelazado de

las matrices densidad de espacios de dos observadores.

Finalmente, en el artículo del apéndice D hemos llevado a cabo una

aplicación práctica de los resultados encontrados en los trabajos anteriores.

Como se ha indicado, las descomposiciones encontradas permiten escribir

estados genéricos de tres bis cuánticos en representaciones simples que faci-
litan el estudio de sus correlaciones cuánticas. Nos centramos en el estado

puro de tres bits cuánticos que describe las polarizaciones de los tres fotones

resultantes de la desintegración del ortopositronio, el estado ligado de un

positrón y un electrón. Analizamos las correlaciones cuánticas de este estado

para demostrar la imposibilidad de que un modelo clásico refleje los resul-

tados estadísticos que se derivan de ellas. De hecho, aparece un contraste,
en principio experimentalmente medible, entre las predicciones que realiza la

Mecánica Cuántica para el estado de tres fotones analizado y cualquier teoría
local. Demostramos que la contradicción que se tiene es más fuerte que la

que se encontraría para cualquier estado entrelazado de dos bits cuánticos.

1.2.2 Estimación de estados

El segundo tema que se ha tratado en esta tesis es la estimación óptima de

estados. Dado un estado desconocido, debido a la no ortogonalidad nos es im-

posible distinguirlo con exactitud a no ser que un número infinito de copias de

él estén a nuestra disposición. Como es lógico no es ésta la situación habitual,
en general tendremos un número finito de copias del estado incógnita, por lo
que sólo podemos aspirar a estimarlo sin garantizar una seguridad completa.
Se debe encontrar entonces la estrategia que en media se comporta mejor, es

decir que maximiza la ganancia de información acerca del estado en función



de los recursos, o número de copias, que se poseen. Los dos artículos en esta

tesis que consideran problemas de estimación se encuentran recogidos en los

apéndices E y F. Ambos tratan sólo con estados puros, pero mientras que el

primero se centra en diseñar la mejor estrategia para la estimación del estado
en su totalidad, del conjunto de sus propiedades, el segundo sólo analiza la

mejor manera de poder inferir la cantidad de entrelazado en el caso de un

estado puro de dos bits cuánticos. A continuación resumimos con más detalle

los resultados hallados.
En el artículo que se encuentra en el apéndice E buscamos la mejor nía-

ñera de estimar un estado puro de dimensión arbitraria d. Se utiliza una

función fidelidad que mide el grado de bondad de la estrategia de estimación:
así la mejor estrategia será aquella que maximice la fidelidad. Puesto que el
máximo que puede tomar esta función ya ha sido calculado, se debe encon-

trar la medida que permite alcanzar este valor. La resolución del problema
es conocida cuando el estado puro a ser estimado pertenece a un espacio
de dimensión dos, es un bit cuántico. En el artículo del apéndice E exten-

demos este resultado para dimensión arbitraria, diseñamos el método para
maximizar la fidelidad, y como ejemplo damos la contrucción explícita de

la estrategia de estimación óptima para el caso en que se tienen dos copias
de un estado desconocido de dimensión tres. Se observa sin embargo que la

generalización es no trivial y que se tienen nuevos elementos que no aparecían
para el caso de qubits.

Finalmente, en el artículo del apéndice F se analiza un problema ligera-
mente distinto: dado un estado desconocido de dos bits cuánticos compartido
por dos observadores o partes, debemos hallar la mejor manera de estimar las
correlaciones cuánticas entre ellos. Se debe notar que en este caso no estamos

interesados en la determinación del estado en su totalidad, sino sólo en al-

guna de sus propiedades. De hecho un estado de dos qubits, ya normalizado,
depende de siete parámetros reales, pero sus propiedades no locales están

recogidas por un único valor, que es el que debe estimarse. Consideramos el
caso más general en que las dos partes pueden juntar sus sistemas cuánticos y
realizar operaciones globales sobre ellos, pero demostramos que la estrategia
de estimación óptima puede ser llevada a cabo por uno de los observadores
sin necesidad de colaboración del otro. Esto lleva al interesante resultado de

que las propiedades no locales de un estado de dos bits cuánticos pueden ser

estimadas de manera óptima localmente por una de las partes.
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1.3 Conclusiones

En esta tesis hemos analizado algunas de las cuestiones concernientes a dos
de los temas más importantes en Información Cuántica: la estimación de
estados y las propiedades de entrelazado, o correlaciones cuánticas en estados
de sistemas compuestos.

En el primer caso, los principales resultados hallados son:

• Hemos diseñado la estrategia óptima para la estimación de estados

puros de dimensión arbitraria, generalizando resultados ya existentes.

• Demostramos que en el caso de estados puros de dos bits cuánticos, la
estimación de su entrelazado, es decir de sus propiedades no locales,
puede realizarse localmente.

En todo este tipo de aplicaciones es importante saber explotar las simetrías
del problema, dado que ello facilita la obtención de la estrategia óptima. Si-

guiendo con esta línea, una de las preguntas que quedan abiertas es encontrar

la mejor manera de estimar estados mezcla de dimensión mayor que dos. De

todos modos a un nivel fundamental casi todas las ideas han sido entendidas,
y el problema se reduce en gran parte a un ejercicio de cálculo.

Para el caso de las correlaciones cuánticas, pensamos que esta tesis ha

contribuido a mejorar la comprensión de las propiedades de entrelazado de

sistemas de tres bits cuánticos, y en general a entender las dificultades que

aparecen al intentar extender los resultados ya conocidos para espacios de
dos partes a sistemas de más observadores. Los siguientes puntos resumen

nuestro trabajo en este tema:

• Hemos encontrado una descomposición de todo estado de tres bits
cuánticos en la cual aparece un conjunto de parámetros especificando
de manera completa las propiedades no locales del estado.

• Definimos una estructura para el espacio de matrices densidad de tres

bits cuánticos que extiende muchos de los resultados ya conocidos

y que permite una traslación sencilla de gran parte de las técnicas

matemáticas que se han venido utilizando hasta ahora.

• Analizamos el estado puro que describe las polarizaciones de los tres

fotones obtenidos en la desintegración del ortopositronio y mostramos
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que sus correlaciones cuánticas son más “fuertes” que las de cualquier
estado de dos qubits a la hora de descartar cualquier teoría local, como
por ejemplo la Mecánica Clásica.

Desde un punto de vista teórico una cuestión interesante que queda por
resolver es el comportamiento de las correlaciones cuánticas de estados puros
de tres partes en el régimen asintótico de infinitas copias. Pero quizás todavía
más importante es encontrar aplicaciones prácticas del entrelazado entre más

de dos partículas. Para el caso de estados mezcla quedan preguntas básicas

por responder aún en el caso de sistemas de dos observadores; por encima de

todas, conocer, dada una matriz densidad, cómo detectar si contiene corre-

laciones cuánticas, y en caso afirmativo, si son aprovechables.
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Chapter 2

Quantum Entanglement

2.1 Introduction

Quantum correlations or entanglement arnong many partióles is one of the
most intrinsic properties of Quantum Mechanics. From an historical point
of view, its importance was first related to the fact that there does not exist

any local realistic (LR) theory á la Eintein-Podolsky-Rosen (EPR) [1] be-

ing able to reproduce these correlations. Indeed, all the LR theories satisfy
some inequalities, known as Bell inequalities [2], that are violated by quan-
tum entangled States. This provides us experimental conditions for testing
LR theories against Quantum Mechanics. Many experiments have been per-
formed showing a violation of some Bell inequalities [3], and proving that

no LR theory can reproduce all the correlations observed in Nature. In this

sense, entanglement is crucial for our understanding of Quantum Mechanics.

More recently, it has been realised that entanglement can also be a very
useful resource from a more practical point of view. Contrary to what hap-
pens for Quantum Mechanics, Classical Physics admits a description by
means of a LR model (indeed it is a LR theory). This means that there

are some correlations that do not appear in our classical world , and they are

intrinsically quantum. Can we take profit of this new kind of correlations?

Quantum Information gives an affirmative answer to this question: quantum
teleportation or superdense coding are examples of tasks that use entangle-
ment in order to achieve some results which are not possible in a classical
environment. Of course, these information processings have not classical
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analogue and can not be explained in terms of Classical Information Theory.
In this chapter we review most of the known results concerning quantum

correlations, focusing into the case of two systems, i.e. bipartite entangle-
ment. After giving some definitions, we consider Bell inequalities and their

violation by mearis of an entangled puré State. Then, we show some of the

applications of entanglement (teleportation and superdense coding), and we

study the differents ways of characterizing it. Although we rnainly restrict

our analysis to puré States, in the end we will also sketch the mixed-state

case.

2.2 Quantum correlations

Consider a composite quantum system of N parties, or subsystems, each

described by a Hilbert space of dimensión <¿¿, i = 1,..., N. The global Hilbert
space is equal to the tensor product of all the spaces, di = di\ ® ® 7-Ln =

'Hi, with dimensión d = flili The preparation of the system is given
by a quantum puré State in the whole space |T) <E di.

A puré state is called separable when it can be expressed as the tensor

product of puré States in each party, i.e. |T) is separable if and only if

|T) = |^i) 0 |^2 ) O • • • ® \^N ), (2.1)

where |^) G C di
. A state that can not be expressed in this form is non-

separable or entangled. There are no correlations between the subsystems
when the preparation of the whole system is described by a state (2.1).

This definition can be easily extended to density matrices, and a rnixed

state, p, is said to be separable when it can be written as a convex combi-

nation of projectors onto product States [4], i.e. there is a decomposition of
the state in terms of separable puré States,

P = ¿P3#Í)(V>ÍI ® IV'wX’/’tl = ¿Píl^X^I, (2.2)
3=1 3=1

where pj > 0, D)=1 Pj = 1- The state p is a probabilistic mixture of the

product States |T)), j = 1
,..., r, so it does not contain any type of entangle-

ment and all its correlations are classical. In fact, p can be prepared by the

parties when they are able to perform locally any quantum operation and
are allowed to use only classical communication.
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2.3 Bell inequalities
As it has been mentioned, a State in a composite system is entangled when
it contains quantum correlations, i.e. the subsystems are correlated in a way
that can not be described by any LR model. But, what is understood by a

local realistic model? And, how can we know that none of these models is

able to reproduce these kind of intrinsically quantum correlations?

The answer for the first question comes from the scheme proposed in [1].
There, it is stated that any complete local realistic theory must not contradict

the following three quite plausible premisses:

• Locality: No change can be produced in one system by acting in another

space-separated system.

• Reality: If our theory predicts the valué of a physical quantity with

certainty without disturbing the system, there exists an elernent of

physical reality corresponding to this quantity.

• Cornpleteness: Every elernent, of physical reality must appear in our

theory.

There is an infinite number of such theories, but, as Bell proved [2], there are

some constraints that, they should verify. Let, us sketch here his argument.
Consider for instance a composite system of tvvo space-separated spinQ

particles, A and B (or Alice and Bob), whose observed statistical results are

described, in terms of Quantum Mechanics, by the singlet, State,

*->
1

71 (| 01)-| 10>). (2.3)

Adapting the three assumptions of [1] to this situation, due to the perfect
correlations present in (2.3) and because of locality (the subsystems are space-

separated), any spin component, of each party is an objective property of A
and B and, then, it, should be reflected by our complete theory. Nevertheless,
Quantum Mechanics can not assign definite valúes to spin components that
do not commute, so it does not provide a complete description of the state

of the system. The authors of [1] claimed that there should be an alterna-

ti ve LR, description that, without changing the statistical results predicted
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by Quantum Mechanics, which are right, is able to overeóme this lack of

completeness.
In this new theory there will be a space, A, of possible States for the whole

system, and the description of the observed statistical results consists on a

probability distribution p(X)dX over this space of States, where A is a set of

coordinates parametrizing it. Each of the parties is able to measure the spin
component of the corresponding partióle, where the differents measurements

are specified by a set of parameters n a and 74 for A and B (the directions of

the Stern-Gerlach apparatus in this case), the outeome being labelled by ±1.

Since the theory is complete, there should exist some functions, a, predicting
the outeome of an experiment specified by n a when the state of the system
is A. No dependence on party B, and in particular on 74 ,

is allowed for this

function because of locality, i.e. the second space-separated system can not

influence the measurement A perforaos. Simple algebra shows that for four

measurements, a and a' for party A, and b and b' for party B, it is verified

ab + ab' + a'b — a'b' = ±2, (2-4)

and then, the corresponding expectation valué of these combination of ob-
servables is bounded by

— 2 < (ab + ab' + a'b — a'b') < 2. (2-5)

This is an example of a Bell inequality found in [5]. It is not difficult to prove
that for the singlet state (2.3) there are four directions, na

= (0,0,1), ñ'a =
(1,0,0), ñ„ = (1/ a/2, 0, "1/ a/2) and ñ'„ = (1/A,0,-1/V2), or quantum
observables, specified by ñ%

• a, where i = a, a', 6, b' and a = (aT , <Ty , o~), such
that (2.5) takes its máximum valué, which is equal to 2^/2. The consequences

resulting from the violation of this Bell inequality are very strong, since rio

LR model, following the three EPR premisses, will be able to reproduce this

statistical valué. This answers the second question raised at the beginning
of this section.

It is evident that this demonstration depends on the initial state (2.3), but
similar (and even stronger) results have been obtained for higher dymensional
systems of two partióles and systems of more than two parties. Entanglement,
or nonseparability, plays a crucial role in these derivations and indeed it has
been proved that any puré state which is not separable violates some Bell

inequality [6], while product States do not. Since Classical Physics is a LR,



15

theory, these correlations cannot be observed in our classical world
, they are

intrinsically quantum and Quantum Mechanics is said to be nonlocal.

2.4 Entanglement as a resource

In the preceeding section we have shown the importance of entanglement from
a very fundamental point of view: entangled States contain some kind of cor-
relations that do not have analogue in Classical Physics, since the latter is a

LR theory. One may wonder whether these intrinsically quantum correlations

are useful, whether it is possible to find some applications taking advantage
of them. Most of the recent quantum information processings are based on

this idea: they use this quantum feature as a resource for accomplishing
some tasks that are not possible in Classical Information Theory. Indeed,
entanglement plays a key role in many quantum information applications,
such as, for instance, quantum cryptography [7], quantum error-correction

[8], superdense coding [9] and quantum teleportation [10]. In this section, we
review superdense coding and teleportation, in order to illustrate with these

tvvo examples the usefulness of entangled States.

2.4.1 Superdense coding
Consider two observers A and B, Alice and Bob, who share an entangled
State,

l-m = A(|0h ® |0>B + |1>¿ ® |1 )b), (2.6)

where each of the parties can manipúlate only one of the two subsystems. As
we will see, the singlet State and |T + ) are examples of a maximally entangled
state of two spin-^ particles, or qubits [11]. Alice wants to send two bits of
classical information to Bob. She can choose a unitary transformation, f7¿,
from the set {/, ax ,

icryj az } and apply it to her qubit. Then, she sends her

partióle or qubit to Bob, who is now able to manipúlate the two-qubit state
|dq) = Ui <S> /|T+ ). He doesn’t know the unitary transformation performed
by Alice, but, since the four States |$¿), with i = 1,..., 4, are orthogonal, he
can recover it with just a Yon Neumann measurement in the basis given by
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the four states

|4>+ ) = d=(|oo) + |ll» = /®/|*+ >

I®") = 7^=(|00> — 111)) = az ® I | cí+ )

|*+ ) = ^(|01} + |10» = crx ®/|<I>+ )

I*") = 7^|(|01) — 110)) = iav ® / |‘í>+ )- (2.7)

This is the so-called Bell basis. At the end of this protocol. two bits of

classical information have been transmitted from Alice to Bob by sending
one of the qubits of a maximally entangled State of two qubits, initially
shared by sender and receiver. This quantum information process is known

as superdense coding.

2.4.2 Quantum teleportation
Quantum teleportation is another quantum information application that uses
similar techniques. In this case Alice wants to transmit a spin-A partióle to

Bob, but the qubit cannot be sent since only classical communication can be

performed faithfully. If Alice knows the state of her partióle, the direction of

its Bloch vector, she can use a very large string of classical bits for codifying
it, and send it to Bob, who prepares a quantum system according to the

received information. Note that the state in Bob’s side can not be equal to
Alice’s unless an infinite number of classical bits are transmitted. Idowever

the situation is still worse if Alice doesn’t know her state! Of course, she

can measure it and send classically to Bob the partial information she has
obtained. Idowever, this solution is approximate, and the initial state is

destroyed after the measurement. Quantum teleportation solves this problem
exploiting the nonlocality of entanglement. If we provide the two observers
with a maximally entangled state of two qubits (2.6), Alice is able to send
all the information about her unknown qubit to Bob, without sending the

partióle!
A maximally entangled state (2.6) is shared by the two parties. Alice has

an unknown qubit, in state |Q) = <a|0) + ft\l) € C 2
, that she wants to send
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to Bob. The global state is

W = W ® T(l°°> + |11)). (2.8)

where Alice can manipúlate the first two qubits, and the third one is in Bob’s
hands. It is easy to see that this state can be written as

l*> = l(|*O(-a|0)-/J|l>) + |*+>(-a|0> + /J|l>)

+ I$->H1) + /310)) + |$+>(a|l) - /3|0))) . (2.9)

Alice now performs a measurement in the Bell basis (2.7) on her two qubits.
Due to the correlations of the entangled state, Bob’s state is projected, with
equal probability, into one of the following four States

—a|0) — (3\l) = -\i>)
—a|0) + (3\l) = -az \i>)
a|l)+^|0) = ax \ip)
a\l) - (3\0) = -idyW ( 2 . 10 )

Alice sends the result of her measurement to Bob, by means of two bits of
classical information, and Bob, after receiving them, can apply the corre-

sponding unitary transformation in order to recover 1-0). Note that |0) is
in Bob’s hands but he doesn’t know the state. However, all the information

about the partióle has been transferred from Alice to Bob just using two bits

of classical communication and the pre-shared maximally entangled state.

Teleportation is one of the most spectacular quantum information appli-
cations that use entanglement as a resource. After completing the protocol,
the whole state is separable respect the partition A — B

,
i.e. the entanglement

has been consumed. Moreover, it does not allow for superluminal signaling,
since Bob can not infer any information about the unknown Alice’s qubit
until he receives the two bits of classical information. Finally, note that no

trace of the unknown partióle remains in Alice’s hands, and therefore, there
isn’t any contradiction with the no-cloning theorem [12].
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2.5 LOCC: the set of local operations and

classical communication

Entanglement are the quantum correlations that appear in composite quan-
tum Systems. Given a state, we can always increase the amount of quantum
correlations between the parties performing some global operation over the

state. As an example of entangling operations in C 2
® C 2

,
take the unitary

transformation that changes the product basis \ij ), where i = 0,1 (j = 0,1)
is an orthonormal basis in A (B), into the Bell basis (2.7), or a measurement
in this basis, known as Bell measurement. Nevertheless, this is not the usual
situation in most of the quantum information applications, where the parties
are in space-separated locations and can not perform joint operations on the

global system. Usually, they are only able to make any quantum operation
on their local system and to communicate classically with the rest of the par-
ties. It is then very useful to study how quantum States of composite Systems
change their entanglement properties under this restricted set of quantum
operations, i.e. under local operations assisted with classical communication

(LOCC). Note that entanglement is a resource that can not increase under

LOCC, since classical communication just increases the amount of classical

correlations among the subsystems, while local (quantum) operations do not

correlate the parties at all. Thus, our scenario for the study of entanglement
will consist on composite systems where the parties are allowed to rnariip-
ulate arbitrarily their own system and to broadcast the implemented local

operation. 1

2.6 Bipartite entanglement
In the preceding sections we llave defined what entangled States are and we

have shown the utility of these States, either from a fundamental point of view
or in practica! quantum information applications. Although entangled States

can be shared by any number of parties, our reasonings above were mainly
restricted to two-party systems. In fact, bipartite pure-state entanglement
is rather well-understood, and in this section we review some of the most

1 A detailed mathematical formulation of quantum operations is given in [13], while see

[14] for the restricted case of LOCC.
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important results. In the next capter three-party, and in particular three-
qubit, entanglement will be analyzed.

2.6.1 Schmidt decomposition
The aim of this section is to study the quantum correlations that appear
between two subsystems, A and B. The Hilbert space of the whole system
is given by the tensor product of the two Hilbert spaces associated with

each subsystem Tia and Tib, with dimensión d¿ and dB - A puré state of the

composite system corresponds to a vector |T) E C d
- A ®C ÚB

. We can build an

orthonormal basis for the global system from two orthonornormal bases in

each subsystem, and any puré state, |T), can be expressed in this basis as

(Ia dB

l*) = EE*«l*i>, (2-ii)
%— 1 j=1

where {11),..., | d¿)} ({|1),..., | dB )}) is the basis for A (B) and ty are the

coordinates of the vector in the product basis \ij). Define the d¿ x dB matrix

T with elements (T)¿j = Uj.

Theorem 2.1 (Schmidt decomposition) [15] Suppose a normalized state

of a composite system, |T) € C dA ®C dB
,
whose coordinates in a product basis,

| ij), are given by the matrix T. There exists a choice of the local bases such

that T has only diagonal terms, and thus, the state written in this basis is

¡'O = ¿ (2.12)
i—1

where r < min(d^, d^) and olí are positive numbers satisfying Jfi oí] — 1.

Proof: Starting from (2.11), the effect of a change of basis in the first (sec-
ond) subsystem can be represented by left-multiplying (right-multiplying)
the matrix of coordinates, T, by a unitary matrix Ua (JJb)- It is a well-

known result that it is always possible to diagonalize any matrix by means

of two unitary transformations (singular valué decomposition),

Td = UaTUb ,

where Td has only positive diagonal terms. □

(2.13)
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Equation (2.12) is the Schmidt decomposition of State |T), a* are its

Schmidt coefficients and r, the number of nonvanishing coefficients, is the

Schmidt number. This decomposition is unique. The proof of the theorem

provides us the method to be applied in order to build the decomposition.
The change of local bases are given by the eigenvectors of the matrices T^T
and TT\ while the Schmidt coefficients are the square roots of the eigenvalnes
of these self-adjoint matrices (which are equal). In a similar way, deñning
pA = tr jB (|T)(T|) and pB = tr y4 (|T)(T|), the spectrum of these density
matrices gives us the Schmidt decomposition of the initial State. Note that
the eigenvalues of pA and pB are equal and correspond to the square of the
Schmidt coefficients.

2.6.2 Local unitary transformations

The study of the entanglement properties of quantum states is related to

the way they transform under the set of local operations and classical corn-
munication. Consider two states, |, |T 2 ) € C d <g> Cd

. We can take the

same dimensión in each subsystem without loosing generality because the

Schmidt number satisfies r < min(d^, ds) — d. These states have the same

amount of quantum correlations when they can be transformed one into an-

other by LOCC with probability equal to one. Then, they are equivalent in

terms of quantum nonlocality, |\Eq) ~ |4/ 2 ). This condition corresponds to

see whether the two states can be connected by local unitary transformations

[14], i.e. two states have the same amount of entanglement when they can be

transformed reversibly by local unitaries, LU. The Schmidt decomposition
is a very useful tool for checking this condition. Indeed, denoting by {c¿[^}
the Schmidt coefficients of the State | vLy), j = 1,2, we have that |\Eq) ~ | T 2 )
if and only if = cq ,

i = l,...,d. Thus, the Schmidt coefficients can

be thought of as the coordinates in the space of bipartite entanglement, and
at most d numbers, the norm being included, are enough for specifying the
nonlocal properties of a quantum state belonging to C d ® C d

.

Another approach to the same problem is to look for polynomial combina-
tions of the coordinates, ty in (2.11), that are invariant under local unitary
transformations [16, 17]. We cari parametrize the space of entanglement
properties in an alternative way in terms of, at least, d of these invariant

quantities that are linearly independent. It can be proved that the algebra
of polynomial invariants of two-particle states is generated by the traces of
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powers of the local mixed State, tr (p\), with i = 1, . . .

,
ri [17] (or tr (pz

B ),
since the local states have the same eigenvalues). Note that traces of higher
powers, i > ri, of pA (Pb ) can be written in terms of this set of traces because
of the Cayley-Hamilton theorem. It is easy to relate these functions to the

Schmidt coefficients.

2.6.3 LOCC transformations in the single-copy case

Local unitary transformations are the type of LOCC that connect states

with the same entanglement properties. However, it is possible to relax this

condition and, starting from a single copy of a State |T) of the composite
System, try to determine those states that we can reach using LOCC, either
in a deterministic way or with some nonvanishing probability.

In the first case, we look for those states, |<L), into which |T) can be

converted by LOCC with probability equal to one, denoted by |d>) ==> |<L).
When this transformation is possible, the state |\h) is at least as useful as

|d>) for any task involving quantum correlations, so we will express this fact

in terms of entanglement as |<k) < |T). The necessary and sufficient con-
ditions for these deterministic transformations were given by Nielsen [18],
pointing out a very interesting connection between entanglement and the

mathematical theory of majorization.

Theorem 2.2 (Nielsen) [18] Consider two states of a composite system,
|T), |d>) £ Cd ®C d

. Denote by X1 '
= (Af,..., X ]¡) the vector with the square of

the Schmidt coefficients of |T) taken in decreasing order, i.e. Af = (crf) 2
,

and Af > A'J' > ... > X]¡, and construct the analogous X (p for |T). The state

|T) can be transformed into jd») by LOCC in a deterministic way if and only
if A v|; is m,ajorized by X^ (denoted by A vl/

-*< X (]> ), which means that for each k

EAf <¿Af, (2.14)
i— 1 í= 1

with equality for k = d.

Proof: See [18]. □

Note that this theorem provides a partial ordering in the space of en-

tangled states, although we can find states such that neither |T) =y |d>)
ñor |T) =4> |T) are possible. It should be emphasized that Nielsen proves
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the theorem building the LOCC protocol, the sequence of operations, that
achieves the deterministic transformation.

For the second situation, we look for probabilistic conversión. Nielsen’s
theorem gives the conditions for transformations with probability one, but if

this is not possible, we may wonder whether the States can be connected with

some nonvanishing probability, |T) —y |T), and if yes, what the máximum

of this probability, P(T —y T), is. The answer to these questions were given
by Vidal in [19]; his result is summarized in the following theorem:

Theorem 2.3 (Vidal) [19] Take two States of a composite system, |T), |T) £

C d ®Cd and define the vectors of square of the Schmidt coefficients as above.

The máximum, probability for a conversión |T) —y |d>) by LOCC, P(T —y

T) ; is

p(<$ —> $) =
d \ 'I'

min —^—7
—

EL Af (2.15)

Proof: See [19]. □

Again the explicit protocol for this conversión was given with the proof
of the theorem. Let us mention here that P(T —y T) = 0 when the Schmidt
number of the first State is lower than that of the second. 2

**

2.6.4 Asymptotic regime
The tranformations between entangled states under local operations and cías-

sical communication are also studied in the case in which an infinite number

of copies of the entangled states are given. From a practica! point of view,
this means that the parties are able to perform arbitrary operations in very

large (infinite dimensional) Hilbert spaces.
It was proved in [21] that the asymptotic conversión of N copies of the

state |T) into an óptima! number of copies N' of |<f>) can be done in a re-

versible way when N —y oo, and the optimal ratio of the transformation
is

lim — = 1M1
N-foo N E{ |T))’ (2.16)

2There is another way of transforming states, by means of the so-called entanglement
assisted local operations and classical comrrmriication (ELOCC), where entangled states

are used as catalyst (see [20]).
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where E^T)) is the entropy of entanglement defined as E (|4>)) = S(pa) =
A(tr fí (|T)(4/|)), and S(p) = —tr(plogp) is the usual Von Neumann entropy
of mixed States, where the log is taken in basis two.

This result is very important since it follows that in the asymptotic limit
entangled States, satisfying (2.16), are interconvertible in a reversible way, i.e.

there is only one kind of bipartite entanglement. The entropy of entanglement
is the measure that quantifies it, in the so-called ebits [22]. Note that this

function, E(|T)), depends only on the spectrum of the local density matrix,
pA or pb , i.e. on the Schmidt coefficients of the entangled state, |T). It is

equal to zero for separable States, and its máximum is log d (where d is the

dimensión of the local spaces). This valué is achievable if and only if the
local states are the totally mixed state, i.e. if Af = 1/d, Vi, which gives the

maximally entangled state in C d ®C d
. For the case of qubits, we have found

above some examples of maximally entangled states (2.7), and their amount

of entanglement is equal to one ebit. Furthermore, the authors of [21] gave
the LOCC protocol for the reversible asymptotic conversions.

2.6.5 Mixed states

Entanglement in bipartite Systems is rather well understood for puré states,
but this is not the case for density matrices. Indeed, effective necessary
and sufficient conditions for a mixed state p to be separable are not known,
apart from the cases C 2

0 C 2 and C 2
0 C 3 (see [23]). Thus, in general we are

not able to detect whether a mixed state contains quantum correlations and

therefore the problem of separability remains open. Significant steps in this

direction have been made, mainly by the Horodecki family, the IBM group,
and the Hannover and Innsbruck groups, using positive maps which are not

completely positive and entanglement witnesses. A related problem, which is

also unsolved, is whether the entanglement in a mixed state can be distilled or

transformed into some amount of maximally entangled puré states, which are

the states useful for most of the quantum information applications. Moreover,
from a fundamental point of view the picture is far from being clear, and it
is not known which entangled mixed states do viólate Bell inequalities. For

an introduction on these and other related problems see [24].
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2.7 Conclusions

In this chapter we have reviewed part of the present knowledge on quantum
correlations, mainly on bipartite pure-state entanglement. The following
points summaryze the most important results:

• A puré state in an N-party system, |T) G C dl ® ® CCÍN
,
is separable

when it can be written as the tensor product of puré States in each

subsystem.

• A mixed state is separable if and only if it can be expressed as a convex

sum of projectors onto product puré States.

• Quantum States that are not separable are entangled, i.e. they have

quantum correlations.

• Entanglement or quantum correlations can not be described by local

realistic theories and it is a powerful resource for many quantum irrfor-
mation tasks.

• The set of local operations and classical communication, LOCC, is a

very useful tool for the study of the entanglement properties of quantum
States. All the information concerning quantum correlations of puré
States is encoded in the Schmidt coefficients.

• Single-copy case: two States have the same amount of entanglement
when they can be connected by local unitary transformations, i.e. their
Schmidt coefficients are equal. Necessary and sufñcient conditions, in
terms of these coefficients, are known for deterministic and probabilistic
conversions between States by LOCC.

• Asymptotic regime: there is only one kind of bipartite pure-state en-

tangiement, that is quantified by the entropy of entanglement. In this

limit, entangled States can be transformed in a reversible way according
to this measure.

• There are still many open questions for mixed States.
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Chapter 3

Three-qubit entanglement

3.1 Introduction

In the previous chapter we have shown that the entanglement properties of

puré States of bipartite systems are quite well understood. We know how

the quantum correlations of these States change under local operations and

classical communication, either in the single-copy case or in the asymptotic
regime. In this chapter we give an introduction for the articles:

• Generalized Schmidt decomposition and classiñcation of three-quantum-
bit states

A. Acín, A. Andrianov, L. Costa, E. Jané, J. I. Latorre and R. Tarrach

Physical Review Letters 85, 1560 (2000), quant-ph/0003050.
See appendix A.

• Three-qubit pure-state canonical forms
A. Acín, A. Andrianov, E. Jané and R. Tarrach

Submitted to Journal of Physics A, special issue on Quantum Informa-

tion, quant-ph/0009107.
See appendix B.

• Classiñcation of mixed three-qubit states
A. Acín, D. Bruss, M. Lewenstein and A. Sanpera
Submitted to Physical Review Letters, quant-ph/0103025.
See appendix C.
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• Three-party entanglement from positronium
A. Acín, J. I. Latorre and P. Pascual

Physical Review A 63, 042107 (2001), quant-ph/0007080.
See appendix D.

All these articles are about entanglement in three-qubit systems; the first two
ones deal with puré States, while the third generalizes to the mixed-state case

the structure for puré States. The last shows an application of the results to a

concrete example by studying the quantum correlations of the three-photon
polarization state coming from orthopositronium decay.

In the pioneering work of Ref. [25], it was shown that entangled States

of three partióles exhibit new features, compared to the bipartite case, by
analyzing the correlations appearing in the so-called Greenberger-PIorne-
Zeilinger (GHZ) state,

\GHZ) = -2=(|000) + |111>). (3.1)

This state can be interpreted in many senses as the maximally entangled
state of three spinG partióles [26].

The aim of this chapter is to try to understand the way in which known

results for bipartite systems can be extended to systems of three spin -77 par-

ticles, and to overeóme the difficulties that appear due to the fact that, as

we have already mentioned, this generalization is not trivial. This gives
us insight into the characterization of three-party entanglement and how it

compares to the bipartite case.

3.2 Reversible transformations under LOCC

Two quantum States have the same entanglement, are equivalent as fas as

their nonlocal properties is concerned, when they can be transformed one

into another in a deterministic way by local operations and classical commu-
nication. This statement is clearly independent of the dimensión of the local

systems or the number of parties. We have seen in the previous chapter that,
for the bipartite case, this implies that the two States must be connected by
local unitary transformations. In [27] it was proved that the same conclusión

is valid for any composite system, i.e. given | x ), |T 2 ) E C dl ® • • -C (ÍN
, these
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two States are equivalent in terms of entanglement, | ~ |T 2 ), if and only
if there exist N unitary transformations such that |Ti) = U\ 0 • • • 0 Un\'& 2 )-
Thus , we would like to know how puré states are related under these opera-

tions, the tensor product of local unitaries (or change of the local bases), in
order to individúate a set of canonical entanglement coordinates specifying
all the nonlocal properties of states of composite systems. For the bipar-
tite case two different approaches are useful (see 2.6.2): the existence of the

Schmidt decomposition allows to write any puré state of a two-party system,
C (1a 0 C (ÍB

,
in a canonical form where all the information about its nonlocal

properties is encoded in the Schmidt coefficients. On the other hand, we

can also obtain an alternative set of entanglement parameters by means of

d = min (dA,ds) polynomial combinations of the coordinates t{j in a product
basis (see Eq. (2.11)), which are linearly independent and invariant under

local unitaries.

3.2.1 Polynomial invariants
The first steps into the characterization of multi-particle pure-state entangle-
ment in terms of equivalences under local unitary transformations were given
in [16]. The action of a tensor product of N unitaries, E/i0- • -<8>ÍTjv, describes
orbits in the whole Hilbert space, C dl 0 • • • 0 C (ÍN

; all the states in an orbit

liave the same quantum correlations. Every orbit, then, gives a point in the

space of entanglement properties, and it would be useful to know how many

parameters are needed for specifying a unique orbit, which is equivalent to
determine the dimensión of the space of entanglement properties.

A first estimation of this number is obtained by the following counting of

parameters. A puré state, |T), which is not, normalized, depends on 2 d real

numbers 1 (d complex numbers), where d is the dimensión of the whole Hilbert

space, d = Yl^Li di. The tensor product of N local unitaries is an element of

the group U(di) x • • • x [/(djv), which reduces to U( 1) x SU(di) x • • • x SU (dw),
and it depends at most on 1 + ^^(d? — 1) real numbers. A lower bound,
then, for the number of real numbers needed for specifying an orbit, or a

point in the space of entanglement properties, is 2 fifi i di — (1 + —

1)). For the case of an IV-qubit system (d¿ = 2, Vt), this expression reads

1 Note that if we consider normalized states and the global phase is removed, the state

depends on 2d — 2 real numbers.
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2 7V+1
— (37V +1). The authors of [16] gave also the procedure to be applied in

order to calcúlate exactly the number of nonlocal parameters of a state, and

proved that for the case of three-qubits systems, the counting of parameters is

correct, i.e. the space of entanglement properties for puré three-qubit States
is six-dimensional. Let us analyze further this case.

For puré three-qubit States, Sudbery [17] found six quantities invariant
under local unitary transformations which are linearly independent. Starting
from a puré three-qubit state, |T) G C 2 0 C2

0 C 2
, shared by three parties,

A ,
B and (7, and writing it in a product orthonormal basis,

l'U = (3.2)

where |z), i = 0,1, define an orthonormal basis in A, and the same for | j) and

| k) for B and C, we can construct polynomial combinations of the coordi-

nates, Ujk ,
invariant under local unitary transformations. A trivial example

of these polynomial invariants is the norm. Indeed in [17] the six linearly
independent invariants of minor degree were presented, although it was not

proved whether they were enough to completely specify a puré three-qubit
state, up to definition of the local bases. It was known that the space of

entanglement parameters for these States is six-dimensional, but this only
guarantees that Sudbery’s six polynomial invariants, that will be denoted by
{A}, i = 0,... 5, where 70 is the norm, are able to identify a point in this

space, up to some discrete symmetries. This means that it might be the case

that the set of polynomial quantities {A} is not complete, i.e. more polyno-
mial invariants are needed, although most of the information they provide is

redundant. The explicit form of these invariants is:

- < A = tr (pA 0 PbPab) < 1

(3.3)
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where Hdet (Ujk) is the hyperdeterminant of the three-index tensor t%jk (see
appendix A or B for more details).

3.2.2 Generalization of the Schmidt decomposition
The Schmidt decomposition has been proved very fruitful for the determina-
tion of the nonlocal properties of puré States of two-particle systems. All the
information about entanglement of bipartite puré States is encoded in the

Schmidt coefficients. However it was soon realised that a trivial generaliza-
tion of this decomposition for systems of N parties with N > 2 does not exist

(see for instance [28]). Indeed, and focusing again into the three-qubit case,
it is the lack of a Schmidt-like canonical decomposition that makes hard to

relate the valué of the polynomial invariants seen above with a specific puré

three-qubit state.
In the article of appendix A, we generalize the Schmidt decomposition to

three-qubit puré States. The following idea guides the generalization: starting
from a generic state as (3.2), we look for the local bases that make zero the

máximum number of the coordinates i.e. we search the expression of
the state with the minimal number of terms built from local orthonormal

bases. By a simple counting of parameters we can prove that, in general, not
more than three of the eight coefficientss can be zero. Indeed this is the case,
since there always exist local orthonormal bases such as the state (3.2) can

be written

l'p) = Ao|000) + A^llOO) + A 2 | 101) + A 3 |110) + A 4 |m), (3.4)

where A ¿ >0, i = 0,..., 4, Xa A? = 1, and 0 < < ir. For any state, there is

a unique decomposition of this form. 2 The existence of this decomposition
allows us to check when two States of three qubits, [Tx), |T 2 ), can be con-

verted by local unitary transformations, since |Tx) ~ |T 2 ) if and only if the
parameters appearing in the generalized Schmidt decompositions of the two

States are equal, i.e. = A-
2\ i = 0,...,4 and Thus, these

parameters are thought of as the coordinates for the six-dimensional space
of entanglement properties. Similar decompositions were also found in [29].

2Actually this is true except for a set of States, of measure zero, where there are two

possible decomposition with = 0,7r (see appendices A and B for more details).
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A new set, {J¿}, i — of five polynomial combinations of the
coordinates t%jk , invariant under local unitaries, is introduced (apart from
the norm). This new set is related to Sudbery’s invariants,

(3.5)

but the expression for the new functions in terms of the coefñcients of (3.4)
is easier. As it is shown in the appendix B, using the generalized Schmidt

decomposition, we are able to see that these, or Sudbery’s, invariants, are

not enough to specify a unique normalized puré three-qubit State up to local

unitary transformations. In fact, they can not discriminate between |4>) or

|4/*), which usually do not belong to the same orbit. A new, more compli-
cate, complex polynomial invariant, /6 , introduced by Grassl [30], solves the

problem, and the set {J¿, /6 }, i = 1,..., 5 (or alternatively {/¿}, i = 1,..., 6),
plus the norm, is complete, it provides us all the information about the non-

local properties of a puré three-qubit state. Indeed, given the valúes of these

invariants, it is possible to obtain all the parameters of (3.4), i.e. to specify
a unique state, up to local unitaries, or equivalently, a canonical point in

the corresponding orbit. Furthermore, a set of conditions written in term of
these invariants can be used in order to detect and compute, given a state,
its minimal decomposition in terms of product States built form orthonormal

bases.

It has been also analyzed whether this generalization of the bipartite
Schmidt decomposition can be applied to higher dimensional Systems. Al-

though there have been some results in this direction (see the appendix B

and [29]), it is not known how to determine a unique decomposition for any
state, what would allow to see whether two States are connected by local

unitary transformations. Moreover, let us mention that the number of en-

tanglement parameters grows exponentiall.y with the dimensión of the whole
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Hilbert space [16]. For higher dimensional systems, almost all the informa-
tion is nonlocal, and the usefulness of these kind of decompositions seems to

be small.

Another approach to the problem of generalizing the Schmidt decomposi-
tion is the following: given a State |T) £ C 2 GC 2 GC 2

,
we look for its minimal

decomposition in term of product States, not necessarily orthogonal. In this

case, a counting of parameters tells us that at least two product States are

needed for specifying a puré three-qubit state. As it is shown in appendix A,
this is true for almost every state, i.e. generically any state can be expressed
as

|T) = a|000) + !3el5 \abc), (3-6)
where o¿ and ¡3 are positive numbers, (0|a) can be different from zero, and

the same holds for the other two parties. However there is a set of States for
which this decomposition is not possible, its minimal decomposition needs

three product States. This set corresponds to those puré three-qubit States,
apart from separable and biseparable, such that its tangle, r(|T)), a function
introduced in [31], is zero. The same result was independently obtained by
the Innsbruck group [32].

3.3 The single-copy case

The next, step in the analysis of the entanglement properties of puré three-

qubit States is to enquire into the way these States are connected by local

operations and classical communication, in the single-copy case. The answer

to this question was given in [32]. There it was proved that, apart from
product and biseparable (A — BC, B — AC and C — AB) states, there are

two inequivalent kinds of three-qubit entanglement, the GHZ-type and the

W-type. Separable, biseparable and W-type states are of measure zero in

the whole space C 2 0 C2 <g> C 2
. Separable and biseparable states do not have

truly three-qubit entanglement, and they can be detected since not all their
local density matrices are of full rank. The states of GHZ-type are those that

can be expressed as a sum of two product states (3.6), like the GHZ state

(3.1), while the number of product states needed for W-type states is three,
i.e. they are those states that have zero tangle (but with local mixed states

of full rank).
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Given a puré three-qubit State, |T), any state resulting from a sequence
of local operations on it can be written as Ma®Mb <8>Mc |T), where Mi , i =

A, B , C, is the matrix representing the operations performed by party i. This

leads to the simple, but powerful, observation that the minimal number of

product States needed for specifying a state, that will be denoted by n(|T)),
can not increase under LOCC; actually it is conserved unless the matrices

Mi are not invertible. Consider an hypothetic LOCC protocol tranforming
a W-state into a GLIZ-state, or viceversa. Since the local density matrices

of both states have full rank, the local operations connecting them must be

invertible. However this transformation is not possible since it would imply
a change in n(|T)), which is not allowed if we consider only local invertible

matrices. Two separated classes of puré three-qubit entangled States emerge:
a state in one class can not be converted by LOCC into any state in the other.

Note that in this case, the second approach for the generalization of the

Schmidt decomposition has proved to be more useful. While decomposition
(3.4) tells us if two puré three-qubit states have the same entanglement, the
decomposition (3.6) discriminates between GHZ- and W-type states. The

tangle is a useful tool for this distinction too. All the states that, being not

product or biseparable, have n(|T)) = 2, or r / 0, can be transformed by
LOCC into the GHZ state, which is the state of máximum tangle. No GHZ

state can be distilled, in the single-copy case, from a W-type state.

3.4 Entanglement in mixed three-qubit states

Entanglement features of puré three-qubit states begin to be understood,
in the single-copy case.

3 We know how to determine when two states are

equivalent in terms of nonlocality. Apart from separable and biseparable,
two inequivalent, kinds of truly three-qubit entanglement have appeared, two
sets of states that cannot be connected by LOCC, although it is important
to take into account that the set of W-type states is of measure zero in

c 2 ®c 2 ®c 2
.

The aim of the article in appendix C is to generalize part of the known
structure for puré states to mixed three-qubit states. Given a mixed state of
three qubits, p, it would be very useful to know what kinds of entanglement it

3 The picture is far from being clear in the asymptotic regime, but we do not analyze
this situation.
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contains. This would also give us necessary conditions for conversions under
LOCC. In this sense, it is not difficult to see that, despite the fact that a puré

GHZ-type State cannot be exactly transformed into a puré W-type state, we
can go as cióse to it as desired. Thus, an approximated conversión is possible,
the higher the fidelity of the approximation, the smaller the probability of
success. This approximate transformation however is not allowed in the other

direction, i.e. generically, starting from a W-type state, it is not possible to

obtain by LOCC a state arbitrarily cióse to a given GHZ-type state.

In order to extend some of these ideas to the case of density matrices,
we deñne the following classification reflecting the entanglement properties
of mixed three-qubit States:

• the class S of separable States, i.e. those that can be expressed as a

convex sum of projectors onto product vectors;

• the class B of biseparable States, i.e. those that can be expressed as a

convex sum of projectors onto product and bipartite entangled vectors

(A-BC, B-AC and C-AB);

• the class W of W-states, i.e. those that can be expressed as a convex

sum of projectors onto product, biseparable and W-type vectors;

• the class GHZ of GLIZ-states, i.e. the set of all physical States.

All these sets are convex and compact. Separable States do not have quantum
correlations, while no truly three-qubit entanglement is required for States

in B. The States in W \ B have W-type three-qubit entanglement, while all
the kinds of entanglement appear for the States in GHZ \ W. This picture
resembles somehow the classification of mixed bipartite States according to

their Schmit number [33].
Using techniques already known for bipartite systems, we build some op-

erators, called tripartite entanglement witnesses, that are useful for detecting
the position of a state in the classification. We are able to prove that the set

W\B is not of measure zero and we conjecture that bound entangled States of
th ree qubits with positive partial transpose respect all the bipartite splittings
are not in GIiZ\ W, that is, they do not have GHZ-like correlations.
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3.5 An application of the results: quantum
correlations in orthopositronium decay

In this section we give an introduction for the article in appendix D. In this

work we take profit of the mathematical techniques developed for puré three-

qubit States to analyze the quantum correlations of the state resulting from
the disintegration of orthopositronium into three photons.

The conflict between local realistic theories and Quantum Mechanics be-

comes stronger when the statistical predictions of some States of three spin-^
partióles are studied, in particular for the GHZ state (3.1) [25, 26]. Thus,
it would be very interesting to find a physical realization of these GHZ-like
correlations. We consider partióle decays since they seem to be a natural
source of entangled States. In fact, there have been some recent proposals
for testing Bell inequalities in the decay of the T-meson into kaons, which
are massive partióles [34]. In our case, we choose positronium, a bound state

of an electrón and a positrón. Depending on its total spin, it can decay
into two or three photons; for spin one (zero) we have the orthopositronium
(parapositronium) that decays into three (two) photons. Since the tangle of

puré three-qubit States is somehow related to the amount of GHZ-like corre-

lations, we look for the experimental configuration maximizing this function.
The polarization puré state resulting from this decay is

Ucp) = -4 (|001> + |110> + |010) + |101) + |011> + |100» . (3.7)

The Schmidt-like decompositions introduced in the articles of appendices
A and B allow us to write this state in simpler forms that make easier the

study of its quantum correlations. We prove that this state shows a con-

tradiction with all the LR theories, since it violates the Mermin inequality
of [35]. Furthermore, we demostrate that the conflict between the quantum
statistical predictions for the state (3.7) and any LR model is stronger, in the
sense of Peres [36], than the obtained for any entangled state of two spin-^
partióles.
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3.6 Conclusions

The analysis of the entanglement properties of three-qubit States, either puré
or mixed, has been the motivation of the four articles included in appendices
A, B, C and D. We have not considered the asymptotic regime, where there

is an inñnite number of copies of the state, so we have restricted ourselves to
the single-copy case. The main results are:

• We have found a canonical decomposition for all puré States |T) E

C 2 <g> C 2 <g> C 2
: generalizing many of the features of the bipartite Schmidt

decomposition. All the information about the nonlocal properties of the
state are encoded in the coefhcients appearing in this decomposition.
In this sense, they are the entanglement coordinates of the state. In

particular, using this information, we can see if two States have the

same amount of entanglement, i.e. if they can be converted one into

another by local unitary transformations.

• We have determined a complete set of polynomial invariants that can

specify, in an alternative way, a puré state, up to change of the local

bases. The relation between these invariants and the explicit form of

the state has been also found.

• We have obtained the minimal decomposition of a puré three-qubit
state in terms of product States, and in terms of product States built

from orthonormal local bases.

• We have extended the classification of puré three-qubit States given
in [32] to the mixed-state case. It is proved that, contrary to what

happens for puré States, the defined set of mixed States with W-type
entanglement is not of measure zero in the whole space of States. We

conjecture that bound entangled States of three qubits with positive
partial trasposition do not contain GHZ-like correlations.

• Using these techniques, the quantum correlations of the polarization
state resulting from orthopositronium decay into three photons are an-

alyzed. We prove that this state allows, in principie, for a statistical

dismissal of local realistic theories stronger than for any entangled state

of two spin-f partióles.
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Chapter 4

Quantum state estimation

4.1 Introduction

This chapter is devoted to another important subject in Quantum Informa-

tion Theory: the estimation of quantum States. It gives an introduction to

the following two articles:

• Optimal generalized quantum measurements for arbitrary spin systems
A. Acín, J. I. Latorre and P. Pascual

Physical Review A 61
,
22113 (2000), quant-ph/9904056.

See appendix E.

• Optimal estimation of two-qubit pure-state entanglement
A. Acín, R. Tarrach and G. Vidal

Physical Review A 61 ,
62307 (2000), quant-ph/9911008.

See appendix F.

In all the quantum information processings, data are encoded in quan-
tum states. It is natural to look for the best way in which they can be

recovered from these states, i.e. how the information in a state can be de-
coded. The problem is not trivial, as it is reflected by the analysis of the

following example: an unknown state, chosen from a set of two states that are
not orthogonal, can not be perfectly determined unless we have an infinite
number of copies of it. Idowever, this is not the typical situation and, usually,
we (leal with a finite number of copies of the unknown state, which has been



chosen from a set of infinite alternatives. In this case, the estimation pro-
cedure that behaves better on average must be obtained. First, however, it
should be defined in a quite more precise way what “behaves better” means,
and this is the scope of the next section.

4.2 The scenario

In this section the usual formulation of the state-estimation problem is pre-
sented (see for instance [37]). It will lead us to a function reflecting the

degree of optimality of an estimation procedure. Our purpose, then, will be
to find the estimation strategy maximizing this quantity.

4.2.1 A priori probability distribution

The state-estimation problem tries to determine the optimal way in which the

information encoded in a state can be obtained. Of course, the quantum state

we have is not known (since then it will not give us any new information),
and a probability distribution takes into account our partial knowledge about
it.

Suppose for instance that a vector of parameters 0 = (0 1 ,..., 6n ) is en-

coded in a puré state, \^(0)) (we can also consider the more general case of

mixed States). There is a space of possible valúes for the vector of parameters,
0, and a measure function on it, }\0)d0 \... dOn , reflecting the probability of

any point in this space, or alternatively, the probability of the correspond-
ing quantum state. Our aim is to estímate the valué of these parameters
by determining the quantum state. Note that in this case we have partial
information about the unknown state from the beginning, since we know the

a priori probability distribution in the space of parameters 0.
It may happen however that there is no initial information about the

unknown state, puré or mixed, to be estimated. Is there any probability
distribution over the whole space of physical States reflecting our complete
lack of knowledge? The usual assumption in these cases consists on taking
all the possibilities equally weighted, i.e. there exists no preferred región
in the whole space of events. When there is a finite number, M, of pos-
sibilities, this means that the unbiased probability distribution is equal to
Po = (1/M,..., 1/M). When the space of events is continuous, this implies
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that the initial probability distribution is proportional to the volume ele-

ment, i.e. to the square root of the determinant of the metric tensor in the

space. In the pure-state case, we deal with the space of rays or physical
States (puré States without the global phase), where there is a privileged
metric, the Fubini-Study metric [38], which is the only one invariant, un-

der unitary transformations. From the corresponding volume element, the
unbiased probability distribution for puré States is obtained; in the case of

spinors it is equal to the isotropic distribution over the Bloch sphere. For

mixed States it is not clear whether it is possible to identify a unique metric,
although some candidates have been proposed (see [39]). It is worth men-

tioning here that the two articles in appendices E and F deal only with puré

States, so in the rest, of this chapter we will just consider this situation.

4.2.2 Measurement and figures of merit

The information about a given unknown state, |Q) £ C d
,
is obviously ob-

tained by performing a measurement over it. The most general measure-
ment in Quantum Mechanics is described by a resolution of the identity in

terms of positive operators, the so-called positive-operator valued measure-

ment (POVM) [40], i.e.

I = t,Mh (4.1)
i= 1

where r is arbitrary (in particular r can be greater than the dimensión of the

space) and > 0. Usually, a finite number of copies, TV, of the unknown

state are at our disposal, so the most general strategy consists on performing
a global measurement over the state given by the tensor product of the N

copies, ¡T) = 1*0)®^ £ C dN
. There are r possible outcomes resulting from

measuring (4.1) on a quantum state p, each with a probability equal to
tr (pMi). In our case, this expression gives

PÁi) =tr(|4>)('i'|Mi ) = tr(\ip) (ip\®NM¡). (4.2)

After performing the measurement, and depending on the observed result,
there is a gain of information about the unknown state. How can this gain
of information be quantified? The initial probability distribution of States,
//(|Q)), is modified using the Bayes rule and, according to the obtained
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outcome k G {1,..., r}, the a posteriori probability distribution reads

W) ’ ( }

where p(k) = j d^tr(\ rip)(^\®N is the probability for outcome k

summed over all the initial States. There exist functions in estimation theory
that are though of as a measure of the information distance [39] between two

probability distributions, p, g, i.e. they are usefrd in order to express the gain
of information when passing from one probability distribution to another.

We will denote these functions by D(p, g), and an example of them is the

Kullback information distance [41] between two probability distributions,
K (p, q) = J2iPi\°g(Pi/Qí)- Using these quantities, it is possible to calculte
the gain of information averaged over the measurement outcomes,

D^±p(k)DupmjÁ\m- (4 . 4 )
k=l

The óptima! estimation strategy will consists, then, on designing the mea-

surement, that is, the positive operators appearing in (4.1), that maxi-
mize this function. This is the approach that we have applied for the article
in appendix F. However this average gain of information is usually not easy
to be computed, since the probability distributions of States depend on many

parameters and the functions D(p, q) are not simple.
There exists another similar approach that tries to overeóme this diffi-

culty: after performing the measurement, we can make a guess, |^ A: ), depend-
ing on the outcome k : for the incoming unknown state, \i¡j). A fidelity-like
function, F(\i/j k ), |^)), measures the degree of similarity between the guess
and the initial state. In principie there are many candidates for this fidelity
function. It is usually just required to be a concave and symmetric function

taking valúes between zero and one. An average fidelity is defined

F = ¿ ídiPf,m)p4k)F( IP), (4.5)
k=l

'

In this case, the optimal estimation strategy consists on the one maximizing
F, i.e. not only the best measurement apparatus, {M/J, should be deter-

mined, but also the guesses for each of the outcomes. However, in spite of
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this two-step optimization, the calculation of expression (4.5) is often quite
easier than (4.4), and this fidelity-approach is simpler. Since the fidelity
functions should quantify the resemblance between States, they usually have
a geometrical meaning: the smaller the fidelity is, the more distant the States

are. For the case of puré States, F (|</>), | í/j)) is generically chosen to be the

overlap between States, |(0|'0)| 2 , as in apppendix E.

4.3 State estimation

Tn this section we introduce the main results of the article in appendix E

about State estimation. The statement of the problem is simple: a finite

nurnber of copies, TV, of an unknown state, 1 1¡>) G F r/
, are given, and we have to

design the optimal estimation strategy, where the optimality criterion takes
the overlap between States as fidelity function. Since there is no a priori
information about the incoming state (apart from the fact that it is puré),
the unbiased probability distribution of puré States describes our knowledge
about it. In this case the average fidelity reads

Fps = ¿ í d'i{jfI {\xl;))tr(\'ip)('iJjfNMk ) |(-0 fc|(4.6)
k=l

J

The authors of [42] derived the optimal fidelity, depending on the nurnber

of copies, for the case of two-dimensional Systems, d = 2, and proved that

global measurements over the whole state of N copies, ¡T) = |^)® N
, are

better than any adaptative measurement acting separately on each of the

copies. Later, the algorithm for constructing the optimal POVM was also

provided in [43], and explicit constructions were found in [44], for the case

of spin one half. The optimal fidelity for arbitrary dimensión is derived in

[45], showing an interesting connection between state estimation and cloning.
The expression for this optimal fidelity depends on the dimensión d of the

system and the nurnber TV of copies, and is equal to

ñopt _

N + 1
ps N + d‘ (4.7)

In the article of appendix E, we extern! the results of [44] to arbitrary
dimensión. The incoming state, |T) = ¡'0)0iV ,

lives in the totally symmetric
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subspace of C dN
, therefore, in the search for the óptima! measurement it is

enough to restrict us to resolutions of the identity in this subspace. We

prove that the optimal fidelity (4.7) is achieved by the following estimation

strategy: a resolution of the identity in the totally symmetric subspace of N

copies, /fym ,
is built by means of projectors onto symmetric product States

I ^k) = \A) ® • • • <S> \A), i-e.

C = ¿4l'U){^l. (4-8)
k=l

where c
2
k are positive numbers. When the outcome k is obtained after this

measurement, we guess |^) as the unknown state. Shur’s lemrna guarantees
that this measurement is always possible, although with an infinite nurnber

of outcomes (r —> cxd). However, this is not an interesting solution from a

practical point of view, and we look for explicit contructions of óptima! and
finite POVMs (4.8), extending the techniques used in [44]. A set of equations
to be fulfilled by the generalized Bloch vectors of the puré States appearing in

the óptima! measurement (4.8) is derived. From these equations we cari find
the explicit form of the puré States and the coefficients appearing in (4.8), or
bounds on the nurnber of projectors, r.

4.4 Entanglement estimation

The analysis of the best strategy for the estimation of the entanglement
properties of an unknown puré two-qubit state is the scope of the article in

appendix F. As it has been shown in chapter two, all the information about

bipartite pure-state entanglement is encoded in the Schmidt coefficients, so

we do not want to know about all the parameters specifying a state, but we

just focus into its Schmidt coefficients. For the case of two qubits, this implies
that we want to determine one of the two Schmidt coefficients, being the other
fixed by the normalization condition. We concéntrate on the estimation of

one of the six real numbers that a generic normalized state |T) G C 2 £x)C 2
,
the

global phase having been removed, depends on. Indeed, any puré two-qubit
state can be parametrized as

i*> = - su - b), (4.9)
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where O < b < 1 is the Bloch vector of the reduced density matrix, pA =

tr#(|\I/)(\I/|), | a) and | — a) are its eigenvectors (and the same for B), that
are orthogonal, and 0 < a < is a phase factor, that is usually absorbed

in the definition of | — a) or | — b). All the nonlocal properties of this State

are specified by the valué of 6, and this simplifies the problem. Indeed, for
this case it is not difficult to compute the average gain of information (4.4),
where D(p, q) is chosen to be the Kullback information distance. The a priori
probability distribution for b comes from the unbiased distribution of puré
States in CA

.

A finite number of copies, TV, of this unknown state are given, and the

measurement that gives us more information about b is studied. We consider

the most general strategy, i.e. global measurements over |T)®N
,
but it is

proved that the optimal strategy can be performed locally by one of the

parties without any amount of classical communication. This means that

the optimal gain of information about the nonlocal properties of a State can

be achieved locally. 1 Intuitively, no information about b is lost when one

of the parties is traced out, since it survives in the eigenvalues (or purity)
of the resulting density matrix. Indeed, the best measurement is a coarse

graining of the optimal measurement for mixed States given in [46], and it is
equivalent to the best estimation of the purity of a density matrix.

4.5 Conclusions

State estimation is the main subject of the articles in appendices E and F.

While in the first one we consider the estimation of an unknown puré state

belonging to a d-dimensional system, i.e. we want to obtain information

about all the parameters needed for its specification, in the latter we focus

only on one of the features of the unknown puré two-qubit state, its amount

of entanglement. The main results are:

• The optimal measurement strategy for the estimation of TV copies of

a state belonging to a d-dimensional system can be accomplished by
means of a resolution of the identity in the symmetric subspace of Cd

1 Note however that the local observer, say A, must perform global measurements over

the N copies of bis reduced state.
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built from projectors onto puré product States which are fully symrnet-
ric. After the measurement, our guess is equal to the State correspondí-
ing to the resulting outcome.

• The introduction of generalized Bloch vectors simplifies the analysis
of the conditions to be satisified by the optimal POVM. We show an

explicit construction for spin one and two copies.

• The estimation of the entanglement of a puré two-qubit State, i.e. of

its Schmidt coefhcients, can be attained locally by one of the observers

without loosing optimality. It corresponds to the optimal measurement
of the mixing of his local density matrix.
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We prove for any puré three-quantum-bit State the existence of local bases which allow one to build

a set of five orthogonal product States in terms of which the state can be written in a unique form. This

leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely
characterized by the five entanglement parameters. It leads to a complete classification of the three-

quantum-bit States. It shows that the right outcome of an adequate local measurement always erases all

entanglement between the other two parties.

PACS numbers: 03.67.-a, 03.65.Bz

The Schmidt decomposition [1,2] allows one to write

any puré State of a bipartite system as a linear combination
of biorthogonal product States or, equivalently, of a non-

superfluous set of product States built from local bases.
For two quantum bits (qubits) it reads

hP> = eos# |00> + sin# 111), 0 < # < 77-/4. (1)

Here | i i) = \i)A ® \í)b, both local bases {|/)}a,s depend
on tlie state hP), the relative pitase has been absorbed
into any of tdie local bases, and tlie state |00> has been
defined by carrying tlie huger (or equal) coefficient. A

larger valué of # means more entanglement. The only
entanglement parameter, #, plus tire hidden relative pitase,
plus the two parameters which define each of tire two

local bases are lite six parameters of any two-qubit puré
state, once normalization and global pitase have been

disposed of.

Very nrany results in quantum information tlieory have
been obtained witli lite ltelp of Üte Schmidt decomposition:
ils simplicity refleets the simplicity of bipartite Systems as

compared to A-partite systents. Much of its usefulness
comes front it not being superfluous: to carry one entan-

glement parameter one needs oitly two ortliogonal product
States built front local bases States, no more, no less.
The ainr of this work is to generalize the Schmidt de-

conrposition of (1) to three qubits. It is well kitown [2]
that ils straightl'orward generalization, that is, in terms of

triorlhogonal product States, is not possible (see also [3]).
Neverllreless, having a minimal canonical form in which

to casi any puré state, by perfornting local unitary trans-

forntations, will provide a new tool for quantifying entait-

glement for three qubits, a notoriously difficult problent.
It will lead to a complete classification of exceptional States
which, as we will see, is much more complex titán in the

two-qubit case. The generalization to N quantum dits

(¿/-state systems) is not completely straightforward and
will be given elsewhere.
Linden and Popescu [4] and Schlienz [5] showed that

for any puré three-qubit state the number of entangle-
menl parameters is five and, using repeatedly the two-qubit

Schmidt decomposition, proved the existence for any puré
state of a reference form in terms of six ortliogonal prod-
uct States built from local bases. The five entanglement
parameters are one phase (all others can be absorbed) and
four moduli of the six coefficients, so that a further con-

straint beyond the normalization exists. In other words,
exactly as (1) shows that local unitary transformations al-

low one to make two of the four components vanish (cor-
responding to |01) and 110)) for a two-qubit puré state,
Linden and Popescu and Schlienz proved that, also for a

three-qubit system two of the, now eight, components can

be made zero. However, the set of six States is superflu-
ous in tlie sense that its coefficients require a constraint to

lead to a unique representative of any puré state. It is not

clear whetlier this is the best one can do, i.e., whetlier the
set is minimal. We will now prove that indeed, combin-

ing adequately the local changes of bases corresponding
to U(l) X SU(2) X SU(2) X SU(2) transformations, one
can always do witli five terms, which precisely can carry
only five entanglenient parameters, leading thus to a non-

superfluous unique representation.
Notice that a straightforward counting of parameters

shows that a nonsuperfluous set will have five States, i.e.,
three vanishing coefficients. There exist three inequivalent
sets of five local bases product States

{|000>, |001), loto), 1100), lili)},

{|000>, 1001), |110>, |100>, lili)}, (2)

{| 000), 1100), 1110 ), 1101 ), | 111 )}.

Whereas the first set is symmetric under permutation of

parties, the other two are not.

The nonequivalence of the three sets follows from the
different degrees of ortliogonality between the five States
within each set. One can also readily check that all three
sets can carry exactly five entanglement parameters, four
moduli, and one phase, and are thus nonsuperfluous. This
is of course no proof that any state can always be written as

a linear combination of the five States of one and the same

1560 0031-9007/00/85(7)/1560(4)$15.00 © 2000 The American Physical Society



Volume 85, Number 7 PHYSICAL REVIEW LETTERS 14 August 2000

set. We will now prove tliat it can always be done for
tlie last two sets, or tlieir versions obtained by permuting
parties.

As an introduction let us first present a one-line proof
of tlie Schmidt decomposition of a two-qubit State, Eq. (1).
Writing any State in a basis of product States built from any
two local bases,

(3 )
ij

calling T tlie matrix of elements t¡j , and recalling that
for any T diere always exist two unitary matrices which

diagonalize it,

U\TUi ~ D , (4)
tlie Sclnnidt decomposition follows at once. Note that U\
and l¡2 correspond to the local basis changes necessary for

casting the original State into its Schmidt form.
For a tliree-qubit State the proof goes as follows: from

W = X'ytlW. < 5>
i,j,k

one introduces tlie matrices T{) and T\ witli elements

(Ti)jk = Ujk • (6)

Consider now tlie unitary transformation on the first qubit,

T¡ = 'Z u ‘J Ti’ (7)
j

such tliat

detró = 0. (8)

Notice that (8 ) has always two Solutions. The matrix ob-

tained from T¿ after diagonalization following (4), which

corresponds to unitary transformations on the last two

qubits, has at least three zeros,

(D¡,)oi = (Dó)io = (D'0 ju = 0. (9)

This finishes tlie proof that any puré State of three qubits
can always be written as a linear superposition of the five
States of tlie last set of (2).
The generalization to three qubits of the Sclnnidt de-

composition, i.e., one more zero for one more qubit, tlius
reads

hP> = AolOOO) + Á\e i<p 1100) + A2 |101) + A 3 |110> + A4 |lll> A¿ > 0, 0 < cp < tt, /i¡ = A?, £ /i¡ = 1
,

( 10)
where we have chosen the second coefficient to carry the

only relevant phase, whose range, to be proven later, is also
given. Notice that we have singled out party A in obtaining
( 10 ), but we could have chosen any of the three parties.
An immediate and important consequence of tliis de-

composition is that diere always exists for any State |4/ >
and any (genderless) party X a State |0)x such tliat x(0 | 47 )
is a product State of the otlier two parties (unless party X is
not entangled witli tlie other two parties). That is, party X,
knowing |47 ), can perform a local measurement which, for
one outcome, allows it to be sure that tire other two parties
share no entanglement whatsoever. Note that when ( 8 ) dis-
plays two different Solutions, two such States exist. This

property suggests some applications to quantum informa-
tion processing. It also leads to an efficient algoritlim íor

computing tlie A’s and cp.
There is one small hitch left: as (8 ) has generically

two different Solutions, any State can be written in the

form of (10) with two different sets of coefficients. Let
us dispose generically of this redundancy. Recall that after
diagonalization of T¿ we are left witli the matrices

An 0
Mq = Dq

= \ Tu 2 1, M-í =

for one solution of Eq. (8 ) and

e‘>Ai
A 3

a2

A4

M0
=

( 11 )

(12
A ° °1 a = ( e ‘*~Á ¡ h
00 )’ Ml V a 3 a4

for tlie other solution. Of course, botli Solutions can be

relatedby a U(l) X SU(2) X SU(2) X SU(2) transforma
tion:

M{) — é

Mi = e
l

and tlie inverse

“UiiuooMo + uoMUi,

'Ui(-u 01M0 + uqqM\ ) U2 ,

rt,U 1 (uqqMo
A,

u 0 iMi)UiMo
=

Ml
= e- icoUi(u*01M0 + umM x )U{

The condi tion detMo = detMo = 0 leads to

u00
—

detMi detM
«01 uoo «01 •

(13)

(14)

(15)
A 0 A4

"" uw

A 0 A4

It is tedious, but straightforward, to solve the previous
equations. Here we need only the following results:

«oí «01 (16)

(17)

(18)

A 0 A4
— A 0 A4 ,

which, from Eq. (15), imply
detMi = (detMi)*.

From here it follows tliat

0<f<7íO7T<^< 277
,

0 < cp < < í=í > 7T < cp < 2rr .

so that one can always choose the solution for which

0 < (p < 77 , (19)
which explains tlie range of cp given in Eq. (10).
Let us mention here that by performing a unitary trans-

formation 011 tlie tliird qubit,
1

|0 '> =
VA1 + A2

(A^ z> |0) + A 2 |l», (20)
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tlie decomposition for Üie second set of (2) is obtained.
In the remainder we will use tlie first decomposition (10),
which is physically and mathematically more convenient.

A generalizadon of the Schmidt decomposition is tlius

given by (10); any State can be written in tliis minimal

form, generically in a unique way. The explicit algorithm
for constructing this canonical form follows from tlie set of

Eqs. (5)-(8). However, particular States can be obtained
for different valúes of Üie five entanglement parameters.
It is tlius useful to have five independent invariants for the
classification of States which we will obtain from (10). We
will take here tlie five minimal polynomial invariants of

[6].
Defining A = \XiX^e l<f> — A2 A 3 | 2 we find

\^h= Trp\ = 1 - 2/x 0 (l -

fio
- ¡x\) < 1,

2
— h = Trp\ = 1 - 2/x 0 ( 1 -

Ato
-

Ati
-

/x 2 )
- 2A < 1,

\<h = Trpe = 1 - 2/xo(l ~

t¿o
-

fii
- il-s)

- 2A < 1
, (21)

4
- h = Tr (p A ® PbPab)

— 1 + /x q (/x 2 /x 3
—

pu\pj\ 2yC¿ 2 3/z 3 3/X4)
- (2 -

/¿0)A == 1,

o < I5 = |Hdet(fy*)l 2 = plp?4 <
y,

where

Pab = Trd^X'P'l Pe = TrAsl^X’PI

Pa = TrbPab Pb = TraPab,

and Cayley’s hyperdeterminant, Hdet(q^), can be found
in [7] and corresponds to tlie tliree-tangle of [6,8],
Altliough diese ñve invariants are computationally

simple and physically meaningful, as Üiey give local

information, it can be convenient to trade Üiem, recalling
X, /x, = 1, for algebraically simpler ones:

0 < 7i = A <
5 ,

0 < 7 2
= /x 0 /x 2 —

4 ,

0 < J3 = /xo/z 3 "í 4 , (23)

0 < 74 = /x0/X4
<

4 ,

7 5 = /xo(A + /^AG
—

/X 1 /X4 ).
The invariants 74 and 7s are symmetric under permutation
of parties, while 7i (72 ,7 3 ) is symmetric under exchange of
parties B and C (A and C, A and £).
We can now proceed wiüi Uie complete classification

of nongeneric three-qubit States wiüi Üie help of Eqs. (10)
and (23):

Type 1 (product States): J¿ = 0 for i = 1,2, 3, 4, 5.

Type 2a (biseparable States): 7¿ = 0 except 7 i(72 ,7 3 )
when party A(¿?, C) is not entangled wiüi Üie other two

parties. They carry only bipartite entanglement and depend
011 one parameter.
Type 2b (generalized GHZ States): 7¿ = 0 except J4.

They inelude the standard GHZ States [9] and depend 011

one parameter.
Type 3a (tri-Bell States): AH

=

A4
= 0. Itimplies74 =

0, 7 i72 + 7i 73 + 7273
= VA7273

=

y. They depend
on two parameters.
Type 3b (extended GHZ States): /x7

- = /Hk
= 0, for

y, & G {1,2,3} and j A A:. It implies 7; = 7¿ = 7s = 0.

They depend on two parameters and correspond to Üie slice

States of [10].
j

Type 4a: /z 4
= 0. It follows 74 = 0 and V7i7273

=

y.

They depend on Üiree parameters.
Type 4b: /z2 = 0 (a¿ 3

= 0). Then, 72 = 7s = 0 (73
=

75 = 0). They depend 011 tliree parameters.
Type 4c: /uli

= 0. Then, 7i(72 + 73 + J4) + 7273
=

V7i 7273
=

y and they depend on three parameters.
Notice that the type number indicates how many of the

five States of (10) characterize the States of that type. Be-

cause of the asymmetric character of the decomposition
(10) , some of the States included in type 5 can be written

in terms of four States, liad we singled out party B or C

[11] . Notice also that, in some sense, the 7¿’s are indica-
tors of entanglement: only when all of tliem vanish tliere

is no entanglement at all, 7 i(72 ,73 ) indicate bipartite en-

tanglement, and 74 indicates GHZ entanglement.
Let us furtlier exploit our previous results. An alterna-

tive generalization of the Schmidt decomposition could be

writing tlie State as a superposition of two nonorthogonal
product States which are not built from local bases,

IT7") = a\ abe) + (3\a'b'c l), (24)

witli a and ¡3 real.
Beside tlie trivial cases of type-1 and type-2a States, this

decomposition is always possible except for a familly of
States depending on tliree parameters [12]. Our decompo-
sition allows one to reproduce this result and shows that

(24) is not possible when I5 = 0 (corresponding to type-
3a and type-4a States). It can be proved that when I5 = 0

tlie two Solutions of (8) coincide. The same happens liad

we chosen to single out any of the other parties. Tliere-

fore, for any party X, tliere is only one State |0)x such tliat

x(0 | HE) is a product State of the other two parties. Since

(24) implies two such States, e.g., |ox)a and | a'^A, it fol-
lows that type-3a and type-4a States cannot be written as

a sum of two nonortliogonal product States. When Üie de-

composition (24) is possible, our results give the construc-

tive metliod to obtain it. From (10), the second coefficient
can be split into two terms,

Id') = (ao| 000> +
AlA4g ^

A—-1100)) + (^^UOO) + A2 |101> + A 3 |110) + A4 |lll>y (25)
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It is easy to see that (25) corresponds to tlie sum of two

nonorthogonal product States as (24) witli coeffícients

a4
v

1 i (26)
(3 —

— J + /¿2 + Ag) •

Á4 Y

This decomposition is unique. The States that appear in

(24) are orthogonal to the ones that allow each party to

destroy the entanglement between the other two parties
with some nonvanishing probability.
A final consequence of (10) is that, by using the bipartite

Schmidt decomposition, any puré State can be written as

a superposition of a product State and a biseparable State,
i.e.,

I'T') = cos#|000) + sitial 1) (cosw |0 /
0
//

) + sintu 11'1 /x)),

(27)

which is tlie minimal decomposition in terms of orthog-
onal product States. It exhibits explicitly two of the five

entanglement parameters. The other three are hidden in

tlie moduli of the scalar producís (0 | 0') and (0 | 0"), and
in one phase absorbed by one of the local bases. It is also
a nonsuperfluous form, though not built from local bases.
In this work we have found the minimal decomposition

of any puré three-qubit State in terms of orthogonal product
States built from local bases. It generalizes the Schmidt de-

composition and leads to a complete classification of puré
three-qubit States, which fine grains the fully inseparable
States class of the general entanglement classification of

mixed three-qubit States [13]. Our decomposition shows

that any party can, performing a clever local measurement,
kill the entanglement between the other two parties with

nonvanishing probability. A decomposition in terms of the
minimal number of orthogonal product States has also been

found.

Finally, we have explored whether a puré three-qubit
State can be written as a sum of two nonorthogonal prod-
uct States, which can be thought of as an alternadve gener-

alization of the Schmidt decomposition. We have verifíed

that only a subfamily depending on three parameters can-

not be expressed in this form [12], corresponding to States

with Is = 0.
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In this paper we analyze the canonical forms into which

any puré three-qubit state can be cast. The minimal forms,
i.e. the ones with the minimal number of product States built
frorn local bases, are also presented and lead to a complete
classification of puré three-qubit States. This classification is
related to the valúes of the polynomial invariants under local

unitary transformations by a one-to-one correspondence.

PACS Nos. 03.67.-a, 03.65.Bz

I. INTRODUCTION

Non-local quantum correlations or entanglement be-

tween space-separated parties is one of the most fertile
and thought-generating properties of quantum mechan-
ics. R.ecently it has become a very useful resource for

rnany of the applications in quantum information tlieory
and this has led to a lot ofwork devoted to understanding
how it can be quant.ified and manipulated.
Bipartite puré state entanglement is almost completelv

understood, while many questions are still open for the
mixed state case. For puré states, the Schmidt decom-

position [1] has proven to be a very useful tool, since
it allows to write any puré state shared by two parties
A and B in a canonical form, where all the information

about the non-local properties of the state is contained
in the positive Schmidt coefficients. The non-local prop-
erties of quantum states can be also specified by means

of other quantities invariant under the action of local

unitary transformations. An interesting type of these in-

variants are given by polynomial combination of the co-

ordinates of the state in a product basis, and the relat.ion
between these invariants and the Schmidt coefficients is

well known.
Some novel aspects, compared to the bipartite case,

appear for entangled Systems of more than two par-
ties. In this work we study the canonical forms of three-

qubit puré states, extending the results of bipartite sys-
tenis. First we analyze the forms proposed for gener-

alizing the Schmidt decomposition for three-qubit puré
states. Tlien, we relate one of these decompositions to

the polynomial invariants studied in [2-9]. We give a

one-to-one correspondence between a canonical form for

a three-qubit puré state and a complete set of polyno-

mial invariants describing its entanglement properties.
We also classify the different types of canonical forms

by means of the minimal number of local bases product
states (LBPS), i.e. the minimal number of non-local pa-
ramet.ers, needed for the specification of a state. For any

three-qubit puré state we give its decomposition with the
minimal number of LBPS and the procedure t.hat. has to

be applied in order to build it. Finally we indicate how

to generalize the results to systems of ./V-qubits, where

rnany difficulties arise.

II. GENERALIZATION OF THE SCHMIDT

DECOMPOSITION

The Schmidt decomposition has been a very useful tool

for the study of entanglement properties of bipartite sys-
tems. For a generic bipartite puré state |<f>) E C dl 0 C d2

it reads

i

|T) = ai > 0, (1)
i- 1

where l = min(c/i, <¿ 2 ), \H) = 0 | í)b, being |¿) or-

t.honormal vectors in each subsystem, and o;¿ are the

Schmidt coefficients. It would be very interesting to

fincl for three-qubit puré states a canonical decomposition
generalizing the features of the Schmidt decomposition.
However, the trivial generalizaron is not. possible [10]
and it is not evident. how to extencl the Schmidt decom-

position to the case of Wpart.y systems (N > 2). Indeed

several forms have been proposed (see for instance [11]).
In recent work [9] we gave a generalization of the

Schmidt decomposition for three-qubit puré states, in

the sense that the coefficients of this decomposition carry
all the information about the non-local properties of the

state, and do so minimally and unambiguously, i.e. the

decomposition is not superflous. Starting frorn a generic
state shared by three parties, A, B and C,

\V) = '52Ujk\ijk), ( 2 )
i,j,k

where | ijk) = |¿)a® |Í)b0|^)c ,
we loolc for the local bases

that allow to write (2) with the minimal number of LBPS.
A simple counting of parameters shows that at least. five
product states built frorn local bases are needed in order
to specify a generic state belonging to C 2®C 2 0C 2

. There
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are three inequivalent classes of five LBPS: the first one

is the symrnetric set

{|000), |001), |010), |100), lili», (3)

the second is weakly asymmetric and corresponds to the

three sets of states,

{|000), |001), |100). 1110), |111)}
{| 000 >, | 001 ), | 011 ), | 100 ), | 111 )}
{|000>, J010),1100).1101),1111)}, (4)

and the third one is strongly asymmetric, and corre-

sponds to the three sets

{|000>, |100), |101), |110), |111)}
{| 000 ), 1010), | 011 ), 1110 ), | 111»
(|000), |001), |110),|101), |111», (5)

where the three sets of states of (4) are related by permu-
tation of the parties, and the same happens for the sets

(5). The non-equivalence between the sets (3), (4) and

(5) follows from the different degrees of orthogonality be-

tween the five states within each set (see figure 1). In [9]
it was proved that any three-qubit state can be written
in terms of the product states of any of the asymmetric
sets. Let us sketch the procedure.
Starting from a generic state (2), one introduces the

matrices To and Ti with elements

{Ti ) jk = i'ijk- ( 6 )

A change of basis on the first qubit transforms tliese ma-

trices in the following way,

n = uqqTq + uq X t\

TÍ = ut0T„ + uf¡T1 , (7)

where uf- are the elements of a unitary rnatrix, while the

effect of a change of basis in B (C) implies that each T¿ is

left (right) multiplied by a unitary rnatrix UB (UC ). The

unitary transformation on party A is chosen such that

det(T') = 0. (8)
There are always two Solutions for this equation since (8)
is equivalent to

det(To + xT\) = 0, (9)

where x = ^ is an unbounded complex number. Now
U

OCl

we apply two unitary matrices on parties B and C in
order to diagonalize T¿. These operations lead to the
matrices

M„ = UbTÍUc
= ()“ “)

Mx
= UbT[Uc

= (^ AlAe
^ M , (10)

where A¿ are real and positive. since all the pilases have

been absorbed by phase redefinitions of |0)a, |1)a, |1 )b
and |l)c • By means of these unitary transformations we

have been able to write the initial state (2) in terms of

the products states appearing in the first set of (5), i.e.

|T) = A 0 |000) + Aie i(/3 |100) + A 2 |101) + A 3 |110) + A4 |lll).
(ID

Equation (9) has genericallv two different Solutions, x

and x, so two different clecompositions (11) are possible
for the same state |T). By limitingthe range of the phase
factor to 0 < <p < tt a unique solution is found when

0 < tp < 7T (see [9] for more details), and then we have a

unique canonical form in which to cast almost any three-

qubit puré state. For the remaining ones, when <p
— 0,7r,

two canonical forms exist in general; we will bréale this

remaining degeneracy taking, for instance, the form with
the smallest Ai, or, if Ai is unique, taking the form with
the smallest Ao. It is important also to note that we have

singled out party A in obtaining (11), but- we could have
chosen any of the three parties.
From (11) and by applying a unitary transformation

on the third qubit,

|0') = -=5L=(A,e i»0) + A 2 |l)) (12)
V Ai T A 2

it follows that any state can be written, after removing
the phases of four of the coefficients, as,

|T) = 77o e^|000) + 771IOOI) + 7721100) + 77 3 |110> + 7 /4 |lll),
( 13 )

with Tji real and positive, which corresponds to the first
set in (4).
Recently, it has been shown [12] that the symrnetric

decomposition using the set of states (3) is also possible.
The proof is based 011 the fact that if a given state |T) is

written in a basis such that the state 1111) is the one that
maximizes the overlap of |T) with any product state, i.e.

lelilí 2 = max|(T|n/3q)| 2 , (14)

the coefficients tu o, tioi and ton rnust be zero (otherwise
one could fincl a product state with a larger overlap).
Therefore any state can be written as

|T) = tco 1000) /ci 1001) + « 2 |010) + «31100) + /c 4 1111),

(15)

with Ki real and positive and 0 < 6 < 7r. Neverthe-
less, the conditions under which the decomposition (15)
is unique are not known.
A different decomposition, which can also be thought

as an alternative generalization of the Schmidt clecompo-
sition for three-qubit states, could be writing the state
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as a superposition of two product States, not necessarily
orthogonal,

|vl/) -

Qí |000) + /3e lS \(picp 2 (p3 ), (16)

witli a and fü positive real numbers. This decomposition
is onlv possible when J4 7! 0 (see below for the definition
of J4 ) [9,13], whicli corresponds to the GHZ-class in [13],
and it has been proved very useful for the obtention of
the optimal GHZ distillation protocol [14].

III. THE SET OF POLYNOMIAL INVARIANTS

The space of states of three qubits is C 2®C 2 (g)C 2
, which

depends on sixteen real pararneters (including the norm

and the global phase). Two states, |Ti) and Ido), are

equivalent, as far as their entanglement properties are

concerned, when they can be transformed one into the
other by local unitary transformations. Therefore the ac-

tion of the elements of the group (7(1) x SU (2) x SU (2) x
57/(2) defíne orbits in the space of states, each orbit be-

ing the equivalence class of all the states having the same

non-local properties. Thus, and as it is well-known, the
dimensión of a generic. orbit for the case of three-qubit
puré states is ten [2], so six entanglement pararneters
should be enough to discrimínate between two different
orbits. ,Since the decomposition (11) is unique, it gives
six quantities invariant under local unitaries, the five co-

efficients A¿ and the phase cp, which allow us to check

whether two generic states belong to the same orbit, i.e.
whether they can be connected applying local unitary
transformations. These pararneters can be thought of as
the entanglement coordinates. An alternative, though
two-fold degenerate, set of entanglement pararneters is

given by polynomial combinations of the coefficients tijk
which are invariant under the group of local unitaries

[2-8]. In this section decomposition (11) will be related

to these polynomial invariants.
For bipartite puré states, |<F) 6 Cdl (V2

, a com-

píete set of polynomial invariants, which allows to know
whether two bipartite states have the same entanglement
properties, is given by

tr {p lA ) = tiÍP
1
B ) l = 1, ...,min(di,d 2 ), (17)

where pa = tr# |<J>)(<3>| and pu = tipi |4>)(T| are the local

density matrices. Since the eigenvalues of these matrices

correspond to the square of the Schrnidt coefficients (1),
we know the relation between the polynomial invariants
and the Schmidt decomposition [7].
As it has been mentioned above, the space of entangle-

ment pararneters of puré three-qubit states has dimensión

equal to six, so at least six linearly independent. polyno-
rnial combinations of t tJ k invariant under local unitary
transformations are needed in order to specify the non-

local properties of a state, or the orbit which it belongs

to. In [7] the six linearly independent polynomial in-
variants of minimal degree were found. The norm is a

trivial one, so we will not consider it and in the rest of

the paper we will restrict ourselves to the space of ñor-

malized states, the number of non-local pararneters being
reduced to five. This implies that. we have ]TT ^i — 1 in

(11). Apart frorri the norm, the polynomial invariants
given in [7] are

\<h= tr (p\) < 1

\ < h = tr (p 2
B ) < 1

\ < h = tr (p
2
c ) < 1

1
_

~ < U = tr (pA ® PBPAB ) < 1

o < h = |Hdet (tijk)\ 2 < Y^r, (18)

where

Pa = trBC |T)(T|
Pb = trAc|'^ r )(^ r |
pe —

trAB |T)(T|
pAB =trc |’í'>(*|, (19)

and bidet (tijk) is the hyperdeterminant of the coefficients

tijk [15] and corresponds to the three-tangle of [16]. An

equivalent set of invariants can be constructed [9]

Ji = 1(1 +h-h~h~
J2 = ^(1 — h + h ~ h — 2Vi)

J3 = -(1 — I\ — I2 + I3 — 2vi)
Ja = Vi
J5 — -{3 — 3/i — 3G — I3 + 4/4 — 2vi), (20)

which, in terms of the pararneters of the decomposition
(11), are equal to

0 < J\ = |A1A 4 e
2 ^

— A2A3I" < —

0 < J2 = P 0 P 2 < y

0 < J3 = P0P-3 <
y

0 < Ja = PoPa < ^
1 2

“Yos -

= ^°(<7i + P 2 P 3
~ PiPa) < YY’ (21)

where m = X 2
. It can be proved that J4 and J5 are

invariant under permutation of the parties, because so
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are 2/4 — I\ — I2 and I5 , and J 1 , J2 , and J3 single out

parties A, B and C respectively, and transform arnong
themselves under party permutation.
From the above expressions one can prove the tighter

bounds

0 < + J'á + Ja A ~

0 < J\ + J3 + 1/4 A —

0 < A A + A d —

0 < J4 + J 5 < —. ( 22 )

Also the following holds

Ji = 0 => J5 = 0

J2 = 0 => J5 = 0

J3 = 0 => J5 = o

= 0 yjiJVs =

y. (23)

From (21) and using the normalization condition

Hi = 1 , it is possible to obtain the valué of the set

of coefficients

±
_

Ja + J5 ±
í‘° “

2(J, + J4 )

A = 4. ¿ = 2,3,4
A o

+ 1 ± ^2 + J3 + Ja
Ai = l - Ao ±

A o
(24)

where

Aj = (J4 + J5)
2

— 4(Ji + Ja){J2 + Ja){J^ + Ja) A 0 ,

(25)

which implies

J4 + J5 = 0 => J4 = J 5 = 0. (26)

Note that the valué of eos p can be also found from (21),

± AÍAÍ+A2 A 3 -«^1
eos <p =

,± ,,±

2AfA±A±A± (27)

and thus almost all the information about the decom-

position can be extracted from the valúes of the {J¿}.
There remains however some ambiguity in these expres-

sions, since there are two Solutions for the coefficients,
corresponding to ¡i^ and fj,^, and for each of them, two
different angles, 0 < < 7r and <p± =27r — com-

ing from (27). Part of this uncertainty is due to the two

Solutions of (8) and in fact the coefficients {/if, and

{[J ~, (p~ } describe the same orbit, and the same happens

for and {/./,d, As it has been said, the so-

lutions associated to (p are not considered because of the

range of the angle. However the set of invariants {J¿}
(or { Ii }) does not determine a unique orbit, or equiva-
lently a canonical point representing it. Two candidates
are possible, so there is still some ambiguity
left.

The five polynomial invariants (18) are real, and this

means that they can not distinguish among the orbits
associated to a given puré three-qubit state |T). with

coefficients tijk ,
and to |T)*, given by t*- k . Indeed,

f¡d*n = /¡ti*»* = i<m), (28)

where the second equality comes from the fact that the
invariants are real. It is not possible, due to this ambigú-
ity, to individúate a unique canonical state representing
an orbit from the invariants (18), or (20). A twelfth

degree complex polynomial invariant, Iq, introduced by
Grassl [17], solves (albeit redundantly) this problern, just
by inspection of the sign of its imaginary part (in other

worcls, the second equality of (28) is not valicl for this

invariant). The explicit form of Grassl’s invariant, using
decornposition (11) is

h — AoA4(^4(1 — 2(a¿ o + Ai)) + 2AiA2Age 7 ^) _

. (29)

The set given by (18) and Iq is complete, it allows to

check when two states belong to different orbits, and

from their valúes one can obtain a unique canonical point
representing the orbit applying (24-27) and, in the end,
using Iq to discrimínate between the two candidates.

This situation is quite different from what happens for

puré states of bipartite systems. In this case, a generic
state |4>) G Cdl ®Cd2

, with coefficients A'j, can be always
tranformed into |<f>)* by local unitarv transformations,
as this is clear from the fact that all the Schmidt coeffi-
cients are real. In general this is not true for three-qubit
systems, although in some cases the state |T) and its

complex conjúgate IT)* are in the same orbit. This cor-

responds to the situations when either

| eos 1 — | eos <p~ 1 = 1, (30)

or

eos íf

A

+

+

= eos p

= i'T ■ [31

Equivalent conditions in terms of the invariants { Ji } can

be obtainecl, giving

VJihJs

for the first case and

(32)

A j = 0. (33
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for the second. Furthermore in both sit.uations a product
basis can be found for which all the coefficients are

real. For the States satisfying the first condition, this
basis is the one that gives decomposition (11), since we

have e
1 ^ = ±1, while in the second case the proof is a

bit more tedious and it is given in the appendix A. From
these resnlts, then, it follows that

|\[/) ~ |Mt)* <e> y
7J 1 J2 J3 = or Aj = 0 l'F) real,

(34)

vvliere a puré state belonging to C 2
® C 2

® C 2 is said to

be real when there exists a product basis where all the
coefficients are real.
To summarize, five independent. quantities invariant

under local unitaries are needecl to specify the non-local

properties of a generic. three-qubit puré state. The coef-

ficients appearing in the decomposition (11) form a com-

píete faithful and minimal set of sucli invariants, when
constrained as explained after (11). The polynomial in-
variants given in (18) must be completed with 1$ in order
to solve the ambiguity between the orbits associated to

IT) and |T)*, and from the valúes of these polynomial
invariants one can build a unique canonical point rep-

resenting the orbit. Also when |\k) and l'P)* are in the

same orbit there exists a product basis where all the co-

ordinates of |T) are real, as it happens for puré States of

bipartite systems.
Leí: us mention finally that any real state can be writ-

ten with real coefficients in terms of a set of six LBPS,
adding the state 1011) to (3) or to the first of (5). This is

done by diagonalizing To with two orthogonal matrices.

IV. MINIMAL DECOMPOSITION

We have seen that a generic three-qubit puré state can

always be written in terms of five product states from

any of the sets of states in (3), (4) or (5). However it is

not olear which set should be used to find the minimal

decomposition, that is, the one with the least number
of non-local parameters. The minimal number of LBPS
needecl to specify a state |4/ ) will be denoted by ^(4/ ). We

know that in general v = 5 but now we want to analyze
the cases in which u < 5. In this section we present
a complete classification of the three-qubit puré states

according to this minimal number of product states. We

also give necessary and sufficient. conditions written in

terms of the invariants {to be satisfied by the states

of eacli class. The number of non-local parameters in

eacli family is v — 1, since all the coefficients are real. All
the families satisfy condition (32).

A. v = 4

There are several subfamilies of states that allow for a

decomposition in terms of four LBPS.

Type 4a: This subfamily is given by the states with

/i4 = 0 in (11). It is easy to prove that this condition is

equivalent to J4 = 0 (we will take the rest of invariants
different from zero, unless otherwise specified). Condi-
tion (32) is also satisfied with J5 > 0, since all the phases
can be absorbed.

Type 4b: States with ¡12 = 0 (/i3 = 0) in (11). The

equivalent conditions in terrri of the invariants are J2 =

J 5 — 0 (J3 = J5 = 0). Let us mention that there is an

apparently lack of symmetry in this subfamily, but this
is due to the fact that party A has been singled out in
the determinations of the decomposition (11). In fact the

analogous states with J\ = J5 = 0 are written with four

terms if either party B or C is singled out in (7-10).
Type 4c: States with /v.i = 0 in (11). It can be proved

that the corresponding conditions in terms of the invari-
ants are J\J^-\- J1J2 J1J3 ~\~ J2J3 — \fJ\ J2 As = qfi■
Again the lack of symmetry is due to the fact that party
A is privileged in the calculation of the decomposition
(11). Analogous condition can be found interchanging
the role of the indices 1, 2 and 3, which means that the

minimal decompositions is obtained if one of the other

two parties is singled out in (7-10).
Type 4d: States with kq = 0 in (15). It is proved in

appendix B that the corresponding condition, apart from
(32), which is always satisfied when v < 5, is A j = 0.

B. v = 3

Now we move to the study of those states that can be

expressed as a sum of three LBPS.

Type 3a: This subfamily is given by taking /.¿i = /i4 =

0 in (11). The equivalent conditions for the invariants are

J4 = 0 and J1J2 + J1J3 + J2J3 — VJ1J2J3 — qb ■

Type 3b: These states correspond to the case ¡ij =

/.ífc = 0 in (11), for j,k E {1,2,3} and j ^ k. These
conditions expressed in terms of the invariants are J ¡ —

Jk = J5 = 0 .

C. v = 2

The states with two product states built from local
bases are just. in two classes.

Type 2a: Ji = 0 except J 1 (t/2 , J3) 1 and these are

the states where party A(B,C) is not ent.angled with the
other two parties, so there is not truly three-party entan-

glement.
Type 2b: = 0 except J4 , they inelude the standard

GHZ state.
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D. v = 1

Typel: Ji — O, and these are the product states where

there is no correlation between the parties.

E. Summary

All the states belonging to C 2 ® C 2
® C 2 have been

classified in terms of the minimal number, u, of LBPS

required to express the state, and the resulting families

of states are shown in table I. Generically five terms are

needed, although there are cases where v < 5. Necessary
and sufficient conditions in terms of the set of invariants

{Ji} are given, which can be used to recognise the sub-

family a three-qubit puré state belongs to. Once this has

been done, we have provided the procedure that has to

be applied in order to find this minimal decomposition
witli product states.

V. GENERALIZATION TO MORE PARTIES

The decomposition (11), which generalizes the bipar-
tite Schmidt decomposition, has been proved to be very

fruitful for the case of three-qubit puré states, so it will

be convenient to know the way it can be generalized to

more parties. In this section first we will consider witli

some details the case of four-qubit systerns and this will

give us insight. into the difficulties found when we try to

extend our results.
The procedure to be applied for the generalizaron of

decomposition (11) for puré states belonging to C 2 ®C 2
(g>

C 2 ®C 2
, i.e. states |T) = ]T7 j k iUjkl\ijkl) shared bv four

parties A, B, C and D, will be now described. First we

define the two hypermatrices [15]

— tijkli (35)

which means that the initial state is interpreted as

W = |0)l*> + |l>l^i>, (36)

where |</>¿) are, up to normalization, three-qubit puré

states, tlieir coordinates being given by the elements

of the corresponding hypermatrix . The effect of the

change of local bases is very similar to the one described
for three-qubit systerns: a unitary transformation on sys-

tem A rnixes the coordinates of the two \<f>i), wliile uni-

tary transformations on the rest of subsystems can be

used to malee zero some of tlieir coefficients. Now we

apply the change of local bases on A that gives

Hdet(T¿) = 0, (37)

and afterwards unitary transformation on B, C and D are

used to write the new |</>q) in the canonical decomposition

found for three-qubit puré states. Since (37) is verified,
it is known that |^q) belongs to, at least, type 4a states,
so we will manage to write the initial state |T) in terms

of the twelve product states:

| 0000 ), | 0100 ), | 0101 ), | 0110 ),
| 1000 ), | 1001 ), | 1010 ), | 1011 ),
|1100), |1101), |1110), |1111). (38)

A simple counting of parameters gives that the min-

imal number of LBPS needed to specifv a state |T) £

C 2®C 2 ®C 2 ®C 2 is exactly twelve. The decomposition we

have found depends on twenty-four non-local parameters
but it is known that by phase redefinitions, i.e. acting
locally with U( 1), five phases can be absorbed (generi-
cally, for N parties N + 1 coefficients can be made real),
so the number of non-local parameters is nineteen (in-
cluding the norm), as it was expected [2].

However some problems arise in this case. Manv ele-

compositions in terms of the set of states (38) are pos-

sible for the same state. In fact (37) is a fourth degree
equation, so four Solutions will be found and from these

Solutions four different decompositions will be derived.
For the case of three-qubit puré state there were two

Solutions for (8), but we managed to obtain a unique
decomposition by limiting the range of p. A similar rea-

soning seems not to be trivial for this case. Furthermore

for puré four-qubit states more inequivalent set of twelve
product states appear, and this will difficult the analysis
of the minimal decomposition. The generalization of de-

composition (11) to V-qubit puré states (N > 3) is then

quite cumbersome.

Finally, it has to be noted that the algorithm proposed
in [12] for the decomposition (15) can be also extended
to higher dimensional systerns. Let us mention however

that, in any case, as the dimensión of the space increases,
the number of coefficients that can be made equal to zero

in any of the decompositions becomes irrelevant.

VI. CONCLUSIONS

In this work we have studied the canonical forms of

puré three-qubit states, extending the known results of

bipartite systerns.
First we show the possible generalizations of the

Schmidt decomposition and we relate one of these de-

compositions (11) to the polynomial invariants of [2-9],
The six linearly independent polynomial invariants of [7]
are not able to discrimínate betwee the entanglement or-
bits associated to a state and its complex conjúgate in a

product basis. An adclitional polynomial invariant intro-
duced in [17] has to be used, and we have seen how to

connect this complete set of polynomial invariants with
our generalization of the Schmidt decomposition. Indeed
it is shown how to find a canonical point in a generic
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orbit. described by this complete set of invariants. Let.

us mention here that a three-qubit puré stat.e |\k) and
its complex conjúgate |^)* give the same optimal prob-
ability of distilling a rnaximally entangled state of three

qubits, in the single-copy case [14].
We have also looked for the decomposition of any state,

Id'), witli the minimal number, v (T), of product stat.es

built from local bases. Generically this number is equal to
five, although many exceptional states have been found

witli // < 5. We have been able to give a complete cías-

sification of these states by means of a set of necessary
and sufficient conditions written in t.erms of the set of

invariants (20). The procedure to be applied in order
to build the minimal decomposition for every state has

been given too. The classification of the puré three-qubit
states in t.erms of their entanglement propert.ies can be

done following alternative criteria to the one described

here, which is based on the features observed act.ing with
the group of local unitary transformations. A possible
approach is to classify the states looking for their prob-
abilistic conversions under local operations and classical

comunication (LOCC) for the single-copy case (see [13]
and also [14,18]) or in the asympt.ot.ic regime [19]. It

would be expected that these classifications are a coarse-

graining of the one present.ed in this work. In fact. this is

the case for the equivalences classes under LOCC given
in [13].
Finally it has been indicat.ed how t.o extend decompo-

sition (11) to systems of more part.ies. A simple counting
of parameters shows that at. least. 2 jV — N product. states
built from local bases are needed in order t.o specify a

generic ACqubit puré state, and for four qubit.s we suc-

ceeded to find a procedure that malees zero four of the

coordinat.es tijki- The decomposition (15) allows for a

simpler generalization. However, in all the cases some

difficulties arise, related to the uniqueness of the decom-

positions, and it is not clear whether these generalized
Sclmiidt decompositions are quite useful for composit.e
systems of more than three qubit.s.

APPENDIX A: REAL STATES

In this appendix we will show that, given a puré three-

qubit state \i¡>) £ C 2 ®C 2 ®C 2
, this state is real, i.e. t.here

exists a product basis for which all coefficient.s are real,
if and only if or Aj = 0.

Consider the case of a state 1-0) = j k t%jk\ijk) where
all the tijk are real. Now we will follow the procedure de-
scribed by the equations (7-10) that. gives us the decom-

position (11). Since the initial coordinat.es are real, from

(8) a second degree equat.ion in x with real coefficient.s is

obtained, and this implies that. the two Solutions, x and

x, satisfy that either they are both real or x = x*. In

the first case, the calculation of the decomposition can

be performed using orthogonal matrices, and since the

initial coordinat.es were real, we will obt.ain a real de-

composit.ion, i.e. (p = 0,7r, which is equivalent. t.o (32).
For the second case, since x = x*, íy(TqT¿) = ti^T^TÓ),
and then /j,q = jl o and (33) is satisfied.

Now, the inverse has t.o be proved. For the first case

it is clear that all the states verifying (32) take real co-

ordinates when t.hey are expressed in the basis used in

decomposition (11)- For the second case the proof is not.

so trivial.

Consider a generic state, 10), having A j equal to zero.

The paramet.rization of this family of states is simplified
using (16), so let. us first mention some fact.s about. this

decomposition. As it. has been shown, any state wit.h

J4 0: 0 can be written as (16) [9,13] where

a = — \/J\ + J4
A4

P = T-\/h2P.3 + /N(/N + + ^ 3 )
Á4

S = arg(A 1 A4e^-A 2 A3 ) ) (39)

and, up t.o unitary transformations,

'°>= (0) lw> = te)- i = 1 - 2 - 3 - (40 >

It. can be proved t.hat. when A j = 0 t.he coefficient.s a and

¡3 are equal and then the states t.o be studied are

|0) = a (|000) + e
í<5 |^i<p 2 <F3» • (41)

Recall that. for these states t.he complex conjúgate is in

the same orbit. as the original one, and this means that

= '52 via vjb vkc t abc, (42)

where tijk are the coordinates in some product. basis and

v¡a , v
2
b and vkc are t.he element.s of t.he local unitary

matrices, V 1 in A, V 2 in B and V 3 in C, connecting
the two st.at.es. From (41) it. follows that these unitary
operators are

where c¿ = cos 7¿,
= sin 7 ¿ and ó' = 4 (actually, the

phase factors in the matrices V 1
can be given by arbi-

trary angles satisfying the constraint. = A but.

we c.hoose t.hese angles for simplicit.y).
Now we would like to find a product. basis for which

all the coefficient.s are real, i.e.

tijk = X] w iawjbwkctabc = (44)

and from this condit.ion and using (42), we have

V i = {W i )TWi
. (45)



The explicit form of eacli V 1

234567

, (43), as a product of a phase
factor and a real and symmetric rnatrix allows to write

them as

V* =e- i6 '{O i )TD i O i , (46)

where 0 1
are orthogonal matrices and D 1

are diagonal
matrices witli entries ±1. The change of basis we are

looking for then is given by

W* = {D
i )^0 i = e~

i¿ " (47)

where c¿ = cos^; -
sin and S" = §• The new

coordinates obtained applying these local change of basis

are, up to normalization,

^000 — C 1 C 2 C3 COS t 001

, .5 ,

^010 —

— c l s 2 c3 sm
^

^011

,
s ,

t 100 =-s lC2 c3 sm- t l01

.
_ _ _

5 ,

^110 = S1S2C3COS —

Tliis ends the proof.

-C 1 C 2 S 3 sm
-

— C\ s 2 s3 eos -

2
S

— S\c 2 s3 eos
—

.
s

s\s 2 s3 sm -. (48)

\([)) = a(\000) ±\<pi(p 2 ip3 ))- (51)

If we perform the local change of bases described by (47)
it can be seen, using (48) and the fact that ó = 0, 7r, that

the state |V>) is of type 4d. Indeed, the new coordinates

are, after absorbing the phases and up to normalization,

l\ = s\s 2 c3 l 2 = s\c 2 s 3 l 3 = c x s 2 s3 I4 = C1C2C3,

(52)

for 5 = 0, and

1 1 = C1C2S3 l 2 = C1S2C3 l 3 = S1C2C3 I4 = S1S2S3,

for S = 7T. Note that the local bases that appear in

(49) are the ones that diagonalize the local density 111 a-

trices. This gives the procedure to be applied in order to

find the minimal decomposition without performing the

rnaximization of (14), which is genericallv a more difficult
calculation.
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APPENDIX B: TYPE 4D

In this section we prove that a three-qubit puré state

IV’) can be written as

\^) = l x |001) + / 2 |010) + Z3 |100) + /4 |111>, (49)

with real and positive coefficients, if and only if (32) and
(33) are verified.

Starting from (49) we can apply the procedure given by
(7-10) to obtain (11). It can be seen that all the unitary
matrices needecl for the determination of this decompo-
sition are real, i.e. they are orthogonal, and since the

original coefficients {/¿} were also real, we will obtain a

real decomposition with (32). Moreover, it can also be

proved that the two matrices obtained after (8 ), and

Tg, corresponding to the two Solutions of this equation,
x and x, verify

tr((T¿)tr¿) = ti-((fS)'TS). (50)

This condition implies that fio = ¡lo, and using (24) we

have also (33).
Now we prove the inverse. Consider a state |V>) satis-

fying (32) and (33). Because of the latter condition, the
state allows for a decomposition as (41). Moreover, since

(32) is also satisfied, we have <p = 0 , 7r in (11), and this

implies, using (39), that S = 0
,
7 r. The generic expres-

sion for a state satisfying both the conditions can be now

given,
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FIG. 1. The figure depicts the three inequivalent sets of

states given by (3), (4) and (5).

Type Conditions States

4a J4 = 0 , \/di J2 J3 — ^ | 000 ). 1100 ), ( 101 ), | 110 )
4b 0II'A

1

IIA
1 1 000 ), 1 100), 1 110), 1 111 )

4c J\J\ + J\ J2 + J\ J3 + >^2 J 3 —■ |000), |101), ¡lio), ¡111)

4d Aj = 0, VJ1 J2 J3 = ^ 1 001 ),1 010 ),1 100 ), 1 111 )
3a J 1 J2 + J \ Jo + J2 J3 —

\/J\ J2 j3 =
, J4 =0

|000), |101), |110)

3b II II (Y- ll 0 1000 ), 1110 ), 1 111 )
2a All Ji = 0 apart. from J\ |000), |011)
2b All Ji — 0 apart from J4 |000>,|111)
1 = 0 |000)

TABLE I. Classification of three-quantum-bit states. For
the t.ypes of states denoted by 4b, 4c, 3b and 2a, there exist

analogous condition interchanging the roles of the invariants

di, J2 , J3 , and consequently the product. states used in the

minimal decomposition.
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The rapidly increasing interest in quantum information

v processing has rnotivated the detailed study of entangle-
A ment. Whereas entanglement of puré bipartite systems
^ is well understood, the classification of mixed states ac-

^ cording to the degree and character of their entanglement
H is still a matter of intensive research (see [1]). It was soon

H realised, that the entanglement of puré tripartite quan-
-'K. tum states is not a trivial extensión of the entanglement

of bipartite systems [2,3]. Recentlv, the first results con-

cerning the entanglement of puré tripartite systems have

A been achieved [4-6]. There, the main goal has been to

D generalize the concept of the Schmidt decomposition to

Á three-party systems [4,5], and to distinguish classes of
v locally inequivalent states [6]. The knowledge of mixed

*\ tripartite entanglement is rriuch less advanced (see, how-
S ever, [7-9]).
7^ In tliis Letter we introduce a classification of the whole

i space of mixed three-qubit states into different entan-

—i glement classes. We provide a method to determine to

33 which class a given state belongs (tripartite witnesses).
^ We also discuss the characterization of entangled states

A that are positive under partial transposition (PPTES).
> Finally, we introduce a new family of PPTES for mixed

tripartite qubits.
Our proposal to classify mixed tripartite-qubit states

73 is done by specifying cornpact convex subsets of the space
of all states, which are embedded into each other. This
idea vaguely resembles the classification of bipartite sys-
tenis by their Schmidt nurnber [9-11]. However, as shown
later our classification does not follow the Schmidt num-
ber [9]. Also in this respect, entanglement of tripartite
systems differs genuinely from the one of bipartite quan-
tum systems.
Before presenting our results concerning mixed states,

we briefly review some of the recent results on puré three-

qubit states. Any three-qubit vector (puré state) can be
written as

I "0ghz ) = Ao| 000) + Aie* e | 100) + A 2 1 101)
+ A31 110) + A41 111) , (1)

where A¿ > 0, J2i A¿ = 1, 0 £ [0,7r] , and {10), 11)} de-

notes an orthonormal basis in Alice’s, Bob’s and Charlie’s

space, respectively [4]. Apart from separable and bisepa-
rabie puré states, there exist also two different types of lo-

cally inequivalent entangled vectors; the so-called GHZ-

type [2] and W-type [6]. Vectors belonging to GHZ- and

W-types cannot be transformed into each other by local

operations and classical communication (LOCC). Gener-
icallv, a vector described by Eq.(l) is of the GHZ-type,
wliile W-vectors can be written as

I $w ) = Ao| 000) + A! I 100) + A 2 | 101) + A3 | 110). (2)

W-vectors form a set of measure zero among all puré
states [6]. Also, given a W-vector one can always fincl

a GHZ-vector as cióse to it as desired by adding an in-
finitesirnal A^term to the RHS of Eq.(2) [12], Further-

more, the so-called tangle, r, introduced in [13], can be
used to detect the type, since t(| ipw)) = 0 [6]-
Mixed states of three-qubit systems can be classified

generalizing the classification of puré states. To this aim

we define (see Fig-l):
• the class S of separable states, i.e. those that can

be expressed as a convex sum of projectors onto product
vectors;
• the class B of biseparable states, i.e. those that can

be expressed as a convex sum of projectors onto prod-
uct and bipartite entangled vectors (A-BC, B-AC and

C-AB);
• the class W of W-stat.es, i.e. those that can be

expressed as a convex sum of projectors onto product,
biseparable and W-type vectors;
• the class GHZ of GHZ-states, i.e. the set of all phys-

ical states.

All these sets are convex and cornpact, and satisfy S C

B C W C GHZ. States in S are not entangled. No

genuine three-party entanglement is needed to prepare

entangled states in the subset B \ S. The formation of

entangled states in W \ B requires W-type vectors with

three-party entanglement, but zero tangle, which is an
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The rapidly increasing interest in quantum information

Processing has rnotivated the detailed study of entangle-
ment. Whereas entanglement of puré bipartite systems
is well understood, the classification of mixed states ac-

cording to the degree and character of their entanglement
is still a matter of intensive research (see [1]). It was soon

realised, that the entanglement of puré tripartite quan-
tum states is not a trivial extensión of the entanglement
of bipartite systems [2,3]. Recently, the first. results con-

cerning the entanglement of puré tripartite systems have
been achieved [4-6]. There, the main goal has been to

generalize the concept of the Schmidt decomposition to

three-party systems [4,5], and to distinguish classes of

locally inequivalent states [6]. The knowledge of mixed

tripartite entanglement is much less advanced (see, how-
ever, [7-9]).

In tliis Letter we introduce a classification of the whole

space of mixed three-qubit states into different entan-

glement classes. We provide a method to determine to

which class a given state belongs (tripartite witnesses).
We also discuss the characterization of entangled states

that are positive under partial transposition (PPTES).
Finally, we introduce a new family of PPTES for mixed

tripartite qubits.
Our proposal to classify mixed tripartite-qubit states

is done by specifying compact convex subsets of the space
of all states, which are embedded into each other. This
idea vaguely resembles the classification of bipartite sys-
tenis by their Schmidt nurriber [9-11]. However, as shown
later our classification does not follow the Schmidt num-
ber [9]. Also in this respect, entanglement of tripartite
systems differs genuinely from the one of bipartite quan-
tum systems.
Before presenting our results concerning mixed states,

we briefly review some of the recent results on puré three-

qubit states. Any three-qubit vector (puré state) can be
written as

I V*ghz) = Tvo I ^00) + Aj | 100) + A 2 1 101)
+ A,3 1 110 ) + A4 1 111 ) , ( 1 )

where A¿ > 0, A? = 1, 9 G [0,7r] ,
and {|0), 11)} de-

notes an orthonormal basis in Alice’s, Bob’s and Charlie’s

space, respectively [4]. Apart from separable and bisepa-
rabie puré states, there exist also two different types of lo-

cally inequivalent entangled vectors; the so-called GHZ-

type [2] and W-type [6]. Vectors belonging to GHZ- and

W-types cannot. be transformed into each other by local

operations and classical communication (LOCC). Gener-
ically, a vector described by Eq.(l) is of the GElZ-type,
while W-vectors can be written as

I ^w ) = Ao| 000) + X\ I 100) + A 2 | 101) + A 3 | 110). (2)

W-vectors form a set of measure zero among all puré
states [6]. Also, given a W-vector one can always find

a GHZ-vector as cióse to it as desired by adding an in-

finitesimal A4-term to the RHS of Eq.(2) [12]. Further-

more, the so-called tangle, r, introduced in [13], can be

used to detect the type, since r(| ipw)) = 0 [6].
Mixed states of three-qubit systems can be classified

generalizing the classification of puré states. To this aim
we define (see Fig.l):
• the class S of separable states, i.e. those that can

be expressed as a convex sum of projectors onto product
vectors;
• the class B of biseparable states, i.e. those that can

be expressed as a convex sum of projectors onto prod-
uct and bipartite entangled vectors (A-BC, B-AC and

C-AB);
• the class W of W-states, i.e. those that can be

expressed as a convex sum of projectors onto product,
biseparable and W-type vectors;
• the class GHZ of GHZ-states, i.e. the set of all phys-

ical states.

All these sets are convex and compact, and satisfy S C

B C W C GHZ. States in S are not entangled. No

genuine three-party entanglement is needed to prepare

entangled states in the subset B \ S. The formation of

entangled states in W \ B requires W-type vectors with

three-party entanglement, but. zero tangle, which is an
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entanglement monotone decreasing under LOCC [6]. Fi-

nally, the class GHZ contains all types of entanglement,
and in particular, GHZ-type vectors are needed to pre-

pare States from GHZ \ W. The introduced classes are

invariant under local unitary or invertible non-unitary
operations, while local POVM’s [12] can only transform
states from a “higher” to a “lower” class.

FIG. 1. Schematic structure of the set of all three-qubit
States. S: separable class; B: biseparable class (convex hull

of biseparable states with respect to any partition); FF-class

and GHZ-class.

Notice that since GHZ-vectors can be expressed as

the sum of only two product vectors, i.e. | GHZ) =

(| 000) + |lll))/\/2, whereas the minimum number of

product terms forming a W-vector is three [4,6], as in the

State | W) = (| 100> + |010> + |001))/V3, our scheme may
seem somehow counterintuitive. Indeed, for bipartite sys-

tems, states with lower Schmidt number, i.e. lower num-
ber of product terms in the Schmidt decomposition, are
embedcled into the set of states with higher Schmidt num-
ber [10]. One is tempted to extend this classification to

tripartite systems as S C B C GHZ C W, where now

W is the set of all states. However, such generalization
is evidently wrong, because the the set of GHZ-states in

such classification cannot be closed [12].
Having established the structure of the set of mixecl

three-qubit states, we show how to determine to which

class a given state p belongs. To this aim, we use the

approach developed previously in the construction and

optimisation of witness operators [11,14,15].
We denote the range of p by R(p), its rank by r(p), its

kernel by K(p) , and the dimensión of I\(p) by k(p). Fol-

lowing the approach of the best separable approximation
(BSA) [16], one can decornpose any state p as a convex

combination of a FF-class state and a rernainder ó,

p
-- Awpw + (1 - Ap/)h , (3)

where 0 < Aw < 1, and R(S) does not contain any

W-vector. Maximization of Ap/ leads to the best W-

approximation of p. Notice that only for p belonging to

the GHZ \ FF-class, this decomposition is non-trivial,
i.e. Xw 7^ 1- Also, r(h) = 1, since any subspace
spanned by two linearly independent GHZ-vectors con-

tains at least one puré state with zero tangle. In fact,

given and | '02 ) with r(|'i/q)) and r(|'i/G)) not equal
zero, it is always possible to fincl some á,/3 such that

\ip(á,(3)) = Q'|'0i) + /3\ip2) is normalized, and its tangle
is zero. Therefore, any W-approxirnation must have the
form:

p = Awpw + (1 — Ap/)| lpGHz){lpGHZ | • (4)

Similarly, one can express p in the best biseparable ap-

proximation as:

p = 'XbPb + (1 — Ab)¿> , (5)

where now R(S) must not contain any biseparable states,
i.e. r(h) < 4, since any N-dimensional subspace of the
2 x N space contains at least one product vector [17].
We use the above decompositions to construct opera-

tors that detect the desired subset (see [15]). In anal-

ogy to entanglement witnesses and Schmidt witnesses we

term these operators tripartite witnesses. The existence
of witness operators is a consequence of the Hahn-Banach

theorem, which states that a point outside a convex corrí-

pact set is separated from that set by a hvper-plane.
The equation Tr [Wp) = 0 describes such a hvper-plane,
and one calis W a witness operator. For example, in
our setting, a W-witness is an operator Ww such that
Tr (WwPb) > 0 holds MpB G B , but for which there
exists a pw G W \ B such that Tr (WwPw) < 0.

Any GHZ-witness (W-witness) has the canonical form

W = Q — el. where Q is a positive operator which lias
no W-type (B-type) vectors in its kernel; thus k[Q) = 1

( k(Q ) < 4) [11,15]. An example of a GHZ-witness is

Wghz = — Pghz , ( 6 )

where Pghz is the projector onto | GHZ). The valué

3/4 corresponds to the maxirrial squared overlap be-
tween | GHZ) and a W-vector. This construction guar-
antees that Ti\Wghz pw) > 0 for any W-state, and
since Tr(WghzPghz ) < 0, there is a GHZ \ W—state
which is detected by Wghz • The maximal overlap is
obtained as follows: due to the symmetry of | GHZ)
we only need to consider W-vectors that are svmmet-

ric under the exchange of any of the three qubits [18],
Therefore, we have to consider all local trilateral rota-
tions of | ipw ) = k 0 | 000) + ki(\ 100) + | 010) + | 001)),
where k, 0 ,k\ are real and k,q + 3 k\ = 1. Due to the

symmetry, such rotations can be parametrised for all

parties as | 0) —y a\ 0) + /3\ 1), | 1) -> /3* \ 0) — a* \ 1),
with |a| 2 + |y3| 2 = 1. Thus, the overlap (GHZ\ipw)
is a function of six parameters with two constraints, and
can be maximized using Lagrange multipliers. An op-
timal choice of parameters is kq = 0, Ki = l/\/3, and

P - —oí = l/y/2. This leads to | {GHZ |'0p/) | 2 iaa.
= 3/4.

Analogously, we can construct a W-witness as

Wp/j = - 1 - Pw ( 7 )
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where Pw is now the projector onto a vector | W), and

2/3 corresponds to the maxirnal squared overlap between

| W ) and a B-vector. Another example of a W-witness
is

Ww2
= -1 — Pghz, ( 8 )

where now 1/2 is the maximal squared overlap between

| GHZ) and a B-t.ype vector [19]. The W-vector that
has maximal overlap with | GHZ) is detected by Ww2

-

The tripartite witness Ww2 allows to prove that the
class of mixed W \ B-states is not of measure zero: con-

sicler the family of states in C 2
<Z> C 2

Cg> C 2 given by the

convex sum of the identity and a projector onto a W-

st.ate,

P -

1 — p „

——1 + pPw • ( 9 )

Obviously, the states (9) belong at most to W. The

range for the parameter p, in which Ww2
detects p, i.e.

Tr (yVw2 p) < 0, is found to be 3/5 < p < 1, and is bigger
than the one found by using Ww l

. Taking any p which
has a finite distance to the border of this interval, i.e.

P - 3/5 > A and 1 — p > A, it is always possible to

find a finite región arounxl p which still belongs to the
W \ B-class. This can be seen by considering

P=( 1
1 - p 1 + pPw + ccr ( 10 )

where a is an arbitrciry density matrix, which covers all

directions of possible deviations from p in the opera-
tor space. In the worst case a is orthogonal to Pghz ,

so that Ti'(Pghz&) = 0, and therefore Tt(Ww2 P) =

(1 — e)Tr (Ww2 p) + e/2. As long as the relat.ion e <

(5 p — 3)/(5p+ 1) holds, the corresponding state p is still
detected by Ww2

- Moreover, one can also find a finite

P such that if e < P, then p is in the ÍT-class. The

bound P is obtained, for instance, by demanding that

(1 — e
/ )(l — p)l/8 + e

/
cr is biseparable. The intersection of

the two intervals gives a finite range for e where the state

p is in the W\B-c lass. This proves that the set of mixed

W \ B-states contains a ball, i.e. is not of measure zero.

YVe discuss now sorne possible consequences of our re-

sults for FPTES of three qubits, for which the partial
transposes p

T
- A

, p
Ta and pTc are positive. Any of these

states can be decomposed as:

p = Asps + (1 —

, (11)

where ps is a separable state and ó is an edge state [20].
YVe conjecture that PPTES cannot belong to the GHZ
\ W-dciss , i.e. they are at most in the IT-class. This
conjecture is rigorous for states that have edge states with
low ranks in the above decomposition. It. was shown in

[17] that for bipartite syst.ems in C 2 (g) CN
, the rank of

PPTES must be larger than N, and if r(p) < N and

PTa > 0, then the state p is separable. Thus, any PPTES
of t.hree-qubits with r[p) <4 is biseparable with respect
to any partition; an example of such states are the UPB-

states from Ref. [7].
For the case of higher ranks we can only give some

support. for our conjecture. We proceed as in [11], and
observe first that it suffices to prove the conjecture for

the edge states. For these states, the sum of ranks sat-

isfies r(A) + r(STA ) + t( 8Tb ) + r(8Tc ) < 28 [20]. Any
PPT entangled state can only be detected by a non-

decomposable entanglement witness, which in the case of

tripartite systems has the canonical form Wn <¿ = W¿ — el

where Wd = P + Y2 Qx i s a decomposable operator
with P,QX > 0, R{P) = I<{8), R(QX ) = I<{8Tx )
for some edge state 8 ,

and X = A, B, C [20]. We re-

strict ourselves to edge states with the maximal sum of

ranks, i.e. states 8 with (r(8), r(8TA ), r(8Tj3 ), r(8Tc )) =
(8, 8, 7, 5), (8, 8, 6, 6), (8, 7, 7, 6), (7, 7, 7, 7) and permuta-
tions. Indeed, if the conjecture is t.rue for these states, it
will be t.rue for all edge states, and thus for all PPTES,
since the edge states with maximal sum of ranks are dense

in the set of all edge states [11]. We conjecture that. for

the case of edge states with maximal sum of ranks it.

is always possible t.o find a puré W-type vector, \ pw),
such t.hat. for any non-decomposable witness W n d °f 8,
(<t>w \y^d\4>w) P 0, so that (4>w |kV nc¿| pw) < 0. That

means W n d cannot be a GHZ-witness, so the edge state

/)' belongs t.o the W-class. If this holds for any ó it implies
that all PPTES belong to the W-class.

Any W-vect.or can be obtained by local invert.-

ible operat.ions applied t.o | W) i.e. can be writ-

ten as | pw) = &a\ e 2 , fi,gi) + &B \ , f2 ,9i) +

occ\ ei, /i, í7 2 ) • YVe denote | $ A ) = |e^,/i,(/i), |TA ) =
(XB\e*,f2,gi) + 0'C \e*1 Jug 2 ), \ ®b) = I ei,/2* ><7i}>
I Vb) = ocA \e 2 ,fi,gi) + ac \ ei,/i ,g 2 ), \ ®c) =

1 ei ,fi,gl), |Tc) = aA \ e 2 , fi,g*) + aB \ ei, h,g*). In or-

der to fulfill the condition (cj)w | Wd| pw) < 0 we demand
that = 0; P\<f>w) = 0, and Qx\^x) = 0 for

A" — A, B,C. The latter 4 condit.ions form 4 linear ho-

mogeneous equat.ions for the a^’s, whose Solutions exist
if two 3x3 determinants vanish. Together with the first
3 conditions this gives at. most 5 equations in the case

?■(<)') < 8, and 6 equations in the worst case r(8) = 8, for
the 6 complex paramet.ers charact.erizing |e¿),|/¿), and

| gi), with i = 1,2. For r(ó') < 8 (r(8) = 8) one ex-

pect.s here a one complex parameter (finite, but. large)
family of Solutions. At the same time {4>w |Wd| <j>w) =
2 Re Y2x ax{^*x (w h ere I denotes par-
tial complex conjugation with respect. to A) i.e. is a

hermitian form of a^’s, whose diagonal elernents van-

ish, since | does not. depend on ax ■ Employing the
freedom of choosing the Solutions from the family, one

expect.s t.o find at least. one with (<;i¡w |Wd| Pw) < 0. In
this way we obt.ain t.he W-vector we were looking for.

For the cases (6, 8, 8, 6) and (5, 8, 8, 7), a similar argu-



4

inent indeed shows that. there should exist a biseparable
state, | ips), such that ('ipB |Wn d| V*B ) < 0- Note that the
above rnethod of searching | 4>w) (| Í>b)) for a given S, if
successful, provides a sufficient condition for ó to belong
to the FF-class (5-class).
Finally, we present an example for a PPTES entangled

edge state with ranks (7,7,7,7). We introduce

/ 1 0 0 0 0 0 0 1 \
0 a 0 0 0 0 0 0
0 0 6 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 i

c
0 0 0

0 0 0 0 0 1
b 0 0

0 0 0 0 0 0 i
a

0

V 1 0 0 0 0 0 0 1 )

with a, b, c > 0 and n = 2 + a + 1/a + 6 + 1/6+ c + 1/c.
The basis is {000,001,010,011,100,101,110,111}. This

density matrix has a positive partial transpose with re-

spect to each subsystem. One sees immediately that

r(p) = r(pTA ) = r(pTB ) = r(pTAB ) = 7. In order to

check that p is a PPT entangled edge state, one has
to prove that it is impossible to find a product vec-

tor | 0) G R{p), such that at the same time \4>* x ) G

R(pTx ) for X = A,B,C. This, indeed, is not possi-
ble, as one readily condueles by looking at the kernels

directly: one cannot find a product vector | <¡>) that is

orthogonal to | 000) — | 111), whereas at the same time

| (¡>* A ) T | 011) - c| 100), | 4>* B ) T | 010) - 6| 101), and

| (f)* c ) T | 001) — a\ 110), unless the condition ab = c is

fulfilled. Thus, for generic a, 6, c we have found a family
of bound PPT entangled edge states of three qubits with
maximal sum of ranks. By direct inspection we observe
that p fulfills our conjecture, and is biseparable with re-

spect to any partition. It can be written e.g. as a sum

of separable projectors and a B-state acting in the 2x2

subspace spanned by Alice’s space and the vectors | 00)
and | 11) in Bob’s-Charlie’s space.
To summarize, we show that the set of density matri-

ces for three qubits has an “onion” structure (see Fig.l)
and contains convex compact subsets of states belonging
to the separable S, biseparable B

, W- and GHZ-class,
respectively. We provide the canonical way of construct-

ing witness operators for the GHZ- and kF-class, and

give the first examples of such witnesses. The study of
the family of tripartite states given in Eq. (9 ) allows us

to prove that the VF-class is not of measure zero. We

conjecture and give some evidence that all PPTES of

three-qubit systems do not require GHZ-type puré states

for their formation. We formúlate a sufficient condition
which allows to check constructively if a state belongs to

the kF-class (B-class). Finally, we present a family of
PPT entangled edge states of three qubits with maximal
sum of ranks.
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The decay of orthopositronium into three photons produces a physical realization of a puré state with

three-party entanglement. Its quantum correlations are analyzed using recent results on quantum information

theory, looking for the final state that has the maximal amount of Greenberger, Horne, and Zeilinger like
correlations. This state allows for a statistical dismissal of local realism stronger than the one obtained using
any entangled state of two spin one-half párdeles.

DOE 10.1103/PhysRevA.63.042107 PACS number(s): 03.65.Ta, 03.67.-a, 12.20.-m

I. INTRODUCTION

Entanglement or quantum correlations between many
space-separated subsystems has been recognized as one of

the most intrinsic properties of quantum mechanics and pro-
vides the basis for many germine applications of quantum
information theory. It is, then, quite natural to look for physi-
cal situations in which quantum entangled States are ob-

tained. Most of the theoretical and experimental effort has so

far been devoted to unveil physical realizations of quantum
States describing two quantum correlated subsystems. The

search for physical Systems displaying clean three-party en-

tanglement is not simple. In this paper, we shall analyze
decays of partióles as a natural scenario for fulfilling such a

goal. More precisely, we shall show that the decay of ortho-

positronium into three photons corresponds to a highly en-

tangled state. Let us now review what entanglement can be

used for and why it is interesting to look for quantum corre-

lation between more than two partióles.
In 1935 Einstein, Podolsky, and Rosen [1], starting from

three reasonable assumptions of locality, reality, and com-

pleteness that every physical theory must satisfy, argued that

quantum mechanics (QM) is an incomplete theory. They did

not question quantum mechanics predictions but rather quan-
tum mechanics interpretation [2], Their argument was based

on some inconsistencies between quantum mechanics and
their local-realistic premises (LR) that appear for quantum
States of bipartite systems, 1 i¡/) e Tid

i
® 'Hd^ • It was in 1964

when Bell [3] showed that any theory compatible with LR

assumptions cannot reproduce some of the statistical predic-
tions of QM, using a gedankenexperiment proposed in Ref.

[4] with two quantum correlated spin-j partióles in the sin-

glet state

|j>=-k ( | 0iHio». U)

In his derivation, as it is well-known, quantum correlations
or entanglement have a crucial role. Actually, the singlet
state is known to be the maximally entangled state between
two partióles. The conflict between LR and QM arises since

*Email address: acin@ecm.ub.es

the latter violates some experimentally verifiable inequali-
ties, called Bell inequalities, that any theory according to the

local-realistic assumptions ought to satisfy. It is then possible
to design real experiments testing QM against LR (for a de-

tailed discussion see Ref. [5]). Correlations of linear polar-
izations of pair of photons were measured in 1982 showing
strong agreement with quantum mechanics predictions and

violating Bell inequalities [6]. Nowadays, Bell inequalities
have been tested thoroughly in favor of QM [7],

More recently, it has been pointed out that some predic-
tions for quantum systems having quantum correlations be-

tween more than two particles give a much stronger conflict
between LR and QM than any entangled state of two par-
ticles. The maximally entangled state between three spin-j
particles, the so-called Greenberger, Horne, and Zeilinger
(GHZ) state [8]

1
| GHZ) = — (1000) +1111)) (2)

y2

shows some perfect correlations incompatible with any LR

model (see Ref. [2] and also Ref. [9] for more details). It is
then of obvious relevance to obtain these GHZ-like córrela-
tions. Producing experimentally a GHZ state has turned out

to be a real challenge yet a controlled instance has been

produced in a quantum optics experiment [10].
Entanglement is then important for our basic understand-

ing of quantum mechanics. Recent developments on quan-
tum information have furthermore shown that it is also a

powerful resource for quantum information applications. For
instance, teleportation [11] uses entanglement in order to ob-

tain surprising results, which are impossible in a classical
context. A lot of work has been performed trying to know

how entanglement can be quantified and manipulated. Our
aim in this paper consists on looking for GHZ-like córrela-

tions, which are traly three-party puré state entanglement, in
the decay of orthopositronium to three photons. The choice
of this physical system has been motivated mainly by several
reasons. First, decay of particles seerns a very natural source

of entangled particles. Indeed, positronium decay to two

photons was one of the physical systems proposed a long
time ago as a source of two entangled space-separated par-
ticles [12], On a different line of thought, some experiments
for testing quantum mechanics have been recently proposed
using correlated neutral kaons coming from the decay of a 4>
mesón [13]. In the case of positronium, three entangled pho-

1050-2947/2001/63(4)/042107(10)/$20.00 63 042107-1 ©2001 The American Physical Society



A. ACIN, J. I. LATORRE, AND P. PASCUAL PHYSICAL REVIEW A 63 042107

tons are obtained in the final State, so it offers the opportu-
nity of analyzing a quantum State showing three-party corre-

lations similar to other experiments in quantum optics.
The structure of the paper goes as follows. We first re-

view the quantum States emerging in hoth para- and orthop-
ositronium decays. Then, we focus on their entanglement
properties and proceed to a modern analysis of the three-

photon decay State of orthopositronium. Using techniques
developed in the context of quantum information theory, we
show that this State allows in principie for an experimental
test of QM finer than the ones hased on the use of the singlet
State. We have tried to make the paper self-contained and

easy to read for hoth particle physicists and quantum infor-
mation physicists. The former can find a translation of some
of the quantum information ideas to a well-known situation,
that is, the positronium decay to photons, while the latter can
see an application of the very recent techniques obtained for

three-party entangled States, which allow to design a QM vs

LR test for a three-particle system in a situation different

from the GHZ State.

II. POSITRONIUM DECAYS

A. Positronium properties

Let us start remembering some basic facts about positro-
nium. Positronium corresponds to a e

+ e~ bound State. These

two spin-j partióles can form a State with total spin equal to
zero, parapositronium (p- Ps), or equal to one, orthopositro-
nium (o-Ps). Depending on the valué of its angular momen-
tum, it can decay to an even or an odd number of photons as

we shall see shortly.
Positronium binding energy comes from the Coulomb at-

traction between the electrón and the positrón. In the nonrel-
ativistic limit, its wave function is [14]

*(r) =
\J 7TCl

3

,~(r/a)

d 3
p

(2 77 ) 3/2

d 3
p

e ipr^(p)

,ipr
\J&a 3

(27r) 3/2 77(1 +Cl 2p
2 ) 2

(3 )

where a = 2/(ma), i.e., twice the Bohr radius of atomic hy-
drogen, and rn is the electrón mass. Note that the wave fuñe-
tion takes significant valúes only for three momenta such that

p^Ha<m, which is consistent with the fact that the system
is essentially nonrelativistic.

The parity and charge conjugation operators are equal to

quantum numbers so that the ground States are
l S 0 , with

Jpc =0~ +
, for the p -Ps and 3 ,S' 1 + having J pc =

for the o-Ps.
Positronium is an unstable bound State that can decay to

photons. Since a n-photon State transforms as Uc \ny)
= ( — l) n \ny) under charge conjugation, which is an exact

discrete symmetry for any QED process such as the decay of
positronium, we have that the ground State of p-Ps (o-Ps)
decays to an even (odd) number of photons [15], The analy-
sis of the decay of positronium to photons can be found in a

standard QED textbook [14], Parapositronium lifetime is
about 0.125 ns, while for the case of orthopositronium the
lifetime is equal to approximately 0.14 yts [16],

The computation of positronium decays is greatly simpli-
fied due to the following argument. The scale that Controls

the structure of positronium is of the order of \p\~am. On
the other hand, the scale for postrinomium annihilation is of
the order of rn. Therefore, it is easy to prove that positronium
decays are only sensitive to the valué of the wave function at

the origin. As a consequence, it is possible to factor out the
valué of the wave function from the tree-level QED final-
State computation [14]. A simple computation of Feymann
diagrams will be enough to write the precise structure of

momenta and polarizations that describe the positronium de-

cays. Furthermore, only tree-level amplitudes need to be

computed since higher corrections are suppressed by one

power of a. Let us now proceed to analyze the decays of

p-Ps and o-Ps in turn.

B. Parapositronium decay

Parapositronium ground State decays into two photons.
Because of the argument mentioned above, the determination
of the two-photon State coming from the p - Ps decay is sim-

ply given by the lowest-order Feynmann diagram of e
+ e~

—>yy. Since positronium is a nonrelativistic particle to a

very good approximation, the three momenta of e
+ and e~

are taken equal to zero, and the corresponding spinors are

replaced by a two-component spin. This implies that the tree-

level calculation of the annihilation ofp -Ps into two photons
is equal to, up to constants,

M(e +

e~-+yy)~x+M 2X-, (5)

where (see Ref. [14] for more details) x± is the two-

component spinor describing the fermions, X^ — X
7
^^ and

M 2 gives

M 2 ^ (Q N €2 ) • kl2 y 2—2\.(^i ,X_i \k 2 ,X 2 )I2 x2 > (6)
perm

Up = (- l) i+1 , U c=(-l)L+s , (4)

where L and S are the orbital and spin angular momentum.
Positronium States are then classified according to these

where e* = e*(kj ,X¿) stands for the circular polarization
vector associated to the outgoing photon i and / 2X2 is the
2X2 identity matrix. More precisely, for a photon having the

three-momentum vector Íc= \Íc\k = | k \(sin 9 eos c6,sin 9 sin

0,cos 9), the polarization vectors can be chosen

042107-2
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X
e(k,X) = p(eos 9 eos ó — iX sin 0,cos 9 sin 4>

V2

+ ¡X eos 0, — sin 9),

where X = ± 1 and they obey

k- e(k,X) — 0, ícX e(k,X)= — iXe(k,X),

(7)

kki ,Xf) • e(kj ,Xj)=-j( 1 -XjXjkj ■ k¡). (8)

From the expressions of the polarizaton vectors and the
three-momentum and energy conservation, it follows that the
scalar term A is

where

S :=k¡xéf. (14)

Using Eq. (8) we can rewrite M 3 in the following way:

M 3=a-V(ki,Xi;k 2 ,X 2 ',k 3 ,X 3 ), (15)

where

^= {(2xi • X 2 )(^ 2 + X 3 ) ,Xi)[ €*(Íc2 ,X 2 ) ■ £*(£3 tX 3 ) ]

+ (X 2 -X 3 )(X 3 + X 1 )6*(íc2 ,X 2 )[e*(k 3 ,X 3 )-€*(k l ,X 1 )]

+ (X 3 —Xi)(X! + X 2 ) e*(k3 ,X 3 )

A(íc,X 1 ; — k,X 2 ) —

— —(Xi + X 2 ), (9)

and it verifies

A(k, + l;-k, + l) = -A(k,-l;-k,-l),

A(*, + l;-*,-l) = -A(jfc, + l;-fc f -l) = 0. (10)

The two fermions in the parapositonium ground State

are in tire singlet State. \S = 0,Sz
:=0) = l/yl2(\j,— t)

- I~ 7,í))> and then, using the previous relations for A and

Eq. (5), the two-photon State results of the p- Ps desintegra-
tion is

l'/^)= ~p(l ++ >“l ))• (11)

The two-photon State resulting from p - Ps decay is thus

equivalent to a maximally entangled State of two spin-j par-
heles. This is a well-known result and was, actually, one of

the physieal system first proposed as a source of partióles
having the quantum correlations needed to test QM vs LR

[ 12 ].

C. Orthopositronium decay

The ground State of orthopositronium has JFC = 1~~ and,
due to tlie fact that charge conjugation is conserved, decays
to three photons. Repeating the treatment performed for the

p- Ps annihilation, the determination of the three-photon State

resulting from the o-Ps decay requires the simple calculation
of the tree-level Feynmann diagrams corresponding to

e
+e~^ yyy. Its tree-level computadon gives, up to con-

stants,

M(e +e~-*yyy)~x+M 3X -, (12)

X[€*(ki,\i) • (^2 - X 2 ) ]} • (16)

Notice that the helicity coefficient (X¡—X;-)(X ; + X fc ) for the
cyclic permutations of ijk explicitly enforces the vanishing
of the (+ + +) and ( ) polarizations,

V(ki ,~x ’,k 2 . + ',k3 ,
+ ) = V(k\, — ',ko, — \k 3

= 0.
(17)

Furthermore, it is easy to see that

V(k 1 ,--,k 2 ,
+ ;k 3 ,

+ ) = 2e*(ku -)(l-kr k 3 )>

V(ú, + ;í2 ,-4 3 .-) =26*(ú, + )(l-Í2'Ú). (18)

and similar expressions for the other cyclic terms.

The original e
+ e~ in the orthopositronium could be in

any of the three triplet States. It can be shown, using Eqs.
(12) and (15), that when the initial positronium State is IS
= l,S z

= l) = |j,j), the decay amplitude is proportional to

V\ + iV 2 , while the same argument gives —V l + iV2 for | S
= 1,5 z=-1) = |-j,-j) and - J2V 3 for |S=1,S Z

= 0)
= l/y/2(| j, — j) +1 — Now, considering the explicit
expressions of the polarization vectors (7), with 9=tt/2
without loss of generality, and Eq. (18), it is easy to see that

the three-photon State coming from the o-Ps decay is, up to

normalizaüon,

l<Ao(¿i ,k 2 ,k 3 )) = (l -k 1 -íc 2 )(\ + + - ) + | — + ))

+ (1 -k 3 )(\ H f) + | — + —))

+ (1 -k 2 -k 3 )(\ - + +) + |+ )),
(19)

when the third component of the orthopositronium spin S
z ,

is equal to zero, and

and the 2X2 matrix M 3 is equal to [14] \if/ 1 (k 1 ,íc 2 ,k 3))-(\-k 1 -k2)(\ + + —) —| f))

M 3
— 2 [ ( € 2

• £* ^2 ' ^3 ) ^1
cyclic perm.

+ (^-|+^-4)^i]'^ (13)

+ (1 -£ 3 )(l 3 h )~l _ + “))

+ (1 — ^2 * ^3)( I — + + ) — h ))
(20)
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when S
z
= ± 1.

The final State of the o-Ps decay is, thus, an entangled
State of three photons, whose quantum correlations depend
on the angles among the momenta of the outgoing three pho-
tons. For the rest of the paper we will consider the first

family of States (5'z = 0) although equivalent conclusions are

valid for the second one. In the next sections we will analyze
the entanglement properties of the States | if/0 (k i ,íc 2 ,k3 )), us-
ing some of the quantum information techniques and com-

paring them to the well-known cases of the singlet and GHZ
State.

hjk—^Li UfaUfpU%yt a /3y . (22)

From this expression it is not difficult to build polynomial
combinations of the coefficient t¡jk , which are invariant un-
der local unitary transformations [17,18], These quantities
are good candidates for being an entanglement parameter.
For example, one of these invariants is

2 t iijykyti l j2k¿i2 j2k2 t\ 2i i k l
~ tr (/+l)> (23)

III. ENTANGLEMENT PROPERTIES

The quantum correlations of the three-photon entangled
State obtained from the o-Ps annihilation depend on the po-
sition of the photon detectors, i.e., on the photon directions

we are going to measure. Our next aim will be to choose
from the family of States given by Eq. (19), the one that, in
some sense, has the máximum amount of GHZ-like córrela-

tions. In order to do this, we first need to introduce some

recent results on the study of three-party entanglement.
The set of States | <Ao(^i ,k 2 ,íc 3 )) form a six-parameter de-

pendent family in the Hilbert space 7i2®H2®H2 , so that

each of its components is equivalent to a State describing
three spin-j- partióles or three qubits (a qubit, or quantum hit,
is the quantum versión of the classical hit and corresponds to

a spin-j partióle). Two puré States belonging to a generic
composite system H ®N

, i.e., N parties each having a

¿/-dimensional Hilbert space, are equivalent as far as their

entanglement properties go when they can be transformed

one into another by local unitary transformations. This argu-
ment gives a lower bound for the entanglement parameters a

generic State | é) e H 2
N

depends on. Since the number of

real parameters for describing it is 2N+1 , and the action of an
element of the group of local unitary transformations

U(2) 0iV is equivalent to the action of U(1)XSU(2)
0/V

,

which depends on 377+1 real parameters, the number of

entanglement parameters is bounded by 2N+1 — (377+ 1).
For our case this counting of entanglement parameters gives
six, since we have N= 3, and it can be proved that this is
indeed the number of nonlocal parameters describing a State

in H 2®Ti2®H2 [17].
The above arguments imply that six independent quanti-

fies invariant under the action of the group of local unitary
transformations will be enough, up to some discrete syrnrne-
try, to describe the entanglement properties of any three-

qubit puré State. Given a generic State | d>) e H 2
3

:

where pA
= tr5C (| é){(}>\) is the density matrix describing the

local quantum State of A (and the same happens for B and

C). In Ref. [18] the six linearly independent polynomial in-
variants of minor degree were found (a trivial one is the

norm) and a slightly modified versión of these quantities was

also proposed in Ref. [19]. I 11 the rest of the paper we will

not consider the norm, so the space of entanglement param-
eters of the normalized States belonging to H2®7í 2®H 2 has
dimensión equal to five.
A particularly relevant polynomial invariant is the square

concurrence, r, introduced in [20]. There is strong evidence
that somehow it is a measure of the amount of GHZ State

character of a State [19-22], It corresponds to the modulus of
the hyperdeterminant of the hypermatrix given by the coef-

ficients t {j k [23], which from Eq. (21) corresponds to

T(\<fi)) = \met(t ljk)\

j*2Gqq {i2^i3/4

Xt i l jl k l t i 2j 2k2 t i 3j 3 k3 ti ¡i j 4k4 , (24)

where %)=en
= 0 and ^01

= ~ € io
= 1 • This quantity can be

shown to be symmetric under permutaüon of the indices
UjX

Because of the interpretation of the square concurrence as

a measure of the GHZ-like correlations, we will choose the

position of the photon detectors, from the set of States (19),
the ones that are associated with a máximum square concur-

rence. In Fig. 1 is shown the variation of the square concur-

rence with the position of the detectors. It is not difficult to

see that the State of Eq. (19) with máximum square concur-

rence corresponds to the case k x -k2=k x •k 2¡
= k 2 -k 2>

= —

i.e., the most symmetric configuration. The normalized State

obtained from Eq. (19) for this geometry is

l¿>=2 t i¡k\ijk), i,j,k = 1,2, (21)
i,j,k

l'A)=^(l + + -> + + )+ |+ - + )+|- + -)

+ |- ++)+| + --)). (25)

where \i),\j),\k) are the elements of a basis in each sub-

system, A, B, and C, the application of three local unitary
transformations UA

, U
B

, and U
c
transforms the coefficients

tijk into

Note that the GHZ State has an square concurrence equal to
i, while the valué of the square concurrence of (25) is lower,

^(1 '!')) = Tz- (26)
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FIG. 1. Variation of the square concurrence with the position of

the photon detectors, that are represented by two angles (in de-

grees), the thiicl one has to sum up to 360°. We llave taken t — 0

vvhen the position of the detectors, i.e., the photon trajectories, are

incompatible with momentum conservation.

It is arguable that the most symmetric geometry was natu-

rally expected to produce a máximum square concurrence

State. Indeed, GHZ-like quantum correlations do not singu-
larize any particular qubit.

Let us also mention that the State we have singled out has

some nice properties from the point of view of group theory.
It does correspond to the sum of two of the elements of the

coupled basis resulting from the tensor product of three spin-
j particles, [24]

;//)— 1/V2(||, + j} +1|, — i)), (27)

where

11, + j) — 1/V3"(| + H—) + | H b) +1 —P +)),

||,-t)=l/A(h- + >+|- + -) + ! + --». (28)

The quantum correlations of Eq. (25) will be now analyzed.

IV. USEFUL DECOMPOSITIONS

In this section, the State (25) will be rewritten in some

different forms that will help us to understand better its non-

local properties. First, let us mention that for any generic
three-qubit puré State and by performing change of local

bases, it is possible to make zero at least three of the coeffi-

cients tjjk of Eq. (21) [19,25], A simple counting of param-
eters shows that this is in fact the expected number of zeros.
This means that by a right choice of the local bases, any State

can be written with the minimum number of coefñcients t¡j k ,

i.e., we are left with all the nonlocal features of the State,

having removed all the “superfluous” information due to

local unitary tranformations. For the case of the State (25) it
is easy to prove [26] that it can be expressed as

1
■ , V3,

|<A)=—(|001> + |010) + | 100))+—1111), (29)
2 y3 ^

PHYSICAL REVIEW A 63 042107

which is the minimum decomposition in terms of product
States built from local bases (four of the coefficients t¡j k are

made equal to zero).
A11 alternative decomposition, that will prove to be fruit-

ful for the rest of the paper, consists of writing the State as a

sum of two product States. This decomposition is somewhat
reminiscent of the form of the GHZ State, which is a sum of

just two product States, and is only possible when the square
concurrence is different from zero [19,21] as it happens for

our State [see (26)]. The State then can be written as

where

and

«(1000} + \aaa)),

|o>-
1

0

(30)

We omit the details for the explicit computation of this ex-

pression since they can be found in Refs. [19,21], It is worth

noticing that o-Ps decay is hereby identified to belonging to

an interesting type of States already classified in quantum
information theory [21].

The above decomposition allows for an alternative Ínter-

pretation of the initial State as an equally weighted sum of

two symmetric product States. Note that the Bloch vector,

ñ = ( sin 6 eos <A,sin 0sin 0,eos 0), representing the first local

spinor appearing in Eq. (30) is pointing to the z axis, i.e.,

n l
= (0,0,1), while the second is located in theXZ plañe with

an angle of 120° with the z axis, i.e., n 2
= (V3/2,0,—(1/2)).

By performing a new unitary transformation, Eq. (30) can be

written as

where c = cos 15°, and í = sin 15°. Now, the two Bloch vec-

tors are in the XZ plañe, pointing to the #=30° and 9
= 150° directions. The GHZ State corresponds to the particu-
lar case c= 1 and £ = 0.
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Y. QUANTUM MECHANICS VS LOCAL REALISM

The quantum correlations present in some three-qubit
puré States show, as it was mentioned in the Introduction, a

much stronger disagreement with the predictions of a local-
realistic model than any two-qubit entangled State. In fact,
contrary to the case of the singlet State, no LR model is able

to reproduce all the perfeet correlations predicted for the

maximally entangled State of three qubits [2], The State (25)
emerging from o-Ps decay is not a GHZ State, although it
has been chosen as the one with the máximum tangle in
order to maximize GHZ-like correlations. In this section we

will show how to use it for testing quantum mechanics

against local-realistic models, and then we will compare its

performance against existing tests for the maximally en-

tangled States of two and three spin-j particles. We start

reviewing some of the consequences derived from the argu-
ments proposed in Ref. [1].

A. QM vs LR coníiict

Given a generic quantum State of a composite system
shared by N parties, there should be an alternative LR theory
that reproduces all its statistical predictions. In this LR

model, a State denoted by X will be assigned to the system
specifying all its elements of physical reality. In particular,
the result of a measurement depending on a set of parameters
{n} performed locally by one of the parties, say A, will be

specified by a function a x ({n}). The same will happen for

each of the space-separated parties and, since there is no

causal influence among them, the result measured on A can-

not modify the measurement on B. For example, if the mea-

surement is of the Stern-Gerlach type, the parameters label-

ing the measurement are given by a normalized vector n and

a^(n)=a are the LR functions describing the outcome,

The LR model can be very general provided that some

conditions must be satisfied. Consider a generic puré State

belonging to H 2®H 2® 77 2 shared by three observers A, B,
and C, which are able to perform Stern-Gerlach measure-

ments in any direction. Since the outcomes of a Stern-
Gerlach measurement are only ± 1, it is easy to check that
for any pair of measurements on each subsystem, described
by the LR functions a and a' , b and b' , c and c ', and for all
their possible valúes, it is always verified

a'bc + ab'c + abc' —a'b'c' = ± 2. (32)

It follows from this relation that

— 2m(a' bc + ab' c + abe’ — a'b'c' 2. (33)

This constraint is known as the Mermin inequality [27] and
has to be satisfied by any LR model describing three space-
separated Systems.

Let us now take the GHZ State (2). It is quite simple to see

that if the observables a and a' are equal to cr
y
and orx (the

same for parties B and C), the valué of Eq. (33) is —4, so an

experimental condition is found that allows to test quantum
mechanics against local realism. Note that this is the maxi-
mal violad on of inequality (33). Moreover, the GHZ State

also satisfies that a'bc = ab'c = abc' = — ci'b'c' = — 1 and
no LR model is able to take into account this perfeet corre-
lation result because of Eq. (32) [2], This is a new feature
that does not appear for the case of a two maximally en-

tangled State of two spin-j particles. In this sense it is often
said that a most dramatic contrast between QM and LR

emerges for entanglement between three subsystems.
Let us go back to the State given by the orthopositronium

decay (25). Our aim is to design an experimental situation
where a coníiict between QM and LR appears, so we will

look for the observables that give a maximal violation of Eq.
(33). Such observables will extremize that expression. Using
the decomposition (31), the expectation valué of three local
observables is

(abc) = ( ip\(n a
■ cr)®(n b

- a)®(n c
■ a )| ///)

II {c eos 6i + s sin 19¡ eos ó¡)
i = a,b,c

+ (— c eos 6¡+sin 6¡ eos ó¡)
i = a,b,c

+ n sin 0 f(cV f^ + jV*O
i = a,b,c

+ sin 0j(c 2
e l</>i+, (34)

i = a,b,c /

where c = c
2
— s

2 and s=2sc. Because of the symmetry of
the State under permutation of parties, the Stern-Gerlach di-

rections are taken satisfying n a=nb =n c=(sin 6cos <f>,
sin 6 sin 0,eos 9) and n a ,

= n b t
= n c ,

= {sin 6'eos 4>',
sin #'sin (¡)',cos 6'). Substituting this expression in Eq. (33),
we get the explicit function /( 0,6,0', ó') to be extremized.
For the case of the GHZ State described above, the extreme

valúes were obtained using two observables with 6=6'
= 7r/2, i.e., in the XY plañe. Since Eq. (31) is the GHZ-like
decomposition of the initial State, we take 6=6' = tt/2 and it
is easy to check that in this case

dj_
66

77-/2

df_
66 '

= 0, V (/>,(/)’.
9=6' = tt/2

Mantaining the parallelism with the GHZ case, it can be seen

that all the partial derivatives vanish when it is also imposed
(¡)=7tI2 and ó' = 0. In our case the calculation of Eq. (33)
gives -3, so a coníiict hetween local-realistic models and

quantum mechanics again appears, and then the three-photon
State coming from the orthopositronium decay can be used,
in principie, to test QM vs LR with the set of observables
given by the normalized vectors

n
a =nb =n c

= (0,\,0), n a
,
= n b ,

= n c ,
= { 1,0,0). (35)

There is an alternative set of angles 0 and ó' that makes
zero all the partial derivatives of /: the combination of local
observables (33) is equal to ~ — 3.046 for
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/ Vl7 + 27V4l\
6' = arctan «M26°,\ 10 /

1 i 2 Vl7+27>/4l\
4>= — arctan 24°. (36)'

2 \ 25 /

This second set of parameters will be seen to produce in the
end a weaker dismissal of LR.

Oür next step will be to carry over the comparison of this

QM vs LR test against the existent ones for the maximally
entangled States of three and two spin-j partióles, i.e., the
GHZ and singlet State. It is quite evident that the described
test should he worse than that obtained for the GHZ State. It

is less obvious how this new situation will compare with the

singlet case.

B. Comparison with the maximally entangled States

of two and three spin-j partióles

We will now estímate the “strength” of the QM vs LR

test proposed above, being the “strength” measured by the

number of triáis needed to rule out local realism at a given
confidence level, as Peres did in Ref. [28]. A reasoning
anologous to the one given in Ref. [28] will be done here for
the State (25) and the observables (35).

Imagine a local-realistic physicist who does not believe in

quantum mechanics. He assigns prior subjective probabilities
to the validity of LR and QM, p r and p q , expressing his

personal belief. Take for instance p r /pq
=\00. His LR

theory is not able to reproduce exactly all the QM statistical

results of some quantum States. Consider the expectation
valué of some observable O with two outcomes ± 1 such

that (Ó) — E
q is predicted for some quantum State, while LR

gives (0) = E
r
Jz E

q
. Since the valué of the two possible out-

comes are ±1, the probablity of having 0= + 1 is c¡ = { 1
+ E

q ) 12 for QM and r = (l + E,.)/2 for LR. An experimental
test of the observable O now is performed n times yielding m

times the result +1. The prior probabilities p q
and p r are

modilied according to the Bayes theorem and their ratio has

changed to

Pr Pr P(m 1 Lr)
Pq P q P( m Iqm)’

where

P(™Ilr) = Í (38)

is the LR probability of having m times the outcome + 1, and
we have the same for p(m | qm), being r replaced by q. Fol-

lowing Peres [28], the confidence depressing factor is de-
fined

P(m 1 QM ) _M ,w / l~g \
P(m Ilr) \rj \1 ~rj (39)
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which accounts for the change in the ratio of the probabilities
of the two theories, i.e., it reflects how the LR belief changes
with the experimental results. Like in a game, our aim is to

destroy as fast as we can, the LR faith of our friend by
choosing an adequate experimental situation. It can be said,
for example, that he will give up when, for example, D
= 10 4

. Since the world is quantum, m = qn, and the number

of experimental tests needed to obtain D= 10 4 is equal to

n D (q,r) =

Q^g 10\-)+(l-q)\og10[(l-q)n-r]

4

K(q,r)’
(40)

being K(q,r ) the information distance [29] between the QM
and LR binomial distribution for the outcome + 1. The more

sepárate the two probability distributions are, measured in

terms of the information distance, the fewer the number of

experiments n D is.
Let us come back to the three-party entangled State com-

ing from the orthopositronium decay (25) under the local

measurements described by Eq. (35). As it has been shown

above, a contradiction with any LR model appears for the

combination of the observables given by the Mermin in-

equality. In our case quantum mechanics gives the following
predictions:

(a'bc) = (ab’c) — (abc') = - f, (a'b'c') = +1,
(41)

and this implies that q x
= pvob(a'bc = + 1) =prob(ab'c =

+ l)=prob(a¿?c' = + l) = ^ and q2 = -prob(a'b' c' = + 1)
= 1. This is the QM data that our LR friend has to reproduce
as well as possible. Because of the symmetry of the State he

will assign the same probability r 1 to the events a'be —

+ 1, ab'c= + 1, and abc' = + l and r2 to a'b'c' = + 1.

However, his model has to satisfy the constraint given by Eq.
(33), so the best he can do is to satúrate the bound and then

3/q = r 2=>0^r 1 ^y. (42)

Now, according to the probabilities r l and r 2 his LR model

prediets, we choose the experimental test that minimizes Eq.
(40), i.e., we consider the event a'bc= + 1 (a'b'c' = + 1)
when n D(q 1 ,r 1 )<nD (q2 ,r2 ) [n D (q 1 ,r 1 )>n D (q 2 ,r2)], and

the experimental results will destroy his LR belief after

n D (q\,r\) [«d^HT)] triáis. The best valué our LR friend

can assign to r x is the solution to

nD (Qi d'i) = n D (q 2 ,r 2 ), (43)

with the constraint (42), and this condition means that r x

^0.315 and n D
^ 161 triáis are needed to have a depressing

factor equal to 10 4
. Repeating the same calculation for the

observables given by Eq. (36), the number of triáis slightly
increases, «£>^166, despite the fact that the violation of the

inequality is greater than the obtained for Eq. (35).
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TABLE I. Comparison of the strength of the QM vs LR test,
which can be performed for the maximally entangled States of two

and three spin-y partióles and for the three-photon entangled state

reulting from the orthopositronium annihilation.

State Number of triáis

GHZ «32

Positronium state (25) «161

Singlet «200

Violation of inequality

Angle

In Ref. [28] the same reasoning was applied to the maxi-

mally entangled State of two and three spin-y particles,
showing that in the first case, and n D ^32 for the
latter (see Table I). Onr result then implies that the three-

photon entangled State produced in the orthopositronium de-

cay has, in some sense, more quantum correlations than any
entangled State of two spin-j particles.

C. Generalization of the results

It is easy to generalize some of the results obtained for the

entangled State resulting from the o-Ps decay. As it has been

mentioned, this State can be understood as an equally
weighted sum of two symmetric product States, since it can
be written as Eq. (31). The Bloch vectors of the two local
States appearing in this decomposition form an angle of
120°. It is clear that the conclusions seen above depend on

the angle between these vectors, i.e., with their degree of

nonorthogonality. The family of States to be analyzed can be

parametrized in the following way:

l<A( 8))
(44)

where 8 is the angle between the two local Bloch vectors,
c s=cos(tt— 8/4) and 35= sin (77— 8/4), and as is a positive
number given by the normalization of the State. An alterna-
tive parametrization of this family is, using Eq. (29) and

defining 8' = 8/4,

1 (//(£)) = 2 a:¿[sinocos <S'(|001) + |010) + |100))
+ cos

3 £'|lll)]. (45)

The expectation valué of three local observables for this
set of States follows trivially from Eq. (34). Using this ex-

pression it is easy to see that the combination of the expec-
tation valúes of Eq. (33) has all the pardal derivadves equal
to zero for the set of observables given in Eq. (35) indepen-
dently of 8. For these observables, the dependence of expres-
sion (33) with the degree of orthogonality between the two

product States is given in Fig. 2. There is no violation of the
Mermin inequality for the case in which £:S85 0

. In this situ-
ation one can always find a LR model able to reproduce the

QM statistical prediction given by Eq. (33) and the observ-
ables (35). We can now repeat all the steps made in order to
determine the number of triáis needed to rule out local real-
ism as a function of the angle 8. I11 Fig. 3 we have summa-

FIG. 2. Violation of the Mermin inequality (33) with the angle 8

(in degrees) for the family of States (44). We have substracted 2 to

the combination of the expected valúes of Eq. (33), so a positive
valué means that a conflict between QM and LR appears.

rized the results. We have shown only the cases where the
number of triáis is less than 200, since this is the valué oh-
tained for the singlet. Note that the case 8= 120°, which

corresponds to Eq. (25), is very cióse to the región where
there is no improvement compared to the maximally en-

tangled State of two qubits.
All these results can he understood in the following way:

the smaller the angle between the two local States, 8, the

higher the overlap of the State |<//(<5)} with the product State
having each local Bloch vector pointing in the direction of
the x axis, which corresponds to the State 1111) in Eq. (45).
This means that the quantum State we are handling is too

cióse to a product State [25], and thus, no violation of the

Mermin inequality can be observed.

VI. CONCLUDING REMARKS

In this paper we have analyzed the three-particle quantum
correlations of a physical system given by the decay of the

orthopositronium into a three-photon puré State. After ob-

taining the State describing the polarization of the three pho-
tons (25), some of the recent techniques developed for the

study of three-party entanglement have been applied. The

particular case where the three photons emerge in the most

symmetric configuration corresponds to the State with the
máximum square concurrence. We have shown that this State

Number of triáis

FIG. 3. Number of triáis needed to rule out local realism as a

function of the angle 8 (in degrees) for the family of States (44).
Valúes greater than 200 are not shown since in these cases there

always exists a two-qubit entangled State that gives the same result,
i.e., it has the same “strength” for ruling out local realism.
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allows a priori for a QM vs LR test, which is stronger than
any of the existing ones that use the singlet State. In this

sense, orthopositronium decays into a State which carries

stronger quantum correlations than any entangled State of
two spin-j particles.

Bose symmetrization has played a somewhat negative
role in reducing the amount the GHZ-ness of the o-Ps decay
State. Indeed, the natural GHZ combination | + + —) + |
+) emerging from the computation of Feynmann diagrams
has been symmetrized due to the absence of photon tagging
to our State | H—I—) +1 H f) + | —I—h) +1 f)+| — +

—} + | H ), inducing a loss of tangle. The quantum optics
realization of the GHZ State does avoid symmetrization
through a geometric tagging [10]. It is, thus, reasonahle to

look for puré GHZ States in decays to distinct particles, so

that tagging would be carried by other quantum numbers, as,
e.g., charge. It is, on the other hand, peculiar to note that

symmetrization in the K°K° system is responsible for its

entanglement (| + —) + | — +)) [13].
Let us briefly discuss the experimental requirements

needed for testing quantum mechanics as it has been de-
scribed in this paper. The preparation of positronium in a

given polarization State can be performed using magnetic
mixing as it has been described in Ref. [30]. The circular

polarizations of the three photons resulting from an orthop-
ositronium decay have to be measured. The positions of the

three detectors are given by the maximization of the square
concurrence and their clicks have to detect the coincidence

of the three photons. The energy of these photons is of the

order of 1 Mev. Polarization analyzers with a good efficiency
would allow us to acquire statistical data showing quantum
correlations that would viólate the Mermin inequality dis-
cussed above. Unfortunately, as far as we know, no such

analyzers exist for this range of energies (this is not the case

for optic photons). A possible way out might be to use

PHYSICAL REVIEW A 63 042107

Compton scattering to mensure the photon polarizations [31].
However, the Compton effect just gives a statistical pattern
depending on the photon and electrón polarizations, which is

not a direct measurement of the polarizations. Further work
is needed to modify our analysis of QM vs LR to accommo-

date for such indirect measurements. Finally, it is hard to see

how to implement a switching procedure in the measuring
apparatus in order to rule out the locality loophole, although
it is thought that this loophole has been closed by recent

experiments [32], The detection loophole cannot be closed,
so one has to assume the fair sampling hypothesis.

To summarize, orthopositronium decay provides, without
using any postselection procedure, an entangled State of three

space-separated photons with more quantum correlations

than any entangled State of two particles. Indeed it can be

used in principie to test quantum mechanics against local

realism, although many experimental difñculties have yet to
be overeóme. The techniques shown in this paper can be

easily extended to the analysis of the entanglement proper-
ties of different three-particle entangled States obtained in

other experimental settings [perhaps the same State, due to its

nice properties from the point of view of group theory (27)].
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Positive-operator-valued measurements on a finite number of N identically prepared systems of arbitrary
spin J are discussed. Puré States are characterized in terms of Bloch-like vectors restricted by a SU(2/+1)
covariant constraint. This representation allows for a simple description of the equations to be fulfilled by
optimal measurements. We explicitly find the minimal positive-operator-valued measurement for the N = 2

case, a rigorous bound for N = 3, and set up the analysis for arbitrary N.

PACS number(s): 03.65.Bz, 03.67.-a

I. INTRODUCTION

A measurement on a quantum-mechanical system only
provides partial information on the measured State. Even in

the case where N identical copies of the system are available,
the information which can be retrieved remains bounded.
This fact can he quantified using the averaged fidelity based
on the foliowing general idea. Given N identical copies of a

system, we may consider a two-step procedure to rate the

fidelity of a measuring apparatus. First, we set up a general-
ized quantum-mechanical measurement [or positive-
operator-valued measurement (POVM) [1,2]]. Upon per-

forming a measurement, its outcome provides the basis for a

best guess about the incoming State. The averaged fidelity
quantifies how cióse the final guess is from the original State
averaging over the latter. For any finite number N of copies
of a spin ./ puré State system, the average fidelity is proven to

he bounded by [3]

f(NJ)
N+ 1

N+2J+ 1
’ ( 1 )

The issue at stake remains to devise the optimal and minimal
measuring strategy for any quantum system.

Explicit constructions of optimal and minimal generalized
quantum-mechanical measurements of spin-y systems have
been presented recently in Reís. [4-8], The detailed con-

struction is subtle and depends on whether the original sys-
tem is in a puré or mixed State. The simplest case corre-

sponds to measuring a spin-y system known to be in a puré
State. A generalized measurement can be constructed as a

resolution of the identity made with rank-1 Hermitian opera-
tors, which are in turn built from the direct product of a

given State,

n

/=S t7hm ¡vw<^,i, (2)
) = i

sis, it is found that the minimum number, n, of such opera-
tors is a function of N and is given in the table:

A 1 2 3 4 5

n 2 4 6 10 12

The explicit form of Eq. (2) for the above cases can be found
in Ref. [7].

The far more involved case of spin-j mixed States has

also been worked out in Ref. [8]. At variance with the puré
State case, the closed expression for the máximum averaged
fidelity depends on what the unbiased a priori distribution of

density matrices is. Yet, explicit Solutions for optimal mea-
surements are found. Sorne remarkable properties emerge

along the new construction. Let us briefly mention a few.

Optimal measurements turn out to be structured using pro-

jectors on total spin eigenspaces and, within each eigens-
pace, on maximal spin component is some direction. This

allows for a reuse of minimal and optimal results from the

puré State case. Also, beyond two copies, some projectors are

not of rank 1.

Explicit constructions of optimal minimal measurements
are so far restricted to spin-y systems, either puré or mixed.

It is the purpose of this paper to extend this analysis for

arbitrary spin puré States. A number of nontrivial issues must

be faced at the outset. For instance, progress in the spin-y
case was triggered by the appropriate use of the Bloch vector

labeling of density matrices associated to spinors. We shall

resort to a similar representation in the case of arbitrary spin
States, using representations of SU(2/+1). The equivalent
of a Bloch vector will be shown to obey a covariant restric-

tion. This extra work will allow for a unified general setting
of the problem of optimal measurements of arbitrary spins.

Finding explicit minimal optimal measurements remains a

matter of case-by-case analysis. We shall provide explicit
bounds for the minimal number of projectors, n, in POVMs.
The case of N=2 will be fairly complete. Higher number of
copies still need further ingenuity to get rigorous bounds.

where I is then the identity in the maximal spin subspace.
The important-—and of possible future practical relevance—
result is that the máximum averaged fidelity is attained with
a finite number of operators [6]. Upon a case-by-case analy-

II. AVERAGED FIDELITY

Consider a spin J particle which is in an unknown puré
State |4/ ),
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W

W + Óh \

x2 + iy 2

x D +¿y D |
(3 )

where D=2J+ 1 and the normalization of the State imposes
2 ¿=1; ... ,DÍx l + yl) = 1 • Of course, we may use a different

parametrization, e.g.,

f(N,J)= — 2 cj dó{ sin ó) 4J 1
eos ó

P 27+1 r = 1 Jo

X | ^47 _ i r(^|^,) Al 2 |(^hP,)| 2 . (9)

To evalúate the above expression, it is convenient to use the

freedom to choose the integration variables to set each indi-

vidual \ xV r) as a spinor with only a nonvanishing first com-

ponent. Then,

i'i, )=

eos ó

sin c/>(x 2 +iy 2 )

sin (f>(xD + iy D )

1 f 77/2

f(N,J) = — s q dó( sin ó)
47-1

V2J+1 r= 1 Jo

X(cos ó)
2N+3S<ij- ¡ . (10)

We finally get

with 0^0^77/2 and 2 i=2 ,..., iD(x? + ;y?) = l. Using this sec-

ond parametrization and following Ref. [9] it is possible to

prove that the volume element in the space of these States is

dVD
= 4(sin cb) 2D

~ 3
cos ódódS2D - 3 , (5)

where dS 2D - 2 corresponds to the standard volume element

on S 2 d- 3 - The total volume is

_

4770
- 1

Vd~(D- 1)!
‘ ( 6 )

f(N,J) =
(2/)!(JV+l)!^
(2/+JV+1)! "i

el ( 11 )

This sum is easily calculated. It is just the dimensión of the

space spanned by the totally symmetric tensor of order N

whose indices can take 2J+ 1 valúes,

A .2 (2J+N)l
“i Cy N\(2J )!

( 12 )

Thus,

Given N identical copies of the arbitrary spin State, we

have

|\p) /V=|\p)®|^/)@ . . .

N
.. • ®|'p). (7)

A measurement on this enlarged system will bring richer

information on \ XV ) than N sepárate measures on its respec-
tive copies [10].

Setting a generalized quantum measurement consists in

providing a resolution of the identity of the type

n

1 cl\V,)NN{'V,\ + P N=I, (8)
i = 1

where PN is the projector on the space different from the one

spanned from States of the form given in Eq. (7). We already
have all the necessary elements to define and compute the

averaged fidelity. Upon measuring \ XV)N with the above

POVM, a given outeome labeled by r will result with prob-
ability |a? ('vI/] aI/ ,.}a] 2 . The natural guess for the initial puré
State is, then, | AI/ , } (this is only the best strategy if the initial
State is known to be puré; the best guess for a mixed State is
not the same State as the outeome of the POVM [8]). The

overlap of this guess with the original State is just |(T'j'I/ ,.)| 2 .

The averaged or mean fidelity is defined as the product of the
probability for r being triggered times the overlap between
the ensuing guess and the original State, averaged over all

possible initial unknown States,

N+ 1
= (13)

which corresponds to Eq. (1) and was obtained in Ref. [3]
using different techniques.

III. GENERALIZED BLOCH FORM OF ARBITRARY SPIN

PURE STATES

It is sometimes useful to represent the State of a spin-l
system using the Bloch representation,

1 U .

p= -1+ -b ■ a, (14)

where b is a vector existing within the unit sphere. Puré

States correspond to the surface of the sphere, that is, Ir
= 1. A similar but more complicated construction is possible
for arbitrary spin particles.

Consider a puré State of a spin ./ partióle, One may repre-
sent it using, e.g., Eq. (3). Alternatively we may construct its
associated density matrix and write

P 2J+ 1
/+ V 2.7+

a ^••• J4J
r

(./+l),

(15)

where \ a are the generators of the SU(2J+ 1) normalized by

022113-2
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7r(K\ b ) = 2S„b, (16)

and n is the normalized vector that plays the role of a gen-
eralized Bloch vector. The coefficients in Eq. (15) are chosen
in such a way that Tr p = Tr p

2 = 1.
A simple counting of degrees of freedom shows that a

spin 7 puré State is described by 4 7 real parameters whereas
the generalized Bloch vector carries 47(7+ 1) — 1. A mis-

match appears for J>k. which implies that severe con-

straints must limit the subspace of valid vectors n. Indeed,
puré States must verify p = p

2
, which translates into

27-1
d abc^ a^b / r/ ~ T -i \'^ c O 2)

77(27+ 1)

when Eq. (15) is used and where dabc are the completely
symmetric symbols associated to SU(27+1), defined

through the anticommutator of the generators of the group
[11],

{A,j ,A¿} 2 J+ \
(18)

which verify

dabb d
abcd dbc'

(27— 1 )(27+ 3)
27+1 Sai- 09)

Some useful properties of the vectors n follow from the
above general covariant constraint (17),

d abcn an bn c

27-1

\/7(27+ 1)
5

d a bedcden a n bn cn d

(27— l) 3

7(27+1)’

(20)

where it is clear that for spin 7 = t the simple structure of

SU(2) causes the d symbols to vanish and the right-hand side
to be identically zero.

We can also deduce the useful constraint which follows
from the positivity of the square of the scalar product of two
arbitrary spin 7 puré States, which reads

K 'm">|2 =Tr(pp') y7^T (l+27n-n')^0. (21)

Generalized Bloch vectors are thus constrained to have sea-

lars producís bounded by

(22)

Two puré States are orthogonal then when the scalar product
of their generalized Bloch vectors satisñes the equality in Eq.
( 22 ).

Let us illustrate the construction of a Bloch vector for the
7=1 example, In this case, the density matrix representing

PHYSICAL REVIEW A 61 022113

the system can be connected to the standard spinorlike rep-
resentation. For instance, taking 7=1 it is easy to see that the

generalized Bloch vector corresponds to Eq. (3) if

n x
= V3(x 1 x2 + .y 1 y 2 ), n 2

= v
/
3(x Ly 2 -x2 y 1 ),

n4
= V3(x 1 x 3 + y 1y 3 ), n 5

= ^3(x xy 3 ~x 3y x ),
(23)

n 6
= V3(x 2x 3 + y 2y 3 ), n 7

= V3(x2y 3 -x3y 2 ),

n 3
=Y'[^+y 2

l -(x
2
2
+ yl)], n 8=^[l—3(x|+y|)],

and X a are taken in the Gell-Mann representation of SU(3)
[11]. Note that symmetric and antisymmetric combinations

of the spinor components build the raising and lowering gen-
erators, whereas the Casimir combinations correspond to di-

agonal ones. Generalization of this construction for arbitrary
spin 7 based on the SU(27+ 1) group is straightforward.

The advantage of using a generalized Bloch representa-
tion for arbitrary spin puré States will become apparent
shortly, when all our equations will be manifestly SU(27
+1) covariant and real. This is equivalent to note that the

difference between working with spinors, which exist in the

fundamental representation of the group, or with Bloch vec-

tors, which exist in the adjoint representation, is that the

second is real.

IV. OPTIMAL MEASUREMENTS FOR A SINGLE COPY

OF A SYSTEM

Let us go back to the construction of a generalized quan-
tum measurement of arbitrary spin systems. We basically
need to solve for the minimal set of States such that Eq.
(8) is fulfilled. We have found it convenient to project out
the PN piece using

n

2 v w* (24)
r = 1

This equation can also be written in the Bloch representation
as

r?i C ' : (27+l) Af ( 1+2,/? n a na(r)^j 1, (25)

where every n(r) corresponds to a puré State in the POVM

and n to the original puré State.

It is clear that the simplest situation we may face corre-

sponds to having a single copy of the unknown State. The

optimal and minimal measurement for such a case is, of

course, known to correspond to a von Neumann measure-

ment. We shall, however, proceed in a more general way and

set the modus operandi for the more elabórate cases as de-

vised in Ref. [7].
Equation (24) with N= 1 can be demonstrated (with a

little effort) to be equivalent to
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TI

2 c
2
r [Xj(r)xk(r) + yj(r)yk(r)] = 8]k ,

r= 1

(26)
n

2 c;[Xj(r)y k(r) -xk(r)yj(r)\ = 0, ;,£= 1,.. .,27+1.
?• = 1

Using the insight given by Eq. (25) and the result of Eq. (12),
this set of (27+ l) 2 independent equations can be rewritten

in terms of the Bloch vector as

2 c
2
=27+l,

r= 1

(27)
TI

2 c;n a (r) = 0,
r = l

where it is important to remember the constraints limiting
n(r). For instance, scalar products between any pair
n{r)-n{s)^ — \K2J), thus

n{ 1) =

n( 2) =

A
0 , 0 —

,
0

,
0

,
0

,
0,- ,

A
0,0,-—,0,0,o,o- ( 33 )

n(3) = (0,0,0,0,0,0,0,— 1).

We are now in a position to appreciate the advantage of

resorting to a Bloch-like parametrization. It is easier to deal

with Eq. (27) than with Eq. (26). The use of n(r) introduces
a simple covariant, yet constrained, formulation. Some extra

subtleties will play a relevant role in the more complicated
cases.

Y. OPTIMAL MEASUREMENTS FOR THE N=2 CASE

Let us face the case where N =2 identical copies of the

system are at our disposal. Following the same reasoning as

before, we start by writing Eq. (24) in terms of the basic

spinor representation. This leads to

TI

2 cj[Xi(r)Xj(r) + yi(r)yj(r)][x k(r)xi(r) +y k(r)y,(r)]
r= 1

2 cjír^ + n(r)-á(j)Wo. (28) -^(2S¡jSkl+SikSji+Sn Sjk ),
rt-s \27 /

Using the set of equations (27), the above inequality can be

transformed into

1—c 2 >0, V í = 1,.,.,«. (29)

2 c;[x i (r)y j (r)-x.j (r)y i (r)][xk(r)yi(r)-x,(r)y k (r)]
r= 1

Summing over all s, we get

w a=27 + 1. (30)

2 cl[x i(r)xj (r) + y i(r)y j (r)][xk(r)y l (r)-xi(r)y k(r)]
r= 1

= 0 . (34)

This bound is indeed saturated by a von Neumann measure-

ment, that is,

nmin-2J+ 1 »

(31)

9 , . 1
c
2=l V s, n(r) • n(s)= -

—, V rA,s\

The explicit standard construction for 7=1 is recovered as

the solution to this N= 1 POVM,

1*1 >=

r\ (°\ l 0 \
0

, l* 2 > =
1

, l*3 > = 0

VI \°) I'/

(32)

Or, alternatively,

The system is now quadratic in the basic structures appearing
linearly in the N=1 case. Using the Bloch vector represen-
tation, these (27+ l) 2 (272 + 27+ 1) equations can be recast

into

TI

2 c
2 =(27+ 1)(7+ l)=B,

r= 1

n

2 c
2
r
n a (r) = 0, (35)

/•= i

”

i
2 c

2
r n a (r)n b (r)=B

+
8ab .

A general pattern is emerging. Higher N optimal measure-
ments demand a finer grained resolution of tire identity. The
Bloch vectors are required to satisfy isotropy conditions in

SU(27 +1) group space. The determination of the factor

l/[47(7+ 1)] has been done using the fact that n is a ñor-

malized vector and Eq. (12). It is easy to verify that the set of
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equations (35) provides a solution for Eq. (25).
From the above basic set of equations, it is easy to get

TI

r^s

r±s
X cln(r)-n(s) = -c2

s ,

1

(36)

2 c;[n(r)-n(s)]
2
= B

47(7+1)
■el

Then vve may argüe that

2 c
2
[b + n(r) ■ ñ(s)] 2^0, (37)

whieh is extremized by b = c
2 l(B — c

2
) leading to

ns(2,/+l) 2
, 4«27TT' V s ' (38)

For J—k this bound agrees with the known solution of the

tetrahedron (see the Introduction and Ref. [7]) and general-
izes it in the following sense. The solution n = (27+ 1 ) 2 also

forces all scalar producís to be n{r) • n(s)= — 1/[47(7
+ 1)]. This corresponds to a hypertetrahedron in (27+l)

2

- 1 dimensions, exactly those of the adjoint representation
of SU(27+ 1). Let us just write the explicit solution for 7
= 1 ,

1 V3
n(l) = \—, —,0,0,0,0,0,0

,1 V3 3
n(2) = \-,-—,-,0,0,0,0,0

n(3) =
1 V3 3

2’~ „ ,

- 0,0.0.0,o ,

4 4 /

«(4) = |-f,0,0,0—0|,

n( 5) :

4’
0 ’ 0, 8

n(6) = I — —,0,0,—
g

Vó V3" Vó"

3 \Í2 Vó V3 Vó 3 V2
8“

3 y¡2 Vó Vó 3^2
8

’

4
’

8
’

*(7)“l - 4.O.0,0,0|.

(39)

n(8) = | -4,0,0,-

Vó y¡3 V6

3V2 \Í6 y¡3 \¡6 3V2
4

’

,
1 3V2 Vó V3 V6 3 V2

(7) - ( -

4,0,0,-g-, g“* ÍT’
-

^

There is still the need to perform the nonobvious step of

finding out whether this solution does correspond to a set of

spin-1 States. For completeness we give this final form of the

solution, that is, the explicit States |'VI/ 1 ) through |'VJ> 9 ) whieh
form the POVM,

/ 1 \ / 1 \
2 2

. +3> = s
2 2

\ 0 i \ 0 /

/ 1 \ 1 \
2 1 2

1 1

'2 , l^ 5 ) = '2

1 1 V3

Ul \~2.j2 + '2^l

+ 6>=
1

'2
1

.
V3

2T2
“

'2+2 /

(40)

1 1 \ 1 \
2 1 2

1 1

“'2 , + 8 )=
~ l

2

1 1 V3
\ 2V2

' ?
2 V2 J

+9> =

1
.

V3
2V2 '2^21

Note that all the spinors have scalar produets with modulus

equal to j.
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VI. OPTIMAL MEASUREMENTS FOR THE A = 3 CASE

The systematics of our approach are already set. It is,
however, in the case of three copies where a major difference
between spin \ and higher spin systems appears. Following
an analogous reasoning to that in the preceding sections, we

get

V 2
_

(2J+3)!
_

é\ r 3!(2J)\

n

2 c
2
r
na(r) = 0,

1
2 c

2
.n a (r)n b (r ) = C

^ J+ l y
Sab , (41)

"

1
S cJ».(r)n 4(r)» e (r) = C

4/(J+1)(2y+3)

/27+ 1 \ 1/2

N (
j J dabc ■

We have used Eqs. (12), (19), and (20) for determining the
factor l/[47(7+ 1 )(27+3)][(27+ 1)/7] 1/2 . Again it is easy
to prove that Eqs. (41) verify Eq. (25).

For the first time the right-hand side of one of the equa-
tions displays a tensor strncture based on the d Symbol. Such
a temí would vanish for 7= \ due to the simpler strncture of

SU(2), but is expected for higher spins [note that the condi-

tions (20) are zero for spin \\
A bound on the number of projectors appearing in a op-

timal POVM can be obtained following the by now standard

procedure of investigating manifestly positive combinations.
In this case, starting from

2 2j
+ n(r)-n(s)j[b +ñ(r)-n(s)]

2^0 , (42)

one gets

n^(J+ 1 )(27+ 1 ) 2 (43)

and c
2^(27+3)/[3(27+1)]. That is, n^6 for spin \

(which agrees with the known result in Ref. [7]), 18 for

spin 1, nsMO for spin f, etc. Saturating this bound is impos-
sible for certain cases as implied by the following simple
argument. If the bound were to be saturated, then Eq. (42)
would become a restricting condition for all scalar producís.
Indeed, h(r)-h(s) is either —1/(27) or else (27
—1)/[27(27+3)] for any pair rAs. If we fix any s and
assume that the minimal solution carries p scalar producís of
the first type and q of the second, it follows that Eq. (41)
imposes p = 5-7(27+1) 2 and q=¿J(2J+3) 2 . For any 7

half-integer or even this causes no problem but for odd inte-
ger valúes of the spin this leads to noninteger pairs, which is
absurd. Thus, in such a case, the bound cannot be saturated.

VII. CONCLUSIONS

We have presented explicit Solutions for minimal optimal
POVMs acting on arbitrary spin 7 systems for the case when

two copies are available. For A= 3 we have provided a rig-
orous bound. The key idea to simplify the analysis consists
in using Bloch representation for puré arbitrary spin States.

These vectors do not span a naive (27+ l ) 2 — 1 sphere, but
rather an intricate subspace defined through covariant restric-
tions. The power of such covariance makes the set of equa-
tions simple,

^ 2 (27+A)!
é\ Cr A!(27)! ’

2 c
2
n a (r) = 0,

r= 1

”

(27+A)! 1
2 c

r
n a (r)n b (r)= N ^ 2J )\ 47(7+1)

Sab ’ (44)

n

2 c
2
n a(r)nb(r)n c(r )

r = 1

(27 +A)! 1

A!(27)! 47(7+l)(27+3)

27+1 ^
1/2

;

j I dabe j

In order to analyze a given case with A copies of the spin 7

particle, it is necessary to retain

[47(7+ 1) + A]!
A![47(./+ 1)]! (45)

equations in the system, that is, as many rows in Eq. (44) as

A+ 1.
Our results confirm time expected increase of needed pro-

jectors to build a POVM as the spin of the system increases.
The instances analyzed, that is, A= 1,2,3, seem to point at a

dependence of the type

«min~J
N

- (46)
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Optimal estimatíon of two-qubit pure-state entanglement
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We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit puré
States and of the degree of mixing of unknown single-qubit mixed States, of which N identical copies are

available. The most general measuring strategies are considered in both situations, to conclude in the first case

that a local, although collective, measurement suffices to estímate entanglement, a nonlocal property,
optimally.

PACS number(s): 03.67.-a, 03.65.Bz

I. INTRODUCTION

Plenty of work has been performed in recent years on

optimal quantum measurements, i.e., on measurements

which provide the máximum possible information about an

unknown quantum-mechanical puré [1-5] or mixed [6] State,
of which N identical copies are available. These works fo-

cused mainly on a determination of the unknown State as a

whole, and consequently any of its properties is also esti-

mated, although maybe not in an optimal way.
On the other hand, recent developments on the field of

quantum information theory stressed the importance of the

quantum correlations—or entanglement—displayed by some

States of composite Systems. In the simplest of such compos-
ite Systems, the two-qubit case, all nonlocal properties of

puré States depend upon only one single parameter. Such a

nonlocal parameter is the only relevant quantity invariant

under local unitary transformations on each qubit, and plays
a central role in the quantiñcation and optimal manipulation
of entanglement [7-11].

In this work we analyze and solve the problem of opti-
mally estimating the entanglement of an unknown puré State

of two qubits. This problem was also independently ad-
dressed by Sancho and Huelga in a recent work [12], where
only a restricted class of measuring strategies is considered.

Here, on the contrary, we will consider most general quan-
tum measurements on N identical copies of the State. Their

quality will be assessed through the gain of information they
provide about the nonlocal parameter of the State. After pre-
senting and proving the solution, we will conclude that the

optimal measuring strategies so defined are not equivalent to
the ones used to fully reconstruct the unknown State. As a

matter of fact, all information about some relative phase of
the unknown State turas out to be irreversibly erased as the

entanglement is estimated.
An estimation of the degree of mixing of an unknown

mixed State is a difierent but very much related topic that we
shall also consider here. For the single-qubit case the amount

of mixing is again speciñed by just one parameter, the modu-
lus of the corresponding Bloch vector, whereas in order to

completely specify the State two more parameters, namely,
the direction of the Bloch vector, are also required. We shall
show that in this case the optimal measuring strategy on any
number N of qubits prepared in the same mixed State can be

made compatible with an optimal estimation of the direction
of its Bloch vector.

Finally, we will show that a possible way of optimally
determining the entanglement of an unknown, two-qubit
puré State consists precisely of estimating, also optimally, the
degree of mixture of any of its two reduced density matrices.

Therefore, in this simple bipartite case it turas out that the

optimal estimation of a nonlocal parameter can be done

through a local measurement.
The paper is structured as follows. Section II is devoted to

background material. We introduce a convenient parametri-
zation of two-qubit puré States, and consider their isotropic
distribution. We also review some basic aspects on param-
eter estimation and on quantum measurements. In Sec. III we

pose the problem of entanglement estimation on firmer

grounds and announce the main result of this paper: its op-
timal performance. Section IV, which is rather technical and

could well be skipped in a first reading, is devoted to a com-

putation of some effective density matrix p
{N\b), an object

which plays a central role in deriving the optimal strategy for
estimating entanglement. In Sec. V the N= 1, 2, and 3 cases

are presented in more detail in order to illustrate the general
case. Optimal estimation of the degree ofmixing is discussed

and solved in Sec. VI, and finally Sec. VII contains a discus-
sion relating estimation of both entanglement and mixing,
and some concluding remarks.

II. PRELIMINARIES

Here we will consider a two-party scenario. Alice and

Bob will share N copies of a completely unknown two-qubit
puré State | (//), and their aim will be to obtain as much in-

formation as possible about its entanglement. The sense in

which the State is unknown , the mechanisms for extracting
information from the system, and the scheme for evaluating
the extracted information will be briefly reviewed in what

follows.

A. Homogeneous distribution

All that is initially known about the State of each pair of
qubits is that it is puré. This corresponds to the unbiased

distribution on the Hilbert space H 4=H2
<D'H2 of two qubits,

that is, to the only probability distribution invariant under

arbitrary unitary transformations on 77 4 . It is convenient to

1050-2947/2000/61 (6)/062307(8)/$15.00 61 062307-1 ©2000 The American Physical Society
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express the unknown State | (//) e TÍ2®'H 2 , which depends on

six parameters, in its Schmidt-like decomposition

l\ + b, „
,„

rn?.
,

„
,

.

I<A}= ^J~Y~\a)\b)+ ^-¿-e ,a \-a)\-b), (1)

where the phase e
10C

, which is usually absorbed by one of the
kets it goes with, has been leít explicit. The nonlocal param-
eter b e[0,l] characterizes the entanglement of | ip). Only for

b = 1 is \ip) a product State \á)®\B), and thus unentangled.
For b< 1 the State contains quantum correlations b — 0 cor-

responding to a maximally entangled State. Recall that this

parameter is the modulus of the Bloch vector of the reduced

density matrix pA on Alice’s side,

where p(k) is given by

p(k) = í dbf(b)p(k\b), (6)
Jo

and the conditional probability of obtaining outcome k when
the State’s nonlocal parameter has valué b. p{k\ b ) will be
shown later. The gain of information resulting from obtain-

ing the outcome k after the measurement is quantified by the
Kullback information corresponding to the prior and poste-
rior probability density functions:

f . (f(b\k)\
K[ft ,f] = J dbf(b |*)ln|-^j. (7)

pA=trB \ilf)(iff\
1 +b.« 1

~ | (3 } < fl | H \ — a)( — a\, (2)

and equivalently for p B . The other four parameters corre-

spond to the two directions a and b of the Bloch vectors of

pA and p B . Then the unbiased distribution of puré States

corresponds [13] to the isotropic distribution of a in S 2
, b in

S 2
,
a in S l

, and the quadratic distribution of b in [0,1].
which is actually also a flat distribution, as b 2

is just the
Jacobian corresponding to going from Cartesian to spherical
coordinates:

This expression has to be averaged over all the possible out-

comes of the measurement, so that the expected gain of in-
formation reads

pWKUt.fi (8 )
k

using Eq. (5), this expression can be written as

£[/*./] =2 J dbf(b)p(k\b) ln¡
/

/

(,|[/) )

j- (9)

da db

2 477 Iv2 477

da H

2 77 J o
db3b 2=l. (3)

B. General measurements and information gain

The parties are thus provided with N copies of a puré State

| if/) as in Eq. (1), i.e., with the State | ip)®N
,
and our aim is to

constaict the most informative measurement on the collec-

tive, 2A-qubit system for the estimation of the parameter b.
The optimality criterion to be used is based on the Kullback
or mutual information K[f',f] [14], a functional of two

probability distributions f and / that is interpreted as the

gain of information in replacing the latter distribution with
the former one [15]. In our case, for instance, the prior, un-
biased density function for the parameter b is given by Eq.
(3), so we have f(b) = 3b 2

. A generic measurement, allow-

ing for the most general manipulation of the system, is rep-
resented by a resolution of the identity by means of a set of

positive operators:

Let us note here that the valué of K[fk ,/] in Eq. (7)
would remain unchanged if we decided to characterize the

entanglement of | if/) by another parameter b = h ( b ) [where
h{b) is any bijective function of the original parameter b].
Consequently, the gain of information we compute for b also

applies to any of the mensures of entanglement so lar pro-
posed, such as the entanglement of formation [7],

for the asymptotic regime, or the monotone [10]

( 11 )

for the single-copy case.

III. OPTIMAL MEASUREMENTS

FOR ENTANGLEMENT ESTIMATION

2 M {k) = I. (4)
k

After the above positive operator valued measurement

(POVM) has been performed, giving the outcome k with

probability \i(M (
' k)
p
&N

), where p
= \i¡f)(^\, we compute the

posterior density function for b, f(b\k), through the Bayes
formula

fk(b)=f(b\k)
p(k\b)f(b)

p(k) (5)

We are looking for a measurement of the form of Eq. (4),
such that the expected gain of information [Eq. (9)] is maxi-
mized. Here and in Sec. V we will present and explain such

optimal measurements, whereas their explicit construction is

mainly contained in Sec. IV.

A. Local and global strategies

Before we proceed we comment on four classes of mea-
surements Alice and Bob may consider in order to learn
about b [12]:
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(i) Local measurements 011 only, say, Alice’s side, i.e., on

the N qubits supporting the local State p®N
, would be the

most restrictive class of the hierarchy.
(ii) Uncorrelated bilocal measurement, in which each

party measures their local V-qubit parí independently, is one

type of intermedíate strategy.
(ii) Classically correlated bilocal measurement, with cías-

sical communication between Alice and Bob, is a less re-

strictive intermedíate strategy.
(iv) Global measurements on the 2N qubits constitute the

most general case.
Global measurements are in principie the most informa-

tive ones. But as the parameter b, which quantifies the en-

tanglement of | tft), also completely quantifies the mixing of

pA (and p B ), it could well happen that local measurements,
or bilocal measurements on the two parties, optimal for the
determination of the mixing, are as informative as the global
ones with respect to en tanglement. In fact, in reducing
|í//)(//r| to Pa®Pb only the relative phase a is lost, and the

dependence on directions a and b and on the entanglement b
is preserved. We have found the optimal global and local
measurement of b. The results obtained following the two

strategies are the same, as we will discuss in Sec. VII, so all
the extractadle information about the entanglement is pre-
served under the pardal trace operation, and the four classes
considered above tura out to be equivalent for entanglement
estimation.

B. Effective mixed state

Note that all the dependence on the measuring strategy (4)
in Eq. (9) is contained in the probability p(k\b) of outcome
k conditioned on the entanglement of the State being some

given b.

where the sutil over the rest of the parameters reflects the fact
that we are only interested in the entanglement. This expres-
sion can also be written as

p'(k\b) =tr[Mw
p

(A?) (¿>)], (13)

where the mixed State p
(A?) (¿>) is

Equation (13) allows for an alternative interpretation to our

problem: a 2V-qubit mixed State p^N\b) is drawn randomly
with prior probability distribution f(b) = 3b 2

, and we want

to determine it by estimaüng b.
We will compute p{k\b) on a basis that diagonalizes

p^N\b), which will crucially tura out to be independent of b.
Let us denote the positive eigenvalues of p

(Ar) (¿) by
X,(/;), . . . ,Am (b), and their multiplicity by n x , . . . ,nm

.

From the normalization of Eq. (14) the relation SJ
!

=1 n ;
X
;

= 1 follows. Tire smn n = 'L
]
n
]
of multiplicities of (nonvan-

ishing) eigenvalues equals the dimensión of the space which

supports | i/j)(i//\ &n . This is the symmetric subspace of H fN ,

and thus [5]

(N+3 )! (N+3)(N+2)(N+l)
n ~

3 INI 6

With this notation Eq. (13) reads

(15)

n j n j +«2

p(k\b) = k l (b)Jl Mf + \ 2 (b) 2 M<¡
i = 1 i = ni + l

n m

+ 2 MÍf-2 (16)
i=n-n

m
+l j =1

By substituting this expression into Eq. (9), and using the

inequality [16]

(xj+x 2)ln
Xi+xA lx 1

^Xiln —

yi+y i) \y i
(17)

where x¿,y¿s=0, along with the fact that the POVM is a

resolution of the identity in the symmetric subspace of

H ®N
, i.e. 2 kqf > =

rij , it follows that the average gain of

information is bounded by

dbf(b)2 njXj(b)\n¡
J 7 = 1

dbf(b)\j(b)
(18)

C. Minimal most informative measuring strategy

Bound (18) can be minimally saturated through a mea-

surement with m outcomes, where each M (k) is the

«¿.-dimensional projector over the subspace corresponding to

the eigenvalue \k of p^N\b), then having p(k\b)
= n kXk(b). Therefore, the constraction of the optimal mea-
surement can be readily performed after the computation of

the spectral decomposition of state (14), and this is done for

an arbitrary N in Sec. IV. For a more detailed account of the

V=l,2, and 3 cases, see Sec. V, where also the gain of

information up to A= 80 has been computed explicitly.
Note also that there are other ways measuring strategies

that can be evaluated and, consequently, there is not a unique
notion of optimality. For instance, in Refs. [1-6] a guess for

the unknown state is made depending on the outcome of the

measurement, and then both guessed and unknown States are

compared using the fidelity. It can be proved, following Ref.

[16], that the optimal measurements presented here, the most

informative ones, are also optimal if we decide, alternatively,
on a fidelitylike figure of merit satisfying some very general
conditions [19].

IV. COMPUTATION OF p
(N)

It has been shown that the spectrum of p (Af) (¿>) determines
the maximal gain of information about b, whereas its eigen-
projectors lead to the corresponding measuring strategy. Our
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next step will be the computation of the spectral decomposi-
tion of this effective mixed State.

Let lis rewrite the generic two-qubit puré State [Eq. (1)] as

\ 1/') = Ua®Ub (c + \ + ) a®\ + ) b +C-\-) A®\-)B )

= UA <S>UB \ij/(b)), (19)

where c +
= V(1 + b)l2, c _

= V( 1 —b)l2, the single-qubit
puré States | + )A and | — )A (| + )B and | — )B ) constitute an

orthonormal basis in Alice’s (Bob’s) part (corresponding to

some fixed direction in the Bloch sphere), UA and UB are

unitary transformations in each single-qubit space, and

| ip(b)) is a reference State.

The State p^N\b) corresponds then to a Haar integral over
the group SU(2)XSU(2), since it can he expressed as

P
m(b)= f dg[D(g)M(b)D(g)']M , (20)

J g eG

where the Índex g denotes the elements of the group G
= SU(2)XSU(2), Z)(g) = UA®U jB is a jX \ irreducible rep-
resentation (irrep) of this group and M(b) = \if/(b)){if/(b)\.

A well-known result in group representation theory fol-

lowing from Schur’s lemma, the so-called orthogonality
lemma, will be useful in the calculation of this integral. Con-
sider a matrix A af¡l(B) given by

A aP(B)= í dgD a(g)BD^(g), (21)
J geG

where D a and D 13
are two unitary irreps of the group G.

Then we have the following,
Lemma 1 (orthogonality lemma):

A ab(B) = a(B)8aPl, (22)

so A aP(B) is zero if the two representations are inequivalent,
and proportional to the identity if the two representations are

equivalent.
In order to benefit from this lemma we identify B with

M(b)® N=\ifr(b))(ilj(b)\® N and then consider the relevant

irreps of SU(2)XSU(2) borne by the A-fold tensor product
of the tX j irrep of the group. These representations are the

support of the State | i/;(b))®N
, and our next task is to recog-

nize them.

The State \iJÁb))QN can be expanded as

\4b))®N =c*Í\ + + ■ ■ ■ + +)A®\-) B ,

+ C+ ^-(1+ + • • • + -)A®|-) £ 4

+ |- + - • • ++)A®|-) 5 ),
+ cí-V_(|+... +—)A®|.),+ ...

+ 1 + • • • +) a®|-)s ),
+ c

N
+

~ 3
c

3_( )+■ ■ ■+c + c
N.~ 1 ( ),

+C-I-- (23)

PHYSICAL REVIEW A 61 062307

where | • ) B means that we have exactly the same vector in

the second subsystem. Notice that in the expression above all

the elements of the product basis {| u¡)} of the local spaces
H®N of Alice’s and Bob’s N qubits—i.e., |mi) = |+ + ■ • •

+ + }, \u 2 ) = \ + + ■■■ + -),.. . ,\u 2n) = | • ■ • ) —

appear in the form |u¿)A® \u¡) b . Notice, in addition, that if
we denote by mT the sum of the third spin component of all

spinors in each ket—i.e., for instance mT(\ + + +)) = 3/2,
m T( | + + —)) = 1/2, mT( | — + —))= —1/2, • • •

-, tire terms

multiplied by the same combination of the factors c+ and c_

have the same m T in A and B. State (23) can thus also be

expressed as

| iJ/(b))®N
= c

N
+ 2 Wi)A®Wi) B
i;mj—N/2

+ C+
l
C- 2 Wí)a®Wí)b+ ‘ ‘

i;rn.f= (N/2) — 1

+ c- 2 l»¡>A®l u¡) B . (24)
i\mj= — NI2

We now move from the local spin basis {|«¿)A } to the

coupled one {|u¿)A } in Alice’s N qubits, and we also do the
same in Bob’s. The following lemma, that can be easily
checked, will be useful here,

Lemma 2: Let ||e¿)} and (|/,•)} be two orthonormal basis
in C , related by an orthogonal transformation O, so that

\e i ) = 'ZjO ij\fj), with 0* = 0, and 0~
l
= 0 1f

. Then,

/ i

2 k}®k->=2 k>»[/)>. (25)
¡' = 1 i = l

Now, note that the unitary transformation relating the local
basis and the coupled one is real (since all the Clebsch-
Gordan coefficients are real), and that there is a conservation
rule for the total third spin component (i.e., the Clebsch-
Gordan coefficients that couple two States with third compo-
nent m 1 and m 2 to a coupled State with third component m
are proportional to S

m¡m + ). Then Eq. (24) can be reex-

pressed, using the previous two facts and lemma 2, in the

coupled basis as

k(*)>®A,=A 2 kk®kk
x\rnj=NI2

+ C+~
1
C- 2. \ví)a®\ví)b+ ■ ■ ■

i\mj= (N/2) — 1

+ C- 2 \ví)a®\ví)b (26)
i;m 2

’= —N/2

(see the examples in Sec. V for more details). We note that
the symmetry between the terms in A and in B allows us to

derive Eq. (26) from Eq. (24).
Let us now have a closer look into Eq. (26). The term

with coefficient c+ corresponds simply to the State with a

total spin j maximal in both Alice’s and Bob’s subsystem
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(i.e., jA =j B = N/2 ) and also maximal third spin component
m, nanrely, mA

= mB
=N/2. We can thus write, with the no-

tation \ JA mA )A ®\ ]zm B ) B , ki) = |i; 1 )A®|u 1 ) s =|W2W2)A
®\ NI2N/2) B . This State belongs to a A/2® A/2 irrep of the

group SU(2)XSU(2). The coefficient c+”
1
c_ corresponds

to all States with mA
=mB—{NI2)—\. Apart from \v 2 )

= \ n,2 (N/2) — 1)a®\NI2(N/2) — 1)b , which again belongs to

the previous A/2® A/2 irrep, the remaining A—1 kets, |u 3 )
• • •[y/v+j) have j A—jB = (N/2) — l, and thus belong to A
— 1 different (but equivalent)

the trace of the identities giving the corresponding multi-

plicities {rij}. It is important to notice that, as it was men-

tioned before, the eigenspaces are independent of b.
The calculation of tijXj can now be readily performed

from Eq. (26) by computing the trace of the projection of

| i¡i(b))N into each relevant irrep. The determination of the

spectrum of p
[N\b) completes, as we have shown, the con-

struction of the optimal measurement for the estimation of
the entanglement. In Sec. V some examples are studied in
order to clarify the implementation of the procedure.

A

2

irreps of the group. But since only the linear combination

|l> 3 )+----I-|ü^ + i) appears, the relevant irrep is just the

symmetric combination of the latter A — 1 ones, which we

will denote by

and which no longer decomposes as the product of two irreps
of SU(2). Tire same applies for

irreps, and so on.

Thus, the space which supports the initial State can be

decomposed in terms of irreps of SU(2)XSU(2) as

A A I7 A '
\ N

rr ® 1 —-1 ® —-1
2 2 1

, \ 2 ,
1 U II

V. SOME EXAMPLES: THE A = 1,2,3 CASES AND BEYOND

In this section we will apply the procedure described

above to obtain the optimal estimation of b when one, two,
and three identical copies of the initial State are at our dis-

posal.

A. A= 1

The simplest case, A=l, is now straightforward. The
State written as in Eq. (19) belongs to the }®{ irrep of

SU(2)XSU(2). From Eq. (20) we have, using the orthogo-
nality lemma as in Eq. (28),

f>
m (b) = j dgD(g)M(b)D(g)^\ l (b)l■ (29)

The eigenvalue \ x (b) = \ is obtained by taking the trace in

the expression above. The probability p(k\b ) [see Eq. (13)]
is independent of b, so that p(k)=p(k\b) and the average
Kullback information [Eq. (9)] vanishes. Consequently, no

information whatsoever can be obtained about the entangle-
rnent of a completely unknown puré State if only one copy is
at our disposal.

® • • • ©
A mod 2

2

A mod 21
2

J sym

B. A= 2

For the A=2 case the initial State has the form, from Eqs.
(27) (23) or (24),

where A mod 2 is equal to 1 for odd A and equal to zero for
even A. It can be checked that this result agrees dimensión-

ally with formula (15).
The decomposition shown above in terms of the relevant

irreps of the group SU(2)XSU(2), together with the or-

thogonality lemma, can be used to solve the integral in Eq.
(20). As we have argued, when plugging Eq. (26) into Eq.
(20) tire cross terms corresponding to inequivalent
representations—such as |ui)((u 3 | + • • • + (iw +1 |)—vanish
as we intégrate, while the terms within the same

representation—such as |ui)(ui|—lead to a contribution

proportional to tire identity in the subspace associated with
the representation. So the State p

(N\b) is equal to

// A 1 ( /; ) = X ! (/; ) IN/2® A7/2+ k 2 ( b )/{[(A72) -1 ] ® [ (N/2) - 1 ]} sym

+ • • ' + b n,(b)I{[(N mod 2)/2]®[(N mod2)/2]} sym
- (28)

This is the spectral decomposition we are looking for, where
{Ay} are the entanglement dependent eigenvalues of p (/V) (¿>),

\ ll'(b))® 2
-c

2
+ \+ +)A®| • )B + c+c_(| + ■—)A

® I • )b +1 ~ + )A ® | • )B ) + c
2
_ | )A ® | • ) B ,

(30)

Now, using lemma 2 and the conservation law nrentioned
above for the Clebsch-Gordan coefficients [cf. Eq. (26)], we
can rewrite the State as

|i//(¿»))® 2 = c
2
h | 1 l) A®|-) B + c + c_(| 1 0)A®| •) 5 + |°0) A

® I' )b) + 6‘x| 1
— 1 )A ® | • )B , (31)

where for each party the coupled basis is related to the local
one by nreans of an orthogonal transfornration, as usual,

I 1 l) = l + + ), I 1 -l) = h-),
(32)

' IO>|¿ (l+ - >+ + )).
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|0°>=4( |+->-i-+».

The State \ip(b))® 2 in Eq. (31) is supported then in the 1

®1 and the 0®0 irreps of SU(2)XSU(2), and now the

application of lemma 1 gives for

p
{2) (b) = \ 1 (b)I 1 ®-í + \ 2(b)Io® 0 . (33)

We just need to pick up the contributions of Eq. (31) to each

irrep, that is the trace of the corresponding projections, to

find that

A 0 0 A 3 + b 2

n 1 \ 1 (b) = (c 4
+ + c

2
+ci + ct )=—,

2
(34)

9 9
\~b~

n 2\ 2 (b) = c
¿
+ci =—¡—.

The optimal measurement [see Eq. (18)] then consists of
two projectors onto the 1®1 and 0®0 irreps of SU(2)
®St/(2), with probabilities p(l \b) = n l \ l ^b) = {3 + b 2

)IA
and p(2\b) =n 2k2 (b) = (l — b 2 )/4, and from them p( 1)
=

Tñ and p{2) = 70 . Finally the gain of information can be

computed, using Eq. (9), and it gives ^=0.0375 bits.

C. N= 3

The last case we want to discuss is N~3. Starting now

from Eq. (26), we have

|tA(¿))® 3
= d| 3/2 !>A®|.), + C

2
+C_(| 3/H)A®|->,+ | 1/2OA

®|->5+| 1/2, I>A®|-)z5) + C + C
2 (| 3/2-j)A®|-) 5

+ I 1/M>a®I->5 +I 1/2 '^>a®I->5 )

+ ct\>n-\)A <&\-)B , (35)

we observe that only contributions to the §®§ and to two

difieren! \® \ irreps of SU(2)XSU(2) appear. Notice, in

addition, that since in this expansión the contributions to \
® k and to \' ® \' only appear in a symmetric linear combi-

nation (i.e., | 1/2 i)a ® | • )b+ 1 1/2 'í)A ® | • )5 and \ m -\)A

®l‘)5 +| 1/2
— Í)a®I‘).b)> the relevant irreps is precisely a

symmetric combination of the two latter ones, (í ® i},íy , n •

The orthogonality lemma gives now

fP\b) = X 1 (^)/ 3/2®3/2+ X 2 (/?)7{i/20i/2} í;yw - (36)

Finally, by collecting the traces of each projection of Eq.
(35) onto each irrep, we ohtain

1 + ¿> 2
n 1 \ 1 (b) = (c 6

+ + c
4
+ c

2
_

+ c
2
+ c

4
_

+ c
6_)= —-—,

(37)
1 \) ^

n2\ 2(b) = 2(c 4
+ c

2
_ + c

2
+ c

4
_) = —y—,
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TABLE I. Average gain of information K about b given N cop-
ies of the State | é).

N K

1 0

2 0.03751

3 0.08397

4 0.13259

5 0.18059

10 0.39245

20 0.69639

40 1.07422

60 1.32005

80 1.50261

and thus the optimal measurement is composed by 16-
dimensional and four-dimensional projectors into the two ir-

reps shown above, the corresponding probabilities being
p(\\b) = (\ +b 2

)/2 and p{2\b) = { 1 —b 2 )/2. From these,
p( l) = i and p{ 2) = j, and the gain of information is of
0.084 bits.

D. N>5

We have applied the same, general procedure to ohtain
the gain of information up to A^=80, as reported in Table I

and Fig. 1. We observe a logarithmic asymptotic dependence
of the gain of information on the number N of available

copies of | <//}, which reads

^-0.441og2 yV (38)

bits of information on b.

VI. OPTIMAL ESTIMATION OF MIXING

So far we have considered the most general measurement
involving the whole space (7i2®H 2 )

oN of N copies of a

two-qubit puré State. Now we are going to study optimal
local measurements for the estimation of its entanglement.
Alice will perform a collective measurement over the N cop-

Average K

FIG. 1. Average gain of information K about b given N copies
of the State |(¡j) . The points represent the results obtained by the
described optimal measurement, while the line shows the

asymptotic behavior.
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Íes of the State pA in Eq. (2) at her disposal in order to

estímate the parameter b. Consequently, we are also studying
optimal strategies for estimating the degree of mixing of a

single-qubit mixed State, when N copies are available.
In order to study the latter with more generality we will

consider a generic prior distribution f(b) for the degree of

mixing while keeping an isotropic distribution in the Bloch

vector direction a of the unknown mixed State, with

f da f 1

) s^í dbm=v (39)

^ w N N
H "=2 e r'

N

2" 1

Nmod2 N mod 2
(44)

The spectral decomposition of p
(
A \b) is determined by

application of the orthogonality lemma. Since equivalent ir-
reps receive always the same contributions in the decompo-
sition (43), the corresponding eigenvalues are equal, so that

Eq. (41) reads

A general measurement on the local composite system sup-

porting the State p®N consists of a resolution of the identity
in the corresponding Hilbert space Hf

N
by means of posi-

tive operators Mw
. The gain of information is as in Eq. (9),

where now

p(k\b)=tv[M^p <
A
N\b)], (40)

so that we need to compute the effective mixed State

pf\b) = í dg[D(g)pA (b)D(gyrN , (41)
J gsG

where the integral is performed over the group G = SU(2)
and a single copy of the mixed State

pA = UA pA (b)U\ (42)

P^ib) — b.\(b)INi2+b\(b)(l ljm)-\ + • ■ • +-f(w/2)-i) + • ‘ ‘

T b fn (.b) (I(N mod 2)/2
' * ' 4" I(N mod 2)/2)‘ (45)

This is, of course, simply what remains from Eq. (28) when
Bob’s subsystem is traced out, and we have included the

whole derivation only for completeness.
Equations (16)-(18) still hold, and therefore the optimal

measurement for the degree of mixing b corresponds, for any
isotropic distribution, to projections onto each of the sub-

spaces associated with the eigenvalues {k£}. The gain of

information is then given by the right-hand side of Eq. (18).
Notice that both the number of outcomes and the correspond-
ing probabilities p(k\b) = n

1¡:\^(b) are equal to the ones ob-

tained before for entanglement estimation. In particular, it
follows that there is no way to learn about the degree of
mixture of an unknown mixed State if only one copy is avail-
able.

has been expressed, as before, in ternas of a reference State

pA ( b) = ( c + | +) (+1 + c
2
_ | -) (— |) and a unitary transforma-

tion UA . The procedure to be followed is analogous to the

previous one, the spectral decomposition of the State (41),
allowing us to build the optimal measurement.

The density matrix f)A ( b ) ®N can be written—by using a

straightforward modification of lemma 2 and the mentioned

properties of the Clebsh-Gordan coefficients—in terms of the

coupled basis {| o/)A } as

pA (b)®N
=c

2
+

N 2 |ü f><Uf|
i;m-p=N/2

+A<w - , >cl 2 k.Xi- iU+--
i;tn T= (N/2) — 1

+ C
2N 2 \Vi){Vi\
i\mj= — (N/2)

(43)

Notice that the importan! role played before by the symmetry
between the kets in A and B [cf. Eq. (26)] is now played by
the symmetry between the terms in the bra and in the ket.
However we see that now there are no cross-terms between

inequivalent irreps of SU(2), and that equivalent irreps, such
as the N- 1 copies of the [(N/2) — 1 ] irrep, obtain equal but
independent contributions. The space H® N

, decomposed in
terms of irreps of SU(2) is (see also Reís. [6] and [17])

YII. DISCUSSION AND CONCLUSIONS

In this work we have presented an optimal strategy for the
estimation of the entanglement of two-qubit puré States,
when N copies are available. Such optimal measurement is
also minimal, in the sense that it consists of the mínimum
number of outcomes, namely, N/2+\-(N+\)/2 outcomes

for the even-odd-TV-copy case. Most of the corresponding
projectors are of dimensión greater than 1, and of course any
further decomposition of them can be used in principie to

obtain, simultaneously, some additional information about
other properties of the unknown State, although our optimal
POVM is not compatible with projecting onto States of the

form | i//¡)®N
as optimal POVM for State determinad on are

[2-5], and they are thus less powerful for that purpose.
An interesting particular case is when tire initial State is a

product State, i.e., b= 1. It can be seen that in this situation
we have only an outcome corresponding to the space of
máximum spin, since n 1 X 1 (l) = l. Therefore, if the outcome

k, with k> 1, is obtained, we can be assured that the State is

entangled.
In Sec. VI we were also concerned with the optimal esti-

mation of the degree of mixing. Our optimal measurement,
again minimal, can be used, for instance, to quanüfy the

degree of purity of States created by a preparation device
whose polarization direction we ignore. Our strategy is actu-

ally complementary to the one aiming at optimally revealing
the direction of polarization of the State [1], As a matter of
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fact, the optimal POVM we obtained is just a coarse graining
of the one obtained in Ref. [6] for optimal estimation of

mixed States, which turned out also to reach the optimal stan-
dards of direction estimation obtained in Ref. [1]. Conse-

quently, the direction and modulus of the Bloch vector of an
unknown mixed State can be optimally estimated simulta-

neously. Note that this is not a frequent situation. If, instead,
we would like to estímate the x, y, and z components of the
Bloch vector independently, we would have obtained incom-

patible optimal strategies (consider, e.g., the N=l case,
where an optimal measurement for the component of the

Bloch vector along direction n consists of a two outcome

measurement projecting on that direction).
Finally, we can argüe that bilocal measurements, either

uncorrelated or classically correlated, do not imply any im-

provement of the simpler, local ones for entanglement esti-
mation. Once we obtain an outcome from Alice’s local mea-

surement, we can compute Bob’s effective State, and it is
clear from Eq. (28) that his outcome will be the same as

Alice’s, so that no extra information on b will be obtained.
We have also seen that the optimal global measurement on
\if)®N is perfectly mimicked by a local one on p®N (or
pfN ), so that actually all four classes of measurements con-

sidered in Sec. IIIA are equivalent. In fact, with hindsight,
one can understand this result: local measurements are per-
formed on the reduced density matrix, which is obtained by a

partial trace over the other subsystem. This operation erases

the information contained in the parameters a and b of Eq.
(1). On the other hand, the global measurement can be Ínter-

preted as being performed on the effective density matrix of

Eq. (14), where the same parameters have been integrated
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over. This operation erases the information contained in

them as well.
It would be challenging to address the same question for

bipartite mixed States, and for systems shared by more than
two parties. Note that in none of these cases is optimal esti-
mation of the nonlocal parameters possible by means of local

(or even uncorrelated bilocal) measuring strategies. This is
the case for mixed States because any given reduced density
matrix pA may correspond to inñnitely many mixed States />,
with different degrees of entanglement, so that not even in

the limit A—can the entanglement of p be properly in-
ferred from p®N

. The mere existence of hidden nonlocal

parameters [18]—that is, of entanglement parameters that are
erased during the partial trace operation—also prevents un-

correlated local strategies from being optimal for estimation
of pure-state tripartite entanglement. To conclude, two-qubit
pure-state entanglement, a quantum nonlocal property, can

be optimally estimated by means of local, but collective,
measurements.

ACKNOWLEDGMENTS

We thank Susana Huelga for reactivating our interest in
this problem and for interesting discussions, and J. I. Latorre
for helping us with the computation of the valúes of Fig. 1.
G.V. acknowledges CIRIT Grant No. 1997FI-00068 PG.
A. A. acknowledges a grant from MEC. Financial support
from CICYT Contract No. AEN98-0431 and CIRIT Contract
No. 1998SGR-00026 are also aknowledged. This work was

partially elaborated during the “Complexity, Computation
and the Physics of Information” workshop of the Isaac New-
ton Institute. The authors thank the Institute and the Euro-
pean Science Foundation for support during this period.

[1] A. S. Holevo, Probabilistic and Statistical Aspects ofQuantum
Theory (North-Holland, Amsterdam, 1982).

[2] S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995).
[3] R. Derka, V. Buzek, and A. K. Ekert, Phys. Rev. Lett. 80,

1571 (1998); e-print quant-ph/9707028.
[4] J. I. Latorre, P. Pascual, and R. Tarrach, Phys. Rev. Lett. 81,

1351 (1998); e-print quant-ph/9803066.
[5] A. Acín, J. I. Latorre, and P. Pascual, e-print

quant-ph/9904056 [Phys. Rev. A (to be published)].
[6] G. Vidal, J. I. Latorre, P. Pascual, and R. Tarrach, Phys. Rev.

A 60, 126 (1999); e-print quant-ph/9812068.
[7] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-

cher, Phys. Rev. A 53, 2046 (1996).
[8] H.-K. Lo and S. Popescu, e-print quant-ph/9707038.
[9] M. A. Nielsen, Phys. Rev. Lett. 83, 436 (1999).
[10] G. Vidal, Phys. Rev. Lett. 83, 1046 (1999).
[11] D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 1455

(1999).
[12] The problem of optimally estimating the entanglement of two-

qubit puré States was recently analyzed by J. M. G. Sancho and

S. F. Huelga, preprint, quant-ph/9910041. In their work they

considered strategies for the /V-copy case that measured only
on one copy of the unknown State at a time. Their work and

ours can be thus regarded as complementary.
[13] M. J. W. Hall, Phys. Lett. A 242, 123 (1998); e-print

quant-ph/9802052.
[14] S. Kullback, Information Theory and Statistics (Wiley, New

York, 1959).
[15] A. Hobson, J. Stat. Phys. 1, 383 (1969).
[16] R. Tarrach and G. Vidal, e-print quant-ph/9907098 [Phys. Rev.

A (to be published)].
[17] J. I. Cirac, A. K. Ekert, and C. Macchiavello. Phys. Rev. Lett.

82, 4344 (1999); e-print quant-ph/9812075.
[18] J. Kempe, Phys. Rev. A A60, 910 (1999).
[19] More specifically, the most informative measurements pie-

sented in this work are also optimal with respect to a fidelity-
guided scheme if the quality of the guesses is evaluated

through any concave fidelity function F{b-b k )—where b is

the unknown parameter and b k is the guess made after out-

come k—that reasonably takes its máximum for b k = b, i.e.,

F{{x+x')I2)^[F{x)+F{x')-\I2 and F(0)^F(x e [- 1,1]).

062307-8


	AADM_COVER
	ADM

