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Prefacio

Esta tesis trata diferentes aspectos de Informacion Cudntica, una nueva
rama de la fisica tedrica en la que se trasladan resultados ya establecidos
de la Teoria de la Informacion Clasica al dominio cudntico. Contiene gran
parte del trabajo que he realizado durante los tltimos tres anos en el grupo
de Informacion Cuédntica del Departamento de Estructura y Constituyentes
de la Materia de la Universidad de Barcelona, y en ocasiones en colaboracion
con el Institut fiir Theoretische Physik de la Universidad de Hannover y el
de la Universidad de Innsbruck.

La tesis estd organizada como un compendio de seis articulos: los cuatro
primeros son sobre entrelazado de tres bits cudnticos y los otros dos sobre
estimacion de estados. El primer capitulo es el tnico escrito en espanol,
proporciona una introduccion muy general al campo y resume los principales
resultados que han sido obtenidos. Al final hay también una breve seccion con
conclusiones. Es la mejor eleccion para los lectores que entiendan el espanol
v no sepan nada de Informacion Cuantica. En el segundo capitulo hay una
introduccion mas técnica al entrelazado, el ingrediente clave en muchas apli-
caciones de informacion cudntica. El objetivo del tercer y cuarto capitulo es
presentar, con bastante mas detalle que en el primero, los puntos mas im-
portantes tratados en esta tesis: se muestra la motivacion y las conclusiones
de nuestro trabajo. Finalmente, los seis articulos, donde es posible encon-
trar las derivaciones explicitas de todos los resultados, se encuentran como
apéndices.



Preface

The main subject of this thesis is Quantum Information, a new branch
of Theoretical Physics that translates known results of Classical Information
Theory into the quantum domain. It contains most of my work during the
last three years in the Quantum Information Group of the Departament
d’Estructura i Constituents de la Matéria of the University of Barcelona,
and sometimes in collaboration with the Institut fiir Theoretische Physik of
the University of Hannover and of the University of Innsbruck.

The thesis is organized as a compendium of six articles: the first four are
about three-qubit entanglement and the other two about state estimation.
The first chapter is the only one written in Spanish, it gives a very general
introduction to the field and summarizes the main results that have been
obtained. At the end there is also a brief section with conclusions. Tt is
the best choice for those readers that understand Spanish and do not know
anything about Quantum Information. In the second chapter there is a more
technical introduction to entanglement, the key ingredient in many quantum
information applications. The aim of the third and fourth chapter is to
present, with quite more detail than in chapter one, the main points studied
in this thesis: it shows the motivation and the conclusions of our work.
Finally, the six articles, where it is possible to find the explicit derivation of
all the results, are given as appendices.
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Capitulo 1

Resumen

1.1 Introduccién

El objetivo de esta tesis ha sido el estudio de diferentes problemas en Infor-
macion Cudntica, un campo joven y dinamico en el que se fusionan aspectos
de Teoria de la Informacién y de la Computacion con la Mecanica Cuantica.
La Teoria de la Informacion analiza la manera de transmitir datos desde un
emisor a un receptor, mientras que la Teoria de la Computacion se centra
en el modo en que éstos son procesados de cara a realizar una determinada
tarea. Aparentemente son dos disciplinas abstractas, en las cuales el estudio
es independiente de los dispositivos fisicos mediante los que se codifique o
transmita la informacion. Esta premisa se ha revelado sin embargo falsa,
v la contribucion de los nuevos resultados en Informacion Cuantica ha sido
capital para este cambio de paradigma.

La unidad basica de informacion es el bit, y su realizacion fisica puede
darse por medio de cualquier sistema que tome dos valores definidos. Asi,
el paso o no de corriente eléctrica por un transistor puede servir para repre-
sentar los dos valores que toma el bit, el “0” o el “17 de la 16gica booleana.
Con esta simple unidad de informacion pueden describirse todos los proce-
sos de computacion y de transmision de informacion que se dan hoy en dia.
Todo ello se realiza en dispositivos que trabajan a una escala en la cual las
leyes de la Fisica Clasica ofrecen una correcta descripcion de los fendmenos
naturales. Es sabido, sin embargo, que al pasar a escalas microscopicas, este
formulismo deja de ser valido y es la Mecanica Cudantica la que proporciona



una correcta interpretacion de los resultados experimentales, por lo que la
Fisica Cldsica es una aproximacion de la Mecdnica Cuantica que funciona
bien para escalas macroscopicas. Cabe preguntarse entonces qué pasard si
la codificacion de la informacion se lleva a cabo en dispositivos fisicos mi-
croscopicos cuya descripeion debe realizarse en términos cudnticos v ver si
ello supone alguna variacion en la manera en la que la informacion puede
procesarse. Es importante incidir en el hecho de que si se produjera este
cambio, no podemos considerar el bit y el resto de elementos que aparecen
en la Teorfa de la Informacion como entes abstractos, tal v como se ha venido
haciendo hasta hace poco, sino claramente dependientes del entorno fisico en
el que se encuentran. De ese modo se haria evidente, y citando a Landauer,
que la “informacion es fisica”.

Hasta ahora toda justificacion acerca de la importancia de plantearse si
el cambio en las leyes fisicas supone una variacion del tratamiento de la in-
formacion ha sido dada desde un planteamiento estrictamente teorico. Pero
también desde el punto de vista experimental resulta muy interesante pregun-
tarse por las consecuencias que llevara el cambio desde una descripcion clisica
a una cuantica. El desarrollo tecnolégico de los dispositivos electronicos esti
mejorando de manera notable y se estan alcanzando resultados espectacu-
lares en la miniaturizacion de los componentes. De seguir la actual tendencia,
se alcanzard la frontera en la que los efectos cudanticos empiezan a manifes-
tarse. Es importante por tanto conocer la influencia que éstos tendrian en los
sistemas de informacion, asi como saber si es posible obtener algin tipo de
ventaja en caso de que puedan ser controlados.

La Informacion Cuadntica busca dar respuesta a estas preguntas, cono-
cer las variaciones que se derivaran del cambio de la fisica de los disposi-
tivos, en la transicion de la Mecdnica Clasica a la Cudntica. Los resultados
que hasta ahora se han obtenido en esta disciplina muestran que espectacu-
lares v novedosos procesos de tratamiento de la informacion pueden darse
utilizando las leyes cudnticas. A parte de ofrecer interesantes perspectivas
teoricas (también para una mejor comprension de la Mecanica Cudntica),
el interés es basicamente de tipo practico, de cara a conocer las modifica-
ciones que se podran obtener si sigue el actual progreso tecnolégico. De
hecho en el campo de la Optica cudntica ya se han realizado miiltiples ex-
perimentos desarrolando parte de estos nuevos resultados. Conviene notar
que todo el tratamiento previo de la Teoria de la Informacion Clisica se en-
cuentra recogido en la version cuantica (es un caso particular), puesto que la
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Mecdnica Clasica no deja de ser, como se ha mencionado, una aproximacion
de la Mecanica Cuantica. Al codificar la informacién en estados cudnticos.
dos son los fendmenos que aparecen sin andlogo en la Teoria de la Infor-
macion Cldsica: la superposicion de estados y las correlaciones cuianticas o
entrelazado (en inglés entanglement). En el resto de esta seccion discutire-
mos con algo mas de detalle estos dos puntos, asi como las dificultades que
aparecen al intentar leer la informacion almacenada en un estado cudntico
debidas a la no ortogonalidad.

1.1.1 Superposicion de estados: el bit cuantico

La Informacion Cudntica estudia cémo manipular v procesar datos que han
sido almacenados en estados cuanticos. De manera similar al bit clasico, un
estado cuantico de dos niveles representa la unidad basica de informacion
cuantica. el bit cudantico o qubit. Matematicamente se tiene un vector, [1),
perteneciente a un espacio vectorial complejo de dimensién dos, C?. Los
dos valores logicos del bit seran entonces los dos elementos de una base
ortonormal en este espacio,

10y = ((1]) 1) = (?) (1.1)

Dado que estamos en un espacio vectorial, podemos encontrar cualquier es-
tado superposicion resultante de la combinacion lineal de estos elementos,
|1) = «|0) + 3|1), donde « y 3 son dos niimeros complejos que satisfacen
|a|* 4+ |3[* = 1. Con ello los posibles valores que puede tomar el bit cudntico
son infinitos, al contrario de lo que sucedia para el bit cldsico.

Consideremos el caso en que se tiene que realizar una tarea en la que se
llama a una funcién f. Cldsicamente los N = 2¢ posibles valores de entrada
se codifican por medio de d bits, por lo que si queremos saber el valor de la
funcion para todas las entradas es necesario calcularla N veces. Ahora bien,
si preparamos un estado cudntico de d qubits, [¢) € C2® C2...C2 =C¥, en
el estado superposicion de todos los elementos de la base, es decir

1 e
|-w>=mun...nun|0...u1)+...+|1...11)):WZ1?,>, (1.2)

=0

v aplicamos [ sobre este estado, se tiene la informacion de todos los valores
que toma la funcion distribuida en el estado resultado con una tnica llamada
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a f,
1 2d_1
|6} = 575 2 |£(3)- (1.3)
- i=0

Por medio de la superposicion se tiene un paralelismo cuantico que permite en
principio acelerar la realizacion de diferentes tareas. Sin embargo es impor-
tante tener en cuenta que no toda la informacion en el estado superposicion
es accesible debido a la no ortogonalidad de los estados cudnticos, por lo que
el método a la hora de procesar y leer los datos no es trivial.

1.1.2 El entrelazado cuantico

El entrelazado es un fenémeno que no puede tener andlogo en una descripeion
clasica de un sistema fisico y que aparece en sistemas compuestos de dife-
rentes particulas. Para muchos de los estados, puros o mezcla, que describen
su preparacion, se observan unas correlaciones entre las diferentes particulas
0 subsistemas que no pueden explicarse por medio de ningin modelo lo-
cal clasico, es decir son intrinsicamente cuanticas y suelen también llamarse
propiedades no locales del estado. Al no tener andlogo cldsico, es muy im-
portante conocer qué mejoras puede suponer el poder manipular este nuevo
tipo de correlaciones, dado que no serd posible encontrar ningtin método al-
ternativo utilizando dispositivos clasicos capaz de realizar las mismas tareas.
De hecho muchas de los nuevos, y en ocasiones espectaculares, resultados en
Informacion Cudntica se basan en el aprovechamiento de estas correlaciones,
y en este sentido se suele afirmar que el entrelazado es un recurso de gran
utilidad practica.

El tipico esquema en gran parte de las aplicaciones de Informacion Cuanti-
ca consiste en diversos observadores que comparten un estado en el que exis-
ten correlaciones cudnticas entre ellos. En general, las diferentes partes
no pueden juntar sus subsistemas y realizar operaciones conjuntas, pero
si que pueden manipular de manera arbitraria su subsistema local y comuni-
carse de un modo clasico. En esta situacion estamos interesados en conocer
como pueden los diferentes observadores modificar las propiedades del estado
cuantico en el que se encuentran, y en particular las correlaciones cudnticas
entre ellos, por medio de operaciones locales y comunicacion clasica.



1.1.3 La no ortogonalidad de los estados

El bit cudntico como hemos visto puede tomar un niimero infinito de valores,
lo que comparado con las dos posibilidades cldsicas permite agilizar ditintas
tareas por medio del llamado paralelismo cudntico, como en (1.2) y (1.3). Sin
embargo es un resultado bien conocido en Mecdnica Cudntica que se pueden
distinguir con certeza solo estados que sean ortogonales entre si. Eso implica
que en un sistema de dimension igual a d, inicamente d estados pueden ser
discriminados, o en el caso del bit cuantico s6lo dos. Pareceria por tanto
que se pierden todas las posibilidades que aparecian al codificar datos en bits
cuanticos, dado que el paralelismo cudntico queda en la practica a un nivel en
el que no puede ser utilizado. Si bien las consecuencias no son tan dramaticas,
es cierto que la no ortogonalidad es un problema de gran importancia en
Informacion Cudntica. Se debe conocer entonces la mejor manera en que la
informacion codificada en estados cuanticos puede ser recuperada de cara a
reducir sus efectos. Es sabido que dado un estado desconocido no es posible
en general distinguirlo con certeza, pero queremos conocer la mejor manera
en la que puede ser estimado.

1.2 Resultados

El trabajo realizado en esta tesis se ha centrado de manera principal en
estudiar el entrelazado en sistemas compuestos de distintas partes, asi como
en la estimacion de estados cudnticos, que son dos de los problemas méds
importantes en Informacion Cuantica. El objetivo de esta seccién es recoger
de manera resumida los principales resultados encontrados.

1.2.1 Entrelazado en sistemas de tres bits cuanticos

El entrelazado es un recurso en Informacion Cudntica, por lo que es im-
prescindible conocer sus propiedades de cara a su aprovechamiento. Como
se ha mencionado anteriormente, se analizan sistemas de diferentes obser-
vadores que comparten un estado en el que hay correlaciones cudnticas (es
decir sin analogo cldsico) entre ellos, y se estudia como varfan estas correla-
ciones al actuar cada parte en su subsistema y comunicarse cldsicamente con
el resto. Esto permite conocer de un modo cualitativo, y también cuanti-
tativo, las propiedades de entrelazado de los distintos estados cuanticos de
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sistemas compuestos. Existen dos situaciones distintas en las que se rea-
liza este analisis: la primera es cuando las distintas partes comparten una
copia del estado cudntico, mientras que la segunda se centra en un régimen
asintotico en el que se tiene un nimero infinito de copias del estado, en un
andlogo del limite termodinamico. Los primeros pasos en ambas direcciones
se dieron para el caso de espacios de dos particulas, tanto para estados puros
como mezcla. Podemos afirmar que las correlaciones cuanticas que se tienen
en estados puros en sistemas de dos observadores estan bien entendidas,
tanto en el limite asintotico como en el caso de una tinica copia, mientras
que para matrices densidad existen todavia varias preguntas fundamentales
que permanecen abiertas.

En esta tesis nos hemos centrado en el estudio de las correlaciones cuanti-
cas en sistemas de tres bits cudanticos que se encuentran en un estado puro,
|U) € C*® C?® C?. No hemos considerado el limite asintGtico, por lo que se
tiene una tnica copia del estado. Un estado genérico de tres bits cudnticos
pertenece a un espacio complejo de dimension ocho, por lo que depende de
dieciséis parametros reales, v si tomamos los estados yva normalizados, este
nimero se reduce a quince. Es sabido que las propiedades de entrelazado
o no locales de un estado puro de tres qubits dependen de seis pariametros
reales (cinco si estdn normalizados), por lo que es importante individuar, a
partir de los dieciséis (quince) pardmetros que se necesitan para especificar
un estado, un conjunto de seis (cinco) que releje toda la informacion acerca
de sus correlaciones cudnticas. En el articulo que se encuentra en el apéndice
A se demuestra que es posible escribir cualquier estado de tres bits cuanticos
en una forma canodnica en la que aparecen seis coeficientes especificando sus
propiedades no locales. De este modo dos estados, en el caso de una copia.
tienen el mismo entrelazado si y sélo si son iguales los coeficientes de sus
dos respectivas descomposiciones. Es la primera parametrizacion completa y
minima de las correlaciones cudnticas de estados puros de tres bits cudnticos
que se ha obtenido. La idea en la que hemos basado la descomposicion es
en buscar la manera de representar el estado en la que toda la informacion
sobre sus propiedades locales es minimizada, de modo que los parametros no
locales son fiacilmente reconocibles.

Siguiendo con esta idea, en el articulo del apéndice B hemos comparado
las maneras minimas de escribir cualquier estado para obtener una repre-
sentacion simple de sus correlaciones cuanticas que facilite posteriores apli-
caciones de ellas. Ademds se ha relacionado la parametrizacion encontrada
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con ofras va existentes que no eran completas o minimas.

Las propiedades de entrelazado en estados puros de tres bits cudnticos
empleza a ser entendidas, sobre todo en el caso de una copia. En el articulo
del apéndice C, extendemos parte de la estructura ya conocida a estados
mezcla. Definimos una division del espacio de matrices densidad de tres
bits cudnticos en términos de conjuntos compactos y convexos que estdan
contenidos el uno en el otro. El esquema que resulta aparece como una gene-
ralizacion natural de varios de los conceptos y resultados ya existentes para
estados puros de tres qubits, y para estados de sistemas de dos particulas.
Ademds permite una traslacion ficil de varias de las técnicas matematicas
que va se han utilizado para el estudio de las propiedades de entrelazado de
las matrices densidad de espacios de dos observadores.

Finalmente, en el articulo del apéndice D hemos llevado a cabo una
aplicacion practica de los resultados encontrados en los trabajos anteriores.
(C"'omo se ha indicado. las descomposiciones encontradas permiten escribir
estados genéricos de tres bis cudnticos en representaciones simples que faci-
litan el estudio de sus correlaciones cuanticas. Nos centramos en el estado
puro de tres bits cuanticos que describe las polarizaciones de los tres fotones
resultantes de la desintegracion del ortopositronio, el estado ligado de un
positron v un electron. Analizamos las correlaciones cuanticas de este estado
para demostrar la imposibilidad de que un modelo clasico refleje los resul-
tados estadisticos que se derivan de ellas. De hecho, aparece un contraste,
en principio experimentalmente medible, entre las predicciones que realiza la
Mecdnica Cuantica para el estado de tres fotones analizado y cualquier teoria
local. Demostramos que la contradiccion que se tiene es mds fuerte que la
que se encontraria para cualquier estado entrelazado de dos bits cudnticos.

1.2.2 Estimacion de estados

El segundo tema que se ha tratado en esta tesis es la estimacion 6ptima de
estados. Dado un estado desconocido, debido a la no ortogonalidad nos es im-
posible distinguirlo con exactitud a no ser que un nimero infinito de copias de
¢l estén a nuestra disposicion. Como es 16gico no es ésta la situacion habitual,
en general tendremos un nimero finito de copias del estado incognita, por lo
que solo podemos aspirar a estimarlo sin garantizar una seguridad completa.
Se debe encontrar entonces la estrategia que en media se comporta mejor, es
decir que maximiza la ganancia de informacion acerca del estado en funcién
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de los recursos, o niimero de copias, que se poseen. Los dos articulos en esta
tesis que consideran problemas de estimacion se encuentran recogidos en los
apéndices E y F. Ambos tratan sélo con estados puros, pero mientras que el
primero se centra en disenar la mejor estrategia para la estimacion del estado
en su totalidad, del conjunto de sus propiedades, el segundo sélo analiza la
mejor manera de poder inferir la cantidad de entrelazado en el caso de un
estado puro de dos bits cuanticos. A continuacion resumimos con mas detalle
los resultados hallados.

En el articulo que se encuentra en el apéndice E buscamos la mejor ma-
nera de estimar un estado puro de dimension arbitraria d. Se utiliza una
funcion fidelidad que mide el grado de bondad de la estrategia de estimacion:
asi la mejor estrategia serd aquella que maximice la fidelidad. Puesto que el
maximo que puede tomar esta funcion ya ha sido calculado, se debe encon-
trar la medida que permite alcanzar este valor. La resolucion del problema
es conocida cuando el estado puro a ser estimado pertenece a un espacio
de dimension dos, es un bit cuantico. En el articulo del apéndice E exten-
demos este resultado para dimension arbitraria, disenamos el método para
maximizar la fidelidad, y como ejemplo damos la contruccion explicita de
la estrategia de estimacion optima para el caso en que se tienen dos copias
de un estado desconocido de dimensién tres. Se observa sin embargo que la
generalizacion es no trivial y que se tienen nuevos elementos que no aparecian
para el caso de qubits.

Finalmente, en el articulo del apéndice F se analiza un problema ligera-
mente distinto: dado un estado desconocido de dos bits cuanticos compartido
por dos observadores o partes, debemos hallar la mejor manera de estimar las
correlaciones cudanticas entre ellos. Se debe notar que en este caso no estamos
interesados en la determinacion del estado en su totalidad, sino sélo en al-
guna de sus propiedades. De hecho un estado de dos qubits, yva normalizado,
depende de siete parametros reales, pero sus propiedades no locales estin
recogidas por un tunico valor, que es el que debe estimarse. Consideramos el
caso mas general en que las dos partes pueden juntar sus sistemas cudnticos y
realizar operaciones globales sobre ellos, pero demostramos que la estrategia
de estimacion optima puede ser llevada a cabo por uno de los observadores
sin necesidad de colaboracion del otro. Esto lleva al interesante resultado de
que las propiedades no locales de un estado de dos bits cudnticos pueden ser
estimadas de manera optima localmente por una de las partes.



1.3 Conclusiones

[En esta tesis hemos analizado algunas de las cuestiones concernientes a dos
de los temas mds importantes en Informacion Cudntica: la estimacion de
estados v las propiedades de entrelazado, o correlaciones cudnticas en estados
de sistemas compuestos.

En el primer caso, los principales resultados hallados son:

e [Hemos disenado la estrategia Optima para la estimacion de estados
puros de dimension arbitraria, generalizando resultados ya existentes.

e Demostramos que en el caso de estados puros de dos bits cudnticos, la
estimacion de su entrelazado, es decir de sus propiedades no locales,
puede realizarse localmente.

En todo este tipo de aplicaciones es importante saber explotar las simetrias
del problema, dado que ello facilita la obtencién de la estrategia optima. Si-
guiendo con esta linea, una de las preguntas que quedan abiertas es encontrar
la mejor manera de estimar estados mezcla de dimension mayor que dos. De
todos modos a un nivel fundamental casi todas las ideas han sido entendidas,
v el problema se reduce en gran parte a un ejercicio de cdlculo.

Para el caso de las correlaciones cudnticas, pensamos que esta tesis ha
contribuido a mejorar la comprension de las propiedades de entrelazado de
sistemas de tres bits cuanticos, y en general a entender las dificultades que
aparecen al intentar extender los resultados ya conocidos para espacios de
dos partes a sistemas de mas observadores. Los siguientes puntos resumen
nuestro trabajo en este tema:

e [emos encontrado una descomposicion de todo estado de tres bits
cuanticos en la cual aparece un conjunto de parametros especificando
de manera completa las propiedades no locales del estado.

e Definimos una estructura para el espacio de matrices densidad de tres
bits cudnticos que extiende muchos de los resultados ya conocidos
v que permite una traslacion sencilla de gran parte de las técnicas
matemadticas que se han venido utilizando hasta ahora.

e Analizamos el estado puro que describe las polarizaciones de los tres
fotones obtenidos en la desintegracion del ortopositronio y mostramos
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que sus correlaciones cuanticas son mds “fuertes” que las de cualquier
estado de dos qubits a la hora de descartar cualquier teoria local, como
por ejemplo la Mecanica Clasica.

Desde un punto de vista tedrico una cuestion interesante que queda por
resolver es el comportamiento de las correlaciones cudnticas de estados puros
de tres partes en el régimen asintético de infinitas copias. Pero quizds todavia
mas importante es encontrar aplicaciones practicas del entrelazado entre mds
de dos particulas. Para el caso de estados mezcla quedan preguntas bésicas
por responder atin en el caso de sistemas de dos observadores; por encima de
todas, conocer, dada una matriz densidad, como detectar si contiene corre-
laciones cudnticas, y en caso afirmativo, si son aprovechables.
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Chapter 2

Quantum Entanglement

2.1 Introduction

Quantum correlations or entanglement among many particles is one of the
most intrinsic properties of Quantum Mechanics. From an historical point
of view, its importance was first related to the fact that there does not exist
any local realistic (LR) theory a la Eintein-Podolsky-Rosen (EPR) [1] be-
ing able to reproduce these correlations. Indeed, all the LR theories satisfy
some inequalities, known as Bell inequalities [2], that are violated by quan-
tum entangled states. This provides us experimental conditions for testing
LR theories against Quantum Mechanics. Many experiments have been per-
formed showing a violation of some Bell inequalities [3], and proving that
no LR theory can reproduce all the correlations observed in Nature. In this
sense, entanglement is crucial for our understanding of Quantum Mechanics.

More recently, it has been realised that entanglement can also be a very
useful resource from a more practical point of view. Contrary to what hap-
pens for Quantum Mechanics, Classical Physics admits a description by
means of a LR model (indeed it is a LR theory). This means that there
are some correlations that do not appear in our classical world, and they are
intrinsically quantum. Can we take profit of this new kind of correlations?
Quantum Information gives an affirmative answer to this question: quantum
teleportation or superdense coding are examples of tasks that use entangle-
ment in order to achieve some results which are not possible in a classical
environment. OF course, these information processings have not classical
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analogue and can not be explained in terms of Classical Information Theory.

In this chapter we review most of the known results concerning quantum
correlations, focusing into the case of two systems, i.e. bipartite entangle-
ment. After giving some definitions, we consider Bell inequalities and their
violation by means of an entangled pure state. Then, we show some of the
applications of entanglement (teleportation and superdense coding), and we
study the differents ways of characterizing it. Although we mainly restric
our analysis to pure states, in the end we will also sketch the mixed-state
case.

2.2 Quantum correlations

Consider a composite quantum system of N parties, or subsystems, each
described by a Hilbert space of dimension d;, i = 1, ..., N. The global Hilberi
space is equal to the tensor pmduct. of all the spaces, H =H| ® - Q@ Hny =
QN H;, with dimension d = [[L, d;. The preparation of the system is given
by a quantum pure state in the whole space |¥) € H.

A pure state is called separable when it can be expressed as the tensor
product of pure states in each party, i.e. |¥) is separable if and only if

|T) = |1) ® |the) ® -+ - @ |Uw), (2.1)

where |¢;) € C%. A state that can not be expressed in this form is non-
separable or entangled. There are no correlations between the subsystems
when the preparation of the whole system is described by a state (2.1).

This definition can be easily extended to density matrices, and a mixed
state, p, is said to be separable when it can be written as a convex combi-
nation of projectors onto product states [4], i.e. there is a decomposition of
the state in terms of separable pure states,

T
Wdl @ - @ [Yh)unl = 2 pil U5)(T3, (2.2)

=1 i=1
where p; > 0, Z,_lp = 1. The state p is a probabilistic mixture of the
product states |W3), j = 1,...,7, so it does not contain any type of entangle-

ment and all its (.one]a.tmns are classical. In fact, p can be prepared by the
parties when they are able to perform locally any quantum operation and
are allowed to use only classical communication.
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2.3 Bell inequalities

As it has been mentioned, a state in a composite system is entangled when
it contains quantum correlations, i.e. the subsystems are correlated in a way
that can not be described by any LR model. But, what is understood by a
local realistic model? And, how can we know that none of these models is
able to reproduce these kind of intrinsically quantum correlations?

The answer for the first question comes from the scheme proposed in [1].
There, it is stated that any complete local realistic theory must not contradict
the following three quite plausible premisses:

e Locality: No change can be produced in one system by acting in another
space-separated system.

o Reality: If our theory predicts the value of a physical quantity with
certainty without disturbing the system, there exists an element of
physical reality corresponding to this quantity.

e Completeness: Every element of physical reality must appear in our
theory.

There is an infinite number of such theories, but, as Bell proved [2], there are
some constraints that they should verify. Let us sketch here his argument.

Consider for instance a composite system of two space-separated spin-3
particles, 4 and B (or Alice and Bob), whose observed statistical results are
described, in terms of Quantum Mechanics, by the singlet state,

) = -—Iﬁuow ~ J10y). (2.3)

Adapting the three assumptions of [1] to this situation, due to the perfect
correlations present in (2.3) and because of locality (the subsystems are space-
separated), any spin component of each party is an objective property of A
and B and, then, it should be reflected by our complete theory. Nevertheless,
Quantum Mechanics can not assign definite values to spin components that
do not commute, so it does not provide a complete description of the state
of the system. The authors of [1] claimed that there should be an alterna-
tive LR description that, without changing the statistical results predicted
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by Quantum Mechanics, which are right, is able to overcome this lack of
completeness.

In this new theory there will be a space, A, of possible states for the whole
system, and the description of the observed statistical results consists on a
probability distribution p(A)dA over this space of states, where A is a set of
coordinates parametrizing it. Each of the parties is able to measure the spin
component of the corresponding particle, where the differents measurements
are specified by a set of parameters n, and n, for A and B (the directions of
the Stern-Gerlach apparatus in this case), the outcome being labelled by +1.
Since the theory is complete, there should exist some functions, a, predicting
the outcome of an experiment specified by n, when the state of the system
is A. No dependence on party B, and in particular on ny, is allowed for this
function because of locality, i.e. the second space-separated system can not
influence the measurement A performs. Simple algebra shows that for four
measurements, a and a’ for party A, and b and ' for party B, it is verified

ab+ab' +a'b — d'b = £2, (2.4)

and then, the corresponding expectation value of these combination of ob-
servables is bounded by

=2 < {ab+ab' +d'b—dl) < 2. (2.5)

This is an example of a Bell inequality found in [5]. Tt is not difficult to prove
that for the singlet state (2.3) there are four directions, i, = (0,0.1). 0/ =
(1,0,0), 7y = (1/3/2.0,=1/v/2) and 7} = (1/v/2,0,-1/v/2), or quantum
observables, specified by 7; - @, where i = a,a’,b,V and & = (0,,0,,0.). such
that (2.5) takes its maximum value, which is equal to 2¢/2. The consequences
resulting from the violation of this Bell inequality are very strong, since no
LR model, following the three EPR premisses, will be able to reproduce this
statistical value. This answers the second question raised at the beginning
of this section.

It is evident that this demonstration depends on the initial state (2.3). but
similar (and even stronger) results have been obtained for higher dymensional
systems of two particles and systems of more than two parties. Entanglement.,
or nonseparability, plays a crucial role in these derivations and indeed it has
been proved that any pure state which is not separable violates some Bell
inequality [6], while product states do not. Since Classical Physics is a LR
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theory, these correlations cannot be observed in our classical world, they are
intrinsically quantum and Quantum Mechanics is said to be nonlocal.

2.4 Entanglement as a resource

In the preceeding section we have shown the importance of entanglement from
a very fundamental point of view: entangled states contain some kind of cor-
relations that do not have analogue in Classical Physics, since the latter is a
LR theory. One may wonder whether these intrinsically quantum correlations
are useful, whether it is possible to find some applications taking advantage
of them. Most of the recent quantum information processings are based on
this idea: they use this quantum feature as a resource for accomplishing
some tasks that are not possible in Classical Information Theory. Indeed,
entanglement plays a key role in many quantum information applications,
such as; for instance, quantum cryptography [7], quantum error-correction
8], superdense coding [9] and quantum teleportation [10]. In this section, we
review superdense coding and teleportation, in order to illustrate with these
two examples the usefulness of entangled states.

2.4.1 Superdense coding

Consider two observers A and B, Alice and Bob, who share an entangled
state,

B+ = %unn ® 0)5 + [1)4 ® [1)5), (2.6)

where each of the parties can manipulate only one of the two subsystems. As
we will see, the singlet state and |®) are examples of a maximally entangled
state of two spin-% particles, or qubits [11]. Alice wants to send two bits of
classical information to Bob. She can choose a unitary transformation, U;,
from the set {I,0,,i0,,0.} and apply it to her qubit. Then, she sends her
particle or qubit to Bob, who is now able to manipulate the two-qubit state
|®,) = U; @ T|®*). He doesn’t know the unitary transformation performed
by Alice, but, since the four states |®;), with i = 1,...,4, are orthogonal, he
can recover it with just a Von Neumann measurement in the basis given by



the four states,

@) = %(M}U)Hll)):f@f@*}
®-) = —lﬁunm—nl))wz@rwﬂ
o) = \/L§(|m>+|m))=%®”¢,+>
U) = —=(|01) = [10) = ic, @ T |®*). (2.7)

2

S

This is the so-called Bell basis. At the end of this protocol, two bits of
classical information have been transmitted from Alice to Bob by sending
one of the qubits of a maximally entangled state of two qubits, initially
shared by sender and receiver. This quantum information process is known
as superdense coding.

2.4.2 Quantum teleportation

Quantum teleportation is another quantum information application that uses
similar techniques. In this case Alice wants to transmit a spin-% particle to
Bob, but the qubit cannot be sent since only classical communication can be
performed faithfully. If Alice knows the state of her particle, the direction of
its Bloch vector, she can use a very large string of classical bits for codifying
it, and send it to Bob, who prepares a quantum system according to the
received information. Note that the state in Bob’s side can not be equal to
Alice’s unless an infinite number of classical bits are transmitted. However
the situation is still worse if Alice doesn’t know her state! Of course, she
can measure it and send classically to Bob the partial information she has
obtained. However, this solution is approximate, and the initial state is
destroyed after the measurement. Quantum teleportation solves this problem
exploiting the nonlocality of entanglement. If we provide the two observers
with a maximally entangled state of two qubits (2.6), Alice is able to send
all the information about her unknown qubit to Bob, without sending the
particle!

A maximally entangled state (2.6) is shared by the two parties. Alice has
an unknown qubit, in state [¢) = a|0) + 3[1) € C?, that she wants to send
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to Bob. The global state is

9) = [4) @ 5(100) + 11). (2.8)

where Alice can manipulate the first two qubits, and the third one is in Bob’s
hands. Tt is easy to see that this state can be written as

) = 5 (1) (=al0) - 511)) + [¥*)(~al0) + 511))
+|®7) (al1) + BI0)) + () (a]1) — B0))) - (2.9)

Alice now performs a measurement in the Bell basis (2.7) on her two qubits.
Due to the correlations of the entangled state, Bob’s state is projected, with
equal probability, into one of the following four states

—a|0) — B|1) = —|¢)
—a|0) + B|1) = —o.|th)
all) + Bl0) = ox|¥)
a|l) — Bl0) = —igy|¥). (2.10)

Alice sends the result of her measurement to Bob, by means of two bits of
classical information, and Bob, after receiving them, can apply the corre-
sponding unitary transformation in order to recover [1)). Note that [1) is
in Bob’s hands but he doesn’t know the state. However, all the information
about the particle has been transferred from Alice to Bob just using two bits
ol classical communication and the pre-shared maximally entangled state.

Teleportation is one of the most spectacular quantum information appli-
cations that use entanglement as a resource. After completing the protocol,
the whole state is separable respect the partition A— B, i.e. the entanglement
has been consumed. Moreover, it does not allow for superluminal signaling,
since Bob can not infer any information about the unknown Alice’s qubit
until he receives the two bits of classical information. Finally, note that no
trace of the unknown particle remains in Alice’s hands, and therefore, there
isn't any contradiction with the no-cloning theorem [12].



2.5 LOCC: the set of local operations and
classical communication

Entanglement are the quantum correlations that appear in composite quan-
tum systems. Given a state, we can always increase the amount of quantum
correlations between the parties performing some global operation over the
state. As an example of entangling operations in C* ® C?, take the unitary
transformation that changes the product basis |ij), where i = 0.1 (j = 0.1)
is an orthonormal basis in A (B). into the Bell basis (2.7), or a measurement
in this basis, known as Bell measurement. Nevertheless, this is not the usual
situation in most of the quantum information applications, where the parties
are in space-separated locations and can not perform joint operations on the
global system. Usually, they are only able to make any quantum operation
on their local system and to communicate classically with the rest of the par-
ties. It is then very useful to study how quantum states of composite systems
change their entanglement properties under this restricted set of quantum
operations, i.e. under local operations assisted with classical communication
(LOCC). Note that entanglement is a resource that can not increase under
LOCC, since classical communication just increases the amount of classical
correlations among the subsystems, while local (quantum) operations do not
correlate the parties at all. Thus, our seenario for the study of entanglement
will consist on composite systems where the parties are allowed to manip-
ulate arbitrarily their own system and to broadcast the implemented local
operation.’

2.6 Bipartite entanglement

In the preceding sections we have defined what entangled states are and we
have shown the utility of these states, either from a fundamental point of view
or in practical quantum information applications. Although entangled states
can be shared by any number of parties, our reasonings above were mainly
restricted to two-party systems. In fact, bipartite pure-state entanglement
is rather well-understood, and in this section we review some of the most

'A detailed mathematical formulation of quantum operations is given in [13], while see
[14] for the restricted case of LOCC.
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important results. In the next capter three-party, and in particular three-
qubit, entanglement will be analyzed.

2.6.1 Schmidt decomposition

The aim of this section is to study the quantum correlations that appear
between two subsystems, A and B. The Hilbert space of the whole system
is given by the tensor product of the two Hilbert spaces associated with
each subsystem H 4 and H,, with dimension d4 and dg. A pure state of the
composite system corresponds to a vector [¥) € C% ® C%. We can build an
orthonormal basis for the global system from two orthonornormal bases in
each subsystem, and any pure state, |¥), can be expressed in this basis as

da dp

[P =" tilid), (2.11)
i=1 j=1
where {[1),...,|da)} ({[1),...,|dg)}) is the basis for A (B) and ¢;; are the
coordinates of the vector in the product basis |ij). Define the d 4 x dg matrix
T with elements (T);; = t;;.

Theorem 2.1 (Schmidt decomposition) [15] Suppose a normalized state
of a composite system, | V) € C4 @C® , whose coordinates in a product basis,
1), are given by the matriz T. There exists a choice of the local bases such
that T has only diagonal terms, and thus, the state written i this basis is

W) = Z o |it), (2.12)

where v < min(da, dg) and o; are positive numbers satisfying ¥, oF = 1.

Proof: Starting from (2.11), the effect of a change of basis in the first (sec-
ond) subsystem can be represented by left-multiplying (right-multiplying)
the matrix of coordinates, T', by a unitary matrix Uy (Ug). Tt is a well-
known result that it is always possible to diagonalize any matrix by means
of two unitary transformations (singular value decomposition),

Ty =UaTUs, (2.13)

where T, has only positive diagonal terms. O
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Equation (2.12) is the Schmidt decomposition of state |¥), o, are its
Schmidt coefficients and r, the number of nonvanishing coefficients, is the
Schmidt number. This decomposition is unique. The proof of the theorem
provides us the method to be applied in order to build the decomposition.
The change of local bases are given by the eigenvectors of the matrices TTT
and TTT, while the Schmidt coefficients are the square roots of the eigenvalues
of these self-adjoint matrices (which are equal). In a similar way, defining
pa = trg(|U)(P]) and pg = tra(|P)(P]), the spectrum of these density
matrices gives us the Schmidt decomposition of the initial state. Note that
the eigenvalues of py and pg are equal and correspond to the square of the
Schmidt coefficients.

2.6.2 Local unitary transformations

The study of the entanglement properties of quantum states is related to
the way they transform under the set of local operations and classical com-
munication. Consider two states, |U),|[W¥,) € C? ® C?. We can take the
same dimension in each subsystem without loosing generality because the
Schmidt number satisfies r < min(d, dg) = d. These states have the same
amount of quantum correlations when they can be transformed one into an-
other by LOCC with probability equal to one. Then, they are equivalent in
terms of quantum nonlocality, |[¥,) ~ |[Wy). This condition corresponds to
see whether the two states can be connected by local unitary transformations
[14], i.e. two states have the same amount of entanglement when they can be
transformed reversibly by local unitaries, LU. The Schmidt decomposition
is a very useful tool for checking this condition. Indeed, denoting by {a}"}
the Schmidt coefficients of the state |¥;), j = 1,2, we have that |¥;) ~ |T,)
if and only if n{” = r..:v.EgJ, i = 1....,d. Thus, the Schmidt coefficients can
be thought of as the coordinates in the space of bipartite entanglement, and
at most d numbers, the norm being included, are enough for specifying the
nonlocal properties of a quantum state belonging to C% & C.

Another approach to the same problem is to look for polynomial combina-
tions of the coordinates, #;; in (2.11), that are invariant under local unitary
transformations [16, 17]. We can parametrize the space of entanglement
properties in an alternative way in terms of, at least, d of these invariant
quantities that are linearly independent. Tt can be proved that the algebra
of polynomial invariants of two-particle states is generated by the traces of
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since the local states have the same eigenvalues). Note that traces of higher
powers, ¢ > d, of py (pg) can be written in terms of this set of traces because
of the Cayley-Hamilton theorem. It is easy to relate these functions to the
Schmidt coefficients.

powers of the local mixed state, tr(pY), with i = 1,...,d [17] (or tr(p}),

2.6.3 LOCC transformations in the single-copy case

Local unitary transformations are the type of LOCC that connect states
with the same entanglement properties. However, it is possible to relax this
condition and, starting from a single copy of a state |¥) of the composite
system, try to determine those states that we can reach using LOCC, either
in a deterministic way or with some nonvanishing probability.

In the first case, we look for those states, |®), into which |¥) can be
converted by LOCC with probability equal to one, denoted by |¥V) = |®).
When this transformation is possible, the state |¥) is at least as useful as
|®P) for any task involving quantum correlations, so we will express this fact
in terms of entanglement as |®) < |¥). The necessary and sufficient con-
ditions for these deterministic transformations were given by Nielsen [18],
pointing out a very interesting connection between entanglement and the
mathematical theory of majorization.

Theorem 2.2 (Nielsen) [18] Consider two states of a composite system,
W), |®) € C1@CT. Denote by N¥ = (AY, ..., \Y) the vector with the square of
the Schmidt coefficients of |¥) taken in decreasing order, i.e. A} = ()2, Vi
and AN} > Xy > ... > \Y, and construct the analogous A for |®). The state
|&) can be transformed into |®) by LOCC in a deterministic way if and only
if A is majorized by N* (denoted by XY < X*), which means that for each k

k k
DI HESD PP+ (2.14)
=1 t=1

with equality for k = d.
Proof: See [18]. O

Note that this theorem provides a partial ordering in the space of en-
tangled states, although we can find states such that neither |¥) = |®)
nor |®) = |W¥) are possible. It should be emphasized that Nielsen proves
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the theorem building the LOCC protocol, the sequence of operations, that
achieves the deterministic transformation.

For the second situation, we look for probabilistic conversion. Nielsen's
theorem gives the conditions for transformations with probability one, but if
this is not possible, we may wonder whether the states can be connected with
some nonvanishing probability, [U) — |®), and if yes, what the maximum
of this probability, P(¥ — @), is. The answer to these questions were given
by Vidal in [19]; his result is summarized in the following theorem:

Theorem 2.3 (Vidal) [19] Take two states of a composite system, |¥), |P) €
C'®C* and define the vectors of square of the Schmidt coefficients as above.
The mazimum probability for a conversion |¥) — |®) by LOCC, P(¥ —
d), is

d W
PV — ) = min_:;ff% (2.15)
le]1,d] 21.:[ ,\i
Proof: See [19]. O
Again the explicit protocol for this conversion was given with the proof
of the theorem. Let us mention here that P(¥ — ®) = 0 when the Schmidt
number of the first state is lower than that of the second.?

2.6.4 Asymptotic regime

The tranformations between entangled states under local operations and clas-
sical communication are also studied in the case in which an infinite number
of copies of the entangled states are given. From a practical point of view,
this means that the parties are able to perform arbitrary operations in very
large (infinite dimensional) Hilbert spaces.

It was proved in [21] that the asymptotic conversion of N copies of the
state |T) into an optimal number of copies N’ of |®) can be done in a re-
versible way when N — oc, and the optimal ratio of the transformation
is

N E(|W))

lim — = ———= (2.16)

N=oo N E(|®)) |
*There is another way of transforming states, by means of the so-called entanglement
assisted local operations and classical communication (ELOCC), where entangled states
are used as catalyst (see [20]).




where E(|¥)) is the entropy of entanglement defined as E(|¥)) = S(pa) =
S(trg(|P)(¥])), and S(p) = —tr(plog p) is the usual Von Neumann entropy
of mixed states, where the log is taken in basis two.

This result is very important since it follows that in the asymptotic limit
entangled states, satisfying (2.16), are interconvertible in a reversible way, i.e.
there is only one kind of bipartite entanglement. The entropy of entanglement
is the measure that quantifies it, in the so-called ebits [22]. Note that this
function, E(|W¥)), depends only on the spectrum of the local density matrix,
pa or pg, i.e. on the Schmidt coefficients of the entangled state, |¥). Tt is
equal to zero for separable states, and its maximum is logd (where d is the
dimension of the local spaces). This value is achievable if and only if the
local states are the totally mixed state, i.e. if A} = 1/d, Vi, which gives the
maximally entangled state in C? ® C%. For the case of qubits, we have found
above some examples of maximally entangled states (2.7), and their amount
of entanglement is equal to one ebit. Furthermore, the authors of [21] gave
the LOCC protocol for the reversible asymptotic conversions.

2.6.5 Mixed states

Entanglement in bipartite systems is rather well understood for pure states,
but this is not the case for density matrices. Indeed, effective necessary
and sufficient conditions for a mixed state p to be separable are not known,
apart from the cases C* ® C* and C*> ® C* (see [23]). Thus, in general we are
not able to detect whether a mixed state contains quantum correlations and
therefore the problem of separability remains open. Significant steps in this
direction have been made, mainly by the Horodecki family, the IBM group,
and the Hannover and Innsbruck groups, using positive maps which are not
completely positive and entanglement witnesses. A related problem, which is
also unsolved, is whether the entanglement in a mixed state can be distilled or
transformed into some amount of maximally entangled pure states, which are
the states useful for most of the quantum information applications. Moreover,
from a fundamental point of view the picture is far from being clear, and it
is not known which entangled mixed states do violate Bell inequalities. For
an introduction on these and other related problems see [24].



2.7 Conclusions

In this chapter we have reviewed part of the present knowledge on quantum
correlations, mainly on bipartite pure-state entanglement. The following
points summaryze the most important results:

e A pure state in an N-party system, |¥) e Ch @ ---® C* , is separable
when it can be written as the tensor product of pure states in each
subsystem.

e A mixed state is separable if and only if it can be expressed as a convex
sum of projectors onto product pure states.

e Quantum states that are not separable are entangled, i.e. they have
quantum correlations.

e Entanglement or quantum correlations can not be described by local
realistic theories and it is a powerful resource for many quantum infor-
mation tasks.

e The set of local operations and classical communication, LOCC, is a
very useful tool for the study of the entanglement properties of quantum
states. All the information concerning quantum correlations of pure
states is encoded in the Schmidt coefficients.

e Single-copy case: two states have the same amount of entanglement
when they can be connected by local unitary transformations, i.e. their
Schmidt coefficients are equal. Necessary and sufficient conditions, in
terms of these coefficients, are known for deterministic and probabilistic
conversions between states by LOCC,

e Asymptotic regime: there is only one kind of bipartite pure-state en-
tanglement, that is quantified by the entropy of entanglement. In this
limit, entangled states can be transformed in a reversible way according
to this measure.

e There are still many open questions for mixed states.



Chapter 3

Three-qubit entanglement

3.1 Introduction

In the previous chapter we have shown that the entanglement properties of
pure states of bipartite systems are quite well understood. We know how
the quantum correlations of these states change under local operations and
classical communication, either in the single-copy case or in the asymptotic
regime. In this chapter we give an introduction for the articles:

e Generalized Schmidt decomposition and classification of three-quantum-
bit states
A. Acin, A. Andrianov, L. Costa, E. Jané, J. I. Latorre and R. Tarrach
Physical Review Letters 85, 1560 (2000), quant-ph/0003050.
See appendix A.

e Three-qubit pure-state canonical forms
A. Acin. A. Andrianov, E. Jané and R. Tarrach
Submitted to Journal of Physics A, special issue on Quantum Informa-
tion, quant-ph/0009107.
See appendix B.

e (lassification of mixed three-qubit states
A. Acin, D. Bruss, M. Lewenstein and A. Sanpera
Submitted to Physical Review Letters, quant-ph/0103025.
See appendix C.
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e Three-party entanglement from positronium
A. Acin, J. I. Latorre and P. Pascual
Physical Review A 63, 042107 (2001), quant-ph/0007080.
See appendix D.

All these articles are about entanglement in three-qubit systems; the first two
ones deal with pure states, while the third generalizes to the mixed-state case
the structure for pure states. The last shows an application of the results to a
concrete example by studying the quantum correlations of the three-photon
polarization state coming from orthopositronium decay.

In the pioneering work of Ref. [25], it was shown that entangled states
of three particles exhibit new features, compared to the bipartite case, by
analyzing the correlations appearing in the so-called Greenberger-Horne-
Zeilinger (GHZ) state,

(GHZ) = %unuo) +111)). (3.1)

This state can be interpreted in many senses as the maximally entangled
state of three spin-3 particles [26].

The aim of this chapter is to try to understand the way in which known
results for bipartite systems can be extended to systems of three spin% par-
ticles, and to overcome the difficulties that appear due to the fact that, as
we have already mentioned, this generalization is not trivial. This gives
us insight into the characterization of three-party entanglement and how it
compares to the bipartite case.

3.2 Reversible transformations under LOCC

Two quantum states have the same entanglement, are equivalent as fas as
their nonlocal properties is concerned, when they can be transformed one
into another in a deterministic way by local operations and classical commu-
nication. This statement is clearly independent of the dimension of the local
systems or the number of parties. We have seen in the previous chapter that,
for the bipartite case, this implies that the two states must be connected by
local unitary transformations. In [27] it was proved that the same conclusion
is valid for any composite system, i.e. given |¥,), |U,) € €U @ ---C™ | these
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two states are equivalent in terms of entanglement, |¥,) ~ |¥,), if and only
if there exist N unitary transformations such that |¥,) = U, ® - - - @ Uy |Wy).
Thus, we would like to know how pure states are related under these opera-
tions, the tensor product of local unitaries (or change of the local bases), in
order to individuate a set of canonical entanglement coordinates specifying
all the nonlocal properties of states of composite systems. For the bipar-
tite case two different approaches are useful (see 2.6.2): the existence of the
Schmidt decomposition allows to write any pure state of a two-party system,
C?r @ C* in a canonical form where all the information about its nonlocal
properties is encoded in the Schmidt coefficients. On the other hand, we
can also obtain an alternative set of entanglement parameters by means of
d = min(dy,dg) polynomial combinations of the coordinates ;; in a product
basis (see Eq. (2.11)), which are linearly independent and invariant under
local unitaries.

3.2.1 Polynomial invariants

The first steps into the characterization of multi-particle pure-state entangle-
ment in terms of equivalences under local unitary transformations were given
in [16]. The action of a tensor product of N unitaries, U; ®- - -®@Uy, describes
orbits in the whole Hilbert space, C" @ --- @ C all the states in an orbit
have the same quantum correlations. Every orbit, then, gives a point in the
space of entanglement properties, and it would be useful to know how many
parameters are needed for specifving a unique orbit, which is equivalent to
determine the dimension of the space of entanglement properties.

A first estimation of this number is obtained by the following counting of
parameters. A pure state, |¥), which is not normalized, depends on 2d real
numbers' (d complex numbers), where d is the dimension of the whole Hilbert
space, d = [[Y, d;. The tensor product of N local unitaries is an element of
the group U(d; ) x---xU(dn), which reduces to U(1)xSU(d;) x---xSU(dn),
and it depends at most on 14+ N (d? — 1) real numbers. A lower bound,
then, for the number of real numbers needed for specifying an orbit, or a
point in the space of entanglement properties, is 2 HiV:, di—(1+ E:\:l(d;“’ -
1)). For the case of an N-qubit system (d; = 2, Vi), this expression reads

'Note that if we consider normalized states and the global phase is removed. the state
depends on 2d — 2 real numbers.



2N+l — (3N +1). The authors of [16] gave also the procedure to be applied in
order to calculate exactly the number of nonlocal parameters of a state, and
proved that for the case of three-qubits systems, the counting of parameters is
correct, i.e. the space of entanglement properties for pure three-qubit states
is six-dimensional. Let us analyze further this case.

For pure three-qubit states, Sudbery [17] found six quantities invariant
under local unitary transformations which are linearly independent. Starting
from a pure three-qubit state, |¥) € C* ® C* ® C?, shared by three parties,
A, B and C, and writing it in a product orthonormal basis,

W) = tiilijk), (3.2)

ik

where i), i = 0,1, define an orthonormal basis in A, and the same for |j) and
|k) for B and ', we can construct polynomial combinations of the coordi-
nates, £z, invariant under local unitary transformations. A trivial example
of these polynomial invariants is the norm. Indeed in [17] the six linearly
independent invariants of minor degree were presented, although it was not
proved whether they were enough to completely specify a pure three-qubit
state, up to definition of the local bases. It was known that the space of
entanglement parameters for these states is six-dimensional, but this only
guarantees that Sudbery’s six polynomial invariants, that will be denoted by
{I;},i=0,...5, where I is the norm, are able to identify a point in this
space, up to some discrete symmetries. This means that it might be the case
that the set of polynomial quantities {I;} is not complete, i.e. more polyno-
mial invariants are needed, although most of the information they provide is
redundant. The explicit form of these invariants is:

<L =tr(py) <1
<L =tr(py) <1

<L=tr(ph) <1

B e ] e S S G

< Iy = tr(pa ® pppap) < 1

1
)< [ = |TF e..i.-,?<—.
0 < I = [Hdet (ti0)|” < .



where Hdet(#;;;) is the hyperdeterminant of the three-index tensor ;;; (see
appendix A or B for more details).

3.2.2 Generalization of the Schmidt decomposition

The Schmidt decomposition has been proved very fruitful for the determina-
tion of the nonlocal properties of pure states of two-particle systems. All the
information about entanglement of bipartite pure states is encoded in the
Schmidt coefficients. However it was soon realised that a trivial generaliza-
tion of this decomposition for systems of N parties with N > 2 does not exist
(see for instance [28]). Indeed, and focusing again into the three-qubit case,
it is the lack of a Schmidt-like canonical decomposition that makes hard to
relate the value of the polynomial invariants seen above with a specific pure
three-qubit state.

In the article of appendix A, we generalize the Schmidt decomposition to
three-qubit pure states. The following idea guides the generalization: starting
from a generic state as (3.2), we look for the local bases that make zero the
maximum number of the coordinates f;;, i.e. we search the expression of
the state with the minimal number of terms built from local orthonormal
bases. By a simple counting of parameters we can prove that, in general, not
more than three of the eight coefficientss can be zero. Indeed this is the case,
since there always exist local orthonormal bases such as the state (3.2) can
be written

1) = Ao|000) + Are™[100) + Ap|101) + Ag|110) + Ag[111), (3.4)

where A; >0,i=0,...,4, 3, M =1, and 0 < ¢ < 7. For any state, there is
a unique decomposition of this form.? The existence of this decomposition
allows us to check when two states of three qubits, |¥,),|U,), can be con-
verted by local unitary transformations, since [W,) ~ |W,) if and only if the
parameters appearing in the generalized Schmidt decompositions of the two
states are equal, ie. A = A i =0, .. 4 and o) = @ Thus, these
parameters are thought of as the coordinates for the six-dimensional space
of entanglement properties. Similar decompositions were also found in [29].

“Actually this is true except for a set of states, of measure zero, where there are two
possible decomposition with ¢ = 0,7 (see appendices A and B for more details).



A new set, {J;},i = 1,...,5, of five polynomial combinations of the
coordinates f;j, invariant under local unitaries, is introduced (apart from
the norm). This new set is related to Sudbery’s invariants,

JIE%(}—FI]_*IQ—L;—Q }—5)

1
h=Z(0-L+hL-h- 2,/Ts)

Js==-(1-5L -+ 13—2I5)

—

4
J;] = \/E
1
Jo= (3= 3N = 3L — Iy + 41, - 2,/T5), (3.5)

but the expression for the new functions in terms of the coefficients of (3.4)
is easier. As it is shown in the appendix B, using the generalized Schmidt
decomposition, we are able to see that these, or Sudbery’s, invariants, are
not enough to specify a unique normalized pure three-qubit state up to local
unitary transformations. In fact, they can not discriminate between |¥) or
|W*), which usually do not belong to the same orbit. A new, more compli-
cate, complex polynomial invariant, I, introduced by Grassl [30], solves the
problem, and the set {.J;, Iy}, i = 1,...,5 (or alternatively {I;}, i =1,...,0),
plus the norm, is complete, it provides us all the information about the non-
local properties of a pure three-qubit state. Indeed, given the values of these
invariants, it is possible to obtain all the parameters of (3.4), i.e. to specify
a unique state, up to local unitaries, or equivalently, a canonical point in
the corresponding orbit. Furthermore, a set of conditions written in term of
these invariants can be used in order to detect and compute, given a state,
its minimal decomposition in terms of product states built form orthonormal
bases.

It has been also analyzed whether this generalization of the bipartite
Schmidt decomposition can be applied to higher dimensional systems. Al-
though there have been some results in this direction (see the appendix B
and [29]), it is not known how to determine a unique decomposition for any
state, what would allow to see whether two states are connected by local
unitary transformations. Moreover, let us mention that the number of en-
tanglement parameters grows exponentially with the dimension of the whole
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Hilbert space [16]. For higher dimensional systems, almost all the informa-
tion is nonlocal, and the usefulness of these kind of decompositions seems to
be small.

Another approach to the problem of generalizing the Schmidt decomposi-
tion is the following: given a state |¥) € C*®C?®C?, we look for its minimal
decomposition in term of product states, not necessarily orthogonal. In this
case, a counting of parameters tells us that at least two product states are
needed for specifying a pure three-qubit state. As it is shown in appendix A,
this is true for almost every state, i.e. generically any state can be expressed
as

|T) = a|000) + Be|abe), (3.6)

where «v and /3 are positive numbers, (0|a) can be different from zero, and
the same holds for the other two parties. However there is a set of states for
which this decomposition is not possible, its minimal decomposition needs
three product states. This set corresponds to those pure three-qubit states,
apart from separable and biseparable, such that its tangle, 7(|¥)), a function
introduced in [31], is zero. The same result was independently obtained by
the Innsbruck group [32].

3.3 The single-copy case

The next step in the analysis of the entanglement properties of pure three-
qubit states is to enquire into the way these states are connected by local
operations and classical communication, in the single-copy case. The answer
to this question was given in [32]. There it was proved that, apart from
product and biseparable (A — BC, B — AC and C' — AB) states, there are
two inequivalent kinds of three-qubit entanglement, the GHZ-type and the
W-type. Separable, biseparable and W-type states are of measure zero in
the whole space C* ® C?> ® C2. Separable and biseparable states do not have
truly three-qubit entanglement, and they can be detected since not all their
local density matrices are of full rank. The states of GHZ-type are those that
can be expressed as a sum of two product states (3.6), like the GHZ state
(3.1), while the number of product states needed for W-type states is three,
i.e. they are those states that have zero tangle (but with local mixed states
of full rank).
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Given a pure three-qubit state, |¥), any state resulting from a sequence
of local operations on it can be written as My ® Mg @ Mc|¥), where M, i =
A, B, C, is the matrix representing the operations performed by party i. This
leads to the simple, but powerful, observation that the minimal number of
product states needed for specifying a state, that will be denoted by n(|\W¥)),
can not increase under LOCC; actually it is conserved unless the matrices
M; are not invertible. Consider an hypothetic LOCC protocol tranforming
a W-state into a GHZ-state, or viceversa. Since the local density matrices
of both states have full rank, the local operations connecting them must be
invertible. However this transformation is not possible since it would imply
a change in n(|¥)), which is not allowed if we consider only local invertible
matrices. Two separated classes of pure three-qubit entangled states emerge:
a state in one class can not be converted by LOCC into any state in the other.
Note that in this case, the second approach for the generalization of the
Schmidt decomposition has proved to be more useful. While decomposition
(3.4) tells us if two pure three-qubit states have the same entanglement, the
decomposition (3.6) discriminates between GHZ- and W-type states. The
tangle is a useful tool for this distinction too. All the states that, being not
product or biseparable, have n(|¥)) = 2, or 7 # 0, can be transformed by
LOCC into the GHZ state, which is the state of maximum tangle. No GHZ
state can be distilled, in the single-copy case, from a W-type state.

3.4 Entanglement in mixed three-qubit states

Entanglement features of pure three-qubit states begin to be understood,
in the single-copy case.” We know how to determine when two states are
equivalent in terms of nonlocality. Apart from separable and biseparable,
two inequivalent kinds of truly three-qubit entanglement have appeared, two
sets of states that cannot be connected by LOCC, although it is important
to take into account that the set of W-type states is of measure zero in
C*RC*®C2

The aim of the article in appendix C is to generalize part of the known
structure for pure states to mixed three-qubit states. Given a mixed state of
three qubits, p, it would be very useful to know what kinds of entanglement it

3The picture is far from being clear in the asymptotic regime, but we do not analyze
this situation.



contains. This would also give us necessary conditions for conversions under
LOCC. In this sense, it is not difficult to see that, despite the fact that a pure
GHZ-type state cannot be exactly transformed into a pure W-type state, we
can go as close to it as desired. Thus, an approximated conversion is possible,
the higher the fidelity of the approximation, the smaller the probability of
success. This approximate transformation however is not allowed in the other
direction, i.e. generically, starting from a W-type state, it is not possible to
obtain by LOCC a state arbitrarily close to a given GHZ-type state.

In order to extend some of these ideas to the case of density matrices,
we define the following classification reflecting the entanglement properties
of mixed three-qubit states:

e the class S of separable states, i.e. those that can be expressed as a
convex sum of projectors onto product vectors;

e the class B of biseparable states, i.e. those that can be expressed as a
convex sum of projectors onto product and bipartite entangled vectors
(A-BC, B-AC and C-AB);

e the class W of W-states, i.e. those that can be expressed as a convex
sum of projectors onto product, biseparable and W-type vectors;

o the class GHZ of GHZ-states, i.e. the set of all physical states.

All these sets are convex and compact. Separable states do not have quantum
correlations, while no truly three-qubit entanglement is required for states
in B. The states in W\ B have W-type three-qubit entanglement, while all
the kinds of entanglement appear for the states in GHZ \ W. This picture
resembles somehow the classification of mixed bipartite states according to
their Schmit number [33].

Using techniques already known for bipartite systems, we build some op-
erators, called tripartite entanglement witnesses, that are useful for detecting
the position of a state in the classification. We are able to prove that the set
7\ B is not of measure zero and we conjecture that bound entangled states of
three qubits with positive partial transpose respect all the bipartite splittings
are not in GHZ \ W, that is, they do not have GHZ-like correlations.
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3.5 An application of the results: quantum
correlations in orthopositronium decay

In this section we give an introduction for the article in appendix D. In this
work we take profit of the mathematical techniques developed for pure three-
qubit states to analyze the quantum correlations of the state resulting from
the disintegration of orthopositronium into three photons.

The conflict between local realistic theories and Quantum Mechanics be-
comes stronger when the statistical predictions of some states of three spin-=
particles are studied, in particular for the GHZ state (3.1) [25, 26]. Thus.
it would be very interesting to find a physical realization of these GHZ-like
correlations. We consider particle decays since they seem to be a natural
source of entangled states. In fact, there have been some recent proposals
for testing Bell inequalities in the decay of the ®-meson into kaons, which
are massive particles [34]. Tn our case, we choose positronium, a bound state
of an electron and a positron. Depending on its total spin, it can decay
into two or three photons; for spin one (zero) we have the orthopositronium
(parapositronium) that decays into three (two) photons. Since the tangle of
pure three-qubit states is somehow related to the amount of GHZ-like corre-
lations, we look for the experimental configuration maximizing this function.
The polarization pure state resulting from this decay is

|Wop) = % (|001) +|110) + |010) + [101) 4 |011) + |100)) . (3.7)
i

The Schmidt-like decompositions introduced in the articles of appendices

A and B allow us to write this state in simpler forms that make easier the
study of its quantum correlations. We prove that this state shows a con-
tradiction with all the LR theories, since it violates the Mermin inequality
of [35]. Furthermore, we demostrate that the conflict between the quantum
statistical predictions for the state (3.7) and any LR model is stronger, in the
sense of Peres [36], than the obtained for any entangled state of two spin-+
particles. d
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3.6 Conclusions

The analysis of the entanglement properties of three-qubit states, either pure
or mixed, has been the motivation of the four articles included in appendices
A, B, C and D. We have not considered the asymptotic regime, where there
is an infinite number of copies of the state, so we have restricted ourselves to
the single-copy case. The main results are:

e We have found a canonical decomposition for all pure states |W) €
C?®C?®C?%, generalizing many of the features of the bipartite Schmidt
decomposition. All the information about the nonlocal properties of the
state are encoded in the coefficients appearing in this decomposition.
In this sense, they are the entanglement coordinates of the state. In
particular, using this information, we can see if two states have the
same amount of entanglement, i.e. if they can be converted one into
another by local unitary transformations.

e We have determined a complete set of polynomial invariants that can
specify, in an alternative way, a pure state, up to change of the local
bases. The relation between these invariants and the explicit form of
the state has been also found.

e We have obtained the minimal decomposition of a pure three-qubit
state in terms of product states, and in terms of product states built
from orthonormal local bases.

e We have extended the classification of pure three-qubit states given
in [32] to the mixed-state case. It is proved that, contrary to what
happens for pure states, the defined set of mixed states with W-type
entanglement is not of measure zero in the whole space of states. We
conjecture that bound entangled states of three qubits with positive
partial trasposition do not contain GHZ-like correlations.

e Using these techniques, the quantum correlations of the polarization
state resulting from orthopositronium decay into three photons are an-
alyzed. We prove that this state allows, in principle, for a statistical
dismissal of local realistic theories stronger than for any entangled state
of two spin-% particles.



Chapter 4

Quantum state estimation

4.1 Introduction

This chapter is devoted to another important subject in Quantum Informa-
tion Theory: the estimation of quantum states. It gives an introduction to
the following two articles:

e Optimal generalized quantum measurements for arbitrary spin systems
A. Acin, J. I. Latorre and P. Pascual
Physical Review A 61, 22113 (2000), quant-ph/9904056.
See appendix E.

e Optimal estimation of two-qubit pure-state entanglement
A. Acin, R. Tarrach and G. Vidal
Physical Review A 61, 62307 (2000), quant-ph/9911008.
See appendix F.

In all the quantum information processings, data are encoded in quan-
tum states. It is natural to look for the best way in which they can be
recovered from these states, i.e. how the information in a state can be de-
coded. The problem is not trivial, as it is reflected by the analysis of the
following example: an unknown state, chosen from a set of two states that are
not orthogonal, can not be perfectly determined unless we have an infinite
number of copies of it. However, this is not the typical situation and, usually,
we deal with a finite number of copies of the unknown state, which has been
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chosen from a set of infinite alternatives. In this case, the estimation pro-
cedure that behaves better on average must be obtained. First. however, it
should be defined in a quite more precise way what “behaves better” means,
and this is the scope of the next section.

4.2 The scenario

In this section the usual formulation of the state-estimation problem is pre-
sented (see for instance [37]). Tt will lead us to a function reflecting the
degree of optimality of an estimation procedure. Our purpose, then, will be
to find the estimation strategy maximizing this quantity.

4.2.1 A priori probability distribution

The state-estimation problem tries to determine the optimal way in which the
information encoded in a state can be obtained. Of course, the quantum state
we have is not known (since then it will not give us any new information),
and a probability distribution takes into account our partial knowledge about
it. 5

Suppose for instance that a vector of parameters 8 = (¢,,...,4,) is en-
coded in a pure state, |1/(f)) (we can also consider the more general case of
mixed states). There is a space of possible values for the vector of parameters,
©, and a measure function on it, f(é')riﬂl ...d#,, reflecting the probability of
any point in this space, or alternatively, the probability of the correspond-
ing quantum state. Our aim is to estimate the value of these parameters
by determining the quantum state. Note that in this case we have partial
information about the unknown state from the beginning, since we know the
a priori probability distribution in the space of parameters ©.

It may happen however that there is no initial information about the
unknown state, pure or mixed, to be estimated. TIs there any probability
distribution over the whole space of physical states reflecting our complete
lack of knowledge? The usual assumption in these cases consists on taking
all the possibilities equally weighted, i.e. there exists no preferred region
in the whole space of events. When there is a finite number, M, of pos-
sibilities, this means that the unbiased probability distribution is equal to
po = (1/M,...,1/M). When the space of events is continuous, this implies
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that the initial probability distribution is proportional to the volume ele-
ment, i.e. to the square root of the determinant of the metric tensor in the
space. In the pure-state case, we deal with the space of rays or physical
states (pure states without the global phase), where there is a privileged
metric, the Fubini-Study metric [38], which is the only one invariant un-
der unitary transformations. From the corresponding volume element, the
unbiased probability distribution for pure states is obtained; in the case of
spinors it is equal to the isotropic distribution over the Bloch sphere. For
mixed states it is not clear whether it is possible to identify a unique metric,
although some candidates have been proposed (see [39]). Tt is worth men-
tioning here that the two articles in appendices E and F deal only with pure
states, so in the rest of this chapter we will just consider this situation.

4.2.2 Measurement and figures of merit

The information about a given unknown state, [i) € C?, is obviously ob-
tained by performing a measurement over it. The most general measure-
ment in Quantum Mechanics is described by a resolution of the identity in
terms of positive operators, the so-called positive-operator valued measure-
ment (POVM) [40], i.e.

i
I=Y M, (4.1)
i=1
where r is arbitrary (in particular r can be greater than the dimension of the
space) and M; > 0. Usually, a finite number of copies, N, of the unknown
state are at our disposal, so the most general strategy consists on performing
a global measurement over the state given by the tensor product of the N
copies, |¥) = [0)®N € €. There are r possible outcomes resulting from
measuring (4.1) on a quantum state p, each with a probability equal to
tr(pM;). In our case, this expression gives

poli) = tr (L) (T|M) = tr(|) (¥ M), (4.2)

After performing the measurement, and depending on the observed result,
there is a gain of information about the unknown state. How can this gain
of information be quantified? The initial probability distribution of states,
Ji([)), is modified using the Bayes rule and, according to the obtained
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outcome k € {1,...,r}, the a posteriori probability distribution reads

FE(lw)) = tr([¥) (ﬂ;FMﬂ!fk)'h(lw))- (4.3)
p(k) |

where p(k) = [ diy tr(|0)(0|*N M) fi(|¥)) is the probability for outcome k
summed over all the initial states. There exist functions in estimation theory
that are though of as a measure of the information distance [39] between two
probability distributions, p, ¢, i.e. they are useful in order to express the gain
of information when passing from one probability distribution to another.
We will denote these functions by D(p.q), and an example of them is the
Kullback information distance [41] between two probability distributions,
K(p.q) = X;pilog(pi/qi). Using these quantities, it is possible to calculte
the gain of information averaged over the measurement outcomes.

D=3 p(k)DUEE), F(1))- (4.4)
k=1

The optimal estimation strategy will consists, then, on designing the mea-
surement, that is, the positive operators M appearing in (4.1), that maxi-
mize this function. This is the approach that we have applied for the article
in appendix F. However this average gain of information is usually not easy
to be computed, since the probability distributions of states depend on manyv
parameters and the functions D(p, §) are not simple.

There exists another similar approach that tries to overcome this diffi-
culty: after performing the measurement, we can make a guess, |¢*), depend-
ing on the outcome k, for the incoming unknown state, [¢). A fidelity-like
function, F(|¢*), 1)), measures the degree of similarity between the guess
and the initial state. In principle there are many candidates for this fidelity
function. It is usually just required to be a concave and symmetric function
taking values between zero and one. An average fidelity is defined

F=3 [ dh(o)p®F (). ). @s)

k=1

In this case, the optimal estimation strategy consists on the one maximizing
F. i.e. not only the best measurement apparatus, {M;}, should be deter-
mined, but also the guesses for each of the outcomes. However, in spite of
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this two-step optimization, the calculation of expression (4.5) is often quite
casier than (4.4), and this fidelity-approach is simpler. Since the fidelity
functions should quantify the resemblance between states, they usually have
a geometrical meaning: the smaller the fidelity is, the more distant the states
are. For the case of pure states, F(|¢),[1))) is generically chosen to be the
overlap between states, |(¢[y)]?, as in apppendix E.

4.3 State estimation

In this section we introduce the main results of the article in appendix E
about state estimation. The statement of the problem is simple: a finite
number of copies, N, of an unknown state, |1)) € C% are given, and we have to
design the optimal estimation strategy, where the optimality criterion takes
the overlap between states as fidelity function. Since there is no a priori
information about the incoming state (apart from the fact that it is pure),
the unbiased probability distribution of pure states describes our knowledge
about it. In this case the average fidelity reads

P = 2 [ aw (1) (1) (WI# M) || (4.6)
=1

The authors of [42] derived the optimal fidelity, depending on the number
of copies, for the case of two-dimensional systems, d = 2, and proved that
global measurements over the whole state of N copies, |¥) = [1)®", are
better than any adaptative measurement acting separately on each of the
copies. Later, the algorithm for constructing the optimal POVM was also
provided in [43], and explicit constructions were found in [44], for the case
of spin one half. The optimal fidelity for arbitrary dimension is derived in
[45], showing an interesting connection between state estimation and cloning.
The expression for this optimal fidelity depends on the dimension d of the
system and the number N of copies, and is equal to

Fﬂpt o f\? +I

PP N+d o

In the article of appendix E, we extend the results of [44] to arbitrary
dimension. The incoming state, | ) = |[¢)*", lives in the totally symmetric
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subspace of C? | therefore, in the search for the optimal measurement it is
enough to restrict us to resolutions of the identity in this subspace. We
prove that the optimal fidelity (4.7) is achieved by the following estimation
strategy: a resolution of the identity in the totally symmetric subspace of N
copies, f_j;m, is built by means of projectors onto symmetric product states

|Ug) = |thp) ® -+ - ® |ty), ie.

r

Ty = 2 Gl (Til, (4.8)
k=1

where ¢} are positive numbers. When the outcome k is obtained after this
measurement, we guess |1;) as the unknown state. Shur’s lemma guarantees
that this measurement is always possible, although with an infinite number
of outcomes (r — o). However, this is not an interesting solution from a
practical point of view, and we look for explicit contructions of optimal and
finite POVMs (4.8), extending the techniques used in [44]. A set of equations
to be fulfilled by the generalized Bloch vectors of the pure states appearing in
the optimal measurement (4.8) is derived. From these equations we can find
the explicit form of the pure states and the coefficients appearing in (4.8), or
bounds on the number of projectors. r.

4.4 Entanglement estimation

The analysis of the best strategy for the estimation of the entanglement
properties of an unknown pure two-qubit state is the scope of the article in
appendix F. As it has been shown in chapter two, all the information about
bipartite pure-state entanglement is encoded in the Schmidt coefficients, so
we do not want to know about all the parameters specifying a state, but we
just focus into its Schmidt coefficients. For the case of two qubits, this implies
that we want to determine one of the two Schmidt coefficients, being the other
fixed by the normalization condition. We concentrate on the estimation of
one of the six real numbers that a generic normalized state |¥) € C*®@C?, the
global phase having been removed, depends on. Indeed, any pure two-qubif
state can be parametrized as

14+0b % 1—b

1) = [ =1 B +1/—

e — @)| — by, (4.9)
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where 0 < b < 1 is the Bloch vector of the reduced density matrix, pq =
trgp(|¥)(W|), |d@) and | — @) are its eigenvectors (and the same for B), that
are orthogonal, and 0 < « < 27 is a phase factor, that is usually absorbed
in the definition of | — @) or | — b). All the nonlocal properties of this state
are specified by the value of b, and this simplifies the problem. Indeed, for
this case it is not difficult to compute the average gain of information (4.4),
where D(p. ¢) is chosen to be the Kullback information distance. The a priori
probability distribution for b comes from the unbiased distribution of pure
states in C*.

A finite number of copies, N, of this unknown state are given, and the
measurement that gives us more information about b is studied. We consider
the most general strategy, i.e. global measurements over |U)®N  but it is
proved that the optimal strategy can be performed locally by one of the
parties without any amount of classical communication. This means that
the optimal gain of information about the nonlocal properties of a state can
be achieved locally.' Intuitively, no information about b is lost when one
of the parties is traced out, since it survives in the eigenvalues (or purity)
of the resulting density matrix. Indeed, the best measurement is a coarse
praining of the optimal measurement for mixed states given in [46], and it is
equivalent to the best estimation of the purity of a density matrix.

4.5 Conclusions

State estimation is the main subject of the articles in appendices E and F.
While in the first one we consider the estimation of an unknown pure state
belonging to a d-dimensional system, i.e. we want to obtain information
about all the parameters needed for its specification, in the latter we focus
only on one of the features of the unknown pure two-qubit state, its amount
of entanglement. The main results are:

e The optimal measurement strategy for the estimation of N copies of
a state belonging to a d-dimensional system can be accomplished by
. . . . . . N

means of a resolution of the identity in the symmetric subspace of C?

' Note however that the local observer, say A, must perform global measurements over
the N copies of his reduced state.
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built from projectors onto pure product states which are fully symmet-
ric. After the measurement, our guess is equal to the state correspond-
ing to the resulting outcome.

The introduction of generalized Bloch vectors simplifies the analysis
of the conditions to be satisified by the optimal POVM. We show an
explicit construction for spin one and two copies.

The estimation of the entanglement of a pure two-qubit state, i.e. of
its Schmidt coefficients, can be attained locally by one of the observers
without loosing optimality. It corresponds to the optimal measurement
of the mixing of his local density matrix.
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We prove for any pure three-quantum-bit state the existence of local bases which allow one to build
a set of five orthogonal product states in terms of which the state can be written in a unique form. This
leads to a canonical form which generalizes the two-quantume-bit Schmidt decomposition. It is uniquely
characterized by the five entanglement parameters. It leads to a complete classification of the three-
quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all

entanglement between the other two parties.
PACS numbers: 03.67.—a, 03.65.Bz

The Schmidt decomposition [1,2] allows one to write
any pure state ol a bipartite system as a linear combination
ol biorthogonal product states or, equivalently, of a non-
superfluous set of product states built from local bases,
For two quantum bits (qubits) it reads

[y = cos@|00) + sind|11), 0=6=a/4. (1)

Here |ii) = |i)s ® |i)g. both local bases {|i)}4 z depend
on the state |W), the relative phase has been absorbed
mto any of the local bases. and the state [00) has been
defined by carrying the larger (or equal) coefficient, A
larger value of # means more entanglement. The only
entanglement parameter, @, plus the hidden relative phase,
plus the two parameters which define each of the two
local bases are the six parameters of any two-qubit pure
stute, once normalization and global phase have been
disposed of.

Very many results in quantum information theory have
been obtained with the help of the Schmidt decomposition:
its simplicity reflects the simplicity of bipartite systems as
compared to N-partite systems. Much of its usefulness
comes from it not being superfluous: (o carry one entan-
glement parameter one needs only two orthogonal product
states built from local bases states. no more, no less.

The aim of this work is to generalize the Schmidt de-
composition of (1) to three qubits. It is well known [2]
that its straightforward generalization, that is, in terms of
triorthogonal product states, is not possible (see also [3]).
Nevertheless, having a minimal canonical form in which
(0 cast any pure state, by performing local unitary trans-
formations. will provide a new tool for quantifying entan-
glement for three qubits, a notoriously difficult problem.
It will lead to a complete classification of exceptional states
which, as we will see, is much more complex than in the
two-qubit case. The generalization to N quantum dits
(d-stute systems) is not completely straightforward and
will be given elsewhere.

Linden and Popescu [4] and Schlienz [S] showed that
for any pure three-qubit state the number of entangle-
ment parameters is five and, using repeatedly the two-qubit

1560 0031-9007/00/85(7)/1560(4)515.00

Schmidt decomposition, proved the existence for any pure
state of a reference form in terms of six orthogonal prod-
uct states built from local bases. The five entanglement
parameters are one phase (all others can be absorbed) and
four moduli of the six coefficients, so that a further con-
straint beyond the normalization exists. In other words,
exactly as (1) shows that local unitary transformations al-
low one to make two of the four components vanish (cor-
responding to [01) and [10)) for a two-qubit pure state,
Linden and Popescu and Schlienz proved that, also for a
three-qubit system two of the, now eight, components can
be made zero. However, the set of six states is superflu-
ous in the sense that its coefficients require a constraint to
lead to a unique representative of any pure state. It is not
clear whether this is the best one can do, i.e., whether the
set is minimal. We will now prove that indeed, combin-
ing adequately the local changes of bases corresponding
to U(1) X SU(2) X SU(2) X SU(2) transformations, one
can always do with five terms, which precisely can carry
only five entanglement parameters, leading thus Lo a non-
superfluous unique representation.

Notice that a straightforward counting of parameters
shows that a nonsuperfluous set will have five states, 1.e..
three vanishing coefficients. There exist three inequivalent
sets of five local bases product states

{1000}, |001), |010), |100), [111)}.
{l000Y, [001), [110), |100), [111)}, (2)
{1000), [100), [110), |101), [111)}.

Whereas the first set is symmetric under permutation of
parties, the other two are not.

The nonequivalence of the three sets follows from the
different degrees of orthogonality between the five states
within each set. One can also readily check that all three
sets can carry exactly five entanglement parameters, four
moduli, and one phase, and are thus nonsuperfluous. This
is of course no proof that any state can always be written as
a linear combination of the five states of one and the same

© 2000 The American Physical Society
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set. We will now prove that it can always be done for
the last two sets, or their versions obtained by permuting
parties.

As an introduction let us first present a one-line proof
of the Schmidt decomposition of a two-qubit state, Eq. (1).
Writing any state in a basis of product states built from any
two local bases.

W) = > tlij). 3)
L
calling 7' the matrix of elements f;;, and recalling that
for any 7" there always exist two unitary matrices which
diagonalize it,
U)TU, = D, (4)

the Schmidt decomposition follows at once. Note that U,
and U5 correspond to the local basis changes necessary for
casting the original state into its Schmidt form.

For a three-qubit state the proof goes as follows: [rom

Wy = > niplijk), (5)

iJik

one introduces the matrices 7y and 77 with elements

(T7)jx = tijx - (6)

Consider now the unitary transformation on the first qubit,

T = Zu;ﬂ‘j.
J

(7)

such that

detT) = 0. (8)

Notice that (8) has always two solutions. The muatrix ob-
tained from 7§ after diagonalization following (4). which
corresponds (o unitary transformations on the last two
qubits, has at least three zeros.

(DH)or = (Doho = (D11 = 0. (9)

This finishes the proof that any pure state ol three qubits
can always be written as a linear superposition of the five
states of the last set of (2).
The generalization to three qubits of the Schmidt de-
composition, i.e., one more zero for one more qubit. thus
| reads

W) = Agl000) + A1e’®[100) + A2|101) + A3]110) +

where we have chosen the second coefficient to carry the
only relevant phase, whose range, to be proven later, is also
given. Notice that we have singled out party A in obtaining
(10), but we could have chosen any of the three parties.

An immediate and important consequence of this de-
composition is that there always exists for any state |\V)
and any (genderless) party X a state [0)y such that x(0 [ )
is a product state of the other two parties (unless party X is
not entangled with the other two parties). That is, party X,
knowing | W), can perform a local measurement which, for
one outcome, allows it to be sure that the other two parties
share no entanglement whatsoever. Note that when (8) dis-
plays two different solutions, two such states exist. This
property suggests some applications to quantum informa-
tion processing. It also leads to an efficient algorithm for
computing the A's and ¢.

There is one small hitch left: as (8) has generically
two different solutions, any state can be written in the
form of (10) with two different sets of coefficients. Let
us dispose generically of this redundancy. Recall that after
diagonalization of Tj we are left with the matrices

_ (A O (e ;.2)
(0 0)’ Ml_( Ay g L

(11)
for one solution of Eq. (8) and

A :iu 0 . t"-@}l.] ‘13 .
My ( 0 0): M; = ( Rs 14) (12)
for the other solution. Of course, both solutions can be

related by a U(1) X SU(2) X SU(2) X SU(2) transforma-
tion:

MY 420 0=se=7 pi=A, Dui=1,
j (10)
I . :
My = (‘.'""Uﬂ.fn-;uMu + g MU, (%
My = &' U (—uy Mo + upyM)Us .
and the inverse
My = e"-“’U?(umeU - umﬂ‘fhib’; )
M, = e_“"U]Th-ff”Mn + wggM, lU:Jr, (e
The condition detMy = detMy = 0 leads to
Uy = ety 1) yy = dPUYI‘ Hyy - (13)
ApAy ApAy

It is tedious, but straightforward, to solve the previous
equations. Here we need only the following results:

AgAg = :’1“.514, Ii':]] = —I, (16)
which, from Eq. (15), imply
detM; = (deti;)". (17)
From here it follows that
O<e<mea<<dm,
(18)

0<g<m
so that one can always choose the solution for which

O0=¢p =7,

ST <@ < 2.

(19)
which explains the range of ¢ given in Eq. (10).

Let us mention here that by performing a unitary trans-
formation on the third qubit,

1 .
(A1e'?|0) + Asl1)).

0=

(20)
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the decomposition for the second set of (2) is obtained.
In the remainder we will use the first decomposition (10).
which is physically and mathematically more convenient.

A generalization of the Schmidt decomposition is thus
given by (10); any state can be written in this minimal
form. generically in a unique way. The explicit algorithm
for constructing this canonical form follows from the set of
Egs. (3)—(8). However, particular states can be obtained
for different values of the live entanglement parameters.
It is thus usetul to have five independent invariants for the
classification of states which we will obtain from (10). We
will take here the five minimal polynomial invariants of
[6].

Defining A = |A;Age’? — A2A3)* we find

)

% =h=Tpy =1 —2pp(l — o — 1) =1,

5=h=Trpj=1-2u(l = po — 1 — f2)
—-2A =1,

%E! ETrp({: 1 — 2up(l — po — py — pm3)
—-2A=1, (21)

l. =1y =Ti(pa ® pppag)

=1+ polpops — pipa — 2p2 — 3p3 — 3p4)

— (2 — po)A =1,

0=1ls= IHdt:l{F;,u-HI = pjpi = %

where

pap = Tre|W) (¥| pe = Trap| W) (W]

pr = Trapas.

(22)
pa = Trppan

and Cayley’s hyperdeterminant. Hdet(r; ), can be found
in [7] and corresponds to the three-tangle of [6.8].

Although these five invariants are computationally
simple and physically meaningful, as they give local
information, it can be convenient to trade them, recalling
>, = 1, for algebraically simpler ones:

0<J=A=g,

3

0=y = popr = %

0=J3= pouz = %, (23)
0=Jy= popty = %

Js = polA + pops — pypa).
The invariants Jy and Js are symmetric under permutation
ol parties, while J,(J5, J4) is symmetric under exchange of
parties B and C (A and C, A and B).
We can now proceed with the complete classification
of nongeneric three-qubit states with the help of Egs. (10)
and (23):

Type 1 (product states): J; =0fori =1, 2,3, 4, 5.

Type 2a (biseparable states): J; = 0 except Jy(J3.J3)
when party A(B, C) is not entangled with the other two
parties. They carry only bipartite entanglement and depend
on one parameter.

Type 2b (generalized GHZ states): J; = 0 except Js.
They include the standard GHZ states [9] and depend on
one parameter.

Type 3a (tri-Bell states): p; = pg = 0. Itimplies J4 =
0, J1Jy + J1Js + JaJs = JTiTals = %. They depend
on two parameters.

Type 3b (extended GHZ states): u; = uy = 0, for
j.k € {1,2,3}and j # k. It implies J; = Jp = J5 = 0.
They depend on two parameters and correspond to the slice
states of [10].

Type 4a: g = 0. Itfollows Jy = 0and /J1/2J5 = JT
They depend on three parameters.

Type 4b: o = 0 (3 = 0). Then, J, = Js =
Js = 0). They depend on three parameters.

Type 4¢c: wy = 0. Then, Ji(Jy + J3 + Jy) + oz =
NI JT and they depend on three parameters.

Notice that the type number indicates how many of the
five states of (10) characterize the states of that type. Be-
cause of the asymmetric character of the decomposition
(10). some of the states included in type 5 can be written
in terms of four states, had we singled out party B or C
[11]. Notice also that, in some sense, the J;'s are indica-
tors of entanglement: only when all of them vanish there
is no entanglement at all, Jy(J»,J3) indicate bipartite en-
tanglement, and J4 indicates GHZ entanglement.

Let us further exploit our previous results. An alterna-
tive generalization of the Schmidt decomposition could be
writing the state as a superposition of two nonorthogonal
product states which are not built from local bases,

W) = alabc) + Bla'b'c"y, (24)
with @ and S real.

Beside the trivial cases of type-1 and type-2a states, this
decomposition is always possible except for a familly of
states depending on three parameters [12]. Our decompo-
sition allows one to reproduce this result and shows that
(24) is not possible when /5 = 0 (corresponding to type-
3a and type-4a states). It can be proved that when /s = 0
the two solutions of (8) coincide. The same happens had
we chosen (o single out any of the other parties. There-
fore, for any party X, there is only one state [0)y such that
(0| W) is a product state of the other two parties. Since
(24) implies two such states, e.g., la, )4 and IaL)A, it fol-
lows that type-3a and type-4a states cannot be written as
a sum of two nonorthogonal product states. When the de-
composition (24) is possible, our results give the construc-
tive method to obtain it. From (10), the second coefficient

| can be split into two terms,

)L[ 1’(4\‘."I¢ - )(3)(3

4

) = (A.,louw +

| l(}(})) +-

A2A
(_;1 21100y + A2]101) + A3]110) + «\41111))- (25)
4
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It is easy to see that (25) corresponds to the sum of two
nonorthogonal product states as (24) with coefficients

1
o = A—\.n'.h + Jy,
4

1
B = ‘—\/#1#3 + palps + po + pa).
Ay

(26)

This decomposition is unique. The states that appear in
(24) are orthogonal to the ones that allow each party to
destroy the entanglement between the other two parties
with some nonvanishing probability.

A final consequence of (10) is that, by using the bipartite
Schmidt decomposition, any pure state can be written as
a superposition of a product state and a biseparable state,
i

[y = cos#]000) + sind|1) (cosw |0'0") + sinew|[1'17)).
27N

which is the minimal decomposition in terms of orthog-
onal product states. It exhibits explicitly two of the five
entanglement parameters. The other three are hidden in
the moduli of the scalar products {0]0’) and (0|0}, and
in one phase absorbed by one of the local bases. It is also
a nonsuperfluous form. though not built from local bases.

[n this work we have found the minimal decomposition
of any pure three-qubit state in terms of orthogonal product
states built from local bases. It generalizes the Schmidt de-
composition and leads to a complete classification of pure
three-qubit states. which fine grains the fully inseparable
states class of the general entanglement classification of
mixed three-qubit states [13], Our decomposition shows
that any party can, performing a clever local measurement,
kill the entanglement between the other two parties with
nonvanishing probability. A decomposition in terms of the
minimal number of orthogonal product states has also been
found.

Finally, we have explored whether a pure three-qubit
state can be written as a sum of two nonorthogonal prod-
uct states, which can be thought of as an alternative gener-

alization of the Schmidt decomposition. We have verified
that only a subfamily depending on three parameters can-
not be expressed in this form [12]. corresponding to states
with 5 = 0.
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In this paper we analyze the canonical forms into which
any pure three-qubit state can be cast. The minimal forms,
Lo the ones with the minimal number of product states built
from local bases, are also presented and lead to a complete
classification of pure three-qubit states. This classification is
related to the values of the polynomial invariants under local
unitary transformations by a one-to-one correspondence.

PACS Nos, 03,67.-a, 03.65.Bz

I. INTRODUCTION

Non-local quantum correlations or entanglement be-
tween space-separated parties is one of the most fertile
and thonght-generating properties of quantum mechan-
ics. Recently it has become a very useful resource for
many of the applicatious in quantum information theory
and this has led to a lot of work devoted to understanding
how it can be gquantified and manipulated.

Bipartite pure state entanglement is almost completely
understood, while many questions are still open for the
mixed state case. For pure states, the Schmidt decom-
position [1] has proven to be a very useful tool, since
it allows to write any pure state shared by two parties
A and B in a canonical form, where all the information
about the non-local properties of the state is contained
in the positive Schimidt coeflicients. The non-local prop-
erties of quantum states can be also specified by means
ol otlier quantities invariant under the action of local
nnitary transformations. An interesting type of these in-
variants are given by polynomial cornbination of the co-
ordinates of the state in a product basis, and the relation
between these invariants and the Schmidt coeflicients is
well known.

Soime novel aspects, compared to the bipartite case,
appear for entangled systems of more than two par-
ties. In this work we study the canonical forms of three-
qubit pure states, extending the results of bipartite sys-
tems.  First we analyze the forms proposed for gener-
alizing the Schimidt decomposition for three-qubit pure
states, Then, we relate one of these decompositions to
the polynomial invariants studied in [2-9]. We give a
one-to-one correspondence between a canonical form for
a three-qubit pure state and a complete set of polyno-

mial invariants describing its entanglement properties.
We also classify the different types of canonical forms
by means of the minimal number of local bases prodnct
states (LBPS), i.e. the minimal number of non-local pa-
rameters, needed for the specification of a state. For any
three-qubit pure state we give its decomposition with the
minimal number of LBPS and the procedure that has to
be applied in order to build it. Finally we indicate how
to generalize the results to systems of N-qubits, where
many difficulties arise.

II. GENERALIZATION OF THE SCHMIDT
DECOMPOSITION

The Schmidt decomposition has been a very useful tool
for the study of entanglement properties of bipartite sys-
tems. For a generic bipartite pure state [®) € C @ €%
it reads

{

|¢>:Z&,’[ii). a; >0, (1)

i=1

where | = min(d,,ds), |ii) = |i)a @ |i)p, being |i) or-
thonormal vectors in each subsystem, and «; are the
Schinidt coefficients. 1t would be very interesting to
find for three-qubit pure states a canonical decomposition
generalizing the features of the Schmidt decomposition.
However, the trivial generalization is not possible [10]
and it is not evident how to extend the Schmidt decom-
position to the case of N-party systems (N > 2). Indeed
several forms have been proposed (see for instance [11]).

In recent work [9] we gave a generalization of the
Schmidt decomposition for three-qubit pure states, in
the sense that the coefficients of this decomposition carry
all the information about the non-local properties of the
state, and do so minimally and unambiguously, i.e. the
decomposition is not superflous. Starting from a generic
state shared by three parties. A, B and C,

W) = tijuligh), (2)

1,k

1]l

where |ijk) = [i)a@|j) @]k}, we look for the local bases
that allow to write (2) with the minimal number of LBPS.
A simiple counting of parameters shows that at least five
product states built from local bases are needed in order
to specify a generic state belonging to C*@C?@C*. There



are three inequivalent classes of five LBPS: the first one
is the symmetric set

{1000y, |001), [010), |100), [111)}, (3)

the second is weakly asymmetric and corresponds to the
three sets of states,

{]000Y, [001), [100), |110), [111)}
{1000y, 001}, [011). |100), [111)}
{1000y, |010Y, [100), |101), [111)},

(4)

and the third one is strongly asymmetric, and corre-
sponds to the three sets

{1000}, |100), |101),]110), [111)}
{1000, ]010), [011), [110), [111)}

{1000, |001), [110), [101), [111)}, (5)

where the three sets of states of (4) are related by permu-
tation of the parties, and the same happens for the sets
(5). The non-equivalence between the sets (3), (4) and
(5) follows from the different degrees of orthogonality be-
tween the five states within each set (see figure 1). In [9]
it was proved that any three-qubit state can be written
in terms of the product states of any of the asymmetric
sets, Let us sketeh the procedure.

Starting from a generic state (2), one introduces the
matrices Ty and 77 with elements

(T;']_jk = ik (6)

A change of basis on the first qubit transforms these ma-
trices in the following way,

A A
?—E: = H"['TU + Eiﬂl_[]
! A A -
T = uipTo +uiy1h, (7)
where u?t are the elements of a unitary matrix, while the

. i L . e
effect of a change of basis in B (C) implies that each 7} is
left (right) multiplied by a unitary matrix [/#(U/¢). The
unitary transformation on party A is chosen such that

(8)

There are always two solutions for this equation since (8)
is equivalent to

det(73) = 0.

det (Th + «Ty) = 0, (9)

A
_u »
where ¢ = :—ﬁ’- is an unbounded complex number. Now

we apply two unitary matrices on parties B and C in
order to diagonalize T, These operations lead to the

matrices
Au 0
0 0

M, = UBTIUC = ()‘lew

M, = UBT{UC

X (10)

Ay
Y

where A; are real and positive. since all the phases have
been absorbed by phase redefinitions of [0) 4. [1)4. [1)p
and |1)¢ . By means of these unitary transformations we
have been able to write the initial state (2) in terms of
the products states appearing in the first set of (5), 1.e,

[ W) = Ao|000) + Ay ™ [100) + Aa101) + Aa|110) 4+ Ag[111).
(11)

Equation (9) has generically two different solutions,
and z, so two different decompositions (11) are possible
for the same state |W). By limiting the range of the phase
factor to 0 < » < 7 a unique solution is found when
0 < ¢ < 7 (see [9] for more details), and then we have a
unique canonical form in which to cast almost any three-
qubit pure state. For the remaining ones, when o =0, 7,
two canonical forms exist in general: we will break this
remaining degeneracy taking, for instance, the form with
the smallest Xy, or, if Ay is unique, taking the form with
the smallest Ag. It is important also to note that we have
singled out party A in obtaining (11). but we could have
chosen any of the three parties.

From (11) and by applying a unitary transformation
on the third qubit,

— (
VAT + A3
it follows that any state can be written, after removing
the phases of four of the coeflicients, as,

0"y = A€ 2]0) + Ao|1)) (12)

|¥Y = 5oe®]000) + 11]001) + 772|100 + 53] 110) + 74| 111),
(13)

with 7; real and positive, which corresponds to the first
set in (4).

Recently, it has been shown [12] that the symmetric
decomposition using the set of states (1) is also possible.
The proof is based on the fact that if a given state |W) is
written in a basis such that the state [111) is the one that
maximizes the overlap of [W) with any product state, i.e.

[t111]* = max |(¥|asy)|*, (14)

the coeflicients 1y1q, {01 and 4417 must be zero (otherwise
one could find a product state with a larger overlap).
Therefore any state can be writien as

|¥) = koe®]1000) + £ |001) + 12 [010) + ra|100) + rg|111),
(15)

with #; real and positive and 0 < 0 < 7. Nevertle
less, the conditions under which the decomposition (15)
is unique are not known.

A different decomposition, which can also be thought
as an alternative generalization of the Schiidt decompo-
sition for three-qubit states, could be writing the state



as a superposition of two product states, not necessarily
orthogonal,

|¥) = o] 000) + Be* |1 papa), (16)
with a and 4 positive real numbers. This decomposition
is only possible when J4 # 0 (see below for the definition
of Jy) [9.13]. which corresponds to the GHZ-class in [13],
and it has been proved very useful for the obtention of
the optimmal GHZ distillation protocol [14].

ITI. THE SET OF POLYNOMIAL INVARIANTS

The space of states of three qubits is C*@C*@C?, which
depends on sixteen real parameters (including the norm
and the global phase). Two states, |W) and |Wy), are
equivalent, as far as their entanglement properties are
concerned. when they can be transformed one into the
other by local unitary transformations. Therefore the ac-
tion of the elements of the group (1) x SU(2) x SU(2) %
SU(2) define orbits in the space of states, each orbit be-
ing the equivalence class of all the states having the same
non-local properties. Thus, and as it is well-known, the
dimension of a generic orbit for the case of three-qubit
pure states is ten [2], so six entanglement parameters
should be enough to discriminate between two different
orbits. Since the decomposition (11) is unique, it gives
six quantities invariant under local unitaries, the five co-
efficients A; and the phase @, which allow us to check
whether two generie states belong to the same orbit, 1.e.
whethier they can be connected applying local unitary
trausformations. These parameters can be thought of as
An alternative, though
two-fold degenerate, set of entanglement parameters is
given by polynomial combinations of the coefficients ¢,
whichi are invariant under the group of local unitaries
[2-8]. 1u this section decomposition (11) will be related
to these polynomial invariants.

For bipartite pure states, |®) € €% @ €%, a com-
plete set of polynomial invariants, which allows to know
whether two bipartite states have the same entanglement
properties. is given by

the entanglement coordinates,

(17)

where pay = trg|®)(P| and pg = tra|®)(P| are the local
density matrices. Since the eigenvalues of these matrices
correspond to the square of the Schmidt coefficients (1),
we know the relation between the polynomial invariants
and the Schmidt decomposition [7].

As it has been mentioned above, the space of entangle-
ment parameters of pure three-qubit states has dimension

tr(ply) = tr(ply) 1 =1,...,min(dy, ds),

equal to six, so at least six hnearly independent polyno-
mial combinations of £, invariant under local unitary
transformations are needed in order to specily the non-
local praperties of a state, or the orbit which it belongs

to, In [7] the six linearly independent polynomial in-
variants of minimal degree were found. The norm is a
trivial one, so we will not consider it and in the rest of
the paper we will restrict ourselves to the space of nor-
malized states, the number of non-local parameters being
reduced to five. This implies that we have Y, A7 = 1 in
(11). Apart from the norm, the polynomial invariants
given in [7] are

:}S L =tr(ph) <1
% <l =tr(py) <1
% < Is=tr(py) <1
1
7<= tr(pa @ pppas) <1
. 1
] E Iz = Il‘ldet(t,'jk”" < '1—6', (18}
where
pa = tree | V) (¥|
pe =trac|W)(¥|
pPc = 1.-!'_4{;"‘1’}(‘1"
PAB = l'-l'(_'|‘1'>(‘I’|. (19]

and Hdet({;;) is the hyperdeterminant of the coefficients
tijk [15] and corresponds to the three-tangle of [16]. An
equivalent set of invariants can be constructed [9]

1
'}151[1+II“IE_I:1_2V/E}

S = 2=+ I = Iy 2VT5)

(1—h = Iy 4+ I3 — 23/T5)
Is

J3

IR

J4
Js = %{3_311 — 81y — Iz + 415 — 24/Ts),

(20)

which, in terms of the parameters of the decomposition
(11), are equal to

. i 1

t] S ..-’1 = |z\ga\.1f_'l‘p i /\2/\3'3 S :‘I
1
0< Ja= popz < i
: 1
() S J:j = MoMs S 1
1
0L Ja=popsa < 5

.

< Js = poldy + pops — pips) < 77 (21)

2
108 =

where ji;
invariant

= A7, It can be proved that Jy and J; are
under permutation of the parties, because so



are 213 — Iy — Iy and I5, and Jy, Ja, and Jy single out
parties A, B and C respectively, and transform among
themselves under party permutation.

From the above expressions one can prove the tighter
bounds

0<Joa+ds+Js < '}I
0< S+ Jds+Ja< ‘3{
1
0< i+ Ja+ Js <3
0< Tt < (22)
Also the following holds
J1 =0=.J5=0
Ja=0=J5=10
Ja=0=Js=10
Jyg=0=2/J1Jods = % (23)

From (21) and using the normalization condition
Z‘. pi = 1, it is possible to obtain the value of the set
of coeflicients {1},

+ Jg+Js £VA

M=+ )
;.{jt = % i=2,3,4
Ho
J2+J' +J 5
p?::l—ﬂf-———;%——i‘ (24)
)

where
Ay = (Ja+Js)? —A(N + Ja) (S + Ja) (Ja + Ja) > 0,
(25)

which implies
Jq +Js=0= 0y = J5 =k {26]
Note that the value of cos ¢ can be also found from (21),

Jer ,ui_bp.ff 4 ,uf;.ag: -
INTAEIENE

Cos ¢ (27)
and thus almost all the information about the decom-
position can be extracted from the values of the {.J;}.
There remains however some ambiguity in these expres-
sions, since there are two solutions for the coefficients,
corresponding to pf and p, and for each of them, two
different angles, 0 < p* < 7 and $* = 27 — p*, com-
ing from (27). Part of this uncertainty is due to the two
solutions of (8) and in fact the coefficients {u]", ¢t} and
{p; , ¢~} describe the same orbit, and the same happens

for {u7, ¢~} and {p}, &7} As it has been said, the so-
lutions associated to ¢ are not considered because of the
range of the angle. However the set of invariants {J;}
(or {I;}) does not determine a unique orbit. or equiva-
lently a canonical point representing it. Two candidates
are possible, {;.t,‘i.ap*}. so there is still some ambignity
left.

The five polynomial invariants (18) are real, and this
means that they can not distinguish among the orbits
associated to a given pure three-qubit state [W), with
coefficients ¢;;1, and to |W)", given by {7, Indeed,

L(19)") = L(]¥))" = L(|¥)). (28)

where the second equality comes from the fact that the
invariants are real. It is not possible, due to this ambigu-
ity, to individuate a unique canonical state representing
an orbit from the invariants (18). or (20). A twelfth
degree complex polynomial invariant, /5. introduced by
Grassl [17], solves (albeit redundantly) this problen. just
by inspection of the sign of its imaginary part (in other
words, the second equality of (28) is not valid for this
invariant). The explicit form of Grassl's invariant, using
decomposition (11) is

Is = pipa(Na(l — 2(po + p1)) 42X Aadge ™) %0 (29)

The set given by (18) and [ is complete, it allows to
check when two states belong to different orbits, and
from their values one can obtain a unique canonical point
representing the orbit applying (24-27) and. in the end.
using /s to discriminate between the two candidates.

This situation is quite different from what happens for
pure states of bipartite systems. In this case. a generic
state |®) € Ch & C%, with coefficients ¢;;, can be always
tranformed into |®)" by local unitary transformations,
as this is clear from the fact that all the Schinidt coeffi-
cients are real. In general this is not true for three-qubif
systems, although in some cases the state |W) and its
complex conjugate [¥)* are in the same orbit. This cor-
responds to the situations when either

|cos ™| = |cosp™ | =1, (30)
or

(M0 p"' =cos”

=g (31)

Equivalent conditions in terms of the invariants {./;} can
be obtained, giving

——  |J5 .
Jl J'_:J;; - | .I |. (:{2}

2

for the first case and

Ay =0, (33)



for the second. Furthermore in both situations a product
basis can be found for which all the coefficients #;;5 are
real. For the states satisfving the first condition, this
basis is the one that gives decomposition (11), since we
have ¢'¥ = 1. while in the second case the proof is a
bit more tedious and it is given in the appendix A. From
these results, then, it follows that

|\[") o~ I‘l‘)' f—l ‘\,»"J] .]3.1’3 = JJTS[ or ;’l_; = ([} &k ]lll) real.
(34)

where a pure state belonging to C? @ C* @ C? is said to
be real when there exists a product basis where all the
coeflicients are real.

To summarize, five independent quantities invariant
under local unitaries are needed to specify the non-local
properties of a generic three-qubit pure state. The coef-
ficients appearing in the decomposition (11) form a com-
plete faithful and minimal set of such invariants, when
constrained as explained after (11). The polynomial in-
variants given in (18) must be completed with /5 in order
to solve the ambiguity between the orbits associated to
[W) and 4", and from the values of these polynomial
invariants one can build a unique canonical point rep-
vesenting the orbit. Also when [W) and [W)" are in the
same aorbit there exists a product basis where all the co-
ordinates of W) are real, as it happens for pure states of
hipartite systems.

Let us mention finally that any real state can be writ-
ten with real coeflicients in terms of a set of six LBPS,
adding the state |011) to (3) or to the first of (5). This is
done by diagonalizing T}, with two orthogonal matrices.

IV. MINIMAL DECOMPOSITION

We liave seen that a generic three-qubit pure state can
always be written in terms of five product states f{rom
any of the sets of states in (1), (4) or (5). However it is
not clear which set should be used to find the minimal
decomposition, that is, the one with the least number
of non-local parameters. The minimal number of LBPS
needed to specify a state | W) will be denoted by v(W¥). We
know that in general » = 5 but now we want to analyze
the cases in which # < 5. In this section we present
a complete classification of the three-qubit pure states
according to this minimal number of product states. We
also give necessary and sufficient conditions written in
terms of the invariants {J;} to be satisfied by the states
The number ol non-local parameters in
each family i1s » — 1. since all the coefficients are real. All
the families satisfy condition (32).

ol each class.

A.v=4

There are several subfamilies of states that allow for a
decomposition in terms of four LBPS.

Type 4a: This subfamily is given by the states with
pg = 0 in (11). It is easy to prove that this condition is
equivalent to Jy; = 0 (we will take the rest of invariants
different from zero, unless otherwise specified). Condi-
tion (32) 1s also satisfied with J5 > 0, since all the phases
can be absorbed.

Type 4b: States with gy = 0 (ug = 0) in (11). The
equivalent conditions in term of the invariants are Jy =
Js =0 (Js = Js = 0). Let us mention that there is an
apparently lack of symumetry in this subfamily, but this
is due to the fact that party A has been singled out in
the determinations of the decomposition (11). In fact the
analogous states with ,J; = J5 = 0 are written with four
termns if either party B or C is singled out in (7-10).

Type 4c: States with gy = 0in (11). It can be proved
that the corresponding conditions in terms of the invari-
ants are JyJy + Sy Jo + L Js + Jody = Sy Jeds = —';—
Again the lack of symmetry is due to the fact that party
A is privileged in the caleulation of the decomposition
(11). Analogous condition can be found interchanging
the role of the indices 1, 2 and 3, which means that the
minimal decompositions is obtained if one of the other
two parties is singled out in (7-10).

Type 4d: States with kg = 0 in (15). 1t is proved in
appendix B that the corresponding condition, apart from
(32), which is always satisfied when v < 5,18 A; = 0.

B.v=3

Now we move to the study of those states that can be
expressed as a sum of three LBPS.

Type 3a: This subfamily is given by taking py = g =
0'in (11). The equivalent conditions for the invariants are
Ja=0and JyJo+ J1ds + Jods = /T Jads = 2.

Type 3b: These states correspond to the case By =
e = 0 in (11), for j, k € {1,2,3} and j # k. These
conditions expressed in terms of the invariants are J; =
Ju=Je=0,

C.p=12

The states with two product states built from local
bases are just in two classes.

Type 2a: J; = 0 except Jy(Ju, Js). and these are
the states where party A(B,C) is not entangled with the
other two parties, so there is not truly three-party entan-
glement.

Type 2b: J; = 0 except Jy, they include the standard
GHZ state.



Typel: J; = 0, and these are the product states where
there is no correlation between the parties.

E. Summary

All the states belonging to C* @ C* @ C* have been
classified in terms of the minimal number, v, of LBPS
required to express the state, and the resulting families
of states are shown in table . Generically five terms are
needed, although there are cases where v < b. Necessary
and sufficient conditions in terms of the set of invariants
{J;} are given, which can be used to recognise the sub-
family a three-qubit pure state belongs to. Once this has
been done, we have provided the procedure that has to
be applied in order to find this minimal decomposition
with product states.

V. GENERALIZATION TO MORE PARTIES

The decomposition (11), which generalizes the bipar-
tite Schimidt decomposition, has been proved to be very
fruitful for the case of three-qubit pure states, so it will
be convenient to know the way it can be generalized to
more parties. In this section first we will consider with
some details the case of four-qubit systems and this will
give us insight into the difficulties found when we try to
extend our results.

The procedure to be applied for the generalization of
decomposition (11) for pure states belonging to C* @ C* &
C*®C?, i.e. states W) =3, ., tijki|ijkl) shared by four
parties A, B, C' and D, will be now described. First we
define the two hypermatrices [15]

(T3)jut = i, (35)
which means that the initial state is interpreted as
|¥) = |0)[60) + [1)]61), (36)

where |¢;) are, up to normalization, three-qubit pure
states, their coordinates being given by the elements
of the corresponding hypermatrix 7;. The effect of the

change of local bases is very similar to the one described
for three-qubit systems: a unitary transformation on sys-
tern A mixes the coordinates of the two |¢;), while uni-
tary transformations on the rest of subsystems can be
used to make zero some of their coefficients. Now we
apply the change of local bases on A that gives

Hdet (77) = 0, (37)

and afterwards unitary transformation on B, C and D are
used to write the new |¢() in the canonical decomposition

6

found for three-qubit pure states. Since (37) s verified,
it is known that |¢{) belongs to, at least, type 4a states,
so we will manage to write the initial state |W) in terms
of the twelve product states:

[0000), [0100), [0101), [0110).
11000), [1001), [1010), [1011),

11100, [1101), [1110), [1111). (38)

A simple counting of parameters gives that the min-
imal number of LBPS needed to specify a state [W) £
C?aC*@C? @ ? is exactly twelve. The decomposition we
have found depends on twenty-four non-local parameters
but it is known that by phase redefinitions, 1.e.
locally with {/(1), five phases can be absorbed (generi-
cally, for N parties N + 1 coeflicients can be made real),
so the number of non-local parameters is nineteen (in-
cluding the norm), as it was expected [2].

However some problems arise in this case. Many de-

acting

compositions in terms of the set of states (38) are pos-
sible for the same state. In fact (37) is a fourth degree
equation, so four solutions will be found and from these
solutions four different decompositions will be derived.
For the case of three-qubit pure state there were two
solutions for (8), but we managed to obtain a unigue
decomposition by limiting the range of . A similar rea-
soning seems not to be trivial for this case. Furthermore
for pure four-qubit states more inequivalent set of twelve
product states appear, and this will difficult the analysis
of the minimal decomposition. The generalization of de-
composition (11) to N-qubit pure states (N > 3) is then
quite cumbersome.

Finally, it has to be noted that the algorithm proposed
in [12] for the decomposition (15) can be also extended
to higher dimensional systems. Let us mention however
that, in any case, as the dimension of the space increases,
the number of coeflicients that can be made equal to zero
in any of the decompositions becomes irrelevant.

VI. CONCLUSIONS

In this work we have studied the canonical forms of
pure three-qubit states, extending the known results of
bipartite systems.

First we show the possible generalizations ol the
Schmidt decomposition and we relate one of these de-
compositions (11) to the polynomial invariants of [2-9].
The six linearly independent polynomial invariants of [7]
are not able to diseriminate betwee the entanglement or-
bits associated to a state and its complex conjugate in a
product basis. An additional polynomial invariant intro-
duced in [17] has to be used, and we have seen how to
connect this complete set of polynomial invariants with
our generalization of the Schmidt decomposition, Indeed
it is shown how to find a canonical point in a generic



orbit described by this complete set of invariants. Let
us mention here that a three-qubit pure state [¥) and
its complex conjugate |W)" give the same optimal prob-
ability of distilling a maximally entangled state of three
qubits, in the single-copy case [14].

We hiave also looked for the decomposition of any state,
|W). with the minimal number. v(W¥). of product states
built from local bases. Generically this number is equal to
five, although many exceptional states have been found
with < 5. We have been able to give a complete clas-
sification of these states by means of a set of necessary
and sufficient conditions written in terms of the set of
invariants (20). The procedure to be applied in order
to build the minimal decomposition for every state has
been given too. The classification of the pure three-qubit
states 10 terms of their entanglement properties can be
done following alternative eriteria to the one described
here, which is based on the features observed acting with
the group of local unitary transformations. A possible
approach is to classify the states looking for their prob-
abilistic conversions under local operations and classical
comunication (LOCC) for the single-copy case (see [13]
and also [14,18]) or in the asymptotic regime [19]. It
wonld be expected that these classifications are a coarse-
eraining of the one presented in this work. In fact this is
the case for the equivalences classes under LOCC given
in [14].

Finally it has been indicated how to extend decompo-
sition (11) to systems of more parties. A simple counting
of parameters shows that at least 2V — N product states
built from local bases are needed in order to specify a
generic N-qubit pure state, and for four qubits we suc-
ceeded to find a procedure that makes zero four of the
coordinates ¢;;5. The decomposition (15) allows for a
sitnpler generalization. However, in all the cases some
diffienlties arise, related to the uniqueness of the decom-
positions, and it is not clear whether these generalized
Schimidt decompositions are quite useful for composite
systens of more than three qubits.

APPENDIX A: REAL STATES

In this appendix we will show that, given a pure three-
qubit state |v) € C* @ C* & C?, this state is real, i.e. there
exists a product basis for which all coefficients are real.
il and only if Vi Jads = %l or Ay =10.

Consider the case of astate |¢) = ZM’,‘, Liji|ijh) where
all the ;5 are real. Now we will follow the procedure de-
seribed by the equations (7-10) that gives nus the decor-
position (11). Since the initial coordinates are real, from
(8) a second degree equation in @ with real coefficients is
obtained, and this implies that the two solutions, & and
2, satisfy that either they are both real or @ = 27, In
the first case, the caleulation of the decomposition can
be performed using orthogonal matrices, and since the

e |

initial coordinates were real, we will obtain a real de-
composition, i.e. ¢ = 0,7, which is equivalent to (32).
For the second case, since x = &*, tr(T51T3) = te(T31T}),
and then pp = jip and (33) is satisfied.

Now, the inverse has to be proved. For the first case
it is clear that all the states verifying (32) take real co-
ordinates when they are expressed in the basis used in
decomposition (11). For the second case the proof is not
so trivial,

Consider a generic state, |¢), having A equal to zero.
The parametrization of this family of states is simplified
using (16). so let us first mention some facts about this
decomposition. As it has been shown, any state with
J4 # 0 can be written as (16) [9,13] where

1
x= /\——w Jy+Jy
4

1
B = /\—4\/;!-.4!:; + palpa + po + pa)

§ = arg(MA4e™ — Aalg), (39)

and, up to unitary transformations.

0y = (é) o) = (cos7,.

sin v;
It can be proved that when A; = 0 the coefficients o and
A are equal and then the states to be studied are

),£=1,2,3. (40)

|6) = @ (|000) + € |p1p203)) - (41)

Recall that for these states the complex conjugate is in
the same orbit as the original one, and this means that

. _ 1.2 .3
bije = E ViaVsyVielabes

where ¢, ;. are the coordinates in some product basis and
) and v, are the elements of the local unitary

(42)

LIE, f}",)'
tar “jb i
matrices, V! in A, V? in B and V¥ in C, connecting
the two states. From (41) it follows that these unitary

(JpE]‘at()l’S are
(43)

where ¢; = cosv;, s; = siny; and 8’ = % (actually, the
phase factors in the matrices V' can be given by arbi-
trary angles d; satisfving the constraint ), d; = 4, but

we choose these angles for simplicity).

Now we would like to find a product basis for which
all the coeflicients are real, i.e.
t:;.‘. = Z wi'lrr.'w;:;b?'hgcf'ﬂbf = t:;k (44)
and from this condition and using (42), we have
vi=(W)Tw'. (45)



The explicit form of each V*, (43), as a product of a phase
factor and a real and symmetric matrix allows to write
them as

: S o

Vi {__—16 {O:]T Do, (‘“‘5}
where O' are orthogonal matrices and D' are diagonal
matrices with entries 1. The change of basis we are
looking for then is given by

—I'ﬁ,' 25

W = (D)0 = =" ( % & ) )

where & = cos L, § = sinZ and §” = £. The new
coordinates obtained applying these local change of basis

are, up to normalization,

M= FiFad 9_ g = _ph s o i
pop —  C1€203 COS 0op = —C1C283 SN0 ;
2 2
thyg = —F1 8285 sin é il = —Py 893 Cosvd—
oio — '1‘.3'.5"3“2 01 = M1 8083 b 2
tl = —5;0afy Sin '(E f" = —§1Ca8§: CU\GE
100 = —H10203 510 3 101 = —S51C283 COS
2 2
d )
! TR = o b momomoa
t11p = —5152€3C08 3 th11 = #18283sIn 2" (48)

This ends the proof.

APPENDIX B: TYPE 4D

In this section we prove that a three-qubit pure state
|t) can be written as

[£) = 13 ]001) + 12]010) + 13]100) + [4]111), (49)

with real and positive coefficients, if and only if (32) and
(33) are verified.

Starting from (49) we can apply the procedure given by
(7-10) to obtain (11). It can be seen that all the unitary
matrices needed for the determination of this decompo-
sition are real, i.e. they are orthogonal, and since the
original coefficients {l;} were also real, we will obtain a
real decomposition with (32). Moreover, it can also be
proved that the two matrices obtained after (8), 7] and
T3, corresponding to the two solutions of this equation,
z and &, verify

tr((T5)'75) = te((T3) 7). (50)

This condition implies that pg = jig, and using (24) we
have also (33).

Now we prove the inverse. Consider a state |¢) satis-
fying (32) and (33). Because of the latter condition, the
state allows for a decomposition as (41). Moreover, since
(32) is also satisfied, we have ¢ = 0,7 in (11), and this
implies, using (39), that & = 0, 7. The generic expres-
sion for a state satisfying both the conditions can be now
given,

|4) = a(|000) % [p1p21)). (51)

If we perform the local change of bases described by (47)
it can be seen, using (48) and the fact that § =0, 7. that
the state |¢) is of type 4d. Indeed, the new coordinates
are, after absorbing the phases and up to normalization,

I] = §] .§3(T‘3 12 = -;1("3-‘:"3 If:; = r_'1.;-_;“;3 .{..; = rh‘lrx'gf';i.

(H2)
for d = 0, and

JI = 51625’3 "'l'l — .‘h.ﬁ;,.;;g.

(53)

for § = w. Note that the local bases that appear in
(49) are the ones that diagonalize the local density ma-
trices. This gives the procedure to be applied in order to
find the minimal decomposition without performing the
maximization of (14), which is generically a more difficult
calculation.
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110 111 110 111

100 101 100 101
010 011 010 011
000 001 000 001
(1) (1)
110 111

000 001

(111)

F1G. 1. The figure depicts the three inequivalent sets of
states given by (3), (4) and (5).

Type Conditions States
4a Jo=0, /Il =2 000), [100), [101), |110)
b fa=Js =0 000, [100), [110), |111)
dc | J1ds + 1 Jz + D1 Js + Jads =| |000), [101), |110Y, [111)

Vi =&
4d Ay =0,vhJ =L To01), |010), [100), [111)

3a 5idy ¥ dyds +dads = [000Y, [101), [110)
ViiJads = -)LA?J.; =0

b hhi=la=J;=0 [000Y, [110, [111)

2a All J; =0 apart from J; 000}, |011)

2h All J; = 0 apart from J4 000). |111)

1 J; =0 |UUU)

TABLE I. Classification of three-quantum-bit states. For
the types of states denoted by 4b, 4c, 3b and 2a, there exist
analogous condition interchanging the roles of the invariants
Jy,Jz Jy, and consequently the product states used in the
minimal decomposition,
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We introduce a classification of mixed three—qubit staies, in which we define the classes of separable,
hiseparable, W- and GHZ-states. These classes are successively embedded into each other, We show
that contrary to pure W-type states, the mixed W-class is not of measure zero. We construct witness
operators that detect the class of a mixed state. We discuss the conjecture that all entangled states
with positive partial transpose (PPTES) belong to the W-class. Finally, we present a new family

of PPTES “edge” states with maximal ranks.

03.65.Bz, 03.67.-4.03.65.Ca, 03.67.Hk

The rapidly increasing interest in quantum information
processing has motivated the detailed study of entangle-
tent. Whereas entanglement of pure bipartite systems
is well understood, the classification of mixed states ac-
cording to the degree and character of their entanglement,
is still & matter of intensive research (see [1]). It was soon
realised. that the entanglement of pure tripartite quan-
tun states is not a trivial extension of the entanglement
of bipartite systemns [2,1]. Recently, the first results con-
cerning the entanglement of pure tripartite systems have
been achieved [4-6]. There, the main goal has been to
generalize the concept of the Schmidt decomposition to

three-party systems [4.5], and to distinguish classes of

locally inequivalent states [6]. The knowledge of mixed
tripartite entanglement is much less advanced (see, how-
ever, [7T-9]).

In this Letter we introduce a classification of the whole
space of mixed three—qubit states into different entan-
glement classes. We provide a method to determine to
which class a given state belongs (tripartite witnesses).
We also discuss the characterization of entangled states
that are positive under partial transposition (PPTES).
Finally, we introduce a new family of PPTES for mixed
tripartite qubits.

Our proposal to classify mixed tripartite-qubit states
is done by specifving compact convex subsets of the space
of all states, whiclh are embedded into each other. This
idea vaguely resembles the classification of bipartite sys-
ters by their Sehimidt number [9-11]. However, as shown
later onr classification does not follow the Schmidt num-
ber [9]. Also in this respect, entanglement of tripartite
systeins differs genuinely from the one of bipartite quan-
fum systems.

Before presenting our results concerning mixed states,
we briefly review sorne of the recent results on pure three—
qubit states. Any three-qubit vector (pure state) can be
written as

| Vcnz) = Ao| 000) + Ape™®| 100) 4 Ao 101)
+ s 110) + A4 111) (1)

where Ay > 0, Y. A =1, 8 € [0,7] , and {|0),[1)} de-
notes an orthonormal basis in Alice’s, Bob’s and Charlie’s
space, respectively [4]. Apart from separable and bisepa-
rable pure states, there exist also two different types of lo-
cally inequivalent entangled vectors: the so-called GHZ-
type [2] and W-type [6]. Vectors belonging to GHZ- and
W-types cannot be transformed into each other by local
operations and classical communication (LOCC). Gener-
ically, a vector described by Eq.(1) is of the GHZ-type,
while W-vectors can be written as

[ Yw ) = Aa| 000) + Ay 100) 4 A2| 101) + Ag| 110).  (2)

W-vectors form a set of measure zero among all pure
states [6]. Also, given a W-vector one can always find
a GHZ-vector as close to it as desired by adding an in-
finitesimal Ay—term to the RHS of Eq.(2) [12]. Further-
more, the so-called tangle, 7, introduced in [13], can be
used to detect the type, since (| yw)) = 0 [6].

Mixed states of three—qubit systems can be classified
generalizing the classification of pure states. To this aim
we define (see Fig.1):

e the class S of separable states, i.e. those that can
be expressed as a convex sum of projectors onto product
vectors;

e the class B of biseparable states, i.e. those that can
be expressed as a convex sum of projectors onto prod-
uct and bipartite entangled vectors (A-BC, B-AC and
C-AB);

o the class W of W-states, i.e. those that can be
expressed as a convex sum of projectors onto product,
biseparable and W-type vectors;

o the class (G H Z of GHZ-states, i.e. the set of all phys-
ical states.

All these sets are convex and compact, and satisfy S C
B c W c GHZ. States in S are not entangled. No
gennine three-party entanglement is needed to prepare
entangled states in the subset B\ S. The formation of
entangled states in W\ B requires W-type vectors with
three-party entanglement, but zero tangle, which is an
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The rapidly increasing interest in quantum information
processing has motivated the detailed study of entangle-
ment. Whereas entanglement of pure bipartite systems
is well understood. the classification of mixed states ac-
cording to the degree and character of their entanglement
is still a matter of intensive research (see [1]). It was soon
realised. that the entanglement of pure tripartite quan-
tun states is not a trivial extension of the entanglement
of hipartite systems [2,3]. Recently, the first results con-
cerning the entanglement of pure tripartite systems have
been achieved [4-6], There, the main goal has been to
generalize the concept of the Schmidt decomposition to

three-party systems [4.5], and to distinguish classes of

locally inequivalent states [6]. The knowledge of mixed
tripartite entanglement is much less advanced (see, how-
ever, [T-9]).

lu this Letter we introduce a classification of the whole
space of mixed three—qubit states into different entan-
glement classes. We provide a method to determine fo
which class a given state belongs (tripartite witnesses).
We also discuss the characterization of entangled states
that are positive under partial transposition (PPTES).
Finally. we introduce a new family of PPTES for mixed
bripartite qubits,

Our proposal to classify mixed tripartite-qubit states
is done by specifving compact convex subsets of the space
of all states, which are embedded into each other. This
idea vagnely resembles the classification of bipartite sys-
ters by their Schmidt number [9-11]. However, as shown
later our classification does not follow the Schmidt num-
ber [9]. Also in this respect, entanglement of tripartite
systetns differs genuinely from the one of bipartite quan-
tum systems.

Before presenting our results concerning mixed states,
we briefly review some of the recent results on pure three-
qubit states, Any three-qubit vector (pure state) can be
written as

| Varz) = Ao| 000) + Ay’ 100) + Ay 101)
+ A3 110) + Ag| 111) (1)

where \; > 0, Y, A7 =1, # € [0,#] , and {|0), 1)} de-
notes an orthonormal basis in Alice’s, Bob’s and Charlie’s
space, respectively [4]. Apart from separable and bisepa-
rable pure states, there exist also two different types of lo-
cally inequivalent entangled vectors; the so-called GHZ-
type [2] and W—type [6]. Vectors belonging to GHZ- and
W-types cannot be transformed into each other by local
operations and classical communication (LOCC). Gener-
ically, a vector described by Eq.(1) is of the GHZ-type,
while W-vectors can be written as

| ) = Ao] 000) + Ay| 100) + Ag| 101) + Ag| 110).  (2)

W-vectors form a set of measure zero among all pure
states [6]. Also, given a W-vector one can always find
a GHZ-vector as close to it as desired by adding an in-
finitesimal Ay—term to the RHS of Eq.(2) [12]. Further-
more, the so-called tangle, 7, introduced in [13], can be
used to detect the type, since (] w)) = 0 [6].

Mixed states of three-qubit systems can be classified
generalizing the classification of pure states. To this aim
we define (see Fig.1):

e the class & of separable states, i.e. those that can
be expressed as a convex sum of projectors onto product
vectors;

e the class B of biseparable states, i.e. those that can
be expressed as a convex sum of projectors onto prod-
uct and bipartite entangled vectors (A-BC, B-AC and
C-AB);

e the class W of W-states, i.e. those that can be
expressed as a convex sum of projectors onto product,
biseparable and W-type vectors;

o the class GH Z of GHZ-states, i.e. the set of all phys-
cal states,

All these sets are convex and compact, and satisfy S C
B c W c GHZ. States in S are not entangled. No
genuine three-party entanglement is needed to prepare
entangled states in the subset B\ S. The formation of
entangled states in W\ B requires W—type vectors with
three-party entanglement, but zero tangle, which is an



entanglement monotone decreasing under LOCC [6]. Fi-
nally, the class GH Z contains all types of entanglement,
and in particular, GHZ-type vectors are needed to pre-
pare states from GHZ \ W. The introduced classes are
invariant under local unitary or invertible non-unitary
operations, while local POVM's [12] ean only transform
states from a “higher” to a “lower” class.

FIG. 1. Schematic structure of the set of all three-qubit
states. S: separable class; B: biseparable class (convex hull
of biseparable states with respect to any partition); W-class

and G H Z-class.

Notice that since GHZ-vectors can be expressed
the sum of only two product vectors, ie. |GHZ) =
(]000) + | 111))/+/2, whereas the minimum number of
product terms forming a W-vector is three [4,6], as in the
state | W) = (] 100) 4| 010)+]001))/+/3, our scheme may
seem somehow counterintuitive. Indeed, for bipartite sys-
tems, states with lower Schmidt number, i.e. lower num-
ber of product terms in the Schmidt decomposition, are
embedded into the set of states with higher Schmidt num-
ber [10]. One is tempted to extend this classification to
tripartite systems as S C B C GHZ C W, where now
W is the set of all states. However, such generalization
is evidently wrong, because the the set of GHZ-states in
such classification cannot be closed [12].

Having established the structure of the set of mixed
three—qubit states, we show how to determine to which
class a given state p belongs. To this aim, we use the
approach developed previously in the construction and
optimisation of witness operators [11,14,15].

We denote the range of p by R(p), its rank by r(p), its
kernel by K'(p), and the dimension of K (p) by k(p). Fol-
lowing the approach of the best separable approximation
(BSA) [16], one can decompose any state p as a convex
combination of a W-class state and a remainder 4,

as

(3)

where 0 < Ay < 1, and R(d) does not contain any
W-vector. Maximization of Ay leads to the hest W-
approximation of p. Notice that only for p belonging to
the GHZ \ W-eclass, this decomposition is non-trivial,
Aw # 1. Also, r(d) = 1, since any subspace
spanned by two linearly independent GHZ-vectors con-
tains at least one pure state with zero tangle. In fact,

p=Awpw + (L =Aw)d ,

l.e.

given | 4) and | ¥2) with 7(|¢1)) and 7(| v)) not equal
zero, it is always possible to find some @. 1 such that
| e, B)) = a|dn) + Bl wba) is normalized, and its tangle
is zero. Therefore, any W-approximation must have the
form:

p=Awpw + (1= Aw)| veuz)(Vouz | . (1)

Similarly, one can express p in the best biseparable ap-
proximation as:

p=Appp + (1 —=2Ag)d . (5)

where now R(4) must not contain any biseparable states,
i.e. r(d) < 4, since any N-dimensional subspace of the
2 x N space contains at least one produet vector [17].

We use the above decompositions to construct opera-
tors that detect the desired subset (see [15]). In anal-
ogy to entanglement witnesses and Schinidt witnesses we
terin these operators tripartite witnesses. The existence
of witness operators 1s a consequence of the Halin-Banach
theorem, which states that a point outside a convex comn-
pact set is separated from that set by a hyper-plane.
The equation Tr(Wp) = 0 describes such a hyper-plane,
and one calls W a witness operator. For example, in
our setting, a W—witness is an operator Wy such that
Tr(Wwpr) > 0 holds Ypg € B, but for which there
exists a pyw € W\ B such that Te(Wyypw ) < 0.

Any GHZ-witness (W-witness) has the canonical form
W = @ — ¢l, where ) is a positive operator which has
no W-type (B-type) vectors in its kernel; thus k(Q) = 1
(k(Q) < 4) [11,15]. An example of a GHZ-witness is

]

Wenz = 31— Pouz . (6)
where Pgpz is the projector onto |GHZ). The value
3/4 corresponds to the maximal squared overlap he-
tween |GHZ) and a W—vector. This construction guar-
antees that Tr(Wemzpew) > 0 for any Wostate, and
since Tr(Wenz Panz) < 0, there is a GHZ \ W-state
which is detected by Wz, The maximal overlap is
obtained as follows: due to the symmetry of |(H %)
we only need to consider W-vectors that are symmet-
ric under the exchange of any of the three qubits [18].
Therefore, we have to consider all local trilateral rota-
tions of |tw) = ko|000) + k([ 100) + [010) + [001)),
where Ky, %1 are real and &2 4+ 357 = 1. Due to the
symmetry, such rotations can be parametrised for all
parties as [0) — al0) + #]1), |1} = 87]0) — a*|1),
with |a|* + |A|* = 1. Thus, the overlap (GHZ [y
is a function of six parameters with two constraints. and
can be maximized using Lagrange multipliers. An op-
timal choice of parameters is #y = 0, x; = 1/V3. and
A = —a=1/v2. This leads to |(GH Z [w) |2, 00 = 3/4.

Analogously, we can construct a W-witness as

2
Ww, = ql — Pw . (7)



where Py is now the projector onto a vector | W), and
2/3 corresponds to the maximal squared overlap between
| W) and a B-vector. Another example of a W-witness
is
1
Ww, = 51 — Pouz. (8)
where now 1/2 is the maximal squared overlap between
|GHZ) and a B-type vector [19]. The W-vector that
has maximal overlap with |GHZ) is detected by Wy, .
The tripartite witness Wiy, allows to prove that the
class of mixed W\ B-states is not of measure zero: con-
sider the family of states in C* @ C* @ C* given hy the
convex sum of the identity and a projector onto a W-
state,

=1t Py (9)
Obviously, the states (9) belong at most to W. The
range for the parameter p, in which Wiy, detects p, i.e.
Tr(Why,p) < 0, is found to be 3/5 < p < 1, and is bigger
than the one found by using Wy, . Taking any p which
has a finite distance to the border of this interval, i.e.
p—>34/5 > Nand 1 —p > A, it is always possible to
find a finite region around p which still belongs to the
W\ B-class. This can be seen by considering

p=(1—¢) [1;—'UI+;':PW:| +¢eo (10)
where o is an arbitrary density matrix, which covers all
directions of possible deviations from p in the opera-
tor space. In the worst case o is orthogonal to Pupz.
so that Tr(Pepze) = 0. and therefore Tr(Ww,p) =
(1 — e)Tr(Ww,p) + /2. As long as the relation € <
(hp—3)/(5p+ 1) holds. the corresponding state g is still
detected by Wy, . Moreover, one can also find a finite
¢ such that if ¢ < ¢ then g is in the W-class. The
bound ¢ is obtained, for instance, by demanding that
(1= )1 —=p)1/8+¢'m is biseparable. The intersection of
the two intervals gives a finite range for € where the state
fris in the W\ B-class. This proves that the set of mixed
W\ B-states contains a ball, i.e. is not of measure zero.
We discuss now some possible consequences of our re-
sults for PPTES of three qubits, for which the partial
transposes p'4, pT# and p7¢ are positive. Any of these
states can be decomposed as:
P = Agpy;-i—(l—)\s][s y [11}
where pgs is a separable state and 4§ is an edge state [20].
We conjecture that PPTES cannot belong to the GHZ
\ W-rlass, i.e. they are at most in the W-class. This
conjectiure is rigorous for states that have edge states with
low ranks in the above decomposition. It was shown in
[17] that for bipartite systems in C* @ CV, the rank of

PPTES must be larger than N, and if »(p) < N and
pT4 > 0, then the state p is separable. Thus, any PPTES
of three-qubits with r(p) < 4 is biseparable with respect
to any partition; an example of such states are the UPB-
states from Ref. [T].

For the case of higher ranks we can only give some
support for our conjecture. We proceed as in [11], and
observe first that it suffices to prove the conjecture for
the edge states. For these states, the sum of ranks sat-
isfies 7(8) + r(d74) + r(678) + r(67c) < 28 [20]. Any
PPT entangled state can only be detected by a non-
decomposable entanglement witness, which in the case of
tripartite systems has the canonical form Wy = Wa—el
where Wy P+ ZQ}*’ is a decomposable operator
with P.Qx > 0, R(P) = K(d), R(Qx) = K(é7*)
for some edge state §, and X = A, B,C [20]. We re-
strict ourselves to edge states with the maximal sum of
ranks, i.e. states & with (r(d),r(67T4),r(67%),r(67<)) =
(8,8,7,5),(8,8,6,6),(8,7,7,6),(7,7,7,7) and permuta-
tions. Indeed, if the conjecture is true for these states, it
will be true for all edge states, and thus for all PPTES,
since the edge states with maximal sum of ranks are dense
in the set of all edge states [11]. We conjecture that for
the case of edge states with maximal sum of ranks it
is always possible to find a pure W-type vector, | édw),
such that for any non-decomposable witness W4 of 4,
{ow |Wd|a5w> < 0, so that {tf.';-y |ij[¢lw) < (0. That
means W, s cannot be a GHZ-witness, so the edge state
d belongs to the W-class. If this holds for any & it implies
that all PPTES belong to the W—class.
Any W-vector can obtained by
ible operations applied to |W) ie.  can be writ-
ten as |éw) axles, fiun) + apler, f2,01) +
acler, fi,ge). We denote [@4) = |e€3, fi,g), |Wa) =
agp|el, fo, 1) + aclel, fiige), |®B) lev, f3,91),
|W ) aales fi,m) + acler, fi,92), |®c) =
ler, fi.95), [Wc) = aales, fi.97) +ag|er, fo, 7). In or-
der to fulfill the condition (pw |[Wa| ow) < 0 we demand
that Qx|Px) = 0; Plgw) = 0, and Qx|¥x) = 0 for
X = A, B,C. The latter 4 conditions form 4 linear ho-
mogeneous equations for the ax’s, whose solutions exist
if two 3 x 3 determinants vanish. Together with the first
3 conditions this gives at most 5 equations in the case
r(d) < 8, and 6 equations in the worst case r(d) = 8, for
the 6 complex parameters characterizing |e;). | fi), and
|gi), with ¢ = 1,2. For r(d) < 8 (r(d) = 8) one ex-
pects here a one complex parameter (finite, but large)
family of solutions. At the same time (¢w |[Wa|dw) =
2Re Y ax (W |QLF| @), (where | ®*X) denotes par-
tial complex conjugation with respect to X) ie. is a
hermitian form of ax’s, whose diagonal elements van-
ish. since | Wy ) does not depend on ay. Employing the
freedom of choosing the solutions from the family, one
expects to find at least one with (¢w |[Wa|dw) < 0. In
this way we obtain the W-vector we were looking for.
For the cases (6,8,8,6) and (5,8,8,7), a similar argu-

be local invert-



ment indeed shows that there should exist a biseparable
state, | ¥g). such that (g [W, 4| ¥g) < 0. Note that the
above method of searching |iw) (| ¥g)) for a given 4, if
successful, provides a sufficient condition for § to belong
to the W-class (B-class).

Finally, we present an example for a PPTES entangled
edge state with ranks (7,7,7,7). We introduce

(1000000 1)
0a000000
00600000
1fo00c0000 _
P=%l0000Lo000 (12)
00000200
0000004%o0
\1000000 1)

with a,b,e > 0and n=24a+1/a+b+ 1/b+c+ 1/r.
The basis is {000,001,010,011,100,101,110,111}. This
density matrix has a positive partial transpose with re-
spect to each subsystem. One sees immediately that
r(p) = r(p™) = r(p"®) = r(p"4E) = 7. In order to
check that p is a PPT entangled edge state, one has
to prove that it is impossible to find a product vec-
tor |@) € R(p), such that at the same time |d*¥) &
R(p™) for X = A, B,C. This, indeed, is not possi-
ble, as one readily concludes by looking at the kernels
directly: one cannot find a produet vector |¢) that is
orthogonal to |000) — |111), whereas at the same time
|¢*4) L |011) — ¢|100), |é*#) L |010) — b 101), and
[é*)y L |001) — al 110), unless the condition ab = ¢ is
fulfilled. Thus, for generic a, b, ¢ we have found a family
of bound PPT entangled edge states of three qubits with
maximal sum of ranks. By direct inspection we observe
that p fulfills our conjecture. and is biseparable with re-
spect to any partition. It can be written e.g. as a sum
of separable projectors and a B-state acting in the 2 x 2
subspace spanned by Alice’s space and the vectors |00)
and | 11) in Bob’s-Charlie’s space.

To surnmarize, we show that the set of density matri-
ces for three qubits has an “onion” structure (see Fig.1)
and contains convex compact subsets of states belonging
to the separable S, biseparable B, W— and (G H Z-class,
respectively. We provide the canonical way of construct-
ing witness operators for the G'HZ~ and W-class, and
give the first examples of such witnesses. The study of
the family of tripartite states given in Eq. (9 ) allows us
to prove that the W—class is not of measure zero. We
conjecture and give some evidence that all PPTES of
three—qubit systems do not require GHZ-type pure states
for their formation. We formulate a sufficient condition
which allows to check constructively if a state belongs to
the W-class (B-class). Finally, we present a family of
PPT entangled edge states of three qubits with maximal
sum of ranks.
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Three-party entanglement from positronium
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The decay of orthopositronium into three photons produces a physical realization of a pure state with
three-party entanglement. Its quantum correlations are analyzed using recent results on quantum information
theory, looking for the final state that has the maximal amount of Greenberger, Horne, and Zeilinger like
correlations. This state allows for a statistical dismissal of local realism stronger than the one obtained using

any entangled state of two spin one-half particles.

DOI: 10.1103/PhysRevA.63.042107

I. INTRODUCTION

Entanglement or quantum correlations between many
space-separated subsystems has been recognized as one of
the most intrinsic properties of quantum mechanics and pro-
vides the basis for many genuine applications of quantum
information theory. It is, then, quite natural to look for physi-
cal situations in which quantum entangled states are ob-
tained. Most of the theoretical and experimental effort has so
far been devoted to unveil physical realizations of quantum
states describing two quantum correlated subsystems. The
search for physical systems displaying clean three-party en-
tanglement is not simple. In this paper, we shall analyze
decays of particles as a natural scenario for fulfilling such a
goal. More precisely, we shall show that the decay of ortho-
positronium into three photons corresponds to a highly en-
tangled state. Let us now review what entanglement can be
used for and why it is interesting to look for quantum corre-
lation between more than two particles.

In 1935 Einstein. Podolsky. and Rosen [1], starting from
three reasonable assumptions of locality, reality, and com-
pleteness that every physical theory must satisfy, argued that
quantum mechanics (QM) is an incomplete theory. They did
not question quantum mechanics predictions but rather quan-
tum mechanics interpretation [2], Their argument was based
on some inconsistencies between quantum mechanics and
their local-realistic premises (LR) that appear for quantum
states of hipartite systems, ffﬁ)EHdi@Hdw. It was in 1964
when Bell [3] showed that any theory compatible with LR
assumptions cannot reproduce some of the statistical predic-
tions of QM. using a gedankenexperiment proposed in Ref.
[4] with two quantum correlated spin-+ particles in the sin-
glet state

|
|.\-)=J—E(]t_}1}—|1n)}. (1)

In his derivation, as it is well-known, quantum correlations
or entanglement have a crucial role. Actually, the singlet
state is known o be the maximally entangled state between
two particles. The conflict between LR and QM arises since
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the latter violates some experimentally verifiable inequali-
ties, called Bell inequalities, that any theory according to the
local-realistic assumptions ought to satisfy. It is then possible
to design real experiments testing QM against LR (for a de-
tailed discussion see Ref. [5]). Correlations of linear polar-
izations of pair of photons were measured in 1982 showing
strong agreement with quantum mechanics predictions and
violating Bell inequalities [6]. Nowadays, Bell inequalities
have been tested thoroughly in favor of QM [7].

More recently, it has been pointed out that some predic-
tions for quantum systems having quantum correlations be-
tween more than two particles give a much stronger conflict
between LR and QM than any entangled state of two par-
ticles. The maximally entangled state between three spin-%
particles, the so-called Greenberger, Horne, and Zeilinger
(GHZ) state [8]

|
|GHZ)= ﬁ(]t}nowm)) (2)

shows some perfect correlations incompatible with any LR
model (see Ref. [2] and also Ref. [9] for more details). It is
then of obvious relevance to obtain these GHZ-like correla-
tions. Producing experimentally a GHZ state has turned out
to be a real challenge yet a controlled instance has been
produced in a quantum optics experiment [10].
Entanglement is then important for our basic understand-
ing of quantum mechanics. Recent developments on quan-
tum information have furthermore shown that it is also a
powerful resource for quantum information applications. For
instance, teleportation [11] uses entanglement in order to ob-
tain surprising results, which are impossible in a classical
context. A lot of work has been performed trying to know
how entanglement can be quantified and manipulated. Our
aim in this paper consists on looking for GHZ-like correla-
tions, which are truly three-party pure state entanglement, in
the decay of orthopositronium to three photons. The choice
of this physical system has been motivated mainly by several
reasons. First, decay of particles seems a very natural source
of entangled particles. Indeed, positronium decay to two
photons was one of the physical systems proposed a long
time ago as a source of two entangled space-separated par-
ticles [12]. On a different line of thought, some experiments
for testing quantum mechanics have been recently proposed
using correlated neutral kaons coming from the decay of a ¢
meson [13]. In the case of positronium, three entangled pho-

©2001 The American Physical Society
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tons are obtained in the final state, so it offers the opportu-
nity of analyzing a quantum state showing three-party corre-
lations similar to other experiments in quantum optics.

The structure of the paper goes as follows, We first re-
view the quantum states emerging in both para- and orthop-
ositronium decays. Then, we focus on their entanglement
properties and proceed to a modern analysis of the three-
photon decay state of orthopositronium. Using techniques
developed in the context of quantum information theory, we
show that this state allows in principle for an experimental
test of QM finer than the ones based on the use of the singlet
state. We have tried to make the paper self-contained and
easy to read for both particle physicists and quantum infor-
mation physicists. The former can find a translation of some
of the quantum information ideas to a well-known situation,
that is, the positronium decay to photons, while the latter can
see an application of the very recent techniques obtained for
three-party entangled states, which allow to design a QM vs
LR test for a three-particle system in a situation different
from the GHZ state.

I1. POSITRONIUM DECAYS
A. Positronium properties

Let us start remembering some basic facts about positro-
nium, Positronium corresponds to a e "¢~ bound state. These
two spin-# particles can form a state with total spin equal to
zero, parapositronium (p-Ps), or equal to one, orthopositro-
nium (o-Ps). Depending on the value of its angular momen-
tum, it can decay to an even or an odd number of photons as
we shall see shortly.

Positronium binding energy comes from the Coulomb at-
traction between the electron and the positron. In the nonrel-
ativistic limit, its wave function is [14]

e—(rhll

mi

qr(:—):

) SO

=f—je'*‘"“ﬁp)
{27].)_"!'.

dp .. \8a®
=J e ; (3)
(2m)3" m(1+a’p?)?

where a=2/(me), i.e., twice the Bohr radius of atomic hy-
drogen, and m is the electron mass. Note that the wave func-
tion takes significant values only for three momenta such that
p=l/a<m, which is consistent with the fact that the system
is essentially nonrelativistic,
The parity and charge conjugation operators are equal to
Up=(—1)* Ue=(—1)**, )

where L and § are the orbital and spin angular momentun,
Positronium states are then classified according to these
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quantum numbers so that the ground states are 'S, with
JPC=0"", for the p-Ps and 3§,+%D,. having J7C=1
for the o-Ps.

Positronium is an unstable bound state that can decay o
photons. Since a n-photon state transforms as Ug|ny)
=(—1)"|ny) under charge conjugation, which is an exact
discrete symmetry for any QED process such as the decay of
positronium, we have that the ground state of p-Ps (0-Ps)
decays to an even (odd) number of photons [15]. The analy-
sis of the decay of positronium to photons can be found in a
standard QED textbook [14]. Parapositronium lifetime is
about 0.125 ns, while for the case of orthopositronium the
lifetime is equal to approximately 0.14 us [16],

The computation of positronium decays is greatly simpli-
fied due to the following argument. The scale that controls
the structure of positronium is of the order of [p|~am. On
the other hand, the scale for postrinomium annihilation is of
the order of m. Therefore, it is easy to prove that positronium
decays are only sensitive to the value of the wave [unction at
the origin. As a consequence, it is possible to factor out the
value of the wave function from the tree-level QED final-
state computation [14]. A simple computation of Feymann
diagrams will be enough to write the precise structure of
momenta and polarizations that describe the positronium de-
cays. Furthermore, only tree-level amplitudes need to be
computed since higher corrections are suppressed by one
power of e. Let us now proceed to analyze the decays ol
p-Ps and o-Ps in turn.

B. Parapositronium decay

Parapositroninm ground state decays into two photons.
Because of the argument mentioned above, the determination
of the two-photon state coming from the p-Ps decay is sim-
ply given by the lowest-order Feynmann diagram ol ¢ "¢
—y7y. Since positronium is a nonrelativistic particle to a
very good approximation, the three momenta of ¢ * and ¢
are taken equal to zero, and the corresponding spinors are
replaced by a two-component spin. This implies that the tree-
level calculation of the annihilation of p-Ps into two photons
is equal to, up to constants,

Mete —yy)~xTM,x_ . (5)

where (see Ref. [14] for more details) y. is the two-
component spinor describing the fermions. y*'= yio,, and
M, gives

My= D, (XX -klya=Aki, Ny iky X0 502, (6)

perm

where ef=¢*(k;.\;) stands for the circular polarization
vector associated to the outgoing photon / and /., is the
2 X2 identity matrix. More precisely. for a photon having the
three-momentum  vector k= |k|k=|k|(sin #cos d.sin Hsin
¢h,cos 6), the polarization vectors can be chosen
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- A
e(k.h)=— —Eg_-(cns #cos d—ik sin h.cos 8 sin ¢
v

+1ik cos ¢, —sin 8), (7

where A =21 and they obey

E-e(BN)=0, kxekN)=—iNe(kN),

From the expressions of the polarizaton vectors and the
three-momentum and energy conservation, it follows that the
scalar term A is

) . i
A(k.hl;_k'}\g}:_?{}\l"')\z}e (9)
and it verifies
Ak +1:—k,+1)=—A(k,—1;—k,—1),

Ak, +1;—k,—1)=—A(k,+1;:—=k,—1)=0. (10)

The two fermions in the parapositonium ground state
are in the singlet state, [§=0.5,=0)=1/V2(|},—%)
—|=%.%)), and then, using the previous relations for A and
Eqg. (5). the two-photon state results of the p-Ps desintegra-
tion is

1
|f[fP =—(|++)=|-=)). (11)
2

V&

The two-photon state resulting from p-Ps decay is thus
cquivalent to a maximally entangled state of two spin-% par-
ticles. This is a well-known result and was, actually, one of
the physical system first proposed as a source of particles
having the quantum correlations needed to test QM vs LR

[12].

C. Orthopositronium decay

The ground state of orthopositronium has J*“=1""" and,
due 1o the fact that charge conjugation is conserved, decays
to three photons. Repeating the treatment performed for the
p-Ps annihilation, the determination of the three-photon state
resulting from the 0-Ps decay requires the simple calculation
of the tree-level Feynmann diagrams corresponding (o
¢'¢ —yyy. lis tree-level computation gives, up to con-
stants.

M(e'e —yyy) ~xTMax_, (12)

and the 2 X2 matrix M5 is equal to [14]

Mi= 2

cyelic perm.

[(ef e =8y by)ef

+(€e¥ b3+ 15,0810, (13)
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where
S=Fk:X e, (14)
Using Eq. (8) we can rewrite M5 in the following way:
My=c-V(ky \yikg, Naika Ng), (15)
where
V={(A;=X2)(As+X3) € (ky N[ €*(ka.0z)- €*(k3,03)]
+(Ra=N3) A3+ Np) €5 (Rp. N[ €%(k3.05) - €*(ky .1 1)]
(3= AN +s) €¥(ks.hs)
X[e*(ky\q)- €5(ky,N0) 1) (16)

Notice that the helicity coefficient (A;—X;)(N;+ \g) for the
cyclic permutations of ijk explicitly enforces the vanishing
of the (+ ++) and (—— —) polarizations,
V(. 4Ky, + ks, +)=V(ky,—:ky, —1k3,—)=0.
(17)

Furthermore, it is easy to see that
Viky,—;ky,+:ky, +) =2k, ,—)(1 =k, k3),
Viky,+:ky, — ks, —)=2€*(ky,+)(1—Fky-k3), (18)

and similar expressions for the other cyclic terms.

The original ¢ "¢~ in the orthopositronium could be in
any of the three triplet states. It can be shown, using Egs.
(12) and (15), that when the initial positronium state is |§
=1,5,=1)=|%,%), the decay amplitude is proportional to
V,+iV,, while the same argument gives —V,+ iV, for |§
=1,8.=—1)=|-%—-%) and —V2V; for |§=1,5,=0)
=12(]%,—1)+|—%.4)). Now, considering the explicit
expressions of the polarization vectors (7), with #=7/2
without loss of generality, and Eq. (18), it is easy to see that
the three-photon state coming from the o-Ps decay is, up to
normalization,

| oKy Kz k3)y=(1 =k k) (| ++=)+|=—+))
+(1=ky-R3)(|[+ = +)+]|—+=))
(19)

when the third component of the orthopositronium spin S,
is equal o zero, and

[ (ky Ky K3)) = (1 =ky k) (|++ =) =[=—+))
+(1=ky-k)(|+=+)—|—+=)

+(1=ky k)| =+ +)—[+—=))
(20)
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when S.=%1.

The final state of the o-Ps decay is. thus, an entangled
state of three photons, whose quantum correlations depend
on the angles among the momenta of the outgoing three pho-
tons. For the rest of the paper we will consider the first
family of states (5.=0) although equivalent conclusions are
valid for the second one. In the next sections we will analyze
the entanglement properties of the states | i7,(k, .k, .k1)), us-
ing some of the quantum information techniques and com-
paring them to the well-known cases of the singlet and GHZ
state.

ITI. ENTANGLEMENT PROPERTIES

The quantum correlations of the three-photon entangled
state obtained from the 0-Ps annihilation depend on the po-
sition of the photon detectors, i.e., on the photon directions
we are going to measure. Our next aim will be to choose
from the family of states given by Eq. (19), the one that, in
some sense, has the maximum amount of GHZ-like correla-
tions. In order to do this, we first need to introduce some
recent results on the study of three-party entanglement.

The set of states |k, ,!Eg ,r{:g )) form a six-parameter de-
pendent family in the Hilbert space H,@ H,®H,, so that
each of its components is equivalent to a state describing
three spin-£ particles or three qubits (a qubit, or quantum bit,
is the quantum version of the classical bit and corresponds to
a spin-+ particle). Two pure states belonging to a generic
composite system H Y, ie., N parties each having a
d-dimensional Hilbert space, are equivalent as far as their
entanglement properties go when they can be transformed
one into another by local unitary transformations. This argu-
ment gives a lower bound for the entanglement parameters a
generic state [q’:}E'HEEN depends on. Since the number of
real parameters for describing it is 2¥ !, and the action of an
element of the group of local unitary transformations
U(2)®N is equivalent to the action of U(1)XSU(2)%V,
which depends on 3N+ 1 real parameters, the number of
entanglement parameters is bounded by 2¥Y7'—(3N+1).
For our case this counting of entanglement parameters gives
six, since we have N=3, and it can be proved that this is
indeed the number of nonlocal parameters describing a state
in Hz@?{z@?‘fg [1?]

The above arguments imply that six independent quanti-
ties invariant under the action of the group of local unitary
transformations will be enough. up to some discrete symme-
try, to describe the entanglement properties of any three-
qubit pure state. Given a generic state |¢)e H 3 :

[d)}=zk tijky,  ij.k=12, (21)
Ll

where |i),|j).|k) are the elements of a basis in each sub-
system, A, B, and C, the application of three local unitary
transformations U#, U®, and U€ transforms the coefficients
rfjk into
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o A ppll C

From this expression it is not difficult to build polynomial
combinations of the coefficient 7;;;, which are invariant un-
der local unitary transformations [17,18], These guantities
are good candidates for being an entanglement parameter,
For example, one of these invariants is

E I;ljlklf?;jakﬁfl:z'Zg:f:““h:lr(.ﬂ:‘.‘]. {23]
where py=trge(| ¢){ &|) is the density matrix describing the
local guantum state of A (and the same happens for B and
C). In Ref. [18] the six linearly independent polynomial in-
variants of minor degree were found (a trivial one is the
norm) and a slightly modified version of these quantities was
also proposed in Ref, [19]. In the rest of the paper we will
not consider the norm, so the space of entanglement param-
eters of the normalized states belonging o Hy= Hse Hs has
dimension equal to five.

A particularly relevant polynomial invariant is the square
concurrence, 7, introduced in [20]. There is strong evidence
that somehow it is a measure of the amount of GHZ state
character of a state [19-22]. It corresponds to the modulus of
the hyperdeterminant of the hypermatrix given by the coef-
ficients #;;; [23]. which from Eq. (21) corresponds to

7(|d))=|Hdet(z;;,)|
=i: 2 E"1 iy 6’-3’-4 6‘;]_,'26_,-__!}'4 El’! k ‘Eklk-l

Rliyj ki FigigkoligighsPigighy| (24)

where €,,=¢€,=0 and €;,=—€,;,=1. This quantity can be
shown to be symmetric under permutation of the indices
i.j.k.

Because of the interpretation of the square concurrence as
a measure of the GHZ-like correlations, we will choose the
position of the photon detectors, from the set of states (19),
the ones that are associated with a maximum square concur-
rence. In Fig. 1 is shown the variation of the square concur-
rence with the position of the detectors. It is not difficult 1o
see that the state of Eq. (19) with maximum square concur-
rence corresponds to the case ky-ky=k,-ky=£k, ky=—1,
i.e., the most symmetric configuration. The normalized state
obtained from Eq. (19) for this geometry is

W=l + =l = =)= )4 =+ )
¥ = == (25)

Note that the GHZ state has an square concurrence equal to
. while the value of the square concurrence of (25) is lower,

() =15. (26)
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Squazre
concurrence

Firsc

FIG. 1. Variation of the square concurrence with the position of
the photon detectors, that are represented by two angles (in de-
grees). the third one has to sum up to 360°. We have taken 7=0
when the position of the detectors, i.e., the photon trajectories, are
incompatible with momentum conservation.

[t is arguable that the most symmetric geometry was natu-
rally expected to produce 4 maximum square concurrence
state. Indeed, GHZ-like quantum correlations do not singu-
larize any particular qubit,

Let us also mention that the state we have singled out has
some nice properties from the point of view of group theory.
It does correspond to the sum of two of the elements of the
coupled basis resulting from the tensor product of three spin-

 particles, s®+® 1, [24]
ly=1N2(13. + ) +[2.— ), 27)

where
12,4 LY =13(|+ 4+ =)+ |+ =+ )+|=++)),

13, = $3=1B(|——=+)+|=+=)+|+~=)). (28)
The gquantum correlations of Eq. (25) will be now analyzed.

IV. USEFUL DECOMPOSITIONS

[n this section, the state (25) will be rewritten in some
different forms that will help us to understand better its non-
local properties. First, let us mention that for any generic
three-qubit pure state and by performing change of local
bases. it is possible to make zero at least three of the coeffi-
cients 1;;; of Eq. (21) [19,25]. A simple counting of param-
eters shows that this is in fact the expected number of zeros.
This means that by a right choice of the local bases, any state
can be written with the minimum number of coefficients 1,5, .
i.e.. we are left with all the nonlocal features of the state,
having removed all the “‘superfluous™ information due to
local unitary tranformations. For the case of the state (25) it
is casy to prove [26] that it can be expressed as

— 1 00 01 ﬁ
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which is the minimum decomposition in terms of product
states built from local bases (four of the coefficients f;. are
made equal to zero).

An alternative decomposition, that will prove to be fruit-
ful for the rest of the paper, consists of writing the state as a
sum of two product states. This decomposition is somewhat
reminiscent of the form of the GHZ state, which is a sum of
just two product states, and is only possible when the square
concurrence is different from zero [19,21] as it happens for
our state [see (26)]. The state then can be written as

_2 'l) (1 . 1)
=3 (0_@J 0/®lo
1 1 1
2 2 2
+ \f_-g @ JE @ ﬁ
2 2. 2
=a(|000)+ |aaa)), (30)
where
_(1'
IU)=.0)
and

1
2
a=s \/g
=S

We omit the details for the explicit computation of this ex-
pression since they can be found in Refs. [19,21]. It is worth
noticing that o-Ps decay is hereby identified to belonging to
an interesting type of states already classified in quantum
information theory [21].

The above decomposition allows for an alternative inter-
pretation of the initial state as an equally weighted sum of
two symmetric product states. Note that the Bloch vector,
n={sin Bcos ¢.sin Hsin d.cos 8), representing the first local
spinor appearing in Eq. (30) is pointing to the z axis, i.e.,
n,=(0,0,1), while the second is located in the XZ plane with
an angle of 120° with the z axis, i.e., n,=(y3/2,0,—(1/2)).
By performing a new unitary transformation, Eq. (30) can be
written as

oL

where ¢=cos 15, and s=sin 15°. Now, the two Bloch vec-
tors are in the XZ plane, pointing to the #=30" and #
=150 directions. The GHZ state corresponds to the particu-
lar case c=1 and s=0.

C 5

Ay
+ @ o (31
c «

s
@
C
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V. QUANTUM MECHANICS VS LOCAL REALISM

The quantum correlations present in some three-qubit
pure states show, as it was mentioned in the Introduction, a
much stronger disagreement with the predictions of a local-
realistic model than any two-qubit entangled state. In fact,
contrary to the case of the singlet state, no LR model is able
to reproduce all the perfect correlations predicted for the
maximally entangled state of three qubits [2]. The state (25)
emerging from o-Ps decay is not a GHZ state, although it
has been chosen as the one with the maximum tangle in
order to maximize GHZ-like correlations. In this section we
will show how to use it for testing quantum mechanics
against local-realistic models, and then we will compare its
performance against existing tests for the maximally en-
tangled states of two and three spin-r particles. We start
reviewing some of the consequences derived from the argu-
ments proposed in Ref, [1].

A. QM vs LR conflict

Given a generic quantum state of a composite system
shared by N parties, there should be an alternative LR theory
that reproduces all its statistical predictions. In this LR
model, a state denoted by A will be assigned to the system
specifying all its elements of physical reality. In particular,
the result of a measurement depending on a set of parameters
{n} performed locally by one of the parties, say A, will be
specified by a function @, ({n}). The same will happen for
each of the space-separated parties and. since there is no
causal influence among them, the result measured on A can-
not modify the measurement on B. For example. if the mea-
surement is of the Stern-Gerlach type, the parameters label-
ing the measurement are given by a normalized vector n and
ak(ﬁ)Ea are the LR functions describing the outcome.

The LR model can be very general provided that some
conditions must be satisfied. Consider a generic pure state
belonging to H,® H,@ H, shared by three observers A, B,
and C, which are able to perform Stern-Gerlach measure-
ments in any direction. Since the outcomes of a Stern-
Gerlach measurement are only * 1, it is easy to check that
for any pair of measurements on each subsystem, described
by the LR functions @ and ¢’, b and b', ¢ and ¢’ and for all
their possible values, it is always verified

a'be+ab'c+abe' —a'b'c'==x2. (32)
It follows from this relation that
=2=(a'be+ab'c+abe'—a'b'c")=2. (33)

This constraint is known as the Mermin inequality [27] and
has to be satisfied by any LR model describing three space-
separated systems.

Let us now take the GHZ state (2). It is quite simple to see
that if the observables ¢ and a" are equal to o, and o, (the
same for parties B and C), the value of Eq. (33) is —4, so0 an
experimental condition is found that allows to test quantum
mechanics against local realism. Note that this is the maxi-
mal violation of inequality (33), Moreover, the GHZ state
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also satisfies that @'be=ab'c=abc'=—a'b'c'=—1 and
no LR model is able to take into account this perfect corre-
lation result because of Eq. (32) [2]. This is a new feature
that does not appear for the case of a two maximally en-
tangled state of two spin-3 particles. In this sense it is often
said that a most dramatic contrast between QM and LR
emerges for entanglement between three subsystems,

Let us go back to the state given by the orthopositronium
decay (25). Our aim is to design an experimental situation
where a conflict between QM and LR appears. so we will
look for the observables that give a maximal violation of Eq.
(33). Such observables will extremize that expression, Using
the decomposition (31), the expectation value of three local
observables is

(abe)={y|(n,-o)@(n, o) & (n,- )|

4 I o —
. 9\ Hb (¢ cos #;+5sin #; cos ;)
i=a,b.c
+ ].—.[! (—c cos #;+ 5§ sin 8; cos &)
i=ab.c
+ 1_[ sin 95{('23 _fﬁ"‘i_}_s:er'djl)
i=a,b,c
+ I sing(c?e’¥i+se %), (34)
i=a,b.e

where c=c¢*—s* and §=2sc. Because of the symmetry of
the state under permutation of parties. the Stern-Gerlach di-
rections are taken satisfying n,=n,=n = (sin #cos o
sin @sin geosd)  and  n,=ny,=n.=(sin 6'cos &'
sin @'sin ¢’ .cos #'). Substituting this expression in Eq. (33),
we get the explicit function f(#.&.68", &") 10 be extremized.
For the case of the GHZ state described above. the extreme
values were obtained using two observables with #=#"
=/2, i.e., in the XV plane. Since Eq. (31) is the GHZ-like
decomposition of the initial state, we take #=0"= 7/2 and it
is easy to check that in this case

o
=Lr| =),
o=0'=mr 99| _,_

Mantaining the parallelism with the GHZ case, it can he seen
that all the partial derivatives vanish when it is also imposed
é=m/2 and ¢'=0. In our case the calculation of Eq. (33)
gives —3, so a conflict between local-realistic models and
guantum mechanics again appears, and then the three-photon
state coming from the orthopositronium decay can be used,
in principle. to test QM vs LR with the set of observables
given by the normalized vectors

o

h.dh'
70 Y.,

na=n,=n.=(0,1,0), n,=n,=n.=(10.0). (35
There is an alternative set of angles ¢ and ¢’ that makes
zero all the partial derivatives of f: the combination of local
observables (33) is equal to = —3.046 for
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1742741
— e

o'= zlrcm.n( =
10

| (2\/17+27\/:4—1)
T e,

= —arctan (36)
2 25

This second set of parameters will be seen to produce in the
end a weaker dismissal of LR,

Our next step will be to carry over the comparison of this
OM vs LR test against the existent ones for the maximally
entangled states of three and two spin-+ particles, i.e., the
GHZ and singlet state. It is quite evident that the described
test should be worse than that obtained for the GHZ state. It
is less obvious how this new situation will compare with the
singlet case.

B. Comparison with the maximally entangled states
of two and three spin-% particles

We will now estimate the ““strength’” of the QM vs LR
test proposed above, being the “‘strength’™ measured by the
number of trials needed to rule out local realism at a given
confidence level, as Peres did in Ref. [28]. A reasoning
anologous to the one given in Ref. [28] will be done here for
the state (25) and the observables (35).

Imagine a local-realistic physicist who does not believe in
quantum mechanics. He assigns prior subjective probabilities
to the validity of LR and QM, p, and p,, expressing his
personal belief. Take for instance p,/p,=100. His LR
theory is not able to reproduce exactly all the QM statistical
results ol some quantum states. Consider the expectation
value ol some observable @ with two outcomes *=1 such
that (O)=£E, is predicted for some quantum state, while LR
gives {C3}=1;',.=#Eq. Since the value of the two possible out-
comes are £ 1, the probablity of having O=+1 is ¢=(1
+ !-.'q:fl for QM and r=(1+E,)/2 for LR. An experimental
test of the observable @ now is performed a times yielding m
times the result + 1. The prior probabilities p, and p, are
modilied according to the Bayes theorem and their ratio has
changed 1o

P, pr pOmlg)

Lol (37)
Py Py p(nlowm

where

{ n 1
pm| )= ( iy ) 1=yt (38)

is the LR probability of having m times the outcome + 1, and
we have the same for p(mIQM]. being r replaced by g. Fol-
lowing Peres [28], the confidence depressing fuctor is de-
fined

_ plmlgy _(’ g)’"

'l_q wn—m
= \7 ( ) / (39)

1—r
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which accounts for the change in the ratio of the probabilities
of the two theories, i.e., it reflects how the LR belief changes
with the experimental results. Like in a game, our aim is to
destroy as fast as we can, the LR faith of our friend by
choosing an adequate experimental situation. It can be said,
for example, that he will give up when, for example. D
=10*. Since the world is quantum, m=gn, and the number
of experimental tests needed to obtain D=10* is equal to

4

nplg,r)= 7
q logm( ;) +(1—q)log[(1—g)/1—r]

4
K(gq.r)’

(40)

being K(g.r) the information distance [29] between the QM
and LR binomial distribution for the outcome + 1. The more
separate the two probability distributions are, measured in
terms of the information distance, the fewer the number of
experiments np is.

Let us come back to the three-party entangled state com-
ing from the orthopositronium decay (25) under the local
measturements described by Eq. (35). As it has been shown
above, a contradiction with any LR model appears for the
combination of the observables given by the Mermin in-
equality, In our case quantum mechanics gives the following
predictions:

(a'bey={(ab'c)=(abc'y=—5, {(a'b'c')=+1,
(41)

and this implies that ¢;=prob(a'bc=+1)=prob(ab'c=
+1)=problabc'=+1)=% and g,=prob(a'b'¢'=+1)
=1. This is the QM data that our LR friend has to reproduce
as well as possible. Because of the symmetry of the state he
will assign the same probability r; to the events a'be=
+1, ab'e=+1, and abe'=+1 and ry to a'b'c’'=+1.
However, his model has to satisfy the constraint given by Eq.
(33), so the best he can do is to saturate the bound and then

. (42)

=

3ri=ry=0=r=

Now, according to the probabilities r) and r, his LR model
predicts, we choose the experimental test that minimizes Eq.
(40), i.e.. we consider the event a'be=+1 (a'b'e¢e'=+1)
when np(qy.r)<np(qa.r2) [nplg,.r\)=>np(q;.r2)]. and
the experimental results will destroy his LR belief after
np(qy.ry) [nplga,rz)] trials. The best value our LR friend
can assign to ry is the solution to

nD(‘Il'rl)an(QE!rZ)v (43)

with the constraint (42), and this condition means that ry
=().315 and np==161 trials are needed to have a depressing
factor equal to 10°. Repeating the same calculation for the
observables given by Eq. (36), the number of trials slightly
increases, np~ 166, despite the fact that the violation of the
inequality is greater than the obtained for Eq. (35).
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TABLE I. Comparison of the strength of the QM vs LR test,
which can be performed for the maximally entangled states of two
and three spin-+ particles and for the three-photon entangled state
reulting from the orthopositronium annihilation.

State Number of trials

GHZ =32
Positronium state (25) =161

Singlet =200

In Ref. [28] the same reasoning was applied to the maxi-
mally entangled state of two and three spin-+ particles,
showing that n,=200 in the first case, and np=32 for the
latter (see Table 1), Our result then implies that the three-
photon entangled state produced in the orthopositronium de-
cay has, in some sense, more quantum correlations than any
entangled state of two spin-; particles.

C. Generalization of the results

It is easy to generalize some of the results obtained for the
entangled state resulting from the o-Ps decay. As it has been
mentioned, this state can be understood as an equally
weighted sum of two symmetric product states, since it can
be written as Eq. (31). The Bloch vectors of the two local
states appearing in this decomposition form an angle of
120", It is clear that the conclusions seen above depend on
the angle between these vectors, i.e., with their degree of
nonorthogonality. The family of states to be analyzed can be
parametrized in the following way:

'Ca‘) 'Ca) (cs\ | 55\ [55
@ @( ) s ] ® '.'9'{ ) .

N Cs) \ s
(44)

|¢'(f5))=aa[

X 55 \ 85 Cs

where & is the angle between the two local Bloch vectors,
rs=cos(m—0/4) and s;=sin(7—45/4), and a; is a positive
number given by the normalization of the state. An alterna-
tive parametrization of this family is, using Eg. (29) and
defining &' = 5/4,

[(8))=2a  sin? cos 8'([001)+]010) + | 100))
+cos?8'|111)]. (45)

The expectation value of three local observables for this
set of states follows trivially from Eq. (34). Using this ex-
pression it is easy to see that the combination of the expec-
tation values of Eq. (33) has all the partial derivatives equal
to zero for the set of observables given in Eq. (35) indepen-
dently of 4. For these observables, the dependence of expres-
sion (33) with the degree of orthogonality between the two
product states is given in Fig. 2. There is no violation of the
Mermin inequality for the case in which =85, In this situ-
ation one can always find a LR model able to reproduce the
QM statistical prediction given by Eq. (33) and the observ-
ables (35). We can now repeat all the steps made in order to
determine the number of trials needed to rule out local real-
ism as a function of the angle &. In Fig. 3 we have summa-
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Violation of ineguality
2

¢

25 50 7% 100 125 150 175 ~ngle

=1

FIG. 2. Violation of the Mermin inequality (33) with the angle &
(in degrees) for the family of states (44). We have substracted 2 1o
the combination of the expected values of Eq. (33). so a positive
value means that a conflict between QM and LR appears.

rized the results. We have shown only the cases where the
number of trials i1s less than 200, since this is the value ob-
tained for the singlet. Note that the case o=120". which
corresponds to Eq. (25), is very close (o the region where
there is no improvement compared to the maximally en-
tangled state of two qubits.

All these results can be understood in the following way:
the smaller the angle between the two local states, 8, the
higher the overlap of the state |#(5)) with the product state
having each local Bloch vector pointing in the direction of
the x axis, which corresponds to the state [111) in Eq. (45).
This means that the quantum state we are handling is o
close to a product state [25], and thus, no violation of the
Mermin inequality can be observed.

VI. CONCLUDING REMARKS

In this paper we have analyzed the three-particle quantum
correlations of a physical system given by the decay of the
orthopositronium into a three-photon pure state. After ob-
taining the state describing the polarization of the three pho-
tons (25), some of the recent techniques developed for the
study of three-party entanglement have been applied. The
particular case where the three photons emerge in the most
symmetric configuration corresponds to the state with the
maximum square concurrence. We have shown that this state

Number of trials
200

150
100

50

120 130 140 150 160 170 1go e

FIG. 3. Number of trials needed to rule out local realism as a
function of the angle & (in degrees) for the family of states (44),
Values greater than 200 are not shown since in these cases there
always exists a two-qubit entangled state that gives the same result,
Le., it has the same “strength’” for ruling out local realism.
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allows a priori for a QM vs LR test, which is stronger than
any ol the existing ones that use the singlet state. In this
sense, orthopositroninm decays into a state which carries
stronger quantum correlations than any entangled state of
WO spin-+ particles.

Bose symmetrization has played a somewhat negative
role in reducing the amount the GHZ-ness of the o-Ps decay
state. Indeed, the natural GHZ combination |+ + —)+|— —
+) emerging from the computation of Feynmann diagrams
has been symmetrized due to the absence of photon tagging
to our state |++ =)+ |+ —+)+|—++)+|——+)+|—+
— )+ |+ ——), inducing a loss of tangle. The quantum optics
realization of the GHZ state does avoid symmetrization
through a geometric tagging [10]. It is, thus, reasonable to
look for pure GHZ states in decays to distinct particles, so
that tagging would be carried by other quantum numbers, as,
e.g., charge. Tt is, on the other hand, peculiar to note that
symmetrization in the K"K" system is responsible for its
entanglement (|+—)+|—+)) [13].

Let us briefly discuss the experimental requirements
needed for testing quantum mechanics as it has been de-
scribed in this paper. The preparation of positronium in a
given polarization state can be performed using magnetic
mixing as it has been described in Ref. [30]. The circular
polarizations of the three photons resulting from an orthop-
ositronium decay have to be measured. The positions of the
three detectors are given by the maximization of the square
concurrence and their clicks have to detect the coincidence
of the three photons. The energy of these photons is of the
order of 1 Mev. Polarization analyzers with a good efficiency
would allow us to acquire statistical data showing quantum
correlations that would violate the Mermin inequality dis-
cussed above. Unfortunately, as far as we know, no such
analyzers exist for this range of energies (this is not the case
for optic photons). A possible way out might be to use
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Compton scattering to measure the photon polarizations [31].
However, the Compton effect just gives a statistical pattern
depending on the photon and electron polarizations, which is
not a direct measurement of the polarizations. Further work
is needed to modily our analysis of QM vs LR to accommo-
date for such indirect measurements. Finally, it is hard to see
how to implement a switching procedure in the measuring
apparatus in order to rule out the locality loophole, although
it is thought that this loophole has been closed by recent
experiments [32]. The detection loophole cannot be closed,
so one has to assume the fair sampling hypothesis.

To summarize, orthopositronium decay provides, without
using any postselection procedure, an entangled state of three
space-separated photons with more quantum correlations
than any entangled state of two particles. Indeed it can be
used in principle to test quantum mechanics against local
realism, although many experimental difficulties have yet to
be overcome. The techniques shown in this paper can be
easily extended to the analysis of the entanglement proper-
ties of different three-particle entangled states obtained in
other experimental settings [perhaps the same state, due to its
nice properties from the point of view of group theory (27)].
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Optimal generalized quantum measurements for arbitrary spin systems
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Positive-operator-valued measurements on a finite number of N identically prepared systems of arbitrary
spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2J+1)
covarianl constraint, This representation allows for a simple description of the equations to be fulfilled by
optimal measurements. We explicitly find the minimal positive-operator-valued measurement for the N=2
case, a rigorous bound for N=3, and set up the analysis for arbitrary N.

PACS number(s): 03.65.Bz, 03.67.—a

I. INTRODUCTION

A measurement on a quantum-mechanical system only
provides partial information on the measured state. Even in
the case where N identical copies of the system are available,
the information which can be retrieved remains bounded.
This fact can be quantified using the averaged fidelity based
on the following general idea. Given N identical copies of a
system. we may consider a two-step procedure to rate the
fidelity of a measuring apparatus. First, we set up a general-
ized quantum-mechanical measurement [or  positive-
operator-valued measurement (POVM) [1,2]]. Upon per-
forming a measurement, its outcome provides the basis for a
best guess about the incoming state. The averaged fidelity
quantifies how close the final guess is from the original state
averaging over the latter, For any finite number N of copies
ol a spinJ pure state system. the average fidelity is proven to
be bounded by [3]

N+1

TWND= T

(1)

The issue at stake remains to devise the optimal and minimal
measuring strategy for any quantum system,

Explicit constructions of optimal and minimal generalized
quantum-mechanical measurements of spin-3 systems have
been presented recently in Refs, [4-8)]. The detailed con-
struction is subtle and depends on whether the original sys-
tem is inoa pure or mixed state. The simplest case corre-
sponds to measuring a spin-3 system known to be in a pure
state. A generalized measurement can be constructed as a
resolution of the identity made with rank-1 Hermitian opera-
tors, which are in turn built from the direct product of a
given state,

o

[= E] cHW )N M|, (2)

where / is then the identity in the maximal spin subspace.
The important—and of possible future practical relevance—
result is that the maximum averaged fidelity is attained with
a finite number of operators [6]. Upon a case-by-case analy-
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sis, it is found that the minimum number, n. of such opera-
tors is a function of N and is given in the table:

N | 2 3 4 5

i 2 4 6 10 12

The explicit form of Eq. (2) for the above cases can be found
in Ref. [7].

The far more involved case of spin-i mixed states has
also been worked out in Ref. [8]. At variance with the pure
state case, the closed expression for the maximum averaged
fidelity depends on what the unbiased a priori distribution of
density matrices is. Yet, explicit solutions for optimal mea-
surements are found. Some remarkable properties emerge
along the new construction. Let us briefly mention a few.
Optimal measurements turn out to be structured using pro-
jectors on total spin eigenspaces and, within each eigens-
pace, on maximal spin component is some direction. This
allows for a reuse of minimal and optimal results from the
pure state case. Also, beyond two copies, some projectors are
not of rank 1.

Explicit constructions of optimal minimal measurements
are so far restricted to spin-+ systems, either pure or mixed.
It is the purpose of this paper to extend this analysis for
arbitrary spin pure states. A number of nontrivial issues must
be faced at the outset. For instance, progress in the spin-+
case was triggered by the appropriate use of the Bloch vector
labeling of density matrices associated to spinors. We shall
resort to a similar representation in the case of arbitrary spin
states, using representations of SU(2J+1). The equivalent
of a Bloch vector will be shown to obey a covariant restric-
tion, This extra work will allow for a unified general setling
of the problem of optimal measurements of arbitrary spins.

Finding explicit minimal optimal measurements remains a
matter of case-by-case analysis. We shall provide explicit
bounds for the minimal number of projectors, n, in POVMs.
The case of N=2 will be fairly complete. Higher number of
copies still need further ingenuity to get rigorous bounds.

II. AVERAGED FIDELITY

Consider a spin J particle which is in an unknown pure
state [ W),

©@2000 The American Physical Society
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Xp+iy,
Xotivy

= . (3)

xp+iyp

where D=2J+1 and the normalization of the state imposes
_____ u(x:“+_\'?)= 1. Of course, we may use a different
parametrization, e.g..

cos ¢

sin d(x,+iv,)
)= o . (4)

sin d(xp+iyp)

with 0<¢=<m/2 and ;_,__ p(xi+yH)=1. Using this sec-
ond parametrization and following Ref. [9] it is possible to
prove that the volume element in the space of these states is

dVp=4(sin $)*° cos d ddS,p . (5)

where dS,p 5 corresponds to the standard volume element
on S,p 3. The total volume is

L _am :
P~ ©

Given N identical copies of the arbitrary spin state, we

have
[W=|¥)e|¥)e-. V... .0|¥), (7)

A measurement on this enlarged system will bring richer
information on |W) than N separate measures on its respec-
tive copies [10].

Setting a generalized quantum measurement consists in
providing a resolution of the identity of the type

"

> AWM+ Py=1, (8)

where P is the projector on the space different from the one
spanned from states of the form given in Eq. (7). We already
have all the necessary elements to define and compute the
averaged fidelity, Upon measuring |W)" with the above
POVM, a given outcome labeled by r will result with prob-
ability V(W |W,)"?. The natural guess for the initial pure
state is, then, [W,) (this is only the best strategy if the initial
state is known Lo be pure; the best guess for a mixed state is
not the same state as the outcome of the POVM [8]). The
overlap of this guess with the original state is just |(\[\,)]%.
The averaged or mean fidelity is defined as the product of the
probability for r being triggered times the overlap between
the ensuing guess and the original state, averaged over all
possible initial unknown states,
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kLE

n
dd(sin ) ' cos b

.I n
2,

[(N.])=
SN Vajer r= 0

XJ APTIRT o 4 PV o (SN OO )

To evaluate the above expression. it is convenient to use the
freedom to choose the integration variables to set cach indi-
vidual |W,) as a spinor with only a nonvanishing first com-
ponent, Then,

B 1 W
JIN.J)= > d d(sin H)* !
Varsr = 0
X(cos ) VIS, . (10)
We finally get
— QNN+ &S .
F(N.J)= X, &%, (11)

(2J+N+ 1) 7=

This sum is easily calculated. It is just the dimension ol the
space spanned by the totally symmetric tensor of order N
whose indices can take 2J+ 1 values,

o, (20+N)!
Y = (12)
=4 Tt N@n!
Thus,
26 T N+1

which corresponds to Eq. (1) and was obtained in Ref, [3]
using different techniques.

IMl. GENERALIZED BLOCH FORM OF ARBITRARY SPIN
PURE STATES

It is sometimes useful to represent the state of a spin-+
system using the Bloch representation,

1
p=§-1+ 5b-0. (14)

where b is a vector existing within the unit sphere. Pure

states correspond 1o the surface of the sphere. that is. b?
=1. A similar but more complicated construction is possible
for arbitrary spin particles.

Consider a pure state of a spin J particle. One may repre-
sent it using, e.g.. Eq. (3). Alternatively we may construct its
associated density matrix and write

1 [
p= m!+ mn,,_h,,. a=1,...41(J+1),
(15)

where A, are the generators of the SU(2J/+ 1) normalized by
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Tr(A Ny ) =26, , (16)

and n is the normalized vector that plays the role of a gen-
eralized Bloch vector. The coefficients in Eq. (15) are chosen
in such a way that Trp=Trp>=1.

A simple counting of degrees of freedom shows that a
spin J pure state is described by 4.7 real parameters whereas
the generalized Bloch vector carries 4J(J+1)—1. A mis-
match appears for J>%, which implies that severe con-
straints must limit the subspace of valid vectors n. Indeed,
pure states must verify p=p®, which translates into

271
da el =—F——=1,
belta o 127+ 1)

when Eq. (15) is used and where d,;, are the completely
symmetric  symbols  associated to SU(2J+1), defined
through the anticommutator of the generators of the group

[11],

(17)

{J\u e)\h}'z 6r:b1+2 dnfrr)\f * (18)

2J+1
which verify

(2J—=1)(2J+3)
dﬂbr'ddbrz)—-a

dr:f-b:”' 21_,’_ I ad -

(19)

Some useful properties of the vectors n follow from the
above general covariant constraint (17),

2J-1
d,pn npn.=—,
JI(27+1)
. (20)
(2J-1)*
dubndﬁﬂ'r”unh”r.-”d'::m—_i_”!

where it is clear that for spin J=1% the simple structure of

SU(2) causes the o symbols to vanish and the right-hand side
to be identically zero.

We can also deduce the useful constraint which follows
from the positivity of the square of the scalar product of two
arbitrary spin J pure states, which reads

(W WY F=Tr(pp")= (1+2Jn-n")=0. (21)

1
2J+1

Generalized Bloch vectors are thus constrained to have sca-
lars products bounded by
% 14, 1 -
Rt o=
27 (22)
Two pure states are orthogonal then when the scalar product
of their generalized Bloch vectors satisfies the equality in Eq.
(22).
Let us illustrate the construction of a Bloch vector for the
J=1 example. In this case. the density matrix representing
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the system can be connected to the standard spinorlike rep-
resentation. For instance, taking J=1 it is easy to see that the
generalized Bloch vector corresponds to Eq. (3) if

ny=v3(x x4+ y,v0), ﬂ3=\/§(x]_v3—xg}’1),

na=\3(x;x3+y1y3),  ns=v3(x;y3—x3¥1).

_ - (23)

= \/3(-\5213"‘.‘"2}’31v n7=3(x2y3—x32),
\'r-? . g " 2 1 2 3

ny=—A{xi+yi—(a+y2)]) ng=z[1-3(x5+y3)]

and A, are taken in the Gell-Mann representation of SU(3)
[11]. Note that symmetric and antisymmetric combinations
of the spinor components build the raising and lowering gen-
erators, whereas the Casimir combinations correspond to di-
agonal ones. Generalization of this construction for arbitrary
spin J based on the SU(2J+ 1) group is straightforward,

The advantage of using a generalized Bloch representa-
tion for arbitrary spin pure states will become apparent
shortly, when all our equations will be manifestly SU(2J
+ 1) covariant and real. This is equivalent to note that the
difference between working with spinors, which exist in the
fundamental representation of the group, or with Bloch vec-
tors, which exist in the adjoint representation, is that the
second is real.

1V. OPTIMAL MEASUREMENTS FOR A SINGLE COPY
OF A SYSTEM

Let us go back to the construction of a generalized guan-
tum measurement of arbitrary spin systems. We basically
need to solve for the minimal set of [W,) states such that Eq.
(8) is fulfilled. We have found it convenient to project out
the Py piece using

]

> MWW YYE=1, V W), (24)

r=1

This equation can also be written in the Bloch representation
as

"

5 X :
2];;;(2”” 1+272, nang(r)| =1, (29

r=

where every n(r) corresponds to a pure state in the POVM
and 7 to the original pure state.

It is clear that the simplest situation we may face corre-
sponds to having a single copy of the unknown state. The
optimal and minimal measurement for such a case is, of
course, known to CO!‘IBS]JOHCI to a von Neumann measure-
ment. We shall, however, proceed in a more general way and
set the modus operandi for the more elaborate cases as de-
vised in Ref. [7].

Equation (24) with N=1 can be demonstrated (with a
little effort) to be equivalent to
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n

> L (xr) +y (r)yu(r)]= 85

(26)

"

21 Ly =xr)y(r]=0,

r=

Jk=1,....20+1.

Using the insight given by Eq. (25) and the result of Eq. (12),
this set of (2J+1)? independent equations can be rewritten
in terms of the Bloch vector as

]

> e2=2J+1,

r=1

(27)

2 t";’-‘nd(r) =0!
r=1

where it is important to remember the constraints limiting
n(r). For instance, scalar products between any pair
n(r)-n(s)=—1/2J), thus

> e

r¥s

+n(r} n(s}) (28)

Using the set of equations (27), the above inequality can be
transformed into

1—¢2=0, Vs=1l....n. (29)
Summing over all s, we get
n=2J+1. (30)

This bound is indeed saturated by a von Neumann measure-
ment, that is,

Bain=2J+1,
(31)

n(r- n(s)-—-l— YV r#y.

2
c;=1V s, 37

The explicit standard construction for J=1 is recovered as
the solution to this N=1 POVM,

1 1]
W)= g Colwey=( Y], =

(32)

Or, alternatively,
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S
a(1)= ( 0,0, .n.n.n,n.——)
x I ; |
n{2)={ 0,0,——=,0.0,0.0= ) (33)
1(3)=(0,0,0,0.0.0.0.—1).

We are now in a position to appreciate the advantage of
resorting to a Bloch-like parametrization. It is easier to deal
with Eq. (27) than with Eq. (26). The use of n(r) introduces
a simple covariant, yet constrained, formulation. Some extra
subtleties will play a relevant role in the more complicated
cases.

V. OPTIMAL MEASUREMENTS FOR THE N=2 CASE

Let us face the case where N=2 identical copies ol the
system are at our disposal. Following the same reasoning as
before, we start by writing Eq. (24) in terms of the basic
spinor representation. This leads o

n

> Hxdnx )+ yi )y () I + )y ()]

r=1

1 .
= 2(2 5“.‘;(5“‘1' (S;k(ﬁf{"' 5” 6};—}‘

2} HLxir)y () =x,(r)y () L)y () = x )y ()]

1
= (5JA" 5:? l:)

H

2] xRN+ YNy )y () =X, (r)y(r)]

=0. (34)

The system is now quadratic in the basic structures appearing
linearly in the N=1 case. Using the Bloch vector represen-
tation, these (2J+1)*(2J%+2J+ 1) equations can be recast
into

2] c}=(2J+1)(J+1)=B

n
> ein,(r)= (35)
r=1

n

1

,-—21 {"Eﬂ,,(l')!?b{.")=Bm§”b .

A general pattern is emerging. Higher N optimal measure-
ments demand a finer grained resolution of the identity. The
Bloch vectors are reguired to satisty isotropy conditions in
SU(2J+1) group space. The determination of the factor
1/[47(J+1)] has been done using the fact that 1 is a nor-
malized vector and Eq. (12). It is easy to verify that the set of
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equations (35) provides a solution for Eq. (25).
From the above basic set of equations, it is easy to get

"

> cra(r)-a(s)=—c; (36)
i Aroe oy 2._.B 1 2
2 ciln(r)-n(s)] = U+ G
Then we may argue that
> clb+a(r)-a(s) =0, (37)
rEg
which is extremized by b=cZ/(B—c?) leading to
- T i
n=(2J+1), c¢i< Vv s, (38)

2J+1°

For J=1% this bound agrees with the known solution of the
tetrahedron (see the Introduction and Ref. [7]) and general-
izes it in the following sense. The solution n=(2J+ 1)1 also
forces all scalar products to be n(r)-n(s)=— I/[4J(.!
+1)]. This corresponds to a hypertetrahedron in (2J+ 1)
—1 dimensions, exactly those of the adjoint representation
of SU(2J+ 1), Let us just write the explicit solution for J
=1,

... (1B
ith={5.5000000).

33
0.0.0.0.0].

n(2)= [ ;—\TZ

e 1 \."IE 3
r:(?n}=[ =, —,—=.0.0,00.0],

\ 2 4 4
. [ E ? 6
3V2 V6 V3 V6

; 1 3
:1(51—\—4—()0 R T S

3V2 V6 V36342
n((a}—‘ - () 0 ——g—,——,—.?,—l .
l GRRER
”(7)_[ _ESOOO!T!——TRT!O)!

- [ 3v2 J6 3 6 342
9= -g00- 50 -5 - F -5
9)=] 1003\;’2' Vo 3 J€3J2')
n :— —— — e —— | et s | e i St

[ o 45 R LG A s

There is still the need to perform the nonobvious step of

PHYSICAL REVIEW A 61 022113

finding out whether this solution does correspond to a set of
spin-1 states. For completeness we give this final form of the
solution, that is, the explicit states |W,) through |W,) which
form the POVM,

1 1
2 3
Ww)={0]. |w)=| B, W)= V3
0 2 2
0 0
1 1
2 g
-l .1
W= 2 |Ws)= '3
1 1 +_\/§
—_— ——=ti—
V2 232 242
|
2
1
W)= 5 (40)
1 _VE
s —— e -
242 232
1 1
7 2
1 1
l\[!.],): —i5 |, l\l}'s): —IE i

Sl-
|

b

&=
+

g

2l

b3 —

= i3

Fa

I LB
R

Note that all the spinors have scalar products with modulus
equal to £.
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VI. OPTIMAL MEASUREMENTS FOR THE N=3 CASE

The systematics of our approach are already set. It is,
however, in the case of three copies where a major difference
between spin £ and higher spin systems appears. Following
an analogous reasoning to that in the preceding sections, we
get

"L (27+3)!
ci=

=1 32n!

i

C.

2 ('fnﬂ(r)ﬁ(),
r=1

L]

Z] 2 (nng(r)=C Bna (41)

1
4J(J+1)

1
=CTrneIE)

2J+ 1\
Ml

Z} n,(rny(r)n (r)

J

We have used Egs. (12), (19), and (20) for determining the
factor 1/[4J(J+1)(2J+3)][(2J+ D], Again it is easy
to prove that Egs. (41) verify Eq. (25).

For the first time the right-hand side of one of the equa-
tions displays a tensor structure based on the o symbol. Such

a term would vanish for /=1 due to the simpler structure of

SU(2), but is expected for higher spins [note that the condi-
tions (20) are zero for spin +].

A bound on the number of projectors appearing in a op-
timal POVM can be obtained following the by now standard
procedure of investigating manifestly positive combinations.
In this case, starting from

>

rEs

I .
A A() |[b+i(0) A P=0, @)

one gets
n=(J+1)(2J+1)3 (43)

and ¢><(2J+3)/[3(2J+1)]. That is, n=6 for spin %
(which agrees with the known result in Ref. [7]), n=18 for
spin 1, 2240 for spin 5, etc. Saturating this bound is impos-
sible for certain cases as implied by the following simple
argument. If the bound were to be saturated, then Eq. (42)
would become a restricting condition for all scalar products.
Indeed, 7A(r)-A(s) is either —1/2J) or else (2J
= D/[2J(2J+3)] for any pair r#s. If we fix any s and
assume that the minimal solution carries p scalar products of
the first type and ¢ of the second, it follows that Eq. (41)
imposes p=+J(2J+1)? and g=%1J(2J+3). For any J
half-integer or even this causes no problem but for odd inte-
ger values of the spin this leads to noninteger pairs, which is
absurd. Thus, in such a case, the bound cannot be saturated.
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VII. CONCLUSIONS

We have presented explicit solutions for minimal optimal
POVMs acting on arbitrary spin J systems for the case when
two copies are available. For N=3 we have provided a rig-
orous bound. The key idea to simplify the analysis consists
in using Bloch representation for pure arbitrary spin states.
These vectors do not span a naive (2J+ 1)1 sphere. but
rather an intricate subspace defined through covariant restric-
tions. The power of such covariance makes the set ol equa-
tions simple,

T

[}

5, (2J+N)!
& TTNED

n
E (.'fna(r)=0.
r=1

H

$ cn 21 |
24 CondNmN)= T T Ty O 44

i} B _(2I+N)! 1
24 Crna(NIn(N)AF) = Fr ST T 1) (2T +3)
2T+ 1\
XI 7 JI| dr;.‘;. +

In order to analyze a given case with N copies of the spin J
particle, it is necessary to retain

[4J(J+1)+N]!

N4+ D11 (43)

equations in the system, that is, as many rows in Eq. (44) as
N+1.

Our results confirm the expected increase of needed pro-
jectors to build a POVM as the spin of the system increases.
The instances analyzed, that is, N=1.23, seem to point at a
dependence of the type

min~d". (46)
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Optimal estimation of two-qubit pure-state entanglement
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We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure
states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are
available. The most general measuring strategies are considered in both situations, to conclude in the first case
that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property,

oplimally.

PACS number(s): 03.67.—a, 03.65.Bz

I. INTRODUCTION

Plenty ol work has been performed in recent years on
optimal - quantum measurements, i.e., on measurements
which provide the maximum possible information about an
unknown quantum-mechanical pure [1-5] or mixed [6] state,
of which N identical copies are available. These works fo-
cused mainly on a determination of the unknown state as a
whole. and consequently any of its properties is also esti-
mated. although maybe not in an optimal way.

On the other hand, recent developments on the field of
guantum information theory stressed the importance of the
quantum correlations—or entanglement—displayed by some
states of composite systems. In the simplest of such compos-
ite systems, the two-qubit case, all nonlocal properties of
pure states depend upon only one single parameter. Such a
nonlocal parameter is the only relevant quantity invariant
under local unitary transformations on each qubit, and plays
a central role in the quantification and optimal manipulation
of entanglement [7-11].

In this work we analyze and solve the problem of opti-
mally estimating the entanglement of an unknown pure state
of two qubits. This problem was also independently ad-
dressed by Sancho and Huelga in a recent work [12], where
only a restricted class of measuring strategies is considered.
Here, on the contrary, we will consider most general quan-
tum measurements on N identical copies of the state. Their
quality will be assessed through the gain of information they
provide about the nonlocal parameter of the state. After pre-
senting and proving the solution. we will conclude that the
optimal measuring strategies so defined are not equivalent to
the ones used to fully reconstruct the unknown state. As a
matter of fact, all information about some relative phase of
the unknown state turns out to be irreversibly erased as the
entanglement is estimated.

An estimation of the degree of mixing of an unknown
mixed state is a different but very much related topic that we
shall also consider here. For the single-qubit case the amount
ol mixing is again specified by just one parameter, the modu-
lus of the corresponding Bloch vector, whereas in order to
completely specity the state two more parameters, namely,
the direction of the Bloch vector, are also required. We shall
show that in this case the optimal measuring strategy on any
number N ol qubits prepared in the same mixed state can be

1050-2947/2000/61(6)/062307(8)/$15.00
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made compatible with an optimal estimation of the direction
of its Bloch vector.

Finally, we will show that a possible way of optimally
determining the entanglement of an unknown, two-qubit
pure state consists precisely of estimating, also optimally, the
degree of mixture of any of its two reduced density matrices.
Therefore, in this simple bipartite case it turns out that the
optimal estimation of a nonlocal parameter can be done
through a local measurement.

The paper is structured as follows. Section II is devoted to
background material. We introduce a convenient parametri-
zation of two-qubit pure states, and consider their isotropic
distribution. We also review some basic aspects on param-
eter estimation and on quantum measurements. In Sec. 111 we
pose the problem of entanglement estimation on firmer
grounds and announce the main result of this paper: its op-
timal performance. Section IV, which is rather technical and
could well be skipped in a first reading, is devoted to a com-
putation of some effective density matrix p™(b), an object
which plays a central role in deriving the optimal strategy for
estimating entanglement. In Sec. V the N=1, 2, and 3 cases
are presented in more detail in order to illustrate the general
case. Optimal estimation of the degree of mixing is discussed
and solved in Sec. VI, and finally Sec. VII contains a discus-
sion relating estimation of both entanglement and mixing,
and some concluding remarks.

II. PRELIMINARIES

Here we will consider a two-party scenario. Alice and
Bob will share N copies of a completely unknown two-qubit
pure state |), and their aim will be to obtain as much in-
formation as possible about its entanglement. The sense in
which the state is unknown, the mechanisms for extracting
information from the system, and the scheme for evaluating
the extracted information will be briefly reviewed in what
follows.

A. Homogeneous distribution

All that is initially known about the state of each pair of
(ubits is that it is pure. This corresponds to the unbiased
distribution on the Hilbert space H;=H,® H, of two qubits,
that is, to the only probability distribution invariant under
arbitrary unitary transformations on H,. It is convenient to

©2000 The American Physical Society
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express the unknown state | ) € H, @ H,, which depends on
six parameters, in its Schmidt-like decomposition

|a |6)+ \{ ”'I—f.'>|-5). (1)

where the phase e'”, which is usually absorbed by one of the
kets it goes with, has been left explicit. The nonlocal param-
eter b €[0,1] characterizes the entanglement of |#). Only for
b=1is |#) a product state |a)@|b). and thus unentangled.
For b<<1 the state contains quantum correlations b=0 cor-
responding to a maximally entangled state. Recall that this
parameter is the modulus of the Bloch vector of the reduced
density matrix p, on Alice’s side,

:;'/}

fox

l._.

pa=trgl¥)(yl= -—]ﬂ>(ﬂl+—| ay(—al. ()

and equivalently for pgp. The other four parameters corre-
spond to the two directions @ and b of the Bloch vectors of
pa4 and pp. Then the unbiased distribution of pure states
corresponds [13] to the isotropic distribution of a in $%, b in
$%, @ in S', and the quadratic distribution of b in [0,1],
which is actually also a flat distribution, as b* is just the
Jacobian corresponding to going from Cartesian to spherical

coordinates:
i j 22 (' apapi=1 3
;2 417 2 g1 27? il ¢ G { )

B. General measurements and information gain

The parties are thus provided with N copies of a pure state
|) as in Eq. (1), i.e., with the state |#)®", and our aim is to
construct the most informative measurement on the collec-
tive, 2N-qubit system for the estimation of the parameter b.
The optimality criterion to be used is based on the Kullback
or mutual information K[f'.f] [14], a functional of two
probability distributions /' and f that is interpreted as the
gain of information in replacing the latter distribution with
the former one [15]. In our case, for instance, the prior, un-
biased density function for the parameter b is given by Eq.
(3). so we have f(b)=3b%. A generic measurement, allow-
ing for the most general manipulation of the systen, is rep-
resented by a resolution of the identity by means of a set of
positive operators;

; M®B=] (4)

After the above positive operator valued measurement
(POVM) has been performed, giving the outcome k with
probability (M ™ p®N), where p=|¢) (4|, we compute the
posterior density function for b, f(b|k), through the Bayes
formula

p(k|b)f(b)

filb)=1(bf) ===

(5)
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where p(k) is given by

p{k)=J dbf(b)yp(klD). (6)

and the conditional probability of obtaining outcome & when
the state’s nonlocal parameter has value b, p(k|h) will be
shown later. The gain of information resulting from obtain-
ing the outcome £ after the measurement is quantified by the
Kullback information corresponding to the prior and poste-
rior probability density functions:

K[/ S1= J’dbﬂb[!’u lnl !}E“l])}. (7)

This expression has to be averaged over all the possible out-
comes of the measurement, so that the expected gain of in-
formation reads

ﬂnﬂ=§pwmuu1 (8)

using Eq. (3), this expression can be writlen as

K[f} ._f]=2 J'dhj'l'b)p{ﬂb}lnl{ p(kib) h
T Loplk) ]
Let us note here that the value of K[f;.f] in Eq. (7)
would remain unchanged if we decided to characlerize the
entanglement of [4#) by another parameter h=h(h) [where
h(b) is any bijective function of the original parameter b].
Consequently. the gain of information we compute for b also
applies to any of the measures of entanglement so far pro-
posed, such as the entanglement of formation [7],

\/H»bl \/1+b \/l—bl 1—b
e 2 I.Ug‘_} 2 = 2 |l]_l'l_’: 2 . [][)l

for the asymptotic regime, or the monotone [10]

1-b
= (11)

Fo

for the single-copy case.

L. OPTIMAL MEASUREMENTS
FOR ENTANGLEMENT ESTIMATION

We are looking for a measurement of the form of Eq. (4).
such that the expected gain of information [Eq. (9)] is maxi-
mized. Here and in Sec. V we will present and explain such
optimal measurements, whereas their explicit construction is
mainly contained in Sec. 1V,

A. Local and global strategies

Before we proceed we comment on four classes of mea-
surements Alice and Bob may consider in order to learn
about b [12]:
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(i) Local measurements on only, say, Alice’s side, i.e., on
the N qubits supporting the local state p5™ ., would be the
most restrictive class of the hierarchy.

(i1} Uncarrelated bilocal measurement, in which each
party measures their local N-qubit part independently, is one
type of intermediate strategy.

(ii) Classically correlated bilocal measurement, with clas-
sical communication between Alice and Bob, is a less re-
strictive intermediate strategy.

(iv) Global measurements on the 2N qubits constitute the
most general case.

Global measurements are in principle the most informa-
tive ones. But as the parameter b, which quantifies the en-
tanglement of |4), also completely quantifies the mixing of
pa (and pp). it could well happen that local measurements,
or bilocal measurements on the two parties, optimal for the
determination of the mixing, are as informative as the global
ones with respect to entanglement. In fact, in reducing
[ ) {ah| 1o py©py only the relative phase a is lost, and the
dependence on directions a and b and on the entanglement b
is preserved. We have found the optimal global and local
measurement of b, The results obtained following the two
strategies are the same, as we will discuss in Sec. VII, so all
the extractable information about the entanglement is pre-
served nnder the partial trace operation, and the four classes
considered above turn out to be equivalent for entanglement
estimation,

B. Effective mixed state

Note that all the dependence on the measuring strategy (4)
in Eq. (9) is contained in the probability p(k|b) of outcome
k conditioned on the entanglement of the state being some
given b.

:'.r :'f

Pl A‘H}}*
where the sum over the rest of the parameters reflects the fact
that we are only interested in the entanglement. This expres-
sion can also be written as

plk|D)=u[M® pN(b)], (13)

where the nuxed state ;:'N’(b] is

Wi [ 40 J J |oN. \
I ”}]HL- R 7= (| (14)

Equation (13) allows for an alternative interpretation to our
problem: a 2N-qubit mixed state p™(b) is drawn randomly
with prior probability distribution f(b)y=3b?%, and we want
to determine it by estimating b.

We will compute p(k|b) on a basis that diagonalizes
p™(b). which will crucially turn out to be independent of b.
Let us denote the positive eigenvalues of p™(b) by
AN(D). oo N, (D), and their multiplicity by ny, ....n,,.
From the normalization of Eq. (14) the relation 27 n;\;
=1 follows. The sum n=ZXn; of multiplicities of (nonvan-
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ishing) eigenvalues equals the dimension of the space which
supports | i#){1|®". This is the symmetric subspace of H §",
and thus [5]

(N+3)! (N+3)(N+2)(N+1)

=N 3 . (15)

With this notation Eq. (13) reads

ny+ng

ny
p{k|b]=)\1(b)zl ME+ £, (b) Z MP+ ..

I'l'l|

n m

+Au(b) 2 M}'—!"—Z N(b)g® . (16)

f=n—n,+1

By substituting this expression into Eq. (9), and using the

inequality [16]
x|+r~){ I (x )+ | (Iz) (17
TV X;In = X,In % )

where x;,y;=0, along with the fact that the POVM is a
resolution of the identity in the symmetric subspace of
HIV, Le Equ “=n;, it follows that the average gain of
inl'unmlmu is boundt,d by

(x +):2)In(

m

(1
kU< A OZ, m 0 Ajb)

[ avson,o
(18)

C. Minimal most informative measuring strategy

Bound (18) can be minimally saturated through a mea-
surement with m outcomes, where each M™ is the
n-dimensional projector over the subspace corresponding to
the eigenvalue A, of p™i(h), then having p(k|b)
=nuh(b). Therefore, the construction of the optimal mea-
surement can be readily performed after the computation of
the spectral decomposition of state (14), and this is done for
an arbitrary N in Sec. IV. For a more detailed account of the
N=1,2, and 3 cases. see Sec. V, where also the gain of
information up to N=80 has been computed explicitly.

Note also that there are other ways measuring strategies
that can be evaluated and, consequently, there is not a unique
notion of optimality. For instance, in Refs. [1-6] a guess for
the unknown state is made depending on the outcome of the
measurement, and then both guessed and unknown states are
compared using the fidelity. It can be proved, following Ref.
[16], that the optimal measurements presented here, the most
informative ones, are also optimal if we decide, alternatively,
on a fidelitylike figure of merit satisfying some very general
conditions [19].

IV. COMPUTATION OF p™

It has been shown that the spectrum of p™¥'(b) determines
the maximal gain of information about b, whereas its eigen-
projectors lead to the corresponding measuring strategy. Our
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next step will be the computation of the spectral decomposi-
tion of this effective mixed state.
Let us rewrite the generic two-qubit pure state [Eq. (1)] as

@|=)p)
Uplir(b)), (19)

where ¢.=\(1+b)/2, ¢_=y(1—-b)/2, the single-qubit
pure states |+)4 and |—), (|+)p and |—)p) constitute an
orthonormal basis in Alice’s (Bob’s) part (corresponding to
some fixed direction in the Bloch sphere), U, and Uy are
unitary transformations in each single-qubit space. and
[4(b)) is a reference state.

The state p'V'(b) corresponds then to a Haar integral over
the group SU(2) X SU(2), since it can be expressed as

|y =Us@Up(ci|+)s@|+)p+c_|=)a
=U,@

p“‘”(b)=f dg[D(g)M(b)D(2)T1°,  (20)
gel

where the index g denotes the elements of the group G
=SU(2)XSU(2), D(g)=U @ Uy is a + X 1 irreducible rep-
resentation (irrep) of this group and M(b)=|¢(b)){(¢(b)|.

A well-known result in group representation theory fol-
lowing from Schur's lemma, the so-called orthogonality
lemma, will be useful in the calculation of this integral. Con-
sider a matrix A“P(B) given by

A"ﬂ(31=f dgD“(g)BDP'(g). (21)
pei

where D and DP are two unitary irreps of the group G.
Then we have the following,
Lemma 1 (orthogonality lenima):

A“F(B)=u(B)8"I, (22)

s0 A“P(B) is zero if the two representations are inequivalent,
and proportional to the identity if the two representations are
equivalent.

In order to benefit from this lemma we identify B with
M(b)*N=|p(b)){p(b)|®"Y and then consider the relevant
irreps of SU(2)XSU(2) borne by the N-fold tensor product
of the X £ irrep of the group. These representations are the
support of the state |#(5))®Y, and our next task is to recog-
nize them.

The state |#(5))*Y can be expanded as

(D)= ++ - ++),0] )p

e (44 k=)o) g

=4 )@ dp)

+ed (|4 A= =)a® | Jpt o
==t ael e,

e R il (S 1 S T (B

el |——ee == 24®]- )z, (23)
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where |- ) means that we have exactly the same vector in
the second subsystem. Notice that in the expression above all
the elements of the product basis {|u;)} of the local spaces
N of Alice’s and Bob's N qubits—i.e.. |u)=|++ .-
+), lugy=|++---+=) .. |uawy=|—-—- . — =) —
appear in the form |u;),@|u;)p. Notice, in addition. that if
we denote by my the sum of the third spin component of all
spinors in each ket—i.e., for instance my(|+ ++))=3/2,
mp(|++—=N=12, mp(]—+-=)=—1/2,---—, the terms
multiplied by the same combination of the factors ¢, and ¢
have the same my in A and B. State (23) can thus also be
expressed as

_(.N E

fimp=N/2

l(b))® luida @)y

+cN e E 1 luida®lu)p+

fimp=(N/2)

'+'(.J_\f Z |Hr').l'. {'S')]J-Ij);g N {24}
fsmg=—Nf2

We now move from the local spin basis {|u;),} to the
coupled one {|v;),} in Alice’s N qubits, and we also do the
same in Bob’s. The following lemma, that can be casily
checked, will be useful here.

Lemma 2: Let {|e;)} and {|f;)} be two orthonormal basis

in C', related by an orthogonal transformation (), so that
le))=%;0;lf;). with 0*=0, and O '=07. Then,

! 1

Ei |l’-’i)f‘)l¢’f)=; lrelr. (25)

Now, note that the unitary transformation relating the local
basis and the coupled one is real (since all the Clebsch-
Gordan coefficients are real), and that there is a conservation
rule for the total third spin component (i.e., the Clebsch-
Gordan coefficients that couple two states with third compo-
nent m, and m, to a coupled state with third component m
are proportional o &, my+my) Then Eq. (24) can be reex-
pressed, using the prewuus two facts and lemima 2, in the
coupled basis as

fl‘.ff(b}):'m:t‘N—;‘ > lvda@|vi)p
fim=NI2
e X loa@lvdpt
timyp={(N/2) —1
+c¥ X |uaelvds (26)
Bimyp=—NI2

(see the examples in Sec. V for more details). We note that
the symmetry between the terms in A and in B allows us 10
derive Eq. (26) from Eq. (24).

Let us now have a closer look into Eq. (26). The term
with coefficient ¢ corresponds simply o the state with a
total spin j maximal in both Alice’s and Bob's subsystem
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(le. j4=Jp=N/2) and also maximal third spin component
m, namely, my=mp=N/2. We can thus write, with the no-
tation  [amy ), @ tmp)g, |v)=le)a2lv)p=I"N12),
= |N2NJ2) g . This state belongs to a N2@N/2 irrep of the
group SU(2)XSU(2). The coefficient ¢y e corresponds
to all states with my=mp=(N/2)—1. Apart from |v,)
=["A(N2)— 1), |[N*(N/2)— 1), which again belongs to
the previous N/2@ N/2 irrep, the remaining N—1 kets, |vs)
+|loy.y) have j,=jp=(N/2)—1, and thus belong to N
= 1 different (but equivalent)

£

i i

irreps of the group. But since only the linear combination
lvs)+ -+ +|vy. ) appears, the relevant irrep is just the
symmetric combination of the latter N—1 ones, which we
will denote by

[(3-1)e (-1}

sym

and which no longer decomposes as the product of two irreps
of SU(2). The same applies for

o)l

irreps. and so on,
Thus. the space which supports the initial state can be
decomposed in terms of irreps of SU(2) X SU(2) as

NNI{N 1_‘[IN
v hd [l A i
| Nmod?2 N mod 2
> & —; K

(27)

where N mod 2 is equal to 1 for odd N and equal to zero for
even N, It can be checked that this result agrees dimension-
ally with formula (15).

The decomposition shown above in terms of the relevant
irreps of the group SU(2)XSU(2), together with the or-
thogonality lemma. can be used to solve the integral in Eq,
(20). As we have argued, when plugging Eq. (26) into Eq.
(20)  the cross terms corresponding to  inequivalent
representations—such as v, )({(vs]+ -« + (vy ., |)—vanish
as  we integrate, while the terms within the same
representation—such as vy ){(v,|—lead to a contribution
proportional to the identity in the subspace associated with
the representation. So the state p'™(b) is equal to

MDY= N (D) vponnt Na(DM (v - 111w -1 1}

xym

o F N (D v o D211V mod 221y, - (28)

This is the spectral decomposition we are looking for, where
{\;} are the entanglement dependent eigenvalues of p™(b),
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the trace of the identities giving the corresponding multi-
plicities {n;}. It is important to notice that, as it was men-
tioned before, the eigenspaces are independent of b.

The calculation of n;A; can now be readily performed
from Eq. (26) by computing the trace of the projection of
[ (b)) into each relevant irrep. The determination of the
spectrum of p'™(b) completes, as we have shown, the con-
struction of the optimal measurement for the estimation of
the entanglement. In Sec. V some examples are studied in
order to clarify the implementation of the procedure.,

V.SOME EXAMPLES: THE N=1.2,3 CASES AND BEYOND

In this section we will apply the procedure described
above to obtain the optimal estimation of & when one, two,
and three identical copies of the initial state are at our dis-
posal.

A.N=1
The simplest case, N=1, is now straightforward. The
state written as in Eq. (19) belongs to the +®% irrep of
SU(2)xSU(2). From Eq. (20) we have, using the orthogo-
nality lemma as in Eq. (28),

p‘”(b)=] deD(g)M(b)D(g)'=N,(b)I. (29)

The eigenvalue \,(b)=1+ is obtained by taking the trace in
the expression above. The probability p(k|b) [see Eqg. (13)]
is independent of b, so that p(k)=p(k|b) and the average
Kullback information [Eq. (9)] vanishes. Consequently, no
information whatsoever can be obtained about the entangle-
ment of a completely unknown pure state if only one copy is
at our disposal.

B. N=2

For the N=2 case the initial state has the form, from Eqgs.
(23) or (24),

lp(b))®2=c% |+ +),8] Ypt+cic_(|+—=)a
®| Yp+|=+)ae| )p)+ct|—=)a®| )5,
(30)

Now, using lemma 2 and the conservation law mentioned
above for the Clebsch-Gordan coefficients [cf. Eq. (26)], we
can rewrite the state as

L)) 2 =" 1)s@ ] )p+ese('0)a@]- )5+ [0}

S+ =1, ). (31)

@
®

where for each party the coupled basis is related to the local
one by means of an orthogonal transformation, as usual,

Pay=le e st=la

(32)
1
['0)=—=(l+=)+|—+)),

V2
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[”e>=%u+—>—|—+>>.

The state |#(b))®* in Eq. (31) is supported then in the 1
@1 and the 020 irreps of SU(2)XSU(2). and now the
application of lemma 1 gives for p@(b):

pP ()= (D)1 51+ Na(D) g (33)

We just need to pick up the contributions of Eq. (31) to each
irrep, that is the trace of the corresponding projections, to
find that

3+ b2
4 T

i (B)=(ct +clet+ct)=

(34)

1—5?
TR

2

n:)\z(b) =(.‘21_f

The optimal measurement [see Eq. (18)] then consists of
two projectors onto the 1@1 and 020 irreps of SU(2)
@8SU(2), with probabilities p(1|b)=n\;(b)=(3+b*)/4
and p(2|b)=n,h,(b)=(1—b*)/4, and from them p(1)
=+ and p(2)=1+. Finally the gain of information can be
computed, using Eq. (9), and it gives K=0.0375 bits.

C.N=3

The last case we want to discuss is N=3. Starting now
from Eq. (26), we have

hi"(b))m:i'i-‘m%}ﬁ '1_'5"}B+f'if'—{|3!2%')f1@|'>B+|mil");.
(::|'}B+Ilfz[..%)f‘.@|'>B)+f.-r€2..{l3n'_?‘1: A@|'>ﬂ'

+]12-1y, @] Yp+ |2 =1y, @] )p)

+P2-1el- s, 83

we observe that only contributions to the $@# and to two
different $@% irreps of SU(2)XSU(2) appear. Notice, in
addition, that since in this expansion the contributions to 3
®% and to +'®+' only appear in a symmetric linear combi-
. - t -

nation (ie., ["3)a@| )p+|" 1)@ )p and A=),
@|-yp+ " —4),@| V). the relevant irreps is precisely a
symmetric combination of the two latter ones, {$+@%},,,, .
The orthogonality lemma gives now

p (b)Y =Ny (D) 3ps3n+ Na(b) e 12, (36)

Finally, by collecting the traces of each projection of Eg.
(35) onto each irrep, we obtain

14 h?
2

nh(b)=(cS +ct e +c2ct +¢%)=

(37)
g 1 ‘*b!
nzM(b}:Z(ctc:’_ + (';,(-‘1 )= —
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TABLE 1. Average gain of information K about & given N cop-
ies of the state |).

N K

1 0

2 0.03751
3 0.08397
4 0.13259
5 (L1805
10 0.39245
20 0.69639
40 1.07422
60 1.32005
80 1.50261

and thus the optimal measurement is composed by 16-
dimensional and four-dimensional projectors into the two ir-
reps shown above, the corresponding probabilities being
p(1[D)=(1+b*/2 and p(2|b)=(1—Db*)/2. From these.
p(1)=% and p(2)=%, and the gain of information is of
0.084 bits,

D.N>3

We have applied the same, general procedure 1o obtain
the gain of information up to N=80. as reported in Table |
and Fig. 1. We observe a logarithmic asymptotic dependence
of the gain of information on the number N ol available
copies of 1), which reads

K=0.44log,N (38)

bits of information on b.

VL. OPTIMAL ESTIMATION OF MIXING

So far we have considered the most general measurement
involving the whole space (Ha®H,)®Y of N copies of a
two-qubit pure state. Now we are going to study optimal
local measurements for the estimation of its entanglement.
Alice will perform a collective measurement over the N cop-

Average K

Lot T S T - - T R % T N

O o O o

1 2 3 4 1n(w)

FIG. 1. Average gain of information K about b given N copies
of the state [¢/). The points represent the results obtained by the
described optimal measurement, while the line shows (he
asymptotic behavior.
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ies of the state py in Eq. (2) at her disposal in order to
estimate the parameter b. Consequently, we are also studying
optimal strategies for estimating the degree of mixing of a
single-qubit mixed state. when N copies are available,

In order to study the latter with more generality we will
consider a generic prior distribution f(b) for the degree of
mixing while keeping an isotropic distribution in the Bloch
vector direction a of the unknown mixed state., with

da ('
L:EJ'” db f(b)=1. (39)

A general measurement on the local composite system sup-
porting the state p?N consists of a resolution of the identity
: .I . / ar &N i

in the corresponding Hilbert space H ,© by means of posi-
tive operators M*, The gain of information is as in Eq. (9),
where now

plklb)y=t[M®pM(b)], (40)

so that we need to compute the effective mixed state
;.;_‘;;"-‘Uﬂzj dg[D(g)ps(b)D() TN, (41
pels

where the integral is performed over the group G=SU(2)
and a single copy of the mixed state

pa=Uapa(b)U} (42)

has been expressed, as before, in terms of a reference state
palh=c2|+){+|+¢?|=)(—|) and a unitary transforma-
tion U, . The procedure to be followed is analogous to the
previous one. the spectral decomposition of the state (41),
allowing us to build the optimal measurement,

The density matrix p,(b)®Y can be written—by using a
straightforward modification of lemma 2 and the mentioned
properties of the Clebsh-Gordan coefficients—in terms of the
coupled basis {|v)a} as

ORI

fump=N{2

]UJ}(UILI.

{.'_.‘.LN—I]

;
+ 5

¢ loa)oilat -

iimp=(N2)-1

+eN X JuiNuila. (43)
fimy=—(NI2)

Notice that the important role played before by the symmetry
between the kets in A and B [cf. Eq. (26)] is now played by
the symmetry between the terms in the bra and in the ket.
However we see that now there are no cross-terms between
inequivalent irreps of SU(2), and that equivalent irreps, such
as the N—1 copies of the [(N/2)—1] irrep, obtain equal but
independent contributions. The space H 5", decomposed in
terms of irreps of SU(2) is (see also Refs. [6] and [17])
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N [N 'N
SN LY )

N mod 2
—

By —D D

(44)

The spectral decomposition of p{'(b) is determined by
application of the orthogonality lemma. Since equivalent ir-
reps receive always the same contributions in the decompo-

sition (43), the corresponding eigenvalues are equal, so that
Eq. (41) reads

P (D) =MD I+ N (DY T vy -1+ -+ Lwmy 1)+
FNED) Ty mod 22t *+ + (N moa 22)- (45)

This is, of course, simply what remains from Eqg. (28) when
Bob's subsystem is traced out, and we have included the
whole derivation only for completeness.

Equations (16)—(18) still hold, and therefore the optimal
measurement for the degree of mixing b corresponds, for any
isotropic distribution, to projections onto each of the sub-
spaces associated with the eigenvalues {\F}. The gain of
information is then given by the right-hand side of Eq. (18).
Notice that both the number of outcomes and the correspond-
ing probabilities p(k|b)=nfAE(b) are equal to the ones ob-
tained before for entanglement estimation. In particular, it
follows that there is no way to learn about the degree of
mixture of an unknown mixed state if only one copy is avail-
able.

VII. DISCUSSION AND CONCLUSIONS

In this work we have presented an optimal strategy for the
estimation of the entanglement of two-qubit pure states,
when N copies are available. Such optimal measurement is
also minimal, in the sense that it consists of the minimum
number of outcomes, namely, N/2+1-(N+1)/2 outcomes
for the even-odd-N-copy case. Most of the corresponding
projectors are of dimension greater than 1, and of course any
further decomposition of them can be used in principle to
obtain, simultaneously, some additional information about
other properties of the unknown state. although our optimal
POVM is not compatible with projecting onto states of the
form |,)®" as optimal POVM for state determination are
[2-5], and they are thus less powerful for that purpose.

An interesting particular case is when the initial state is a
product state, i.e., b=1. It can be seen that in this situation
we have only an outcome corresponding to the space of
maximum spin, since 7\ (1)=1. Therefore, if the outcome
k, with k>1, is obtained, we can be assured that the state is
entangled.

In Sec. VI we were also concerned with the optimal esti-
mation of the degree of mixing. Our optimal measurement,
again minimal, can be used, for instance, to quantify the
degree of purity of states created by a preparation device
whose polarization direction we ignore. Our strategy is actu-
ally complementary to the one aiming at optimally revealing
the direction of polarization of the state [1]. As a matter of
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fact, the optimal POVM we obtained is just a coarse graining
of the one obtained in Ref. [6] for optimal estimation of
mixed states, which turned out also to reach the optimal stan-
dards of direction estimation obtained in Ref, [1]. Conse-
quently, the direction and modulus of the Bloch vector of an
unknown mixed state can be optimally estimated simulta-
neously. Note that this is not a frequent situation. If, instead,
we would like to estimate the x, y, and z components of the
Bloch vector independently, we would have obtained incom-
patible optimal strategies (consider, e.g., the N=1 case.
where an optimal measurement for the component of the
Bloch vector along direction 2 consists of a two outcome
measurement projecting on that direction).

Finally, we can argue that bilocal measurements. either
uncorrelated or classically correlated, do not imply any im-
provement of the simpler, local ones for entanglement esti-
mation. Once we obtain an outcome from Alice’s local mea-
surement, we can compute Bob’s effective state. and it is
clear from Eq. (28) that his outcome will be the same as
Alice's, so that no extra information on b will be obtained.
We have also seen that the optimal global measurement on
|4)®N is perfectly mimicked by a local one on pi™ (or
ps™), so that actually all four classes of measurements con-
sidered in Sec. III A are equivalent. In fact, with hindsight,
one can understand this result: local measurements are per-
formed on the reduced density matrix, which is obtained by a
partial trace over the other subsystem. This operation erases
the information contained in the parameters o and b of Eq.
(1). On the other hand, the global measurement can be inter-
preted as being performed on the effective density matrix of
Eq. (14), where the same parameters have been integrated
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over. This operation erases the information contained in
them as well,

It would be challenging to address the same question for
bipartite mixed states, and for systems shared by more than
two parties. Note that in none of these cases is optinial esti-
mation of the nonlocal parameters possible by means ol local
(or even uncorrelated bilocal) measuring strategies. This is
the case for mixed states because any given reduced density
matrix p, may correspond to infinitely many mixed states p.
with different degrees of entanglement, so that not even in
the limit N—o= can the entanglement of p be properly in-
ferred from p§™. The mere existence of hidden nonlocal
parameters [18}—that is, of entanglement parameters that are
erased during the partial trace operation—also prevents un-
correlated local strategies from being optimal for estimation
of pure-state tripartite entanglement. To conclude, two-qubit
pure-state entanglement, a quantum nonlocal property. can
be optimally estimated by means of local, but collective,
measurements.
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