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ABSTRACT
Similar to cells, bacteria, and other micro-organisms, synthetic chemically active colloids can harness the energy from their environment
through a surface chemical reaction and use the energy to self-propel in fluidic environments. In this paper, we study the chemo-mechanical
coupling that leads to the self-propulsion of chemically active colloids. The coupling between chemical reactions and momentum transport
is a consequence of Onsager reciprocal relations. They state that the velocity and the surface reaction rate are related to mechanical and
chemical affinities through a symmetric matrix. A consequence of Onsager reciprocal relations is that if a chemical reaction drives the motion
of the colloid, then an external force generates a reaction rate. Here, we investigate Onsager reciprocal relations for a spherical active colloid
that catalyzes a reversible surface chemical reaction between two species. We solve the relevant transport equations using a perturbation
expansion and numerical simulations to demonstrate the validity of reciprocal relations around the equilibrium. Our results are consistent
with previous studies and highlight the key role of solute advection in preserving the symmetry of the Onsager matrix. Finally, we show that
Onsager reciprocal relations break down around a nonequilibrium steady state, which has implications for the thermal fluctuations of the
active colloids used in experiments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0098425

I. INTRODUCTION

Synthetic active colloids are microscopic particles that harness
a catalytic chemical reaction to self-propel.1,2 These synthetic par-
ticles display biological-like features in that they are able to turn
the chemical energy available in the environment into motion-like
bacteria or eukaryote cells. However, since their surface can be func-
tionalized and their surface chemistry can be controlled during the
manufacturing process, they represent potential candidates for novel
cancer therapies,3–5 cargo transport,6 or environmental remedia-
tion.7 Such promising applications have sparked the development of
many different synthetic active particles that propel through differ-
ent mechanisms.8–10 A common feature of synthetic active colloids is
that to move in fluidic environments, they operate out of equilibrium

to convert chemical energy into mechanical stresses, potentially
leading to spontaneous symmetry-breaking instabilities.11–16 There-
fore, their behavior can be understood using the framework of
nonequilibrium thermodynamics.

In a recent series of papers, Gaspard, Kapral, and coauthors
showed using thermodynamics considerations that, close to equilib-
rium, the velocity and the reaction rate of a chemically active particle
are linearly related to an external force and the chemical affinity.17–19

This chemo-mechanical coupling originates from Onsager recipro-
cal relations and implies that if a reaction rate drives self-propulsion
in a certain direction, then a force applied in that direction drives
a reaction rate. A consequence of Onsager reciprocal relations is
that it is possible to use external forces to drive chemical reactions.
Similar examples of chemo-mechanical coupling are very common
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in biological settings, for instance, the adsorption of proteins on cell
membranes can change their preferential curvature20 and forces are
known to impact reaction rates as in the case of mechanophores21

or enzymatic reactions.22 In their work, Gaspard and Kapral17

demonstrated that such chemo-mechanical coupling is also relevant
for synthetic active colloids that propel through chemical reac-
tions, but they did not discuss the physical mechanism responsible
for it.

On the other hand, the self-propulsion of chemically active
colloids has been successfully explained using the framework of self-
phoresis, which uses thin boundary layer asymptotics.23,24 Accord-
ing to this approach, the surface reaction generates a gradient of
reactants and products that interact through a short-ranged poten-
tial with the surface of the active colloid.25,26 This mechanism results
in the development of a phoretic slip velocity within a few nanome-
ters of the particle surface, which, in turn, drives the motion of
the active colloid. While this framework successfully explains how
a surface reaction results in self-propulsion, it is not clear how an
external force can generate a reaction rate. In these studies, the
advective transport of the reactant and product species is usually
neglected, and the transport of species is solved independently of
the velocity field. As a consequence, the reaction rate is decoupled
from the flow field and the symmetry of Onsager relations appears to
be broken.

In this paper, we address this point by investigating the physical
mechanism leading to the chemo-mechanical coupling highlighted
by Gaspard and Kapral.17 To do so, we use integral relations, a per-
turbation expansion, and numerical simulations. We show that by
solving the transport equations around a chemically active colloid,
without assuming a short-ranged interaction potential,27 we recover
a symmetric Onsager matrix. Our analysis reveals that the advec-
tion of the reactant and product species, which is often neglected,
is the physical mechanism leading to the symmetry of the chemo-
mechanical coupling discovered by Gaspard and Kapral.17 Consis-
tently taking into account, advection is crucial to preserve the sym-
metry of Onsager reciprocal relations in the case of self-propelled
chemically active particles.

Finally, since many experiments are carried out far from ther-
modynamic equilibrium, we investigate the validity of Onsager
reciprocal relations around a nonequilibrium steady state (NESS).
In this case, there is a net entropy production at the steady state that
breaks the detailed balance and the microreversibility of molecular
trajectories. This does not necessarily break the reciprocal relations
because the fulfillment of the detailed balance implies Onsager recip-
rocal relations but not vice versa. In fact, there are some situations
in which Onsager reciprocal relations and fluctuation–dissipation
relations hold around nonequilibrium steady states despite the
breakdown of the detailed balance.28–30

This paper is divided as follows. In Sec. II, we briefly
recall Onsager’s reciprocal relations demonstrated by Gaspard and
Kapral17 in the case of a chemically active colloid. In Secs. III–V,
we define the problem and the governing equations and derive their
dimensionless form. In Sec. VI, we report the governing equations
linearized around a generic steady state. In Sec. VII, we address
Onsager’s reciprocal relations around equilibrium using perturba-
tive analysis and numerical simulations. In Sec. VIII, we address
Onsager’s reciprocal relations around a nonequilibrium steady state.
Finally, Sec. IX contains conclusions and discussions.

II. ONSAGER RECIPROCAL RELATIONS
FOR A CHEMICALLY ACTIVE COLLOID

In a series of papers, Gaspard, Kapral, and coauthors17–19

showed that for small thermodynamic forces, i.e., in the linear
response regime, the velocity of the active particle, V , and the net
reaction rate, W, are linearly related to the thermodynamic forces,

⎛
⎜
⎝

V

W

⎞
⎟
⎠
=
⎛
⎜
⎝

DVF DVA u

DWF u DWA

⎞
⎟
⎠
⋅
⎛
⎜
⎝

F
kBT
Arxn

⎞
⎟
⎠

, (1)

where DVF is the translational diffusion coefficient, DWA is the
reaction–diffusion coefficient, and the coefficients that couple the
velocity to the reaction rate, DVA, and the reaction rate to the exter-
nal force DWF are equal DWF = DVA. In Eq. (1), the unit vector
u determines the direction of motion induced by a nonzero chemical
activity. Here, we consider an axisymmetric case, the unit vector, u,
coincides with the z axis unit vector u = ez , and the velocity is deter-
mined by its z-component V . The thermodynamic forces are given
by the chemical affinity, Arxn, and by the mechanical affinity, F/kBT,
which need to be small for Eq. (1) to be valid. Without any loss of
generality, we consider the external force F to be acting along the
z axis F = Fez .

The matrix that appears in Eq. (1) is called the Onsager matrix,
and near the equilibrium, it must be symmetric and positive defi-
nite. The properties of the Onsager matrix are a cornerstone result
of thermodynamics and follow from the microscopic reversibil-
ity of the molecular trajectories at equilibrium. The application of
Onsager’s reciprocal relations to the case of a self-propelled chem-
ically active colloid implies that if a nonzero chemical affinity leads
to the motion of a colloid along the z axis, then an external force
directed along the z axis results in a reaction rate.17 While Onsager’s
reciprocal relations are rigorously derived near equilibrium, there
are instances where they also hold when the linearization is per-
formed around a nonequilibrium steady state.28–30 In what follows,
we show that Onsager’s reciprocal relations are valid around equi-
librium using a perturbative expansion and numerical simulations.
Numerical simulations show that the reciprocal relations are broken
around a nonequilibrium steady state.

III. PROBLEM DEFINITION
To investigate the validity of Onsager’s reciprocal relations

for an axisymmetric chemically active colloid, we study a thermo-
dynamic system similar to that analyzed by Sabass and Seifert31

and depicted it schematically in Fig. 1. We consider an isothermal
system comprising a spherical particle of radius R suspended in
a dilute solution of two neutral species A and B whose chemical
potentials are given by

μA = kBT ln(cA/C), (2)

μB = kBT ln(cB/C) +Φ(r, θ), (3)

with cA and cB being the number density of species A and B,
kB being the Boltzmann constant, T being the absolute tempera-
ture, and C being a reference number density that sets a reference
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FIG. 1. Schematics of the system investigated. A chemically active colloid is sus-
pended in an incompressible fluid, and a chemical reaction between two solute
species, A and B, is catalyzed at the surface of the colloid. An external force might
be acting along the z axis. The concentration of species A and B is fixed far from
the colloid. An inhomogeneous interaction between the B solute molecules and
the colloid surface drives the self-propulsion of the active particle.

chemical potential, which we assume equal for both species. It fol-
lows that the chemical potential of the two species differs because
species B interacts with the wall through the potential Φ(r, θ), with
r and θ being the radial and polar coordinates of a spherical coor-
dinate system fixed at the particle center. We assume that the
equilibrium reaction AÐÐ⇀↽ÐÐ B takes place at the surface of the colloid

according to the reaction rate per unit surface,32,33

w = Lr(θ)(1 − exp(μA − μB

kBT
)) at r = R, (4)

with Lr(θ) being Onsager’s coefficient that relates the local chemical
potential to the local reaction rate. The total reaction rate, W, is given
by the integral of w over the active particle surface,

W = ∫
S
w dS, (5)

with S being the surface of the particle. To model chemically active
colloids that are used in the experiments, which are coated with a
catalyst on only some part of their surface, we consider that the reac-
tivity changes along the particle surface as Lr(θ) = Lr g(θ), where
g(θ) is a positive dimensionless function and Lr specifies the mag-
nitude of the Onsager coefficient. To achieve self-propelled motion,
the spherical symmetry of the problem needs to be broken,23,34–36

which happens if the potential energy, Φ(r, θ), or Onsager’s coef-
ficient, Lr(θ), changes along the polar angle. Here, we consider
a potential energy that has the form Φ(r, θ) = Φ0 f (r, θ) with a
characteristic magnitude Φ0 and varying in space according to the
dimensionless function f (r, θ), which we assume to be axisymmetric
around the z axis. It follows that the molecules of B interact preferen-
tially with one side of the surface than the other. Finally, we assume
that the interaction potential decays to zero at large distances from
the surface of the colloid Φ(r, θ)→ 0 as r →∞.

At thermodynamic equilibrium, all the fluxes vanish, the sus-
pending fluid is quiescent, the chemical potential is uniform, and
the distribution of species A and B is given by the Boltzmann
distribution,

cA = cA,eq = const. (6)

and

cB = cB,eq = cA,eq exp(− Φ0

kBT
f (r, θ)). (7)

For r →∞, the concentration of species A and B is equal because
Φ(r, θ) decays to zero.

IV. GENERAL STEADY STATE EQUATIONS
By following the framework of nonequilibrium thermodynam-

ics, we assume that the local thermodynamic forces and the local
fluxes are linearly related even if the system is globally driven out
of equilibrium.37 We present the governing equations at the steady
state and in a reference frame attached to the center of the active
particle. It follows that the momentum balance is given by

η∇2v −∇p = cB∇μB + cA∇μA, (8)

where η is the shear viscosity of the liquid, v is the velocity field, and
p is the pressure. We neglected the inertia of the liquid in Eq. (8),
which is typically negligible at the colloidal scale. By substituting the
expression for the chemical potentials μA and μB, given by Eqs. (2)
and (3) in the momentum balance, we obtain

η∇2v −∇P = cB∇Φ, (9)

where we have defined the pressure P as the sum of the hydro-
dynamic pressure and the osmotic pressure P = p + kBT (cA + cB).
We assume that the fluid mixture is incompressible; therefore, the
continuity equation is given by

∇ ⋅ v = 0, (10)

with boundary conditions at infinity r →∞ given by

v = −Vez (11)

and at the surface of the particle r = R given by

v = 0. (12)

The balance of force on the active particle reads

∫
S
T ⋅ n dS = −∫

Ω
cB∇Φ dΩ − Fez , (13)

where T is the stress tensor defined as T = η(∇v +∇vT) − PI, n is
the normal to the particle surface pointing into the fluid, and Ω is
the volume outside the sphere.

The steady state balance of species A and B is given by

∇ ⋅ JA = ∇ ⋅ JB = 0, (14)

where JA and JB are the fluxes of species A and B, defined as

JA = −
LAA

T
∇μA + cAv, (15)

JB = −
LBB

T
∇μB + cBv. (16)
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The coefficients LAA and LBB are Onsager’s transport coefficients.
The transport coefficients are related to the diffusion coefficients
of species A and B through LAA = DATcA and LBB = DBTcB, with
DA and DB being the diffusion coefficients of species A and B. In
the definition of the diffusive fluxes, we have neglected the cross-
coupling coefficients because we are considering dilute species.
Nevertheless, the conclusions of the present work should hold in the
case of cross diffusing species.

At the surface of the active particle r = R, the fluxes of species
A and B are related to the local reaction rate w, given by Eq. (4), and
read

JA ⋅ n = −w, (17)

JB ⋅ n = w. (18)

The net reaction rate is defined in Eq. (5), and it is obtained by
integrating w over the surface of the active particle. Far from the
particle, r →∞, the chemical potential of species A is fixed, while
the chemical potential of B is at equilibrium,

μA → μA,∞, (19)

μB → μB,eq. (20)

The difference in the chemical potential of the two species, nor-
malized by kBT, defines the chemical affinity, which is the driving
force of the chemical reaction at the surface of the active particle.
We define the chemical affinity, Arxn, using the chemical potential of
the species far from the particle,

Arxn =
(μA,∞ − μB,eq)

kBT
, (21)

which is typically how the reaction rate is driven in experimental
systems. The thermodynamic forces that drive the active particle out
of equilibrium are given by the mechanical affinity F/kBT, acting
directly on the particle, and by the chemical affinity, Arxn, that drives
the chemical reaction.

V. DIMENSIONLESS EQUATIONS
We make the governing equations dimensionless by using the

following characteristic quantities:

r = R r̃, v = kBT R cA,eq

η
ṽ, P = kBT cA,eq P̃,

cA = cA,eq c̃A, cB = cA,eq c̃B.
(22)

In the rest of this paper, we will consider dimensionless quantities
only, and we omit the tilde superscript for clarity. The dimensionless
momentum balance reads

∇
2v −∇P = ϵ cB∇ f (r, θ), (23)

with ϵ = Φ0/kBT being the dimensionless characteristic potential
energy between species B and the surface of the particle. The mass
balance reads

∇ ⋅ v = 0, (24)

with boundary conditions at infinity r →∞ given by

v = −V ez (25)

and at the surface of the particle r = 1 given by

v = 0. (26)

The dimensionless balance of the number density of species A
and B is given by

∇
2 cA −

Pe
β

v ⋅∇cA = 0, (27)

∇
2 cB + ϵ∇ ⋅ [cB∇ f (r, θ)] − Pev ⋅∇cB = 0, (28)

where the Péclet number is defined as Pe = kBTcA,eqR2/ηDB and
β = DA/DB is the ratio of the diffusion coefficient of the two species.
In defining the Péclet number, we considered as the characteristic
velocity the one generated by the solute–surface interactions rather
than the velocity of the particle. This choice is dictated by the fact
that the velocity of the active particle is unknown and is obtained
from the solution of the equations. Alternatively, another velocity
scale could be constructed using the external force F, but this choice
results in the mechanical affinity being included in the Péclet num-
ber. As a consequence, one could not decouple the effects of an
external force from the effects of advection.

In the limit r →∞, the chemical potential of species A is kept
as a constant value, which fixes its number density,

cA → cA,∞. (29)

It is a nonzero chemical affinity that drives the reaction out of
equilibrium. Far from the particle, r →∞, the number density of
B approaches its equilibrium value,

cB → 1. (30)

The chemical affinity that drives the chemical reaction is given by

Arxn = ln cA,∞. (31)

At the surface of the particle, r = 1, the species react according
to the reversible reaction,

−∇cA ⋅ n = −Da g(θ) (1 − cB

cA
exp(ϵ f (1, θ))), (32)

− [∇cB + ϵ cB∇ f (1, θ)] ⋅ n = Da β g(θ) (1 − cB

cA
exp(ϵ f (1, θ))),

(33)
where Da = LrR/DAcA,eq is the Damkhöler number defined with the
diffusion coefficient of species A. The average reaction rate can be
evaluated by averaging the net consumption of A over the particle
surface S,

W = Da∫
S

g(θ) (1 − cB

cA
exp(ϵ f (1, θ))) dS. (34)
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The particle is dragged by an external force along the z axis. The
dimensionless force balance on the particle gives

∫
S
T ⋅ n dS = −ϵ∫

Ω
cB∇ f (r, θ) dΩ − β

Pe
F∗ ez , (35)

with the dimensionless force F∗ = F/ηDA. In the present form,
Eqs. (23)–(35) are nonlinear, and they must be linearized to connect
the velocity of the particle V and the reaction rate W to the thermo-
dynamic forces through a linear relation. In Secs. VII A and VII B,
we linearize Eqs. (23)–(35) around a generic steady state.

VI. LINEARIZATION AROUND A STEADY STATE
To derive Onsager reciprocal relations derived directly from

the transport equations, Eqs. (8)–(21), we consider small devia-
tions of the thermodynamic forces around their steady state value,
Arxn = Arxn,0 + δArxn and F∗ = F∗0 + δF∗, where δArxn and δF∗ are
small. We, thus, linearize the governing equations around the steady
state. The number density of A and B, the velocity, and the pres-
sure fields are, then, expanded as cA = cA,0 + δcA, cB = cB,0 + δcB,
v = v0 + δv, and P = P0 + δP. Similarly, the velocity of the par-
ticle is given by V = V0 + δV , and the reaction rate is given by
W =W0 + δW. The base state equations for the unknowns cA,0, cB,0,
v0, P0V0, and W0 satisfy the same equations as Eqs. (23)–(35). The
equations for the deviation are obtained by substituting the expan-
sions in the dimensionless equations [Eqs. (23)–(35)] and neglecting
the nonlinear terms. The linearized momentum and mass balance
read

η∇2δv −∇δP = ϵ δcB∇ f (r, θ), (36)

∇ ⋅ δv = 0, (37)

with boundary conditions at infinity r →∞ given by

δv = −δV ez (38)

and at the surface of the particle r = 1 given by

δv = 0. (39)

The force balance reads

∫
S
[(∇δv +∇δvT) − δP I] ⋅ n dS = −ϵ∫

Ω
δcB∇ f (r, θ) dΩ

− β
Pe

δF∗ ez. (40)

The linearized transport of species A and B reads

∇
2δcA = 0, (41)

∇
2δcB + ϵ∇ ⋅ [cB∇ f (r, θ)] − Pe δv ⋅∇cB,0 − Pev0 ⋅∇δcB = 0. (42)

The reaction rate is also linearized, leading to the linearized
boundary condition at r = 1,

−∇δcA ⋅ n = Da g(θ) ( cA,0δcB − cB,0δcA

c2
A,0

) exp(ϵ f (1, θ)), (43)

−[∇δcB + ϵ δcB∇ f (1, θ)] ⋅ n = −Da β g(θ) ( cA,0δcB − cB,0δcA

c2
A,0

)

× exp(ϵ f (1, θ)). (44)

The deviation of the concentration from the steady state far from the
particle yields the boundary conditions,

δcA → δcA,∞ as r →∞, (45)

δcB → 0 as r →∞. (46)

The deviation of the chemical affinity, δArxn, is related to
the deviation of the far-field concentration, δcA,∞, through
δArxn = δcA,∞/exp(Arxn,0), where Arxn,0 is the chemical affinity of the
steady state around which the linearization is performed.

The reaction rate δW can be evaluated by averaging the net
consumption of A over the particle surface S,

δW = Da∫
S

g(θ) ( cA,0δcB − cB,0δcA

c2
A,0

) exp(ϵ f (1, θ)) dS. (47)

The velocity of the particle can be computed using the Lorentz
reciprocal theorem,38

δV = β
6π Pe

δF∗ − ϵ
6π ∫Ω

δcB∇ f (r, θ) ⋅ v̂Stokes dΩ, (48)

where v̂Stokes is the Stokes flow past a sphere given by

v̂Stokes = (
3
2r
− 1

2r3 − 1) cos(θ)er − (
3
4r
+ 1

4r3 − 1) sin(θ)eθ, (49)

where er and eθ are the unit vectors along the radial and polar
direction.

By linearizing the governing equations, the deviation of the par-
ticle velocity, δV , and the reaction rate, δW, is linearly related to the
deviations of the thermodynamic forces as

⎛
⎜
⎝

δV

δW

⎞
⎟
⎠
=
⎛
⎜
⎝

DVF DVA

DWF DWA

⎞
⎟
⎠
⋅
⎛
⎜
⎝

β
Pe

δF∗

δArxn

⎞
⎟
⎠

. (50)

To investigate the validity of Onsager reciprocal relations, we are
interested in calculating the cross-coupling coefficients DVA and
DWF for a given steady state. To compute DWF , we first apply
an external force δF∗, we solve the system of equations given by
Eqs. (36)–(46), and we evaluate the reaction rate δW. The coefficient
relating the applied force to the reaction rate is the Onsager coeffi-
cient DWF . Likewise, to compute DVA, we apply a chemical affinity
δArxn, we solve the system of equations given by Eqs. (36)–(46), and
we calculate the particle velocity δV .

VII. RECIPROCAL RELATIONS AROUND EQUILIBRIUM
In the case of a base state given by the thermodynamic equi-

librium, Onsager’s matrix given by Eq. (50) must be symmetric
positive semi-definite. This property follows from the microscopic
reversibility of the trajectories under time reversal. In what follows,
we answer the question: in the case of a base state given by the ther-
modynamic equilibrium, do the transport equations, Eqs. (36)–(46),
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result in a symmetric positive semi-definite Onsager matrix? We
address this question in the Sec. VII A using a perturbation expan-
sion and numerical simulations. At thermodynamic equilibrium,
the base state is given by cA,0 = 1, cB,0 = exp(−ϵ f (r, θ)), v0 = 0,
P = kBT(cA,0 + cB,0), V0 = 0, and W0 = 0.

A. Perturbation expansion for weak interaction
potentials and small Damkhöler numbers

Even if the system of equation, given by Eqs. (36)–(46), is lin-
ear, its analytical solution is complicated by the fact that the chemical
activity and the potential energy vary with the polar angle θ. To cir-
cumvent this difficulty, we perform a perturbation expansion of the
linearized equations, which is valid for small ϵ and small Da,

δv = δv0,0 + ϵ δv1,0 +Da δv0,1 + ϵ2 δv2,0 + ϵ Da δv1,1 +Da2 δv0,2

+O(ϵ3, Da2ϵ, ϵ2Da, Da3), (51)

δP = δP0,0 + ϵ δP1,0 +Da δP0,1 + ϵ2 δP2,0 + ϵ Da δP1,1

+Da2 δP0,2 +O(ϵ3, Da2ϵ, ϵ2Da, Da3), (52)

δcA = ϵ δc1,0
A +Da δc0,1

A + ϵ2 δc2,0
A + ϵ Da δc1,1

A +Da2 δc0,2
A

+O(ϵ3, Da2ϵ, ϵ2Da, Da3), (53)

δcB = ϵ δc1,0
B +Da δc0,1

B + ϵ2 δc2,0
B + ϵ Da δc1,1

B +Da2 δc0,2
B

+O(ϵ3, Da2ϵ, ϵ2Da, Da3), (54)

δW = δW0,0 + ϵ δW1,0 +Da δW0,1 + ϵ2 δW2,0 + ϵ Da δW1,1

+Da2 δW0,2 +O(ϵ3, Da2ϵ, ϵ2Da, Da3), (55)

δV = δV0,0 + ϵ δV1,0 +Da δV0,1 + ϵ2 δV2,0 + ϵ Da δV1,1

+Da2 δV0,2 +O(ϵ3, Da2ϵ, ϵ2Da, Da3). (56)

Some of these terms can be shown to be zero based on sim-
ple considerations. The terms Da δv0,1, Da2 δv0,2, Da V0,1, and
Da2 V0,2 are zero because in the absence of a potential energy,
ϵ = 0, the momentum balance is decoupled from the transport of
mass and a reaction cannot generate fluid motion. Similarly, since
the reaction rate is proportional to Da, there is no reaction rate if
Da = 0 and the terms δW0,0, ϵδW1,0, and ϵ2δW2,0 are zero. In addi-
tion, we identify the field δv0,0 as the dimensionless Stokes flow past
a sphere δv0,0 = β

Pe δF∗v̂Stokes and the velocity δV0,0 = β
6π Pe δF∗.

With these simplifications in mind, the velocity of the active
particle and the net reaction rate can be obtained from an expansion
of Onsager’s matrix,

⎛
⎜
⎝

δV

δW

⎞
⎟
⎠
=
⎛
⎜
⎝

1
6π
+ ϵ(D1,0

VF + ϵ D2,0
VF + Da D1,1

VF) ϵ Da D1,1
VA

ϵ Da D1,1
WF Da(D0,1

WA + ϵ D1,1
WA +Da D0,2

WA)

⎞
⎟
⎠
⋅
⎛
⎜
⎝

β
Pe

δF∗

δArxn

⎞
⎟
⎠

. (57)

To leading order, the eigenvalues of the Onsager matrix, given by
Eq. (57), are 1/6π and Da D0,1

WA. Therefore, to demonstrate that the
matrix is positive semi-definite, we need to show that D0,1

WA ≥ 0. To
show that it is also symmetric, we need to prove that D1,1

VA = D1,1
WF . To

do so, we plug the expansion into the governing equations above
and solve order by order. The objective is to find the coefficient
D1,1

VA that relates δV and the chemical affinity, δArxn, and to show
that it is equal to the coefficient D1,1

WF . To do so, we proceed by divid-
ing the problem into two steps. We first consider the case of a zero
external force δF∗ = 0 and a nonzero chemical affinity δArxn, and we
calculate δV1,1. The entry of the Onsager matrix D1,1

VA is simply given
by the coefficient that relates δArxn and δV1,1. We, then, we impose
a nonzero δF∗ while keeping the chemical affinity at zero δArxn = 0,
and we calculate δW1,1 and obtain D1,1

WF as the coefficient that relates
δF∗ and δW1,1.

The first order reaction rate δW1,1 and the velocity δV1,1 are
obtained using integral relations38 that do not require the solution
of all the fields. By substituting the expansion in the governing equa-
tions, given by Eqs. (23)–(48), we find that the net reaction rate
δW1,1 is given by

δW1,1 = ∫
S

g(θ) δc1,0
B dS (58)

and that the velocity δV1,1 of the particle is given by

δV1,1 = − 1
6π ∫Ω

δc0,1
B ∇ f (r, θ) ⋅ v̂Stokes dΩ. (59)

It follows that to compute δW1,1 and δV1,1, we need to calculate the
first order fields δc1,0

B and δc0,1
B only.

1. Fixing the chemical affinity and calculating
the particle velocity and reaction rate

In order to find an expression for δc0,1
B , we substitute the

expansion in powers of ϵ and Da and we keep all the terms linear
in Da,

∇
2 δc0,1

B = 0, (60)

with the boundary condition at r = 1 given by

−∇ δc0,1
B ⋅ n = β g(θ) δArxn (61)
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and with δc0,1
B = 0 as r →∞. The reaction rate, δW0,1, is simply given

by the integral of the reaction rate, given by Eq. (61), over the sur-
face. This allows us to identify the coefficient D0,1

WA = β ∫S g(θ) dS.
Since β is always positive and g(θ) is a positive function, it fol-
lows that D0,1

WA ≥ 0, which proves that Onsager’s matrix is positive
semi-definite.

The solution of Eqs. (60)–(61) is obtained by expanding the dis-
tribution of the kinetic constant, g(θ), in Legendre polynomials as
g(θ) = ∑∞l=0glPl(cos(θ)), with Pl being the Legendre polynomial of
order l. The solution, then, reads

δc0,1
B = β δArxn

∞

∑
l=0

gl

l + 1
r−l−1 Pl(cos(θ)). (62)

Substituting this expression in the velocity, we obtain

δV1,1 = −β δArxn

6π

∞

∑
l=0

gl

l + 1 ∫Ω
r−l−1 Pl(cos(θ))∇ f (r, θ) ⋅ v̂Stokes dΩ.

(63)

Equation (63) allows us to identify the coefficient D1,1
VA as the

proportionality constant between δArxn and δV1,1,

D1,1
VA = −

β
6π

∞

∑
l=0

gl

l + 1∫Ω
r−l−1 Pl(cos(θ))∇ f (r, θ) ⋅ v̂Stokes dΩ. (64)

2. Fixing the external force and calculating
the reaction rate

In order to find an expression for δc1,0
B , we substitute the

expansion in powers of ϵ and Da and we keep all the terms linear
in ϵ,

∇
2 δc1,0

B = −
β

6π
δF∗∇ f (r, θ) ⋅ v̂Stokes, (65)

with the boundary condition at r = 1 given by

−∇ δc1,0
B ⋅ n = 0 (66)

and at infinity given by δc1,0
B = 0. The second Green’s theorem

states that the following integral relation holds between δc1,0
B and an

auxiliary field Ψ, which satisfies∇2Ψ = 0,

β
6π

δF∗ ∫
Ω

Ψ ∇ f (r, θ) ⋅ v̂Stokes dΩ = ∫
S

δc1,0
B ∇Ψ ⋅ n dS. (67)

Since the function Ψ satisfies the Laplace equation, its solution can
be written as Ψ = ∑∞l=0r−l−1Pl(cos(θ)), which we substitute in the
expression above to obtain

− β
6π

δF∗ ∫
Ω

∞

∑
l=0

r−l−1

l + 1
Pl(cos(θ)) ∇ f (r, θ) ⋅ v̂Stokes dΩ

=
∞

∑
l=0
∫

S
δc1,0

B Pl(cos(θ)) dS. (68)

We now expand the function δc1,0
B , evaluated at the surface of the

colloid, in the series of Legendre polynomials δc1,0
B = ∑∞l=0δ

c1,0,l
B Pl(cos(θ)). We plug this expansion in the right-hand side of

Eq. (68), and we apply the orthogonality property of the Legendre
polynomials and equate term by term to get

− β
6π

δF∗ ∫
Ω

r−l−1

l + 1
Pl(cos(θ))∇ f (r, θ) ⋅ v̂Stokes dΩ = 2

2l + 1
δc1,0,l

B .
(69)

The equation above yields all the Legendre modes of the distribu-
tion δc1,0,l

B at the surface of the colloid. We can use this expression to
evaluate the net reaction rate,

δW1,1 = ∫
S
g(θ) δc1,0

B dS, (70)

where we now expand both g(θ) and δc1,0
B in the series of Legen-

dre polynomials. By further using the orthogonality property of the
Legendre polynomials, we obtain

δW1,1 =
∞

∑
l=0

2
2l + 1

gl δc1,0,l
B . (71)

We now substitute δc1,0,l
B obtained from Eq. (69) to obtain

δW1,1 = − β
6π

δF∗
∞

∑
l=0

gl

l + 1∫Ω
r−l−1 Pl(cos(θ))∇ f (r, θ) ⋅ v̂Stokes dΩ.

(72)
Equation (72) relates the reaction rate to the mechanical affinity.
The coefficient of proportionality between the reaction rate and the
mechanical affinity yields the Onsager coefficient DWF,1,1, which is
identical to that obtained in Eq. (64),

D1,1
WF = −

β
6π

∞

∑
l=0

gl

l + 1 ∫Ω
r−l−1Pl(cos(θ))∇ f (r, θ) ⋅ v̂Stokes dΩ

= D1,1
VA. (73)

This result also proves that, to leading order, the Onsager matrix
given by Eq. (57) is symmetric for any choice of the distribution of
the chemical activity, g(θ) ≥ 0, and for any choice of the distribu-
tion of the interaction energy f (r, θ). Interestingly, to leading order,
neither DWF nor DVA depend on the Péclet number, which suggests
a negligible impact of advection to the cross-coupling coefficients.
As a consequence, one would be tempted to neglect this mechanism
when modeling chemically active colloids. However, neglecting
a priori the transport due to advection in the diffusive fluxes, given
by Eqs. (15) and (16), implies D1,1

WF = 0, thus breaking the symmetry
of the Onsager matrix.

3. Comparison of the self-diffusiophoretic velocity
with previous results

We can compare the self-diffusiophoretic velocity of the active
colloid predicted by Eq. (63) to that obtained by Sabbass and Seifert31

in the limit of a short-range interaction potential, zero Pèclet num-
ber, and equal diffusivity of two species A and B. The authors
calculated the velocity of an active particle using a matched asymp-
totic expansion, which is valid for an interaction potential that
decays quickly for r > 1. In the case of an interaction potential that is
only a function of the radius Φ(r) = ϵ f (r), they find that the veloc-
ity depends on the dipolar mode of the reaction rate. Rewriting their
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result in the dimensionless form and in the limit of slow reaction rate
Da≪ 1 and weak interaction potentials ϵ≪ 1,

Vdph = −
Da ϵg1Arxn β

3 ∫
∞

1
(r − 1) f (r) dr. (74)

Here, Da g1Arxn represents the dipolar component of the reaction
rate occurring at the surface of the active colloid and f (r) is a quickly
decaying function. To compare with Eq. (74), we rewrite Eq. (63) for
the case of the interaction potential being a function of the radial
distance only f (r, θ) = f (r),

δV1,1 = −β δArxn

6π

∞

∑
l=0

gl

l + 1∫Ω
r−l−1 Pl(cos(θ)) ∂

∂r
f (r)

× ( 3
2r
− 1

2r3 − 1) cos(θ) dΩ. (75)

We rewrite the integral above in spherical coordinates and carry
out the integration along the azimuthal direction, which is trivial
because the integrand does not depend on the azimuthal angle,

δV1,1 = −β δArxn

3

∞

∑
l=0

gl

l + 1∫
∞

1
∫

π

0
r−l+1 sin θ Pl(cos(θ))

× ∂

∂r
f (r)( 3

2r
− 1

2r3 − 1) cos(θ) dr dθ. (76)

We remove the radial derivative on the potential energy using inte-
gration by parts, and we use the fact that f (r)→ 0 as r →∞ and that
( 3

2r −
1

2r3 − 1) = 0 at r = 1 to obtain

δV1,1 = β δArxn

3

∞

∑
l=0

gl

l + 1∫
∞

1
∫

π

0
f (r)Pl(cos(θ)) sin θ cos(θ)

× ∂

∂r
[r−l+1( 3

2r
− 1

2r3 − 1)] dr dθ. (77)

We carry out the integral along the polar angle first. Since cos(θ)
= P1(cos(θ)), we can apply the orthogonality property of the
Legendre polynomials, ∫ π

0 Pl(cos(θ))Pl′(cos(θ)) sin(θ)dθ = 2δll′

/(2l + 1), which identifies the mode l = 1 as the only contribution
in the summation,

δV1,1 = β g1 δArxn

9 ∫
∞

1
f (r)( 3

2r4 −
3

2r2 ) dr. (78)

We are left with an integration of the product between two functions
along the radial coordinate. Since f (r) decays quickly to zero, we can
Taylor expand the term in the bracket around r = 1 and we retain
only the first-order term.39 By doing this, we obtain the leading order
propulsion velocity

δV1,1 = Da β ϵ g1 δArxn

3 ∫
∞

1
f (r)(r − 1) dr, (79)

which for β = 1 is exactly the same result as in Eq. (74). Our
results, which are derived from a model where the advective trans-
port of species is considered, coincide with those where advection
is neglected.31 This suggests that in the limit of a rapidly decay-
ing interaction potential or weak interaction energy, the advec-
tive transport of solute does not contribute to the propulsion
velocity.

B. Onsager relations using numerical simulations
around equilibrium

We extend the perturbative analysis presented in the Sec. VII A
to non-vanishing values of Da and ϵ by solving Eqs.(36)–(46)
using the finite element method. We consider the case of an
asymmetric chemical activity given by g(θ) = 1 + cos(θ) and an
interaction potential that decays exponentially over a dimension-
less lengthscale λ−1 and is fore-aft asymmetric f (r, θ) = ϵ exp
[λ(r − 1)](cos(θ) − 1). We further assume equal species diffusivity
β = 1. The computational domain is axisymmetric, and it is divided
into triangular elements, with a more refined mesh near the parti-
cle surface and coarser elements further away. To avoid finite size
effects, the computational domain is chosen 500 times the radius of
the active particle. A quadratic interpolation is used for the velocity
field and the solute concentration fields, and a linear interpolation
is used for the pressure field. To derive the Onsager cross coupling

FIG. 2. Onsager cross coupling coefficients, DWF and DVA, computed using numerical simulations of the governing equations linearized around the equilibrium. In (a), we fix
Da = 0.1 and change ϵ, while in (b), we fix ϵ = 0.1 and we change Da. The remaining dimensionless numbers are β = 1, λ = 1, and Pe = 1.
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FIG. 3. Onsager cross coupling coefficients, DWF and DVA, computed using numer-
ical simulations of the governing equations linearized around the equilibrium. The
dimensionless numbers are β = 1, λ = 1, and ϵ = 1.

coefficients, we proceed by fixing δF∗ = 1 and δArxn = 0 and evaluat-
ing the reaction rate, and we compute the coefficient DWF . We, then,
fix δF∗ = 0 and δArxn = 1 and evaluate the particle velocity, and we
obtain the coefficient DVA.

In Fig. 2, we report the coefficients DWF and DVA for differ-
ent values of Da and ϵ. In Fig. 2(a), Onsager’s coefficients, DWF and
DVA, are reported as a function of ϵ for Da = 0.1, while in Fig. 2(b),
the coefficients are plotted against Da for ϵ = 0.1. For the particular
choice of parameters, the numerical results confirm the symmetry of
the Onsager matrix and show that the perturbative approximation,
given by Eqs. (64) and (73), is accurate for the cases shown in Fig. 2.

In Fig. 3, we show the Onsager cross-coupling coefficients
for values of ϵ and Da that are beyond the range of applicabil-
ity of the perturbation expansion. The numerical results show that
DVA = DWF for all the parameters investigated, thus confirming that
Onsager’s reciprocal relations are fulfilled by the governing equa-
tions even beyond the range of applicability of the perturbation
expansion. Interestingly, in the limit Pe→ 0, the cross-coupling

coefficients attain a constant value that is independent of Pe and
only depends on ϵ and Da. The range of Pe for which DVA and
DWF are constant depends on the range of the interaction poten-
tial λ−1. For short-ranged potentials, λ−1 ≫ 1, the coupling coef-
ficients are constant up to very large values of Pe. To investigate
the effect of the range of the interaction potential, λ−1, in Fig. 4,
we plot the cross-coupling coefficients, normalized by their value
at Pe→ 0, as a function of Peλ−3. The results show that DVA and
DWF calculated for different interaction ranges, λ−1, collapse onto
a mastercurve that only depends on ϵ and Da. For Peλ−3 ≪ 1, the
cross-coupling coefficients are constant and they start to decay to
zero when Peλ−3 ≈ 1. This scaling is in agreement with the findings
of Michelin and Lauga40 who found that in the limit λ−1 ≫ 1, the
advection of species becomes important within the thin boundary
layer only if Pe ≈ λ3. Our numerical simulations suggest that, for
Peλ−3 ≪ 1, advection can be safely neglected if one is interested in
the propulsion of chemically active colloids. However, one should
retain advection in cases where external forces are present since
neglecting it leads to DWF = 0, thus breaking Onsager reciprocal
relations.

Our results suggest that the momentum balance and the trans-
port of solutes are coupled even in the limit of Pe→ 0. Such
coupling is necessary for an external force to drive a chemical
reaction and preserve the symmetry of Onsager relations. Indeed,
the force balance, given by Eq. (35), reveals that in the limit of
Pe→ 0, the velocity field must scale as v ∝ F∗/Pe. By substitut-
ing this scaling into the transport equation of species B, given by
Eq. (33), the Pe number that multiplies in the advective term of the
equation cancels out with the scaling v ∝ F∗/Pe. From a physical
standpoint, in the limit Pe→ 0, the phoretic velocity scale used in
the definition of the Péclet number becomes irrelevant and only
the relevant velocity scale can be constructed using the external
force F. One can redefine a new Péclet number using this velocity
scale, which would contain the mechanical affinity in its definition.
The immediate consequence of this is that one cannot simultane-
ously consider a finite mechanical affinity and vanishing advective
effects.

FIG. 4. Onsager cross coupling coefficient DVA computed using numerical simulations of the governing equations linearized around the equilibrium. In (a), we show the case
of Da = 1, and in (b), we show the case of Da = 2. The dimensionless numbers are β = 1 and ϵ = 1. The data computed at different interaction potential range, λ, collapse
on a mastercurve up to Peλ−3

≈ 1.

J. Chem. Phys. 157, 084901 (2022); doi: 10.1063/5.0098425 157, 084901-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Our results are in agreement with the recent work by Gas-
pard and Kapral,41 who proposed that in the limit of short-range
potentials, there is a coupling between the tangential component
of the traction exerted by the fluid and the tangential transport
of species. Such coupling is independent of the Péclet number
and couples the transport of solute and the transport of momen-
tum even if the advective transport outside the boundary layer is
negligible.

VIII. ONSAGER RECIPROCAL RELATIONS AROUND
A NONEQUILIBRIUM STEADY STATE

The symmetry of Onsager’s matrix that we investigated in
the Sec. VII is a direct consequence of the detailed balance and
time-reversibility of the microscopic equations of motion at ther-
modynamic equilibrium. Interestingly, the reverse implication is not
true: a symmetric Onsager matrix does not imply a detailed bal-
ance. In fact, the relation between thermodynamic forces and fluxes
can be symmetric even if the underlying microscopic dynamics is
irreversible.28,29 In these works, small perturbations of thermody-
namic forces around a nonequilibrium state were related to the
thermodynamic fluxes by a symmetric matrix. In other words,
despite the fact that the steady state had a broken detailed balance,
the Onsager symmetry was found to be still valid. In this section, we
investigate if this situation extends to the case of chemically active
colloids.

Motivated by these works, we investigate the validity of
Onsager reciprocal relations around a nonequilibrium steady state.
We assume that the base state is given by a nonequilibrium steady
state, whereby an active particle is driven by an external force
F∗0 or by a chemical affinity Arxn,0. We use the finite element method
to solve the base state, given by Eqs. (23)–(35), and compute the
steady state quantities. As we did in Sec. VII B, we fix the chemical
activity as g(θ) = 1 + cos(θ) and the interaction potential as f (r, θ)
= ϵ exp(λ(r − 1))[cos(θ) − 1]. The nonlinear system of equations is
solved using the Newton–Raphson method starting from an initial

guess given by the equilibrium distribution of species. The solu-
tion of the nonequilibrium base state yields the fields cA,0, cB,0,
and v0, which are, then, used to solve the linearized equations,
Eqs. (36)–(46), using the same mesh used to solve for the base state.

In Fig. 5, we report DWF and DVA for a base state driven out
of equilibrium by an external force or by the chemical affinity for
the case Pe = β = 1, ϵ = 0.1, and Da = 0.1. In (a) and (b) of Fig. 5,
it is apparent that for small thermodynamic forces, the steady state
is sufficiently close to the equilibrium so that Onsager relations are
symmetric, DWF = DVA, with the value of the coefficients agreeing
with the asymptotic approximation given by Eqs. (64) and (73).
However, Fig. 5 shows that in the case of a steady state that is driven
far from equilibrium, Arxn,0 ≈ O(1) and F∗0 ≈ O(1), the two coef-
ficients are different, DWF ≠ DVA, meaning that Onsager reciprocal
relations break down. We also find that considering a generalized
chemical affinity as proposed in Refs. 32 and 33 does not restore
the symmetry of Onsager relations. Our results suggest that in the
case of chemically active colloids, the breakdown of the microscopic
detailed balance at the steady state also implies the breakdown of the
symmetric relation between thermodynamic forces and fluxes. Inter-
estingly, the results reported in Fig. 5(b) show that the coefficient
that relates a reaction rate to an external force, DWF , first increases
and then decreases with F∗0 . For values of F∗0 < 10, the reaction rate
increases with the applied external force. This behavior is compatible
with that observed by Huang et al.42 in their Fig. 1(b). The authors
found that the reaction rate of a chemically active particle grows
quadratically with the externally applied force with a positive coef-
ficient. This observation agrees with our finding that DWF increases
with the applied force F∗0 . However, the comparison with the work
of Huang et al.42 is only qualitative because the active particle used
in their simulations is driven out equilibrium by a nonzero chem-
ical affinity and by a nonzero external force, while in Fig. 5(b), the
chemical affinity is set to zero. Since in typical experimental condi-
tions the active particles are usually driven by a chemical reaction
that is far from equilibrium, we expect Onsager reciprocal rela-
tions to be broken in these cases. More insights on the mechanisms
responsible for the breakdown of Onsager reciprocal relations in the

FIG. 5. Onsager cross-coupling coefficients, DWF and DVA, computed using numerical simulations of the governing equations linearized around a nonequilibrium steady
state. In (a), the base state is driven out of equilibrium by a nonzero chemical affinity Arxn,0, while in (b), the base state is driven out of equilibrium by an external force F∗0 .
The remaining dimensionless numbers are β = Pe = 1, ϵ = 0.1, and Da = 0.1.
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case of chemically active colloids driven far from equilibrium could
be obtained by carrying out an expansion around the equilibrium
state that considers quadratic terms in the thermodynamic forces
δF∗ and δArxn. However, tackling this problem requires lengthy
calculations and additional numerical simulations and will be
part of future endeavors.

IX. CONCLUSIONS
In this paper, we investigated Onsager reciprocal relations for

a chemically active colloid. We assumed that the active colloid is
suspended in an incompressible solution of two species A and B,
with species B interacting through a potential with the surface of a
spherical particle. The two species undergo a reversible reaction at
the surface of the colloid. In the case of the thermodynamic system
investigated here, Onsager reciprocal relations link the total surface
reaction rate and the velocity of the active colloid to the chemical
and the mechanical affinity. Such chemo-mechanical coupling can
be formalized using the Onsager matrix, which must be symmetric
positive definite around the equilibrium.

Here, we derived Onsager reciprocal relations, starting from the
local transport equations of the number density of species, the bal-
ance of momentum, and the continuity equation. These equations
are defined in the volume outside the active colloid and are derived
using the framework of nonequilibrium thermodynamics and the
assumption of local equilibrium. Since the resulting governing equa-
tions are nonlinear, we linearized them around a generic steady
state. Using a perturbation expansion and numerical simulations, we
computed the Onsager matrix. We showed that Onsager reciprocal
relations are recovered when the equations are linearized around the
thermodynamic equilibrium. This is expected since at equilibrium,
the microscopic equations of motion obey the detailed balance.
In addition, our results agree with the self-phoretic velocity calcu-
lated in previous works using matched asymptotic expansions.31 We
found that accounting for the advection of the reacting species is cru-
cial to preserve the symmetry of the Onsager matrix even in the case
of short-ranged interaction potentials or vanishing Péclet numbers.
Neglecting the advective transport of the solute breaks the symmetry
of Onsager relations. In the limit of vanishing Péclet numbers, only
the relevant velocity scale can be defined using the mechanical affin-
ity. As a consequence, the mechanical affinity enters the definition
of the Péclet number and one cannot simultaneously neglect the
advective transport of the solutes and consider a finite mechanical
affinity: A nonzero mechanical affinity implies nonzero advective
effects.

Finally, we investigated the validity of Onsager reciprocal rela-
tions around a nonequilibrium steady state (NESS). The active par-
ticle is driven by an external force or by a nonzero chemical affinity,
and we considered small perturbations around this nonequilibrium
steady state. Previous works have shown that the reciprocal relations
might hold around NESS even if the detailed balance of the under-
lying dynamics is broken.28–30 Here, we found that the symmetry of
Onsager reciprocal relations breaks down and one cannot define an
effective temperature that preserves the symmetry of the Onsager
matrix.43,44 Indeed, most of the active particles used in experiments
are driven far from equilibrium and we should expect their Brow-
nian motion to be qualitatively different from that experienced at
equilibrium.45,46
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