A-POSTERIORI KAM THEORY WITH OPTIMAL ESTIMATES

FOR PARTIALLY INTEGRABLE SYSTEMS

ALEX HAROT AND ALEJANDRO LUQUE}

ABSTRACT. In this paper we present a-posteriori KAM results for existence
of d-dimensional isotropic invariant tori for n-DOF Hamiltonian systems with
additional n — d independent first integrals in involution. We carry out a cov-
ariant formulation that does not require the use of action-angle variables nor
symplectic reduction techniques. The main advantage is that we overcome the
curse of dimensionality avoiding the practical shortcomings produced by the
use of reduced coordinates, which may cause difficulties and underperform-
ance when quantifying the hypotheses of the KAM theorem in such reduced
coordinates. The results include ordinary and (generalized) iso-energetic KAM
theorems. The approach is suitable to perform numerical computations and
computer assisted proofs.
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1. INTRODUCTION

Persistence under perturbations of regular (quasi-periodic) motion is one of the
most important problems in Mechanics and Mathematical Physics, and has deep
implications in Celestial and Statistical Mechanics. Classical perturbation theory
experienced a breakthrough around sixty years ago, with the work of Kolmogorov
[35], Arnold [I] and Moser [40], the founders of what is nowadays known as KAM
theory. They overcame the so called small divisors problem, that might prevent
the convergence of the series appearing in perturbative methods. Since then, KAM
theory has become a full body of knowledge that connects fundamental mathem-
atical ideas, and the literature contains eminent contributions and applications in
different contexts (e.g. unfoldings and bifurcations of invariant tori [7, 8], quasi-
periodic solutions in partial differential equations [4], 24] [45], hard implicit function
theorems [42] 43], 5T, [52], stability of perturbed planetary problems [2} 18] 26], con-
formally symplectic systems and the spin-orbit problem [9, [I7], reversible systems
[49], or existence of vortex tubes in the Euler equation [25], just to mention a few).

The importance and significance of KAM theory in Mathematics, Physics and
Science in general are accounted in the popular book [23]. But, although KAM
theory holds for general dynamical systems under very mild technical assumptions,
its application to concrete systems becomes a challenging problem. Moreover, the
“threshold of validity” of the theory (the size of the perturbation strength for which
KAM theorems can be applied) seemed to be absurdly small in applications to
physical systemsﬂ With the advent of computers and new developed methodologies,
the distance between theory and practice has been shortened (see e.g. [16] for a
illuminating historical introduction and [14, 21] for pioneering computer-assisted
applications). But new impulses have to be made in order to make KAM theory
fully applicable to realistic physical systems. In this respect, recent years have
witnessed a revival of this theory. One direction that have experienced a lot of
progress is the a-posteriori approach based on the parameterization method [I9]
20, 33, 50].

The main signatures of the parameterization method are the application of the
a-posteriori approach and a covariant formulation, free of using any particular sys-
tem of coordinates. In fact, the method was baptized as KAM theory without
action-angle variables in [20]. Instead of performing canonical transformations, the

IThis source of skepticism was pointed out by the distinguished astronomer M. Hénon, who
found a threshold of validity for the perturbation of the order of 107333 in early KAM theorems.
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strategy consists in solving the invariance equation for an invariant torus by cor-
recting iteratively an approximately invariant one. If the initial approximation is
good enough (relatively to some non-degeneracy conditions), then there is a true
invariant torus nearby [16] 20] (see also [15] 19 [42] [47] for precedents). Hence one
can consider non-perturbative problems in a natural way. The approach itself im-
plies the traditional approach (of perturbative nature) and has been extended to
different theoretical settings [12], 29, 31l [36]. A remarkable feature of the paramet-
erization method is that it leads to very fast and efficient numerical methods for
the approximation of quasi-periodic invariant tori (e.g. [I0, 0T}, 30, B34]). We refer
the reader to the recent monograph [33] for detailed discussions (beyond the KAM
context) on the numerical implementations of the method, examples, and a more
complete bibliography.

A recently reported success in KAM theory is the design of a general methodology
to perform computer assisted proofs of existence of Lagrangian invariant tori in a
non-perturbative setting [27]. The methodology has been applied to several low
dimensional problems obtaining almost optimal resultsﬂ The program is founded
on an a-posteriori theorem with explicit estimates, whose hypotheses are checked
using Fast Fourier Transform (with interval arithmetics) in combination with a
sharp control of the discretization error. This fine control is crucial to estimate the
norm of compositions and inverses of functions, outperforming the use of symbolic
manipulations. An important consequence is that the rigorous computations are
executed in a very fast way, thus allowing to manipulate millions of Fourier modes
comfortably.

One of the typical obstacles to directly apply the above methodology (and KAM
theory in general) to realistic problems in Mechanics is the presence of additional
first integrals in involution. This degeneracy implies that quasi-periodic invariant
tori appear in smooth families of lower dimensional tori. The constraints linked to
these conserved quantities can be removed by using classical symplectic reduction
techniques [I3], B8], thus obtaining a lower dimensional Hamiltonian system in a
quotient manifold, where Lagrangian tori can be computed. This approach has an
undeniable theoretical importance (e.g. the moment map is an object of remarkable
relevance [39]) and has been successfully used to obtain perturbative KAM results in
significant examples [I8], (26, 44]. However, the use of symplectic reduction presents
serious difficulties when applying the a-posteriori KAM approach to the reduced
system. This is obvious because, in the new set of coordinates, it may be difficult to
quantify the required control of the norms for both global objects (e.g. Hamiltonian
system or symplectic structure) and local objects (e.g. parameterization of the
invariant torus, torsion matrix), or also, these estimates may become sub-optimal
to apply a quantitative KAM theorem. The goal of this paper is overcoming these
drawbacks. Instead of reducing the system, we will characterize a target lower
dimensional torus, using the original coordinates of the problem, by constructing a
geometrically adapted frame to suitably display the linearized dynamics on the full
family of invariant tori.

2For example, for the Chirikov standard map, it is proved that the invariant curve with golden
rotation persists up to € < 0.9716, which corresponds to a threshold value with a defect of 0.004%
with respect to numerical observations (e.g. [32] 37]).
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In this paper we present two KAM theorems in a-posteriori format for existence of
(families of) isotropi(ﬂ tori in Hamiltonian systems with first integrals in involution,
avoiding the use of action-angle coordinates (in the spirit of [20]) and symplectic
reduction. The first theorem is an ordinary KAM theorem (also known as d la
Kolmogorov) on existence of an invariant torus with a fixed frequency vector. Of
course, if no additional first integrals are present in the system, then we recover the
results in [20], with the extra bonus of providing a geometrically improved scheme
with explicit estimates. Our second theorem is a version of a non-perturbative iso-
energetic KAM theorem (see [5, 22] for perturbative formulations), in which one
fixes either the energy or one of the first integrals but modulates the frequency vec-
tor. Actually, we present a general version that allows us to consider any conserved
quantity in involution. Even if there are no additional first integrals, the corollary
of this result is an iso-energetic theorem for Lagrangian tori which is a novelty in
this covariant formulation.

The statements of the results are written with an eye in the applications. Hence,
we provide explicit estimates in the conditions of our theorems, so that the hypo-
theses can be checked using the computer assisted methodology in [27]. In partic-
ular, another novelty of this paper is that estimates are detailed taking advantage
of the presence of additional geometric structures in phase space other than the
symplectic structure, such as a Riemannian metric or a compatible triple, covering
a gap in the literature [33]. We think researchers interested in applying these tech-
niques to specific problems can benefit from these facts. It is worth mentioning that
the required control of the first integrals is limited to estimate the norm of objects
that depend only on elementary algebraic expressions and derivatives. Quantitative
application of these theorems using computer assisted methods will be presented
in a forthcoming work.

The paper is organized as follows. Section 2 introduces the background and the
geometric constructions. We present the two main theorems of this paper in Section
3: the ordinary KAM theorem and the generalized iso-energetic KAM theorem
(with presence of first integrals). Some common lemmas are given in Section 4,
that control the approximation of different geometric properties. The proof of the
ordinary KAM theorem is given in Section 5, while the proof of the generalized
iso-energetic KAM theorem is done in Section 6. In order to collect the long list
of expressions leading to the explicit estimates and conditions of the theorems, we
include separate tables in the appendix.

2. BACKGROUND AND ELEMENTARY CONSTRUCTIONS

2.1. Basic notation. We denote by R™ and C™ the vector spaces of m-dimensional
vectors with components in R and C, respectively, endowed with the norm

[v] = max |v;].
1=1,....m

We consider the real and imaginary projections Re,Im : C™ — R™, and identify
R™ ~ Im~ {0} € C™. Given U C R™ and p > 0, the complex strip of size p is

3The invariant tori we consider in this paper are isotropic, but they are not lower dimensional
invariant tori in strict meaning (see [6]). The invariant tori are neither partially hyperbolic nor
elliptic (see the a-posteriori formulations in [29] and [36]), but partially parabolic tori that appear
in families of invariant tori with the same frequency vector.
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U,={0€C™ : Rebf €U, [Imb| < p}. Given two sets X,Y C C™, dist(X,Y) is
defined as inf{|z —y| : x € X,y € Y}.

We denote R™ *"2 and C™ *"2 the spaces of n; X no matrices with components in
R and C, respectively. We will consider the identifications R™ ~ R™*! and C™ ~
C™*1. We denote I,, and O,, the n x n identity and zero matrices, respectively.
The ny x ng zero matrix is represented by Oy, xn,. Finally, we will use the notation
0,, to represent the column vector O,,x1. Matrix norms in both R™**"2 and C"t*™2
are the ones induced from the corresponding vector norms. That is to say, for an
n1 X ng matrix M, we have

(M| =, max Yo Myl

T =1
In particular, if v is an ny-dimensional vector, |[Mv| < |M]||v|. Moreover, M "
denotes the transpose of the matrix M, so that

> IMyl

|MT| = ma
I=5 i=1,...,n1

1,...,n2

Given an analytic function f : U4 C C™ — C, defined in an open set U, the action
of the r-order derivative of f at a point 2 € U on a collection of (column) vectors
V1, ..., € C™) with v = (Vig, - -, Vi), 18

T ar
D" f(z)[v1y..., 0] = Z W(I) Vey1 e Veprs
o, Qe O,

where the indices ¢, ..., 4, run from 1 to m.

The construction is extended to vector and matrix valued functions as follows:
given a matrix valued function M : Y C C™ — C"**"> (whose components M, ; are
analytic functions), a point 2 € U, and a collection of (column) vectors vy, ..., v, €
C™, we obtain an ny x ny matrix D" M (z)[vy,...,v,] such that

(DTM(QT)[’Ul, N 7’[)7‘])7;& = DTMi’j(.’L‘)[Ul, ey UT}.

For r = 1, we will often write DM (z)[v] = D' M (z)[v] for v € C™.

Notice that, given a function f : 4 ¢ C™ — C" ~ C"™*!, we can think of
Df as a matrix function Df : & — C"*™. Hence, D' f(z)[v] = Df(z)v for v €
C™. Therefore, we can apply the transpose to obtain a matrix function (Df)T,
which acts on n-dimensional vectors, while DfT = D(f ) acts on m-dimensional
vectors. Hence, according to the above notation, the operators D and (-)" do not
commute. Therefore, in order to avoid confusion, we must pay attention to the use
of parenthesis.

A function u : R* — R is 1-periodic if u(6 + e) = u(f) for all § € R? and e € Z9.
Abusing notation, we write u : T — R, where T¢ = R¢/Z¢ is the d-dimensional
standard torus. Analogously, for p > 0, a function u : Rz — C is 1-periodic if
u(® +e) = u(f) for all # € R% and e € Z?. We also abuse notation and write
u: T¢ — R, where T¢ = {# € C?/Z* : |Im 6] < p} is the complex strip of T of
width p > 0. We will also write the Fourier expansion of a periodic function as

u(f) = Z N SULES iy, = /Td u(@)e_%ik"gdG,

kezd
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and introduce the notation (u) := g for the average. The notation in this para-
graph is extended to m; X ny matrix valued periodic functions M : Tﬁ — Cmaxnz,

for which M;.c € C™*m2 denotes the Fourier coefficient of index k € Z<.

2.2. Hamiltonian systems and invariant tori. In this paper we consider an
open set M of R?" endowed with a symplectic form w, that is, a closed (dw = 0)
non-degenerate differential 2-form on M. We will assume that w is exact (w = da
for certain 1-form a called action form), so M is endowed with an exact symplectic
structure. The matrix representations of a and w are given by the matrix valued

functions
a:M — R

z — a(z),
and
Q:M — RIx2
z — Q2) = Da(2))" —Da(z),
respectively. The non-degeneracy of w is equivalent to det Q(z) # 0 for all z € M.

Remark 2.1. The prototype example of symplectic structure is the standard sym-
plectic structure on M C R?*™: wq = Z?:l dzp4+ A dz;. An action form for wq is
oo =>4 Zn+i dz;. The matrix representations of ay and wy are, respectively,

On In On _In
ao(z)<0n On)z, QO(In On> .

Another usual action form on M C R*"is atg = § 31" | (2544 d2; — 2; dzpy4), which

is represented as
170, I,
w0(2) =5 (In On) =

We say that a vector field X : M — R2" is symplectic (or locally-Hamiltonian) if
Lxw = 0 where Lx stands for the Lie derivative with respect to X. Using Cartan’s
magic formula, and the fact that dw = 0, it turns out that X is symplectic if and
only if ixw is closed. We say that X is ezxact symplectic (or Hamiltonian) if the
contraction i xyw is exact, i.e., if there exists a function h : M — R (globally defined)
such that ixw = —dh. In coordinates, an exact symplectic vector field satisfies

Q(2)X(z) = (Dh(2)) T, ie., X(2) = Q(z)"YDh(2)".
Hence, we will use the notation X = Xj,.

The Poisson bracket of two functions f, g is given by {f, ¢} = —w (X, X,). In
coordinates,

in coordinates.

{f,9}(2) = Df(2)Q(2)"(Dg(2)) "
Then, if ¢; is the flow of X}, it follows that

d
&(fOSOt) = {fvh}o@ta

and so, f is a conserved quantity if {f,h} = 0.

In this context, given a Hamiltonian vector field X; on M and a frequency
vector w € R, with 2 < d < n, we are interested in finding a parameterization
K : T% — M satisfying

(2.1) Xu(K(0)) = DK (0)w.
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This means that the d-dimensional manifold X = K(T¢) is invariant and the in-
ternal dynamics is given by the constant vector field w. For obvious reasons, equa-
tion is called invariance equation for K. Therefore, given a parameterization
K : T - M and a frequency vector w € R%, the error of invariance is the periodic
function E : T¢ — R?" given by

(2.2) E(0) := X,(K(0)) — DK (0)w.

Roughly speaking, if we have a good enough approximation of a d-dimensional
invariant torus K (that is, the error (2.2]) is small enough in certain norm), then
one is interested in obtaining a true invariant torus, close to K, satisfying ([2.1)).

Remark 2.2. Equation (2.1) is the infinitesimal version of the equation
ee(K(0)) = K(0 + wt),

where ¢, is the flow of Xj. Accordingly, we can study the invariance of K using
a discrete version of a KAM theorem for symplectic maps. We refer the reader to
[20, 27, 3] for such a-posteriori theorems, quantitative estimates, and applications.
However, notice that obtaining the required estimates for the flow ¢; demands to
integrate the equations of the motion up to second order variational equations.

If w € RY is nonresonant (i.e. if w-k # 0 for every k € Z%\{0}) then z(t) =
K (a + wt) is a quasi-periodic solution of X3 for every a € T?, and « is called the
initial phase of the parameterization. It is well known that quasi-periodicity implies
additional geometric properties of the torus (see [6 [41]). In particular, that the
torus is isotropic. This means that the pullback K*w of the symplectic form on the
torus K vanishes. In matrix notation, the representation of K*w at a point § € T¢
is
(2.3) Qx(0) = (DK(6)) " Q(K(9)) DE(6),

and so, K is isotropic if Qg () = Og, V0 € T¢. If d = n then K is Lagrangian.
Moreover, quasi-periodicity implies that

h(K(9)) = (ho K), Vo € T4,
which means that the torus is contained in an energy level of the Hamiltonian.

Remark 2.3. Other topologies can be considered for the ambient manifold. For
example, we may have some information (e.g. from normal form analysis) that
allows us to construct tubular coordinates around a torus. In this situation, it is
interesting to look for an invariant torus inside an ambient manifold of the form
M C T?xU, with U € R?*"~<. Notice that both a(z) and h(z) are 1-periodic in the
first d-variables, and, since the Poisson bracket preserves this property, also is Xp,.
Assume that we are interested in obtaining an invariant torus that preserves the
topology of the manifold (typically called primary torus). Then we must choose a
parameterization K : T¢ — M such that K(0) — (6,0) is 1-periodic (that is, K is
homotopic to the zero-section). Therefore, it turns out that the error function
is also 1-periodic, so the construction makes sense. All expressions and formulas
presented in this paper remain valid, and one only needs to take into account that
the elements of K and DK contain an additional term that comes from the topology.
We refer to [33] for a detailed discussion of this case. The case of intermediate
topologies M C T™ x U with U C R?"»~™ is similar.
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2.3. Conserved quantities and families of invariant tori. We will assume that
the vector field X} has n — d first integrals in involution py1,...,pn_q : M — R,
that is to say:

and

Consequently, the Lie brackets of the corresponding Hamiltonian vector fields vanish
and we have:

(2.6) DX),(2)X,,(2) = DX, (2)Xu(2), 1<j<n—d,
and
(2.7) DX, (2)Xp,(2) = DXy, (2)Xp,(2), 1<4,j<n—d.

We will encode the n — d first integrals in an only function p : M — R"~¢, so that
the involution conditions are rephrased as

Dh(z) (2)~H(Dp(2)) " = 04_q
and

Dp(z) 2(2) " (Dp(2)) " = Ona.
Moreover, the corresponding n —d Hamiltonian vector fields are the columns of the
matrix function X, : M — R> (=4 with (X,); ; = (X,,):, and

Xp(2) = Q)7 (Dp(2)) " -

The commuting conditions are

(2.8) DXy (2)Xp(2) = DX, (2)[Xn(2)],
and
(2.9) DX, (2)X,(2) = DX, (2)[Xp, (2)], 1<i<n-—d.

The above setting implies that p generates an (n — d)-parameter family of local
symplectomorphisms. In particular, we introduce

(2.10) O, =, 000
where s = (s1,...,5,_4) belongs to an open neighborhood of 0 in R*~¢, and <,0§1’

is the flow of the Hamiltonian vector field X,,,. Notice that this is a local group
action of R"~% and, by the commutativity of the flows in (2.7)), we have

0P,
852‘
If the vector fields are linearly independent, then the local group action (2.10)

defines a family of local diffeomorphisms s +— ®, which commutes with the flow of
X h-

=X, 0®,.

(DSOSDt :Sﬁtoés-
The map @, is usually called the continuous family of symmetries of X;. A con-
sequence of this is the following: if K = K (T?) is invariant for X},, with frequency
vector w, then ICy = ®4(K) is also invariant for X, with the same frequency vector:
0t(Ps(K(0))) = s (0 (K(0))) = D5 (K (6 + wi))

and so, ®, o K is a parameterization of .



KAM THEORY FOR PARTIALLY INTEGRABLE SYSTEMS 9

An important observation is that all invariant tori of the family are contained in

the submanifold
{z€M : h(z) =ho, p(2) =po}.

Hence, once the frequency w of the torus has been fixed, we cannot fix the values of
hg or pg. This case is considered in Section referred to as the ordinary case. If
we are interested in obtaining an invariant torus on a target energy level hg, then
we fix the direction of the frequency vector w but adjust its modulus (iso-energetic
case). Similarly, the same kind of adjustment of w can be made if we are interested
in obtaining an invariant torus having a prefixed value of one of the components of
p (iso-momentum case). The previous scenarios can be generalized by considering
any first integral ¢ : M — R that commutes with h and p = (p1,...,pPn—d), that is,

De(2)Xn(2) =0, De(2)X,(2) =0,y

For example, we can think that ¢ is a function of h and p given by ¢(z) = f.(h(z),p(2)),
where f.: R x R"% — R is known (we have the particular cases c(z) = h(z) and
c(z) = pj(z) with j € {1,...,n —d}). In Section we will establish sufficient
conditions to obtain an invariant torus having a prefixed value of the target con-
served quantity c¢ (generalized iso-energetic case). We emphasize that selecting
simultaneously the values of several conserved quantities is not possible in general,
but makes sense for Cantor sets of frequencies.

2.4. Linearized dynamics and reducibility. In this section we describe the
geometric construction of a suitable symplectic frame attached to an invariant torus
K of a Hamiltonian system X, with conserved quantities p : M — R"~%. Indeed,
given a parameterization K : T — M satisfying

(2.11) Xu(K(0)) = DK (0)w ,

and given any m-dimensional vector subbundle parameterized by V : T¢ — R27x™
with 1 < m < 2n, we introduce the operator

(2.12) Xy (0) = DX (K (8))V(9) — DV(0)[w] ,

which corresponds to the infinitesimal displacement of V', and we say that a bundle
is invariant under the linearized equations if Xy (6) = Ogyxm for every 6 € T
We consider the map L : T¢ — R?"*" given by

L(0) = (DK(0) X,(K(9)) ,

and we will assume that rank L() = n for every § € T¢. Then, it turns out that
L(0) satisfies

(2.13) XL(0) = Oopxn,  VOET?,

This invariance follows from two observations. Firstly, taking derivatives at both

sides of (2.11)), we have
DX, (K(0))DK(0) = D(DK(0))[w],
and secondly, from the commutation rule (2.6)), we have:
D(X,(K(0)))[w] = DX, (K(0))[DK(0)w]
= DX, (K(0))[Xn(K(6))]
= DX, (K(0)) X, (K(9)) -
Then, the property in (2.13]) follows putting together both expressions.
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By similar geometric properties (detailed computations will be presented in Sec-
tion [4.4)), it turns out that the subspace L(0) is Lagrangian, i.e., we have

L(0) "QK (0))L(0) = Onxn

for every # € T?. Then one can use the geometric structure of the problem to
complement the above frame, thus obtaining linear coordinates on the full tangent
bundle TM that express DX} o K in a simple way. This is one of the main ingredi-
ents of recent KAM theorems presented in different contexts and structures (see
e.g. [9 20, 29, B3I [36]). The constructions have been summarized in [33] using a
common framework that unifies the previous works and emphasizes the role of the
symplectic properties. We briefly summarize this framework in Section [2.5

Hence, we will obtain a map N : T¢ — R?"*" such that the juxtaposed matrix

P(0) = (L(0) N(©))
satisfies rank P(6) = 2n for every 6 € T¢ and also
(2.14) P(6)TQ(K(0)P(H) = Q.

In this case, we say that P : T? — R?"%2" ig a symplectic frame. The use of these
linear coordinates on Tx M has several advantages. Among them, it produces a
natural and geometrically meaningful non-degeneracy condition (twist condition)
in the KAM theorem, it simplifies certain computations substantially (P~! can
be computed directly), but most importantly, it reduces the linearized equation to
triangular form as follows:

DX (K(0))P(0) — DP(0)[w] = P(O)A(6) ,
AG) = <gz TO(Z)>

T(6) = N(6) T Q(K(9)) (DX (K(6))N(6) — DN (6)[w])
= N(0)"QK(0))Xn (0).

The matrix T is usually called the torsion matriz and plays the role of Kolmogorov’s
non-degeneracy condition.

with

and

Remark 2.4. The torsion measures the symplectic area determined by the normal
bundle and its infinitesimal displacement. Notice that, in the present paper, the
torsion involves geometrical and dynamical properties of both the torus and the
first integrals, and in fact, of the family of d-dimensional invariant tori.

The above setting allows us to approximate the solutions of the linearized equa-
tions around the torus by the solutions of a triangular system which is easier to
handle. The fundamental idea is the following fact: if K is approximately invari-
ant, the above geometrical properties are still satisfied, modulo some error functions
which can be controlled in terms of the error of invariance. The main ingredient
is the fact that (under certain assumptions) the frame 6 — L(6), associated to an
(n—d)-parameter family of approximately invariant tori, is also approximately Lag-
rangian. Hence, the linear dynamics around the torus is approximately reducible.
This is enough to perform a quadratic scheme to correct the initial approximation.
This will be discussed in Section [4l
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2.5. Construction of a geometrically adapted frame. In this section we deal
with the construction of a symplectic frame on the bundle Tx M by complementing
the column vectors of a map L : T¢ — R?"*" that parameterizes a Lagrangian
subbundle. To this end, we assume that we have a map N° : T¢ — R>**" such
that

(2.15) rank (L() N°(0)) =2n <« det(L(0) " QK (0))N°(0)) #0,

for every § € T?. Then, we complement the Lagrangian subspace generated by
L(6) by means of a map N : T¢ — R2"X" given by

N(0) = L(0)A(0) + N°(0) B(9),
where
B(0) = —(L(6) "QK(0))N°(0))
and A(#) is a solution of
A(0) — A(0)" = —B(0) " N°(0) QK (0))N°(0)B(0).

The solution of this equation is given by
1
A(0) = —5(B(G)TNO(9)TQ(K(9))N°(9)B(9))

modulo the addition of any symmetric matrix. A direct computation shows that
the juxtaposed matrix P(6) = (L(8) N(9)) satisfies (2.14).

The map N° can be obtained by directly complementing the tangent vectors
of the initial (approximately invariant) torus, and after that, be fixed along the
iterative procedure. This is called Case I in chapter 4 of [33]. It has the advantage
of being more general and flexible, but requires some extra work to obtain optimal
quantitative estimates (we refer the reader to [27], where additional geometric prop-
erties of N are controlled).

A natural way to construct a map N° systematically is by using additional
geometric information. In this paper, we assume that M is also endowed with a
Riemannian metric g, represented in coordinates as the positive-definite symmetric
matrix valued function G : M — R27"*2", Then, we define the linear isomorphism
J: TM — TM such that w,(J.u,v) = g,(u,v), Yu,v € T, M. Observe also
that J is antisymmetric with respect to g, that is, g,(u,J.v) = —g,(J . u,v),
Vu,v € T, M. The matrix representation of J is given by the matrix valued function
J: M — R?"%2n_ Then, we have

(2.16) Q'=-0, G&'=G, Jao=a,
and we introduce the matrix valued function Q : M — R2n*2n_ ag
Q:=J"QJ=0GJ,

for the representation of the symplectic form in the frame given by J.
Then, we choose the map N° as follows

(2.17) N°(#) := J(K(0))L(6)
and condition is equivalent to

det(L(O) "G(K(0))L() #0 Vo T.
Moreover, the matrices A(f) and B(f) are expressed as follows

A(0) = — %(3(9)TL(9)TQ(K(9))L(9)B(9)),
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B(0) = (L(0) T G(K(6)L(0))""
This is called Case II in [33].

Remark 2.5. We want to point out that the above construction differs slightly from
the discussion in chapter 4 of [33], where the linear isomorphism J is defined as
w,(u,v) = g,(u,J,v). This choice results in the map

NO(8) = ~J(K(6)""L(6)

rather than (2.17). Both constructions are equivalent, but the construction de-
scribed here is geometrically more natural and produces better quantitative estim-
ates.

There is also the special case where the isomorphism J is anti-involutive. that is,
J? = —I. Then, we say that the triple (w,g,J) is compatible and that J endows
M with a complex structure. This is called Case III in chapter 4 of [33]. In
coordinates, we have the following properties

=D, Q=J'QJ G=J'GJ
In this situation, we have
NO(O) = J(K(0))L(0),  A(0)=O0,,  B(0)=(L(O) G(K(6))L®) "

It is important to notice that the above constructions lead to different quant-
itative estimates in the KAM theorem. Selecting the best option depends on the
particular problem under consideration. Since Case I has been fully reported in
the references [27, [33], in this paper we will focus in obtaining sharp quantitative
estimates for Case II and Case III. Hence, we cover a gap in the literature that
could be valuable in future studies.

2.6. Univocal determination of an invariant torus of the family. In this
section we describe suitable strategies to avoid the undeterminations observed in
Sections [2.2] and Let us recapitulate them:

o If K= K(T?) is a d-dimensional invariant torus of X}, of frequency w, then
K(0) = K(0 + a) also parameterizes K for every a € T

e If K = K(T%) is a d-dimensional invariant torus of X}, of frequency w, and
we introduce K, = ®,0K using the family of symmetries, then Ky = K,(T%)
is also an invariant torus of frequency w for every s € R"~¢ in the domain
of definition.

The first indetermination corresponds to the choice of the parameterization of
the invariant object, and it can be avoided simply by fixing an initial phase of
the torus. To this end, we consider a (2n — d)-dimensional manifold given by the
preimage of a map Z : R2® — R? and select the value of o such that

Z(K*(0)) = Zo ,

for some Zy € R?. Notice that Z must be selected in such a way that the trans-
versality condition

det(DZ(K(0))DK(0)) #0,

holds in an open set of values o € R,
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Remark 2.6. If M = T¢ x U and we are considering a non-contractible invariant
tori of the form K(0) = (K*(6), K¥(0)) € M, then a typical way to determine the
phase univocally is to ask the following average condition

(K® —id) =0g4.
In this case, we select « = —(K* — id). Another possibility, in the spirit described
above, is to select the transversal plane given by Z(z) = (z1,...,24)-

The second indetermination corresponds to a choice of a given invariant torus
inside the (n — d)-parameter family described in Section In this case, we need
to fix additional (n —d) conditions in order to define univocally a single torus of the
family. For example, we may assume that there is a map ¢ : M — R"~¢ satisfying

(2.18) Dq(2)X,(2) = Da(z) Qz) "' (Dp(2) " = In-a,

which means that {g;, p;} = d;;. For obvious reasons, p and ¢ are referred to as the
generalized momentum and the generalized conjugated position, respectively. Then,
we can determine univocally a torus in the family by asking for the extra equations

qo K(0) =qo € R" 7.
We can recover the full family by considering the map
s—>qoP; 0K =qoK+s,

where we used that

88 (go®s0K) = (Dgo®s0K)d,,(Ps0K)
si

=(Dgo®;0K)(Xp, 0oPs0K) =¢,;.

Remark 2.7. The above construction can be readily generalized asking the map ¢
to satisfy

det(Dg(z) X, (=) # 0
instead of (2.18]).

It is clear that both indeterminations can be addressed simultaneously by fixing
n conditions. This can be done for example by asking for a transversality condition
on the Lagrangian frame 6 — L(#) described in Section at a given point. To
this end, we denote

Ko@) =®,(K@6+a), acR?  scR"?,
consider a map @ : M — R™, and ask for the condition
Q(Ka,S(O)) = Qo
for a given point Qg € R™. In this situation, the transversality condition reads
det (DQ(Ka,s(0))La,s(0)) # 0
where
0— Lo s(0) = (DK(M(G) Xp(Kays(G)))

is the Lagrangian frame associated with the torus K, . For example, a natural
choice would be
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where Z is selected to fix the phase of the parameterizations and ¢ are generalized
positions associated with p. Depending on the topology of the ambient space, we
may consider other choices (see Remark [2.6)).

3. A-POSTERIORI KAM THEORY FOR PARTIALLY INTEGRABLE HAMILTONIAN
SYSTEMS

In this section, we present two a-posteriori KAM theorems for d-dimensional
quasi-periodic invariant tori in Hamiltonian systems with n degrees-of-freedom that
have n — d additional first integrals in involution. To this end, we will assume that
the frequency vector w satisfies Diophantine conditions. Specifically, we denote the
set of Diophantine vectors as

d
(3.1) D,, = {w eR?: |k-w| > # k€ ZN{0}, k| = Z|ki|} :
1 i=1
for certain y >0 and 7 > d — 1.

In Section [3.1] we set some basic notation regarding Banach spaces and norms of
analytic functions. In Section we present the statement of a KAM theorem for
existence (and persistence) of d-dimensional invariant tori having fixed frequency
vector w € D, . This corresponds to the so-called ordinary (& la Kolmogorov)
KAM theorem. In Section [3:3] we present an adapted version of the theorem that
generalizes the iso-energetic approach. Section [4] is devoted to the control of ap-
proximate geometric properties, the anteroom of the proofs of the main theorems
in Sections [5] and [6] We will pay special attention in providing explicit and rather
optimal bounds, with an eye in the application of the theorems and in computer as-
sisted proofs. The constants have been collected in a series of tables in Appendix [B]

3.1. Analytic functions and norms. In this paper we work with real analytic
functions defined in complex neighborhoods of real domains. We will consider
the sup-norms of (matrix valued) analytic functions and their derivatives (see the
notation in Section . That is, for f: U C C™ — C, we consider

[fllee = sup [f ()],
reU
and
_ofF
6:% N 5%&

ID"flle =

Lyl
that could be infinite. For M : U € C™ — C™*"2 we consider the norms

Ml = max > [ M,
i=1,...,n1

)
u

Jj=1,...,n2
D" M|l = max > |[D My,
i=1,...,n1 .
7j=1,....,n2

and we notice, of course, that the norms || M "||; and ||[D"M T ||/ are obtained simply
by interchanging the role of the indices ¢ and j.

Let us remark that the above norms present Banach algebra-like properties. For
example, given r analytic functions vy, ..., v, : U — C™ ~ C™*! then the function
D"Mvi,...,v] : U C C™ — C™ ™2 defined as

D"Mlvy,...,v.](z) = D" M(x)[vi(x),...,v.-(z)]
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is also analytic, and we have

na
HDTM[Ul, ey UT‘]HM < i:Iln.a','an Z ||DTMi’j [’Ul7 . 7vr]||Z/l

Jj=1
na
"M
< max Y || Y g1 Ve
=1, nlj—l e al‘gl 837( y
S " M;
PO DD DIl | reeer:ron DL il L DR L L
T i e 19T brllu P= T
= D" My foafles--- llvrller -

There is also a similar bound for the action of the transpose:

ni

1" Mlor, o) Tl < max S D" Migfor, o]

,,,,, n2 4
i=1

< DMy, Nolee ol -
In addition, given M; : U C C™ — C™*" and My : U C C™ — C™*"™2 we have
[My Ma|lee < (| Mol Malfe

and
DMy My)lles < (DMl Maller + | My lle [ DMzl -
The particular case of real-analytic periodic functions deserves some additional
comments. We denote by A(Tg) the Banach space of holomorphic functions u :

'I[‘g — C, that can be continuously extended to Tz, and such that u(T9) C R
(real-analytic), endowed with the norm

fuly = el = masx fu(é)] .

As usual in the analytic setting, we will use Cauchy estimates to control the de-

rivatives of a function. Given u € .A(']I‘ﬁ), with p > 0, then for any 0 < § < p the
partial derivative du/dz, belongs to A(T# 5) and we have the estimates

H Ou

1 d - 1
ozl Sl IPull,_s < lull, [Dw) "], _5 < S lullp-

p—30
The above definitions and estimates extend naturally to matrix valued functions,
that is, given M : ’]I‘g — C™ ™2 with components in A(Tz), we have

d
IDM[lps = max 3" [IDMigll,_s < SIM,.

----- P =5

Jj=1,...,n2

A direct consequence is that [|[DM ||,_s < 4||MT|,.
As it was mentioned in Section the operators D and (-)" do not commute.
In particular, given a real analytic vector function w : Tg — C™ ~ C™*!, we have:

d d nd n
IDwllp-s < Slwlly, IDw|,—s < gl\lelp < 5 llwllp, [(Dw) " ,—s < 5 lwllp-
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3.2. Ordinary KAM theorem. At this point, we are ready to state sufficient
conditions to guarantee the existence of a d-dimensional invariant torus with fixed
frequency close to an approximately invariant one. Notice that the hypotheses in
Theorem |3.1] are tailored to be verified with a finite amount of computations.

The result is written simultaneously for Case II and Case III (see Section [2.5).
Estimates corresponding to Case I can be easily obtained without any remarkable
difficulty (see e.g. [27] for details). Hence, given a parameterization of a torus
K = K(T%) (not necessarily invariant) and a tangent frame L : T¢ — R2"*"_ the
normal frame N : T? — R?"*" is constructed as follows:

(3.2) N(0) == L(O)A(9) + N°(6) B().
where

(383)  N°(6) = J(K(6))L(),

(34) B = (LO) GE)LO) ",

(3.5) A(0) = —%<B(9)TL(WWK(G))L(&)B(@)), if Case II,
0, if Case III.

The torsion matrix T : T — R™*", given by

(3.6) T(0) = N(6) "Q(K(0)XN(0),

where

(37) Xy (6) = DX4(K(6))N(6) — DN(0)[w],

measures the infinitesimal twist of the normal bundle. With this geometric ingredi-
ents we are ready to state our main theorem, in the ordinary case.

Theorem 3.1 (KAM theorem with first integrals). Let us consider an exact sym-
plectic structure w = da and a Riemannian metric g on the open set M C R?".
Let h be a Hamiltonian function, having n — d first integrals in involution p =
(P1y- -y Dn—d), with 2 < d < n, and let ¢ be any first integral in involution with
(h,p). Let K : T* — M be a parameterization of an approvimately invariant torus
with frequency vector w € RY, and consider the tangent frame L : T¢ — RZnxn
given by

(3.8) L9 = (DK(G) Xp(K(G))) .
Then, we assume that the following hypotheses hold.

H, The global objects can be analytically extended to the complex domain B C
C?", and there are constants that quantify the control of their analytic
norms.

For the geometric structures w, g, J,» = J*w in B, the matriz functions
0, G, J,Q: B — CX2 satisfy:

125 < capo, IDQ|[5 < eq,1,

1205 < e D5 < cq s ID*Q5 < cg9
IGlB <cgo, IDG|s < cga, ID*G|5 < caa,
/18 < cso, IDJ|s < ¢, ID*J5 < ci2,

17 5 < esros IDI 5 < gy
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For the Hamiltonian h : B — C and its corresponding vector field Xy, :
B — C?", we have :

|IDh|g < ch1,
| XnllB < ex,0, IDX%l5 < cx,1s
ID* XI5 < ex,.2 DX |5 < exra-

For the first integrals p : B — C"=% and the corresponding vector fields
Xp,:B— C2nx(n=d) " ye have:

plls < cp1, p s <cpra,

[Dplls < IDp" | < ¢,

[Xplls < ex,0 IDXplls < ex,1, ID*X, |5 < cx, .2,
||X;—;FHB <cxJ0o ||DXpT||B SexTs ||D2XpT||B <exre-

For the first integral ¢ : B — C we have
[Dells < e

Hy The parameterization K is real analytic in a complex strip 'H‘z, with p > 0,
which is contained in the global domain:

dist (K (T¢%), 0B) > 0.

Moreover, the components of K and DK belong to A(Tg), and there are
constants o and ogT such that

IDKl, <ok, I(DK) |, <ox.

H; We assume that L(6) given by (3.8)) has mazimum rank for every 0 € Tg.
Moreover, there exists a constant og such that

1Bllp <o,

where B(0) is given by (3.4]).

Hy There exists a constant or such that
(T)~Y < or,

where T'(0) is given by (3.6]).
Hs The frequency w belongs to D, ., given by (3.1)), for certain v > 0 and
T>d—1.
Under the above hypotheses, for each 0 < ps < p there exists a constant €, such
that, if the error of invariance

(3.9) E(6) = X,(K(6)) — DK(0)u,
satisfies

& || E
(3.10) w <1,

then there exists an invariant torus Koo = Koo(T?) with frequency w, satisfying
Ko € A(TY ) and

IDKoollp < 0k, [(DKo) lpe < 0k, dist(K(T? ),08) > 0.

Poo
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Furthermore, the objects are close to the original ones: there exist constants €5 and

C3 such that
& El,
72p2'r

The constants €1, €5 and €3 are given explicitly in Appendiz[B

SE|, .

(811) (Ko~ Kl < L oK) = {eo K < 2

Remark 3.2. If d = n then there are no additional first integrals and we recover the
classical KAM theorem for Lagrangian tori. The corresponding estimates follow
by taking zero the constants ¢, 1 = 0, ¢,71 = 0, cx,0 =0, cxT0 = 0, ex,1 =0,
cxT1 = 0, cx,2 = 0, and CxT2 = 0. Thus, as a by-product, we obtain optimal
quantitative estimates for the KAM theorem for flows stated in [20].

Remark 3.3. In the canonical case, we have 2 = Q = Qy, G = I3, and J = Q.
Hence, we have cq o =1, cq1 =0, Cho = 1, Chq = 0, Cho = 0, cgo=1,ca1 =0,
cg2=0,c50=1,¢51=0,¢c52=0,cy79=1, and cyt1=0.

Remark 3.4. Notice that the condition d > 2 is optimal. For d = 1, not only the
torus becomes a periodic orbit (and the result would follow from a standard implicit
theorem without small divisors) but also X}, is completely integrable.

Remark 3.5. The existence of a d-dimensional invariant torus with frequency w
implies the existence of an (n— d)-parameter family of invariant tori with frequency
w. The family is locally unique, meaning that if there is an invariant torus with
frequency w close enough to the family, then it is a member of the family. Notice
also that Theorem states the existence of the parameterization of an invariant
torus, but that we can also change the phase to obtain a new parameterization.
As mentioned in Section both indeterminacies (the phase and the element of
the family) could be fixed by adding n extra scalar equations to the invariance
equation.

3.3. Generalized iso-energetic KAM theorem. Let us consider the setting
presented in Section [3.2] and let us focus on the first integral ¢ : M — R that
commutes with h and p = (p1,...,pn_a). It is clear that if K = K(T¢) is invariant
under X, then K is contained in the hypersurface ¢(z) = cp, for ¢g € R. In this sec-
tion we are interested in finding an invariant torus by pre-fixing such hypersurface,
that is, our aim is to obtain a parameterization satisfying

(3.12) Xu(K(0)) = £,K(©0),  (coK)=co,

where ¢ € R is fixed and we think in w € PR?.

The following result, which is an extension of Theorem [3.1] to this generalized
iso-energetic context, establishes quantitative sufficient conditions for the existence
of a solution of (3.12) close to an approximate one. For this reason, we refer the
reader to Section for a compendium of the objects involved in the result and we
do not estate the common hypotheses.

Theorem 3.6 (Iso-energetic KAM theorem with first integrals). Let us consider
the setting of Theorem|3.1], assume that the hypotheses Hy and Hs hold, and replace
Hy, Hy and Hs by
H{ Assume that all estimates in Hy hold. In addition, for the first integral
c: B — C we have
ID%¢||5 < cen-
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H) There exists a constant o, such that
(Te) ™M < or.

where T, : ’]I‘g — Cn+Dx(n+1) 4o the extended torsion matriz

(3.13) Te(6) = (Dc<KT<§§§N<e> Lg> = (of_,) :

Let us consider a constant o, > 1 and a frequency vector w, in the set
D..r, gwen by (3.1), for certain v > 0 and 7 > d — 1. Then, we assume
that w € R is contained in the ray

O = O(wy,0,) = {sw. € RT:1<s< 0w} CDyr.
Notice that, by definition, we have dist(w,90) > 0.

Under the above hypotheses, for each 0 < poo < p there exists a constant €; such
that, if the total error

(3.14) E.(0) = (E}‘E(f)) _ (Xh(ljc (f)})ﬂ— Pg(ep)

satisfies
Q:IHECH/J
,y4p47'
then there exists an invariant torus Koo = Koo (T?) with frequency we € O, satis-
fying Ko € A(Tﬁw) and
IDKwollp. < 0k, [(DKoo) p < 0k, dist (Koo (T3 ), 0B) > 0.

Furthermore, the objects are close to the initial ones: there exist constants €2 and
&3 such that

(3.15)

)

&l Eellp

G Eell,
,-),2[)27

72P2T
The constants €1, €5 and €3 are given explicitly in Appendiz[B

(3.16) |1 Koo — Kl p, < , lweo — w]| <

Remark 3.7. If we consider the case ¢(z) = h(z) then we recover the classical iso-
energetic situation. Notice that, if K is invariant with frequency w, then the frame
P(0) is symplectic, and

Dh(K(0))N(0) = X»(K(0)) "QK(0))N(0) = —w DK (0) QK (6))N(6)
W7 ol =

Hence, the extended torsion matrix for an invariant torus is
_ (T ©
(3.17) Th(0) := <<1;T 0) .

Remark 3.8. If we consider the case ¢(z) = p;(#) then we have an iso-momentum
situation. In this case, if K is invariant with frequency w, then

Dp; (K (0))N(0) = —X,, (K (6)) QK (0))N(0) = ey,

where eq ; is the (d+7)-th canonic vector of R™ (it has 1 in the (d+5)-th component
and 0 elsewhere). Hence, the extended torsion matrix for an invariant torus is

(3.18) T, (6) = (TT(G) ‘(‘)’) .

6d+j
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4. SOME LEMMAS TO CONTROL APPROXIMATE GEOMETRIC PROPERTIES

In this section we present some estimates regarding the control of some geometric
properties for an approximately invariant torus. For the sake of clarity, we reduce
the repetition of hypotheses and present a unique setting for the whole section,
consisting in the assumptions of the KAM Theorems in Section and

4.1. Estimates for cohomological equations. Let us first introduce some useful
notation regarding the so-called cohomological equations that play an important
role in KAM theory. Given w € R? and a periodic function v, we consider the
cohomological equation

d
(4.1) Lou=v—{(v), Lo ::waia%.
i=1 ‘

The notation £ comes from “left-operator”.

Let us assume that v is continuous and w is rationally independent (this implies
that the flow ¢ — wt is quasi-periodic). If there exists a continuous zero-average
solution of equation , then it is unique and will be denoted by u = R, ,v. The
notation R comes from “right-operator”.

Note that the formal solution of equation is immediate. Actually, if v has

the Fourier expansion v(0) = ;< 0pe?™# % and the dynamics is quasi-periodic,
then
- ok . — U,
4.2 Rv(d) = Tye?mik? Uy = ———.
(4.2 RO DI T A—.

keza\{0}

In particular, this implies that 9R,v = 0 if v = 0. The solutions of equation
differ by their average.

We point out that quasi-periodicity is not enough to ensure regularity of the
solutions of cohomological equations. This is related to the effect of the small
divisors k - w in equation . To deal with regularity, we require stronger non-
resonant conditions on the vector of frequencies. In this paper, we consider the
classic Diophantine conditions in Hs and H{.

Lemma 4.1 (Riissmann estimates). Let w € D., , for somey >0 and 7 > d — 1.
Then, for any v € A(Tz), with p > 0, there exists a unique zero-average solution
of Lou=v — (v), denoted by u = R,v. Moreover, for any 0 < § < p we have that
u € ,A(']I‘g_5) and the estimate

CR
fullp-s < Sl
where cr is a constant that depends on d, T and possibly on .

Proof. There is no need to reproduce here this classical result, and we refer the
reader to the original references [40, 48], where a uniform bound (independent of
0) is obtained. We refer to [27] for sharp non-uniform computer-assisted estimates
(in the discrete case) of the form cg = cg(d), representing a substantial advant-
age in order to apply the result to particular problems. Adapting these estimates
to the continuous case is straightforward. Also, we refer to [28] for a numerical
quantification of these estimates and for an analysis of the different sources of over-
estimation. (]
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4.2. Approximate conserved quantities. If X = K(T?) is not an invariant
torus with frequency w, it is clear that a first integral in involution ¢ (such as
the energy h or any of the components of p) is not necessarily preserved along
z(t) = K(6y + wt), since this is not a true trajectory. However, we can “shadow”
its evolution in terms of the error of invariance.

Lemma 4.2. Let us consider the setting of Theorem [3.1] or Theorem [3.6, Then,
for a conserved quantity c the following estimates hold:

(4.3) Jlco K — (co K)||,_s < “Eiet
Yo7

(44) [|€u(D(co K))[lp—s < d"“ Elps  l1€uD(eo K) -5 < B,
(4.5) [D(co K)llp—25 < ngfcff IEl,.  1(D(coK)) 25 < ;§—+ 1B, -
In particular,

(16) llpo K = (po )5 < 4B,

(4.7) [|€(D(po K))|p-s < dc“ IEl,.  I€.(D(po K))

(4.8) [D(po K)|p-25 < Cjﬁcff IEl,, (Do k) [lp-2s < C’}CTIEH I,

Proof. We will prove the result first for the conserved quantity c. This case includes
analogous estimates for each of the first integrals h and p;, with ¢ = 1,...,n —d.
We apply £,(-) = —D(-)w in the expression ¢ o K, thus obtaining

Lu(c(K(0))) = De(K(6)) £, K (0)
(4.9) = Dc(K(0)) (E(0) — Xn(K(0)))
= De(K(0))E(6).

In the second line we used the expression of the error of invariance (3.9), and in
the third line we used that c is in involution with h. In particular,

[€a(co K, < cellEllp,
where we use that |Dc||g < ¢.,1. Thus, we end up with
c(K(0)) = (co K) = Ru,(De(K(0) E(0)) ,

and the estimate (4.3)) follows applying Lemma
In order to prove (4.4) and (4.5) we just differentiate with respect to 6y, for
¢=1,...,d, both formulae (4.9) and (4.4) and apply Cauchy estimates. Firstly,

8 Cc 1
Lu(co K) 1,
H 80[ pfé :
so estimates in (4.4) follow immediately. Secondly,
CRCc,1
< 9
‘ 39[ = ’)/(57+1 || ||P ’

and then estimates in ) follow.
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In order to prove (4.6), (4.7) and (4.8]) we just notice that (4.3)), (4.4) and (4.5)

work for any of the first integrals p;, for ¢ = 1,...,n — d. Then, we change the
occurrences of ¢ by p; in the formulae, with |Dp;|s < ¢p,,1, and use that

i=1,...,n—d

to obtain the bounds. O

4.3. Approximate isotropicity of tangent vectors. In this section we prove
that if IC is approximately invariant, then K*w is small and can be controlled by
the error of invariance. We refer the reader to [29] [31] for similar computations,
using generic constants in the estimates.

Lemma 4.3. Let us consider the setting of Theorem or Theorem [3.6, Let us
consider Qg : T4 — R2X2"  the matriz representation of the pull-back on T? of
the symplectic form. We have

(4.10) (QK) =04,
and the following estimate holds:
Co
(111) 92l =25 <~ 1,

where the constant Cq,. is provided in Table .

Proof. Property (4.10) follows directly from the exact symplectic structure, since
K*w = d(K*a). In more algebraic terms, we have

Qx(0) = (DK(0))" ((Da(K(0)))" ~ Da(K(6))) DK (0)
= (D(a(K(9)))) 'DE(9) — (DK(6)) "' D(a(K(0))),

and so, the components of Q () are

Q)i 0) = 3 <<9(am(K(9))) OKm(0)  O(am(K())) 8Km(9))

] 6 a6, 06, a6;
- 2 (o (x " 552) - 5 oot ®552)).

Hence, the components of 2 are sums of derivatives of periodic functions, and we
obtain <QK> = 0y.

Now we will use two crucial geometric properties (following Appendix A in [31]).
Using the fact that w is closed, we first obtain the expression

0 s(2)  Osi(2) O, (2)
0z + 0z, + 0z,

for any triplet (r,s,t). The second property is obtained by taking derivatives at
both sides of Q(2) X}, (2) = (Dh(z)) T, obtaining

2 2n ) P 2
N =

:O’

m=1
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for any i, j, where we use the notation X,,, = (X3),, for the components of Xj,.
Hence,

B A s
o 323(921 i (92'182J &

= 30 (Pl o)1 0, P

= 0z, ’ 0z;
2n
0 m(2) ' 00X (2)
- < 1L Xon(2) + Uy (2)
2n
B 09 ;(2) . 0Xm(2) 4 00X (2)
-3 <8zm Xon2) o i) G T ()75 )
The above expressions yield the formula
(4.12) DQ(2)[X1(2)] + (DX1(2) "Q2) + Q(2)DX}(2) = Oo,, .

Then, we compute the action of £, on Qg, thus obtaining
(4.13) £.0x(0) = £,(DK(H)) "Q(K(0))DK () + (DK (0)) " £,(Q(K(0)))DK ()
. +(DK(6)) " Q(K(0))£.DK(0),

and we use the properties (obtained from the invariance equation )
£,(DK(0)) =DE(0) — DX, (K(0)DK(0),
L(QUK(9))) = DR(K(0))[£.K(8)] = DK (9)) [E(8) — X, (K(9))] ,
in combination with , thus ending up with
£.0x(0) = (DE(6)) " Q(K(9))DK (9) + (DK (9)) T (DAK ())[E()])DK (6)
+ (DK(9)) "Q(K(0))DE(9).

The expression £,Qx(6) is controlled using H;, Ha, the Banach algebra properties
and Cauchy estimates as follows

1225l p—5 < [I(DE) " p—s Q0I5 IDE |, + (DK ||, DL 5] E], DK,

+[[(DE) ", 12 5IDE| -5
< 2ncq ook + O—KTCQ,lo'K(s +dogTca o Ceay
- ) )
In particular, we used that ||(DQ o K)[E]||z < |DQ||g|E||, (see Section [3.1)). The
estimate in is obtained as follows

(4.14) 1B, = 1E, -

CR crCray Cay

(4.15) Q][ p—26 < WHSwQKHp—é < WHEH/J = g 1E,,
where we used Lemma [£.1] and the estimate in (£.14). O

Remark 4.4. Notice that, even though the KAM theorems|[3.1]and [3.6|do not require
a quantitative control on the 1-form «, the facts that the symplectic structure w
is exact and the vector field X}, is globally Hamiltonian are crucial to obtain the
above result.
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4.4. Approximate symplectic frame. In this section we prove that if K is ap-
proximately invariant, then we can construct an adapted frame that is approx-
imately symplectic. First step is finding an adapted approximately Lagrangian
bundle, that contains the tangent bundle Tic M.

Lemma 4.5. Let us consider the setting of Theorem [3.1] or Theorem [3.6 Then,
the map L(0) given by (3.8)) satisfies

(4.16) ILl,<CL, |ILTl, <Crr.  (LT(QoK)E)=0,,
and defines an approximately Lagrangian bundle, i.e. the error map
(4.17) Q. (0) = L(0) QK (0))L(6)

is small in the following sense:

(1.18) 19025 <~ [l

Furthermore, the objects

(4.19) GL(0) == L) G(K(9))L(6),

(4.20) 04(0) := L(0)TUK(0)L(6),

are controlled as

(4.21) IGLlp < Carv N, < Cg, -

The above constants are given explicitly in Table [1]
Proof. We first obtain the property of the average in (4.16)) by computing

(DE(6)) " QK () E(0) )

L(6) QK () E(9) = < X, (K (0)TQ(K(60)E(0)

The upper term satisfies
(DK(6)) QK (0)E(0) = (DK(6)) QK (8)) Xn(K(6)) — Qr (O)w
= (DK(6)) " (DA(K(6)))" — Qx (O)w
= (D(h(K(®))" — (@),

which has zero average, since the first term is the derivative of a periodic function
and Qg (0) has zero average (see Lemma [4.3). Moreover, the lower term satisfies

(4.22) X, (K (6)) "Q(K(9)) E(9) = Dp(K(6))E(6) = —D(p(K(9)))w -

Hence, it is clear that (LT (Q o K)E) = 0,,.
We control the norm of the frame L(#), using H; and Ha, as follows

(4.23) L], < DK, + [ Xp o K|, < 0k + ¢x,0 =: CL,
(424) L7]}, < max{|(DK) |, X, o K[,} < max{oser, exro} = Cpr.
We have obtained the estimates in (#.16)). Using again the expression of L(f) we

obtain that the anti-symmetric matrix (4.17)) is written as
QL (0) = (DK(0)) "Q(K(0))DK ()  (DK(6)) QK (6))X,(K(6))
- Xp(K(0))TQ(K(0))DK(0) X, (K(0)) " QK(0))X,(K(0)))
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Using the expression Qx () in (2.3), performing similar computations as in (4.22]),
and using the involution of the first integrals, we end up with

() DEEEG))T
W)= (—D(JfK(e)» On_a ) :
Then, we have
19225 = max{[|Qlp—25 + (D@ oK) [lp—25 ID(p o K),—25}

< CR maX{CQQK +CpT1 s dcp,l} H H _. Co,
< 6T P O

where we used Lemma and Lemma [£.3] Thus, we have obtained the estimate
in (4.18). Finally, the estimates in (4.21)) with

(4.25) 1Ellp

(4.26) ||GLHP < CLTCG,OCL =: CGL ,
(4.27) ”QLHP < CLTCQ’OCL =: CQL ,
follow directly. O

In the following lemma, we will see that the geometric constructions detailed in
Section lead, for an approximately invariant torus, to an approximately sym-
plectic frame attached to the torus.

Lemma 4.6. Let us consider the setting of Theorem [3.1) or Theorem [3.6. Then,
the map N : T¢ — R2"X" given by (3.2) satisfies

(4.28) INl,<Cn,  INT], <Oy,
and the map P : T — R?"X2" giyen by
P(0) = (L(6) N(9)) .

induces an approrimately symplectic vector bundle isomorphism, i.e., the error map

(4.29) Esym(e) = P(Q)TQ(K(Q))P(Q) —Qq, Qo = (?n —OIn) ,
is small in the following sense:

CS m
(4.30) (| Esymllp—25 < VTy_H”E“P'

The above constants are given explicitly in Table [1]

Proof. First we control the norm of N°(6) in (3.3), using Hy and (£.16), as
(4.31) IN®llp < 1T 0 KllplLll, < 1711sIIL], < cr0CL =: Cno

4.32) (N Tllp < UL 0 K) Tl < ILT ol T lls < Crregmo =t Cnor,
and the norm of A(f) in as

1 - 1
(4.33) 1All, < QHBTHPHLT(QO E)LIp|Blly < 505C5,08 =: Ca,

where we also used Hs, the second estimate in (4.21) and that B(6) is symmetric.
We also control the complementary normal vectors as

(4.34) INllp < ILlollAll, + IN°(l,[1Bll, < CLCA + Cnoop =: Cn

(4.35) IN T, < 1ATIIL T, + 1B N Tl < CaCpr + 05Cpot =: Oy
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where we used Hj, the estimates (4.16)), (4.31)), (4.32), and (4.33), and the fact that
A(0) is anti-symmetric. Thus, we have obtained the estimates in ((4.28)).

To characterize the error in the symplectic character of the frame, we compute
1036 Ban(®)— (- FOTRAKONLO)  LOTUAKO)NO) + 1,

' o N@O)TQK@)LO) — I NO)TQK@)NEG) )’

and we expand the components of this block matrix using (3.2)), (3.4)), and (4.17).
For example, we have

L(6) QK (0))N(9)

(4.37) =
where we used that J'Q = G and the definition of B(#). We also have
N(0)T QK (0))N(0)
= B(0)TN°(0) T QK (0))L(0)A(9) + B(6) " N°(0) T QK (0))N°(0)B(0)
+A(0) " L(0) "QK(0)) L(0) A(6) + A(0) T L(0) T (K (8))N°(0)B(6)
= A(0)TQL(0)A(0) + A(0) — A(6)" + B(0) " L(6) "Q(K(0))L(0)B(6)
(4.38) = A0)"QL(0)A(0
Then, introducing the expressions (4.17)), (4.37) and (4.38]) into (4.36)), we get

Q1 (0) Qr(0)A(0)
Egym(0) = <A(9)—%QL(0) A(O)%QL(@A(Q)) ’

0
0 .

)
)

which is controlled as

(1 + CA) max{l ) CA}CQL . C’sym
s |Ell, = —2m
Yo7t Yo7 E

thus obtaining the estimate (4.30)). (I

(439) ||Esym||p—26 S

1,

Remark 4.7. The above estimates can be readily adapted to Case III, for which
A = 0. In this case we have (computations are left as an exercise to the reader)

N(0) = N°(0)B(6),  Egm(0) = (Qéie) B(G)TS%(O)B(@Q '

The corresponding estimates are given explicitly in Table

4.5. Sharp control of the torsion matrix. In this section we control the torsion
matrix T'(0), given in . To do so, we could use directly Cauchy estimates to
control £,N(6), resulting in an additional bite in the domain and an additional
factor § in the denominator (among other overestimations). Hence, in order to
improve this estimate, thus enhancing the threshold of validity of the result, we
perform a finer analysis of the expression for T'(9). To this end, it is convenient to
include here an additional smallness condition for the error of invariance (see
below), that later on will turn out to be rather irrelevant.
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Lemma 4.8. Let us consider the setting of Theorem or Theorem 3.0, and let
us assume that

(4.40) % <v,

where v is an independent constant. Then, the torsion matriz T(0), given by (3.6]),
has components in A(Tfé,(;) and satisfies the estimate

|75 < Cr.

where the constant Cr is provided in Table[]

Proof. Recalling that £,,(-) = —D(-)w and (2.12)), we have

(4.41) Xn(0) =DXp(K(0))N(O) + L£L,N(6),

where

(4.42) £,N(0) = £,L(0)A(0) + L(0)£,A(0) + £,N°(0)B(0) + N°(0)L,B(0).

Then, we must estimate the terms £,L(0), £,A(0), £,N°(9), and £,B(0), that
appear above.
We start considering

(4.43) LK (9) = E(6) — X, (K (9))
which is controlled as
(4.44) €Kl < [|Ellp + | Xn o K|, < dv+cx, 0 = Cek

where we used H; and the assumption (4.40). Then we consider the object £,,L(9),
given by

L,L(0) = (Sw(DK(e)) Sw(Xp(K(e)))) :

Notice that the left block in the above expression follows by taking derivatives at

both sides of , ie.
L£,(DK(0)) = DE(#) — DX, (K(0))[DK(0)],
and the right block follows from
Lo (Xp(K(0))) = DX, (K(0))[£.K(0)].

Then, using Cauchy estimates, the Hypothesis H; and Hs, the assumption (4.40)
and the estimate (4.44), we have

(445) ||SWL‘|/,_5 SdV‘i’CXh,lO'K‘i’CXp,lC/QK = CQL.

Similarly, we obtain the estimates

(4.46) |L,LT ||, < max{Qm/ +CxT 10K CXI;I'JCQK} =:Cgr7.
The term £,N°() is controlled using that

(4.47) LLNO(0) = Lu,(J (K (9)))L(0) + J(K(6)) L L(9)

and the chain rule. Actually, we have

(448) ||2w(JOK)||p§CJ710gK = CQJ,

(4.49) |1£,(Go K)|l, <cai1Cer =: Ceq,

(4.50) 1€.(20 K)ll, < ¢5,Csx = Ceq
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and then, using (4.48]), the expression (4.47)) is controlled as
(4.51) |LoN | p—s < CeyCr + cs0Cer =: Copno.

Before controlling £,B(0) and £,A(6), we recall the notation for G (f) and

Q1 (0), given by ([£.19) and (£.20) respectively, and we control the action of £, on
these objects. For example, we have

£,GL(0) = £.,1(0)T G(K (0))L(0)
+ L(O) T LL,G(K(0))L(0) + L(A) T G(K (0))L£.,L(H)
and, using , we obtain the estimate
(4.52) 1£0GLlp—5 < CearreaoCr + CprCecCrL + CrregoCer =: Ceq,, -
Analogously, using , we obtain the estimate
(4.53)  [1€Q%llp—5 < Copreg oCL + CrmCogCL + Crreg oCor =: Cg, -
Now we obtain a suitable expression for £,,B(#). To this end, we compute
On = £,(B(0)7'B(9)) = £,(B(0)"")B(0) + B(0) ' £..(B(9)),
which, recalling , yields the following expression
£.B(8) = —B(0)Lu(L(0) G(K(6))L(6))B(6) = —B(6)£.GL(6)B(6).
Then, using , we get the estimate
(4.54) 1€0Bllp-s5 < (08)*Cea, =: Cep.

Since B(f) is symmetric, we also have ||[£,B T ||,—s < Cep.
Finally, using the above notation, we expand £, A(0) as

LAW) = — S L.BO) QL(0)BO) — 5B0) £.04(0)B(0)

1 -
- §B(Q)TQL(0)2wB(9) ;
which, using the constants (4.27)) and (4.53)), yields the following estimate
1
(4.55) ||£wAHp_5 < CEBCQLUB + §(UB)QC£QL =:Cgy.
With the above objects, we can control (4.42)) as follows
(4.56) ||£wN||p_5 < CorCa+CpCop+Copnoop +CnoCep =: Copn .

This estimate will be used later in the proof of Lemma Now, we could use
(4.56) in equation to obtain
|~ p—s < ex,,1CN + Con .
However, we obtain a sharper estimate observing that
Xy (8) = XL () A(6) + DX, (K(8))N°(6)B(9)

+ L(0)£,A(0) + £,N°(0)B(0) + N°(0) L., B(9),
where

XL(0) =DX,(K(0))L(0) + £,L(0)

— (DE(®) DX, (K(6))E®)) .



KAM THEORY FOR PARTIALLY INTEGRABLE SYSTEMS 29

This last expression follows using the previous formula for £, L(0) and the fact that
the vector field X} commutes with the fields X, for 1 <i <n —d.
Then, the objects X7 (#) and X7 (0)" are controlled as follows:

d+cx ,16 Cx

(@57 s < L5ty = Oy
max{2n, cxT 10} Cyr

(4.59 1] s <« TPy, P gy,

and, using again the smallness condition (4.40), we obtain

|XN | p—5 < Cx,vCa + cx,,1CNnoop + Cr.Cea + Cenoop + CnoCep
(4.59) =:Cux, .
Finally, the torsion matrix satisfies
(4.60) | T p—s < CnTecaoCxy =:Cr,
which completes the proof. O

Remark 4.9. The bound Cr of Lemma [£.§ could be improved for the particular
problem at hand, since the expression for T(f) can in many cases be obtained
explicitly and may have cancellations.

4.6. Approximate reducibility. A crucial step in the proof of both KAM theor-
ems is the resolution of the linearized equation arising from the application of the
Newton method. The resolution is based on the (approximate) reduction of such
linear system into a simpler form, in particular, block triangular form. This is the
content of the following lemma.

Lemma 4.10. Let us consider the setting of Theorem or Theorem[3.6. Then,
the map P : T? — R2"*2"  characterized in Lemma 4.6, approximately reduces the
linearized equation associated with the vector field DXy o K to a block-triangular
matriz, i.e. the error map

(4.61)  Erea(6) := —Q0P(6) "QK(6)) (DX4(K(0))P(0) + £,P(6)) — A(6),
with

(4.62) AD) = (On T (9)>

O, O,
and T(0) is given by (3.6)), is small in the following sense:
Cred
P

where the constant Cieq 18 provided in Table .

Proof. Using the notation in (2.12) we write the block components of (4.61)), de-
noted as E}7,(6), as follows:

(4.63) ELL(0) = N(0) QK (0))X1(9) ,
(4.64) ELA(0) = N(0) QK (0))Xn(0) — T(0) = O,
(4.65) B21(0) = — L(0) QK (0))XL(0)

E23(0) = — L(O) TQK () Xn ()
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Notice that we have used the definition of T'(f) to see that (4.64) vanishes. To
gather a suitable expression for Eifl(e), we apply £, at both sides of the expression

obtained in (4.37):
£.,(L(6) TQUK(6)))N(8) + L(6) T QK (9)) LN (8) = £.,(21(0)A(6)) -
Then, introducing this expression into Efc’i (9), using and the geometric prop-
erty , we obtain
EL3(0) = — L(0) TQ(K(0))DXA(K (0))N(0) + Lo (L(0) QK (0)))N(6)
— L, (QL(0)A(9))
(4.66) = L(6) " (DQK (0))[E(O))N(0) + Xr(0) " QK (0))N(6) — £.,(Qr(0)A(0)) -
At this point, we could use Cauchy estimates in the expression
Lo,(2L(0)A(0)) = —D(QL(0)A(9))[w]

and obtain an estimate controlled by || E||,. However, this would give a control of
the form || Eyeql| ,—3s, and we are interested in keeping the strip of analyticity p—26.
For this reason, we compute

(4.67) L, (QL(0)A(0)) = £,QL(0) A(6) +QL(0) £,A(0),
and consider the block components of

_ L0k (0) L.(D(p(K(0))) "
o w00 = (g Gty o)

Then, we control (4.68) as follows

1€ -5 < max{[[LuQxllp—s + 1€u(D(@ o K)) -5, [|€0(D(p o K))llp-5}

Ce
£, =

C + ,d
(4.69) < maX{ LK 501,7,1 Cp,l} 5QL ”E”p7

where we used estimates (£.7) and (4.8) from Lemma [4.2]

Finally, we estimate the norms of the block components of E|.q using the ex-
pressions (4.63), (4.65)), (4.66) and (4.67), and the previous estimates:

CNT CQ,ocX Crle’l
CvrenoCan)p), - S,

1,1
(4.70) [ Erallo-26 <IN 1Q05] Xzl -5 <

1,2
HEred”p_zé = O )

470 1E% ez < LTI sl < SE0200% gy, — Gty
B2 < (CurenaC + g0y ConuCn y ConCony g,

(4.72) = Wiiél 1]l -

Then, we end up with

418)  Walloss < PO T 2 Oy, Gty

thus completing the proof. [
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5. PROOF OF THE ORDINARY KAM THEOREM

In this section we present a fully detailed proof of Theorem For convenience,
we will start by outlining the scheme used to correct the parameterization of the
torus. That is, in Section [5.1] we discuss the approximate solution of linearized
equations in the symplectic frame constructed in Section [£:4] This establishes a
quasi-Newton method to obtain a solution of the invariance equation. In Section
5.2 we produce quantitative estimates for the objects obtained when performing
one iteration of the previous procedure. Finally, in Section [5.3] we discuss the
convergence of the quasi-Newton method.

5.1. The quasi-Newton method. As it is usual in the a-posteriori approach to
KAM theory, the argument consists in refining K () by means of a quasi-Newton
method. Let us consider the equations associated with the error of invariance

E(0) = Xn(K(0)) + £.K(0) .

Then, we obtain the new parameterization K () = K(0) + AK () by considering
the linearized equation

(5.1) DX, (K(0)AK(0) + £,AK(9) = —E(9) .
If we obtain a good enough approximation of the solution AK(6) of (5.1), then

K (0) provides a parameterization of an approximately invariant torus of frequency
w, with a quadratic error in terms of E(6).

To face the linearized equation , we resort to the approximately symplectic
frame P(6), defined on the full tangent space, which has been characterized in

Section [ (see Lemma . In particular, we introduce the linear change
(5.2) AK(0) = P(0)$(6) ,

where £(0) is the new unknown. Taking into account this expression, the linearized
equation becomes

(5-3) (DXK(K(0))P(0) + £,P(0)) £(0) + P(0)£,£(0) = —E(0) .

We now multiply both sides of (5.3) by —QoP(6) T Q(K(6)), and we use the geo-
metric properties in Lemma and Lemma thus obtaining the equivalent
equations:

(A(0) + Erea(0)) £(8) + (Jon — QoEgym(0)) £.(0)

(5.4) = QP (0) " Q(K(0)E(0),

where A(6) is the triangular matrix-valued map given in ([4.62).

Then, it turns out that the solution of are approximated by the solutions
of a triangular system that requires to solve two cohomological equations of the
form consecutively. Quantitative estimates for the solutions of such equations
are obtained by applying Riissmann estimates. This is summarized in the following
standard statement.

Lemma 5.1 (Upper triangular equations). Let w € D, , and let us consider a
map n = (n¥,nN) : T¢ — R2" ~ R™ x R™, with components in A(']I‘ﬁ), and a
map T : T — R™ ™, with components in A(Tz,(;)- Assume that T satisfies the
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non-degeneracy condition det(T) # 0 and n satisfies the compatibility condition
(MNY = 0,,. Then, for any && € R™, the system of equations

On T(0)) (€"(0) LLE50)) _ (n=(0)

(55) (on 0, > <5N<9>) ’ (swsw)) B <77N(9))
has a solution of the form

¢V (0) =& +Ru(n™(0)),

£4(0) = & + R (" () = T(O)EN(9))
where

& = ()"t = TR.(Y))
and R, is given by , Moreover, we have the estimates
661< 1K) (Il + 1T - )

CR
HgJVHP_(S S |§év| + 757- H77N||p7

CR
I€¥1p-25 < 1651+ 5 (In" s + ITlp=sl1€ 1l p=s)

Proof. This triangular structure is classic in KAM theory and appears in any
Kolmogorov scheme (see e.g. [3, 19, B5]). The Lemma is directly adapted from
Lemma 4.14 in [33] and the estimates are directly obtained using Lemma ]

To approximate the solutions of ([5.4)) we will invoke Lemma taking
(5.6) n"(0) = =NO)TUK(O)E®), 1V (8) = L) QK () E®),

and T'(0) given by . We recall from Lemmathat the compatibility condition
(nN) = 0, is satisfied. Note that (¢V) = &}’ and we have the freedom of choosing
any value for (¢L) = ¢/ € R™. For convenience, we will select later the solution
with & = 0, even though other choices can be selected according to the context
(see Remark [3.5)).

From Lemma we read that ||€],—25 = O(||E||,) and, using the geomet-
ric properties characterized in Section 4} we have ||Eveall,—2s = O(||E||,) and
| Esyml| p—26 = O(||E||,). From these estimates, we conclude that the solution of
equation is approximated by the solution of the cohomological equation

(5.7) A(0)§(0) + £.£(0) = n(0) .

This, together with other estimates, will be suitably quantified in the next section.

5.2. One step of the iterative procedure. In this section we apply one cor-
rection of the quasi-Newton method described in Section [5.1] and we obtain sharp
quantitative estimates for the new approximately invariant torus and related ob-
jects. We set sufficient conditions to preserve the control of the previous estimates.

Lemma 5.2 (The Iterative Lemma in the ordinary case). Let us consider the same
setting and hypotheses of Theorem and a constant v > 0. Then, there exist
constants Cax, Cap, Ca(ry-1 and Cg such that if the inequalities

CallEll, CrllEll,

(58) ,72627'-‘,-1 74547’

<1, <1
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hold for some 0 < 0 < p, where

~ 2427 dCak 2nCax
Cp = max{ , 2C5ymYo7 , ,
59 R LY PR (YO
. CaB Ca(ry—1 Caxb }
op —||Bll, " or = (T)~1| dist(K(T4),0B) |’

then we have an approzimale torus of the same frequency w given by K =K+AK,
with components in A(']I‘g_%), that defines new objects B and T (obtained replacing

K by K) satisfying

(5.10) IDK||,—35 < 0k ,

(5.11) I(DE) lp-35 < ok,

(5.12) IBllp-35 < 08,

(5.13) (D) < or,

5.14 dist(K(T?_,5),0B) >0,

p—20

and
_ Cak

(5.15) | K — K| p—25 < W”EHP’
_ Cap

(5.16) |B — Bl|p—35 < W”EHW
- _ CA TV—1

(5.17) (D =M < et I Bl

The new error of invariance is given by
E0) = X,(K(0)) + £.K(0),
and satisfies

Cg

(5.18) [Ellp—25 < FAgi

2
IE1 -

The above constants are collected in Table[d.

Proof. This result requires rather cumbersome computations, so we divide the proof
into several steps.

Step 1: Control of the new parameterization. We start by considering the new para-
meterization K (#) = K (0)+AK(6) obtained from the system (5.5]), with 7(6) given
by . We choose the solution that satisfies ¢I = 0. Using the estimates obtained
in Section @ we have

7"y < Cnreaoll Bllo, — In™ 1o < Crreaoll Bl

In order to invoke Lemma (we must fulfill condition (4.40])) we have included
the inequality

11,

(5.19) 5

<v
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into Hypothesis (5.8) (this corresponds to the first term in (5.9)). Hence, com-
bining Lemma and Lemma we obtain estimates for the solution of the
cohomological equations (we recall that £ = 0,,)

_ CR
661 < KT~ (I o + 25 1T sl )

(5.20) < or(Cyean+ 5 OrCureas ) |El, = 5‘; 11,
CR
1€¥0 -5 < 11+ ™l
Cen
(5.21) + 5= Cumeaoll Blly = —Z 1B,
€% 125 < |eo 5= (I o + 1T 50N s
(5:22) <W7(cmcm+c& )|| lo = 2Bl

The norm of the full vector £(6), which satisfies , is controlled as

I€]1p—25 < max{[[€" ] p—2s , ||§N|\p76}
< max{Ce¢r , Cenyd™}

(5.23) Bl = Bl

The new parameterization K () and the related objects are controlled using
standard computations. Estimate (5.15]) follows directly from

K(0) — K(9) = AK(9) = P(0)¢(0) = L(0)€" () + N(9)E™ (6),
that is, using estimates in ) and -, we obtain

CLC§L +CNC§N’)/(5 .

- Caxk
’}/2(527 H HP -

(520) K = Kllp2s < e 12,

To complete this step, we check that K (#) remains inside the domain B where
the global objects are defined. This is important because we need to estimate the
new error F(f) before controlling the remaining geometrical objects. Then, we
observe that

dist (K (T9_,5),08) > dist(K(T%),0B) — | AK | p—25
C
. d AK
where the last inequality follows from Hypothesis (5.8|) (this corresponds to the
seventh term in (5.9)). We have obtained the control in (5.14)).

Step 2: Control of the new error of invariance. To control the error of invariance of
the corrected parameterization K, we first consider the error in the solution of the
linearized equation ([5.4]), that is, we control the quadratic terms that are neglected
when considering the equation (|5.7)):

Elin(e) - Ered (9)6(9) - QOEsym(e)Ewg(a) .
The term £,£(0) is controlled using that £(6) is precisely the solution of the co-
homological equation (5.7)):

(5.26) 1€ o = In™ 1, <

=: Ceen || Ellp
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<) 11,

180 os = " — TV, < (

Ceer
2 =: E
(5 7) ’Y(ST || ||P7
Cogr C
6528 12u8los < max (2 Coon ) 181, = SE)B1

Hence, we control Ej,(6) by

[ Eiinllp—25 < [ Breallo- 25H£Hp 25 + 0,0l Esym |l p—25[| €0l p—25

Crcd C(sym 025 2 . Clln
— ,757'-{-1 2627’ 57‘-{-1 || || 3637‘-‘,—1 || Hl)

(5.29) IE]7 + cao

We remark that this last estimate can be improved by considering the components
of £(0) = (£5(0),£M(0)) separately, thus obtaining a divisor 42§27+ in (5.29).
Nevertheless, this improvement is irrelevant for practical purposes.

After performing the correction, the error of invariance associated with the new
parameterization is given by

E(0) = X, (K(0) + AK(0)) + £.K(0) + LLAK(6)
= X, (K(0)) + DX, (K(0))AK(0) + £,K(0) + £LAK(0) + A% X (6)
(

) K
(5.30) = DX, (K(0))AK () + £,AK(0) + E(0) + A% X(0)
' = (DX, (K(0))P(0) + £.,P(0 ))5(9) P(0)£.,£(0) + B(6) + A*X(6)

= (=Q0P(0) "QUK(6))) " Eun () + A*X(6)

= P(0)(I2n — QoEsym(0)) ™" Ein(6) + A2X(6),
where

A’X(0) = Xp(K(0) + AK(0)) — X,(K(0)) — DX, (K (0)AK(0)
(5.31)

= /1(1 —t)D* X, (K (0) + tAK () [AK (), AK(0)]dt,
0

and we used (4.29). Notice that the above error function is well defined, due to the

computations in ([5.25)), and we estimate its norm as follows
1E]lp-25 < [Pllp-251(1 = Q0Bsym) ™" lp—25]| Eiinllp—25 + 1A% X [ p—25 -
Then, using a Neumann series argument, we obtain

1

|QOEsym||P*25

0= Q0 Buye) 25 < 1 <2,

where we used the inequality

Csym 1
B, < 5
Y

that corresponds to the second term in (5.9) (Hypothesis (5.8])). Putting together
the above estimates, and applying the mean value theorem to control A2X(6), we
obtain

_ 2(Cp + Cn)Chin 1 Cag)? Cg
6530 |Blp-as < (AOLEEN Iy Lo SO iz — L2 e,
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We have obtained the estimate (5.18]). Notice that the second assumption in (5.8))
and (5.19) imply that

(5.33) |Ellp—25 < |E]l, < ov.

This will be used in Step 6.

Step 3: Control of the new frame L(6). Combining (5.24) with Cauchy estimates,
we obtain the control (5.10):

— dCax

(5.34)  IDK][p-35 < [DEK|l, + [DAK][p—35 < DK, +

W”E”p < 0K,

where the last inequality follows from Hypothesis (5.8) (this corresponds to the
third term in (5.9)). The control (5.11]) on the transposed object is analogous

2nCak
N252r+

(5.35) I(DE) T p—35 < |(DK) ||, + 1Ell, <oxr,

where the last inequality follows from Hypothesis (5.8)) (this corresponds to the

fourth term in (5.9)).
After obtaining the estimates (5.34) and (5.35)), it is clear that

ILlp-ss <CL,  |ILT||p—s5 < Cpr.

Indeed, we can control the norm of the corresponding corrections using Cauchy
estimates, the mean value theorem and estimate ([5.24]):

- dCax cx,1CaK CarL
(536) L Ll < 2o Bl + S g, oL,
_ Cag max{2n, cxt,0} Cnrt
630 NET =L less < e Py, = By,

Step 4: Control of the new transversality condition. To control B we use Lemma
taking

M(6) = GL(9) = L(9) " G(K(6))L(6),

M(0) = GL(6) = L(6) " G(K(9))L(6) ,
where we have used the notation introduced in . First, we compute

- — cc1Cak
[GoK —GoKl|,-25 < ||DG|sl|K — K| p—26 < W”E“P
- Cac

(5.38) = ~N2§27

1El,

and
IGz = Grllp-s3s < IILT(G o K)L — LT (G o K)L|| 35
+ ||Z/T(G o R)L — ET(G o K)L||p—3s
+ LT (GoK)L — LT (G o K)L||,—35
<L NGIBIE = Lllp-35
HILTIIG o K — G o K| p-s5|L],
LT = L p-ss IG5 LI,
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CLT cq,0Car + C7CagCLd + Carvcg,oCL
2527‘4»1

1E1l,

Cac,
(5.39) = agEril 1E]l, -

Then, we introduce the constant
CAB = 2(03)2CAGL
and check the condition ([A.1)) in Lemma
2008)*1GL = Grllp—ss _ 2(08)*Cac, _|IE],
o5 — 1Bl = o —|B|, y**
__ Casp 11l
op — ||Bll, 7?67 +!
where the last inequality follows from Hypothesis (5.8)) (this corresponds to the
fifth term in (5.9)). Hence, by invoking Lemma we conclude that

(5.40) <1,

2<0'B)20AG Can
— e El, = 1l

(5~41) HB”prE <0B, HB - BprSé < 72527+1 p = W

and so, we obtain the estimates and on the new object.
Step 5: Control of the new frame N(6). To control the new adapted normal frame
N(0), it is convenient to recall the following notation:
N(6) = L(0)A(6) + N°(0)B(9),
N°(0) = J(K(0))L(0)
A(f) = — 3(B(0) " L(6) QK (0))L(6)B(6)) ,
B(#) = (L(9) ' G(K(9))L(6)) "

where, as usual, the new objects N(6), A(f), N°(0) and B(f) are obtained by
replacing K (6) by K (6). Note that the object B(6) has been controlled in Step 4.
Now, we recall the notation introduced in (4.20)) and reproduce the computations

in and for the matrix functions
Q1(0) = L(6) "QK(8))L(6) .
Oz (0) = L(0) TQ(K(0))L(0),

thus obtaining

- 510nK
€a1

642 00K - o Klpa < SR B, = S0 B,
and

~ ~ C’LTCQ_OCAL+CLTCAQCL(5+CALTCQOCL

1927 — Qrllp-36 < : ~Egar T — | Ell,

CAQ

(5.43) =: 252Ti1|| o -

Now, we control the matrix A() as follows

, 1 =T 5 BTA
1A= Ally3s < SI1BT0LB — BTOLBI|, s
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J . 1 = .
+ §||BTQEB ~ BTQLB|,-35 + 5||BTQLB ~ BTQLB|,-35

_ 1 A,
<05Cq, |B = Bllp-35 + §(UB)Q||QE = Qplp-3
05Cq, Can + 3(05)?Chg Caa
(5.44) < 2 72527‘11 L|E|, = WIIEIIP,

where we used that B(6) T = B(), and the constants (4.27), (5.41)) and (5.43). The
same control holds for |AT — AT||,_3s, since we have that A(9)T = —A(f). We
notice that Ca4 = 0 in Case III.

Analogous computations yield to

_ CJJCAK . OAJ
(5.45) oK —J o Kllpas < g 1Blly =t 5o |1Ell.
— CJTJCAK Cagr
(5:46) |(J o K =0 K) llp25 < <552 1 Bllo = 5552 1Bl

IN® = N°l|p-35 < 1T IIBIIL = Lllp-35 + [IJ 0 K = J o K| -2 L,

ci0Car +CasCLo
25T

1E1l,

Cano
(547) = ’7262T+1 ||E||P7

CALTCJT7O + OLTOAJT(S
7262T+1

INO)T = (N®) Tl 35 < I1E1l,

CA 0T
(5.48) = 72557#1 IE], .

Finally, we control the correction of the adapted normal frame:
IN = NIl
< LA~ LAl 55 + | LA — LAl
+[IN°B — N°B||—35 + [|N°B — N°BJ| 5
<« C10an + CarCa + CnoCap + Canoop

< g 121,
Can
(549) = 72627-4'1 ||EHP y
INT = NTp-3s
C(AC’ALT + C’AAC’LT + CABCNO,T + OBCANOT
S 72527‘4*1 ||E||p
CANT

Step 6: Control of the action of the left operator. It is worth mentioning that an
important effort is made to obtain optimal estimates for the twist condition. As
it was illustrated in the proof of Lemma improved estimates are obtained by
avoiding the use of Cauchy estimates when controlling the action of £, on different
objects and their corrections.

Using the assumption and the control of the new error of invariance,
we preserve the control for the new objects £,K(0), £,L(6) and £,L(0)7. Indeed,
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using (5.33)), we have
10K [lp-25 < [IE|l, + | Xn 0 K|, < 6v +cx,0 = Cex
|€uL|p—35 < dv + cx, 10k +cx,1Cekx = Cer,

H'SWET||[)—36 < max {2711/ + CX};FJO'K 5 CXJ,IOEK} = CELT .
Then, we also control the action of £, on the correction of the torus, using that

L.K(0) - £,K(0) = £,AK(0)
= LLL(O)E"(0) + L(0) " (0) + LLN(0)E™ (0) + N (0) L™ (0)
and, recalling previous estimates, we obtain:
CerCer CrCgcr N CenCen
N252T ~oT 76T

Cask
(5.51) = o

||£U_,I_( — SwKHp_Q(; < ( + CNCS&N) HEHP

lp-

The action of £, on the correction of L(#) is similar. On the one hand, we have

€L — £uL|p-35 < |€u(DK — DE)||p-35 + | € (Xp 0 K — Xp 0 K)||p-35
< ID(LuK — LK) p-35
+ (DX, 0 K)[€,K] — (DX} 0 K)[Lu K] p-35
+ (DX} 0 K)[£u K] — (DX, 0 K)[£, K[| p—3

dCack
— 72 52T+1

cx,20axCerx
72627

cx,1CaeK

’}/2(527 ||E||P

1El, + BN, +

Cacr
(5.52) =: W”E”p»

and on the other hand, we have

[€,L" — CoLT || p—ss
< max{|£0(DE — DE) [, a5, 1£0(X, 0 K — X, 0 )T ],_5}
< max { 2nCarsk Tl cx71C0ack 12 cx720akCek 1] }
= 252+ Py T 2ger P 2527 P
(5.53)

Casert
= 425271 11, -

To control the action of £, on the correction of the matrix B(#) that provides
the transversality condition, we first consider the correction
1€0(G 0 K)=£,(G 0 K)|l 25 < |DG| |8l €0 K — LK | p—25
+[ID*Glls | K — K|l p-26]1 €0 Klp-s

cc1C0ask + ¢ 2CakCex Casa
5.54 < = ’ —.
( ) — 72527— H ||P ’}/2(527-

£l
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and we control the correction of the adapted metric
L,GL(0) — LuGL(0) = LLLT(0)G(K(0))L(B) — Lu LT (0)G(K(6))L(6)
(5.55) + LT (0)L,G(K(0))L(A) — LT (0)L,G(K(0))L(6)
+ LT (0)G(K(0))L£LL(0) — LT ()G(K(0)) L., L(0)
as follows
1£.GL — LuGLllp—35

< CELTCG’OCAL + CELTCGJCAKCL(s + CAELTCG’OCL
- 2527’4—1

C’LT cG1CerxCar + CrtCaccCLO + Capvcai1Cer O,
2627‘-‘1—1

1,

IE1l,

CrreaoCacr + Crrcg1CarCerd + Caprea,oCer
+ ,Y262T+1

1E1l,

Casa
630 = A,

Moreover, the following estimates (borrowed from Lemma will be also useful
1£0GLllp-s < Cearyr  1€uGLllp-35 < Ceqy, -

Again, it is clear that this control is preserved for the corrected objects. Using the
previous estimates, we have

HSU_,B — EUJBHP*% < HBSMGEB — BSMGLBHP,&;
+ ||B£wGEB — BSwGLBHp_g(; + HBEWGLB — BL,G LB ,-35

< 205Csc, Cap + (08)*Caca, IE], = Cacn
- 7252T+1 P 72527-+1

By repeating the computations (5.54)), (5.55) and (5.56)), mutatis mutandis, we
obtain the estimates
H£w(§2 © K)—,SW(Q © K)||p—26

cq1Cnsk +cqCarCek Cheq
< 2527 1Bl = =,
26 Y26

(5.57) Il -

(5.58)

1Ellp

and
||£wQJi_2 QL”p 30
CQLTCQOCAL+O)3LT8910AKCL5+OA£LTCQO T
S 252T+1
CLTCQ 102KCAL+CLTCA£QCL6+CALTCQ 1C£KCL
2527’—‘,—1

I1E1l,

1,

CLTCQ,OCAEL + CLTCQ710AKCLL5 + CALTCQOCQL
72527’+1

IE1,

C
(659 = elEl.

We also recall the following controls

1€.QLlp—s < Ceq, » 1€z llp—35 < Cgg, -
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Finally, we obtain

HSwA_SwA”p*M
< CQBCQLCAB + CSBCAQLUB + CA!}BCQLJB

> 7252,,.4,1 HEHP
1 UBC£QLCAB + (UB)QCAQQL + CABCQQLGB B
5 "}/2627+1 H HP
Caga
(5.60) = W”E”pv
[£0(J 0 K) — £u(J 0 K)||p—25
cj1Casr +¢cj2CAKkCexk Casgg
5.61 < 2 > —. 2~
(5.1 < L 181, = S22 .
HEwNO - EUJNO”/)—?)(S
< CejCar +CarssCré +cjoCasr + CayCerd B
— 726274_1 || ||P
Cagno
(5.62) =: WHE‘Hpv
||2u1]\7 - ’QwN”p*fiﬁ
< CerCan +CarserCa+Crlasa+CarCen B
>~ 72627—-{—1 H ||P
ConoCap + Caenoop + CnoCagp + CanoCep B
. et 21,
Cagn
(5.63) = W”E”97

where we used the constant (5.57)).

Step 7: Control of the new torsion condition. Notice that this step could be replaced
by the use of Cauchy estimates, thus obtaining a much pessimistic control. Now we
control the non-degeneracy (twist) condition associated to the new torsion matrix

T(0) = N QK (0)Xy(0),
where
Xy (0) = DX, (K (0))N(0) + LN (),

is the infinitesimal displacement of the normal subbundle for the linearized dynam-
ics. At this point, intermediate computations will be skipped for convenience. Such
details are left to the reader (they are analogous to previous computations).

We start by controlling the correction of the displacement. To this end, we
observe that

Xy (0) — Xn(0) = DX5 (K (0))N(9) — DX5 (K (6))N(9)
+ £,N(0) — £,N(0),
and we readily obtain

cx,10aN + cx, 2C0akCNO + Casn
72527’—&-1

Xy — Xnllp—3s < IE||,
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Caxy
(5.64) — B

Now, we can control the correction of the torsion matrix
IT = Tllp-36 < INTlp-ss1€ 0 Kllp—25 ]| X5 — Xnvll p—35
N a0 K — Q0 K|, asll Xnll—s
FINT = N p-ssl1€2 0 K|, [| X[l o5

< Cn7ca,0Caxy + CnTca1CarCury0 + CanTcaoCxy)
— ,}/2527'4»1

1E1,

Cat

(5.65) = m” -

Then, we introduce the constant
Cary-1 = Q(O'T)QCAT
and check the condition in Lemma
200)*(T) —(T)| _ 200)*|T = Tllp-ss _ 2(010)*Car _|IE],
or—[T)~' = or (D)7 T or —[(T) 202!
C —1 E
(5.66) - o 7g52|fil <1,

where the last inequality follows from Hypothesis (5.8)) (this corresponds to the
sixth term in (5.9)). Hence, by invoking Lemma [A.1] we conclude that

. . _ 2(o1)*Car A(T)—1
667 (D) <or, D) - (1) < S5t B, = 25241 121,
and so, we obtain the estimates ((5.12)) and (5.16) on the new object. O

5.3. Convergence of the iterative process. Now we are ready to proof our first
KAM theorem with conserved quantities. Once the quadratic procedure has been
established in Section proving the convergence of the scheme follows standard
arguments. Nevertheless, the required computations will be carefully detailed since
we are interested in providing explicit conditions for the KAM theorem.

Proof of Theorem[3.1. Let us consider the approximate torus Ky := K with initial
error Fy := E. We also introduce By := B and Ty := T associated with the
initial approximation. By applying Lemma recursively, we obtain new objects
K,=K, 1, E, = E,_ 1, B, = B,_1 and T, = T,_;. The domain of analyticity
of these objects is reduced at every step. To characterize this fact, we introduce
parameters a; > 1, ag > 1, a3 = 35 -"25 and define

al]— 1 ag—
Po do Po
Po=py 00 = "= Ps=Ps—1 = 3051, 05 = peo = i pg =
as ai a2

We can select the above parameters (together with the parameter v) to optimize
the convergence of the KAM process for a particular problem (see [27]).

Let us assume that we have successfully applied s times Lemma (the Tt-
erative Lemma), and let K, E;, Bs and Ts be the objects at the s-step of the
quasi-Newton method. We observe that condition is required at every step,
but the construction has been performed in such a way that we control |DK;
|(DK) .. 1B

Ps)
po» dist(K(T9,),08), and |(T)~'| uniformly with respect to s,
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so the constants that appear in Lemma (which are obtained in Table [1] and
Table|2) are taken to be the same for all steps by considering the worst value of d,,
that is, dg = po/as.

The first computation is tracking the sequence E; of errors:

Ce 2 Cpay ™Y )
1256, < 74547—1 [1Es—1 ps—1 W”ES—l De_1
il
(5.68) OB\ 4
< (745470> ar " Eollpe < ay || Eollpg
0

where we used the sums 1+2+...+2°71 =25 —1 and 1(s — 1) +2(s —2) +2%(s —
3)...+ 25721 = 2% — s — 1. Notice that we also used the inequality

ai” Cg || Eollp,
74637’

which is included in (3.10)). Now, using expression (5.68)), we check the Hypothesis

(5.8) of the iterative Lemma, so that we can perform the step s + 1. The required

sufficient condition will be included in the hypothesis (3.10]) of the KAM theorem.
The right inequality in (5.8) reads:

CullBsllp. Crai* | Eollp,  CrllEollp <ot <1
4541 — 4547 - 4547‘ — "1 ’
’y s Py s ’y 0

where we used (5.68) and (5.69).

The left inequality in (5.8) has several terms (which correspond to the different
components in (5.9)). The first of them, using again (5.68]), is given by

1Bl o' | Bolly _ 1Bolls _,
ds — o - &
We used that 7 > d —1 > 1, so that 1 — 47 < 0. The last inequality in (5.70)

is included in (3.10). The second term is guaranteed by performing the following
computation

(5.69) <1,

(5.70)

s(t+1) —4rs
Gl Esllp.  2Cemai ™ o™ | Eollpy _ 2Csym | Folln
yortt o o5+ T et
where we used (5.68)), the fact that 1 — 37 < 0, and we have included the last
inequality in (3.10). The remaining conditions are similar. We only need to pay
attention to the fact that they involve the objects DK, (DK,) ", B, and (T,)~!, at

the s*" step. Hence, we have to relate these conditions to the corresponding initial
objects DKy, (DKy) ", By and (Tp)~!. For example, the third term in (5.8 reads

dCar\ IBul,. _,
2741 <1,
OK — ||DK5 Ps 7269
and it is checked by performing the following computations

dCAK”Es P 2 dCAKHEJHP
+ AR s < DKol + Y s i
Ps 2 $27+1 Po 2827+1
'Y 58 j=0 ’Y 5_7

(5.71) <1,

DK

oo dCAKa(172T)j
< IDKollpy + D =57 Eollns
= 99
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dCarl|Eoll,, (1
(5.72) = |IDKol|,, + yee 0 - <ok.
Again, the last inequality is included into (3.10). The fourth, fifth and sixth terms
in (5.8) (associated to (DK,)", B, and (T,) ™, respectively) follow by reproducing
the same computations. Finally, the seventh term in (5.8]) is checked as follows

d Cak d — CAKGIZTJHEOH
dist(K4(T5.), 0B)——5 5= | Esll . > dist(Ko(T%,),08) = > T
Y (SST =0 Y 60
Cak||E 1
(5.73) = dist(Ko(T%,), 9B) — Ak Eollpo = >0,

VT 1-a;
where the last inequality is included into (3.10]).
Having guaranteed all hypothesis of Lemmal(5.2 we collect the inequalities ((5.69)),

(5.70), (5.71), (5.72) and (5.73) that are included into hypothesis (3.10). This
follows by introducing the constant ¢; as

(5.74) ¢ == max {(a1a3)""Cg, (a3)* T'7?p*""'Ca}
where
dCak 2nCax
(5.75 Ca,1 = max , ,
: o~ IDKT,” 7~ [OE),
CaB Ca(ry—
op—|Bll, " or = KT)~' |’
_ Caxd
(5:76)  Caz= Gw(Te).08)
252
72627 Can Ca 2
5.77 Ch = , 2C5ymYo™ : , = .
(5.77) A max{ ymY 1—al 7" 1—a127}

Note that we recovered the original notation K = Ky, B = By, T =Ty, p = po and
& = 0g for the original objects.

Therefore, by induction, we can apply the iterative process infinitely many times.
Indeed, we have

|Esp, < a1_473||E||p — 0 when s—0

so the iterative scheme converges to a true quasi-periodic torus K.,. As a result of
the output of Lemma this object satisfies Ko € A(T4 ) and

IDKwllpe. <0y  |(DKs) |lpe < ogr,  dist(Kao(T?),08) > 0.

Furthermore, we control the limit objects by repeating the computations in (5.73))
as follows

- CarlEl, 1 & Ell,
5.78) 1Ko — Kllp < S IKj11 = Kjllppys < = ,
( ) H ||P = || Jj+1 J ||Pg+1 ’72(527— 1— a; 2 'YQPQT
cea@lEll, _ CGllE|
(5.79) [(co Ks) — (co K)| < ||De||sl|[Ksc — K|, < ey £ = 72P27p

thus obtaining the estimates in (3.11]). This completes the proof of the ordinary
KAM theorem. O
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6. PROOF OF THE GENERALIZED ISO-ENERGETIC KAM THEOREM

In this section we present a proof of Theorem following the same structure of
the proof of Theorem in Section |5} We will emphasize the differences between
both proofs, and the computations that are analogous will be conveniently omitted
for the sake of brevity. In Section [6.1] we discuss the approximate solution of
linearized equations in the symplectic frame constructed in Section ] In Section
we produce quantitative estimates for the objects obtained when performing
one iteration of the previous procedure. Finally, in Section we discuss the
convergence of the quasi-Newton method.

6.1. The quasi-Newton method. The proof of Theorem consists again on
refining K (6) and w by means of a quasi-Newton method. In this case, the total
error is associated with the error of invariance and the target energy level:

E (9) _ E(e) _ X}L(K(a)) + /ng(o)
€ E¥ (co K) — ¢ '
Then, we look for a corrected parameterization K(0) = K(6) + AK(f) and a
corrected frequency @ = w + Aw by considering the linearized system
DXn(K(0)AK(0) + £,AK(0) + LauK(0) = —E(6),
(Dco K)AK) = —E“.
If we obtain a good enough approximation of the solution (AK(9), Aw) of (6.1)),
then K () provides a parameterization of an approximately invariant torus of fre-
quency @, with a quadratic error in terms of E.(0) = (E(9), E¥).
To face the linearized equations (6.1]), we introduce again the linear change
(6.2) AK(0) = P(0)¢(0)

where P(6) is the approximately symplectic frame characterized in Lemma In
addition, to ensure Diophantine properties for w, we select a parallel correction of
the frequency:

(6.3) Aw=—-wl”,

where £“ is a real number. This guarantees the solvability of system (6.1)) along the
iterative procedure. The following notation for the new unknowns will be useful

5(9)> (£L (9)>
(0) = w ) 0) = :
0) = (¢ f0 = ()
Then, taking into account the expressions and , the system of equations
in becomes
(6.4)  (DXK(K(0))P(0) + £,P(0))§(0) + P(0)£.,£(0) — L, K(0)8” = —E(0) ,
((Dco K)PE&) = —E“.
We now multiply both sides of by —QoP(0)TQ(K(0)), and we use the geo-

metric properties in Lemma and Lemma thus obtaining the equivalent
equations:

(6.5) (A(0) + Erea(0)) £(0) + (I2n — Qo Egym(0)) £.€(0)
+ Q0P (0) " QK (0)£,K(0)6 = Qo P(0) QUK (0))E(0),
(6.6) (Deco K)NENY 4+ ((Deo K)LEL) = —E* .

(6.1)
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We observe that
QoP(0) T QK (0))LLK(0) = —QoP(0) T Q(K(6))L

() ()

where we used the notation for @ introduced in the statement of the theorem (e.g.
equation (3.13])). Moreover, recalling the computations in Lemma we obtain

De(K(60))L(0) = (De(K(0))DE ()  De(K(0))X,(K(6)))

= (D(c(K(9)) 05_q)
— (D@L (D(K(0))E®©)) 0] d) .
From the above expressions, we conclude that equations (6.5) and ., are ap-
proximated by a triangular system that requires to solve two cohomologlcal equa-

tions of the form (4.1)) consecutively. Quantitative estimates for the solutions of
such equations are provided in the following statement.

Lemma 6.1 (Upper triangular equations for the iso-energetic case). Let w € D, -,
n“ € R, and let us consider the map n = (¥, ") : T — R?" ~ R™ x R", with
components in A(Tg), and the maps T : T4 — R™™ and H : T — R™", with
components in A(']I‘ﬁ_(;). Let us introduce the notation

o= (30 D) o=

Let us assume that T, satisfies the non-degeneracy condition det(T.) # 0, and n
satisfies the compatibility condition (n™) = 0,,. Then, for any & € R™, the system
of equations

o o0 0 (@0)  (£60) (5 - (o)

(HEY) =n“,
has a solution given by
(6.8) &N(0) =& +Ru(n™(0)),
(6.9) €4(0) = & + R (n™(0) = T(O)s™(0)) ,
where
0"\ _ -t (((0F = TR("))

and R, is given by (4.2)).
Moreover, we have the estimates

w CR
€71, 1€1 < [(Te) llmaX{Hn o+ 5T||T||pfa||77NHp,

1+ 5||nN|p} |

CR
1€¥1-5 < Ie8 1+ o

6% 1125 < |€o|+ (Hn lp=s + 1T o—s 16" 1,—s) -

™11,
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Proof. Tt is analogous to Lemma [5.1} After solving ¢V = &) + R, ("), & € R”
from the triangular system, we observe that

(HEY) = (H)&) + (HRu(n™)) |
so that the last equation in becomes
()& = = (HR, (™)) = (n — HR,(n")) .

This equation, together with the compatibility condition required to solve the equa-
tion for %, yields to a linear system which can be solved using that det(7.) # 0,

thus obtaining . The estimates are obtained using Lemma ([l
To approximate the solutions of (6.5)-(6.6), we will invoke Lemma [6.1] taking

(6.11) " (0) = —N(0)TQK(6))E(),

(6.12) 1™ (6) = L) "QK(0) E(6) ,

(6.13) n¥ =—FE¥,

(6.14) H(9) =Dc(K(9))N(9),

and T'(0) given by . We recall from Lemmathat the compatibility condition
(nN) = 0,, is satisfied. We will select the solution that satisfies £& = (¢L) = 0,,, even
though other choices can be selected according to the context (see Remark .

Then, from Lemma (6.1 we have ||¢||,—25 = O(|| Ec||,) and €] = O(||E¢||,), and
using the geometric properties characterized in Section {4 we have || Eyedl|p—26 =
O(||E||,) and || Esym||p—25 = O(||E||,). Hence, the error produced when approxim-
ating the solutions of 7 using the solutions of will be controlled by
O(||Ec||2). This, together with other estimates, will be suitably quantified in the
next section.

6.2. One step of the iterative procedure. In this section we apply one cor-
rection of the quasi-Newton method described in Section and we obtain sharp
quantitative estimates for the new approximately invariant torus and related ob-
jects. We set sufficient conditions to preserve the control of the previous estimates.

Lemma 6.2 (The Iterative Lemma in the iso-energetic case). Let us consider the
same setting and hypotheses of Theorem |3.6, and a constant v > 0. Then, there
exist constants Car, Caw, Cap, Ca(r,y-1 and Cg, such that if the inequalities

CallE|| Ce. | Ec|
hold for some 0 < § < p, where
R 24527 dCar 2nCax
Cp = max{ , 2C5ymY0" , ,
(6.16) v ok~ DK, ok~ [DK) T,
) Cap Ca(ry—1 Cak?d Cawyd™™!
op —|IBll, " or, — [(Te)=1| " dist(K(T%),0B) " dist(w,00) |’

then we have an approzimate torus of frequency @ = w+ Aw given by K = K+AK,
with components in A(Tsz), that defines new objects B and T, (obtained replacing
K by K ) satisfying

(617) ||DR||p,35 <0k,

(6.18) ||(DR>T||p,3§ < OgT,
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(6.19) IBllp—35 < 08,
(6.20) (T < or,,
(6.21)
(6.22)

6.21 dist (K (T9_,5),08) >0,
6.22 dist(w,00) > 0,
and
(6.23) IK - K| COaxyp
. p—26 < 72527-" CHP’
_ Ca
(6.24) o —w| < 75? I1Ecll,
(6.25) B — B|| Can _\p
. — Dllp-35 < W” ello
o - Cacry—1
(6.26) (o)™ — (1) 7Y < ST B,

42§27+
The new total error is given by
_ E(6 Xn(K(0)) + £5K (0
EC(Q):<_()):<h(()[)E'>_ ())7
and satisfies
_ Ck,
(6.27) [ Eellp—26 < WHECH?J.
The above constants are collected in Table |Z|

Proof. The proof of this result is parallel to the ordinary situation. On the one hand,
those constants that must be changed in this result (e.g. Cg(z)v) will be redefined
using the symbol “=" and will be included in Table ] On the other hand, those
constants that are not redefined (e.g. Cag) will have the same expression that in
the proof of Lemma/[5.2] and the reader is referred to Table [2] for the corresponding
label in the text.

Step 1: Control of the new parameterization. We start by considering the new ob-
jects K(0) = K(0) + AK(#) and @ = w + Aw, obtained from the expressions (6.2

and (6.3), using the solutions of the system taking the objects (6.11]) (6.12
(6.13]) and (6.14]). We have

Ellps 0™y < CrreaollEll,, | < 1B,

In"ll» < Cnreao
and
[H|[p—s = [(Deo K)NJ|,—5 < [Dells N, < ccaChn -
Notice that
1Eellp = max{|[El[,, [E*]},
so, from now on, we will use that [|E|, < ||E.||, and |[E¥| < || E.||,.
In order to invoke Lemma (we must fulfill condition (£.40)) we include the
inequality
[1Eell,

5 <V

(6.28)
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into Hypothesis (6.15)) (this corresponds to the first term in (6.16))). Hence, com-
bining Lemma and Lemma we obtain estimates for the solution of the

cohomological equations (we recall that £ = 0,,)

1€Y1, 1€¢] < o, maX{C’NTCQ 0+ = CrCrreao, 1+ —vc.1OnCrreq O}”Ec”p

75 75

Cen C
& w
(6.29) = —‘; 1Eell, = 5 —lEell,

and we observe that ¢E(6) and ﬁN (0) are controlled as in Lemma and so are
the objects £(0), K(0) and K(0) — K(6), thus obtaining the estimate in (6.23).
Observing that

(6.30) lwi| < |w| < oylws| =: Cy s
we get the estimate (6.24]) as follows:
_ w CwO§W CAL/J
(6:31) 6wl = o] < ZEE B, = T2 Bl

To obtain (6.21)), we repeat the computations in ([5.25) using Hypothesis (6.15))
(this corresponds to the seventh term in ((6.16])). Similarly, we obtain (6.22)):

dist(w, 90) > dist(w, 90) — |Aw| > dist(w, 9O) — CA“

=l Eell, >0,

where we used Hypothesis (6.15)) (this corresponds to the elght term in (6.16])). A
direct consequence of the fact that the new frequency @ is strictly contained in O,
and so |w,| < |[(1 — &¥)w| < oy |ws]|, is that we have

1 1

.32 — <1 —
(6.32) Jw< &Y <oy, o—w<1—§w

<0y

Step 2: Control of the new error of invariance. To control the error of invariance
of the corrected parameterization K, we first consider the error in the solution of
the linearized equation (6.1]), that is

Eun(®) i= Eua0560) ~ 2Bam(0)2.60) + (10 o) age.
B, = {(DO((Deo K)E)) 0]_p) €5).

First, we control £,£(0) in a similar fashion as in Step 2 of the ordinary case, but
using now that £(6) is the solution of (6.7). The only difference is that

1€ -5 = lIn" = TEN — 0“5

CN Cw C L
(6.33) (CNTcQO+CT f; ¢ >|| I, = ’35

Then, we control i, (6) and EY), by

| Erinll p—25 < | Ereallp—26[1€llp—25 + c,0ll Esym | p—26 | €]l p—25
+maX{||A||p 26, LHQL [l p—25|0][€*|
C'red bem C££ 2
yOTHL A 2527 ~FTHL ” ”P

max{C4, 1}CQLCWC§6\’ 9 Chin
+ J25oTH Eell; = m” ch,

A

1Ee|I} + co0

(6.34)
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dCRCC,l CEL
,757-1-1 72527—

After performing the correction, the total error associated with the new para-
meterization is given by (the computation is analogous to (5.30]))

_(E0)\ _ (P(O)(I — QFaym(6)) " Ein(6) + A2X(6) + LauAK(6)
zo= (") = ( B, + (A%(0) A50).

where A2X (6) is given by (5.31)) and
1

A%e(f) = / (1 — t)D%c(K (0) + tAK (0))[AK(0), AK (6)]dt .
0

w
C’lin

(6.35) | Eify| < JEgar il

el [Eellp = 113

Now we observe that
LaAsAK(0) = —¢“£,AK(0),
where £,AK(0) is controlled using the expression
SLAK(0) = SLLO)EL(0) + L(0)L.E(0) + LuN(O)EY (6) + N(0) 2.6V (6),

thus obtaining

CorCei  Cilser | ConC

I£.AK a5 < ( S 4 OnCaen ) 11,

72527’ 757’ 76
Cenk
(6.36) — Z5a% |1,
Hence, we have:
- 2(CL+Cn)Ciin 1 (Cak)?  CeCenk 2
1 p—26 < (Wm 5o s agar ) 1B,
Cg
(6.37) =: WHEcH,QN
where we used the second term in (6.16) (Hypothesis (6.15))). Moreover, we get
W Cﬁ}n 1 (CAK>2 2 CE“’ 2
039 1B < (oot + geea St ) IEE = S
and, finally,
— maX{CE,CEu} CEC
(6.3 1Bullp-25 < PR 12— B

We have obtained the estimate (6.27]). Notice that the second assumption in (6.15))
and (6.28)) imply that
(6.40) |Ecllp—2s < |Ecl, < ov.

Step 3, 4 and 5. All arguments and computations presented in these steps depend
only on the invariance equation. Hence, the control of the new frames L(6), N(6)
and the new transversality condition is exactly the same as in Lemma [5.2] but
replacing ||E||, by ||Ec|l,. Specifically, we obtain the estimates andqﬁ_.IéED
using Hypothesis (they correspond to the third and fourth term in (6.16]),
respectively). We obtain the estimates and following the computations

in (5.40) and (5.41)) (using the fifth term in (6.16)).
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Step 6: Control of the action of the left operator. Notice that the action of £, is
affected by the change of the frequency, since now the natural operator to control
is £5. From now on, given any object X, we introduce the operator

(6.41) ALX(0) == £, X(0) — £.X(0)

for the convenience of notation.
The control of £5K is straightforward, since

1LoK || p—26 < | Eellp—26 + | Xn 0 K| p—26 < v+ cx, 0= Cek,

and similarly we obtain ||2@E||p_35 < C¢r, and ||£@I_/T\|p_35 < Cgy 7. However, to
control increments of the form ||ALK]|,—25 we need to include an additional term.
More specifically,

ALK(0) = LauK(0) + £,AK(0) = — LK) + £LAK(6),

where we used that @ = (1 — £“)w, and, from bounds (6.32)) and (6.36)),

wCeu C C C
(6.42) JASK], a5 < (a cwCek EAK) IE.||, = ASK

ot g =t agar 1Eell-
We now observe that this is the only estimate that must be updated, since it is
the only place where cohomological equations play a role. For example, we have

ALL(0) = (ASDK(0) AL(X, o K))
— (D(ALK(0)) DX,o0K ALK + (DX, 0K — DX, 0 K) £,K)

and this expression yields formally to the same estimate in 7 but using the
constants Caex, Cax and Ceg defined in this section (and replacing E by E.).
This also affects to the control of the objects ACLT, AL(GoK), ALGL, AL(QoK),
ALQ, ALA AL(J oK), AEN? and AEN.

Step 7: Control of the new torsion condition. Now we consider the control of the
extended torsion matrix T,.(f) and the corresponding non-degeneracy condition.
First, we observe that the upper-left block T'(f) is controlled as in Lemma
Thus, we control the extended torsion as

- Car Caw €c1Can  cc2CarCn
1T — Tullpss < max{ 1],

7252T+1 ,Y(;T ? 72627’+1 ,72527'
Car,

(6.43) =: WIIECIII»-

Finally, we obtain the estimates (6.20) and (6.26]) by adapting the computations in
(5.66]) and (5.67). We use the second term in (6.16) (Hypothesis (6.15)) to get the

estimate

2(07,)*Car, . Cay—

(6.44) \(chl — <TC>71| < 2527+ | ||p = 72527 +1

IEl, -

This completes the proof of the lemma. [
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6.3. Convergence of the iterative process. Now we are ready to proof our
second KAM theorem with conserved quantities. Again, we comment the differences
with respect to Theorem and omit the common parts.

Proof of Theorem[3.6. Let us consider the approximate torus Ky := K with fre-
quency wp := w and with initial errors Ey := E and Ef = E“. We also introduce
By :=B,Ty =T, Teo =1, and E.g = E, associated with the initial approxim-
ation. We reproduce the iterative construction in the proof of Theorem but
applying Lemma [6.2| recursively, and taking into account the evolution of the error
E. s at the s-step of the quasi-Newton method.

Computations are the same mutatis mutandis. In this case, we need to consider
additional computations regarding the correction of the frequency. In particular,
the eight term in is checked as follows

CrullEe s , OaullE 1
Awll 075“95 > dist(wo, 90) — awll C70||;00 —
Y07 o) l—ap™"

where the last inequality is included into (3.15)).
Having guaranteed all hypothesis of Lemma [6.2] we collect the assumptions by
introducing the constant ¢; as

dist(ws, 00) — >0,

(6.45) ¢; := max {(a1a3)*" Cp, , (a3)*"'7*p* " 'Ca}
where
dCAK QHCAK
6.46 Ca1 := max , ,
(646)  Ca, {aK ~ DK, o~ [OK) T,
Cagp Ca(r.y—1
op = |Bll, " or. = Te)'| |
Caxkd
6.47 Cro'i= —— s
(647)  Caz dist(K (T%),0B)
CAW'Y(STJrl
4 ==
(648)  Cas dist(w, 90) ’
28271
v25 - Cai Ca2 Cas
(6.49)  Ca:= maX{ » 2Csym707 5 T I T e

Note that we recovered the original notation K = Ky, w = wo, B = By, T, = T, ,
p = po and & = §y for the original objects.

Therefore, by induction, we can apply the iterative process infinitely many times.
Indeed, we have

| Ecsllp, < a1_4”||ECHp —0 when s—0

so the iterative scheme converges to a true quasi-periodic torus K, with frequency
Woso- As a result of the output of Lemma these objects satisfy Ko, € A(Tﬁm),
Weo € O and

IDExllp. <0k, [(DKoo) o <ogr,  dist(K(T%),08) > 0.
Furthermore, we control the limit objects as follows:
CakllEell, 1 . Gl Eell,

6.50 Ko — K|, < = ,
( ) H ||poo 72527— 1— a;27 ,-YQPQT




KAM THEORY FOR PARTIALLY INTEGRABLE SYSTEMS 53

_ CaullBel, 1 ElEel,
SCHE T v

(6.51) |woo — W]

thus obtaining the estimates in (3.16)). This completes the proof of the generalized
iso-energetic KAM theorem. O
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APPENDIX A. AN AUXILIARY LEMMA TO CONTROL THE INVERSE OF A MATRIX

To prove Lemma [5.2] and Lemma we control the correction of inverses of
matrices several times using Neumann series. This affects to the estimates in ,
(5.17)), (6.25) and (6.26)). For convenience, we present the following auxiliary result
separately. Notice that the result is presented for matrices but it is directly extended
for matrix-valued maps with the corresponding norm (see Section [3.1).

Lemma A.1. Let M € C"™™ be an invertible matriz satisfying IM~1| < 0. Assume
that M € C™*™ satisfies

202%|M — M

(A.1) J||M1|| <1
Then, we have that M is invertible and

M~ — M~Y < 20%|M — M|, M~ <o.
Proof. A direct computation shows that
(A.2) M=, +MY(M—-M)*M*.
By hypothesis we obtain
(A.3) Y| — ) < S =M

o—|M-1 T 2°
Then a Neumann series argument in (A.2)), using (A.3) and |M ~!| < o, yields the

estimate _
MM — M|
— |M=Y|M - M|

M- MY < : < 20%|M — M]|.

Finally, we conclude that
(M7 < M7+ M7= MY < M7+ 20% M — M|
<M Y4+o—-|M =0,
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where we used again (A.1). O
APPENDIX B. COMPENDIUM OF CONSTANTS INVOLVED IN THE KAM THEOREM

In this appendix we collect the recipes to compute all constants involved in
the different estimates presented in the paper. Keeping track of these constants
is crucial to apply the presented KAM theorems in particular problems and for
concrete values of parameters. In addition, we think that the labels included in the
tables will be of valuable help assisting the reading of the paper. Thus, the reader
can find the place where a particular object is estimated.

Given an object X : T} — C"1*"2, the following tables code an estimate of the
form

Cx

,ya*5b*
Notice that the strip p. and the exponents a.,b,,c. can be tracked following the
corresponding label; and F, is the target error (E, = E for Theorem and
E, = E, for Theorem |3.6)).

Let us remark that, as it becomes clear in the proof, the numbers a1, as, a3
and v are independent parameters, that can be selected in order to optimize the
applicability of the theorems depending on the particular problem at hand.

1X]

pe S G -

Remark B.1. Table [1| corresponds to the geometric construction that is common
to both theorems. The constants associated to the ordinary KAM theorem are
presented in Tables [2| and The constants associated to the iso-energetic KAM
theorem are presented in Tables [ and [f] To reduce the length of the tables,
in the iso-energetic situation we have omitted those constants that have the same
formula that in the ordinary case.
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Table 1: Constants introduced in Sectionm Constants with * in the label are 0 in
Case III. We denote by xo the characteristic function of the set {0}.

Object Constant Label Result
L0k Ceap = 2nc0,00K + 0, TCQ,10K0 + do g TC00 (4.14) Lemma [4.3]
Qx Ca, =crCeqp (7)) Lemma |4.3
L CL =0k +¢xp,0 Lemma [4.5
LT Cpr = max{ch—r > CX;F,O} (4.24) Lemma 4.5
QL Ca, =crmax{Ceay +c,7,, depa} Lemma [4.5
Gr CGL = CLT ca,0CL Lemma [4.5
Qr Cq, =Cr1ce,0CL @27) Lemmal4.5
N° Cno =cy,0CL [4.31)) Lemma [4.6
(NO)T CNO,T = CLT C;To Lemma 4.6}
A Ca = 3(08)°Cq, Lemma [4.6
N Cny =CLCa+ CrooB (4.34)) Lemma [4.6)
NT CnT =CaCp1 + 0800, T @35) Lemmald.g
Esym Coym = (1 + Ca) max{1,Ca + (65)°x0(Ca)} Cg @39) Lemmal4.6
LuK Cerx =0v+ CX},,0 (4.44)) Lemma [4.8
Lo L Cer =dv+cx, 10k +¢x,,10eK @E45) Lemmals.g
eLL T CopT = max{2nv + CXT10K CX;r)ICQK} Lemma [4.8
Lu(JoK) Cgj=cj1Cexr (4.48) Lemma 4.8
Lu(GoK) Ceg=cg1Cer (4.49) Lemma |4.8]
Ew(ﬁ oK) Cgu= CQJC£K (4.50) Lemma 4.8
£, N° Cono =CreyCL +cj0CeL @51) Lemmald.§
L£,.GL Ceg, =Cup71¢6,00L +C7CecCL +Cp71cg,0Cer  (4.52) Lemma [4.8
£,Q1 Cea, =CorT¢,00L +C 7CesCL +C 7c,0Csr ([EF3)  Lemmaldg
£,B Cep = (UB)2C£GL (4.54) Lemma |4.8]
L£,A Cea =CepCq 05 + %(05)20}“—1, @55)* Lemmal4.8
LuN Cen =CerCa+CLCen +Conoop +CroCeB (4.56) Lemma [4.8
XL CXL =d+ cxp,15 Lemma |4.8]
X CXE— = max{2n, CX;F,lé} Lemma [4.8
Xy Gy = Cxp vCa tex, 1 Cnoos + CLCea @359  Lemmald.8
+ Conoon + CrnoCen
T Cr = Cn1ea,0Cxy (14.60) Lemma [4.8
£.0L Ceayp = max{Cray tc,7,,dcp1} @69) Lemmald.10
Bl Cpia = CyTeao0Cxy @70)  Lemmal4.10
Bl >l =Cprea0Cx, @7]) Lemmalt.10
Erze,g Ciﬁ = (CrreaaOndt CXIT e, 00N + Ceay Cand’ (4.72) Lemma [4.10]
+Ca;Cea
Erea Crea = max{CL 1767, CZ 1767 + C25 @73) Lemmals.10

re.
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Table 2: Constants introduced in Lcmma Given an object X, we use the notation

ALX = £,X — £,X. Constants with * in the label are 0 in Case III.

Object Constant

& Cg(])\f =or(CyTc,078" +crCTCTCcq0)

eN CgN :Cg(fl‘f +crCpTC0

gr Cer = cr(CyT1cQ,078" + CrCen)

3 Ce¢ =max{C,r, C,nv3"}

AK CAK:CchL +CNCEN’Y§T

eV CoeN =CpTe00

Loer CoeL =CnT0,078" +CrC,N

Lu€ Ceg =max{Cu.r, Cynv3"}

Elin Clin = CredCe¢ + ¢q,0CsymCeev8”

E Cp =2(Cr + CN)Cuinvd" ' + ex, 2(Cak)?

AL Car = (d+cx,,18)Cak

ALT CarT :max{Qn,cX;ylﬁ}CAK

AG Cag =cc1CaK

AGY, Cagp =C;1¢6,0CaL +C,T7CAGCLI+C ) Tcq,0CL
AB Cap =2(o5)°Cag,

AQ Crg =c51Cak

AQp Caa, =CpL7¢a,0CaL +C T CagCLI+ Cp 700 oCL
AA Can =05Cq, CAB"’%(”B)QCAQ,

AJ Cag =cj1Cak

AJT Cp T =c;7,CaK

ANO Can0 =cj0CaL +CasCLS

ANOT CANOT = CApTC T o+ CLTCN TSI

AN CAN =CrLCaa +CALCA +CrnoCAB +CApn09B

ANT CanT =CaCA, 7T +CaaC, 7T +CaBCrho,T +9BCANOT
LuAK  Cask =CerCer +(CLCg,r + CenCen)V8T + CnCy N7 87T
ALL Cacr =dCack +cx,,1C0aek0+ cx,,2C0aKkCekd

aser” CpopT =max{2nCack ; CX;’ICAsxts + CX;JI"ZCAKCSK‘”
ALG Caec =cG,1CaeKk +¢cG,2CAKCek

Cascy =Cap1cG,00aL + Cu7c6,1CAKCLS + CQp o TCG,0C0L
ALGY, +Cr17¢G,1CekCarL +C 7CAecCLI+C )y Tec1CekCL
+Cr1cq,0CaerL +Cp7cg1CAKCerd +Cp Tcq,0CeL »

ALB Casp =20pCeq; CaB + (08)°Caccy
AL Cpreq =¢61Cack +¢o,CarCek
Caga; =CerT0,008L T T 10AKCLI+Cp TG 0CL

ALQ +CpTeq 1CekCAL +CpTCA 0L +CppTeg 1CexCOL
+Cp1eq 00acr +CpTeq 10arCerd+Cpr T 0C8L s

Carca = CL‘,BCQLCAB +C£BCAQL0'B + UAEBUQLUB

2
+08Ccq, CaB + 3(oB) Caca,

ALJ Caeg =cj1CacrL +¢52C0AKkCek

AeN© Cpren0 =CeyCarL +CaegCrLé+cj0CacrL + CasCerd

Caen =CerCaa +CaerCa+CLCAcA +CALCea

AEN

+Con0CaB +Cpren0oB +Cn0CacB +CApn0CeB
AXN Caxy =cx;,10aN +ex; 20aKkCNS + Caen
AT Car = Cpy1c0,0Caxy +CnTc,1CAKCxyd+CpyT 000K

AT Cppy—1 =2(07)2Car
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Table 3: Constants introduced in Section [5.3|associated with the convergence of the
quasi-Newton method that yields Theorem [3.1] i.e., the ordinary formulation.

Constant Label ‘

€1 = max {(a1a3)*" Cg, (a3)* " 14?p*""1CA}

dCAK 2nCA K CaB Ca(my—1
ok DKl o 7=IIDK T, " e=1Blp " op—[(T)~1]

Ca,1 = max

PN
C — AK
22 7 Gisu(K (1),08B)
227 C C
s AL A2
Ca =max § I—=—, 2Cym8" , —F=57 , — 257
lfal lfal

€2 = a2 Cax /(1 —a?")

€3 = cc,1¢2

Table 4: Constants introduced in Lemma [6.2} i.e. in the Iterative Lemma for the
generalized iso-energetic KAM theorem. In this table, given an object X, we use
the notation ALX = £5X — £, X.

59

Object Constant ‘
& C%\r = o7, max {CNT c0,070” +crCTCTca0, Y07 +crce,1CNC T CQ,O}

= Cew = Cep

w Cy, = 0w l|ws|

Aw Carw = C'wcé(])v

£,e" Ceer = Cn1c0,078" + CrCen + CuCew

FEiin Clin = CreaCe¢ + c,0CsymCeevd” + max{Ca, 1}CQL Cu,Cew

Eifn Clin = dcree 101

LLoAK Cearx =CerCer + (CLCgcrL + CenCen)v8™ + CnCyoon 877

E Cg =2(CL + CN)Ciiny8" "' + tex,, 2(Cax)® + Cew Conkyd™

E“ Cpw = Cfuvd™ '+ See2(Cak)?

E. Cg, = max{Cg, Cgw}

ALK Carex = 0,CewCerv™ + Cenk

AT, Car, = max{Car + Cawyd™™, cc,1CaNn + cc,2Cax Cn 3}

A(T)™" Cpipy-1 = 2(01.)*Car,

Table 5: Constants introduced in Section [5.3|associated with the convergence of the
quasi-Newton method that yields Theorem [3.6} i.e., the iso-energetic formulation.

Constant Label

€1 = max {(a1a3)*" Cg, , (a3)*" "' 4?p*""1Ca}

c
ac 2nC (¢} A(Te) 1
Ca 1 = max AK AK AB c
= ok —IIDKlp > o, 7—IIDK T, o5=Blp’ op, —[(Tc) 1]

C 5
C — AK
22 7 stk (1),08)
— CagveTt]
Cas = dist(w,00)
2527 C C C
_ 425 ALl A2 A3
Ca = max > s chym7577 T=57 » —57 » T3+
l—al lfal lfa1

€y = a2 Car /(1 —a]?")

€3 = a5Cau/(1 —a;®")
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