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Abstract. Dissipative mechanical systems on the torus with a friction that is proportional to
the velocity are modeled by conformally symplectic maps on the annulus, which are maps that
transport the symplectic form into a multiple of itself (with a conformal factor smaller than 1). It
is important to understand the structure and the dynamics on the attractors. It is well-known that,
with the aid of parameters, and under suitable non-degeneracy conditions, one can obtain that
there is an attractor that is an invariant torus whose internal dynamics is conjugate to a rotation.
By analogy with symplectic dynamics, a natural question is establishing appropriate definitions
for twist and non-twist invariant tori in conformally symplectic systems.

The main goals of this paper are: (a) to establish proper definitions of twist and non-twist
invariant tori in families of conformally symplectic systems; (b) to interpret these definitions in
terms of dynamical properties; (c) to derive algorithms to compute twist and non-twist invariant
tori; (d) to implement these algorithms in examples; (e) to explore the mechanisms of breakdown
of twist and non-twist invariant tori. Hence, the last part of the paper is devoted to implementa-
tions of the algorithms, illustrating the definitions presented in this paper, and studying robustness
properties of invariant tori.

1. The Introduction

Conformally symplectic systems model some mechanical systems with dissipation, in which
the friction is proportional to the velocity. Geometrically, conformally symplectic systems trans-
port a symplectic form into a multiple of itself. When the conformal factor is less than one
the systems contract the form and are dissipative. In contrast to symplectic systems, dissipa-
tive systems have attractors. Although dissipative systems have less asymptotic behaviors by
themselves, one recovers asymptotic behaviors by adding adjusting parameters. There has been
a lot of interest in the case these attractors are invariant smooth tori that contain quasi-periodic
dynamics (see e.g. [GOY85, BHS96, CLHB05, CC09, CCdlL13a]). Obtaining quasi-periodic
dynamics is proved thanks to the presence of parameters in the system and some non-degeneracy
condition that is referred to as twist condition in analogy of the common twist condition that
appears in symplectic systems, [Mos66, Mos67, BHS96, CCdlL13b, CH17b]. Systems that do
not have the twist condition appear in several applications. For example, in Celestial Mechanics
the motion of a satellite near an oblate planet violates the twist condition at a critical inclination
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[Kyn68]. Also, conformally symplectic flows arise in certain models of electric field lines in
non-neutral plasmas.

In this paper we are interested in developing algorithms for computing quasi-periodic cir-
cles when an analogue of the twist condition fails. In fact, a first task is to identify the proper
definition for a non-twist circle in this context.

To the best of our knowledge, this paper presents a first attempt for considering non-twist tori
in dissipative systems. We will present algorithms for the simplest 2D case. We have not proved
here the convergence of the algorithms, but just applied them in several examples. However, we
expect that a proof could be done by using standard KAM techniques, see for example [BHS96,
dlLGJV05, CCdlL13b, GHdlL14, CH17b].
Organization of the paper. In Section 2 we introduce the setting, and present suitable definitions
of twist and non-twist tori in the context of conformally symplectic dynamics. In Section 3 we
describe a methodology for the computation of invariant tori in conformally symplectic systems,
and, more importantly, for the computation and continuation of non-twist invariant tori in these
systems. Section 4 is devoted to implementations of the algorithms to several examples, referred
to as dissipative standard non-twist families, illustrating the concepts and algorithms presented
in this paper, and to the analysis of the breakdown of non-twist invariant tori.

2. The definitions

In this section, we present and motivate the definition of twist and non-twist invariant circles
in families of conformally symplectic systems of the annulus.

2.1. Conformally symplectic maps and their invariant circles. In this paper, the phase space
is the annulus T × R, endowed with coordinates z = (x, y), being T = R/Z the torus. We will
assume also that all maps appearing in this paper are sufficiently smooth.

Definition 2.1. A conformally symplectic map in T × R, with conformal factor σ ∈]0, 1[, is a
diffeomorphism F = (Fx, Fy) : T × R → T × R, homotopic to the identity (i.e., lifting to the
covering space, Fx(x, y) − x is a periodic function), such that for all z ∈ T × R, det DF(z) = σ.

Notice that, by considering the symplectic product given by matrix

Ω =

(
0 −1
1 0

)
,

the condition det DF(z) = σ may be written as

(DF(z)> Ω DF(z) = σΩ,

motivating the nomenclature. In the limiting case σ = 1, these diffeomorphisms are symplectic.
We are interested in the computation of invariant rotational circles for F, and most particularly,

those for which the internal dynamics is quasi-periodic (with a certain fixed Diophantine rotation
number ω).

Definition 2.2. We say that the circle K parameterized by K : T → T × R is an F-invariant
rotational circle with internal dynamics f : T→ T, ifK is homotopic to the zero section (so that,
θ → Kx(θ) − θ is 1-periodic) and the couple (K, f ) satisfies the invariance equation:

(1) F(K(θ)) − K( f (θ)) = 0.
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Notice that the internal dynamics is homotopic to the identity (hence, the lift of f (θ) − θ is 1-
periodic).

A particular case, is when the internal dynamics is (smoothly) conjugate to a rotation by a
certain angle ω ∈ R \ Q and, hence, we can reparametize K so that

(2) F(K(θ)) − K(θ + ω) = 0,

that is f (θ) = θ + ω. We will say then that K is a quasi-periodic F-invariant rotational circle.

Remark 2.3. The phase of the parameterization K of the circle K is 〈Kx(θ) − θ〉 where here,
and in the following, 〈g〉 denotes the average of a periodic function g. Notice that the phase of
a reparameterization Kϕ, where ϕ ∈ R and Kϕ(θ) = K(θ + ϕ), is 〈Kx

ϕ(θ) − θ〉 = ϕ + 〈Kx(θ) − θ〉.
Hence, one can adjust ϕ so that the phase is zero: if ϕ = −〈Kx(θ) − θ〉 then 〈Kx

ϕ(θ) − θ〉 = 0. In
summary, by a change of variables, we can assume the phase condition

(3) 〈Kx(θ) − θ〉 = 0.

Notice also that, if f is the internal dynamic corresponding to K, then fϕ given by fϕ(θ) =

f (θ + ϕ) − ϕ is the dynamics corresponding to Kϕ.

Remark 2.4. Conformal symplecticity imposes severe restrictions for the existence of invariant
circles. For instance, there can not exist invariant librational circles (those that are homotopi-
cally trivial), and no more than one invariant rotational circle. This is due to the fact that a
conformally symplectic map “contracts area”, that is, any bounded open domain is mapped
onto a bounded open domain whose area is the one of the former domain multiplied by the
conformal factor.

In the sequel, we formulate the property of an invariant circle of being normally attracting
in a rather computational way, since we are interested here in numerical algorithms and their
implementations. The tangent bundle TK to the circle K is spanned by the derivative map
K′ : T→ R × R, where here, and in the following, ′ denotes the derivative with respect to θ. We
can consider a normal bundle N0 over K generated by N0 : T→ R × R, where

(4) N0(θ) = Ω K′(θ) (K′(θ)>K′(θ))−1.

Notice that, with this choice
N0(θ)>Ω K′(θ) = 1.

The geometrical meaning is that the area of the rectangle generated by K′(θ) and N0(θ) is 1. T2
While the tangent bundle is invariant for the linearized dynamics, and in particular

DF(K(θ))K′(θ) = K′( f (θ)) f ′(θ),

the normal bundle N0K could be non-invariant, since

DF(K(θ))N0(θ) = K′( f (θ)) t0(θ) + N0( f (θ))
σ

f ′(θ)
,

where

(5) t0(θ) = N0( f (θ))>Ω DF(K(θ))N0(θ).

In order to construct an invariant normal bundle N s over K , the stable bundle, spanned by a
suitable N : T→ R × R, we write

(6) N(θ) = K′(θ) ϑ(θ) + N0(θ),
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for which the area of the parallelogram generated by K′(θ) and N(θ) is N(θ)>Ω K′(θ) = 1, and
realize that

DF(K(θ))N(θ) = K′( f (θ)) t(θ) + N( f (θ))
σ

f ′(θ)
,

where
t(θ) = t0(θ) + f ′(θ) ϑ(θ) −

σ

f ′(θ)
ϑ( f (θ)).

Hence, we make t(θ) = 0 by taking

(7) ϑ(θ) = −

∞∑
k=0

σk(
f ′( f k−1(θ)) . . . f ′(θ)

)2 ·
t0( f k(θ))
f ′( f k(θ))

.

The convergence of the series is guaranteed by the following property of normal attractivity.

Definition 2.5. We say that an F-invariant rotational circleK , parameterized by K : T→ T×R
with internal dynamics f : T → T, is normally attracting if there exists positive constants C, λ,
with σ ≤ λ < 1 such that, for all θ ∈ T, k ∈ Z+,

(8) σk
(

f ′( f k−1(θ)) . . . f ′( f (θ)) f ′(θ)
)−2
≤ Cλk,

In a nutshell, for a normally attracting invariant circle we have just constructed a frame P :
T→ R2×2, defined by juxtaposing K′ and N, i.e.

(9) P(θ) =
(
K′(θ) N(θ)

)
,

that satisfies det P(θ) = 1 (the frame is symplectic) and reduces the linearized dynamics to
diagonal form:

P( f (θ))−1DFa0,µ0,ε0(K(θ))P(θ) =

(
f ′(θ) 0

0 σ
f ′(θ)

)
.

Remark 2.6. Definition 2.5 is a particularization of the general definition of normally hyperbolic
invariant manifold [Fen72, HPS77] to the context of the present paper. We have a splitting
TK (T × R) = TK ⊕ N s of the tangent bundle to the phase space on the invariant circle K ,
TK (T × R), as a direct sum of the tangent bundle of K , TK , and the stable bundle N s. Both
bundles in the splitting are invariant, and are characterized by rates of growth, so that the rate
of contraction in the stable bundle dominates the rate of contraction in the tangent bundle. More
specifically, there exist constants Cs,Cc > 0 and 0 < λs < λc ≤ 1, to be specified below, such
that:
(a) For θ ∈ T, v = N(θ) ∈ N s, for all n ≥ 0:

|DFn(K(θ))v| = |DFn(K(θ))N(θ)| = σn
(

f ′( f n−1(θ)) . . . f ′( f (θ)) f ′(θ)
)−1
|N( f n(θ))|

≤ C1/2 |N( f n(θ))|
|N(θ)|

(λσ)n/2|N(θ)| ≤ Csλ
n
s |v|,

where Cs = C1/2(maxθ∈T |N(θ)|)/(minθ∈T |N(θ)|) and λs = (λσ)1/2 ≤ λ < 1.
(b) For θ ∈ T, v = K′(θ) ∈ TK , for all n ≥ 0:

|DF−n(K(θ))v| = |DF−n(K(θ))K′(θ)| =
(

f ′( f −n(θ)) . . . f ′( f −2(θ)) f ′( f −1(θ))
)−1
|K′( f −n(θ))|

≤ C1/2 |K
′( f −n(θ))|
|K′(θ)|

(λ/σ)n/2|K′(θ)| ≤ Ccλ
−n
c |v|,
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where Cc = C1/2(maxθ∈T |K′(θ)|)/(minθ∈T |K′(θ)|) and λc = (σ/λ)1/2, so that λs < λc ≤ 1.
The results in [Fen72, HPS77] imply that, even if in the assumption the invariant circle is C1,
then there is a bootstrap in the regularity and, for r ≥ 1 such that λs < λ

r
c, the invariant circle is

Cr.

Remark 2.7. The rate of contraction λ is a dynamical observable of the contracting condition,
and has to be λ < 1. Another important observable that measures the quality of the hyperbolicity
property is the (minimum) angle between the invariant bundles. In the setting of the present
paper, this is given by

(10) α = min
θ∈T

∣∣∣∣∣∣arctan
(

1
ϑ(θ)[K′(θ)>K′(θ)]

)∣∣∣∣∣∣ .
In the case α > 0, there is a well-defined splitting in tangent and invariant normal bundles.

Remark 2.8. We will be mainly interested in the quasi-periodic case, for which f (θ) = θ + ω
(see (2)). Hence, f ′(θ) = 1, and the rate of contraction is λ = σ < 1. In this case, the quality of
the hyperbolicity property is essentially given by the positiveness of the angle α between bundles
defined in Remark 2.7.

Remark 2.9. There are several methods available to compute normally hyperbolic invariant
manifolds, for instance [BOV97, BHV07, Hen11, Can14, HCF+16, Gra17, BC19]. In the com-
putations performed in this paper, we have tailor the algorithm presented in [Can14, HCF+16]
to obtain an algorithm to compute normally attracting circles in conformally symplectic systems.

2.2. Adjustment of parameters and twist condition. It is well-known the need of parame-
ters in order to adjust the dynamics on an invariant circle to a specific rotation [BHS96, CC10,
CCdlL13b, CF12, CH14, BC19], but to do so non-degeneracy conditions are also mandatory.
While persistence under perturbations of an invariant circle has to do with the property of normal
hyperbolicity [Fen72, HPS77, Mañ78], the adjustment to an specific quasi-periodic dynamics is
related to KAM theory [Arn61]. Thus, if Fp is a p-parameter family of conformally symplectic
systems, where p ∈ P ⊂ Rm and P is an open set of parameters, and Kp is a normally attracting
Fp0-invariant circle for a certain p0 ∈ P, then it persists as a normally attracting Fp-invariant
circleKp for p values in a neighborhood of p0. Dynamics on the invariant circle also depends on
p. When we impose dynamics to be conjugated to a rigid rotation with a fixed rotation number ω
we need a one dimensional parameter since ω is 1-dimensional. In the p-dimensional case, there
is typically a codimension 1 manifold in the parameter space for which dynamics on the circle is
the rigid rotation by ω.

In the context of the present paper, assume we have a 1-parameter family of conformally
symplectic maps a → Fa on the annulus, with a fixed conformal factor σ (|σ| < 1). Hence, if
Ka0 is a normally attracting Fa0-invariant rotational circle for a particular parameter value a0,
then there is an open neighborhood of a0 for which there is a normally contracting Fa-invariant
rotational circleKa for each a in such a neighborhood. Hence, we assume there are smooth maps
a→ Ka and a→ fa such that, for each a:

Fa(Ka(θ)) − Ka( fa(θ)) = 0.

Hence, we can define a rotation number function a→ ρ(a) such that, ρ(a) is the rotation number
of the internal circle dynamics fa. The resonant set is the set of parameters for which the rotation
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number is rational (and the internal dynamics possesses periodic orbits), and the non-resonant
set corresponds to irrational rotation numbers. The regularity of the rotational circles jump from
being (typically) finitely differentiable in the resonant set (generically with non-empty interior) to
C∞ (or even real-analytic if the maps are real-analytic) in the non-resonant set (generically with
empty interior). The graph of the rotation number function is (typically) a devil staircase, whose
steps correspond to resonances. Then, we say that an invariant rotational circle Ka0 that is quasi-
periodic (say with rotation number ω) satisfies the twist rotation number if the rotation number
function is strictly monotone at a0, otherwise we say it is non-twist with respect to parameter a
(or that it is an non-a-twist invariant rotational circle). Notice that for the rotation number ω one
can (locally) adjust parameter a to the value a0 (that is, close to a0 there is no other parameter
for which the corresponding invariant circle has rotation number ω).

In place of previous dynamical definitions of the twist and non-twist properties we will use the
following analytical definition, which is more practical (and can be easily generalized to higher
dimensions).

Definition 2.10. Let K be a quasi-periodic Fa0-invariant rotational circle K parameterized by
K : T→ T × R, with irrational rotation number ω, so that

(11) Fa0(K(θ)) − K(θ + ω) = 0.

We define the a-twist (the twist with respect to parameter a) to be the number

(12) ba(K, a0) = 〈N(θ + ω)>Ω DaFa0(K(θ))〉,

where N is the parameterization of the normal invariant bundle. Then, the circle is a-twist if
ba(K, a0) , 0, and non-a-twist if ba(K, a0) = 0.

The definition of the a-twist condition in Definition 2.10 is motivated by the fact that, for ω
Diophantine, KAM techniques can be applied to obtain real-analytic solutions of the invariance
equation

(13) Fa(K(θ)) − K(θ + ω) = 0,

under suitable sufficient conditions including the a-twist condition [CCdlL13b]. The unknowns
in (13) are both the parameterization K and the adjusting parameter a (since it has to be adjusted
to get the quasi-periodic dynamics on the invariant circle with specific rotation number ω).

In this paper we are interested in studying the boundaries of twist property, particularly in
developing algorithms for computing rotational invariant circles with internal dynamics given by
the rotation by ω when the twist condition, with respect to a parameter, fails. It is usually the
case that at the boundaries of the non-degeneracy conditions there appear new phenomena and
transitions (think for instance in bifurcations of fixed points, for which degeneracies do appear at
bifurcation values of the parameters). In the context of the present paper, it is important to know
where theorems such as [CCdlL13b] do not work (in a similar fashion in the symplectic case,
where one can be interested in detecting where the classical KAM theorems are not applicable),
and then to try to get new results and methodologies to cover degenerate cases. It is also useful to
detect where the rotation number of an invariant circle in a one-parameter family of conformally
symplectic maps is not a monotone function of the parameter (in the same way in the symplectic
case one can be interested in detecting where the frequency map, that gives the rotation number
of a rotational invariant curve as a function of its action, is not monotone).
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2.3. Examples: dissipative standard non-twist maps. The examples we will consider in this
paper are families of dissipative standard non-twist maps, that are conformally symplectic maps
given by 3-parameter maps Fa,µ,ε : T × R→ T × R given by

(14) Fa,µ,ε

(
x
y

)
=

(
x + (σy + εp(x) − a)2 + µ

σy + εp(x)

)
,

where p : T→ R is a 1-periodic function, σ is the conformal factor (which we assume it is fixed),
a, µ are adjusting parameters (whose roles will be explained below), and ε is the perturbative
parameter.

We start by analyzing (14) for ε = 0, which is integrable. For each a, µ, there is an Fa,µ,0-
invariant circle parameterized by

Ka,µ,0(θ) =

(
θ
0

)
,

whose internal dynamics is given explicitly by

fa,µ,0(θ) = θ + a2 + µ.

Moreover, the adapted frame and the corresponding linearized dynamics are

P(θ) =
(
DK(θ) N(θ)

)
=

(
1 0
0 1

)
, Λ(θ) =

(
D f (θ) 0

0 ΛN(θ)

)
=

(
1 0
0 σ

)
.

Normal attractivity applies and in fact for ε small enough there is an Fa,µ,ε-invariant circle pa-
rameterized by Ka,µ,ε.

If we are looking for an initial invariant tori with fixed quasi-periodic frequency ω, then pa-
rameter a, µ, ε are linked. In particular, for ε = 0, a and µ satisfy the equation

(15) ω = a2 + µ.

That is, µ = ω − a2. The a-twist is

ba(K, a, µ, 0) = 〈N(θ + ω)>Ω DaFa,µ,0(K(θ))〉 = 2a,

while the µ-twist is

bµ(K, a, µ, 0) = 〈N(θ + ω)>Ω DµFa,µ,0(K(θ), a, µ)〉 = 1.

Since the µ-twist is non zero we can isolate µ. Notice however, that the invariant circle with
frequency ω is non-a-twist for whenever a = 0 (and hence µ = ω).

Since the µ-twist is non zero, from an implicit function theorem we get that for a, ε close to
zero, we can find µ = µ(a, ε) and a circle parameterized by Ka,µ,ε which is invariant for Fa,µ,ε and
whose internal dynamics is a rotation with frequency ω. So given a, ε, the parameter µ is used to
adjust the frequency to ω. By writing b̄a(a, ε) = ba(Ka,µ(a,ε),ε; a, µ(a, ε), ε), then the equation we
need to solve in order to find a non-a-twist invariant circle is

b̄a(a, ε) = 0,

and to apply the implicit function theorem in order to find a for small enough ε we also need that

∂b̄a

∂a
(0, 0) , 0.

In our example, ∂b̄a
∂a (0, 0) = 2.
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In the following we will present algorithms for computing a-twist and non-a-twist invariant
circles, and for computing surfaces in 3D parameter space corresponding to invariant circles of
dissipative standard non-twist maps with a fixed rotation number ω. Section 4 is devoted to
illustrate actual implementations and to explore the dynamics.

3. The algorithms

In this section we present algorithms for computing and continuing with respect to parameters
invariant rotational circles of 2-dimensional conformally symplectic systems with a prescribed
quasi-periodic dynamics. Algorithms for computing invariant circles with fixed quasi-periodic
dynamics under twist conditions with respect to parameters (in particular, with respect to an ad-
justing parameter a) are presented in [CC10, CF12, CH14, CH17a]. We present here algorithms
for computing both a-twist (with a fixed a-twist) and non-a-twist invariant rotational circles (us-
ing an unfolding parameter µ), and continuation (with respect to a perturbing parameter ε). The
algorithms to solve the invariance equations are based on Newton’s method. For the continuation,
we use three parameters. Typically in order to have a non-twist circle with respect to a parameter
one needs at least two parameters. The third parameter is for continuing the degeneracy. Of
course, one could have even more parameters in a particular problem.

In this setting, assume we are given a 3-parameter family of conformally symplectic maps
given by a map F : T × R × A × U × E → T × R, where A,U, E ⊂ R are open sets, such
that, for each (a, µ, ε) ∈ A × U × E, Fa,µ,ε = F( · ; a, µ, ε) is a conformally symplectic map with
conformal factor σ ∈]0, 1[). Geometrically, the goal is obtaining a surface Σω in parameter
space A × U × E such that for each triple (a, µ, ε) ∈ Σω there is an invariant circle with a fixed
(Diophantine) rotation number ω. From normal attractivity, for (a, µ, ε) in a neighborhood of Σω
there is also an invariant circle, whose rotation number we denote as ρ(a, µ, ε).

Let us fix the parameter ε0 and the a-twist b0
a, so we look for solutions (K, a, µ) of the system

of equations

F(K(θ), a, µ, ε0) − K(θ + ω) = 0,(16)
〈Kx(θ) − θ〉 = 0,(17)

ba(K, a, µ, ε0) − b0
a = 0.(18)

Equation (16) is the invariance equation of the circle, with quasi-periodic dynamics with rotation
number ω, (17) is the phase equation for the parameterization, and (18) is the equation for the
a-twist b0

a. By moving ε0 and b0
a we will generate the goal parameter surface Σω. Moreover,

we will obtain the curve Γω in Σω, corresponding to b0
a = 0, at which (typically) the rotation

number is non-monotonic as a function of parameter a (e.g., for (a0, µ0, ε0) ∈ Γω, the function
a→ ρ(a, µ0, ε0) is non-monotonic).

Assume then we have an approximate solution (K, a, µ) of (16), (17), (18). The aim to perform
one step of the Newton’s method is computing the corrections (∆K,∆a,∆µ) to obtain a new
approximate solution (K̄, ā, µ̄) which will have an error that is quadratically small with respect to
the initial error, even though the linearized equations are solved approximately using appropriate
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frames. The starting point is a triple (K, a, µ) such that

F(K(θ), a, µ) − K(θ + ω) = E(θ),(19)
〈Kx(θ) − θ〉 = ep,(20)

ba(K, a, µ) − b0
a = eb,(21)

where E : T → R2 and ep, eb are error terms. For the moment, we remove the dependence on ε
because at this point this parameter plays no role. In the following, we will proceed in two steps:
1) for any ∆a, we compute ∆K and ∆µ to improve (19) and (20); 2) we adjust ∆a (and hence ∆K
and ∆µ) to improve (21).

The first step consists in solving

DF(K(θ), a, µ, ε0)∆K(θ) + ∂F
∂a (K(θ), a, µ, ε0)∆a + ∂F

∂µ (K(θ), a, µ, ε0)∆µ − ∆K(θ + ω) = −E(θ),
(22)

for any ∆a. To do so, we first compute, from L(θ) = K′(θ), the expressions of N0(θ) and t0(θ),
ϑ(θ) and N(θ), and then the frame P : T→ R2×2 given by

P(θ) =
(
K′(θ) N(θ)

)
,

that satisfies det P(θ) = 1 and

(23) DF(K(θ), a, µ)P(θ) = P(θ + ω)Λ(θ) + Er(θ),

where

Λ(θ) =

(
1 0
0 σ

)
and the reducibility error is

Er(θ) =
(
E′(θ) EN

r (θ)
)
,

with
EN

r (θ) =
(
E′(θ)>Ω DF(K(θ), a, µ)N0(θ)

)
N0(θ + ω) + E′(θ) ϑ(θ).

We emphasize that the cohomological equation for ϑ,

(24) ϑ(θ) − σ ϑ(θ + ω) = −t0(θ).

can be solved in Fourier space:

ϑ(θ) =
∑
k∈Z

−t0k

1 − σe2πikω e2πikθ.

(Notice that, since |σ| < 1, the divisors are uniformly far from 0.) Then, we write the correction
term of the parameterization as ∆K(θ) = P(θ)ξ(θ), where ξ : T → R2 is a periodic function. By
multiplying (22) by P(θ+ω)−1, using approximate reducibility (23) and neglecting quadratically
small terms, we obtain the following cohomological equation

Λ(θ)ξ(θ) − ξ(θ + ω) + Ba(θ)∆a + Bµ(θ)∆µ = η(θ),

where
Ba(θ) = P(θ + ω)−1 ∂F

∂a (K(θ), a, µ), Bµ(θ) = P(θ + ω)−1 ∂F
∂µ (K(θ), a, µ)
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and η(θ) = −P(θ + ω)−1E(θ) is the error of invariance in the adapted frame. Notice that the
previous system splits into the diagonal system

ξL(θ) − ξL(θ + ω) + BL
a(θ)∆a + BL

µ(θ)∆µ = ηL(θ),(25)

σξN(θ) − ξN(θ + ω) + BN
a(θ)∆a + BN

µ(θ)∆µ = ηN(θ),(26)

where

BL
a(θ) = N(θ + ω)>Ω ∂F

∂a (K(θ), a, µ), BL
µ(θ) = N(θ + ω)>Ω ∂F

∂µ (K(θ), a, µ)

BN
a(θ) = −L(θ + ω)>Ω ∂F

∂a (K(θ), a, µ), BN
µ(θ) = −L(θ + ω)>Ω ∂F

∂µ (K(θ), a, µ).

In particular: ba(K, a, µ) = 〈BL
a(θ)〉, bµ(K, a, µ) = 〈BL

µ(θ)〉. It is the moment to face cohomological
equations (25) and (26), which are in fact very different, and introduce some notation. We will
denote by ξ = Rση the solution of

σξ(θ) − ξ(θ + ω) = η(θ),

that is, in Fourier series:
ξ(θ) = Rση(θ) =

∑
k∈Z

ηk

σ − e2πikω e2πikθ.

Notice again that, since |σ| < 1, the divisors are uniformly far from 0. We will denote by ξ = Rη
the solution of

ξ(θ) − ξ(θ + ω) = η(θ) − 〈η〉
with zero average, that is, in Fourier series:

ξ(θ) = Rη(θ) =
∑
k∈Z∗

ηk

1 − e2πikω e2πikθ.

The solution involves small divisors and it suffices Diophantine conditions on ω to ensure the
convergence of the expansions.

With the aid of these operators, we solve (25) and (26) as follows. We compute ∆µ = ∆µ[∆a]
by adjusting averages in (25), so that

∆µ =
〈ηL〉 − 〈BL

a〉∆a
〈BL

µ〉
'
〈ηL〉 − b0

a∆a
bµ

,

where in the last approximation we are skipping second order error terms. Notice that we need
a twist condition with respect to parameter µ. We emphasize the dependence of ∆µ on ∆a (as
we will do in the sequel for other objects). With this choice of ∆µ we compute ξL = ξL[∆a],
ξN = ξN[∆a] as follows:

ξN(θ) = Rση(θ) − RσBN
a(θ) ∆a − RσBN

µ(θ) ∆µ

for the solution of (26)

ξ̂L(θ) = Rη(θ) − RBN
a(θ) ∆a − RBN

µ(θ) ∆µ

for the zero-average solution of (25),

ξL
0 = −ep − 〈Lx(θ)ξ̂L(θ) + Nx(θ)ξN(θ)〉

to fix the phase (notice that 〈Lx〉 = 1) and, finally

ξL(θ) = ξL
0 + ξ̂L(θ).
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Finally, we obtain the correction ∆K = ∆K[∆a] for improving (19) and (20):

∆K[∆a](θ) = L(θ)ξL[∆a](θ) + N(θ)ξN[∆a](θ).

In summary, from the previous recipe we obtain a univariate function

∆a→ ba[∆a] = ba(K + ∆K[∆a], a + ∆a, µ + ∆µ[∆a], ε0)

for which we have to solve the equation

(27) ba[∆a] − b0
a = 0.

In the implementation of each step of Newton method, instead of solving this equation, we apply
one step of Steffensen’s method to this equation starting with ∆a = 0. In the implementation, we
control the non-degeneracy condition to solve (27).

With the previous Newton method we compute an invariant rotational circle with fixed a-twist
for a fixed value of ε0. In order to implement the continuation with respect to parameter ε one
can compute derivatives of (K, a, µ) with respect to ε, at ε0. The type of equations one has to
solve are of the same type as to perform a Newton step. In particular, one has (22) with

E(θ) =
∂F
∂ε

(K(θ), a, µ, ε0),

and ∆K = ∂K
∂ε , ∆a = ∂a

∂ε , ∆µ =
∂µ
∂ε .

For the implementation of Newton’s method and continuation method described here we use
Fourier series to represent periodic functions. Thus, we use FFTs to switch from grid repre-
sentation to Fourier representation. All operations can be done at linear cost in grid or Fourier
representations, except the ones switching representations. Hence, the cost of the algorithms
is O(N log(N)) where N is the size of the representation (the size of the grid or the number of
Fourier modes). See e.g. [CdlL09, CdlL10, HCF+16] for some guidelines.

4. The applications

In this section, we implement the algorithms presented in the previous section to a couple of
families of dissipative standard maps (14): (symmetric) p(x) = 1

2π sin(2πx), and (non-symmetric)
p(x) = 1

2π (sin(2πx) + cos(4πx)).

4.1. Continuation of the non-a-twist circle in the symmetric case. In this section we study the
family (14) with p(x) = 1

2π sin(2πx). Since p(x− 1
2 ) = −p(x) then the involution S : T×R→ T×R

defined by

S
(
x
y

)
=

(
x − 1

2
−y

)
is a symmetry of the family with respect to parameter a, meaning that

S ◦ Fa,µ,ε ◦ S = F−a,µ,ε.

This symmetry property implies that if Ka,µ,ε is a parameterization of an invariant circle for Fa,µ,ε
with internal dynamics fa,µ,ε, then K−a,µ,ε = S ◦ Ka,µ,ε is parameterization of an invariant circle
for F−a,µ,ε with internal dynamics f−a,µ,ε = fa,µ,ε. In particular, for a = 0, the invariant circle
parameterized by K0,µ,ε is S -symmetric, since it is also parameterized by S ◦K0,µ,ε. In fact, since
they is a unique parameterization such that 〈Kx

0,µ,ε(θ) − θ〉 = 0, it satisfies:

K0,µ,ε(θ) = S ◦ K0,µ,ε(θ + 1
2 ).
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In this case, by selecting µ so that f0,µ,ε(θ) = θ + ω, we have

b̄a(0, ε) = ba(K0,µ,ε, 0, µ, ε) = 0.

That is, the tori with a = 0 are non-a-twist. This example will be a first test of our algorithms.Q10: parameter σ =

0.8 In the following, the conformal factor is selected to be σ = 0.8. First, we continue with
respect to parameter ε a non-a-twist circle with rotation number ω = 1

2 (
√

5 − 1), and adjust
parameters a and µ accordingly. The adjusting parameters are shown in Figure 1. Starting from
ε = 0, the continuation goes up to ε = 3.658600, close to breakdown, in which the number
of Fourier modes demanded by the algorithm is 262144. Some of the non-a-twist circles are
shown in Figure 2, together with the corresponding tangent and stable bundles, represented by
their angles with respect to the horizontal axis α. The complex behavior observed in the bundles
preludes the breakdown of the invariant circle. Notice that when both bundles collide, the normal
hyperbolicity property fails, and this happens even though the contraction factor is far from 1 (it
is σ = 0.8). This collision behavior has been observed in other contexts [CH14, CH17a, FH15,Q10: parameter σ =

0.8 HdlL06, HdlL07], and in [CF12] for a-twist circles in conformally symplectic systems. From
these references one conjectures that, even though the behavior is very wild, there is some sort
of regularity and the minimum angle between the invariant bundles behaves very smoothly, in
fact asymptotically in a linear fashion when approaching the breakdown, as shown in Figure 3.
This behavior lets us extrapolate the critical breakdown parameter very consistingly, being εc '

3.662396.
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Figure 1. Continuation w.r.t. ε of a non-a-twist circle with frequency ω (sym-
metric case): (left) adjusting parameter a; (right) unfolding parameter µ.

The symmetry properties of the family lead to several features. First, parameter a is always
0, as it is shown in Figure 1. Moreover, the non-a-twist circles and their bundles have also
symmetry properties, as it is shown in Figure 2. In particular, We note that the collapse in this
symmetric case happens on both sides of the bundles. We expect that when the bundles collapse,
there will be no gap between the bundles on either side of the bundles with respect to α. Later
in this section, we will see that in the nonsymmetric the bundles collapse leaving a gap between
the bundles for all values of θ, but only on one side of the bundles with respect to α.

We also performed some computations to illustrate that the analytic condition that the invari-
ant circle is non-a-twist translates into dynamical properties of the rotation number of the invari-
ant cicle when we move parameters. We have tailored the algorithm in chapter 5 of [HCF+16]T3
to continue invariant tori regardless of the internal dynamics and compute the corresponding
rotation number, by starting with a non-a-twist circle from the previous implementation (see
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(a) ε = 2.000000, a = 0.000000, µ = 0.6015602
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(b) ε = 3.000000, a = 0.000000, µ = 0.5843217
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(c) ε = 3.658600, a = 0.000000, µ = 0.5684363

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

y

x

−π/2

−π/4

0

π/4

π/2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

α

θ

Figure 2. Continuation w.r.t. ε of a non-a-twist circle with frequency ω (sym-
metric case): (left) invariant circle; (right) projectivized tangent bundle (in red)
and stable bundle (in blue).

e.g. [BOV97, BHV07, Hen11] for other algorithms of computation of normally hyperbolic in-
variant manifolds). In particular, we have selected a non-a-twist circle for ε = 2.2, so that
µ = 1.5984626393 and a = 0. We first perform continuations for µ and ε fixed, increasing and
decreasing the parameter a, respectively. The graph of the rotation number of the invariant circle
as a function of a is shown in Figure 4 (Left). As expected, the non-a-twist circle corresponds to
a critical point of this graph. The graph is symmetric, also as expected from the symmetry prop-
erties of the family being studied. Notice also the presence of visible resonances, corresponding
to rotation number 5/8. However, by performing a continuation with respect to µ instead of a
(and starting with the same initial torus), we observe that the starting torus does not correspond
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Figure 3. Continuation w.r.t. ε of a non-a-twist circle with frequency ω (sym-
metric case): (left) minimum angle α between the stable and tangent bundles as
function of ε; (right) critical behavior. The breakdown of the circle is produced
at εc ' 3.662396.
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Figure 4. Rotation number versus continuation parameter from the non-a-twist
circle with a = 0.000000, µ = 0.5984626, ε = 2.20000 (symmetric case):
(left) continuation w.r.t. a; (right) continuation w.r.t. µ.

to a minimum of the rotation number as a function of µ, as shown in Figure 4 (Right). This is
because the non-twist-property is associated to parameter a, and the invariant circle is µ-twist.

4.2. Continuation of the non-a-twist circle in the nonsymmetric case. In this section we
consider the family (14) with p(x) = 1

2π (sin(2πx) + cos(4πx), that (apparently) does not have
symmetry properties. We again take σ = 0.8, and ω = 1

2 (
√

5 − 1). We have followed the sameQ8: parameter σ =

0.8 plan as in previous example.
First, with the algorithms of Section 3, we continue with respect to parameter ε a non-a-twist

circle with rotation number ω = 1
2 (
√

5 − 1). The adjusting parameters a and µ as functions of
perturbation parameter ε are shown in Figure 5. Unlike the symmetric case, parameter a varies,
and remains bounded inside an interval of size 2.6× 10−3 around zero. The continuation reaches
the value ε = 1.230340, in which the invariant circle is approximated with a truncated Fourier
series with 524288 modes. The process of breakdown and the collision of the invariant bundles
is shown in Figure 6. We notice that in contrast with the bundle collapse in the symmetric version
of the dissipative standard non-twist map, the collapse for this example only happens on one side
of the bundles, leaving a gap between the bundles. The minimum angle between bundles is also
asymptotically linear when close to breakdown, see Figure 7, from which we can extrapolate the
critical value εc ' 1.240522.
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Figure 5. Continuation w.r.t. ε of a non-a-twist circle with frequency ω (non-
symmetric case): (left) adjusting parameter a; (left) unfolding parameter µ.

As in the first example, in Figure 8 we show the graph of the rotation number of the invariant
circle as a function of a parameter of continuation (either a or µ) starting at a non-a-twist circle
for ε = 1.00000, a = 7.646104 · 10−4, µ = 0.6031124. The figure provides again a dynamical
interpretation of the fact that the invariant circle is non-a-twist, but µ-twist.

In Figure 9, we show continuations with respect to ε of invariant circles with fixed frequency
ω and different values of the a-twist. That is, we compute the surface Σω of parameter points
for which there is an invariant circle with frequency ω. We plotted this surface showing the
values of a and µ along the ε continuation. In particular, the continuation curve corresponding
to an a-twist ba starts with a = 1

2 ba, µ = ω − a2 and ε = 0. We have highligted the curve Γω
corresponding to zero a-twist. Note that the surface is not symmetric with respect to a and for
negative a-twist there is a region where the circles seem to persist for larger values of µ and ε.

5. The conclusions

In this paper we have clarified the property of being non-twist for a circle, in the context of
conformally symplectic systems. This non-twist property has to do with the degeneracy condi-
tion arising when tuning a particular parameter to fix the dynamics of an invariant circle to a
given rotation number. Hence, the non-twist condition is with respect to a particular parameter.
As such, the concept can be extended to many other systems in which parameters have to be
adjusted to fix the frequency, as in [CH17a]. In symplectic systems, the parameters to adjust are
the actions of a torus.

We have also presented several algorithms for computing invariant circles, including non-twist
circles and a methodology to compute parametric surfaces in parameter space corresponding to
invariant circles with a prescribed (Diophantine) frequency. The key of our methodology is
introducing a concept of twist with respect to a parameter, so one can compute continuation
curves corresponding to a fix twist. Unlike the symplectic case, non-twist tori in conformally
symplectic systems do not seem to be the more robust, meaning they are not the ones that survive
for greater values of perturbation parameters.

The algorithms are very efficient, and let us compute invariant circles even with hundreds
of thousands of Fourier coefficients, and then explore the regimes at the verge of analyticity
breakdown.



16 R. CALLEJA, M. CANADELL, AND A. HARO

(a) ε = 1.000000, a = 7.646104 · 10−4, µ = 0.6031124
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(b) ε = 1.200000, a = −9.571568 · 10−4, µ = 0.5951423
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(c) ε = 1.240340, a = −2.588932 · 10−3, µ = 0.5932114
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Figure 6. Continuation w.r.t. ε of a non-a-twist circle with frequency ω (non-
symmetric case): (left) invariant circle; (right) projectivized tangent bundle (in
red) and stable bundle (in blue).
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