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This article aims to study nonlocal Lagrangians with an infinite number of degrees of freedom.
We obtain an extension of Noether’s theorem and Noether’s identities for such Lagrangians. We then set up
a Hamiltonian formalism for them. In addition, we show that n-order local Lagrangians can be treated as a
particular case, and the standard results can be recovered. Finally, this formalism is applied to the case of
p-adic open string field.
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I. INTRODUCTION

One of the most frequently emerging features in quantum
gravity models is nonlocality. In string theory, for instance,
nonlocality is displayed in its interactions, characterized by
its infinite derivative structure [1,2]. In a more visual way,
the interactions are not pointwise but are given in a specific
finite region. A similar idea occurs in the case of loop
quantum gravity [3] or effective models of string theory
such as p-adic strings [4,5].
At the classical level, nonlocal gravity models—inspired

by the ultraviolet (UV) finiteness of string theory, see, for
instance, [6]—are being proposed to solve both cosmo-
logical and black hole singularities. There is an essential
improvement in the UV regime by adding infinite deriv-
atives to the Lagrangian without introducing new degrees
of freedom [7]. These nonlocal models of gravity are called
infinite derivative theories of gravity, and their results are
quite promising. For instance, they can show the regulari-
zation of the gravitational potential 1=r of pointlike sources
at the linearized level [8], as well as other sorts of sources
[9–17]. Likewise, other nonlocal gravity models are also
being used to explain the cosmic expansion of the Universe
[18]. It was shown that the 1=□ operator applied on the
R-curvature scalar results in an accelerated expansion of the
Universe without relying on a contribution from dark
energy [19].
All these models mentioned contain nonlocality both in

space and time. Spatial nonlocality might be considered a

mere curiosity presented by the theory; however, temporal
nonlocality is a very problematic feature in the sense of the
initial value problem and the preservation of causality.
However, recent studies [20–23] show that the initial value
problem might be well posed even though infinite deriv-
atives or integrodifferential equations are involved.
Likewise, it is shown in [24–27] that the existence of
solutions for elliptic partial differential equations contain-
ing infinitely many derivatives might be slightly more
manageable to provide.
In the 1990s and 2000s, a Hamiltonian formalism for

nonlocal Lagrangians was developed [28,29] and was
known as (1þ 1)-dimensional Hamiltonian formalism
[30]. The main idea of this formalism was to rewrite the
nonlocal Lagrangian into a local-in-time one by using an
extra dimension and thus be able to formulate the
Hamiltonian formalism in this equivalent theory. Later,
this formalism was applied in [31–33], among other cases
[34]. Unfortunately, as Ferialdi and Bassi [35] correctly
pointed out, this approach is lacking in considering non-
local Lagrangians that explicitly depend on time. However,
in a recent paper [36], this formalism was significantly
improved by extending Noether’s theorem for nonlocal
Lagrangians mechanics, i.e., a finite number of degrees of
freedom. This extension allowed the use of a conserved
quantity to infer a suitable definition for the Legendre
transform and thus avoid the extra nonphysical dimension.
Furthermore, the conserved quantity was presented in a
closed form—i.e., with the infinite series that appears when
dealing with infinite-order Lagrangians summed—and the
deficiency of considering explicitly time-dependent non-
local Lagrangians was addressed.
The present work aims to adapt the latter results [36] to

nonlocal Lagrangian fields, considering all the peculiarities
of field theories with respect to mechanics. In Sec. II, we
present the functional form of nonlocal field Lagrangians,
which may explicitly depend on the spacetime point.
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We then raise the nonlocal variational problem and
derive the Lagrange field equations. It happens that any
Lagrangian is the total four-divergence of a nonlocal
current, but this does not imply that the Lagrange equations
vanish identically. We find what extra conditions the
nonlocal current must satisfy for the Lagrange equations
to vanish identically.
In Sec. III, we study Noether’s symmetries, including the

case that the Lagrangian explicitly depends on the space-
time point, and we find the conserved currents associated to
symmetry finite Lie groups—first Noether’s theorem. We
then concretize to Poincaré invariant field theories and
derive both the energy-momentum and angular-momentum
tensors. Then, by inspecting the expression of the energy
density, we can guess the form of the Legendre trans-
formation that, in Sec. IV, allows us to set up a Hamiltonian
formalism for the nonlocal Lagrangian field theory and
derive a precise expression for the Hamiltonian and the
symplectic form. Finally, in Sec. V, we apply all these tools
to the p-adic open string. By using a perturbative solution,
we obtain the Hamiltonian, a set of canonical coordinates
and, by canonical quantization, we set up a quantum theory.
In addition, we calculate each of the components of the
Belinfante-Rosenfeld tensor in closed form, and we obtain
the total linear momentum and the pressure exerted on a
spherical surface.

II. NONLOCAL LAGRANGIAN THEORIES

Consider the action integral

S ¼
Z
R4

dxLð½ϕA�; xÞ; ð1Þ

where the Lagrangian density L depends on all the values
ϕAðzÞ, A ¼ 1…m, of the field variables at points z other
than x. This fact is why we refer to it as nonlocal. Likewise,
we take x ∈ R4 for concreteness; however, the following
also holds for any number of dimensions.
The class of all possible fields, whether or not they meet

the field equations—off shell, makes up the kinematic
spaceK. This space is the subspace of all smooth functions
C∞ðR4;RmÞ such that Lð½ϕA�; xÞ is locally summable. For
Lagrangians depending explicitly on the point1 xb, we have
to resort to the extended kinematic space, K0 ¼ K ×R4.
The nonlocal Lagrangian density is a real-valued

functional,

ðϕA; xbÞ ∈ K0 → LðϕA; xbÞ ∈ R;

and it may depend on all the values ϕAðzÞ; z ∈ R4. To make
the notation lighter, we write Lðϕ; xÞ, where the functional
dependence is understood, although the square bracket

does not emphasize it, as is usually done in most textbooks.
Moreover, we also omit the superindices both in the field
variables and the point coordinates, unless the context
makes it necessary, e.g., in Sec. III.
The function ϕðzÞ contains all information about the

evolution in K0. Given y ∈ R4, we define the spacetime
translation,

ðϕ; xÞ→Ty ðTyϕ; xþ yÞ; where TyϕðzÞ ¼ ϕðyþ zÞ; ð2Þ

which has the obvious additive property Ty1∘Ty2 ¼ Ty1þy2.
We refer to the subset fðTyϕ; xþ yÞ; y ∈ Rg ⊂ K0 as the
field trajectory starting at ðϕ; xÞ.
The action integral (1) is currently understood as the

functional on K,

SðϕÞ ≔
Z
R4

dyLðTyϕ; yÞ: ð3Þ

It may be divergent because we need an unbounded
integration domain to abide by the fact that the
Lagrangian density L depends on all the values ϕðzÞ.
An alternative and more consistent formulation is intro-
ducing the one-parameter family of finite action integrals,

Sðϕ; RÞ ¼
Z
jyj<R

dyLðTyϕ; yÞ; R ∈ Rþ; ð4Þ

where jyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

4
j¼1ðyjÞ2

q
is the Euclidean length. Then,

the variational principle reads

lim
R→∞

δSðϕ;RÞ≡ lim
R→∞

Z
jyj<R

dy
Z
R4

dz
δLðTyϕ; yÞ

δϕðzÞ δϕðzÞ ¼ 0;

ð5Þ

for all variations δϕðzÞ with compact support, and the
Lagrange equations are

ψðϕ; zÞ ¼ 0; with ψðϕ; zÞ≔
Z
R4

dyλðϕ; y; zÞ and

λðϕ; y; zÞ≔ δLðTyϕ; yÞ
δϕðzÞ : ð6Þ

The dynamic fields—on shell—are those ϕ fulfilling this
equation.
So far, the variational principle formulation has been

limited to trajectories ðTyϕ; yÞ initiating at ðϕ; 0Þ. As we
are interested in Lagrangians that may explicitly depend on
the point, we need to extend this formulation to abide
trajectories starting at any ðϕ; xÞ ∈ K0. Such a trajectory is
nothing but the one starting at ðT−xϕ; 0Þ but advanced an
amount x, that is1As in the case of p-adic string [37].
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ðTyϕ;xþyÞ¼ ðTy0ϕ̃;y0Þ; with y0 ¼ xþy and ϕ̃¼T−xϕ:

ð7Þ

Hence, the Lagrange equation for the dynamic trajectory
initiating at ðϕ; xÞ is

Ψðϕ; x; zÞ ¼ 0; where Ψðϕ; x; zÞ ≔ ψðT−xϕ; zþ xÞ ð8Þ

or Ψðϕ; x; zÞ ≔ R
R4 dyΛðϕ; x; y; zÞ with

Λðϕ;x;y;zÞ≔ λðT−xϕ;yþx;zþxÞ¼ δLðTyϕ;xþyÞ
δϕðzÞ : ð9Þ

The following property easily follows from the definition

ΛðTuϕ; xþ u; y; zÞ ¼ λðT−xϕ; yþ xþ u; zþ xþ uÞ
¼ Λðϕ; x; yþ u; zþ uÞ; ð10Þ

which is useful later.

A. Local theories as a particular case

Let us see how a standard Lagrangian Lðϕ;…ϕjb1…bk ; xÞ,
which depends on the field derivatives up to the order k,
fits in the formalism developed so far—the “stroke”
means “partial derivative.” The standard action integralR
dxLðϕðxÞ;…ϕjb1…bkðxÞ; xÞ has the form (4) provided that

we take

LðTyϕ; yÞ ≔ LðϕðyÞ;…ϕjb1…bkðyÞ; yÞ: ð11Þ

It follows from (6) that

λðϕ; y; zÞ ¼ δLðTyϕ; yÞ
δϕðzÞ

¼
Xk
j¼0

� ∂L
∂ϕjc1…cj

�
ðϕðyÞ;…;ϕb1…bk

ðyÞ;yÞ

× ð−1Þjδjc1…cjðz − yÞ; ð12Þ

where we have included that

ϕc1…cjðyÞ ¼ ð−1Þj
Z
R4

dzϕðzÞδjc1…cjðz − yÞ:

Substituting (12) in (9), we finally arrive at

Ψðϕ; x; zÞ≡Xk
j¼0

ð−1Þj ∂j

∂zc1…∂zcj

×

� ∂L
∂ϕjc1…cj

�
ðϕðzÞ;…;ϕb1…bk

ðzÞ;xþzÞ
¼ 0; ð13Þ

which is the Euler-Ostrogradski equations [38].

B. The Lagrange equations for a total divergence

A well-known feature of local theories is that when the
Lagrangian density is a total divergence

LðxÞ ¼ ∂bWbðxÞ; ð14Þ

then, the Lagrange equations vanish identically. The non-
local case is more nuanced since Eq. (14) has always a
solution (in fact, infinitely many). Indeed, the general
solution is

WbðxÞ ¼ δb4

Z
R
dτ½θðτÞ − θðτ − x4Þ�Lðx; τÞ þ ∂cΩbcðxÞ;

where x ¼ ðx; τÞ; and Ωbc þ Ωcb ¼ 0. However, as the
solutionWbðϕ; xÞ is not necessarily local, it does not imply
that the Lagrange equations for any nonlocal Lagrangian
density are identically null.
Let us now search for a sufficient condition on Wbðϕ; xÞ

for the Lagrangian ∂bWbðϕ; xÞ to produce null field
equations. The family of actions (4) for such a
Lagrangian is

Sðϕ; RÞ ¼
Z
jyj<R

dy∂bWbðTyϕ; yÞ

¼
Z
jyj¼R

dΣbðyÞWbðTyϕ; yÞ;

where Gauss theorem has been applied, and dΣbðyÞ is the
volume element on the hypersphere jyj ¼ R.
The variational principle (5) yields the field equations

ψðϕ; zÞ ≔ lim
R→∞

δSðϕ; RÞ
δϕðzÞ

≡ lim
R→∞

Z
jyj¼R

dΣbðyÞ
δWbðTyϕ; yÞ

δϕðzÞ ;

and as dΣbðyÞ scales as jyj3, they are identically null
provided that

lim
jyj→∞

�
jyj3 δW

bðTyϕ; yÞ
δϕðzÞ

�
≡ 0; ð15Þ

where the symbol ≡ means that the equalities hold for any
ϕ. This condition is obviously met if WbðTyϕ; yÞ is local;
i.e., it depends only on a finite number of derivatives of ϕ
at y.

C. The Lagrange equations, time evolution, and
spacetime translations

Obviously, Eq. (8) is not met by any ðϕ; xÞ ∈ K0.
Therefore, the Lagrange equation acts as an implicit
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equation defining the dynamic spaceD0, i.e., the class of all
dynamic fields, as a submanifold of K0.
In the local regular case, Eq. (13) is a partial differential

system of order 2k which usually admits a well-posed
Cauchy problem. According to the Cauchy-Kowalewski
theorem [39], given a noncharacteristic hypersurface
Σ in R4 with normal vector nb and 2k functions,
uj; j ¼ 0…2k − 1, on this hypersurface, there exists a
solution ϕðxÞ of the partial differential system (13) such
that

nb1…nbjϕjb1…bjðxÞ¼ ujðxÞ; j¼ 0…2k−1; ∀ x∈Σ:

In case that Σ is the hyperplane t ¼ x4 ¼ 0, then nb ¼
ð0; 0; 0; 1Þ; and the Cauchy-Kowalevski theorem is the
basis for interpreting the Cauchy data ujðxÞ; j ¼ 0…2k − 1

as “the state of the field” at t ¼ 0, which evolves in time
steered by the field equation (13).
Furthermore, and similarly as the theorems of existence

and uniqueness do for systems with a finite number of
degrees of freedom, the Cauchy-Kowalevski theorem
allows parametrizing each solution ϕ ∈ D with a well-
defined—although infinite—set of “parameters,” namely,
the Cauchy data.
In contrast, the above interpretation does not hold for a

nonlocal Lagrangian because, as a rule, we do not have an
equivalent to the Cauchy-Kowalevski theorem to turn to.
For this reason, we take (8) as an implicit equation or
constraint defining D0 as a submanifold of K0 that we
write as

Ψðϕ; xÞ ¼ 0 ∀ σ ∈ R4; where

Ψðϕ; xÞðσÞ ≔
Z
R4

dyΛðϕ; x; y; σÞ: ð16Þ

The notation is intended to indicate that Ψ maps K0 on the
space of smooth functions of σ ∈ R4. The dynamic fields
are those ðϕ; xÞ that make Ψ null.
The infinitesimal generators of spacetime translations (2)

in K0 are the vector fieldsXa, a ¼ 1…4, that are tangent to
the curves ðTyϕ; xþ yÞ; yb ¼ εδba. Therefore, for a function
Fðϕ; xÞ on K0, we have that

XaFðϕ; xÞ ≔
�∂FðTyϕ; xþ yÞ

∂ε
�
ε¼0

; yb ¼ εδba: ð17Þ

They are vector fields on K0 that, including the chain rule,
can be written as

Xa≔ ∂aþ
Z
R4

dσϕjaðσÞ
δ

δϕðσÞ ; ð18Þ

where X4 is the generator of time evolution and plays a
central role in Sec. IV.

For the particular way in which we have defined Eq. (8)
as an extension of (6), the constraints (16) are stable under
spacetime translations, and therefore, the generatorsXa are
tangent to the submanifold D0 ⊂ K0. Indeed, including (16)
and (10), we have that

ΨðTyϕ;xþyÞðσÞ ¼
Z
R4

dτΛðTyϕ;xþy;τ;σÞ

¼
Z
R4

dτ0Λðϕ;x;τ0;σþyÞ¼Ψðϕ;xÞðσþyÞ;

where (10) has been included, and the replacement τ0 ¼
τ þ y has been made. Hence, if Ψðϕ; xÞ ¼ 0, then
ΨðTyϕ; xþ yÞ ¼ 0 as well, and therefore,

XaΨðϕ; xÞðσÞ ¼
�∂ΨðTyϕ; xþ yÞðσÞ

∂ε
�
ε¼0

¼ 0; yb ¼ εδba:

III. NOETHER’S THEOREM

In what follows, let us restore the superindex A in the
field variable since it will be necessary for nonscalar fields.
Consider the infinitesimal transformation

x0aðxÞ¼ xaþδxaðxÞ; ϕ0AðxÞ¼ϕAðxÞþδϕAðxÞ: ð19Þ

The Lagrangian density transforms so that the action
integral over any four-volume is preserved; that is,

SðVÞ ¼ S0ðV 0Þ; with SðVÞ≡
Z
V
dxLðTxϕ

A; xÞ

and S0ðV 0Þ
Z
V 0
dx0L0ðTx0ϕ

0A; x0Þ;

where V 0 is the transformed of the spacetime volume V.
Therefore,

L0ðTx0ϕ
0A; x0Þ ¼ LðTxϕ

A; xÞ
				 ∂x∂x0

				:
We say that the transformation (19) is a Noether

symmetry if the transformed Lagrangian is the original
one plus a total divergence, namely,

L0ðTx0ϕ
0A; x0Þ ¼ LðTx0ϕ

0A; x0Þ þ ∂bWbðTx0ϕ
0A; x0Þ; ð20Þ

where WbðTx0ϕ
0A; x0Þ is a first-order quantity fulfilling the

asymptotic condition (15). Recall that being a Noether
symmetry is a sufficient (but not necessary) condition for a
transformation to preserve the field equations.
As S0ðV 0Þ ¼ SðVÞ, we have that

Z
V 0
dxL0ðTxϕ

0A; xÞ −
Z
V
dxLðTxϕ

A; xÞ ¼ 0; ð21Þ

CARLOS HEREDIA and JOSEP LLOSA PHYS. REV. D 105, 126002 (2022)

126002-4



where we have replaced the dummy variable x0 with x. As
depicted in Fig. 1, the volumes V and V 0 differ slightly: they
share a large common part V0 and differ in an infinitesimal
layer close to the boundary ∂V. If dΣa is the hypersurface
element on the boundary, then the volume element close to
the boundary is dx ¼ dΣbδxb. Hence, by neglecting sec-
ond-order infinitesimals, Eq. (21) becomesZ

V
dx½L0ðTxϕ

0A; xÞ − LðTxϕ
A; xÞ�

þ
Z
∂V

LðTxϕ
A; xÞδxbdΣb ¼ 0: ð22Þ

For a Noether symmetry, we have that

L0ðTxϕ
0A; xÞ − LðTxϕ

A; xÞ
¼ LðTxϕ

0A; xÞ − LðTxϕ
A; xÞ þ ∂bWbðTxϕ

0A; xÞ

¼ ∂bWbðTxϕ
A; xÞ þ

Z
R4

dyλAðϕ; x; yÞδϕAðyÞ;

where λAðϕ; x; yÞ is defined in (6), and ∂b is the partial
derivative with respect to xb. Second-order terms have been
neglected.
Introducing the variable z ¼ y − x in the latter, substitut-

ing it in (22), and applying the Gauss theorem, we obtain
that

Z
V
dx

�
∂b½LðTxϕ

A; xÞδxb þWbðTxϕ
A; xÞ�

þ
Z
R4

dzλAðϕ; x; zþ xÞδϕAðzþ xÞ
�

¼ 0;

and including (6), we can write

−
Z
V
dxψAðϕ;xÞδϕAðxÞ¼

Z
V
dx

�
∂bðLðTxϕ

A;xÞδxbÞ

þ
Z
R4

dz½λAðϕ;x;zþxÞδϕAðzþxÞ

−λAðϕ;x− z;xÞδϕAðxÞ�
�
: ð23Þ

Then, we use the identity

λAðϕ;x;zþxÞδϕAðzþxÞ−λAðϕ;x− z;xÞδϕAðxÞ

¼
Z

1

0

ds
d
ds

fλAðϕ;xþ½s−1�z;xþ szÞδϕAðxþ szÞg

¼
Z

1

0

dszb
∂
∂xb fλAðϕ;xþ½s−1�z;xþ szÞδϕAðxþ szÞ�g;

that combined with (23) leads to

Z
V
dx

�
ψAðϕ;xÞδϕAðxÞþ ∂

∂xb ½Lδx
bþWbþΠbðϕ;xÞ�

�
¼0;

ð24Þ

where L and Wb are shorthands for LðTxϕ; xÞ and
WbðTxϕ; xÞ, and

Πbðϕ; xÞ ≔
Z
R4

dzzb
Z

1

0

dsλAðϕ; xþ ½s − 1�z; xþ szÞ

× δϕAðxþ szÞ: ð25Þ

Now, as Eq. (24) holds for any spacetime volume V, it
follows that

Nðϕ; xÞ ≔ ∂bJbðϕ; xÞ þ ψAðϕ; xÞδϕAðxÞ≡ 0; ð26Þ

where

Jbðϕ; xÞ ≔ Lδxb þWb

þ
Z
R4

dzzb
Z

1

0

dsλAðϕ; xþ ½s − 1�z; xþ szÞ

× δϕAðxþ szÞ: ð27Þ

Equation (26) is the Noether identity and holds off shell,
i.e., for any kinematic field ϕ. On shell—only for dynamic
fields—this identity implies that the current Jbðϕ; xÞ is
locally conserved,

∂bJb ¼ 0: ð28Þ

FIG. 1. The variation of the spacetime domain V.
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A. Nonlocal Lagrangian densities that explicitly
depend on xb

The locally conserved current (27) corresponds to field
trajectories starting at ðϕ; 0Þ ∈ K0. In the case of explicit
dependence on x, it is convenient to abide also trajectories
initiating at any ðϕ; xÞ. Therefore, we follow the same
procedure as in Sec. II through the translation (7) and the
correspondence (9). In this way, we obtain the extended
current

Ĵbðϕ; x; yÞ ≔ JbðT−xϕ; xþ yÞ;

that is,

Ĵbðϕ; x; yÞ ¼ LðTyϕ; xþ yÞδðxb þ ybÞ þWbðTyϕ; xþ yÞ

þ
Z
R4

dzzb
Z

1

0

dsΛAðϕ; x; yþ ½s− 1�z; yþ szÞ

× δϕAðyþ szÞ: ð29Þ

From the way the current has been extended, it follows that

ĴbðTzϕ; xþ z; yÞ ¼ JbðT−xϕ; yþ xþ zÞ
¼ Ĵbðϕ; x; yþ zÞ: ð30Þ

B. Finite-dimensional Lie groups:
First Noether’s theorem

In case the transformation (19) belongs to anN-parameter
Lie group, then

δxbðxÞ ¼ εαξbαðxÞ; δϕAðxÞ ¼ εαΦA
αðϕ; xÞ;

WbðxÞ ¼ εαWb
αðxÞ;

where ξbαðxÞ is the infinitesimal generator for the parameter
εα;α ¼ 1…N. The current JbðxÞ can be written as

JbðxÞ ¼ εαJbαðxÞ; with ∂bJbαðxÞ ¼ 0;

andwe have one conserved current for each group parameter,
namely,

JbαðxÞ ≔ LξbαðxÞ þWb
α

þ
Z
R4

dzzb
Z

1

0

dsλAðϕ; xþ ½s − 1�z; xþ szÞ

×ΦA
αðxþ szÞ: ð31Þ

Recall that L ¼ LðTxϕ; xÞ and Wb
α ¼ Wb

αðTxϕ; xÞ.

C. Poincaré invariance: Energy-momentum
and angular-momentum currents

Infinitesimal Poincaré transformations act on coordi-
nates as

x0a¼xaþδxa; δxa¼ εaþωa
bxb; ωabþωba¼0; ð32Þ

where εa and ωa
b are constants, ωab ¼ ηacω

c
b and ηac ¼

diagð1; 1; 1;−1Þ is the Minkowski matrix to raise and lower
indices. In turn, the field ϕA transforms as a tensor object
(A ¼ 1…n are the different components of the field),

ϕ0Aðx0Þ ¼ ϕAðxÞ þMA
Bϕ

BðxÞ; ð33Þ

where the constant matrixMA
B ¼ ωabMA

B½ab� depends on the
tensor type of the field. Hence,

δϕAðxÞ ≔ ϕ0AðxÞ − ϕAðxÞ
¼ ωabMA

B½ab�ϕBðxÞ − ϕA
jcðxÞðεc þ ωc

bxbÞ; ð34Þ

where (19) and (32) have been included.
Then, substituting (32) and (34) into (27), and assuming

that the Lagrangian density is Poincaré invariant—there-
fore, Wb ¼ 0—we find that the conserved current can be
written as

Jbðϕ; xÞ ¼ −εaT a
bðϕ; xÞ − 1

2
ωacJ ac

bðϕ; xÞ; ð35Þ

where

T a
b ≔ −LðTyϕ; yÞδba

þ
Z
R4

dzzb
Z

1

0

dsλAðϕ; yþ ½s − 1�z; yþ szÞ

× ϕA
jaðyþ szÞ; ð36Þ

J ac
b ≔ 2y½cT a�b þ Sac

b and ð37Þ

Sac
b ≔ 2

Z
R4

dzzb
Z

1

0

dsλAðϕ; yþ ½s − 1�z; yþ szÞ

× ½sz½cϕA
ja�ðyþ szÞ −MA

B½ac�ϕBðyþ szÞ� ð38Þ

are the currents of energy momentum, angular momentum,
and spin, respectively.
As the ten parameters εa and ωac are independent, the

local conservation of the current Jb implies that the currents
T a

b and J ac
b are separately conserved; that is,

∂
∂yb T a

bðϕ; yÞ ¼ 0 and
∂
∂yb J ac

bðϕ; yÞ ¼ 0;

or

∂bT a
b ¼ 0 and ∂bSac

b þ 2T ½ac� ¼ 0: ð39Þ

T ab is also known as the canonical energy-momentum
tensor which, as a rule, is nonsymmetric. As a consequence
of the second equation (40), it is symmetric if, and only if,
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the divergence of the spin current vanishes. Indeed, this fact
happens for scalar fields ruled by a local Lagrangian of the
first order. For higher-order Lagrangians, there is a spin
current even for them.
In all cases, an energy-momentum tensorΘab can be found

such that (in a well-defined sense) is equivalent to T ab by
means of the Belinfante-Rosenfeld technique [40–42],

Θab ¼ T ab þ ∂cWcba ð40Þ
with

Wcba ≔
1

2
ðScba þ Scab − SbacÞ: ð41Þ

In addition, Rosenfeld proves that, for finite-order
Lagrangians, Θab is actually the Hilbert energy-momentum
tensor [43].
The expressions (36)–(38) correspond to field trajecto-

ries initiating at ðϕ; 0Þ ∈ D0. For trajectories starting at any
ðϕ; xÞ, we should use (29) rather than (27), and for the
energy-momentum tensor, we obtain

T̂ a
bðϕ;x;yÞ≔ T a

bðT−xϕ;xþyÞ
¼−LðTyϕ;xþyÞδba
þ
Z
R4

dzzb
Z

1

0

dsΛAðϕ;x;yþ½s−1�z;yþ szÞ

×ϕA
jaðyþ szÞ ð42Þ

Ŝac
bðϕ;x;yÞ≔ 2

Z
R4

dzzb
Z

1

0

dsΛAðϕ;x;yþ½s−1�z;yþszÞ

× ½sz½cϕA
ja�ðyþszÞ−MA

B½ac�ϕBðyþszÞ�;
ð43Þ

where (9) has been included.

D. Energy density and the Legendre transformation

Searching for some insights to generalize the Legendre
transformation, we now examine the expression of the
energy. The component T 4

4ðxÞ of the energy-momentum
tensor is the energy density, and using (42) and putting
yb ¼ ðy; τÞ, the total energy for a field trajectory starting at
ðϕ; 0; tÞ is

Eðϕ; t; τÞ ≔
Z
R3

dyT̂ 4
4ðϕ; 0; t; y; τÞ

¼
Z
R3

dyT 4
4ðϕ; xa þ yaÞ: ð44Þ

It is well known [43] that if the field decays fast enough
at spatial infinity the continuity equation (39) implies that
the total energy and momentum do not depend on τ. In the
particular case of the energy, this fact implies that

Eðϕ; t; τÞ ¼ Eðϕ; t; 0Þ≕Eðϕ; tÞ: ð45Þ

Therefore

Eðϕ; tÞ≔−Lðϕ; tÞ þ
Z
R6

dydz
Z
R
dζ

Z
1

0

dsζ _ϕAðyþ sz; sζÞ

×ΛAðϕ;0; t;yþ ðs− 1Þz; ðs− 1Þζ; yþ sz; sζÞ;
ð46Þ

where Lðϕ;tÞ≔R
R3 dyLðTyϕ;y;tÞ, ya ¼ ðy; τÞ, za ¼ ðz; ζÞ,

and _ϕA ¼ ϕA
j4.

After transforming the variables u ¼ y þ sz and ρ ¼ sζ,
the integral on the right-hand side becomes

Z
R6

dudz
Z
R
dζ

Z
ζ

0

dρΛAðϕ;0; t;u− z;ρ− ζ;u;ρÞ _ϕAðu;ρÞ

¼
Z
R4

du _ϕAðuÞ
Z
R4

dz½θðu4Þ− θðu4 − z4Þ�

×ΛAðϕ;0; t;u− z;ζ0;uÞ;

where we have taken u ¼ ðu; ρÞ and z ¼ ðz; ζÞ.
Then, going back to (46) and renaming the dummy

variable ζ0 as ζ and ðu; ρÞ ¼ ya, we arrive at

Eðϕ; tÞ ¼ −Lðϕ; tÞ þ
Z
R4

du _ϕAðuÞPAðϕ; t; uÞ; ð47Þ

where

PAðϕ; t; uÞ≔
Z
R4

dz½θðu4Þ− θðu4 − z4Þ�ΛAðϕ;0; t; u− z; uÞ

ð48Þ

is the momentum.
The total energy can be written as Eðϕ; tÞ ¼R

R3 dxEðϕ;x; tÞ, where the energy density is

Eðϕ;x; tÞ ≔ −LðTxϕ;x; tÞ þ
Z
R
dρ _ϕAðx; ρÞPAðϕ; t;x; ρÞ;

ð49Þ

and _ϕAðx; ρÞ ¼ ∂ρϕ
Aðx; ρÞ is understood.

IV. HAMILTONIAN FORMALISM

We now set up a Hamiltonian formalism for the
Lagrange equations (16). The procedure is similar to the
one designed in Ref. [36] for nonlocal Lagrangian mechan-
ics with a finite number of degrees of freedom.

NONLOCAL LAGRANGIAN FIELDS: NOETHER’S THEOREM AND … PHYS. REV. D 105, 126002 (2022)

126002-7



A. Generalized Legendre transformation

We start by introducing the extended phase space
Γ0 ¼ K2 ×R consisting of the elements ðϕ; π; tÞ, together
with the Hamiltonian

Hðϕ; π; tÞ ¼
Z
R4

dyπAðyÞ _ϕAðyÞ − Lðϕ; tÞ; ð50Þ

where ϕ ¼ ðϕ1…ϕmÞ; π ¼ ðπ1…πmÞ ∈ K are smooth
functions, K ¼ C∞ðR4;RmÞ, and the Poisson bracket,

fF;Gg ¼
Z
R4

dy

�
δF

δϕAðyÞ
δG

δπAðyÞ
−

δF
δπAðyÞ

δG
δϕAðyÞ

�
:

Thus, the Hamilton equations are

HϕAðyÞ ¼ δH
δπAðyÞ

¼ _ϕAðyÞ; ð51Þ

HπAðyÞ ¼ −
δH

δϕAðyÞ
¼ _πAðyÞ þ

Z
R3

dxΛAðϕ; 0; t;x; 0; yÞ; ð52Þ

where H is the generator of the Hamiltonian flow

ðϕA; πB; tÞ → ðTτϕ
A; TτπB; tþ τÞ; τb ¼ τδb4:

Hamilton’s equations can be written in a compact form
by means of the contact two-form,

Ω0 ¼ Ω − δH ∧ δt; where Ω ¼
Z
R4

dyδπAðyÞ ∧ δϕAðyÞ

ð53Þ

is the symplectic form [44,45]. Note that we havewritten “δ”
for the differential on the manifold Γ0 to distinguish it from
the “d” used in the notation for integrals we have adopted
here. Then Hamilton’s equations (51) and (52) become

iHΩ0 ¼ 0: ð54Þ
So far, this Hamiltonian system in the extended phase

space Γ0 has little to do with the Lagrangian system (16) or
the generator of time evolution X4 in the space D0.
However, they can be connected by the injection map,

ðϕ; tÞ ∈ D0 →
j ðϕ; π; tÞ ∈ Γ0; where

πAðyÞ ≔ PAðϕ; tÞðyÞ ∈ K; ð55Þ

and PAðϕ; tÞðyÞ is the prefactor of _ϕAðyÞ in the energy (47),
which is given by (48),

PAðϕ; tÞðyÞ ≔ PAðϕ; t; yÞ

¼
Z
R4

dz½θðy4Þ− θðy4 − z4Þ�ΛAðϕ;0; t; y− z; yÞ;

ð56Þ

where yb ¼ ðy; ρÞ. j defines a 1-to-1 map from D0 into its
range, jðD0Þ ⊂ Γ0, i.e., the submanifold implicitly defined
by the constraints

ΨAðϕ; tÞ¼ 0 and ϒAðϕ;π; tÞ≔ πA−PAðϕ; tÞ¼ 0: ð57Þ

Proposition 1. The Jacobian map jT maps the infini-
tesimal generatorX of time evolution in D0 intoH, i.e., the
generator of the Hamiltonian flow in Γ0.
Proof: To begin with, including (56) and (18), we have

that

ðjTX4ÞϕAðyÞ ¼ X4ϕ
AðyÞ ¼ ∂τϕ

AðyÞ ¼ HϕAðyÞ;

where we have taken yb ¼ ðy; ρÞ. Then,

ðjTX4ÞπAðyÞ ¼ X4PAðϕ; t; yÞ ¼ ½∂εPAðTεϕ; tþ ε; yÞ�ε¼0;

and using (56), (10), and (52), we obtain

ðjTX4ÞπAðyÞ ¼
�
∂ε

Z
R3

dz
Z
R
dζ½θðρÞ − θðρ − ζÞ�ΛAðTεϕ; 0; tþ ε; y − z; ρ − ζ; y; ρÞ

�
ε¼0

¼
�
∂ε

Z
R3

dz
Z
R
dζ½θðρÞ − θðρ − ζÞ�ΛAðϕ; 0; t; y − z; ρ − ζ þ ε; y; ρþ εÞ

�
ε¼0

¼
Z
R3

dz
Z
R
dζ0∂εð½θðρÞ − θðζ0 − εÞ�ΛAðϕ; 0; t; y − z; ζ0; y; ρþ εÞÞε¼0

¼ ∂ρPAðϕ; t; y; ρÞ þ
Z
R3

dxΛAðϕ; 0; t;x; 0; y; ρÞ

¼ HπAðy; ρÞ;
where we have successively taken yb ¼ ðy; ρÞ, x ¼ y − z, ζ0 ¼ ρ − ζ − ε and have used that the second term in the right-
hand side of the last but one line vanishes because the generator X4 is a solution of the field equations (16). ▪
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As a corollary, H ¼ jTX4 is tangent to the submanifold
jðD0Þ, and therefore, the constraints (55) are stable by the
Hamiltonian flow.
To translate the Hamiltonian formalism in Γ0 into a

Hamiltonian formalism in the extended dynamic space D0,
we use that the pullback j� maps the contact form (53) onto
the differential two-form,

ω0 ¼ j�Ω0 ¼
Z
R4

dyδPAðϕ; t; yÞ ∧ δϕAðyÞ − δh ∧ δt;

ω0 ∈ Λ2ðD0Þ; ð58Þ

where h ¼ H∘j. Then, since jTX4 ¼ H, the pullback of
Eq. (54) implies that

iX4
ω0 ¼ 0: ð59Þ

The reduced Hamiltonian hðϕ; tÞ and the contact form ω0
on D0 are derived using Eqs. (50) and (56), and they are

hðϕ; tÞ ¼ −Lðϕ; tÞ þ
Z
R8

dydz½θðy4Þ − θðy4 − z4Þ�

× _ϕAðyÞΛAðϕ; 0; t; y − z; yÞ; ð60Þ

and ω0
ðϕ;tÞ ¼ −δhðϕ; tÞ ∧ δtþ ωðϕ;tÞ, where

ωðϕ;tÞ ¼
Z
R8

dydz½θðy4Þ − θðy4 − z4Þ�

× δΛAðϕ; 0; t; y − z; yÞ ∧ δϕAðyÞ ð61Þ

is the (pre)symplectic form.
We have not reached our goal yet. Because the con-

straints that characterize the dynamic space as a sub-
manifold of the kinematic space K0 are ΨAðϕ; tÞ ¼ 0, ϕA

and t are not independent coordinates in D0. Therefore,
the remaining final step consists of coordinating D0. We
need to obtain the explicit parametric form of the sub-
manifold D0 instead of the implicit form provided by the
Lagrange equations. This fact is easy for regular local
Lagrangians that depend on derivatives up to the nth order
since, as Lagrange’s equations are a partial differential
system of order 2n, the Cauchy-Kowalewski theorem [39]
provides the sought parametric form. However, as a
rule, deriving the explicit equations of D0 from the
implicit equations is a complex task that depends on
each specific case.
Let us exemplify this fact in the next section.

V. APPLICATION: THE p-ADIC OPEN
STRING FIELD

The “user manual” for the procedure developed so far
would read as follows:

(i) To start with, write the action integral so that the
function LðTyϕ; yÞ can be identified.

(ii) Compute the functional derivatives λðϕ; y; zÞ and
Λðϕ; x; y; zÞ—see Eqs. (6) and (9).

(iii) Substitute the latter in (61) and calculate both the
contact form and

(iv) The Hamiltonian (60).
In what follows, we apply these directions to the p-adic
open string case. The main difficulty stems from finding a
complete set of coordinates to characterize the elements of
the dynamic space D0.
On the other hand, let us also mention that we are

outsiders of this model. Our intention is only to illustrate
the procedure of how to apply this formalism and not to
analyze the result obtained. We leave the latter to the reader
who is specialized in this field.
We consider the Lagrangian density for the p-adic open

string,

LðψÞ¼−
1

2
ψe−r□ψþ 1

pþ1
ψpþ1 with r¼ 1

2
lnðpÞ ð62Þ

where □ is the d’Alembert operator □ ¼ ηαβ∂α∂β, ηαβ the
inverse Minkowski metric, and p a prime number.
As for the kinematic space, ψðyÞ is a smooth function

C∞ðR3þ1Þ such that the operation

e−r□ψðyÞ ≔
X∞
n¼0

ð−rÞn
n!

□
nψðyÞ

is “well defined”. Since it is a part of the Lagrangian
density (62), we need the series in e−r□ψðyÞ to converge in
some appropriate functional space. The consequences of
this requirement have been thoroughly analyzed in
Ref. [46] and led to the following conclusions:
(a) Each function ψðxÞ in the kinematic space is the result

of a convolution

ψðxÞ≔ ðE �ϕÞðxÞ; where Eðx; tÞ≔G3ðxÞδðtÞ; ð63Þ

and x ≔ ðx; tÞ, for some smooth function ϕðx; tÞ that
grows slowly at jxj → ∞, that is, ∀ α ¼ ðα1;…αnÞ;
αj ¼ 1…4, they exist

CαðtÞ > 0 and mαðtÞ ∈ Zþ

such that j∂αa…αnϕðx; tÞj ≤ CαðtÞð1þ jxj2ÞmαðtÞ:

No restriction on the behavior of ϕðx; tÞ at large jtj is
imposed. We denote by θMðR3Þ the class of these
functions [47].
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(b) The operator e−r□ acts as

e−r□ψðxÞ≔ ðT �ϕÞðxÞ; where T ðx; tÞ≔ δðxÞG1ðtÞ:
ð64Þ

The functions G1 and G3 are defined by2

GnðxÞ¼
1

ð2 ffiffiffiffiffi
πr

p Þne
−jxj2

4r ; x∈Rn; n¼1 or 3: ð65Þ

Including all this, in terms of the new kinematic variables
ϕðyÞ, the Lagrangian (62) becomes

LðTyϕ; yÞ ¼ −
1

2
ðE � ϕÞðyÞðT � ϕÞðyÞ

þ 1

pþ 1
½ðE � ϕÞðyÞ�pþ1: ð66Þ

For the Lagrangian density (66), the functional derivative
(6) is

λðϕ; y; zÞ ¼ Eðy − zÞ
�
−
1

2
ðT � ϕÞðyÞ þ ½ðE � ϕÞðyÞ�p

�

−
1

2
T ðy − zÞðE � ϕÞðyÞ; ð67Þ

where z ≔ ðz; ξÞ, y ≔ ðy; τÞ, and as the Lagrangian density
does not explicitly depend on xa, the functional derivative
(9) is

Λðϕ; x; y; zÞ ¼ λðϕ; y; zÞ:

The Euler-Lagrange equation (8) and (9) easily follows
and has the form of the convolution equation

E � ½T � ϕ − ðE � ϕÞp� ¼ 0; ð68Þ

which amounts to—see the Appendix for details—

T � ϕ − ðE � ϕÞp ¼ 0: ð69Þ

If we now consider the spatially homogeneous case,
ϕðxÞ ≔ ϕðtÞ, the field equations are the same as for the
p-adic particle case [49]. A possible solution of (69) is

ϕ0ðxÞ ¼
��1; 0 if p is odd

1; 0 if p is even:
ð70Þ

The field equation (69) admits other solutions [50]; how-
ever, we focus on the perturbative ones around ϕ0ðxÞ ≠ 0,
namely,

ϕðxÞ ¼ ϕ0ðxÞ þ κΦðxÞ; ð71Þ

where κ ≪ 1 is the expansion parameter. For the sake of
simplicity, we choose p ¼ 2, which is even, and therefore,
ϕ0ðxÞ ¼ 1. Thus, substituting ΦðxÞ ¼ P∞

n¼0 κ
nΦnðxÞ in

the field equation (69), we get

T �Φn − 2E �Φn ¼
X

lþm¼n−1
ðE �ΦlÞðE �ΦmÞ: ð72Þ

At the lowest order, n ¼ 0, it reads

T �Φ0 − 2E �Φ0 ¼ 0: ð73Þ

The latter is an integral equation that might be solved
using the Fourier transform, but this would restrict the
search to summable functions that vanish at infinity, both
spatial and temporal. From a physical point of view, this
makes sense for the spatial dependence; however, this
restriction does not seem appropriate as far as the time
dependence is concerned. For this reason, we propose
that the general solution is a superposition of “mono-
chromatic” solutions such as Φ0ðzÞ ¼ eiαξÃðzÞ, where
ÃðzÞ is a summable function and za ¼ ðz; ξÞ. Therefore,
using that

G1ðξÞ � eiαξ ¼ e−rα
2þiαξ ð74Þ

and plugging Φ0ðzÞ into (73), we get

eiαξðe−rα2 ÃðzÞ − 2ðE � ÃÞðzÞÞ ¼ 0; ð75Þ

whose spatial Fourier transform3 yields

AðkÞeiαξðe−rα2 − 2e−rjkj2Þ ¼ 0: ð76Þ

Whereas AðkÞ ¼ 0 leads to the trivial solution, nontrivial
solutions are connected with the spectral equation

e−rα
2 − 2e−rjkj2 ¼ 0; ð77Þ

whose solution is the set of complex numbers

N ¼
(
ανðkÞ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 − 2

�
1þ iπl

r

�s
; k ∈ R3;

ν ¼ ðs; lÞ; s ¼ �; l ∈ Z

)
: ð78Þ

We write2In fact, they are the heat kernels in one-dimensional and three-
dimensional space where r plays the role of evolution parameter
of the heat equation. See, for instance, [48]. 3See the Appendix for the Fourier transform convention.
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ν0 ¼ ð−s; lÞ; ν̃ ¼ ðs;−lÞ; −ν ¼ ð−s;−lÞ;

and we have that

αν̃ðkÞ ¼ ᾱνðkÞ; αν0 ðkÞ ¼ −ανðkÞ: ð79Þ

Therefore, the general solution of (73) is

Φ0ðzÞ ¼
1

ð2πÞ3
Z
R3

dk
X
ν

AνðkÞei½ανðkÞξþk·z�; ð80Þ

and as Φ0ðzÞ has to be real,

A−νð−kÞ ¼ ĀνðkÞ: ð81Þ

Notice that, as αðkÞ is complex, the integral might diverge
at jkj → ∞; however, this is not the case, as shown in the
Appendix A. 2.
At the next perturbative order, n ¼ 1, Eq. (72) yields

T �Φ1 − 2E �Φ1 ¼ ðE �Φ0Þ2: ð82Þ

Using (74), the right-hand side of this equation can be
written as

ðE �Φ0Þ2ðzÞ ¼
Z
R6

dkdp
ð2πÞ6

X
ν;μ

AνðkÞAμðpÞ

× e−rðjkj2þjpj2ÞþiðkþpÞ·zei½ανðkÞþαμðpÞ�ξ: ð83Þ

Again, a particular solution (82) can be obtained
as a superposition of “monochromatic” solutions like
Φ̃1ðk;pÞeiðkþpÞ·zei½ανðkÞþαμðpÞ�ξ. Following the same steps
as above, we arrive at

Φ1ðzÞ ¼
Z
R6

dkdp
ð2πÞ6

X
ν;μ

AνðkÞAμðpÞ
fνμðk;pÞ

ei½ανðkÞþαμðpÞ�ξþiðkþpÞ·z;

ð84Þ

where

fνμðk;pÞ ≔ 2½2e−2rανðkÞαμðpÞ − e−2rk·p�; ð85Þ

and we have used that ανðkÞ is a solution of the spectral
equation (77). Therefore, the general perturbative solution
up to the second order is

ϕðz; ξÞ ¼ 1þ κ

Z
R3

dk
ð2πÞ3

X
ν

AνðkÞei½ανðkÞξþk·z�

×

�
1þ κ

Z
R3

dp
ð2πÞ3

X
μ

AμðpÞ
fνμðk;pÞ

ei½αμðpÞξþp·z�
�
:

ð86Þ

A. The symplectic form

Using (67), we find that the momentum (56) is

Pðϕ; yÞ ¼ −
1

2

Z
R
dξ½θðτÞ − θðξÞ�G1ðξ − τÞðE � ϕÞðy; ξÞ;

ð87Þ

and therefore, the (pre)symplectic form (61) becomes

ω ¼ −
1

2

Z
R4

dydsG1ðsÞ
Z

s

0

dτðE � δϕÞðy; τ − sÞ ∧ δϕðy; τÞ;

ð88Þ

where we have introduced the change s ¼ ξ − τ. Taking
now

ϕðzÞ ¼ 1þ κΦ0ðzÞ þ κ2Φ1ðzÞ þOðκ3Þ;

after a bit of algebra—see the Appendix A. 3 for details—
we obtain that the symplectic form is

ω ¼ i
Z
R3

dk
X
l∈Z

δBlðkÞ ∧ δB†
l ðkÞ þOðκ4Þ; ð89Þ

where the new variables

BlðkÞ≔
2κe−rjkj2

ð2πÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rαlðkÞ

p
Aðþ;lÞðkÞ and B†

l ðkÞ≔ B̄−lðkÞ

ð90Þ

have been introduced.
It is apparent that (a) ω is nondegenerate, hence

symplectic, and (b) the modes BlðkÞ and B†
jðkÞ are a

system of canonical coordinates whose elementary Poisson
brackets are

fBlðkÞ; B†
jðk0Þg ¼ iδljδðk − k0Þ þOðκ4Þ;

fBlðkÞ; Bjðk0Þg ¼ fB†
l ðkÞ; B†

jðk0Þg ¼ Oðκ4Þ: ð91Þ

B. The Hamiltonian

Substituting the momenta (87) in Eq. (60), we obtain that
the Hamiltonian is

hðϕÞ ¼ −LðϕÞ þ 1

2

Z
R3

dy
Z
R
dsG1ðsÞ

×
Z

s

0

dξ _ϕðy; ξ − sÞðE � ϕÞðy; ξÞ; ð92Þ

where we have defined s ¼ ξ − τ, and
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LðϕÞ ≔
Z
R3

dyLðTyϕ; y; 0Þ ð93Þ

with L given by (66).
Again, taking the perturbative expansion of ϕðzÞ up

to κ2 terms, we obtain that the Hamiltonian is—see the
Appendix A. 4 for details—

h ¼ Vy

6
þ
Z
R3

dk
X
l∈Z

αlðkÞBlðkÞB†
l ðkÞ þOðκ3Þ; ð94Þ

where Vy ¼
R
R3 dy is an infinite contribution to the

Hamiltonian, which is associated with the (divergent)
vacuum energy. This problem may be highly complex to
treat when gravity is present [51]. However, as gravity is
absent in our case, we can simply drop it [52]. Moreover,
since the Hamiltonian is treated as the generator of the
dynamics of our system, Hamilton’s equations will not be
affected by this term because it is merely a constant.
Therefore, the Hamilton equations for this Hamiltonian
with the Poisson brackets (91) are

hBjðkÞ ¼ iαjðkÞBjðkÞ and hB†
jðkÞ ¼ −iαjðkÞB†

jðkÞ:
ð95Þ

C. The energy-momentum tensor

In [53], an expression of the energy-momentum tensor for
the homogeneous infinite-order p-adic Lagrangian is
obtained in a nonclosed form (i.e., expressed as an infinite
series). Since our formalism allows us to calculate both the
canonical energy-momentum tensor T̂ ab and theBelinfante-
Rosenfeld energy-momentum tensor Θab in a closed form
(i.e., with the infinite series summed), we now particuliarize
these expressions for the perturbative p-adic open string
case, as we did for nonlocal dispersive media [54].
Before calculating these tensors, we must take into

account these two observations:
(a) The Lagrangian density (62) is Poincaré invariant if

the ψ field transforms as a scalar, i.e., ψ 0ðx0Þ ¼ ψðxÞ.
However, note that the ϕ field cannot be a Poincaré
scalar because its definition (63) is not. Therefore, we
require that the ψ field transforms as a scalar to obtain
the transformation rule of ϕ that leaves the Lagrangian
density (66) Poincaré invariant (i.e., with Wb ¼ 0).
Indeed, this transformation is—see the Appendix A. 5
for details—

δϕðxÞ ¼ −ðεc þωcbxbÞ∂cϕðxÞ þωab½2rδ4½aδib�∂i
_ϕðxÞ�:
ð96Þ

As one can observe, the last term causes the ϕ field not
to be a Poincaré scalar. In fact, this term will contribute
to the spin part. Fortunately, due to the structure of this
additional term, we do need to recalculate Sec. III A
since the structure of (96) is equivalent to (34). We just

need to change the ωabMA
B½ab�ϕ

b term by the last term
of (96).

(b) Both the canonical and the Belinfante-Rosenfeld
energy-momentum tensor are conserved only on shell,
namely, at any solution of (69); therefore, we have to
consider the p-adic Lagrangian density and λðϕ; y; zÞ
on shell to obtain them; that is,

ΞðTyϕ; yÞ ≔ LðosÞðTyϕ; yÞ ¼ −
1

6
½ðE � ϕÞðyÞ�3 ð97Þ

and

ϒðy;zÞ≔ λðosÞðϕ;y;zÞ

¼ 1

2
½Eðy− zÞðT �ϕÞðyÞ−T ðy− zÞðE �ϕÞðyÞ�;

ð98Þ
respectively. As mentioned above, since the Lagran-
gian density does not explicitly depend on the space-
time coordinates, the canonical energy-momentum
tensor T̂ ab coincides with T ab. The same is true for
the spin tensors Ŝacb and Sacb.

Thus, bearing in mind the second observation and using
(97) and (98), the canonical energy-momentum tensor in
closed form is

T a
bðϕ; yÞ ¼ −ΞðTyϕ; yÞδba

þ
Z

1

0

ds
Z
R4

dzϒðyþ ½s − 1�z; yþ szÞ

× zbϕjaðyþ szÞ: ð99Þ

Now, using (98) and bearing in mind both the first and
second observation, the spin current (38) is

Sac
bðϕ;yÞ¼2

Z
R4

dzzb
Z

1

0

dsϒðyþ½s−1�z;yþszÞ

× ½sz½cϕja�ðyþszÞþ2rδ4½cδ
i
a� _ϕjiðyþszÞ�: ð100Þ

With the last expression (100), we find that Wcbaðϕ; yÞ is

Wcba¼
Z
R4

dz
Z

1

0

dsϒðyþ½s−1�z;yþszÞ

× ½sðzazbδcg−zazcδbgÞϕjgðyþszÞ
þ2rðzðaηbÞ4ηcf−zðaηbÞfη4c−zcη4½aηb�fÞ _ϕjfðyþszÞ�;

ð101Þ

where we have used the fact that η4½cηa�i _ϕjiðyþ szÞ ¼
η4½cηa�f _ϕjfðyþ szÞ because of the antisymmetry. Finally,
deriving with respect to yc of Eq. (101), and using the
property zcAjcðyþ szÞ ¼ d

ds Aðyþ szÞ and an integration
by parts, we obtain
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∂cWcba ¼ −
Z
R4

dz

�
zaϒðy; yþ zÞϕjbðyþ zÞ þ 2rη4½aðϒðy; yþ zÞ _ϕjb�ðyþ zÞ −ϒðy − z; yÞ _ϕjb�ðyÞÞ

−
Z

1

0

ds½szazb∂c½ϒðyþ ½s − 1�z; yþ szÞϕjcðyþ szÞ� þ zaϒðyþ ½s − 1�z; yþ szÞϕjbðyþ szÞ

þ 2rzðaðηbÞ4∂f½ϒðyþ ½s − 1�z; yþ szÞ _ϕjfðyþ szÞ� − ∂4½ϒðyþ ½s − 1�z; yþ szÞ _ϕjbÞðyþ szÞ�Þ�
�
: ð102Þ

Therefore, putting (99) and (102) together, we obtain the Belinfante-Rosenfeld tensor in closed form,

Θabðϕ; yÞ ¼ −ΞðTyϕ; yÞδab −
Z
R4

dz

�
ϒðy; yþ zÞzaϕjbðyþ zÞ þ 2rη4½aðϒðy; yþ zÞ _ϕjb�ðyþ zÞ −ϒðy − z; yÞ _ϕjb�ðyÞÞ

−
Z

1

0

ds½szazb∂c½ϒðyþ ½s − 1�z; yþ szÞϕjcðyþ szÞ� þ 2ϒðyþ ½s − 1�z; yþ szÞzðaϕjbÞðyþ szÞ

þ 2rzðaðηbÞ4∂f½ϒðyþ ½s − 1�z; yþ szÞ _ϕjfðyþ szÞ� − ∂4½ϒðyþ ½s − 1�z; yþ szÞ _ϕjbÞðyþ szÞ�Þ�
�
: ð103Þ

It is worth mentioning that the Belinfante-Rosenfeld tensor is dependent on the solution that the theory might present. For
this reason, we use the perturbative solution (86) to obtain explicitly its components.
The first element to be calculated is the (4,4)-component, which indicates the energy density of the system associated to

the perturbative solution. Therefore, the energy density is

Θ4
4ðϕ; yÞ ¼ −ΞðTyϕ; yÞ þ

Z
1

0

ds
Z
R4

dzz4fϒðyþ ½s − 1�z; yþ szÞ _ϕðyþ szÞ − szi∂i½ϒðyþ ½s − 1�z; yþ szÞ _ϕðyþ szÞ�

− ∂i½sz4ϒðyþ ½s − 1�z; yþ szÞϕjiðyþ szÞ − 2rϒðyþ ½s − 1�z; yþ szÞ _ϕjiðyþ szÞ�g; ð104Þ

and including

ϒðyþ ½s − 1�z; yþ szÞ ¼ 1

2
½δðξÞG3ðzÞðT � ϕÞðyþ ½s − 1�zÞ − δðzÞG1ðξÞðE � ϕÞðyþ ½s − 1�zÞ�; ð105Þ

it simplifies as

Θ4
4ðϕ; yÞ ¼ −ΞðTyϕ; yÞ −

1

2

Z
1

0

ds
Z
R
dξξG1ðξÞfðE � ϕÞðy; τ þ ½s − 1�ξÞ _ϕðy; τ þ sξÞ

− ∂i½ðE � ϕÞðy; τ þ ½s − 1�ξÞðsξϕjiðy; τ þ sξÞ − 2r _ϕjiðy; τ þ sξÞÞ�g: ð106Þ

Taking (A14), (A10), and (86), and computing the integrals, it becomes—after a tedious computation—

Θ4
4ðyÞ ¼ 1

6
þ κΘ

1

4
4ðyÞ þ κ2Θ

2

4
4ðyÞ þOðκ3Þ; ð107Þ

where

Θ
1

4
4ðyÞ ≔ 1

2

Z
R3

dk
ð2πÞ3

X
ν

AνðkÞeiðανðkÞτþk·yÞ ×
�
1 − e−rjkj2 −

jkj2
2ανðkÞ2

�
e−rjkj2 þ rανðkÞ2 −

1

2

��
ð108Þ

and
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Θ
2

4
4ðyÞ ≔ 1

2

Z
R6

dkdp
ð2πÞ6

X
ν;μ

AνðkÞAμðpÞeið½ανðkÞþαμðpÞ�τþ½kþp�·yÞ
�
1 − e−rðkþpÞ2

fνμðk;pÞ
−

ðkþ pÞ2
fνμðk;pÞ½ανðkÞ þ αμðpÞ�2

× ðe−r½ανðkÞþαμðpÞ�2 þ 2r½ανðkÞ þ αμðpÞ�2 − 1Þ þ k · ðkþ pÞe−2rjpj2
2½ανðkÞ þ αμðpÞ�2

ðe−rðjkj2−jpj2Þ þ 2rανðkÞ½ανðkÞ þ αμðpÞ� − 1Þ

þ ανðkÞe−rjpj2
½ανðkÞ þ αμðpÞ�

ðe−rαμðpÞ2 − e−rανðkÞ2Þ
�
: ð109Þ

From the last two expression, it is easy to prove that, if we calculate the total energy of the system at τ ¼ 0, it coincides with
the Hamiltonian (94) since

Z
R3

dyΘ
1

4
4ðy; 0Þ ¼ 0 ð110Þ

and

E −
Vy

6
¼ h −

Vy

6
¼

Z
R3

dyΘ
2

4
4ðy; 0Þ ¼

Z
R3

dk
X
l∈Z

αlðkÞBlðkÞB†
l ðkÞ; ð111Þ

where Vy ¼
R
R3 dy is the vacuum energy. It is important to highlight this result. Note that the total energy of the system (or

the Hamiltonian for this case) is not affected by choice of tensor. As we have just shown, either through the canonical or the
Belinfante-Rosenfeld energy-momentum tensor, the result remains the same, as might be expected since the total energy of
the system is not modified.
The second element is the ði; jÞ-component, which indicates the pressure of the system. Thus, the pressure is

Θijðϕ; yÞ ¼ −ΞðTyϕ; yÞδij −
Z
R4

dz

�
ϒðy; yþ zÞziϕjjðyþ zÞ −

Z
1

0

ds½szizj × ∂c½ϒðyþ ½s − 1�z; yþ szÞϕjcðyþ szÞ�

þ 2ϒðyþ ½s − 1�z; yþ szÞzðiϕjjÞðyþ szÞ þ 2rzði∂4½ϒðyþ ½s − 1�z; yþ szÞ _ϕjjÞðyþ szÞ��
�
; ð112Þ

where including (105) simplifies as

Θijðϕ; yÞ ¼ −ΞðTyϕ; yÞδij −
1

2
ðT � ϕÞðyÞ

Z
R3

dzG3ðzÞziϕjjðy þ z; τÞ

þ 1

2

Z
1

0

ds
Z
R3

dzG3ðzÞfszizj∂c½ðT � ϕÞðy þ ðs − 1Þz; τÞϕjcðy þ sz; τÞ�

þ 2ðT � ϕÞðy þ ðs − 1Þz; τÞzðiϕjjÞðy þ sz; τÞ þ 2rzði∂4½ðT � ϕÞðy þ ðs − 1Þz; τÞ _ϕjÞðy þ sz; τÞ�g: ð113Þ

Again, taking (86), (A13), and (A10), the last expression becomes

ΘijðyÞ ¼ δij

6
þ κΘ

1
ijðyÞ þOðκ2Þ; ð114Þ

where

Θ
1
ijðyÞ ¼ 1

2

Z
R3

dk
ð2πÞ3

X
ν

AνðkÞeiðανðkÞτþk·yÞ
�
ðδij þ 2rkikjÞe−rjkj2 þ 2

kikj

jkj2
�
ðe−rjkj2 − 1Þð1 − rανðkÞ2Þ

þ jkj2 − ανðkÞ2
jkj2 ð1 − ½1þ rjkj2�e−rjkj2Þ

��
: ð115Þ

Again, it is important to highlight this result. Note that the tensor is completely symmetric in ði; jÞ-indices due to the
Belinfante-Ronsenfeld symmetrization technique, as expected. Therefore, this fact ensures that we can use this tensor in
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theories where it is needed to be symmetric, for instance, general relativity. Likewise, if we calculate the pressure exerted on
a spherical surface A of radius R at τ ¼ 0, we get

Σi ≔
Z
A
Θijðy; 0Þd2Aj ¼ κΣ

1
i þOðκ2Þ; ð116Þ

where

Σ
1
i ≔ 4πi

Z
R3

dk
ð2πÞ3

X
ν

AνðkÞ
k̂i

jkj2 ½sinðRjkjÞ − jkjR cosðRjkjÞ�
�
1

2
ð1þ 2rjkj2Þe−rjkj2 þ ðe−rjkj2 − 1Þð1 − rανðkÞ2Þ

þ jkj2 − ανðkÞ2
jkj2 ð1 − ½1þ rjkj2�e−rjkj2Þ

�
; ð117Þ

and k̂i is the unitary vector of ki. One might think that the pressure is imaginary because of the i factor in front; however, it
can be proved that, using Eqs. (79) and (81), it is indeed a real value, as expected.
Making the analogy with the electromagnetic case, the last two remaining elements are the elements of the Poynting

vector,

Θi4ðϕ; yÞ ¼
Z
R4

dz

�
ϒðy; yþ zÞzi _ϕðyþ zÞ þ

Z
1

0

ds½sz4zi∂c½ϒðyþ ½s − 1�z; yþ szÞϕjcðyþ szÞ�

þ2ϒðyþ ½s − 1�z; yþ szÞzð4ϕjiÞðyþ szÞ − 2rzði∂j½ϒðyþ ½s − 1�z; yþ szÞ _ϕjjÞðyþ szÞ��
�

ð118Þ

and

Θ4iðϕ; yÞ ¼
Z
R4

dz

�
−ϒðy; yþ zÞz4ϕjiðyþ zÞ þ 2r½ϒðy; yþ zÞ _ϕjiðyþ zÞ −ϒðy − z; yÞ _ϕjiðyÞ�

þ
Z

1

0

ds½sz4zi∂c½ϒðyþ ½s − 1�z; yþ szÞϕjcðyþ szÞ� þ 2ϒðyþ ½s − 1�z; yþ szÞzð4ϕjiÞðyþ szÞ

− 2rzði∂j½ϒðyþ ½s − 1�z; yþ szÞ _ϕjjÞðyþ szÞ��
�
; ð119Þ

respectively. Including (105) and

ϒðy; yþ zÞ ¼ 1

2
½δðξÞG3ðzÞðT � ϕÞðyÞ − δðzÞG1ðξÞðE � ϕÞðyÞ�;

ϒðy − z; yÞ ¼ 1

2
½δðξÞG3ðzÞðT � ϕÞðy − zÞ − δðzÞG1ðξÞðE � ϕÞðy − zÞ�; ð120Þ

they become

Θi4ðϕ; yÞ ¼ 1

2
ðT � ϕÞðyÞ

Z
R3

dzziG3ðzÞ _ϕðy þ z; τÞ − 1

2

Z
1

0

ds

�Z
R
dξξG1ðξÞðE � ϕÞðy; τ þ ðs − 1ÞξÞϕjiðy; τ þ sξÞ

þ
Z
R3

dzziG3ðzÞðT � ϕÞðy þ ðs − 1Þy; τÞ _ϕðy þ sz; τÞ

þ 2r
Z
R3

dzG3ðzÞzði∂j½ðT � ϕÞðy þ ðs − 1Þz; τÞ _ϕjjÞðy þ sy; τÞ�
�

ð121Þ

and
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Θ4iðϕ; yÞ ¼ ðE � ϕÞðyÞ
Z
R
dξG1ðξÞ

�
1

2
ξϕjiðy; τ þ ξÞ − r _ϕjiðy; τ þ ξÞ

�

þ r _ϕjiðyÞ
�Z

R
dξG1ðξÞðE � ϕÞðy; τ − ξÞ −

Z
R3

dzG3ðzÞðT � ϕÞðy − z; τÞ
�

þ rðT � ϕÞðyÞ
Z
R3

dzG3ðzÞ _ϕjiðy þ z; τÞ − 1

2

Z
1

0

ds

�Z
R
dξξG1ðξÞðE � ϕÞðy; τ þ ðs − 1ÞξÞϕjiðy; τ þ sξÞ

þ
Z
R3

dzziG3ðzÞðT � ϕÞðy þ ðs − 1Þz; τÞ _ϕðy þ sz; τÞ

þ 2r
Z
R3

dzG3ðzÞzði∂j½ðT � ϕÞðy þ ðs − 1Þz; τÞ _ϕjjÞðy þ sy; τÞ�
�
: ð122Þ

As above, taking (86), (A13), and (A10), we finally obtain—after a tedious computation—

Θ4iðyÞ ¼ Θi4ðyÞ ¼ κΘ
1
i4ðyÞ þ κ2Θ

2
i4ðyÞ þOðκ3Þ; ð123Þ

where

Θ
1

i4ðyÞ ¼ κ

2

Z
R3

dk
ð2πÞ3

X
ν

AνðkÞeiðανðkÞτþk·yÞki ×
�
ανðkÞ
jkj2 ð1 − e−rjkj2Þ þ 1

ανðkÞ
ð1 − 2e−rjkj2Þ − 2rανðkÞ

�
ð124Þ

and

Θ
2
i4ðyÞ ¼ 1

2

Z
R6

dkdp
ð2πÞ6

X
ν;μ

AνðkÞAμðpÞeið½ανðkÞþαμðpÞ�τþ½kþp�·yÞ

×

�
ki
�

e−rjpj2

ανðkÞ þ αμðkÞ
½e−rαμðkÞ2 − e−rανðkÞ2 � − 4rανðkÞe−rðjkj2þjpj2Þ

�

þ ðkþ pÞiðανðkÞ þ αμðpÞÞ
fνμðk;pÞ

�
2r½1 − 2e−rjkþpj2 � þ 1 − e−rðανðkÞþαμðpÞÞ2

ðανðkÞ þ αμðpÞÞ2
þ e−rjkþpj2 − 1

jkþ pj2
��

: ð125Þ

Now, if we integrate the whole volume at τ ¼ 0, we obtain the i-components of linear momentum Pi,

Pi ≔
Z
R3

dyΘi4ðy; 0Þ ¼ −2rκ2
Z
R3

dk
ð2πÞ3

X
μ≠ν0;ν

AνðkÞAμð−kÞkiανðkÞe−2rjkj2 þOðκ3Þ: ð126Þ

With Eqs. (79) and (81), it can be proved that the last
expression is real, as expected. Therefore, everything holds.

VI. CONCLUSION

We have considered field theories governed by nonlocal
Lagrangians. They differ from local Lagrangian fields
usually found in textbooks especially concerning the initial
data problem. In the local (first-order) case, the field
equations form a partial differential system with a well-
posed initial value problem, and the Cauchy-Kowalevski
theorem [39] ensures the existence of a solution determined
by the field itself and its first time derivative on a
noncharacteristic hypersurface. In contrast, the field

equations in the nonlocal case are of integrodifferential
type—usually in convolutional form—and there is no
general theorem of existence and uniqueness of solutions
for such a system.
In our approach, as we did in the previous paper on

nonlocal mechanics [36], the nonlocal field equations are
taken as constraints selecting the dynamic fields as a
subclass D among all kinematic ones K, and the spacetime
evolution is considered as the trivial correspondence
ϕðyÞ → ϕðyþ xÞ; i.e., it consists in advancing the “initial”
spacetime point an amount x.
We have then posed the variational problem and derived

the Lagrange field equations. It has the peculiarity that,
because the nonlocality makes all the values of the field
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intervene in the action integral S, the support of the action
integral has to be overall R4. This fact could lead to the
action integral S being infinite. To avoid this issue, the field
variations considered are of bounded support.
We have then generalized Noether’s theorem to the case

of a nonlocal Lagrangian and defined the energy density in
a closed form. Considering then the structure of the latter,
we make an educated guess to define the canonical
momenta which we use to set up a Hamiltonian formalism
for the nonlocal field. Notice that this could not be done in
the usual manner, i.e., a Legendre transformation consisting
of replacing the field time derivatives with the conjugated
momenta.
We start by considering an almost trivial Hamiltonian

formalism on the kinematic phase space Γ0. We then see
that the Hamiltonian flow preserves a submanifold that is
diffeomorphic to the extended dynamic space D0. This fact
enables us to translate the Hamiltonian formalism in the
larger space Γ0 onto D0. We opt for the symplectic
formalism instead of Dirac’s method [55] for constrained
Hamiltonian systems since it is better suited by means of
pullback techniques. In this way, provided that we are able
to find an appropriate coordination of the dynamic space,
we can derive the formulas for the Hamiltonian and the
symplectic form. This fact implies using the field equations
as the constraints defining that space; therefore, it has to be
done specifically for each particular case.
We have then applied our result to the p-adic open string.

We have focused on the perturbative solutions allowed by
this model to obtain both the Hamiltonian and the sym-
plectic form. Furthermore, the canonical momentum
energy tensor and the Belinfante-Rosenfeld tensor were
calculated in closed form, and the components of the
Belinfante-Rosenfeld tensor were explicitly computed for
the perturbative solution. This model has been previously
studied in the literature—see for instance [53]—by other
methods. They rely on transforming the nonlocal
Lagrangian into an infinite order Lagrangian by replacing
the whole trajectories in the nonlocal Lagrangian with a
formal Taylor series (that includes all the derivatives of the
coordinates) and then dealing with it as a higher-order
Lagrangian with n ¼ ∞. The value of those methods might
only be heuristic unless the convergence of the series is
proved or the “convergence” for n → ∞ is suitably defined.
Furthermore, these methods are cumbersome in that they
often imply handling infinite series with many subindices,
square ∞ ×∞ matrices, formal inverses, regularizations,
etc. In contrast, our approach is based on functional
methods, and as it involves integrals instead of series, is
much easier to handle.
The same results here obtained could have been derived

by converting the nonlocal Lagrangian into a Lagrangian
depending on infinitely many derivatives by means of
replacing the field in the nonlocal Lagrangian with a formal
Taylor series. Processing then the infinite-order Lagrangian

as if it were a Lagrangian of order n but replacing nwith∞,
one can obtain an extension of Noether’s theorem, and as a
consequence of Poincaré invariance, derive the energy-
momentum and angular-momentum tensors in the form of
infinite series, which can be summed [28,56] to obtain
integral expressions over the field derivatives up to a finite
order. In Ref. [57], we have applied this procedure to the
nonlocal Lagrangian of the electromagnetic field in a
dispersive medium. We have not taken this path here
because, on the one hand, being based on formal, ques-
tionable convergence Taylor series, it is a purely heuristic
method and lacks of mathematical rigor, and on the other
hand, it is much more tedious.
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APPENDIX

As far as this article is concerned, we use the following
convention for the Fourier transform:

g̃ðkÞ ¼ F ½g�ðkÞ ¼
Z
Rn

dxgðxÞe−ik·x and

gðxÞ ¼ F−1½g̃�ðxÞ ¼ 1

ð2πÞn
Z
Rn

dkg̃ðkÞeik·x: ðA1Þ

1. Equation (69) derived from (68)

Equation (68) amounts to

E � X ¼ 0; where X ≔ T � ϕ − ðE � ϕÞp:

For any fixed value of t, ϕðx; tÞ belongs to the class
θMðR3Þ of slowly growing smooth functions; i.e., it grows
more slowly than any power of jxj at spatial infinity.
This class is a subset of the space of tempered distribu-
tions S0ðR3Þ, and as a consequence of this fact,
ðT � ϕÞðx; tÞ; ðE � ϕÞðx; tÞ and Xðx; tÞ also belong to
θMðR3Þ for any fixed value of t [47].
We now prove that E � X ¼ 0 implies that X ¼ 0.

Indeed, for any fixed t, XðtÞðxÞ ≔ Xðx; tÞ is a tempered
distribution. Moreover, as G3 ∈ SðR3Þ—the space of basic
functions—the convolution theorem holds [47], and

G3 � XðtÞ ∈ θMðR3Þ and

F ðG3 � XðtÞÞ ¼ F ðG3ÞF ðXðtÞÞ ∈ S0ðR3Þ;

where F means the Fourier transform in S0ðR3Þ.
Therefore, E � X ¼ 0 implies that G3 � XðtÞ ¼ 0, whose

Fourier transform yields
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e−rk
2

F ðXðtÞÞ ¼ 0;

that is, ∀φðkÞ ∈ SðR3Þ; ðF ðXðtÞÞ; e−rk2

φðkÞÞ ¼ 0. This
fact does not yet imply that F ðXðtÞÞ ¼ 0 because not all

ψ ∈ SðR3Þ can be written as e−rk
2

φðkÞ. However, since
S0 ⊂ D0—tempered distributions are distributions—and as
for any ρðkÞ ∈ DðR3Þ, then erk

2

ρðkÞ also has compact
support, we have that

ðF ðXðtÞÞ; ρðkÞÞ ¼ ðe−rk2

F ðXðtÞÞ; erk2

ρðkÞÞ ¼ 0:

Now, the space of test functions D is dense in the space of
basic functions S [47]; i.e., any ψ ∈ S is the limit of a
sequence fρn ∈ D; n ∈ Ng; and therefore,

ðF ðXðtÞÞ;ψðkÞÞ ¼ lim
n→∞

ðF ðXðtÞÞ; ρnðkÞÞ ¼ 0:

▪

2. The convergence of the solution (80)
for the p-adic open string

The space integral in (80) might diverge because the
imaginary part of ανðkÞ makes that eitανðkÞ grows expo-
nentially for large k and t < 0. We see that, despite this
fact, the integral does converge. Indeed,

jΦ0ðx; tÞj ¼
1

ð2πÞ3
				
Z
R3

dk
X
ν

AνðkÞei½ανðkÞtþk·x�
				

≤
Z
R3

dk
X
ν

jAνðkÞje−tsανIðkÞ; ðA2Þ

where we have written ανðkÞ ¼ s½ανRðkÞ þ iανIðkÞ�, with
ν ¼ ðs; nÞ; n ∈ Z,

ανRðkÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 − 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjkj2 − 2Þ2 þ ð2nπr Þ2

q
2

vuut
and

ανIðkÞ ≔ signðnÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jkj2 þ 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjkj2 − 2Þ2 þ ð2nπr Þ2

q
2

vuut
:

If t s signðnÞ < 0, the exponent in the right-hand side of
(A2) is jtανIðkÞj > 0, which is positive. However, it can be
easily checked that limjkj→∞ ανIðkÞ ¼ 0. Hence,

∀ ε> 0; ∃K > 0 such that jkj >K ⇒ jtανIðkÞj < ε:

That is, if jkj is large enough, the exponential is bounded
by the constant eε, where it follows that jΦ0ðx; tÞj < ∞,
provided that

P
ν jAνðkÞj is summable.

3. Derivation of the symplectic form for the p-adic
open string

In this subsection of the appendix, we give the details of
the derivation of the symplectic form (89) from (88). We
take the perturbative solution (86) up to second order in κ
and obtain that

δϕðyÞ ¼ κ

Z
R3

dk
ð2πÞ3

X
ν

δAνðkÞ
�
ei½ανðkÞτþk·y�

þ 2κ

Z
R3

dp
ð2πÞ3

X
μ

AμðpÞ
eið½ανðkÞþαμðpÞ�τþ½kþp�·yÞ

fνμðk;pÞ
�

þOðκ3Þ:

With the latter, we find that S1ðy;τ;sÞ≔ðE�δϕÞðy;τ−sÞ∧
δϕðy;τÞ is

S1ðy; τ; sÞ ¼ κ2
Z
R6

dkdq
ð2πÞ6

X
ν;μ

δAνðkÞ ∧ δAμðqÞe−rjkj2eið½ανðkÞþαμðqÞ�τ−ανðkÞsþ½kþq�·yÞ

þ 2κ3
Z
R9

dqdpdk
ð2πÞ9

X
ν;μ;σ

δAνðkÞ ∧ δAμðqÞAσðpÞ
�
e−rjkj2−iανðkÞs

fμσðq;pÞ

þ e−rjkþpj2−i½ανðkÞþασðpÞ�s

fνσðk;pÞ
�
eið½αμðqÞþανðkÞþασðpÞ�τþ½kþqþp�·yÞ þOðκ4Þ: ðA3Þ

Taking into account that
R
R3 dyeik·y ¼ ð2πÞ3δð3ÞðkÞ, the integration over y of (A3) isZ

R
dyS1ðy; τ; sÞ ¼ κ2

Z
R3

dk
ð2πÞ3

X
ν;μ

δAνðkÞ ∧ δAμð−kÞe−rjkj2þi½ðανðkÞþαμðkÞÞτ−ανðkÞs�

þ 2κ3
Z
R6

dkdp
ð2πÞ6

X
ν;μ;σ

δAνðkÞ ∧ δAμð−k − pÞAσðpÞ
�

e−rjkj2−iανðkÞs

fμσð−k − p;pÞ

þ e−rjkþpj2−i½ανðkÞþασðpÞ�s

fνσðk;pÞ
�
ei½αμðkþpÞþανðkÞþασðpÞ�τ þOðκ4Þ;
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where we have used that αμð−kÞ ¼ αμðkÞ. Then, integrating over τ, we obtain

Z
s

0

dτ
Z
R3

dyS1ðy; τ; sÞ ¼ κ2
Z
R3

dk
ð2πÞ3

X
ν

δAνðkÞ ∧ δAν0 ð−kÞe−rjkj2se−iανðkÞs

þ iκ2
Z
R3

dk
ð2πÞ3

X
μ≠ν0

δAνðkÞ ∧ δAμð−kÞ
e−rjkj2 ½e−isανðkÞ − eisαμðkÞ�

ανðkÞ þ αμðkÞ

þ 2iκ3
Z
R6

dpdk
ð2πÞ6

X
ν;μ;σ

δAνðkÞ ∧ δAμð−k − pÞAσðpÞ
ανðkÞ þ ασðpÞ þ αμðkþ pÞ

×

�
e−rjkj2ðe−isανðkÞ − eis½αμðkþpÞþασðpÞ�Þ

fμσð−k − p;pÞ −
e−rjkþpj2ðeisαμðkþpÞ − e−is½ανðkÞþασðpÞ�Þ

fνσðk;pÞ
�
þOðκ4Þ;

where we have included that

Z
s

0

dτeiaτ ¼ i
a
ð1 − eiasÞ; a ≠ 0: ðA4Þ

Finally, substituting (A4) into (88), we get

ω ¼ 2irκ2
Z
R3

dk
ð2πÞ3

X
ν

ανðkÞe−2rjkj2δAνðkÞ ∧ δAν0 ð−kÞ

þOðκ4Þ; ðA5Þ

where we have included that ανðkÞ is a solution of (77),

Z
R
dsG1ðsÞe−iανðkÞs ¼ 2e−rjkj2 ;Z

R
dsG1ðsÞse−iανðkÞs ¼ −4irανðkÞe−rjkj2 ; ðA6Þ

and

e−rjqj2

fνσðk;pÞ
Z
R
dsG1ðsÞðe−is½ανðkÞþασðpÞ� − e−isαμðqÞÞ

¼ e−rðjqj2þjkj2þjpj2Þ:

Now, using that A−νð−kÞ ¼ ĀνðkÞ and the fact that k is
a dummy variable, the expression (A5) becomes

ω¼4rκ2
Z
R3

dk
ð2πÞ3e

−2rjkj2X
l∈Z

iαlðkÞδAðþ;lÞðkÞ∧δĀðþ;−lÞðkÞ

þOðκ4Þ;

where αlðkÞ ≔ αðþ;lÞðkÞ. Introducing the new variables

BlðkÞ≔
2κe−rjkj2

ð2πÞ3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
rαlðkÞ

p
Aðþ;lÞðkÞ and B†

l ðkÞ≔ B̄−lðkÞ;

ðA7Þ

we finally arrive at

ω ¼ i
Z
R3

dk
X
l∈Z

δBlðkÞ ∧ δB†
l ðkÞ þOðκ4Þ: ðA8Þ

We have thus obtained a system of canonical coordinates,
namely, fBlðkÞ; B†

jðk0Þgl;j∈Z, whose elementary Poisson
brackets are

fBlðkÞ; B†
jðk0Þg ¼ iδljδðk − k0Þ þOðκ4Þ;

fBlðkÞ; Bjðk0Þg ¼ fB†
l ðkÞ; B†

jðk0Þg ¼ Oðκ4Þ:

4. Derivation of the Hamiltonian for the p-adic
open string

Here, we show the details of the derivation of the
Hamiltonian (94) from (92). Taking the time derivative
of the perturbative solution (86), we find

_ϕðy; ξ − sÞ ¼ iκ
ð2πÞ3

Z
R
dk

X
ν

AνðkÞανðkÞei½ανðkÞðξ−sÞþk·y�

þ iκ2

ð2πÞ6
Z
R6

dkdp
X
ν;μ

AνðkÞAμðpÞ
fνμðk;pÞ

× ½ανðkÞ þ αμðpÞ�ei½ανðkÞþαμðpÞ�ðξ−sÞþiðkþpÞ·y

þOðκ3Þ: ðA9Þ
Now, the convolutional part in (92) is

ðE �ϕÞðy;ξÞ¼ 1þ κ

ð2πÞ3
Z
R3

dk
X
ν

AνðkÞe−rjkj2þi½ανðkÞξþk·y�

þ κ2

ð2πÞ6
Z
R6

dkdp
X
ν;μ

AνðkÞAμðpÞ
fνμðk;pÞ

×e−rjkþpj2þi½ανðkÞþαμðpÞ�ξþiðkþpÞ·y: ðA10Þ
Combining both (A9) and (A10) and defining S2ðξ; sÞ ≔R
R3 dy _ϕðy; ξ − sÞðE � ϕÞðy; ξÞ, we get
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S2ðξ; sÞ ¼ iκ
X
ν

ανAνeiανðξ−sÞ þ iκ2
Z
R3

dk
ð2πÞ3

X
ν;μ

AνðkÞAμð−kÞei½ανðkÞþαμðkÞ�ξ

×

�
ανðkÞ þ αμðkÞ
fνμðk;−kÞ

e−is½ανðkÞþαμðkÞ� þ ανðkÞe−rjkj2−isανðkÞ
�
; ðA11Þ

where αν ≔ ανð0Þ, Aν ≔ Aνð0Þ, and we have used that ανð−kÞ ¼ ανðkÞ. Then, integrating over ξ, we obtain

Z
s

0

dξS2ðξ; sÞ ¼ κ
X
ν

Aνð1 − e−iανsÞ þ iκ2
Z
R3

dk
ð2πÞ3

X
ν

AνðkÞAν0 ð−kÞs
�
ανðkÞe−rjkj2−isανðkÞ −

e−2rjkj2

rανðkÞ
�

þ κ2
Z
R3

dk
ð2πÞ3

X
μ≠ν0

AνðkÞAμð−kÞ
�

1

fνμðk;−kÞ
þ ανðkÞe−rjkj2þisαμðkÞ

ανðkÞ þ αμðkÞ
�
ð1 − e−is½ανðkÞþαμðkÞ�Þ;

where we have included (A4). Finally, we have that the second term in the right-hand side of (92) is

1

2

Z
R
dsG1ðsÞ

Z
s

0

dξS2 ¼ −
κ

2

X
ν

Aν þ
κ2

ð2πÞ3
Z
R3

dk

�X
ν

2rανðkÞ2e−2rjkj2AνðkÞAνð−kÞ

−
1

2

X
μ≠ν

AνðkÞAμð−kÞ
�

1

fνμðk;−kÞ
þ e−2rjkj2

��
; ðA12Þ

where we have used (A6).
Now, to calculate the Lagrangian contribution to (92), we first use (A10) to obtain that

ðT � ϕÞðyÞ ¼ 1þ 2κ

ð2πÞ3
Z
R3

dk
X
ν

AνðkÞe−rjkj2þiðανðkÞτþk·yÞ

þ κ2

ð2πÞ6
Z
R6

dkdp
X
ν;μ

AνðkÞAμðpÞ
fνμðk;pÞ

e−r½ανðkÞþαμðpÞ�2þið½ανðkÞþαμðqÞ�τþðkþpÞ·yÞ ðA13Þ

and

1

3
½ðE � ϕÞðyÞ�3 ¼ 1

3
þ κ

ð2πÞ3
Z
R3

dk
X
ν

AνðkÞe−rjkj2þiðανðkÞτþk·yÞ

þ κ2

ð2πÞ6
Z
R6

dkdp
X
ν;μ

AνðkÞAμðpÞ
fνμðk;pÞ

½fνμðk;pÞ þ e−2rk·p�e−rðjkj2þjpj2Þþið½ανðkÞþαμðpÞ�τþðkþpÞ·yÞ ðA14Þ

up to κ3 terms.
Substituting the latter, (A10) and (A13) into (66), we obtain that

LðTyϕ; yÞ ¼ −
1

6
−

κ

2ð2πÞ3
Z
R3

dk
X
ν

AνðkÞe−rjkj2þiðανðkÞτþk·yÞ

−
κ2

2ð2πÞ6
Z
R6

dkdp
X
ν;μ

AνðkÞAμðpÞ
�
1þ e−2rk·p

fνμðk;pÞ
�
e−rðjkj2þjpj2Þþið½ανðkÞþαμðpÞ�τþðkþpÞ·yÞ;

and then, integrating over y and evaluating at τ ¼ 0, the Lagrangian (93) becomes

LðϕÞ ¼ −
Vy

6
−
κ

2

X
ν

Aν −
κ2

2ð2πÞ3
Z
R3

dk
X
μ≠ν0

AνðkÞAμ0 ð−kÞ
�

1

fνμðk;−kÞ
þ e−2rjkj2

�
þOðκ3Þ; ðA15Þ

where Vy stands for
R
R3 dy. Finally, by adding together (A12) and (A15), we arrive at the Hamiltonian
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h ¼ Vy

6
þ κ2

ð2πÞ3
Z
R3

dk
X
ν

2rανðkÞ2e−2rjkj2AνðkÞAν0 ð−kÞ

þOðκ3Þ:

Now, using that A−νð−kÞ ¼ ĀνðkÞ and the fact that k is a
dummy variable, we easily get that

h¼Vy

6
þ4rκ2

Z
R3

dk
ð2πÞ3e

−2rjkj2X
l∈Z

αlðkÞ2Aðþ;lÞðkÞĀðþ;−lÞðkÞ

þOðκ3Þ; ðA16Þ

that, using the variables (A7), becomes

h ¼ Vy

6
þ
Z
R3

dk
X
l∈Z

αlðkÞBlðkÞB†
l ðkÞ þOðκ3Þ: ðA17Þ

5. The ϕ transformation rule for Poincaré invariance

Let us find the transformation rule of ϕ to leave the
Lagrangian density (67) Poincaré invariant. Since ψ is a
scalar, by Eq. (34), we get

δψðxÞ ¼ −ðεc þ ωc
bxbÞ∂cψðxÞ: ðA18Þ

In order to correctly define the e−r□ operator, our
dynamic variables are the ϕ fields. These fields are related
to the fields ψ by means of Eq. (64), which its Fourier
transform is

F x½ψ �ðk; tÞ ¼ G̃ðkÞ · ϕ̃ðkÞ; with ϕ̃ðk; tÞ ¼ F x½ϕ�ðk; tÞ
and G̃ðkÞ ¼ e−rk

2

: ðA19Þ

On the other hand, the Fourier transform of (A18) is

F x½δψ �ðk; tÞ ¼ −fε0∂0F x½ψ �ðk; tÞ þ ω0i∂0F x½xiψ �ðk; tÞ
þ ðεj þ ωj0x0ÞF x½∂jψ �ðk; tÞ
þ ωjiF x½xi∂jψ �ðk; tÞg: ðA20Þ

Plugging Eq. (A19) into (A20), we find

G̃ðkÞδϕ̃ðk; tÞ ¼ −G̃ðkÞfε0∂0ϕ̃ðk; tÞ þ iω0i½Di∂0ϕ̃ðk; tÞ
− 2rki∂0ϕ̃ðk; tÞ� þ iðεj þ ωj0x0Þkjϕ̃ðk; tÞ
− ωji½δijϕ̃ðk; tÞ þ kjDiϕ̃ðk; tÞ
− 2rkjkiϕ̃ðk; tÞ�g; ðA21Þ

where Dj means ∂=∂kj to distinguish it from ∂=∂xj.
Bearing in mind that ωab ¼ −ωba, we can simplify it as

δϕ̃ðk; tÞ ¼ −iðεj þ ωj0x0Þkjϕ̃ðk; tÞ
− ðε0 − 2irω0ikiÞ∂0ϕ̃ðk; tÞ
þ ωjikjDiϕ̃ðk; tÞ − iω0iDi∂0ϕ̃ðk; tÞ; ðA22Þ

that, undoing the Fourier transform, we obtain how the ϕ
field transforms,

δϕðxÞ ¼ −ðεc þ ωcbxbÞ∂cϕðxÞ
þ ωab½2rδ4½aδib�∂i

_ϕðxÞ�: ðA23Þ
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