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P H Y S I C S

Hydrodynamic synchronization and clustering 
in ratcheting colloidal matter
Sergi G. Leyva1,2†, Ralph L. Stoop1†, Ignacio Pagonabarraga1,2,3, Pietro Tierno1,2,4*

Ratchet transport systems are widespread in physics and biology; however, the effect of the dispersing medium 
in the collective dynamics of these out-of-equilibrium systems has been often overlooked. We show that, in a 
traveling wave magnetic ratchet, long-range hydrodynamic interactions (HIs) produce a series of remarkable 
phenomena on the transport and assembly of interacting Brownian particles. We demonstrate that HIs induce the 
resynchronization with the traveling wave that emerges as a “speed-up” effect, characterized by a net raise of the 
translational speed, which doubles that of single particles. When competing with dipolar forces and the underlying 
substrate symmetry, HIs promote the formation of clusters that grow perpendicular to the driving direction. We 
support our findings both with Langevin dynamics and with a theoretical model that accounts for the fluid-mediated 
interactions. Our work illustrates the role of the dispersing medium on the dynamics of driven colloidal matter and 
unveils the growing process and cluster morphologies above a periodic substrate.

INTRODUCTION
The directional transport of microscopic entities in fluid media 
occurs in several physical and biological processes ranging from the 
nanoparticle delivery in a microfluidic network (1, 2) to liquid slid­
ing across topographic surfaces (3, 4), translocation of proteins (5), 
molecular motors (6, 7), or enzymes (8). At the microscale, thermal 
fluctuations can be converted into directed motion via the ratchet 
effect, which uses spatial or temporal asymmetries in the system to 
generate a preferred direction of motion (9, 10). Technological prog­
resses in engineering external potentials have shown that colloidal 
particles represent an experimentally accessible model system to 
investigate ratchet transport effects (11–16). Beyond the colloidal 
domain, realizing particle-based ratchets may also be of interest for 
other research fields, since a similar transport scheme can be ex­
tended to other systems on different length scales (17–20). However, 
many experimental realizations have focused on proposing scheme 
for single particles, or few interacting ones, neglecting the effect of 
the dispersing medium. Such effect may become important in 
many-body systems, affecting the particle transport and also lead­
ing to unexpected emergent phenomena.

The dynamics of microscopic particles in liquid media often occurs 
at low Reynolds number (Re), where inertial forces are negligible 
and fluid mechanic laws become time reversible. Under such condi­
tions, hydrodynamic interactions (HIs), namely, fluid-mediated 
long-range interactions, may become important since they are 
excited by the diffusive or driven motion of the dispersed particles. 
These interactions have been invoked as essential in many physical 
and biological systems and lead to several fascinating phenomena 
from the spontaneous formation of vortex colonies (21) or the cir­
cular path of the bacteria Escherichia coli (21), to the synchronized 
beating of cilia (22). Apart from biological systems, there are several 

examples where HIs play a crucial role in the organization (23–25) 
and dynamics (26–28) of micrometer-scale particles. When consid­
ering particles driven via a ratchet effect, the role of HIs has been 
often overlooked, giving more emphasis on other types of interactions 
such as steric (29), optic (30), electrostatic (31), or geometric (32) 
ones. Thus, understanding the role of HIs often hidden in such 
systems, although challenging, will shed light on novel physical ef­
fects that could occur in other soft or biological systems on similar 
length scales.

Here, we investigate the collective dynamics and the effect of HIs 
in a ratcheting colloidal system based on a magnetic traveling wave. 
We show that, by raising the particle density, these interactions modify 
the particle dynamics, leading to a series of emerging phenomena. 
These include a “speed-up” effect characterized by a substantial raise 
of the particle speed due to the resynchronization with the translating 
potential and a synchronized clustering during transport. In the latter 
case, we find a novel mechanism for cluster growth and morphology 
originated by the underlying symmetry of the substrate.

To elucidate the fundamental physical mechanisms in our system, 
we complement the experimental results with theory and numerical 
simulations.

RESULTS
The magnetic ratchet
Our driven colloidal system is based on a ferrite garnet film (FGF), 
which displays at zero applied field a pattern of parallel ferromag­
netic domains with alternating up and down magnetization, and a 
spatial periodicity of  = 2.6 m (Fig. 1A). On the surface of the 
FGF, the stray field generates a sinusoidal-like magnetic potential 
composed of a series of equispaced minima located at a distance . 
Above this platform, we deposit paramagnetic polystyrene micro­
spheres with diameter d = 2.8 m and magnetic volume susceptibility 
 ∼ 0.4 (Dynabeads M-270, Invitrogen). These particles are doped 
with nanoscale iron oxide grains, and they feature a paramagnetic 
behaviour acquiring an induced moment m = VHtot under an 
external field Htot, where V = (d3)/6 . Once above the film, the 
particles form a two-dimensional (2D) monolayer with negligible 
out-of-plane motion due to the magnetic attraction toward the Bloch 
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walls. Further details on the preparation of the FGF film are given in 
Materials and Methods.

We manipulate and transport the particles above the FGF by 
applying an external rotating field elliptically polarized in the (x, z) 
plane with frequency f

	​ H(t ) ≡  [​H​ x​​ cos (2ft ) ​e​ x​​ − ​H​ z​​ sin (2ft ) ​e​ z​​] ​	 (1)

Here, Hx, Hz are the amplitudes along the x, z axis, where 
​​H​ 0​​  = ​ √ 

___________
 (​H​x​ 2​ + ​H​z​ 

2​ ) / 2 ​​ is the total amplitude. The elliptical polarization 
of the applied field is controlled by the parameter ​  =  (​H​x​ 2​ − ​H​z​ 

2​ )/
(​H​x​ 2​ + ​H​z​ 

2​)​, which will be used to tune the dipolar interactions. Here, 
 > 0 ( < 0) corresponds to Hx > Hz (Hx < Hz), i.e., a higher in-
plane (out-of-plane) field component. This time-dependent field 
modulates the stray magnetic field on the FGF surface and leads 
to a translating spatially periodic magnetic energy landscape, 

​​​U​ m​​  =  − ​U​ 0​​ cos ​[​​ ​2 _  ​(x − ​v​ m​​ t)​]​​​​ as shown in Fig. 1B. Here, U0 is the 

potential amplitude (see later) and vm = f is the speed of the traveling 
wave. As a consequence of this modulation, the magnetic landscape 
transports colloidal particles that are trapped in its energy minima.

Figure 1C illustrates the main feature of the single-particle trans­
port and combines experiments and simulation data (see later), 
demonstrating the quantitative agreement between both. By raising 
the driving frequency, we find two dynamic regimes, separated by a 

critical frequency fc = 6.7 Hz. The first regime is a phase-locked mo­
tion (f < fc) where the particle moves with the speed of the travel­
ing wave, vx = vm. For f > fc, the particle desynchronizes with the 
traveling wave (sliding regime), and its average speed decreases as 

​​v​ x​​  = ​ v​ m​​(1 − ​√ 
_

 1 − ​f ​c​ 
2​ / ​f ​​ 2​ ​ ) < ​ v​ m​​​ (Fig. 1C). In the latter regime, the 

traveling wave becomes too fast and the loss of synchronization re­
sults from the viscous drag that overcomes the magnetic driving. As 
we are interested in the collective resynchronization effect due to 
HIs, we drive our particles above fc, fix for all experiments the total 
amplitude H0 = 850 A m−1, and vary mainly  and the normalized 
surface density ​​ ~ ​  =  N ​(d / 2)​​ 2​ / A​, where N is the number of parti­
cles located in area A. An illustrative example of the difference be­
tween synchronous and asynchronous regimes is shown in Fig. 1D 
(see also movie S1), which shows the evolution of the position along 
the driving direction for a single particle and a particle in a rhombic-
like cluster. In both cases, the driving frequency is f = 8 Hz ( = − 0.4) 
so that the position of the individual particle (image at the bottom) 
displays a series of characteristic oscillations due to the loss of syn­
chronization with the traveling wave. These small delay leads to a 
reduction of the mean speed and thus of the slope. As we will dis­
cuss in the next section, we find that a particle in a cluster displays a 
speed-up effect for frequencies f > fc that enhances synchronization 
with the traveling wave, reaching a maximum speed equal to vm.

Particle interaction and speed-up
Above the FGF, the paramagnetic colloids interact mainly via di­
polar forces and HIs. The first types of interactions (we come back 
to HIs later) can be tuned by varying the parameter  (33). For 
two particles above the FGF plane, the threshold ellipticity that sepa­
rates the dipolar interactions from attractive to repulsive is given by 
​​​ c​​  =  − 1 + 2 / (3 ​cos​ 2​​ ϑ)​, where ϑ is the polar angle that connects the 
x axis with the distance r between the particle centers. As shown in 
Fig. 2A, when particles are aligned along the x axis (ϑ = 0), magnetic 
attraction (repulsion) arises for  > − 1/3 ( < − 1/3), and close to 
c = − 1/3, such interactions are minimized. This dependence of 
dipolar interactions on  allows to manifest the effect of HIs in both 
attractive and repulsive scenarios.

Figure 2B shows the results of a series of experiments where we 
systematically vary the surface density ​​ ~ ​​ and measure the collective 
particle speed along the driving direction (x), ​​​v ̄ ​​ x​​​, for different values 
of , all in the asynchronous regime (f = 8 Hz > fc). We find that 
for ​​ ~ ​  >  0.2​, the colloidal particles resynchronize with the traveling 
wave reaching the maximum speed of vm = 20.8 m s−1, much higher 
than that of a single particle, for example, vx = 7 m s−1 for all  > 0. 
This remarkable speed-up effect is rather robust, spanning a wide 
range of densities ​​ ~ ​  ∈  [0.2,0.65]​. Further, this speed-up is observed 
for both attractive and repulsive dipolar interactions  ∈ [ − 0.6,0.6], 
which leads us to exclude magnetic dipolar interactions as the main 
reason for the observed resynchronization. Collective velocities of 
the order ​​​v ̄ ​​ x​​  ∈  [6,20.8] m ​s​​ −1​​ correspond to relatively large Péclet 
numbers Pe ∈ [84,291]; thus, the generated hydrodynamic flow be­
comes progressively more important and must inevitably affect the 
particle motion. Here, we calculate the Péclet number Pe as the ratio 
between the Brownian time B required by the particle to diffuse its 
own radius and the driven time D required to move its radius due to 
the magnetic landscape. Here, D = d2/(4Deff), where Deff = 0.14 m2 s−1 
is the effective diffusion coefficient of the paramagnetic colloid, and 
D = d/(2vx). We further note that for  > 0.2, the collective speed 

Fig. 1. The magnetic ratchet system. (A) Schematic of the magnetic traveling wave: 
A sinusoidal potential (wavelength  = 2.6 m) is generated above the surface of an 
FGF. The potential translates at a speed vm = f under the action of an elliptically 
polarized rotating field H with frequency f and ellipticity . (B) Calculated energy 
landscape of one driven particle showing the time evolution of low (high) energy 
corridors in blue (white). (C) Normalized single-particle speed vx versus frequency f 
from experiments (open symbols) and numerical simulation (filled symbols). 
Continuous lines are fit to the synchronous (blue) and sliding (red) regimes. (D) Nor-
malized position (x − x0)/ versus time t of a single particle (red line, bottom image) 
and a particle in a rhombic cluster (blue line, top image). In both cases, f = 8 Hz and 
 = −0.4, which corresponds to asynchronous regime for the individual particle, 
and x0 is the position at time t = 0 s. The movement of pair of particles in the asyn-
chronous regime is shown in movie S1.
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decreases at large densities, ​​ ~ ​  >  0.5​ (Fig. 2B). In this situation, the 
strong dipolar forces induce the formation of elongated and com­
pact trains (Fig. 2A, right), where HIs are weakened because of 
the reduced space between the particles. In this situation, the chains 
recover the asynchronous regime and the system displays an overall 
reduction of the average speed. We note that in our system, we never 
observe a reverse of the particle current due to the spatial symmetry 
of the translating periodic potential. However, a current reversal 
could be realized by either preparing a special magnetic modulation 
that would produce a spatially asymmetric potential (34) or adding 
a bias force against the flow that would tilt the potential.

DISCUSSION
Numerical simulation
The emerging dynamics observed in our driven colloidal system 
result from the combined action of different interactions, including 
magnetic dipolar and hydrodynamics ones. To understand their 
relative role in the system, we perform Brownian dynamic simula­
tions (see Fig. 1C). For each particle i at position ri, we integrate the 
overdamped equation of motion

	​  ​ d ​r​ i​​ ─ dt ​  = ​ F​i​ 
ext​ + ​∑ j≠i​ ​​ ​F​i​ 

dip​ + ​∑ j≠i​ ​​ ​F​i​ 
int​ +  ​v​i​ 

H​ + ​	 (2)

where  is the friction coefficient, ​​F​i​ 
ext​​ is the external driving force re­

sulting from the traveling wave, ​​F​i​ 
dip​​ is the total force due to mag­

netic dipolar interactions, ​​F​i​ 
int​​ accounts for the steric force with the 

rest of the particles, and  is a Gaussian white noise. These forces 

reproduce the isolated particle experimental speed, as shown in 
Fig. 1C. More details on ​​F​i​ 

ext​​, ​​F​i​ 
dip​​, and ​​F​i​ 

int​​ and the parameters used 
are given in Materials and Methods. To model HIs, we assume that 
the particles are embedded in a solvent and dragged by the fluid 
flow of velocity ​​v​i​ 

H​​, generated by the net force acting on the rest of 
the suspended particles, ​​F​ i​​(​r​ i​​ ) = ​F​i​ 

ext​(​r​ i​​ ) + ​∑ j≠i​ ​​ [ ​F​ij​ dip​(​r​ ij​​ ) + ​F​ij​ int​(​r​ ij​​ ) ]​. 
We account for this effect with

	​​ v​i​ 
H​  = ​ ∑ j≠i​ N  ​​ ​G​ ij​​(​r​ i​​, ​r​ j​​ ) ​F​ j​​(​r​ j​​)​	 (3)

where Gij(ri, rj) stands for the Blake-Oseen mobility tensor (35), which 
considers the effect of the close proximity of the substrate in the far-field 
approximation. Last,  represents a random force due to thermal 
fluctuation, with zero mean, ⟨⟩ = 0, and delta correlated, ⟨(t)(t′)⟩ = 
2kBT(t − t′).

By integrating Eq. 2, we find that the quantitative agreement with 
the experimental data can be obtained only by including HIs, even 
in the absence of dipolar forces. As a representative case, we show in 
Fig. 3A the collective speed ​​​v ̄ ​​ x​​​ for  = − 0.3, where dipolar interac­
tions are slightly repulsive. If we disregard the induced flow, ​​v​i​ 

H​  ≃  0​, 
and account only for steric and/or magnetic dipolar interactions, 
the average colloidal speed decreases with the particle density, ​​ ~ ​​, in 
contrast to the experimental observations. We note that at large 
densities, we identify numerically the transition to the asynchronous 
regime when ​​​v ̄ ​​ x​​  ∼  0.95 ​v​ m​​​. When magnetic interactions are weak 
( = − 0.3), increasing ​​ ~ ​​ raises the speed-up effect and thus fc due to 
the hydrodynamic coupling between the particles. The effect is 
such that at ​​ ~ ​  =  0.6​, the new critical frequency fc = 10.3 Hz almost 
doubles that of a single particle (see Fig. 3B, bottom line). Increasing 
the magnetic coupling instead reduces the speed-up effect: For 
attractive interactions ( > −0.3), the formation of chain weakens 
HIs, reducing the net particle speed. In the repulsive case ( < − 0.3), 
particles are forced to span a larger region and this reduces both the 
hydrodynamic coupling and fc, as shown in Fig. 3B (top line). We 
also note that commensurability between the particle size and the 
wavelength of the underlying pattern in 1D is also important for the 
synchronization with the moving landscape. By running the simu­
lation along 1D with particles larger than , we find that full syn­
chronization was not achieved in opposition to our 2D experimental 
setup. Thus, a smaller diameter allows the particles to be accommo­
dated in consecutive minima and to be more easily driven by the 
magnetic landscape.

Theoretical model
To explain the observed synchronization effect, we consider a pair 
of aligned colloids displacing perpendicular to the FGF and take into 
account the interplay between the external potential and the HIs. 
We assume negligible thermal noise and start from the overdamped 
equation of motion of one particle i

	​  ​​x ̇ ​​ i​​  = ​ F​​ e​(x, t ) +  ​v​i​ 
H​​	 (4)

where the force due to the magnetic potential on such particle at 
position xi is

	​​​ F​​ e​(​x​ i​​, t ) = − 16 ​ ​U​ 0​​ ─ 


 ​ ​ H ─ ​M​ s​​
 ​ ​e​​ −2​z​ 0​​/​ sin [2​(​​ ​ ​x​ i​​ ─ 


 ​ − ft​)​​]​​	 (5)

Here, z0 is the particle elevation fixed by the balance between grav­
ity and steric repulsion from the solid substrate, ​​U​ 0​​  =   ​d​​ 3​  ​​ 0​​ ​M​s​ 

2​ / 6​ 
is the characteristic magnetic energy, 0 is the vacuum permeability, 

Fig. 2. Experimental current density diagram. (A) Experimental images showing 
translating repulsive particles ( = −0.9 < 1/3) and chains ( = 0.9 > 1/3) in the 
sliding regime with f = 8 Hz. Scale bar, 20 m (left). See also corresponding movies 
S2 and S3. (B) Collective particle speed ​​​v ̄ ​​ x​​​ versus normalized surface density ​​ ~ ​​ for 
different values of . Dashed line corresponds to vm = 20.8 m s−1. Inset shows the 
corresponding linear raise of the particle flux ​j  = ​  ~ ​ ​​v ̄ ​​ x​​​ versus ​​ ~ ​​.
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and Ms = 1.3 · 104 A m−1 is the saturation magnetization of the FGF 
film (36). We rewrite the equation of motion by rescaling length 
and time with  and 2/U0, respectively, and moving to the 
reference frame of the traveling wave via the change of variables 
q(t) = −x(t)/ + ft

	​​​​ q ̇ ​​ i​​(t ) = ​ ~ f ​ − ​​ ~ f ​​ c​​​[​​sin [2 ​q​ i​​ ] +  ​ 3d ─ 8 ​ ​∑ j≠i​ N  ​​​G ̄ ​​(​​ ​q​ i​​, ​q​ j​​​)​​sin [2 ​q​ j​​ ] ​]​​​​	 (6)

where ​​G ̄ ​(​q​ i​​, ​q​ j​​ ) = 8 ​e​ x​​ · G(​q​ i​​, ​q​ j​​ ) ·​e​ x​​​, and we have introduced the 
dimensionless parameters ​​​ ~ f ​​ c​​  ≡  16 ​H​ 0​​ ​e​​ −2​z​ 0​​​ / ​M​ s​​​ and ​​ ~ f ​  ≡  f ​​​ 2​ / ​U​ 0​​​, 
where  = 3d is the viscous friction in a medium of viscosity . 
We note that the essence of the role played by the hydrodynamic 
coupling is captured already with the Oseen tensor; the substrate con­
tributes quantitatively to the ratio ​​​ ~ f ​​ h​​ / ​​ ~ f ​​ c​​​. For the Oseen-Blake tensor

	​​​ G ̄ ​(​q​ i​​, ​q​ j​​ ) = ​ 2 ─ ​​ ij​​
 ​​[​​1 − ​ 

1 + ​ϵ​ ij​​ + ​3 _ 4​ ​ϵ​ij​ 2 ​
 ─ 

​(1 + ​ϵ​ ij​​)​​ 5/2​
 ​​ ]​​​​	 (7)

where ij ≡ ∣qi − qj∣ and ​​ϵ​ ij​​  ≡ ​​ (​​ ​ 2h _ ​​ ij​​
​​)​​​​ 

2
​​, while for the Oseen tensor, ​​

G ̄ ​(​q​ i​​, ​q​ j​​ ) = ​ 2 _ ​​ ij​​
​​. In Eq. 6, the contribution of the HIs appears from the 

second term in the right hand side, while in the absence of HIs, we 
obtain the single-particle behavior characterized in Fig. 1C. In 
this case, the solution ​​q ̇ ​  =  0​ is only possible when ​​ ~ f ​  < ​​  ~ f ​​ c​​​, where the 

particle is synchronized with the traveling wave. To analyze the im­
pact of HIs, for simplicity, we assume that the particles are equidis­
tantly distributed above the traveling wave with periodicity , which 
allows factorizing Eq. 6 as

	​​​​ q ̇ ​​ i​​(t ) = ​ ~ f ​ − ​​ ~ f ​​ c​​ sin [2 ​q​ i​​ ] ​[​​1 + ​ 3d ─ 8 ​ ​∑ j≠i​ N  ​​​G ̄ ​(​q​ i​​, ​q​ j​​ ) ​]​​​​	 (8)

Synchronous motion, ​​q ̇ ​  =  0​, occurs when ​​sin [2 ​q​ i​​ ] = ​ ~ f ​ / ​​ ~ f ​​ c​​​[​​1 + ​
3d _ 8 ​ ​∑ j≠i​ N  ​​​G ̄ ​(​q​ i​​, ​q​ j​​ ) ​]​​​​, which is allowed for frequencies ​​​ ~ f ​  < ​​  ~ f ​​ h​​  ≡ ​​  ~ f ​​ c​​​[​​1 + ​
3d _ 8 ​ ​∑ j≠N/2​ N  ​​​G ̄ ​(​q​ N/2​​, ​q​ j​​ ) ​]​​​​. Since ​​G ̄ ​(​q​ i​​, ​q​ j​​ ) >  0​, ​​​ ~ f ​​ h​​  > ​​  ~ f ​​ c​​​, HIs increase the 
frequency range where the synchrony with the traveling wave is 
sustained. In particular, HIs displace the critical frequency of an 
amount ​​ ~ f ​  = ​​  ~ f ​​ h​​ − ​​ ~ f ​​ c​​​, which increases with the number N of colloidal 
particles. The confinement due the solid substrate decreases ​​​ ~ f ​​ h​​​ 
monotonously as the colloids approach the wall; at contact, ​​ ~ f ​  =  0​.

We further note that the momentum exchange with the substrate 
can alter qualitatively the range of frequencies over which the syn­
chronization is sustained. For example, ​​​ ~ f ​​ h​​​ doubles its magnitude 
when the colloids come into contact with a slip substrate with 
respect to its magnitude in an unbounded medium. For a slip 
planar interface, we find that the Oseen-Blake tensor is given by 
​​​G ̄ ​(​q​ i​​, ​q​ j​​ ) = ​ 2 _ ​​ ij​​

​​[​​1 + ​  1 _ 
​(1 + ​ϵ​ ij​​)​​ 1/2​

​​]​​​​.

Colloidal synchronization and assembly
The hydrodynamic-induced synchronization is due to the net drag 
generated by the flow of the rest of the colloidal particles as they are 
propelled by the magnetic traveling wave. The underlying mecha­
nism is already apparent when analyzing the motion of a pair of 
driven colloids, where Eq. 8 reduces to

	​​​ q​ i​​ ̇ ​  = ​  f ̄ ​ − ​​ ~ f ​​ c​​ sin [2 ​q​ i​​ ] − ​​ ~ f ​​ c​​ ​ 
​F​ h​​ sin [2 ​q​ j​​] ─ ∣​q​ i​​ − ​q​ j​​∣

 ​ , i, j  =  1, 2(i  ≠  j)​	 (9)

with Fh = 3d/4 the normalized strength of the HIs, and where, for 
simplicity, we disregard the effect of the substrate. Accordingly, in 
this case, ​​G ̄ ​(​q​ i​​, ​q​ j​​ ) = ​  2 _ ∣​q​ i​​ − ​q​ j​​∣

​​ and a pair of particles a distance  away 

will displace synchronously up to ​​​ ~ f ​​ h​​  = ​​  ~ f ​​ c​​(1 + ​F​ h​​ / )​. Figure 3C shows 
the trajectories for two colloids initially at a distance equal to  = , 
for which ​​​ ~ f ​​ h​​ / ​​ ~ f ​​ c​​  =  3 / 2​. Above ​​​ ~ f ​​ c​​​, the colloids slip with respect to the 
underlying moving substrate in the absence of HI, while they move 
synchronously due to the additional hydrodynamic drag until ​​​ ~ f ​​ h​​​.

Equation 9 not only shows that already a pair of particles pro­
duces hydrodynamic synchronization but also suggests a growing 
mechanism for colloidal clusters. Aggregates formed by synchronized 
particles travel faster than asynchronous colloids. After a collision, 
the particles attach to the synchronous cluster and increase their 
velocity to lock with the traveling wave. We can also apply our model 
to other driven colloidal systems that display HIs. For example, 
Lutz et al. (37) reported that optically trapped colloids subjected to 
a constant force on a toroidal potential display a speed enhancement 
due to HIs. As shown in the Supplementary Materials, if we apply 
our model to such situation, we find that HIs lead to an increase of 
the particle velocity, but only when the particles surmount the ener­
getic barrier of the optical potential.

HIs also play a determinant role in the emerging colloidal mor­
phologies. When  > −1/3, attractive dipolar interactions induce 

Fig. 3. Experiment and simulation results. (A) Normalized collective speed ​​​v ̄ ​​ x​​​ 
versus surface density ​​ ~ ​​ from experiments, empty squares ( = − 0.3 and f = 8 Hz > fc), 
and numerical simulation (Eq. 2) with HIs (filled circles), hydrodynamic and dipolar 
interactions (upper triangles), only dipolar interactions (lower triangles), and only 
steric interactions (diamonds). (B) Simulations: Critical frequency fc versus surface 
density ​​ ~ ​​ (squares) field ellipticity  (cirles) for  = −0.3 (​​ ~ ​  =  0.6​). (C) Numerical 
integration of Eq. 9 with and without hydrodynamics for ​​ ~ f ​  =  1.2​.
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chain formation along the direction of motion, x, due to the effective 
repulsion that the particles experience when moving transversally. 
However, we experimentally observe that, up to  ∼ 0.7, the particles 
self-assemble into traveling clusters with a characteristic rhombic-
like ordering spanning both directions; a typical case is shown in 
Fig. 4A with  = 0.4.

We characterize the aggregation process in terms of the cluster 
variance along the driving direction, ​​​ x​​  = ​  1 _ ​N​ c​​

​ ​∑ i=1​ ​N​ c​​ ​​ ​ (​x​ cm​​ − ​x​ i​​)​​ 2​​, where 
xcm is the center of mass and Nc is the number of particles in the 
cluster. Figure 4C displays x, normalized by t, the latter being the 
variance of a perfect chain, when Nc particles are in close contact 
moving along a straight line. In the absence of HIs, x/t ∼ 1 for 
most of the cluster length, which corresponds to the situation de­
picted in Fig. 4D. Similarly, as shown in the inset of Fig. 4B, the 
cluster anisotropy parameter  = ∣x − y∣ /(x + y) is maximal in 
absence of HIs, while it vanishes by increasing Nc with HIs. These 
results highlight that, in the presence of a periodic substrate, HIs 
and dipolar forces promote the formation of colloidal aggregates, 
with sizes and symmetries not allowed on a simple plane.

The rhombic-like ordering results from the competition between 
the size of the colloidal particles and the periodicity of the magnetic 
landscape, in the presence of dipolar and HIs. Dipolar interactions 
attract particles and set them in contact at a distance d. HIs synchronize 

the particles at a distance  along the driving direction (x). Thus, par­

ticles at close contact have a transverse distance ​​l​ d​​  = ​ √ 
_

 ​d​​ 2​ − ​​​ 2​ ​​ (see 

small inset in Fig. 4B). Thus, the contribution of HIs to the cluster 
morphology consists of a drag force that synchronizes particles, 
placing them at a characteristic distance  along the x direction. In 
the experimental system, we find that the ratio d/ = 0.92, which 
sets a transversal length between particles in the cluster of ld ≃ 0.28. 
Now, decreasing the ratio d/ gives a larger transversal length and a 
larger area covered by the clusters along the transverse direction. In 
contrast, increasing d/ to unity leads to the formation of synchronized 
particles that travel in the form of trains of particles. In such case, 
even at large  > 0, the synchronicity with the traveling wave is not lost 
due to the presence of HIs. We further note that rhombic ordering 
is reminiscent of the equilibrium structure predicted for 2D colloidal 
systems, with interactions that compete with the symmetry of an 
underlying substrate (38). However, the morphologies we observe 
develop from the interplay between the ratchet potential coupled to 
HIs and the magnetic dipolar interactions, as unveiled by our numer­
ical simulations in Fig. 4B. The exclusion of HIs by setting ​​v​i​ 

H​  =  0​ 
leads to the formation of traveling chains, as shown in Fig. 4C.

To conclude, we have investigated the role of HIs on the collective 
dynamics of microscopic particles driven above a translating magnetic 

Fig. 4. Collective propulsion and assembly. Experimental (A) and simulation (B and D) snapshots of anisotropic clusters propelled by a rotating field with  = 0.4. 
Scale bar, 20 m (A). Bottom scheme in (B) illustrates the transverse distance ld. See movie S4. In (B) [(D)], the simulation was run with [without] HIs. (C) Simulations: 
Relative cluster dispersion x/t versus number of particles in the cluster Nc with (blue) and without (orange) HIs. Inset shows the corresponding cluster anisotropy ratio 
 = ∣x − y/(x + y)∣ versus Nc.
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potential. We find that such interactions lead to a substantial raise 
of the particle speed and favor colloidal arrangements congruent 
with the periodicity of the underlying substrate. We experimentally 
observe that such arrangement promotes the emergence of compact 
rhombic clusters along the potential domains. We rationalize the 
experimental observations with both theory and numerical simula­
tions. Thus, our system leads to a variability of the morphology 
of synchronized clusters due to the interplay between the substrate 
symmetry, hydrodynamic, and dipolar interactions.

Traveling wave ratchets where directed transport is achieved via 
a sliding periodic potential are present in several soft and condensed 
matter systems. Examples with microscopic colloids, apart from our 
garnet film, include electrophoretic (39) or magnetically (40) driven 
particles above patterned substrates, and in other field include ac­
tive particles (41), chemotactic fronts (42), defects and asperities in 
frictional sliding (43), or magnetic flux quanta (44). Thus, with our 
work, we investigate the role of the dispersing media on the collec­
tive particle dynamics and show that it can lead to unexpected 
phenomena, which could have been overlooked in similar ratchet 
systems at high density. We also mention that recently, Belovs et al. 
(45) reported numerically the synchronization of puller type mag­
netotactic bacteria under a rotating magnetic field. This work con­
firms the general nature of the phenomena of synchronization due 
to HIs (46, 47), which we have experimentally observed here with a 
driven ratchet system.

Ratchet transport schemes have been invoked as simplified models 
to explain the complex dynamics that occur in many physical and 
biological systems (48), including micro- and nanomachines (49–52), 
intracellular transport (53, 54), and even as a way to rectify active 
matter (55–58). With our colloidal model system, we show the im­
portance of considering HIs and their crucial role in the collective 
organization of driven microscopic matter.

MATERIALS AND METHODS
Magnetic film and coating
The FGF was grown by dipping liquid-phase epitaxy on a gadolinium 
gallium garnet substrate; more details can be found in a previous 
work (59). Before the experiments, we coat the FGF film with a 
1-m-thick layer of a photoresist (AZ-1512 Microchem, Newton, MA) 
to prevent adhesion of the paramagnetic particles on the substrate. 
This process was performed via combination of spin coating and 
backing, following previous work (60). We wash the FGF in highly 
deionized water (MilliQ, Millipore) before each experiment.

Details of the numerical simulation
In our simulation scheme, we integrate the set of Eq. 2 where the 
remaining terms on the right hand side, apart from the fourth one 
(HIs), are described below. The external driving force that is produced 
by the traveling wave (36) is given by

	​​​ F​​ ext​(x, t ) = ​F​ M​​ [ ​u​ 1​​(t ) sin ​(​​ ​ 2x ─ 


  ​​)​​ − ​u​ 2​​(t ) cos ​(​​ ​ 2x ─ 


  ​​)​​ ] ​e​ x​​​​	 (10)

where  ​​u​ 1​​(, t) = ​√ 
_

 1 +  ​ cos (2ft)​, ​​u​ 2​​(, t) = ​√ 
_

 1 −  ​ cos (2ft)​,  and 
FM = 16H0e−2zU0/Ms.

​​F​i​ 
dip​​ is the dipolar interaction between the paramagnetic parti­

cles. For two point dipoles (mi, mj) located at position (i, j), it is 
given by

 ​​
​F​​ dip​(​r​ ij​​ ) = ​  3 ​​ 0​​ ─ 

4 ​∣​r​ ij​​∣​​ 4​
 ​((​​   e ​​ ij​​ × ​m​ i​​) × ​m​ j​​ + (​​   e ​​ ij​​ × ​m​ j​​) × ​m​ i​​)

​    
​− 2 ​​   e ​​ ij​​(​m​ i​​ · ​m​ j​​ ) + 5 ​​   e ​​ ij​​((​​   e ​​ ij​​ × ​m​ i​​ ) ·(​​   e ​​ ij​​ × ​m​ j​​ ) ) ​)​​​

 ​​	  (11)

where ​​​   e ​​ ij​​​ is the unitary vector between particle i and j, rij = ri − rj, 
and 0 = 4 · 10−7 H m. Further, we consider induced point dipoles; 
thus, for a particle i, the magnetic moment is given by mi = VHtot(ri), 
where the instantaneous total magnetic field is given by the sum of 
the external magnetic field and the contribution from the FGF film, 
Htot = H + Hsub, i.e.

	​​
​H​​ tot​  =  (​H​ x​​ cos (2ft ) , 0, − ​H​ z​​ sin (2ft ) )

​   
​+  ​ 4 ​M​ s​​ ─   ​ ​e​​ −2z/​(cos ​(​​ ​ 2xt ─ 


  ​​)​​, 0, − sin ​(​​ ​ 2xt ─ 


  ​​)​​)​

​​	 (12)

Further, ​​F​i​ 
int​​ is the interaction force between the particles that we 

derive from a Yukawa-like potential, which accounts for both a 
short-range repulsion due to electrostatic interactions and the finite 
particle size. The force between two particles at positions ri and rj 
can be written as

	​​​ F​​ int​(​r​ ij​​ ) = ​ ​U​ Y​​ ─ ​​ Y​​ ​ ​∑ i≠j​ N  ​​​[​​ ​  ─ ​r​ ij​​ ​​(​​ ​  ─ ​r​ ij​​ ​ + ​  ─ ​​ Y​​ ​ ​e​​ −​ ​r​ ij​​ _ ​​ Y​​​​​)​​ − B​]​​ ​e​ ij​​​​	 (13)

The parameter UY quantifies the strength, and Y the character­
istic decay length of the Yukawa potential between the interaction 
of a pair of particles, and  = d/2 denotes the radius of the particles. 
The parameter B is a constant ensuring that the force is zero at the 
cutoff interaction radius rc

	​​ B  = ​   ─ ​r​ c​​ ​ ​e​​ −​ ​r​ c​​ _ ​​ Y​​​​​(​​ ​  ─ ​​ Y​​ ​ + ​  ─ ​r​ c​​ ​​)​​​​	 (14)

Last,  represents a random force due to thermal fluctuation, with 
zero mean, ⟨⟩ = 0, and delta correlated, ⟨(t)(t′)⟩ = 2kBT(t − t′).

To minimize the number of parameters used in the numerical 
simulation, we rescale length in terms of the radius of the particles 
 = d/2, time in terms of D = d/(2FM), and the magnetic field com­
ponents in terms of the amplitude H0. Thus, Eq. 2 can be divided by 
the characteristic velocity FM/, and Eq. 11 in this dimensional units 
reduces to

	​​​ F ̄ ​​​ dip​  = ​   ​F​​ d​ ─ 
​∣​​r ̄ ​​ ij​​∣​​ 4​

 ​ f(​​r ̄ ​​ ij​​, ​h​​ tot​(​​r​ i​​ ̄ ​ ) , ​h​​ tot​(​​r​ j​​ ̄ ​ ) )​	 (15)

where Fd is the dipolar strength ​​F​​ d​  = ​   3 ​​ 0​​ _ ​F​ M​​ 4​ ​(V)​​ 2​​ and ​f(​​r ̄ ​​ ij​​, ​h​​ tot​(​​r​ i​​ ̄ ​ ), ​
h​​ tot​(​​r ̄ ​​ j​​))​ is a function that contains the dependences in Eq. 11 in­
volving only the total magnetic field contributions on each particle 
and the unit vector between two particles. Further, we use a radius 
of rd ≃ 4.5 as dipolar cutoff radius is defined, which corresponds to 
a distance large enough so that contributions of the dipolar interac­
tions are of the order ​∣​​F ̄ ​​​ dip​∣≃  0.05​. As the dipolar force depends 
not only on distance but also on the joining direction between two 
particles, the force is imposed to be 0 at rd using

	​​​​ F ̄ ​​​ dip​  = ​ F​​ d​​(​​ ​ 
f(​​   r ​​ ij​​, ​h​ i​​, ​h​ j​​) ─ 

​∣​​r ̄ ​​ ij​​∣​​ 4​
 ​  − ​ 

f(​̂  ​r​ ij​​​, ​h​ i​​, ​h​ j​​) ─ 
​∣​r​ d​​∣​​ 4​

 ​​ )​​​​	 (16)
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Equation 2 can be finally rewritten in reduced units as

 ​​
​ d​​r​ i​​ ̄ ​ ─ dt ​  = ​   ​U​ Y​​ ─ ​​ Y​​ ​F​ M​​ ​ ​∑ j≠i​ ​​​ ̄ ​(​​r ̄ ​​ ij​​ ) + ​​F ̄ ​​​ ext​(​​x ̄ ​​ i​​, ​t ̄ ​ ) + ​​F ̄ ​​​ dip​(​​r ̄ ​​ ij​​, ​h​ i​​, ​h​ j​​ ) +

​    
​  1 ─ ​F​ M​​ ​ ​ 

3 ─ 4 ​ ​∑ j≠i​ N  ​​ ​​G ̄ ​​ ij​​(​​r ̄ ​​ i​​, ​​r​ j​​ ̄ ​ ) ​F ̄ ​(​​r ̄ ​​ j​​ ) + ​√ 
_

 ​ 2 ─ Pe ​ ​ ​​ D​​ ─ dt ​ ​​ ̄ ​
 ​​	  (17)

Here, ​​r ̄ ​  =  r / ​, ​G(​r​ i​​, ​r​ j​​ ) = ​ 3 _ 4​​G ̄ ​(​​r ̄ ​​ i​​, ​​r ̄ ​​ j​​)​, and Pe is the Péclet number. 
In turn, ​​ ̄ ​  = ​  ̄ ​(​​r ̄ ​​ ij​​)​ is the dimensionless Yukawa force between par­
ticles i and j.

As typical experimental values, we use  = 2.6 × 10−8 m N−1 s−1 
and FM = 0.1 pN. The simulation parameters are estimated to be 
hsub = 15.3, Fd = 56.1, Yukawa force strength U0/FM = 300, Pe = 150, 
and Y = 1. Further, comparing the simulations for a single particle 
and the experiments (Fig. 1C) as a function of the frequency, we can 
estimate the characteristic time as D = 0.075 s.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo4546

REFERENCES AND NOTES
	 1.	 S. Matthias, F. Müller, Asymmetric pores in a silicon membrane acting as massively parallel 

Brownian ratchets. Nature 424, 53–57 (2003).
	 2.	 M. J. Skaug, C. Schwemmer, S. Fringes, C. D. Rawlings, A. W. Knoll, Nanofluidic rocking 

Brownian motors. Science 359, 1505–1508 (2018).
	 3.	 I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan, S. T. Thoroddsen, Stabilization 

of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 
(2012).

	 4.	 S. Feng, P. Zhu, H. Zheng, H. Zhan, C. Chen, J. Li, L. Wang, X. Yao, Y. Liu, Z. Wang, 
Three-dimensional capillary ratchet-induced liquid directional steering. Science 373, 
1344–1348 (2021).

	 5.	 H. Mazal, M. Iljina, I. Riven, G. Haran, Ultrafast pore-loop dynamics in a AAA+ machine point 
to a Brownian-ratchet mechanism for protein translocation. Sci. Adv. 7, eabg4674 (2021).

	 6.	 R. D. Astumian, Thermodynamics and kinetics of a Brownian motor. Science 276, 917–922 
(1997).

	 7.	 D. Keller, C. Bustamante, The mechanochemistry of molecular motors. Biophys. J. 78, 
541–556 (2000).

	 8.	 J. W. McCausland, X. Yang, G. R. Squyres, Z. Lyu, K. E. Bruce, M. M. Lamanna, 
B. Söderström, E. C. Garner, M. E. Winkler, J. Xiao, J. Liu, Treadmilling FtsZ polymers drive 
the directional movement of sPG-synthesis enzymes via a Brownian ratchet mechanism. 
Nat. Commun. 12, 609 (2021).

	 9.	 P. Reimann, Brownian motors: Noisy transport far from equilibrium. Phys. Rep. 361, 
57–265 (2002).

	 10.	 P. Hänggi, F. Marchesoni, Artificial Brownian motors: Controlling transport on the 
nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

	 11.	 J. Rousselet, L. Salome, A. Ajdari, J. Prost, Directional motion of Brownian particles 
induced by a periodic asymmetric potential. Nature 370, 446–447 (1994).

	 12.	 L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, A. J. Libchaber, Optical thermal ratchet. 
Phys. Rev. Lett. 74, 1504–1507 (1995).

	 13.	 K. Gunnarsson, P. E. Roy, S. Felton, J. Pihl, P. Svedlindh, S. Berner, H. Lidbaum, 
S. Oscarsson, Programmable motion and separation of single magnetic particles 
on patterned magnetic surfaces. Adv. Mater. 17, 1730–1734 (2005).

	 14.	 B. Yellen, O. Hovorka, G. Friedman, Arranging matter by magnetic nanoparticle 
assemblers. Proc. Natl. Acad. Sci. U.S.A. 102, 8860–8864 (2005).

	 15.	 A. Ros, R. Eichhorn, J. Regtmeier, T. T. Duong, P. Reimann, D. Anselmetti, Absolute negative 
particle mobility. Nature 436, 928 (2005).

	 16.	 S.-H. Lee, K. Ladavac, M. Polin, D. G. Grier, Observation of flux reversal in a symmetric 
optical thermal ratchet. Phys. Rev. Lett. 94, 110601 (2005).

	 17.	 J. Frank, R. K. Agrawal, A ratchet-like inter-subunit reorganization of the ribosome during 
translocation. Nature 406, 318–322 (2000).

	 18.	 C. C. de Souza Silva, J. V. de Vondel, M. Morelle, V. V. Moshchalkov, Controlled multiple 
reversals of a ratchet effect. Nature 440, 651–654 (2006).

	 19.	 C. J. O. Reichhardt, C. Reichhardt, Ratchet effects in active matter systems. Annu. Rev. 
Condens. Matter. Phys. 8, 51–75 (2017).

	 20.	 S. Park, J. Song, J. S. Kim, In silico construction of a flexibility-based DNA Brownian ratchet 
for directional nanoparticle delivery. Science 5, eaav4943 (2019).

	 21.	 I. H. Riedel, K. Kruse, J. Howard, A self-organized vortex array of hydrodynamically 
entrained sperm cells. Science 309, 300–303 (2005).

	 22.	 A. Vilfan, F. Jülicher, Hydrodynamic flow patterns and synchronization of beating cilia. 
Phys. Rev. Lett. 96, 058102 (2006).

	 23.	 M. Baron, J. Bławzdziewicz, E. Wajnryb, Hydrodynamic crystals: Collective dynamics 
of regular arrays of spherical particles in a parallel-wall channel. Phys. Rev. Lett. 100, 
174502 (2008).

	 24.	 Y. Goto, H. Tanaka, Purely hydrodynamic ordering of rotating disks at a finite Reynolds 
number. Nat. Commun. 6, 5994 (2015).

	 25.	 K. Yeo, E. Lushi, P. M. Vlahovska, Collective dynamics in a binary mixture 
of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114, 188301 (2015).

	 26.	 T. M. Squires, M. P. Brenner, Like-charge attraction and hydrodynamic interaction. 
Phys. Rev. Lett. 85, 4976–4979 (2000).

	 27.	 J. Santana-Solano, J. L. Arauz-Lara, Hydrodynamic interactions in quasi-two-dimensional 
colloidal suspensions. Phys. Rev. Lett. 87, 038302 (2001).

	 28.	 A. Grimm, H. Stark, Hydrodynamic interactions enhance the performance of Brownian 
ratchets. Soft Matter 7, 3219–3227 (2011).

	 29.	 P. K. Ghosh, V. R. Misko, F. Marchesoni, F. Nori, Self-propelled janus particles in a ratchet: 
Numerical simulations. Phys. Rev. Lett. 110, 268301 (2013).

	 30.	 A. V. Arzola, M. Villasante-Barahona, K. Volke-Sepúlveda, P. Jákl, P. Zemánek, 
Omnidirectional transport in fully reconfigurable two dimensional optical ratchets. 
Phys. Rev. Lett. 118, 138002 (2017).

	 31.	 C. Marquet, A. Buguin, L. Talini, P. Silberzan, Rectified motion of colloids in asymmetrically 
structured channels. Phys. Rev. Lett. 88, 168301 (2002).

	 32.	 B. H. Wunsch, J. T. Smith, S. M. Gifford, C. Wang, M. Brink, R. L. Bruce, R. H. Austin, 
G. Stolovitzky, Y. Astier, Nanoscale lateral displacement arrays for the separation of 
exosomes and colloids down to 20 nm. Nat. Nanotechnol. 11, 936–940 (2016).

	 33.	 A. V. Straube, P. Tierno, Tunable interactions between paramagnetic colloidal particles 
driven in a modulated ratchet potential. Soft Matter 10, 3915–3925 (2014).

	 34.	 F. Martinez-Pedrero, H. Massana-Cid, T. Ziegler, T. H. Johansen, A. V. Straube, P. Tierno, 
Bidirectional particle transport and size selective sorting of Brownian particles 
in a flashing spatially periodic energy landscape. Phys. Chem. Chem. Phys. 18, 
26353–26357 (2016).

	 35.	 J. R. Blake, A note on the image system for a stokeslet in a no-slip boundary. Proc. Camb. 
Philos. Soc. 70, 303–310 (1971).

	 36.	 A. V. Straube, P. Tierno, Synchronous vs. asynchronous transport of a paramagnetic 
particle in a modulated ratchet potential. Europhys. Lett. 103, 28001 (2013).

	 37.	 C. Lutz, M. Reichert, H. Stark, C. Bechinger, Surmounting barriers: The benefit 
of hydrodynamic interactions. Europhys. Lett. 74, 719–725 (2006).

	 38.	 T. Neuhaus, M. Marechal, M. Schmiedeberg, H. Löwen, Rhombic preordering on a square 
substrate. Phys. Rev. Lett. 110, 118301 (2013).

	 39.	 H. Kawamoto, K. Seki, N. Kuromiya, Mechanism of travelling-wave transport of particles. 
J. Phys. D Appl. Phys. 39, 1249–1256 (2006).

	 40.	 B. B. Yellen, R. M. Erb, H. S. Son, R. Hewlin, H. Shang, G. U. Lee, Traveling wave 
magnetophoresis for high resolution chip based separations. Lab Chip 7, 1681–1688 
(2007).

	 41.	 C. Sándor, A. Libál, C. Reichhardt, C. J. O. Reichhardt, Collective transport for active matter 
run-and-tumble disk systems on a traveling-wave substrate. Phys. Rev. E 95, 012607 
(2017).

	 42.	 R. E. Goldstein, Traveling-wave chemotaxis. Phys. Rev. Lett. 77, 775–778 (1996).
	 43.	 M. Hirano, K. Shinjo, Atomistic locking and friction. Phys. Rev. B Condens. Matter 41, 

11837–11851 (1990).
	 44.	 D. Cole, S. Bending, S. Savel’ev, A. Grigorenko, T. Tamegai, F. Nori, Ratchet without spatial 

asymmetry for controlling the motion of magnetic flux quanta using time-asymmetric 
drives. Nat. Mater. 5, 305–311 (2006).

	 45.	 M. Belovs, R. Livanovics, A. Cebers, Hydrodynamic synchronization of pairs of puller type 
magnetotactic bacteria in a high frequency rotating magnetic field. Soft Matter 15, 
1627–1632 (2019).

	 46.	 J. Kotar, M. Leoni, B. Bassetti, M. Lagomarsino, P. Cicuta, Hydrodynamic synchronization 
of colloidal oscillators. Proc. Natl. Acad. Sci. U.S.A. 107, 7669–7673 (2010).

	 47.	 N. Uchida, R. Golestanian, Generic conditions for hydrodynamic synchronization. 
Phys. Rev. Lett. 106, 058104 (2011).

	 48.	 B. Lau, O. Kedem, J. Schwabacher, D. Kwasnieski, E. A. Weiss, An introduction to ratchets 
in chemistry and biology. Mater. Horiz. 4, 310–318 (2017).

	 49.	 R. D. Astumian, M. Bier, Fluctuation driven ratchets: Molecular motors. Phys. Rev. Lett. 72, 
1766–1769 (1994).

	 50.	 F. Jülicher, A. Ajdari, J. Prost, Modeling molecular motors. Rev. Mod. Phys. 69, 1269–1282 
(1997).

	51.	 P. Malgaretti, I. Pagonabarraga, D. Frenkel, Running faster together: Huge speed 
up of thermal ratchets due to hydrodynamic coupling. Phys. Rev. Lett. 109, 168101 
(2012).

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 28, 2022

https://science.org/doi/10.1126/sciadv.abo4546
https://science.org/doi/10.1126/sciadv.abo4546


Leyva et al., Sci. Adv. 8, eabo4546 (2022)     8 June 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 8

	 52.	 S. Kassem, T. van Leeuwen, A. S. Lubbe, M. R. Wilson, B. L. Feringa, D. A. Leigh, Artificial 
molecular motors. Chem. Soc. Rev. 46, 2592–2621 (2017).

	 53.	 C. Appert-Rolland, M. Ebbinghaus, L. Santen, Intracellular transport driven by cytoskeletal 
motors: General mechanisms and defects. Phys. Rep. 593, 1–59 (2015).

	 54.	 C. Hepp, B. Maier, Kinetics of DNA uptake during transformation provide evidence for a 
translocation ratchet mechanism. Proc. Natl. Acad. Sci. U.S.A. 113, 12467–12472 (2016).

	 55.	 P. Galajda, J. Keymer, P. Chaikin, R. Austin, A wall of funnels concentrates swimming 
bacteria. J. Bacteriol. 189, 8704–8707 (2007).

	 56.	 M. B. Wan, C. J. Olson Reichhardt, Z. Nussinov, C. Reichhardt, Rectification of swimming 
bacteria and self-driven particle systems by arrays of asymmetric barriers. Phys. Rev. Lett. 
101, 018102 (2008).

	 57.	 L. Angelani, R. Di Leonardo, G. Ruocco, Self-starting micromotors in a bacterial bath. 
Phys. Rev. Lett. 102, 048104 (2009).

	 58.	 R. D. Leonardo, L. Angelani, D. Dell’Arciprete, G. Ruocco, V. Iebba, S. Schippa, M. P. Conte, 
F. Mecarini, F. De Angelis, E. Di Fabrizio, Bacterial ratchet motors. Proc. Natl. Acad. Sci. U.S.A. 
107, 9541–9545 (2010).

	 59.	 P. Tierno, F. Sagués, T. H. Johansen, T. M. Fischer, Colloidal transport on magnetic garnet 
films. Phys. Chem. Chem. Phys. 11, 9615–9625 (2009).

	 60.	 P. Tierno, Magnetically reconfigurable colloidal patterns arranged from arrays 
of selfassembled microscopic dimers. Soft Matter 8, 11443 (2012).

Acknowledgments: We thank T. H. Johansen for providing us the FGF film. Funding: This work 
has received funding from the European Research Council (ERC) under the European Union’s 
Horizon 2020 Research and Innovation Programme (grant agreement no. 811234). S.G.L. and 
I.P. acknowledge support from Horizon 2020 program through 766972-FET-OPEN-NANOPHLOW. 
R.L.S. acknowledges support from the Swiss National Science Foundation (grant 180729). 
I.P. acknowledges support from Ministerio de Ciencia, Innovación y Universidades (grant 
no. PGC2018-098373-B-100 AEI/FEDER-EU) and from Generalitat de Catalunya under project 
2017SGR-884 and Swiss National Science Foundation project no. 200021-175719. P.T. acknowledges 
support from Ministerio de Ciencia, Innovación y Universidades (PID2019-108842GB-C21) and 
the Generalitat de Catalunya (ICREA Acadèmia). Author contributions: S.G.L. performed 
numerical simulations and theory. R.L.S. carried out the experiments. I.P. and P.T. supervised 
the work. All authors discussed and interpreted the result of the manuscript. Competing 
interests: The authors declare that they have no competing interests. Data and materials 
availability: All data needed to evaluate the conclusions in the paper are present in the paper 
and/or the Supplementary Materials.

Submitted 4 February 2022
Accepted 19 April 2022
Published 8 June 2022
10.1126/sciadv.abo4546

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 28, 2022



Use of this article is subject to the Terms of service

Science Advances (ISSN ) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Advances is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

Hydrodynamic synchronization and clustering in ratcheting colloidal matter
Sergi G. LeyvaRalph L. StoopIgnacio PagonabarragaPietro Tierno

Sci. Adv., 8 (23), eabo4546. • DOI: 10.1126/sciadv.abo4546

View the article online
https://www.science.org/doi/10.1126/sciadv.abo4546
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on N
ovem

ber 28, 2022

https://www.science.org/about/terms-service

