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ABSTRACT
We derive a dynamical field theory for self-propelled particles subjected to generic torques and forces by explicitly coarse-graining their
microscopic dynamics, described by a many-body Fokker–Planck equation. The model includes both intrinsic torques inducing self-rotation,
as well as interparticle torques leading to, for instance, the local alignment of particles’ orientations. Within this approach, although the
functional form of the pairwise interactions does not need to be specified, one can directly map the parameters of the field theory onto the
parameters of particle-based models. We perform a linear stability analysis of the homogeneous solution of the field equations and find both
long-wavelength and short-wavelength instabilities. The former signals the emergence of a macroscopic structure, which we associate with
motility-induced phase separation, while the second one signals the growth of a finite structure with a characteristic size. Intrinsic torques
hinder phase separation, pushing the onset of the long-wavelength instability to higher activities. Furthermore, they generate finite-sized
structures with a characteristic size proportional to both the self-propulsion velocity and the inverse of the self-rotation frequency. Our
results show that a general mechanism might explain why chirality tends to suppress motility-induced phase separation but instead promotes
the formation of non-equilibrium patterns.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0123680

I. INTRODUCTION

Active matter encompasses a large number of systems that con-
stantly convert internal energy into autonomous motion. They, thus,
evolve far from equilibrium, such that the understanding of their
collective states resulting from the combination of different inter-
actions between their constituents, in the presence of dissipation
and fluctuations violating the standard rules of equilibrium dynam-
ics, still raises interesting challenges. Lifting constraints imposed
by equilibrium, such as the fluctuation–dissipation theorem, active
matter can reach novel spatiotemporal structures absent in pas-
sive matter.1,2 Living organisms constitute obvious examples of
active matter, although artificially self-propelled objects, such as
granular3–6 or colloidal7–11 particles, have become popular in soft
matter physics labs over the last decade.

In order to somehow grasp the physics of collections of active
particles, quite some efforts have been devoted to the study of sim-
plified models.12,13 In this context, much progress has been achieved
in the fundamental understanding of two widespread collective phe-
nomena in active particle systems: on one hand, the emergence
of collective motion, or flocking, and on the other hand, particle
clustering in the absence of attractive interactions.

The Vicsek model was the first attempt to describe the former
phenomenon, i.e., the emergence of collective motion, as a sym-
metry breaking phase transition, due to the competition between
noise and local alignment of the particles’ (birds) self-propulsion
direction.14–16 Its continuum counterpart, the Toner–Tu theory,
provides a hydrodynamic description incorporating the same main
fundamental ingredients as the agent-based model.17,18 Such a
continuum approach allows for an understanding of the generic
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mechanisms controlling the large-scale properties of systems of
aligning self-propelled particles, hoping them to be, to some
extent at least, universal. Since then, further efforts have been
put into deriving continuum equations in a consistent way, by
explicitly coarse-graining the stochastic dynamics of self-propelled
particles.19–22 One of the advantages of constructing a field theory
starting from the microscopic dynamics is that it allows for a direct
comparison between the continuum and particle-based results,
something which is missing in the original Toner–Tu approach,
based on symmetry and conservation laws assumptions. Besides
the Vicsek model (and its variants), which prescribes a velocity-
aligning torque between otherwise non-interacting agents, flocking
behavior can also arise from excluded-volume interactions between
elongated self-propelled particles23–27 or from other more complex
mechanisms involving the coupling with the environment, or the
specificities of the particles’ self-propulsion mechanism.3,28–31

The other salient phenomenon generically encountered in
active systems is the spontaneous aggregation in the absence of
attractive interactions.8,9,32 At the level of simple models, this phe-
nomenon is thought to arise from the mere competition between
persistent motion along a given direction and excluded-volume
interactions. For persistent enough particles and at high enough
densities, one can eventually observe the system phase separates
into a macroscopic dense cluster surrounded by a dilute gas-like
phase, a phenomenon known as motility-induced phase separa-
tion (MIPS).33,34 MIPS has been reported in numerical studies
of minimal models, like Active Brownian Particles (ABP), con-
sisting of persistent Brownian spherical particles, interacting with,
typically, an isotropic short-range repulsive potential.34–40 Here
as well, there have been several attempts to construct a contin-
uum field theory to describe such non-equilibrium phase tran-
sition, exploiting symmetry and conservation laws, or trying to
make a smooth connection with the dynamics of the microscopic
models41–49—in all cases under strong assumptions hard to put into
test.

Besides the achiral active particles considered by the Vicsek
and the ABP models, self-propelled chiral particles, whose propul-
sion direction turns at a given rate, are also common to encounter
at different scales, constituting yet another class of active particle
systems. Examples include micro-organisms showing autonomous
rotation, as is the case of E. Coli near a wall50–52 and sperm
cells,53,54 L-shaped Janus colloids,55 or chiral grains,6 among oth-
ers. The study of such circle swimmers from minimal models,
usually thought of as extensions of the Vicsek and ABP models
including an intrinsic frequency, is attracting increasing attention
over the past few years,56–64 laying the groundwork for an analy-
sis of the interplay between chirality and aligning interactions or
excluded-volume effects, respectively. Systems of chiral active par-
ticles might feature both macrophase separation and microphase
separation, depending on the rate at which their heading direction
turns.57,60,63

The interplay between both excluded-volume and aligning
interparticle interactions, or torques, has been addressed in a series
of works,11,25,27,65–75 focused on activity-induced aggregation. Fol-
lowing the approach first introduced for pure ABP systems in
Ref. 45, a hydrodynamic description has been derived for spe-
cific types of polar and nematic (Vicsek-like) alignment rules,74 for
chiral ABP63 and for dipolar ABP.76 However, a general theoretical

framework encompassing both chiral and achiral self-propelled par-
ticles interacting via generic central forces and aligning torques
is still missing. Besides its formal interest, establishing a theory
incorporating torques would allow us to address several questions
on general grounds. For instance, why, despite their fundamental
difference, both circle swimmers and spinning particles (with no
self-propulsion) suppress phase separation for large enough rota-
tional frequencies. On one hand, it is now known that intrinsic
torques generically interrupt MIPS63,72,75 in systems of chiral self-
propelled particles, giving rise to clusters of self-limited sizes,
both in systems with and without alignment interactions.57,58,63

On the other hand, ferromagnetic colloidal particles, spinning at
a given frequency imposed by an external magnetic field, have a
tendency to condense as a result of mutual attractive inter-
actions, but this phase separation is arrested at large enough
spinning frequencies, giving rise, again, to finite-sized clusters.77

To what extent a similar mechanism might explain finite-size
clustering in both set-ups remains to be an interesting open
problem.

Here, we establish a general framework that allows us to sys-
tematically derive continuum hydrodynamic equations describing
systems of self-propelled particles subjected to generic torques acting
on the self-propulsion direction, under the assumption of isotropy
and homogeneity (we will study later on the linear stability of
such a homogeneous state). These torques can be intrinsic to the
particle or resulting from interparticle interactions. Interestingly,
we can define a set of parameters that capture, at the micro-
scopic level of pairwise interactions, the effect of both the activity
and the torques considered. This paves the way for a mean-field
analysis of the destabilization of the homogeneous phase, which
might lead to different scenarios depending on the origin and
type of torques considered. Within this framework, one can show
that the activity triggers a spinodal-like long-wavelength instabil-
ity associated with MIPS (the location of which is affected by the
self-propulsion mechanism and the different interactions), while
self-rotations trigger a short-wavelength instability, introducing a
characteristic length ℓ. This characteristic length appears to scale
as the inverse of the turning rate ℓ ∼ ω−1

0 , as found in a sim-
ple model of chiral active particles with polar alignment57 and
in suspensions of spinning hematite colloids,77 suggesting a com-
mon mechanism underlying these two a priori unrelated physical
systems.

The paper is organized as follows: In Sec. II, starting from
the microscopic dynamics, we derive the (mean-field) continuum
hydrodynamic equations that govern the evolution of the density
and the polarization fields. We then go on to analyze the linear stabil-
ity of the homogeneous and isotropic phases in Sec. III. We formally
show that adding both an intrinsic frequency of rotation and inter-
particle torques to the dynamical equations qualitatively changes the
phase behavior predicted by the linear stability analysis. We discuss
the different cases in Secs. III B 1 and III B 2.

II. DERIVATION OF THE CONTINUUM EQUATIONS
We consider a system of self-propelled particles governed

by the following N-body Smoluchowski equation, accounting for
the time evolution of the joint probability distribution function
ψN(Γ = {ri,φi}i=1..N , t):
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∂tψN =
N

∑
i=1
∇i ⋅ [(∇i𝒰)ψN − v0eiψN +D0∇iψN]

+
N

∑
i=1

∂φi[(∂φi𝒰)ψN − ω0ψN +Dr∂φiψN]. (1)

The function ψN gives the probability to find N particles of the
system at N given positions in a 2D space, ri(t) = (xi, yi), and with N
given orientations φi. The system is composed of particles that self-
propel at constant speed, v0, along ei = (cosφi, sinφi), and rotate at
an intrinsic frequency, ω0. They are also subjected to thermal and
rotational noise, characterized by the diffusion constants D0 and Dr ,
respectively. From now on, we set D0 = 1 without loss of generality.

Interactions are modeled by the pairwise interaction potential,

𝒰({rj},{φj}) =
N

∑
i=1
∑
i<j

u(∣rj − ri∣,φi,φj). (2)

For the sake of generality, we do not specify the functional form
of𝒰. Consequently, we are deriving a framework to describe systems
of self-propelled particles whose interactions depend on the center-
to-center distance between pairs and on their inner orientation.

Following the procedure first introduced in Ref. 45, we inte-
grate out the degrees of freedom of (N − 1) particles, yielding the
one-body Smoluchowski equation,

∂tψ1 = −∇1 ⋅ [F(r1,φ1, t) + v0e1ψ1 −∇1ψ1]

−
∂

∂φ1
[T(r1,φ1, t) + ω0ψ1 −Dr

∂ψ1

∂φ1
], (3)

which constitutes the first equation of a BBGKY-like hierarchy
of equations, coupled to two-body terms through F(r1,φ1, t) and
T(r1,φ1, t), which are the effective force and torque, respec-
tively, exerted by the surrounding particles into the tagged particle
(labeled 1). The effective force reads

F(r1,φ1, t) = −N∫
∞

−∞
dr2 . . . drN∫

2π

0
dφ2 . . . dφN(∇1𝒰) ψN

= −∫

∞

−∞
dr2∫

2π

0
dφ2(∇1u(∣r2 − r1∣,φ1,φ2))ψ2 (4)

and the effective torque is

T(r1,φ1, t) = −N∫
∞

−∞
dr2 . . . drN∫

2π

0
dφ2 . . . dφN(∂φ1𝒰)ψN

= −∫

∞

−∞
dr2∫

2π

0
dφ2(∂φ1 u(∣r2 − r1∣,φ1,φ2))ψ2, (5)

where ψ2(r1, r2,φ1,φ2, t) is the two-body probability distribution.
Forces come from the spatial dependency of the pair poten-

tial. Typically, one considers excluded-volume interactions, which
set the particles’ characteristic finite size. Conversely, torques result
from the orientation dependency in Eq. (2) and, thus, act on the
direction of self-propulsion of particles. Depending on the type of
aligning potential considered, torques can lead to different scenar-
ios. Some particular cases have been already studied in the literature.
Vicsek-like aligning rules, which are decoupled from the excluded-
volume forces, are considered in Ref. 74. On the contrary, dipolar

FIG. 1. Sketch of a two-particle system with its relevant variables, where
ei = (cosφi , sinφi).

interactions between permanent point dipoles, which couple spatial
and angular degrees of freedom, are analyzed in Ref. 76.

To proceed, we introduce a change in variables. As we only
focus on small deviations from homogeneity, one defines the vec-
tor distance r12 = r2 − r1 = r12(cosω, sinω) and the orientations φ1
and φ2. Thus, in the lab frame of reference, the set of independent
variables is (r12,ω,φ1,φ2), as depicted in Fig. 1. We note that the
integrals in Eqs. (4) and (5) are over r2 and φ2, while r1 and φ1 are
kept fixed. This allows us to express orientations as a function of
φ1, and, therefore, we define φ12 = φ2 − φ1. Employing a body-fixed
frame, one can express the directions along the plane relative to e1.
We thus introduce θ1 = φ1 − ω and θ2 = φ2 − ω. However, θ2 can be
expressed as a function of θ1 and φ12, θ2 = φ12 − θ1. We can, there-
fore, use r12, θ1, and φ12 as our set of independent variables, without
loss of generality.

We now decompose ψ2 in terms of the new set of variables as

ψ2(r1, r2,φ1,φ2, t) = ρ̄ ψ1(r1,φ1, t)𝒢(r12, θ1,φ12, t), (6)

where ρ̄ is the average density and 𝒢(r12, θ1,φ12, t) is the pair cor-
relation function encoding the microscopic structure of the system.
We interpret it as the probability of finding a particle with orienta-
tion φ2 in the plane-direction θ1, at a distance r12 = ∣r12∣ from the
tagged particle (at r1 with orientation φ1).

We also introduce the change in variables dr12 = dr2 and
dφ12 = dφ2, stemming from the definition r12 = r2 − r1 and φ12
= φ2 − φ1. This yields the rewriting of Eqs. (4) and (5) as

F(r1,φ1, t) = ρ̄ψ1(r1,φ1, t)∫
∞

−∞
dr12

× ∫

2π

0
dφ12

∂u(r12,φ12)

∂r12

r12

r12
𝒢(r12, θ1,φ12, t), (7)

T(r1,φ1, t) = ρ̄ψ1(r1,φ1, t)∫
∞

−∞
dr12

× ∫

2π

0
dφ12

∂u(r12,φ12)

∂φ12
𝒢(r12, θ1,φ12, t). (8)

In the remainder of the paper, we shall drop the subscripts for
clarity. We will now group the two-body terms in the force and
torque’s expression in single scalar coefficients.
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A. Torque
Grouping the two-body terms in the torque’s expression in a

scalar coefficient, κ, allows for the rewriting of Eq. (8) as

T = −ρ̄ψ1κ, (9)

where

κ = −∫
∞

0
drr∫

2π

0
dθ∫

2π

0
dφ

∂u(r,φ)
∂φ

𝒢(r, θ,φ, t). (10)

This factor κ is linked to the spatial and orientational correla-
tions encoded in 𝒢(r, θ,φ, t). If one considers the passive-particle
limit, i.e., v0 = 0, then, in a homogeneous suspension of isotropic
disks, it is equally probable to find a particle at any distance from
the tagged particle, r, in any in-plane direction, θ, and with any rel-
ative orientation φ. Therefore, the correlation function fulfils the
head–tail symmetry (θ → θ + π) and the symmetry against exchange
of particles’ position (θ → −θ), as well as the parallel–antiparallel
symmetry (φ→ φ + π) and the symmetry against exchange of
orientations (φ→ −φ). Introducing activity breaks the symmetry
θ → θ + π. This implies that it is more likely to find another parti-
cle in front of the tagged particle than behind of it, a signature of the
self-trapping mechanism that leads to MIPS.

Keeping these symmetries in mind, it is straightforward to
argue the cases in which κ has a non-zero value. The alignment
mechanisms usually studied in the field enter in the interaction
potential with an even dependency in φ (e.g., Vicsek-like align-
ment interactions). Alternatively, one may think of more complex
interactions also leading to effective alignment, like dipole–dipole
interactions, which also involve an even dependency in θ (i.e., dipo-
lar interactions involve a dependency on both relative orientations
and relative positions in space). All in all, this results in ∂φu(r,φ)
having an odd dependency in φ and, depending on the specific
interaction considered, also in θ. Thus, the product of ∂φu(r,φ)
times a correlation function𝒢(r, θ,φ, t), which fulfils the symmetries
against exchange of particles’ position and exchange of orientations
(i.e., it is even in φ and θ), results in κ = 0 upon integration, Eq. (10).
This scenario does not change in the presence of activity. We thus
state that κ remains identically zero as long as the symmetry φ→ −φ
and/or θ → −θ are not broken.

B. Force
In the case of Eq. (7), it is not straightforward to group the

two-body terms in scalar coefficients. To do so, we first decom-
pose F(r1,φ1; t) in the vector basis spanned by the direction
of self-propulsion and the gradient of the probability density,
(e,∇ψ1). We follow a Gram–Schmidt orthonormalization scheme
(see Appendix A for the full derivation), which in this case is an
approximation, due to the fact that it is not guaranteed that e and
∇ψ1 remain linearly independent, since they evolve in time and
could become, at some point, parallel throughout the system’s
evolution. The decomposition of F(r1,φ1, t) reads

F ≈ (−ρ̄ψ1ζ)e + (1 −𝒟)∇ψ1, (11)

where the two scalar coefficients introduced correspond to

ζ = −∫
∞

0
dr r∫

2π

0
dθ cos θ∫

2π

0
dφ

∂u(r,φ)
∂r

𝒢(r, θ,φ, t) (12)

and

𝒟 = 1 −
(∇ψ1 − (e ⋅ ∇ψ1)e) ⋅ F

∣∇ψ1∣2
. (13)

The first term on the right-hand side (RHS) of Eq. (11) is the
component of the force acting along the direction of self-propulsion.
We can interpret this component as the one quantifying the imbal-
ance between the self-propulsion of the tagged particle and its arrest
induced by collisions with neighboring particles.

In a system of passive colloids, ζ = 0, which can be simply
understood applying the same symmetry arguments given earlier
and, thus, it is independent of the interparticle potential. This further
means that, in the present construction, ζ is irrelevant for a stan-
dard spinodal decomposition in an equilibrium system of attractive
particles at low enough temperatures. Our approach is particularly
tailored for activity-induced aggregation, exploiting the preferred
direction of motion e to decompose the effective force, Eq. (7).
In order to account for equilibrium phase separation, one could
invoke a mean-field approximation and split the two-body distri-
bution function as a product of one-body ones. This will lead to an
effective diffusivity at the level of the one-body Smoluchowski equa-
tion (see below) that will change sign when the homogeneous state
becomes unstable, signaling a spinodal long-wavelength instability.

As soon as the activity enters the systems, the θ → θ + π sym-
metry is broken and, thus, ζ ≠ 0, due to the cos θ term stemming
from the projection of the force (see the Gram–Schmidt orthonor-
malization in Appendix A). We note that in the active case, ζ will also
have contributions from the aligning potential, evidencing that in
the model we have derived, alignment interactions modify the force
imbalance arising from the collision persistence and captured by ζ.

The second term on the RHS of Eq. (11) can be interpreted
as an effective diffusion acting along the gradient of the one-body
probability distribution.

Introducing the expressions for the force and the torque,
Eqs. (9) and (11), into the one-body Smoluchowski equation leads
to the rewriting of Eq. (3) as

∂tψ1 = −∇ ⋅ [vρ̄ eψ1 −𝒟∇ψ1] −
∂

∂φ
[ερ̄ψ1 −Dr

∂ψ1

∂φ
], (14)

where

vρ̄ = v0 − ρ̄ζ, ερ̄ = ω0 − ρ̄κ. (15)

The first two terms on the RHS of Eq. (14) correspond to
the advection and diffusion, respectively, of the spatial degrees of
freedom. Here, the translational advection term sets an effective self-
propulsion speed, vρ̄, Eq. (15), which decays with the mean density,
ρ̄, at a rate given by ζ and which can thus be interpreted as a trans-
lational friction coefficient, accounting for the arrest of particles in
crowded environments. 𝒟 is an effective many-body diffusivity. The
third and fourth terms on the RHS of Eq. (14) correspond to the
advection and diffusion of the orientations. In the advective term, ερ̄
is the effective frequency of rotation, where ω0 is the intrinsic fre-
quency of rotation, as stated earlier, and κ can be interpreted, by
analogy with ζ, as a rotational friction coefficient, stemming from
interparticle aligning torques. Note the equivalent role played by
(vρ̄, v0, ζ) and (ερ̄, ω0, κ), Eq. (15). Finally, the rotational diffusion
coefficient is Dr .
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The microscopic information of the one-body equation just
derived is captured by ζ, κ, and 𝒟, which link the one-body distribu-
tion to higher order ones. To proceed, we make the assumption that
ζ, κ, and 𝒟 are independent of the tagged particle’s position, which
is valid as long as the system is in (close to) an homogeneous state.
We, therefore, close the hierarchy of coupled equations by consid-
ering these parameters as constants. This is a central approximation
of our approach, which allows us to derive effective hydrodynamic
equations.

We emphasize that, opposed to top-down approaches that base
the derivation of the effective hydrodynamic equations on symmetry
arguments and conservation laws,42 our approach directly coarse-
grains the microscopic dynamics. Thus, the coefficients we define
are not phenomenological but stem from interparticle interactions.
They, indeed, take specific numerical values in particle-based mod-
els, whose calculation allows for a direct quantitative comparison
between the microscopic model and the coarse-grained theory.
Another relevant feature of this approach45,74 is the effective speed
vρ̄ decaying at increasing density (a signature of MIPS), which here
is an outcome of the derivation and not introduced as an hypothesis.

We can now derive the hydrodynamic equations by integrating
the closed one-body Smoluchowski equation, Eq. (14). We define the
first two moments of the one-body probability distribution to be the
density field

ρ(r, t) ≡ ∫
2π

0
dφψ1(r,φ, t), (16)

and the polarization

p(r, t) ≡ ∫
2π

0
dφeψ1(r,φ, t), (17)

which lead to the hydrodynamic equations

∂tρ(r, t) = −∇ ⋅ [vρ̄p −𝒟∇ρ], (18)

∂tp(r, t) = −∇ ⋅ [vρ̄(
1
2
ρ𝟙 +Q) −𝒟∇p] − ερ̄p� −Drp. (19)

Here, � indicates a rotation corresponding to p� =ℛp and

∇
�
=ℛ∇ with ℛ = (

0 −1

1 0
). The time evolution equation of each

moment is linearly coupled to the next order moment. Therefore, the
time evolution of the polarization is coupled to the nematic tensor,
Q. To close the set of hydrodynamic equations, we drop the depen-
dency of Eq. (19) on Q. As we show in Appendix C, after dropping
the dependency in Q and performing an adiabatic approximation to
the hydrodynamic equations (i.e., ∂tp = 0), we still capture the rele-
vant information on the linearly unstable modes at any wave vector.
This proves that ρ(r, t) is the slowest moment of the probability dis-
tribution and the higher order moments, i.e., p and Q, are enslaved
to it. This, in turn, justifies cutting the hierarchy of hydrodynamic
equations to Q.

The hydrodynamic equations above have an isotropic homo-
geneous steady-solution (ρ(r, t) = ρ̄, p(r, t) = 0) but do not admit
a polar steady-solution, as continuum theories of flocking. The
present theory does not provide a symmetry breaking term à la Lan-
dau, as in the Toner–Tu theory, and, therefore, it is limited to the
description of non-polar states.

III. LINEAR STABILITY ANALYSIS
We now assume that the density ρ(r, t) is a slowly varying

field45 and we replace ρ̄ by the local density field ρ(r, t) in the
hydrodynamic equations, Eqs. (18) and (19). This approximation
introduces a coupling between the local density and polarization
fields at the level of Eq. (18), needed in order to observe a linear
instability. It is justified as long as the system is perturbatively close
to the homogeneous isotropic state. Thus, the closed set of hydrody-
namic equations accounting for the time evolution of a perturbation
around the homogeneous and isotropic states, ρ(r, t) = ρ̄ + δρ and
p(r, t) = δp, is

∂tδρ = −∇ ⋅ [(v0 − ρ̄ζ)δp −𝒟∇δρ], (20)

∂tδp = −∇ ⋅ [
1
2
(v0 − 2ρ̄ζ)δρ −𝒟∇δp] −Drερ̄δp� −Drδp. (21)

Our goal is to study how torques affect the structure formation
in systems of self-propelled particles, which result from the com-
petition between self-propulsion and interparticle collisions. In the
mean-field model we have derived, the effect of torques (intrinsic
or due to interparticle alignment) is captured in ερ̄, while ζ quanti-
fies the collision persistence. Thus, to explore the phenomenology of
our model, we need to scan a set of three parameters: v0, ερ̄, and ζ.
From now on, we note ερ̄ = ε.

It is possible to write the hydrodynamic equations for the per-
turbation in Fourier space, u ∼ ûeiq⋅r, where u = (δρ, δp), which
finally leads to

∂t̃δˆ̃ρ = −iq̃ ⋅ [4(
v0

v∗
− ζ̃)δ ˆ̃p − iq̃δˆ̃ρ], (22)

∂t̃δ ˆ̃p = −iq̃ ⋅ [2(
v0

v∗
− 2ζ̃)δˆ̃ρ − iq̃δ ˆ̃p] − ε̃δ ˆ̃p� − δ ˆ̃p, (23)

where the dimensionless quantities read

t̃ = Drt, q̃ =
√

𝒟
Dr

q,

v0

v∗
=

v0

4
√
𝒟Dr

, ε̃ =
ε

Dr
, ζ̃ =

ρ̄
v∗
ζ.

(24)

In the remainder of the paper, we work with dimensionless
quantities but we drop the tilde q̃ ≡ q. Writing the two dimensionless
independent linearized equations in the matrix form, ∂t(δρ̂ δp̂)T

=M(δρ̂ δp̂)T , where

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−q2
−4i(

v0

v∗
− ζ)qx −4i(

v0

v∗
− ζ)qy

−2i(
v0

v∗
− 2ζ)qx −(q2

+ 1) ε

−2i(
v0

v∗
− 2ζ)qy −ε −(q2

+ 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We can compute the system’s eigenvalues by solving the determi-
nant of M and setting it to 0. The details of the computation as well as
the functional form of the eigenvalues can be found in Appendix B.

The eigenvalues correspond to the dispersion relations quanti-
fying the growth of a perturbation with dimensionless wave vector
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q and allow us to explore the onset of linear instabilities. As men-
tioned before, the parameter space of our model is conformed by v0

v∗ ,
ζ, and ε. In Sec. III A, we briefly discuss the torque-free case ε = 0,
which has been extensively studied in Refs. 45 and 78 and which we
add for completeness. Here, the two relevant parameters controlling
the system’s destabilization are v0

v∗ and ζ. We then move on to intro-
duce ε and show that the predictions of the linear stability analysis
qualitatively change in the presence of effective torques.

To obtain ε ≠ 0, one can think of a functional form of the
alignment potential involving odd dependencies in the angular vari-
ables, which would automatically lead to κ ≠ 0 upon integration. It
is worth mentioning, though, that alignment interactions leading to
either parallel or antiparallel alignment involve even dependencies
in the angular variables. Alternatively, one can consider a nonrecip-
rocal pairwise alignment interaction that breaks the symmetry under
exchange of orientations φ→ −φ and/or under exchange of particles’
position θ → −θ and that, thus, results in κ ≠ 0. Besides, chiral active
particles self-rotate at an intrinsic frequency ω0, adding a constant
(non-zero) contribution to ε.

A. Case ε = 0
For systems with no effective torques, ε = 0. In this case,

originally considered in Ref. 45, the phase behavior is exclusively
controlled by the competition between activity and interparticle
collisions. Alternatively, effective torques can also lead to ε = 0 in
some particular microscopic achiral models, such as systems with
Vicsek-like alignment74 or dipole–dipole interactions,76 where the
symmetry of the alignment interaction together with the symmetry
of the angular correlation leads to a rotational friction coefficient
that is identically zero upon integration (see the discussion on
angular symmetries in Sec. II).

Setting ε = 0, the eigenvalues [see Eq. (B7) in Appendix B] can
be written as

λ1 = −
1
2
(2q2

+ 1) +
1
2

√

1 − 32q2(
v0

v∗
− ζ)(

v0

v∗
− 2ζ),

λ2 = −(q2
+ 1),

λ3 = −
1
2
(2q2

+ 1) −
1
2

√

1 − 32q2(
v0

v∗
− ζ)(

v0

v∗
− 2ζ).

(25)

The eigenvalues λ2 and λ3 are negative for any wave vector q,
indicating that the homogeneous state is stable upon perturbation
along these two modes, as depicted in Fig. 2(a). On the contrary, λ1
can become positive, indicating the growth of instability. We focus
our attention to the low-q behavior of these eigenvalues, which, to
second order in q = ∣q∣, read

λ1 = 0 − [1 + 8(
v0

v∗
− ζ)(

v0

v∗
− 2ζ)]q2

+ 𝒪(q3
),

λ2 = −1 − q2,

λ3 = −1 + [−1 + 8(
v0

v∗
− ζ)(

v0

v∗
− 2ζ)]q2

+ 𝒪(q3
).

(26)

λ1 can become positive at q→ 0 and trigger the growth of a
long-wavelength (LW) instability. The instability region at q→ 0
as a function of ( v0

v∗ , ζ) is represented in Fig. 2(b) in blue. One
can obtain the limits of stability analytically by taking the second

FIG. 2. (a) Dispersion relations as a function of the dimensionless wave vector
q = ∣q∣ for v0/v∗ = 2.5, ζ = 2.0, and ε = 0.0: λ2 < 0 and λ3 < 0 for all q, while
λ1(q) > 0 at small wavenumbers. (b) LW instability region in the ( v0

v∗
, ζ) plane

for ε = 0. The limit of stability illustrated by the red dashed line corresponds to
Eq. (27).

order term in the Taylor expansion, Eq. (26), and setting it to zero,
leading to

ζ(
v0

v∗
, ε = 0, q→ 0) = ζ0 =

3
4

v0

v∗
±

1
4

√

(
v0

v∗
)

2
− 1 (27)

and represented by two broken lines in Fig. 2(b). We note that the
dispersion relations do not have any complex term, implying that no
oscillating instabilities take place.

Such LW instability, coming from an increase in the effec-
tive friction ζ along the direction of self-propulsion as the self-
propulsion speed increases, is associated with MIPS.45

B. Case ε ≠ 0
We now study the impact of a non-vanishing ε in the stabil-

ity of the homogeneous phase. We thus explore the parameter space
( v0

v∗ , ζ, ε) and show that taking ε into account qualitatively changes
the linear stability of the homogeneous isotropic state. We recall
that one way of realizing this is by considering self-turning chiral
particles.

1. Long-wavelength instabilities
We start our study analyzing LW instabilities (q→ 0), which

signal the formation of a macroscopic structure. In the model
we present, Eqs. (18) and (19), such LW instability is associated
with a phase separation identified with MIPS. The expansion of
the eigenvalues, Eq. (B7) in Appendix B, up to second order in q
leads to

λ1 = 0 − [1 +
8

1 + ε2 (
v0

v∗
− ζ)(

v0

v∗
− 2ζ)]q2

+ 𝒪(q3
),

λ2 = −1 − iε + [−1 +
4

1 + ε2 (
v0

v∗
− ζ)(

v0

v∗
− 2ζ)

− i
4ε

1 + ε2 (
v0

v∗
− ζ)(

v0

v∗
− 2ζ)]q2

+ 𝒪(q3
),

λ3 = −1 + iε + [−1 +
4

1 + ε2 (
v0

v∗
− ζ)(

v0

v∗
− 2ζ)

+ i
4ε

1 + ε2 (
v0

v∗
− ζ)(

v0

v∗
− 2ζ)]q2

+ 𝒪(q3
).

(28)
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Out of the three eigenvalues, only λ1 gives rise to a growing
instability, just as in the ε = 0 case, as shown in Sec. III A. We also
note that λ1 does not have a complex part. On the contrary, λ2
and λ3 are complex conjugated numbers. We, moreover, point out
that their functional form does not reduce to that in Eq. (26) when
ε = 0. This is due to the fact that introducing an effective frequency
of rotation ε changes the nature of the solutions of the character-
istic polynomial, Eq. (B1). For an arbitrary value of ε, we show
in Appendix B that, near q = 0, the solutions of the characteristic
polynomial lead to one real and two complex conjugated eigenval-
ues, resulting in Eq. (28) after Taylor expanding Eq. (B7) close to
q = 0. Nevertheless, for small values of ε below the threshold value

εt = +

√√
97

2 −
83
18 (computed in Appendix B), the eigenvalues corre-

spond to three different real numbers. In the particular case ε = 0,
their expression is given in Eq. (25), which leads, in turn, to the
Taylor expansion in Eq. (26).

We investigate the LW instability region in the ( v0
v∗ , ζ) plane

by numerically solving the “full” dispersion relation λ1 [given in
Appendix B, Eq. (B7)] for different ε values. Such a region is plot-
ted in blue in Fig. 3(a) for ε = 4. Furthermore, the limit of stability
given by λ1 > 0 can be computed explicitly from the second order
term of the Taylor expansion, Eq. (28). It is given by

ζ(
v0

v∗
, ε, q→ 0) = ζ0 =

3
4

v0

v∗
±

1
4

√

(
v0

v∗
)

2
− (1 + ε2), (29)

which is plotted in Fig. 3 by a red dashed line in panel (a) for ε = 4
and by continuous lines for several values of ε in panel (b).

Increasing ε leads to a shift in the LW instability region to
higher values of the self-propulsion speed, as shown in Fig. 3. This
result from the linear stability analysis is consistent with the phase
behavior of chiral active particles reported in previous studies, show-
ing that active rotation generically hinders motility-induced phase
separation.60,62,63 As put forward in Ref. 60, this can be understood
as a result of the faster reorientation of chiral active particles, which
opposes the self-trapping mechanism responsible for cluster forma-
tion. In our formalism, the hindrance of MIPS is evidenced by the
shift of the instability region to higher values of v0

v∗ , at increasing ε.
According to our theory, one needs larger self-propulsion speed to
eventually destabilize the homogeneous state and reach a condensate
of chiral active particles.

FIG. 3. (a) Long-wavelength instability region for ε = 4. The limit of stability illus-
trated by the red dashed line corresponds to Eq. (29). (b) Long-wavelength limit
of stability given by Eq. (29) for ε = 1, 2, 4, 6, and 8, and showing the shift of the
unstable region to higher values of v0

v∗
as ε increases.

2. Short-wavelength instabilities
So far, we have focused on LW instabilities that signal the onset

of a phase separation. However, the formalism we have derived
allows us to study instabilities happening at any wave vector q,
meaning λ1(q) > 0. In fact, our analysis predicts a short-wavelength
(SW) instability for ε ≠ 0 over a broad range of parameter values. A
finite q∗ > 0 indicates the growth of some structure, or pattern, with
a characteristic length scale ℓ ∼ 1/q∗. Therefore, in the SW instabil-
ity region of the parameter space, a phase separation (i.e., MIPS) is
not expected, but rather the formation of smaller finite-sized clus-
ters, which, according to the prediction to linear order, will not
coarsen to form a macroscopic structure.

To identify the onset of SW instability, we perform an adiabatic
approximation (i.e., ∂tp = 0) in Eq. (19), which allows us to rewrite
the hydrodynamic equation for the density field as an effective diffu-
sion equation (see Appendix C for the full derivation). From it, one
can obtain the following limit of stability:

ζ(
v0

v∗
, ε, q) = ζq =

3
4

v0

v∗
±

1
4

¿
Á
ÁÀ(

v0

v∗
)

2
− q2 − 1 −

ε2

q2 + 1
, (30)

now given as a function of v0
v∗ , ε, and q. In Sec. III B 1, we have

already obtained the limit of stability for the particular case q→ 0,
Eq. (29). However, Eq. (30) is more general: it accounts for the limit
of stability at any finite value of q.

We numerically compute the eigenvalues from the expressions
in Eq. (B7) and plot λ1(q) for two representative cases in Fig. 4(a). In
one case, λ1(q) is always positive irrespective of q (red curve), while
in the other case, it only becomes positive above a certain threshold
q∗ (blue curve). The dependency of q∗ on v0

v∗ at fixed ε and ζ is shown
in Fig. 4(b).

We observe that as soon as ε ≠ 0, a SW instability appears, as
depicted in Fig. 4(a). For ε = 4, we plot in Fig. 5(a) the LW insta-
bility region in dark blue together with the SW instability region in
light blue. We also represent in Fig. 5(b) the SW and LW unstable
regions for ε = 8 with a color map showing the value of q∗. As evi-
denced by the comparison between Figs. 5(a) and 5(b), the extent
of the SW instability region grows by increasing ε. Note that the

FIG. 4. (a) Eigenvalue responsible for the instability as a function of the wave vec-
tor for ( v0

v∗
, ζ, ε) = (8.0, 6.0, 8.0), corresponding to a long-wavelength instability

(red line), and for ( v0

v∗
, ζ, ε) = (4.6, 3.1, 8.0), corresponding to a finite wavelength

instability (blue line). (b) Values of the wave vector q∗ at which the eigenvalue λ1
first becomes positive as a function of v0

v∗
, for fixed ζ = 4.6 and ε = 8.0 [horizontal

dashed–dotted line in Fig. 5(b)]. The solid line is a guide to the eye.
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FIG. 5. (a) Region of instability at fixed ε = 4. The dark-blue region corresponds to
the long-wavelength instability while the light blue region marks a region of short-
wavelength instability. The red dashed curve indicates the limit of long-wavelength
instability, predicted by Eq. (29). (b) Region of instability at fixed ε = 8.0. The color
map corresponds to the value of q∗ at which the instability takes place. The dashed
curves mark the limit of stability at fixed q, predicted by Eq. (30). In this case, q = 0
(red) and q = 1 (purple), respectively. In both (a) and (b), the solid gray line cor-
responds to vρ̄ = 0 and the region above is nonphysical since vρ̄ < 0. The dotted
black line indicates the line along which the critical point moves, upon increasing
ε, given by Eq. (D1) (Appendix D).

closer a ( v0
v∗ , ζ)-point is to the long-wavelength (dark blue) instabil-

ity region, the smaller the value of q∗ is until it becomes identically
zero inside of it. In other words, the characteristic length of the SW
instabilities continuously grows when approaching the LW instabil-
ity region, until it becomes infinite (spanning all the system’s size)
inside it.

As we have shown in colored dashed curves in Fig. 5(b), Eq. (30)
successfully predicts both the LW and SW limits of stability. Thus,
the dashed curves can be interpreted as “iso-q lines” along which the
instability will have the same characteristic length scale.

Our analysis also allows for a quantification of the finite wave-
length instability q∗ as a function of the self-propulsion speed v0

v∗ .
We show such dependency, q∗( v0

v∗ ), in Fig. 4(b) at fixed ζ = 4.6, for
which the system never enters the LW instability region [see also
the dashed–dotted line in Fig. 5(b)]. We report a decrease in q∗ as
the system penetrates into the instability region, until it reaches a
minimum and then monotonically grows before exiting towards the
stable region.

In Fig. 6(a), we look further at the dependency of ℓ = 1/q∗ with
ε. We now fix ζ = 45 and v0

v∗ = 60, allowing us to explore a broad
range of ε values. We recall that the bigger the ε is, the larger the
area of SW instability in the ( v0

v∗ , ζ) plane. We find that ℓ decays
as 1/ε over a broad range of parameter values. Consistently, in the
limit of ε→∞, the unstable eigenvalue λ1 ∼ ε [see Eq. (B7)]. There-
fore, the limit of stability at finite wave vector, λ1(

v0
v∗ , ζ, ε, q∗) = 0,

leads to q∗ ∼ ε in the limit of large ε. These results predict that the
rotational frequency of chiral active particles controls the selection
of a characteristic length scale, which decreases with increasing ε.
Furthermore, in Fig. 6(b), we plot ℓ as a function of the inverse rota-
tional frequency for different fixed values of v0

v∗ and ζ, which all lay
on the critical-point line defined in Appendix D, Eq. (D1), and repre-
sented by a dotted line in Fig. 5(b). We observe a linear dependency
ℓ∝ v0

v∗ε , indicating that the selected length scale is proportional to
the radius of the individual circular trajectory of a chiral active par-
ticle, or circle swimmer. Interestingly, a similar scaling has been
found in suspensions of spinning magnetic rotors77 and model sys-
tems of polar chiral active particles.57 However, there are important
differences between these systems and the present model, which are
worthy to be mentioned. First, magnetic colloids self-spin without
net self-propulsion, while in our framework, no instability can take
place in the limit v0 → 0. Second, in Ref. 57, rotations trigger a SW
instability of the homogeneous polar (or flocking) state. A symmetry
breaking has to occur in this case to give rise to microflocks of typi-
cal size ℓ∝ v0/ω0, while the continuum theory derived here does not
admit solutions with global polar order. One has, thus, to be cautious
when making connections between these different systems, although
the fact that, in all cases, one finds a typical length scale ℓ ∼ ω−1

0
certainly deserves to be highlighted, as it suggests that a common
general pattern formation mechanism might be at play in systems
of chiral particles. Moreover, previous numerical simulations of chi-
ral active particles60 have shown that finite-sized clusters collectively
rotate in the opposite direction of free chiral active particles.

FIG. 6. (a) Characteristic length scale of the short-wavelength instability, ℓ, as a
function of the rotational frequency ε for a system at fixed ζ = 45 and v0

v∗
= 60.

(b) Characteristic length scale as a function of the inverse rotational frequency
normalized by the corresponding self-propulsion speed, v0

v∗ε , for four different
values of ( v0

v∗
, ζ)c = {(50.0, 37.5), (60.0, 45.0), (70.0, 52.5), (100.0, 75.0)}.

These fixed values correspond to points laying on the critical line [see Eq. (D1)
in Appendix D].
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IV. CONCLUSIONS
We have presented a general continuum description of self-

propelled particles subjected to generic torques, derived by explicitly
coarse-graining the microscopic dynamics. As a consequence, the
parameters of the hydrodynamic model are linked to the micro-
scopic interactions as well as to the inter-particle spatial and angular
correlations. Thus, we can interpret them based on the specific inter-
actions that might come into play. This particular feature does not
constraint the field equations but, on the contrary, it allows us to
describe a wide variety of particle-based models, where the force
needs only be central, and torques can both be intrinsic to the par-
ticle (chiral) and derive from an alignment interaction of a general
functional form.

At the mean-field level, the linear stability analysis of the field
equations unveils different instabilities of the homogeneous and
isotropic state. We observe that torques tend to oppose a long-
wavelength instability, which we interpret as motility-induced phase
separation. This is in agreement with previous numerical studies60

as well as analytical descriptions of chiral active particles.62,63 More-
over, effective torques lead to a finite wavelength instability, which
suggests the formation of finite-sized structures. Our analysis pre-
dicts a linear dependency between the characteristic cluster size and
the average radius of the trajectory of a single chiral active particle,
ℓ∝ v0/ε. This result echoes the ℓ ∼ ω−1

0 behavior found in systems
of self-spinning colloids and polar chiral active particles.57,77

Our analytical approach constitutes a powerful tool to investi-
gate the effect that different interactions have on the destabilization
of MIPS. Besides, it is not constraint to a particular model but can
be systematically applied to a number of dry active particle models
by just fine-tuning their mutual interactions. Since the field theory
is derived from the microscopic dynamics, it also allows for a direct
quantitative comparison with particle-based simulations.

An interesting continuation to this work would be to envision
a particle-based model that breaks the angular symmetries φ→ −φ
and θ → −θ yielding κ ≠ 0. This would allow us to test the predic-
tions given by the coarse-grained mean-field model in a system with
effective aligning torques beyond chiral particles with a self-torque.
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APPENDIX A: GRAM-SCHMIDT
ORTHONORMALIZATION

We would like to decompose the force in the vector basis
{e,∇ψ1}. In order to ensure that this basis is orthonormal, we
perform a Gram–Schmidt orthonormalization, as in Refs. 45, 74,
and 78. A detailed description of the steps to follow, first introduced
in Ref. 74, is subsequently given.

We pick the first vector of the orthonormal set {u1, u2}we want
to construct, u1 = e. This one already fulfills ∣e∣ = 1. Then, the second
vector fulfills u2 = ∇ψ1 − proju1

(∇ψ1), which normalized leads to

u2 =
∇ψ1 − (e ⋅ ∇ψ1)e
∣∇ψ1 − (e ⋅ ∇ψ1)e∣

. (A1)

We have constructed an orthonormal vector basis. We can thus
decompose the force as

F = (e ⋅ F)e + (
∇ψ1 − (e ⋅ ∇ψ1)e
∣∇ψ1 − (e ⋅ ∇ψ1)e∣

⋅ F)
∇ψ1 − (e ⋅ ∇ψ1)e
∣∇ψ1 − (e ⋅ ∇ψ1)e∣

= [(e ⋅ F) − (
(∇ψ1 − (e ⋅ ∇ψ1)e) ⋅ F
∣∇ψ1 − (e ⋅ ∇ψ1)e∣2

)(e ⋅ ∇ψ1)]e

+ (
(∇ψ1 − (e ⋅ ∇ψ1)e) ⋅ F
∣∇ψ1 − (e ⋅ ∇ψ1)e∣2

)∇ψ1. (A2)

Now, we first consider that the projection of the force in the
perpendicular vector to e (this is ∇ψ1−(e⋅∇ψ1)e

∣∇ψ1−(e⋅∇ψ1)e∣ ) is much smaller than
the projection of the force along e. Second, we also consider that
∣∇ψ1 − (e ⋅ ∇ψ1)e∣2 ≈ ∣∇ψ1∣

2, assuming that e and∇ψ1 are “almost”
perpendicular vectors. This leads to

F ≈ (e ⋅ F)e + (
(∇ψ1 − (e ⋅ ∇ψ1)e) ⋅ F

∣∇ψ1∣2
)∇ψ1. (A3)

APPENDIX B: EIGENVALUES’ COMPUTATION

To numerically compute the eigenvalues, we express them in a
polar form, which makes it easier to deal with complex cubic roots.
Below, we give a detailed explanation of how we compute them
numerically. Solving the determinant of the matrix M leads to a third
degree polynomial of the form

λ3
+ (a + 2b)λ2

+ (2ab + c + d)λ + ca + bd = 0, (B1)
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where we have defined the parameters a, b, c, and d corresponding to

a = q2,

b = q2
+ 1,

c = (q2
+ 1)2

+ ε2,

d = 8q2
(

v0

v∗
− ζ)(

v0

v∗
− 2ζ)

(B2)

in an attempt to make expressions shorter and notation clearer. The
three solutions of the cubic equation, Eq. (B1), can be written as

λi = −
a + 2b

3
−

Ci

3
−
−A
Ci

, (B3)

where i = 0, 1, 2 and we define A, B, and Ci as

A = −(a + 2b)2
+ 3(2ab + c + d),

B = −2a3
+ 6a2b + 12ab2

− 16b3
− 18ac + 18bc + 9ad − 9bd,

(B4)

Ci = −
3

√

B +
√

B2 + 4A3

2
. (B5)

The parameters A, B, and Ci, which in turn group combinations
of parameters a, b, c, and d, have been introduced, again, for ease of
notation.

Ci has three possible values (i = 0, 1, 2) corresponding to the
three solutions of the cube root,

C0 = −
3

√

B +
√

B2 + 4A3

2
,

C1 = (−
1
2
+ i

1
2

√
3)C0,

C2 = (−
1
2
− i

1
2

√
3)C0.

(B6)

Inserting the expression of Ci for i = 0, 1, 2 in Eq. (B3), we
obtain

λ1 = −
1
3
(a + 2b) +

1
21/33

(B −
√

B2 + 4A3)
1/3
+

1
21/33

(B +
√

B2 + 4A3)
1/3,

λ2 = −
1
3
(a+ 2b)−

1
24/33

[(B+
√

B2 + 4A3)
1/3
+ (B−

√
B2 + 4A3)

1/3
] +

i
24/3√3

[(B +
√

B2 + 4A3)
1/3
− (B −

√
B2 + 4A3)

1/3
], (B7)

λ3 = −
1
3
(a+ 2b)−

1
24/33

[(B+
√

B2 + 4A3)
1/3
+ (B−

√
B2 + 4A3)

1/3
] −

i
24/3√3

[(B +
√

B2 + 4A3)
1/3
− (B −

√
B2 + 4A3)

1/3
].

Here, λ1 is a pure real number giving rise to the instability dis-
cussed in Sec. III B. The other two eigenvalues, λ2 and λ3, may be real
or complex numbers, depending on the discriminant of the cubic
equation, Eq. (B1), defined as

D =
A
3
+ (

B
54
)

2
, (B8)

where A and B are introduced in Eq. (B4). In general, for D < 0, the
cubic equation has three different real roots, while for D > 0, there
is one real and two complex conjugated roots. At wave vector q = 0,
the discriminant reads

D =
1
9
ε4
+

83
81
ε2
−

242
729

, (B9)

revealing that the nature of the roots of the cubic equation only
depends on the effective frequency of rotation, ε. The transition
point is then given by D = 0, yielding four solutions of Eq. (B9),

ε1,2 = ±

√√
97

2 −
83
18 , ε3,4 = ±

i
3

√
9
√

97
2 + 83

2 , out of which only

ε1 = +

√√
97

2 −
83
18 has a physical meaning.

We have thus identified the threshold value ε1 ≡ εt above which
λ2 and λ3 are complex conjugated numbers, while for 0 ≤ ε < εt , the

three eigenvalues in Eq. (B7) are different real numbers. These find-
ings are in accordance with the torque-free case, ε = 0, discussed in
Sec. III A. Here, one can directly see from Eq. (B9) that D < 0 at
q = 0 and, thus, the eigenvalues in this case are three different real
numbers, see Eq. (25).

APPENDIX C: LINEAR STABILITY ANALYSIS—
ALTERNATIVE WAY: ADIABATIC APPROXIMATION

We start from the Fourier transformed effective hydrodynamic
equations, which we write here for the purpose of clarity,

∂tδρ̂ = −iq ⋅ [(v0 − ρ̄ζ)δp̂ −𝒟iqδρ̂], (C1)

∂tδp̂ = −iq ⋅ [
1
2
(v0 − 2ρ̄ζ)δρ̂ −𝒟iqδp̂] − ρ̄εδp̂� −Drδp̂. (C2)

Note that we have not yet rewritten them in terms of dimen-
sionless quantities. We now perform the adiabatic approximation by
setting ∂tδp̂ = 0, which allows us to rewrite Eq. (C2) as

iq
1
2
(v0 − 2ρ̄ζ)δρ̂ = −q2𝒟δp̂ − ρ̄εRδp̂ −Drδp̂, (C3)
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where we have taken into account that p� =ℛp, with ℛ = (
0 −1

1 0
).

We can thus express Eq. (C3) as

iq
1
2
(v0 − 2ρ̄ζ)δρ̂ = Aδp̂, (C4)

where

A =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(q2𝒟 +Dr) ρ̄ε

−ρ̄ε −(q2𝒟 +Dr)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

It is now possible to compute the inverse matrix

A−1
=

1
(q2𝒟 +Dr)2 + (ρ̄ ε)2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−(q2𝒟 +Dr) −ρ̄ε

ρ̄ε −(q2𝒟 +Dr)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

allowing one to rewrite Eq. (C4) as

δp̂ = A−1iq
1
2
(v0 − 2ρ̄ζ)δρ̂. (C5)

From now on we will call C = iq 1
2(v0 − 2ρ̄ζ) to shorten the

notation. We can now insert δp̂ = A−1Cδρ̂ into the density equation,
Eq. (C1), leading to

∂tδρ̂ = [−iq(v0 − ρ̄ζ)A−1C −𝒟q2
]δρ̂. (C6)

We have thus recasted Eq. (C1) into a diffusion equation, where
the effective diffusion coefficient is the operator,

ℒ = −iq(v0 − ρ̄ζ)A−1C −𝒟q2. (C7)

The onset of destabilization of the homogeneous and isotropic
solution can be identified when ℒ < 0. This leads to the closed
expression,

ζ =
3
4

v0

ρ̄
±

1
4ρ̄

√

v2
0 − 16𝒟2q2 − 16𝒟Dr − 16𝒟

(ρ̄ ε)2

q2 + 1
. (C8)

Introducing the dimensionless quantities defined in Eq. (24),
one can rewrite Eq. (C8) as

ζ =
3
4

v0

v∗
±

1
4

¿
Á
ÁÀ(

v0

v∗
)

2
− q2 − 1 −

ε2

q2 + 1
. (C9)

APPENDIX D: EVOLUTION OF THE CRITICAL POINT

The vertex of the region of instability fulfills ζ+ = ζ−, where ζ
follows Eq. (C9). Thus, it is straightforward to find the location of
the vertex for any value of q and ε. We first apply ζ+ = ζ−, to find
( v0

v∗ )c =
√

q2 + 1 + ε2

q2+1 . Inserting now this expression in Eq. (C9),
we obtain the point in the instability region, which reads

(
v0

v∗
, ζ)

c
=
⎛

⎝

√

q2 + 1 +
ε2

q2 + 1
,

3
4

√

q2 + 1 +
ε2

q2 + 1
⎞

⎠
, (D1)

as a function of q and ε. Thus, varying q and ε, the critical point
moves along ζ = 3

4
v0
v∗ .
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