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Abstract

Heat, moisture, gas, and momentum exchanges at the oceanic and atmospheric interface
modulate, inter alia, the Earth’s heat and carbon budgets, global circulation, and dynamical
modes. Sea surface winds are fundamental to these exchanges and, as such, play a major role
in the evolution and dynamics of the Earth’s climate. For ocean and atmospheric modeling
purposes, and for their coupling, accurate sea-surface winds are therefore crucial to properly
estimate these turbulent fluxes. Over the last decades, as numerical models became more so-
phisticated, the requirements for higher temporal and spatial resolution ocean forcing products
grew. Sea surface winds from numerical weather prediction (NWP) models provide a conve-
nient temporal and spatial coverage to force ocean models, and for that they are extensively
used, e.g., the European Centre for Medium-range Weather Forecasts (ECMWF) latest reanal-
ysis, ERA5, with ubiquitous hourly estimates of sea-surface wind available globally on a 30-km
spatial grid. However, local systematic errors have been reported in global NWP fields using
collocated scatterometer observations as reference. These rather persistent errors are associated
with physical processes that are absent or misrepresented by the NWP models, e.g., strong
current e�ects like the Western Boundary Current Systems (highly stationary), wind e�ects as-
sociated with the oceanic mesoscale (sea surface temperature gradients), coastal e�ects (land see
breezes, katabatic winds), Planetary Boundary Layer parameterization errors, and large-scale
circulation e�ects, such as those associated with moist convection areas. In contrast, the ocean
surface vector wind or wind stress derived from scatterometers, although intrinsically limited
by temporal and spatial sampling, exhibits considerable spatial detail and accuracy. The latter
has an e�ective resolution of 25 km while that of NWP models is of 150 km. Consequently, the
biases between the two mostly represent the physical processes unresolved by NWP models. In
this thesis, a high-resolution ocean surface wind forcing, the so-called ERAú, that combines the
strengths of both the scatterometer observations and of the atmospheric model wind fields is
created using a scatterometer-based local NWP wind vector model bias correction. ERAú stress
equivalent wind (U10S) is generated by means of a geolocated scatterometer-based correction
applied separately to two di�erent ECMWF reanalyses, the nowadays obsolete ERA-interim
(ERAi) and the most recent ERA5. Several ERAú configurations using complementary scat-
terometer data accumulated over di�erent temporal windows (TW) are generated and verified
against independent wind sources (scatterometer and moored buoys), through statistical and
spectral analysis of spatial structures. The newly developed method successfully corrects for lo-
cal wind vector biases in the reanalysis output, particularly in open ocean regions, by introducing
the oceanic mesoscales captured by the scatterometers into the ERAi/ERA5 NWP reanalyses.
However, the e�ectiveness of the method is intrinsically dependent on regional scatterometer
sampling, wind variability and local bias persistence. The optimal ERAú uses multiple com-
plementary scatterometers and a 3-day TW. Bias patterns are the same for ERAi and ERA5
SC to the reanalyses, though the latter shows smaller bias amplitudes and hence smaller error
variance reduction di�erences in verification (up to 8% globally). However, because of ERA5

v



Abstract

being more accurate than ERAi, ERAú derived from ERA5 turns out to be the highest quality
product. ERAú ocean forcing does not enhance the sensitivity in global circulation models to
highly localized transient events, however it improves large-scale ocean simulations, where large-
scale corrections are relevant. Besides ocean forcing studies, the developed methodology can be
further applied to improve scatterometer wind data assimilation by accounting for the persistent
model biases. In addition, since the biases can be associated with misrepresented processes and
parmeterizations, empirical predictors of these biases can be developed for use in forecasting and
to improve the dynamical closure and parameterizations in coupled ocean-atmosphere models.

vi



Resumen

Los vientos de la superficie del mar son fundamentales para estimar los flujos de calor y
momento en la interfaz oceánica-atmosfera, ocupando un papel importante en la evolución y
la dinámica del clima del planeta. Por tanto, en modelación (oceánica y atmosférica), vientos
de calidad son cruciales para estimar adecuadamente estos flujos turbulentos. Vientos de la su-
perficie del mar de salidas de modelos de predicción numérica del tiempo (NWP) proporcionan
una cobertura temporal y espacial conveniente para forzar los modelos oceánicos, y todavía se
utilizan ampliamente. Sin embargo, se han documentado errores sistemáticos locales en campos
de NWP globales utilizando observaciones de dispersómetros co-ubicados como referencia (aso-
ciados con procesos físicos que ausentes o mal representados por los modelos). Al contrario, el
viento de la superficie del mar derivado de los dispersómetros, aunque intrínsecamente limitado
por el muestreo temporal y espacial, presenta una precisión y un detalle espacial considerables.
Consecuentemente, los sesgos entre los dos representan principalmente los procesos físicos no
resueltos por los modelos NWP. En esta tesis, se crea un producto de forzamiento del viento en
la superficie del océano de alta resolución, el ERAú. ERAú se genera con una corrección media
basada en diferencias geolocalizadas entre dispersometro y modelo, aplicadas por separado a
dos reanálisis diferentes, el ERA-interim (ERAi) y el ERA5. Varias configuraciones de ERAú

utilizando datos de dispersómetros complementarios acumulados en diferentes ventanas tempo-
rales (TW) se generan y validan frente a datos de viento independientes, a través de análisis
estadísticos y espectrales de estructuras espaciales. El método corrige con éxito los sesgos del
vector de viento local de la reanálisis. Sin embargo, su eficacia depende del muestreo del disper-
sómetro regional, la variabilidad del viento y la persistencia del sesgo local. El ERAú óptimo
utiliza múltiples dispersómetros complementarios y un TW de 3 días. Las dos reanálisis mues-
tran los mismos patrones de sesgo en la SC, debido a que ERA5 es más preciso que ERAi, ERAú

derivado de ERA5 es el producto de mayor calidad. El forzamiento oceánico ERAú mejora las
simulaciones oceánicas a gran escala, donde las correcciones a gran escala son relevantes.
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Chapter 1

Introduction

1.1 Energy transfers at the air-sea interface

Earth’s Climate is dictated by the energy transfer occurring from the equatorial region to the
poles. This large scale latitudinal transport occurs in order to balance an unevenly distributed
heating on the planet’s surface (Cronin et al., 2019), i.e., simply put, more heat is absorbed near
the equator than lost by the upper atmosphere, while the reverse happens at high latitudes,
creating flow patterns that transport heat from the equator to the poles. In a way, our climate
is shaped by this motion, driven by the winds in the atmosphere and the currents in the ocean.
Hence, global circulation is determined by the heat, moisture and momentum exchanges at the
atmospheric and the oceanic boundary.

Ocean surface winds are crucial to estimate these exchanges. Fluxes of momentum, energy,
and mass between the atmosphere and the ocean, include the surface stresses that drive ocean
circulation and wave generation, the sensible heating that warms or cools the boundary layer,
evaporation processes that moistens the atmosphere and increases ocean salinity, and gaseous
exchanges that transfer CO2 and other gases between the ocean and the atmosphere (Atlas
et al., 2011). Furthermore, precipitation processes reduce ocean salinity and add surface wind
variability.

Shifts in the patterns of surface fluxes turn into weather oscillations and a�ect surface wind
patterns and local heat and moisture budgets, that in turn drive the ocean circulation, e.g.,
El Niño–Southern Oscillation (ENSO), Westerly Wind Bursts (WWBs), the Madden–Julian
oscillation (MJO), the Pacific Decadal Oscillation (PDC), the Atlantic Multidecadal Oscillation
(AMO), and the North Atlantic Oscillation (NAO).

Understanding the role and properly reproducing the dynamics of ocean surface winds in the
Earth dynamical system, i.e., its imprint in the oceanic and atmospheric circulation, is crucial
to address the uncertainties in climate change predictions. However, these circulations flow at
a di�erent pace, and physical processes at the air-sea interface occur on a wide range of spatio-
temporal scales, e.g., diurnal cycle, extra-tropical cyclones and storms, boundary currents and
oceanic fronts and eddies, with uncertainties growing with the natural variability of the weather
at local and regional scales (Hurrell, 2008; Clarke et al., 2001). In short, the response of the
coupled ocean-atmosphere system to continued climate change is complex, and to date not
well known. Joint e�orts between the experts of the multiple fields of the weather sciences,
e.g., climatologists, physical oceanographers, modelers and meteorologists, as well as the use of
models and long records of observations with the appropriate temporal and spatial resolution to
resolve these interface dynamics, are both vital to improve our knowledge of past, current and
future trends.

Therefore, regardless of the timescale, resolving long-term (climate), short-term (weather
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1.3

forecast), or even faster (nowcasting) dynamics requires the use of high resolution models with
accurate initial forcing conditions, where ocean vector surface winds are imperatively included
as a prime coupling agent between atmosphere and ocean.

1.2 Wind driven oceanic dynamics

At the air-sea interface many processes are dependent on the surface wind. Of utmost
importance is the role played by surface winds in driving the global oceanic circulation and its
variability, and regulating global and regional climate.

In the upper oceanic layers, the wind forcing largely governs the dynamical and thermal
response of the system. In this manner, shear stress and atmospheric pressure generate waves
and in extreme cases storm surges (Giesen et al., 2021; De Biasio et al., 2017), thereby a�ecting
coastal currents and influencing sediment and nutrient transport (Desbiolles et al., 2014b,a).
Moreover, local wind e�ects, such as wind funneling (gap winds), strengthen tidal currents
and induce cooling of the SSTs under the gap flow (Hong et al., 2018). Additionally, surface
winds play an important role in the momentum, heat and mass exchange with the atmosphere
(turbulent fluxes), e.g., the sensible and latent heat fluxes are linear functions of the wind
speed, the momentum fluxes have a square dependence (Subrahamanyam et al., 2009), while
gas exchanges have a higher order dependence on wind speed. Whilst, beneath the ocean surface,
the kinetic energy from this surface momentum and heat exchange propagates through the water
column inducing vertical turbulent mixing and deep convective responses.

Wind stress and wind stress curl are fundamental in driving large-scale horizontal circu-
lation in the upper layer of the ocean. This wind-induced large-scale circulation modulated
by the amount of energy that goes into the ocean gyres, drives Ekman transport and Ekman
pumping (Chelton, 1982). This way the subtropical gyres fed by the trades in the tropics and
the westerly winds in the extra-tropics, induce poleward flow on the western side of the basins,
through the Western Boundary Current Systems (WBCS), and equatorward flow on the eastern
boundary, through the Eastern Boundary Currents Systems (EBCS). Nonetheless, the mean
state of the ocean circulation is dominated by smaller scale (mesoscale) phenomena, where the
surface momentum exchanges cause for an important part of the variability, e.g., ocean eddies
present everywhere in the ocean, meandering currents or fronts, and upwelling filaments. In
turn, these mesoscale structures influence key features of the large-scale ocean circulation like
major oceanic currents such as the above mentioned WBCS, e.g., the Gulf Stream (GS), the
Kuroshio, the Somali and the Agulhas currents, as well as the Southern Ocean overturning, and
consequently the total poleward heat transport (Gruber et al., 2011; Gaube et al., 2015; Seo,
2017). Improved understanding of the processes modulating ocean circulation and its e�ect on
climate, namely those driven by surface winds, is mostly achieved through ocean modelling.

1.3 Ocean modeling

For the most part, numerical ocean models, and specifically general circulation models
(GCM), are optimal for diagnosis of interface dynamics and very useful to represent oceanic
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circulation. E�ectively, ocean models are numerical models used to represent the physics gov-
erning the evolution of oceanic physical variables, such as temperature (T), salinity (S), hori-
zontal (u, v) and vertical (w) velocities. The first ocean circulation model attempting to solve
the primitive equations late in the 1960s was introduced by Bryan and Cox (1967). Nowadays
the advances in computational capabilities have widened the scope of oceanic physical processes
reproduced in numerical simulations, enabling a more meaningful understanding of the ocean.
Accordingly, ocean simulation studies can now resolve scales that go from global (as the above
mentioned GCM, e.g., Nucleus for European Modelling of the Ocean (NEMO) (Madec and the
NEMO Team, 2014)) to regional and local, e.g., Regional Oceanic Modeling System (ROMS)
(Shchepetkin and McWilliams, 2005). Some of those are integrated as part of Earth System
Models (ESM), others in coupled systems, or simply used as stand-alone models.

On the one hand, stand-alone models allow for ocean simulations at higher resolution hori-
zontal grids than can be integrated into data assimilation frameworks or perform hindcasts and
produce ocean re-analysis or short-range ocean forecasts (Dombrowsky et al., 2009; Chassignet
et al., 2019). On the other hand, as the number of interdependent systems grows, the hori-
zontal grid resolution in which ocean simulations run decreases. Consequently, ocean models
in coupled model systems, e.g., coupled ocean-wave or ocean-atmosphere models, can produce
seasonal to decadal forecasts, whilst when part of fully coupled ocean-ice-atmosphere models,
they are generally intended for climate applications. For many anthropogenic activities, these
forecasts (Chassignet and Verron, 2006) and hindcasts are extremely important.

For accurate initialisation, the implementation of data assimilation schemes is vital to pro-
duce reliable forecasts, both for the atmosphere and the ocean.

Whatever the type, and despite the advances in high performing computing, running physical
ocean models requires information on boundary fluxes. Assuming the ocean is a forced dissipa-
tive system (Gri�es, 2008), the atmospheric forcing of the upper ocean occurs by exchange of
heat and water and by wind stress acting on the sea surface. Depending on the type of ESM,
i.e., coupled or stand-alone, these fluxes are prescribed di�erently. Generally, the ocean model
integrated in an ESM relies on boundary fluxes computed from the atmospheric, cryospheric,
and hydrological models, which are based on interactions with the evolving ocean. In coupled
ocean-atmosphere simulations the boundary layer fluxes are computed by the atmospheric model
and fed into the ocean model, while surface information from the latter may be fed into the for-
mer, i.e., there is a feedback mechanism at play, and a two-way interaction between models
operating at di�erent spatio-temporal scales, or simulating interdependent processes (Kantha
and Clayson, 2000; Seo, 2017; Warner et al., 2008). Resorting to couple model runs has been
demonstrated to improve the relationship between SST, wind and other atmospheric variables
in several studies, such as those from Bryan et al. (2010) and Small et al. (2014), using coupled
models with eddy resolving ocean resolution.

Nevertheless, stand-alone high-resolution global and regional ocean circulation models are
still extensively used to understand the upper ocean variability (mostly on seasonal to decadal
scales) with boundary fluxes usually initialized from data sets or parameterized (Gri�es, 2008).
In these studies, to reproduce oceanic phenomena happening on a wide spectrum of spatial
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and temporal scales, it is essential to keep a steady network of ocean observations in both
space and time. Evidently, such boundary conditions must include high resolution ocean wind
forcing able to capture both the temporal and spatial variability on the small scales, i.e., the
prescribed forcing must capture the upper ocean structure and mesoscale features such as eddies
and meandering fronts (Chassignet and Verron, 2006). Using remotely sensed sea surface wind
observations from Earth observing satellites makes for accurate ocean wind forcing (Vogelzang
and Sto�elen, 2021). In studies by Chelton et al. (2004); Blanke et al. (2005), the use of
scatterometer estimates as wind forcing properly reproduces ocean circulation as well as other
ocean mesoscale features. While Tokmakian (2005) shows that sea level anomalies (SLA) and
wave mechanisms are better represented when using scatterometer observations as opposed to
Numerical Weather Prediction (NWP) outputs. These wind and stress inputs to ocean models
from observations and atmospheric models are described below.

1.4 Sea surface wind observations

Sea surface wind observations are important for many applications, while crucial to improve
weather and marine forecasts and warnings. Knowledge about maritime conditions, wind and
waves, is necessary for many human activities, and extremely relevant for hazard management
and at times for search and rescue activities. Needed for ocean forcing, sea surface wind is a key
parameter in studies of oceanic waves, ocean circulation, marine meteorology and the coupling
of oceanic and atmospheric systems. As such, ocean surface wind stress is considered as one of
the Essential Climate Variables (https://gcos.wmo.int/en/essential-climate-variables)
by the World Meteorological Organization (WMO) Global Climate Observing System (GCOS).

Sustained ocean surface wind observations gathered from in situ networks and continued
satellite missions, starting in 1987 with microwave radiometers and followed with a series of
scatterometers since 1991, together with surface data on other ocean variables, e.g., SST, SSH,
SSS, are crucial to document specific oceanic processes as well as truthfully represent them
in models (Chassignet et al., 2019). High-quality observations are required to constrain ocean
models through data assimilation and also to validate them, assessing their skills and limitations.
As in operational meteorology (Sto�elen et al., 2019), the use of satellite Earth Observation (EO)
measurements is fundamental for operational oceanography. In particular, surface wind fields
derived from scatterometers have been routinely used in data assimilation for over 20 years,
improving model estimates and forecasts (De Chiara, 2014) by NWP centers, like the European
Centre for Medium-Range Weather Forecasts (ECMWF) or the Met O�ce.

Despite the value of satellite wind observations when used in data assimilation schemes,
short-range meteorological forecasts have persistent biases in ocean surface wind and stress fields
(Belmonte Rivas and Sto�elen, 2019), implying errors in the forcing of ocean models. Hence,
in this thesis scatterometer measurements are addressed in further detail, with the objective
of their use in the generation of a high-quality and high-resolution ocean surface wind forcing
product. That said, scatterometers and passive radiometers have been systematically measuring
near-surface ocean winds for more than 30 years (Wentz et al., 2017; Ricciardulli and Manaster,
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2021), enabling the development of multi-satellite gridded products, with the subsequent advance
in inter-calibration methods as well as the generation of diverse climate data records (CDR) to
monitor global and local variability trends in climate (Wentz et al., 2017; Verhoef et al., 2017).

1.4.1 in situ measurements

in situ wind data such as those acquired from oceanic buoys installed on mooring platforms
or measured by ships are often considered as ground truth (García-Reyes and Largier, 2010;
Freeman et al., 2017). Despite their poor spatial sampling characteristics (point measurements),
and overall scarcity globe wise (see Figure 1.1 for the moored buoy distribution in 2020), buoy
wind information is of immense value, whether used to constrain ocean simulations, assimilated
in NWP systems, or used as the only absolute reference for the monitoring and calibration
of satellite wind data (Sto�elen, 1998). These buoys are managed by di�erent institutions.
Overall, open ocean buoys are distributed over the tropical band, while surface winds near the
coast are mainly available alongshore USA and Canada. Of note, is the decrease in the number
of monitored buoys, from 2014 onward.

Moreover, it is necessary to take into consideration the spatial and temporal characteristics
of these measurements, and thereafter the representativeness errors between buoy data and other
remote sources. Compared to the latter, buoy winds are not only acquired at a higher temporal
frequency (usually every 10-min), but also contain more wind variability in low wind conditions,
leading to big discrepancies between the distinct data measures (Lin et al., 2015a). For consistent
inter-comparisons, the quality of the winds is evaluated w.r.t. the error characteristics and
the scales resolved by the diferent wind sources, e.g., through triple collocation (Portabella
and Sto�elen, 2009; Vogelzang et al., 2011b; Vogelzang and Sto�elen, 2021). Further note that
satellite measurements, e.g., from scatterometers or radiometers, measure sea surface roughness,
rather than the wind (De Kloe et al., 2017a; Wright et al., 2021).

Within the aims of this thesis, in situ surface wind continuously acquired from moored buoy,
namely those displayed in Fig. 1.1, are used to validate and further improve the ocean wind
forcing product being developed. These observations are obtained by the U.S. National Data
Buoy Center (NDBC) and the Canadian Marine Environmental Data Service (MEDS), in the
coastal and o�shore waters of the continental United States and Canada and the Pacific Ocean
around Hawaii and Alaska; the Ocean Data Acquisition System (ODAS) buoys in the northeast
Atlantic and British Isles inshore waters; the Tropical Atmospheric Ocean (TAO/TRITON)
array in the Pacific Ocean; the Japan Agency for Marine-Earth Science and Technology (JAM-
STEC) Triangle Trans-Ocean Buoy Network (TRITON) buoys in the western Pacific; the Pilot
Research Moored Array in the Tropical Atlantic (PIRATA) in the Atlantic; and the Research
Moored Array for African–Asian–Australian Monsoon Analysis (RAMA) in the Indian Ocean.

1.4.2 Satellite measurements

In comparison with insitu observations, satellite wind data derived from active, e.g., Syn-
thetic Aperture Radars (SAR), altimeters and scatterometers, or passive microwave radiome-
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Figure 1.1: Global distribution of active oceanic moored buoys in 2020, obtained from the ECMWF Meteorological Archival
and Retrieval System (ECMARS) buoy data set. Buoy locations are represented as colored dots and categorised according
to region and proximity to the coast. Specifically, tropical data sets in green ([-30 30]¶N), extra-tropical buoys are shown
in blue and buoys within 100 km from the coast are colored yellow.

ters, continuously provide great spatial coverage of the global ocean (Gade and Sto�elen, 2019).
Among these, the limited swath width (about 5 km) and spatial coverage poses some chal-
lenges for altimeters, as well as for SARs (not ideal for Climate studies), while radiometers and
scatterometers sample over 90% of the earth’s ocean every day. Nevertheless, satellite SARs
allow the retrieval of wind fields with spatial resolutions on the few-kilometer scale (Portabella,
2002; Lin et al., 2008), i.e., an order of magnitude higher than that of scatterometers, which
makes SAR data particularly well suited for studies of coastal processes, and the observation of
short-scale wind features.

Passive co-polarized radiometers produce only wind speed from the analyses of the brightness
temperature (electromagnetic radiation) emitted by the roughened sea surface, e.g., Special
Sensor Microwave Imager (SSM/I), the Advanced Microwave Scanning Radiometers (AMSR-E
and AMSR2) or Micro-Wave Radiation Imager (MWRI), (Wentz, 1997; Meissner et al., 2014).
In addition, polarimetric radiometers, e.g., WindSat (Gaiser et al., 2004), were developed to
measure the wind vector and have shown reasonable wind direction estimates above 8 m.s≠1

(Freilich and Vanho�, 2006; Monaldo, 2006; Soisuvarn et al., 2007).
Whilst radiometers produce scalar winds, i.e., wind speed, with a spatial resolution better

suited for global studies (Lenti et al., 2015; Meissner and Wentz, 2009; Bourassa et al., 2019),
typically between 20-35 km, scatterometer estimates can e�ectively attain 20 km spatial scales
on an operational basis (Chelton and Xie, 2010; Vogelzang et al., 2011a; Lin et al., 2015a;
Vogelzang et al., 2015a; Vogelzang and Sto�elen, 2017). Additionally, the latter estimate ocean
vector winds (OVW), i.e., the zonal and meridional wind vector components from measurements
of radar backscatter over the ocean, thus providing information on the wind direction, and
thereby a means to estimate dynamically important quantities such as divergence and wind
stress curl (Kilpatrick and Xie, 2016; O’Neill et al., 2015; Belmonte Rivas and Sto�elen, 2019;
King et al., 2022), imperative to properly reproduce Ekman dynamics like those driving the
eastern boundary coastal upwelling systems in ocean simulations (Desbiolles et al., 2014b).

Scatterometers are active microwave radar sensors that provide high precision radiometric
measures of the normalized radar cross section (NRCS, backscatter or ‡0) of the ocean surface,
where the Bragg resonant mechanism (Bragg scattering) dominates the back-scattered signal
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Table 1.1: Details of past, present and future OVW scatterometer missions, covering the period between 2010 and 2030,
according to the instruments operating frequency (first column). The length of each mission is presented in table 1.2. This
information is in accordance with the Committee on Earth Observing Satellites (CEOS) and the World Meteorological
Organization (WMO) Observing Systems Capability Analysis (OSCAR).

Instrument Satellite System Orbit Space Agency

C-band

AMI-SCAT ERS-21

fixed
fan

beam

10:30 desc

ESA/EUMETSAT
ASCAT-A Metop-A2 8:46 desc
ASCAT-B Metop-B3 9:30 desc
ASCAT-C Metop-C4 9:30 desc
SCA-1 Metop-SG-B15 9:30 desc

C-/Ku-
band

WindRAD FY-3E6

rotating
fan beam

5:30
CMA

WindRAD FY-3I7 5:30

Ku-band

CSCAT CFOSAT8

rotating
pencil
beam

7:00 desc
CNSA/CNES

SCAT CFOSAT9follow on 7:00 desc
HSCAT-A HY-2A10 6:00 desc

NSOAS/CAST

HSCAT-2B HY-2B11 6:00 desc
HSCAT-2C HY-2C12 66¶

HSCAT-2D HY-2D13 66¶

HSCAT-2E HY-2E14 6:00 desc
HSCAT-2F HY-2F15 66¶

HSCAT-2G HY-2G16 66¶

OSCAT-1 OceanSat-217 12:00 desc
ISROOSCAT-3 OceanSat-318 12:00 desc

OSCAT-2 ScatSat-119 8:45 desc
SeaWinds QuikSCAT20 6:00 asc NASA

RapidScat ISS21 51.6¶ NASA/CSA/ESA/
JAXA/Roscosmos

Table 1.2: Length/expected length of the scatterometer missions. Note that the satellites presented in Table 1.1 directly
correspond to the 1st column and are represented numerically. The state of a mission is displayed over a gray scale going
from black to light gray, respectively for considered, planned and operational. The ** is used to inform that the expected
life time of the mission is longer than displayed.

2010 2013 2014 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
1 23/03/95

2 19/10/06

3 17/09/12

4
5 **
6
7
8
9
10 15thAug 2011

11
12
13
14
15
16
17 23/09/09

18
19 26/09/16

21

that reaches the satellite (De Chiara, 2014; Naderi et al., 1991; Figa-Saldaña et al., 2002; Chelton
and Freilich, 2005). This mechanism is dominated by centimetre wavelength surface gravity-
capillary waves formed either instantaneously by the blowing winds or, for winds above 5 m.s≠1,
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also by breaking waves. In both cases, the ocean short-wave spectrum is in equilibrium with
the local winds (Mastenbroek, 1996). As physically-based models are relatively complex and
inaccurate (Fois et al., 2015), empirical geophysical model functions (GMF) are used to relate
NRCS to the wind vector (Sto�elen et al., 2017; Wang et al., 2019; Wentz and Smith, 1999).
Using the GMF, the surface wind is inferred from the normalized radar backscatter as a function
of wind speed, wind direction relative to the antenna azimuth, incidence angle, polarization, and
radar frequency, at the reference height of 10 meter above the ocean surface. Scatterometer wind
products are derived at 10-m height above the ocean for convenience only, to align them with
the standard measurements available for calibration and validation (Sto�elen et al., 2019). To
eliminate a dependency on air mass stability and air mass density, the so-called stress-equivalent
10-m winds are defined (De Kloe et al., 2017a).

These active sensors typically operate at C-band (5.255 GHz) or Ku-band (13.4 GHz) fre-
quencies, providing quality wind vector observations in almost all weather conditions.

Figure 1.2: Fixed and varying viewing geometry for C and Ku-band systems. Left side diagram of ASCAT’s measurement
geometry (Figa-Saldaña et al., 2002) and right side diagram OSCAT’s pencil beam geometry (Kirti Padia, 2010).

The scatterometers operating at C-band are hardly a�ected by the presence of rain (Lin
et al., 2015a; Portabella et al., 2012; Stopa et al., 2017), whilst those operating in Ku-band are
sensitive to both rain (Portabella and Sto�elen, 2001a; Milli� et al., 2004; Lin et al., 2016) and
sea surface temperature (SST) (Polito et al., 2001; Wang et al., 2017; Wang et al., 2017). Rain
contamination degrades the wind measurement accuracy, thus rain contaminated wind vectors
need to be identified so that they can be treated properly during analysis, hence the need for the
development of quality control (QC) algorithms in scatterometry (Xu and Sto�elen, 2020a; Figa
and Sto�elen, 2000). As a result, using the inversion residual, or Maximum Likelihood Estimator
(MLE), the singularity analysis, and the 2DVar QC, based on the methodologies in Portabella
et al. (2012), Lin et al. (2015b) and Xu and Sto�elen (2020a), only about 0.5%–1% of the
ASCAT-A/B retrieved winds are quality controlled (QCed), while 2%–5% of OSCAT/HSCAT
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winds are filtered out globally.
During high wind variability conditions, 2DVar QC indicators prove e�ective for filtering

lower quality winds at both C and Ku-band frequencies (Xu and Sto�elen, 2020a). Nevertheless,
cases with high variability in rainy areas depict physically plausible convergence and divergence
associated with the hydrological processes (King et al., 2017). Moreover, for the Ku-band
scatterometers, systematic errors emerge at high latitudes over very cold SST < 5¶C (Bentamy
and Fillon, 2012) and SST-dependent GMFs are necessary to improve the retrieval, cf. Wang
et al. (2017).

After passing QC procedures, scatterometers onboard satellites flying in sun-synchronous
orbits provide an exceptional spatial coverage over the entire globe. HY-2C, HY-2D and the
International Space Station (ISS) RapidScat in inclined non-sun-synchronous orbits, do not
cover high latitudes. Figure 1.3, taken from Bourassa et al. (2019), represents the coverage
provided throughout the day, with each screenshot displaying a quarter of the daily coverage for
two sun-synchronous scatterometers (with partially overlapping swaths) and RapidScat.

Figure 1.3: Examples of coverage: swaths from sun-synchronous scatterometers in red and blue, and from RapidScat in
green. Four panels add up to daily coverage. From top to bottom, in the upper left from 0 to 6Z, upper right from 6 to
12Z, bottom left from 12 to 18Z, and 18 to 24Z at bottom right position (Fig. 3 from Bourassa et al. (2019)).

Even so, the fact that most scatterometers are flown in sun-synchronous orbits, represents
passing each location approximately at the same solar local times every day.

In practical terms, it means that by themselves, each lack the appropriate temporal resolution
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to resolve some atmospheric dynamics, e.g., daily measurements cannot capture synoptic weather
variability in the middle latitudes or the diurnal cycle in coastal areas. It is also important to take
into account that most scatterometers launched by di�erent Space Agencies observe the same
location at di�erent times of the day, and that because C-band and Ku-band radar signatures
di�er (see Figure 1.2) inter-calibration e�orts become mandatory. Consequently, gathering the
data from di�erent scatterometers to produce consistent data records is challenging, specially
for monitoring subtle changes in the wind field across satellite records and over long periods
(Verhoef et al., 2017; Wentz et al., 2017).

Verhoef et al. (2017) also state that collocating other scatterometers to Rapidscat, thus
providing simultaneous wind estimates at the same location, makes RapidScat ideal for cross-
calibration between sensors. By itself, due to the orbit characteristics of the ISS and unlike a
sun-synchronous scatterometers, RapidScat captures systematic changes in the diurnal cycle.
HY-2C and HY-2D provide today similar capability (Wang et al., 2021).

Information on viewing geometry and operating frequency, plus additional mission details,
are included in Table 1.1 for several ocean vector wind (OVW) scatterometer missions. Details
are provided for past, current and scheduled OVW missions spanning back to 1995. The life
time for each scatterometer is represented in scales of grey in Table 1.2 from 2010 onward. Note
that before 2010, other earth observing missions were fully operational, amongst them: SeaSat
(1978, only for 3 months), AMI-SCAT on ERS-1 (1991-2000) and ERS-2 (1995-2011, but only
regional acquisitions since 2003 (Crapolicchio et al., 2007)), NASA Scatterometer (NSCAT) on
the Advanced Earth Observation Satellite (ADEOS-1) (1996-1997), Seawinds on QuikSCAT
(1999-2009), and Seawinds on ADEOS-2 (2002-2003)

From these two are listed in Table 1.1), because they provided a long-term time series of
high-quality surface vector winds (Vogelzang and Sto�elen, 2021), e.g., the long lived C-band
ERS-2 (1995-2011) and the Ku-band QuikSCAT (1999 to 2009) (Dunbar et al., 2006), both
contributing to the first thematic and fundamental CDRs of scatterometer vector winds since
1991 (Ricciardulli and Manaster, 2021).

A limitation in using high-quality remotely-sensed vector winds from scatterometers is the
spatial/temporal coverage of the retrievals. Scatterometers accurately capture spatial variability
at high frequencies (Vogelzang et al., 2011a; Lin et al., 2015b; Patoux and Brown, 2001), but
their uneven sampling patterns, mainly driven by orbital characteristics and swath widths, makes
single instrument coverage unfit to force ocean models.

1.5 Atmospheric forcing for ocean modelling

As key drivers of the physical processes that take place at the air-sea interface, ocean winds
are the primary forcing component for ocean numerical models. Wind forcing is necessary to
reproduce oceanic circulation, wave and surge generation (Giesen et al., 2021), and to compute
sea surface currents and air-sea fluxes. However, the available global sea surface wind observa-
tions are unevenly distributed and lack the required high spatial and temporal resolution, i.e.,
sampling, for the atmospheric model to capture the temporal and spatial scales of variability
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associated with the forcing of the ocean.
Traditionally and as a matter of convenience, ocean models rely on low resolution data

assimilation approaches, such as from the NWP wind outputs (as briefly pointed in section 1.3)
in order to achieve a gap free regularly spaced temporal/spatial grid. These approaches arise
from the necessity to meet the sampling requirements in space and time for high resolution
simulations, while trying to maintain the high quality information inherent in the observations
(Sto�elen and Vogelzang, 2020). To improve on these NWP wind products, several hybrid
products (Level 4 or L4) have been developed over the past years to try to bridge the gap
between single satellite products, either swath-based (i.e., at Level 2 or L2) or fixed-gridded
(i.e., at Level 3 or L3), and NWP models. These products may combine both observations and
numerically simulated ocean surface winds, e.g., data assimilation, merging wind observations
acquired from di�erent instruments, or filling the gaps in observation coverage with specific
interpolation techniques, e.g., Kriging method.

It is however problematic that merging techniques mix the spatial and temporal character-
istics of the observed wind phenomena. For example, scatterometers are able to depict wind
divergence associated with moist tropical convection (King et al., 2017), while such processes are
very fast and can change the surface wind field within 30 minutes. Besides the scatterometer
snapshots, no su�cient 4-dimensional dynamical information is available to deterministically
initialize moist convection processes in global NWP models, hence resulting in lacking spatial
and temporal description and a poor quality of local wind fields near convection (Lin et al.,
2015a). In data assimilation techniques, both spatial and temporal averaging kernels are used
to fill gaps in observations, while these act as so-called low pass filters, thereby ignoring the high
spatial or temporal detail brought by the observations (Sto�elen and Vogelzang, 2020).

The deficits in global NWP model winds were well elaborated by Belmonte Rivas and Stof-
felen (2019), depicting both small and large-scale errors and both spatially and temporally. The
analysis moreover extends to spatial derivatives and Ekman pumping, which are both relevant
for ocean forcing. Taking account of ocean currents does not reduce these deficits, but allows
an improved physical representation of the modelling errors. The model errors found are very
persistent in time and locally bound. This opens the way for observation-based bias correction
procedures, as further elaborated in this thesis.

Satellite measurements from either radiometers or scatterometers are commonly used in the
generation of L4 wind forcing products. In truth, because these sensors respond to the ocean
state, primarily driven by stress rather then by wind, they are ideal for ocean simulations.
Section 1.5.1 develops this concept and explains how the interpretation of the satellite winds as
closer to stress imposes the need to represent the NWP and in-situ winds as 10-m height stress-
equivalent winds for calibration and validation purposes. Validated stress-equivalent 10-m winds
are also very suitable for ocean forcing.

1.5.1 U10S and wind stress

Satellite winds contain unique novel information with respect to both conventional obser-
vations and NWP outputs. Among these, ocean surface vector winds from scatterometers,
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recently redefined as 10-m stress-equivalent winds (U10S) by De Kloe et al. (2017a), are partic-
ularly interesting for forcing. Scatterometers retrieve the backscatter with respect to a moving
ocean, therefore providing a wind measure from which ocean-atmosphere fluxes at the inter-
face, governed by shear processes, can be accurately determined (Kelly et al., 2001; Chelton
and Freilich, 2005), and both the large scale ocean circulation features like WBCS, and the
associated mesoscale eddies around them are accounted for.

Moreover, sea surface winds acquired from these earth observing satellites respond to ocean
characteristics that are driven by stress. True 10-m winds are in equilibrium with the ocean
drag, but are moderated by air mass stability and are mass density, which dependencies are
eliminated for U10S. As such, the notion that scatterometer retrievals are closer associated with
stress than with real 10-m winds, makes them a good proxy for wind stress, i.e., wind forcing
(Portabella and Sto�elen, 2004).

Note that in the past scatterometer retrievals were derived as 10-m equivalent neutral winds
(U10N) to consider the influence of surface layer stability. Currently, scatterometer data are
redefined as U10S to consider variations of air mass density, but not altered nor changed in
any way after the use of the GMF for wind inversion. For NWP outputs or buoy observations,
atmospheric stability and mass density variations must be accounted for to compute stress-
equivalent winds, such that these winds are compatible with the scatterometer data. NWP
U10S are calculated with Eq.1.1, where U10N is the 10-m equivalent neutral winds (obtained
through a surface layer model to account for atmospheric stability e�ects), flair the local air
density and < flair > is the average global air density taken as 1.225 [kg/m3].

U10S = U10N

Ú
flair

< flair >
(1.1)

Consequently, the general bulk formulation to obtain wind stress for U10N is adapted so
that wind stress can be computed from U10S. Thus Eq. 1.2 displays the bulk formulation for · .

· = flairCD | U10n | U10n (1.2)

Then, because U10S accounts for variation of air mass density (Eq. 1.1), and according to
De Kloe et al. (2017a), the bulk formulation for · is given by Eq. 1.3.

· =< flair > CD | U10s | U10s (1.3)

1.5.2 Hybrid forcing products

With the growing demand of accurate high-resolution ocean wind forcing data sets (with
global coverage at high temporal and spatial frequency), many attempts to improve the current
ocean forcing products (generally provided by NWP outputs) were explored. As a result, gridded
gap-free wind products were obtained by combining satellite data with NWP outputs using
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di�erent blending techniques or data assimilation. Most of these L4 products re-sample or
re-interpolate satellite data onto regular grids in regular time intervals, and/or make use of
NWP outputs as background winds, in order to fill observational gaps. This allows for increased
temporal sampling, but the spatial detail in the observations is often lost, and in the end blended
products are a�ected by the spatial characteristics and caveats of the NWP models.

Amongst the proposed blended high resolution ocean wind forcing products, the avail-
able options are similar. The simplest approach, from Zhang et al. (2006), uses a spatial-
temporally weighted interpolation to generate wind speed on a global 0.25¶ grid available for a
few time resolutions, namely 12-hourly, daily, and monthly. The cross-calibrated multi-platform
(CCMP) wind product (Atlas et al., 2011), developed with variational analysis (VAR), uses
cross-calibrated microwave data from radiometers and scatterometers, insitu data, and, as back-
ground, wind reanalyses from NWP, to create a near-global Level 4 vector wind product on a
0.25¶ grid, available on 6-hourly intervals. Likewise, Yu and Jin (2014) and Bentamy et al.
(2001, 2003) try to maximize global coverage by merging satellite wind fields into a single grid-
ded L4 wind fields. The merging of data sets through objective analysis, respectively using a
least variance linear statistical estimator and the Kriging method (Bentamy et al., 1996) results
in a global daily vector wind product on a 25 km resolution grid, and a weekly product on a 1¶

grid.

Recently, newer versions of the CCMP product (Mears et al., 2019) and a new multiyear
blended product (Desbiolles et al., 2017) were presented. In line with Atlas et al. (2011), newer
CCMP versions use VAR to blend satellite data, but discontinued the use of buoy data in
the generation of the product, included inter-calibrated wind observations and changed the
NWP background source to either ERA-interim reanalysis (ERAi) or, aiming at a closer to
near real time product, operational National Centers for Environmental Prediction (NCEP)
model outputs. The multiyear blended product developed by Desbiolles et al. (2017), combines
retrievals from four scatterometers, radiometers and ERAi reanalysis as background (using the
Kriging method) to generate 6-hourly wind estimates globally on a 0.25¶ regular grid.

Despite the fact that the above mentioned products tend to outperform the NWP wind
reanalysis, because they represent di�erent spatial scales, di�erent geophysical processes with
systematic biases in geophysical variables and/or large-scale circulation errors, the result is a
L4 product with rather artificial and mixed spatio-temporal characteristics, depending on where
the satellite measures, where the gaps are and how the local transient weather evolves (Trindade
et al., 2020; van Cranenburgh, 2022).

The four-dimensional variational (4DVAR) data assimilation is currently the most advanced
method of blending wind observations and NWP estimates. Yet, NWP data assimilation follows
the BLUE paradigm (Best Linear Unbiased Estimation), which requires unbiased data sets.
This condition is clearly violated with the use of NWP wind fields (NWP biases discussed in
subsection 1.5.3), but through local bias correction in NWP, the use of the BLUE paradigm
should provide improved gridded products.
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1.5.3 NWP outputs

Like ocean models, NWP models are mathematical representations of the physical and dy-
namical processes, in this case occurring in the atmosphere, on a wide variety of scales that go
from a few kilometres and up to a couple of thousand kilometres (Jacobson, 2005).

Continuously improving since the mid-1990s, global atmospheric reanalyses simulated with
these models have proven revolutionary for meteorological and marine weather forecasting by
providing consistent gap free maps. These are obtained by reprocessing historical records of
observations relying on the forecast model to coherently combine them through data assimilation,
and produce fully gridded data sets of directly observed variables, as well as indirect ones (Carton
and Giese, 2008; Gelaro et al., 2017). The latest global atmospheric reanalyses are available at
higher grid resolution, use more sophisticated data assimilation schemes, e.g., BLUE and SODA
(although none is free from the biases due to model/observations di�erences), and have benefited
from the continuous development of forecast models.

As such, in the absence of high frequency spatial and temporal sampling of sea surface
wind data observations, ubiquitous NWP forcing products are widely used in ocean simulations
although the use of NWP and scatterometer wind products in simulations of ocean circulation
yields significantly di�erent ocean responses, as shown by Fu and Chao (1997) with NCEP
reanalysis and ERA-1, respectively. Numerically simulated atmospheric winds are currently
available either from reanalysis or from downscaled versions of these. Among the most commonly
used in ocean forcing are the winds generated by Global Circulation Models (GCM), intended
for climate predictions, with the latest generation used in the forthcoming 2022 IPCC Sixth
Assessment Report. Also, winds from recent reanalyses like the Modern-Era Retrospective
Analysis for Research and Applications, version 2 (MERRA-2), produced by NASA’s Global
Modeling and Assimilation O�ce (GMAO) (Gelaro et al., 2017), those from the National Oceanic
and Atmospheric Administration (NOAA) NCEP produced by the Global Forecast System and
Climate Forecast System (GFS and CFSR (version 2)(Saha et al., 2014)), or from the Integrated
Forecast System (IFS) at ECMWF, e.g., ERAi (Dee et al., 2011) or ERA5 (Hersbach et al., 2020),
the latter climate reanalysis available on an hourly base.

However, in addition to the initial condition errors present in the analysis that propagate and
increase in time, the physics of the numerical models are not perfect. Physics related errors may
be due to inaccurate parameterization of surface fluxes, frictional turbulence of surface winds,
convection. Such errors lead to intrinsic model biases, e.g., local biases in specific climate zones
dominated by specific weather regimes. Moreover, the systematic errors in the reanalysis winds
project onto the circulation produced by the ocean general circulation models driven by these
winds.

The use of sea surface wind observations from scatterometers to characterize NWP biases is
a common practice to assess the quality of the simulated atmospheric winds, i.e., of the NWP
ocean forcing products. A summary of the reported systematic biases in the NWP outputs, and
further explanation on how this adds to the their limitations as wind forcing products can be
found in the next subsection (1.5.4).
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1.5.4 Current limitations

Currently, none of the proposed ocean wind forcing solutions fits the requirements to carry
out high resolution simulations that study oceanic mesoscale processes.

As far as wind observations go, the use of satellite scatterometer U10S with all the adja-
cent benefits, i.e., accurate information on oceanic mesoscale features, an established e�ective
resolution around 25 km, and the closest available proxy for wind stress, is mostly conditioned
by sampling. Ocean forcing from individual sensors is strongly limited by their spatio-temporal
coverage, which on a daily basis for a QuikSCAT-like satellite implies a global coverage of about
90% of the ocean (with two wind estimates available only for about 60% of it) (Lee et al., 2008).
In addition to orbital constrains, gaps due to quality control, e.g., excluded rain contaminated
winds from Ku-band sensors, add to an already poor sampling frequency.

As opposed to satellite measurements, simulated winds in NWP outputs are available every-
where but computed relative to an Earth-fixed location (each grid point), therefore requiring
additional information on ocean currents, as well as atmospheric stratification and mass density
prior to being used as ocean forcing (i.e., wind stress). For some blended products, e.g., newer
CCMP versions, the influence of surface currents is implicitly included via satellite winds (Mears
et al., 2019). This is particularly relevant in the tropical oceans, where surface currents can be
of comparable magnitude with respect to ocean winds, as well as over the WBCSs, due to the
magnitude and stationarity of these currents. Nevertheless, background winds in CCMP and
other blended products have not been corrected for atmospheric stability.

On top of that, although data assimilation of wind data is general practice in NWP models,
NWP wind outputs are of coarser resolution w.r.t. that of scatterometer estimates, i.e., the
interpolation of winds between satellite overpasses may be performed on the larger scales (100-
200 km), but the small-scale variability measured by scatterometers is generally lost in NWP
fields, and by design global NWPs lack deterministic mesoscale structure (Belmonte Rivas and
Sto�elen, 2019; Sandu et al., 2013a). Furthermore, 4DVAR does not work well with 25 km scale
winds and observations only a few times a day (Bourassa et al., 2019). Consequently, persis-
tent mesoscale features in scatterometer winds, such as those described by Chelton (2016) with
4-year averages of 25-km QuikSCAT winds, are missing in the model wind fields. These persis-
tent features are the cause for systematic di�erences between model winds and scatterometer
estimates.

These and several other issues on the quality of the NWP outputs have been described
in studies comparing the simulated winds to scatterometer data. For ECMWF model winds,
Belmonte Rivas and Sto�elen (2019) provide an empirical assessment of the NWP errors included
in the ERAi and ERA5 reanalyses, and their timescales, using ASCAT-A ocean surface wind
observations. The authors report large-scale circulation errors in both ECMWF reanalyses, from
a systematic lack of meridional wind variability to poorly resolved small-scale dynamics, such
as those associated with moist convection. Adding to those, local systematic errors, e.g., lack
of cross-isobaric winds in ECMWF model winds, were monitored with ERS-2 data by Hersbach
(2010b) and also by Gille et al. (2005), who had previously looked at the ERS-1,2. Brown et al.
(2005b); Sandu et al. (2013a) describe these errors while assessing the quality of the NWP winds
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1.5

in comparison to other wind measurements.
The temporal frequency in which NWP L4 ocean forcing products are available is convenient

for many ocean simulations. However, satellite ocean wind observations do not cover such
temporal detail. As a consequence, because the multi-platform blended products incorporate all
the available wind observations at one or more stages during the generation of the synthesized
winds, assessing the skill and realism of the final product against independent wind sources poses
a problem. The lack of an independent observational truth is aggravated by the fact that these
products combine di�erent spatial-temporal scales onto a single grid, which happens because
di�erent sources of wind represent di�erent perspectives and stages of an evolving atmospheric
disturbance, leading to somewhat artificial wind fields.

An alternative (to NWP background winds) for a L4 higher resolution ocean wind forcing
with coherent wind fields containing mesoscale information obtained from scatterometer U10S
is proposed in the next section (1.5.5).

1.5.5 New forcing: ERAú

As established in previous sections, the regular sampling frequency of lower resolution NWP
outputs, with respect to observations, makes them a widely used convenience for forcing in
ocean models, as well as the background wind data for several hybrid products, despite the well
documented errors present in these data sets. Many of the NWP errors are persistent in time
and readily evident when collocating simulated model winds to scatterometer measurements.
For the most part, the systematic di�erences between these two sources of wind data represent
unresolved geophysical processes by the NWP models, within ± 2 m.s≠1. Such di�erences are
hereafter referred to as local biases and can be seen in Fig. 1.4, for the zonal and meridional U10S
wind components, from collocations of accumulated di�erences between ASCAT-A and ERAi,
over a 30-day temporal window. Note that the darker blues and reds in Fig. 1.4 are located
where these processes are missing, therefore some of these biases can persist over relatively long
time periods, e.g., as in the presented 30 day in-time accumulation of ASCAT-A and ERAi U10S
local di�erences.

In light of that, the development, validation and applicability in ocean simulations of a new
ocean wind forcing product, ERAú, is explored throughout this manuscript. The ERAú, unlike
common merging techniques, consists of scatterometer-based corrections (SC) of the mentioned
local and persistent biases present in the NWP output. Note that an alternative bias mitigation
approach has been previously explored on a regional scale by Biasio et al. (2017) and Bajo et al.
(2017) to improve storm surge forecasting over the Golf of Lyon (GoL). However, their method
aims to correct wind speed biases by scaling the model winds with weighted SCs averaged over
a fixed time window (three days). Moreover, the wind conditions over three days during a storm
are extremely variable. The methodology presented in this thesis is more generic and corrects
the wind vector biases globally using multiple scatterometers and exploring several temporal
windows.

The method is motivated by the persistence of the local model biases over time, allowing
model wind corrections at each earth location based on a local time series. Therefore, gridded L4
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Figure 1.4: Collocated di�erences between ASCAT-A (12.5 km) and ERAi U10S for the zonal (a) and meridional (b) wind
components, accumulated over a 30-day temporal window. The colors represent the di�erences in m.s

≠1 (see color scale).

wind products may be produced by correcting the model winds at any time and any position. It
exploits the repeated sampling of scatterometer observations by using one or more scatterometers
for a temporal accumulation of the scatterometer wind data over the shortest possible period of
time, and in this manner compute and correct model errors, while maintaining some of the most
beneficial scatterometer features, i.e., accounting for highly stationary strong current e�ects,
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and other wind e�ects associated to ocean mesoscale processes, such as interface dynamics as
wind-SST interaction, and meanwhile, correcting the large-scale NWP parameterization and
dynamical errors.

With this approach, a scatterometer-based correction is applied to NWP U10S forecasts,
using accurate, unbiased, high spatial resolution ocean vector winds from several scatterometers,
in order to produce geophysically consistent L4 wind fields.

1.6 Research Questions

This thesis aims at addressing the following research questions:

1. Is it possible to improve the currently available surface wind forcing products by developing
a more accurate, high resolution forcing with the information contained in the scatterom-
eter data?

2. How does regional scatterometer sampling and weather a�ect the performance of static
corrections, particularly in regions dominated by fast evolving atmospheric phenomena or
increased wind variability?

3. Does ERAú wind forcing make for more realistic representations of oceanic circulation in
numerical simulations than NWP forcing?

4. Can the ocean models response to high wind variability conditions, e.g., storm surges, be
improved by static corrections of the NWP forecast winds?

1.7 Aim and overview of the thesis

The main aim of this thesis is to correct for local persistent model biases in NWP outputs
by integrating mesoscale information contained in scatterometer measurements, and thereby
generate a higher quality surface wind forcing product.

This thesis addresses the need for high-resolution ocean forcing. To do so, the research
presented here explores a new approach for the development of L4 ocean wind products, based
on applying scatterometer-based corrections (SC) to NWP forecasts. ERAú is the new L4
high resolution ocean wind product generated with this approach. In Chapter 2, the data
methods used to produce and validate the ERAú data set are presented. It starts with a detailed
description of the data (section 2.1), followed by an explanation of the hypothesis behind our
rationale, which includes the layout of the methodology used to develop the algorithm (section
2.2) and its adaptation to a theoretical scenario through the simulation framework (section 2.3).
Chapter 2 ends with the description of the most important wind validation techniques that are
applied to the real ERAú data sets (section 2.4).

Chapter 3 is dedicated to evaluate the SC e�ciency to correct for systematic biases in model
output wind using synthetic wind data sets generated by means of Monte Carlo simulations. The
analysis presented here follows the simulation framework described in section 2.3, and uses the
parameterization in 2.3.1 to simulate realistic wind distributions with the Monte Carlo scheme.

20



Chapter 1

Within this Chapter, two sections focus on weighing the key aspects/factors expected to a�ect
the e�ectiveness of the proposed methodology, including a meticulous look at the regional e�ects
of the scatterometer sampling (section 3.1) and wind variability (section 3.2) on simulated ERAú

winds. A summary of the main findings of this Chapter can be found in section 3.3.
In Chapter 4, a detailed description is provided of the several configurations explored during

the development of ERAú. A comparison between the quality of the generated product w.r.t. the
model reanalysis (baseline reference) is included. Initial findings on the potential of ERAú for
ocean wind forcing are obtained by correcting the ERAi reanalysis background winds in section
4.1. With the availability of the latest ECMWF reanalysis dataset, i.e., the fifth ECMWF
reanalysis (ERA5), which contains similar error characteristics (although of smaller amplitude)
as those found in its predecessor (ERAi), it became pertinent to assess the quality of a new
ERAú generated from the ERA5 model output in section 4.2. In section 4.3, an optimized set
of ERAú configurations, accounting for the varying scatterometer constellation, is achieved in
order to produce an 11-year long (2010-2020) ocean forcing data set. Chapter 4 ends with a
joint discussion on the comprehensive verification of the ERAú products described in the above
mentioned sections.

Chapter 5 includes a couple of oceanographic applications of the new L4 ocean wind forcing
products. The added value of ERAú w.r.t. other, commonly used forcing alternatives, i.e., ERAi
and the ERA5 reanalyses, is addressed in this chapter by running the simulations separately for
the di�erent atmospheric forcing. Section 5.1 presents a climate variability study, in which the
NEMO model is used for the ocean simulations, with either ERAú or ERAi wind stress as initial
forcing predictions to study the impact of the 2017 North tropical Atlantic (NTA) warming
on equatorial SST variability, and compared these results with those obtain with an EC-Earth
control run. In section 5.2 a regional oceanographic application of ERAú winds under a high
wind variability scenario is presented. The ERAú forecasts are used as the ocean forcing, with
the aim of improving storm surge prediction capabilities over the Adriatic Sea. The storm surge
response of The Shallow Water Hydrodynamic Model (SHYFEM) surge model, developed at
the Institute of Marine Sciences (ISMAR), for a couple aqua alta events, is evaluated w.r.t the
same run with NWP forecasts as atmospheric forcing, namely the ERA5. A comprehensive look
at the ocean model responses to the enhanced forcing is included in section 5.3.

The last Chapter (Chapter 6) summarizes the main conclusions obtained while addressing the
research questions proposed in this thesis. It includes a general outlook of the potential of this
methodology in the development of high resolution ocean wind forcing products, alongside future
perspectives and planned activities for future improvements of the present ERAú approach.
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Chapter 2

Data & Methodologies

1

Local systematic di�erences observed when collocating NWP model outputs and scatterome-
ter wind observations (Fig.1.4) stand out where physical processes are misrepresented or absent
in the model. From the aforementioned zonal (Fig. 1.4a) and meridional (Fig. 1.4b) wind
component di�erences, it is readily evident that they are more pronounced in certain regions
of the global ocean, and that the phenomena to which they are associated dictate whether the
model biases manifest stronger in the zonal or the meridional wind component, or whether these
di�erences are positive or negative, with magnitudes of up to ± 2 m.s≠1, which in some locations
represents a substantial part of the mean wind speed.

From the empirical point of view, with the methodology described in section 2.2 of this
chapter, the biases behind those di�erences are computed and handled such that some of the
missing information can be added to the new forcing product (ERAú), in the form of a SC. The
data sets used to accomplish that, including the verification stages are previously described at
processing detail in section 2.1. As just mentioned, the rationale behind the ERAú algorithm
is introduced in section 2.2, alongside the advantages of exploiting combined scatterometer
sampling in the creation of the SC, and the steps for product generation following the processing
chain in Fig. 2.4. This general flow chart summarizes the necessary steps to generate the ERAú

L4 product and the ERAú wind stress product using the ERAú processor. In addition, and to
understand the sampling and noise e�ects of the ERAú procedure, simulation experiments are
performed. Identical processing steps are adopted in real and simulated data experiments, with
minor adaptations to the latter, and in line with the schematic diagram presented in Fig. 2.5.
Those adaptations are described in section 2.3.

In what concerns verification methods (section 2.4), product validation starts with an em-
pirical observation of the new U10S wind component forecast maps to look for additional true
small scale wind variability w.r.t the reanalysis. In addition to this qualitative assessment of
both reanalyses forecasts, i.e., from ERAi and ERA5, against the generated ERAú configura-
tions, other empirical validation approaches, often applied in wind scatterometry, are used to
quantify the ability of the SC to correct for the model biases illustrated in Fig. 1.4, and the
skill of the new product. Those include a verification of the ERAú U10S against independent,
collocated scatterometer and in situ buoy U10S (2.4.1) and a spectral analysis of the di�erent
data sets (2.4.2).

1Wind vector component (u, v) di�erence maps of collocated ASCAT-A and ERAi using the
approaches summarized in this chapter were presented in the paper: Trindade, A., Portabella,
M., Sto�elen, A., Wenming, L., and Verhoef, A., 2020. ERAstar: A High-Resolution Ocean Wind
Forcing Product
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2.1 Data sets

The ERAú product versions described in this manuscript use multiple remotely sensed sur-
face wind observations from di�erent scatterometers, alongside forecast data from a couple of
NWP re-analyses and operational wind outputs. Wind observations from ocean moorings and
scatterometers with either non-global (RapidScat) or non-continuous (HSCAT-A/B) coverage
are used for verification purposes only.

High spatial resolution ocean vector U10S products derived from scatterometers are used
to build di�erent configurations of the ERAú product, or as independent validation sources,
over di�erent time periods. Table 2.1 summarises the scatterometers used in the development
and/or validation of the di�erent ERAú product versions evaluated/used in each section of the
manuscript. Note also that di�erent data periods have been used in the manuscript, as properly
specified in each section.

Table 2.1: List of the scatterometer (SCAT U10S) products and ECMWF reanalysis (NWP U10s) used to generate and/or
validate the ERA

ú configurations in each section of the manuscript (marked in grey).

SCAT U10S section 4.1 section 4.2 section 4.3 section 5.1 section 5.2
ASCAT-A (Metop-a)
ASCAT-B (Metop-b)
ASCAT-C (Metop-c)
OSCAT-1 (OceanSat-2)
OSCAT-2 (ScatSat-1)
HSCAT (HY-2A)
HSCAT (HY-2B)

NWP U10S section 4.1 section 4.2 section 4.3 section 5.1 section 5.2
ERAi
ERA5

All the scatterometers listed in Table 2.1 fly in sun-synchronous orbits, i.e., with a specific
local Equator passing time (note that the local Equator passing time of the ascending node is
referred to as LTAN). In particular, the local Equator passing times of the ASCATs is 21:30
UTC and 9:30 UTC, for, respectively, the ascending and descending nodes; those of OSCAT
are 12:00 UTC and 0:00 UTC; those of OSCAT-2 are 20:45 UTC and 8:45 UTC; while those of
HSCAT-A/B are 18:00 UTC and 6:00 UTC (see Table 1.1). Note these LTAN are w.r.t. the
years considered for product development, during which neither of the satellites significantly
drifted from its orbit. Besides the LTAN, subsection 1.4.2 summarizes some of the most relevant
characteristics of these systems. Amongst them, the instrument operating frequency, geometry,
and footprint size, which a�ect spatial sampling, and therefore the daily coverage provided per
instrument, a key aspect in product development.

In brief, the ASCATs provide accurate wind retrievals in nearly all weather conditions, i.e.,
hardly a�ected by rain because of their operating frequency (C-band), although for a relatively
limited total swath width (1100 km) and a long repeat cycle (29 days or a quasi-repeat cycle
of 5 days). Whilst the OSCAT and HSCAT instruments provide less (more quality controlled)
and less accurate winds over rainy areas, they have a wider swath (1400-1700 km) and shorter
revisit cycles that result in more homogeneous coverage over sets of several consecutive days.
The latter is particularly true for OSCAT with a 1400 km swath and a 2-day repeat cycle. The
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HSCAT data (1700 km with a 14-day) is only used for verification.
Another fundamental and relevant di�erence between ASCAT and pencil-beam scatterom-

eter winds is related to the measurement geometry. The ASCAT measurement geometry with
three fixed fan beam beams is optimized for wind scatterometry, while rotating pencil-beam
scatterometers trade wind retrieval accuracy for swath width. This results in more noise and in
particular wind vector ambiguity. Reduction of wind vector ambiguity in the wind retrieval is
achieved by the so-called Multiple Solution Scheme, essentially compromising spatial resolution
in order to achieve a unique wind vector solution at every WVC in the swath. Although, the
empirical spatial properties of ASCAT have been successfully exploited to improve the Ku-band
winds (Xu and Sto�elen, 2020b; Vogelzang and Sto�elen, 2018), the di�erence in spatial resolu-
tion remains relevant. Nevertheless, ASCAT and OSCAT winds are more similar than either of
them with ECMWF winds (Vogelzang and Sto�elen, 2021), where after intercalibration (Wang
et al., 2019) the ASCAT and OSCAT SC show great similarity.

Level-1B (L1B) data, i.e., swath-gridded geolocated radar backscatter information, was pro-
vided by the di�erent space agencies. In particular, the Chinese National Ocean Satellite Appli-
cation Center provided HSCAT-A/B L1B data, the Indian Space Research Organization (ISRO)
provided the OSCAT-1 and OSCAT-2 L1B data, and EUMETSAT provided ASCAT L1B data.
All L1B datasets were processed with the latest versions of EUMETSAT NWP Satellite Applica-
tion Facility (NWP SAF) scatterometer data processors, i.e., the ASCAT Wind Data Processor
(AWDP) for ASCATs and the pencil-beam wind processor (PenWP) (Verhoef et al., 2018) for
OSCATs and HSCATs, to obtain L2 wind data. Further details on the reprocessing of the data,
e.g., GMF version, background and QC flags, are provided within the corresponding section.

All the NWP data sets were originally downloaded from ECMARS in their native grids in
GRIB format. Specifically, both the ERAi and the ERA5 surface winds were retrieved on a
reduced Gaussian grid (N128), respectively with a spatial grid resolution of about 80 km on a
3-hourly basis and in a 30 km spatial resolution grid on an hourly basis, and converted to U10S
to become more compatible with scatterometer wind retrievals (see eq. 1.1 in subsection 1.5.1).
Whilst for the Monte Carlo simulations, a few months of operational ECMWF hourly surface
winds from 2013 were downloaded to be used as wind truth (with no additional conversion).
Though, it is important to clarify that these winds were used for their one hour temporal
frequency, which at the time of the simulation experiments, was only available for the ECMWF
operational forecasts.

in situ wind data from buoy moorings on 10 min intervals, hereafter referred to as con-
tinuous buoy data, was also downloaded from the ECMARS archive, alongside a list of buoy
measurements blacklisted by ECMWF that are excluded from the data set. Note that buoy
wind vectors are distributed by the Global Telecommunication System (GTS), which have been
retrieved, quality controlled, and segregated into 1 m.s≠1 speed bins and 10-deg direction bins
for storage purposes in the ECMWF MARS archive.

Although most of the available buoys have been maintained for decades, a slight decrease
in the number of working buoys has been reported from 2014 onward. Fig. 2.1 displays the
locations of the used buoys in 2013 and 2019, respectively in Fig. 2.1a and Fig. 2.1b. Note that
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Figure 2.1: Global distribution of the moorings used to acquire wind measurements in 2013 (a) and 2019 (b). Same color
scale is used to classify buoys according to location as in Fig. 1.1.

buoy observations are not used in the generation of the ERAú product, but used in product
verification and to estimate the error values used to parameterize the Monte Carlo simulations
in subsection 2.3.1 using the triple collocation technique adopted in Lin et al. (2015b).

2.2 ERAú approach

As mentioned in section 1.5.5, the ERAú approach attempts to correct for persistent local
NWP model output wind vector biases using scatterometer data. These output errors are associ-
ated with physical processes that are absent or misrepresented by the model, e.g., strong current
e�ects like the WBCS (highly stationary), wind e�ects associated with the oceanic mesoscale
(SST), coastal e�ects (land see breezes, katabatic winds), Planetary Boundary Layer parame-
terization errors, and large-scale circulation e�ects, such as those at the ITCZ. Therefore, these
are readily evident from the collocated U10S di�erences between scatterometer and model, re-
spectively ASCAT-A and ERAi, in Figs. 1.4a and 1.4b (see dark blue and red regions). The
zonal and meridional U10S di�erences in these figures show very pronounced biases over the
WBCS, i.e., the Agulhas, the Gulf Stream or the Kuroshio current regions, the Antarctic Cir-
cumpolar Current (ACC), and in adjacent regions where the eddies generated by these currents
detach. Likewise, in the tropics (see, e.g., the Inter Tropical Convergence Zone or ITCZ), U10S
di�erences (particularly in the meridional component in Fig. 1.4b) are notable where the model
U10S field is unable to capture both the detailed and large-scale wind circulation. Additionally,
local wind e�ects like see breeze, katabatic flows, corner winds or wind funneling e�ects (gap
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winds) are also visible from these figures, with the latter most noticeable in the the meridional
component in Fig. 1.4b, e.g., see the gap wind e�ect in the Gulf of Tehuantepec.

The proposed methodology takes information from these instruments to generate a scatterometer-
based correction (SC) for each wind vector component (u10s, v10s) which is then applied to the
reanalysis to produce the zonal and meridional ERAú U10S/wind stress fields. The SC consists
of geo-located scatterometer-NWP averaged di�erences over a specific temporal window (TW)
for every model time step (t), that may include sampling from one to several scatterometers, and
in which each wind vector component is corrected in the same manner. For the zonal component,
the formulation used is displayed in Eq. 2.1:

SC(i, j, tf ) = 1/M
Mÿ

t=1
(uSCATk

10s
(i, j, t) ≠ (uNW P

10s
(i, j, t)) (2.1)

Here uSCATk

10s
and uNW P

10s respectively refer to scatterometer and model U10S collocations,
with the number of sensors discriminated as k. These are collocated for a TW of N days,
centered at forecast time (tf ), i.e., tf ±N/2 days, where M is the number of scatterometer/model
collocations (samples) at grid point (i, j) within the defined time window around the reanalysis
tf . Note that the meridional wind component (v10s) is discretized in the same way.

With further detail, for every forecast time of a fixed TW configuration (N days), the scat-
terometer/NWP collocated fields (collocation procedure explained later in this section) within
tf ± N/2 days are collected and the corresponding U10S di�erences averaged at each grid point
cf. Eq. 2.1. As such, for every tf time step, respectively 3-hourly and hourly for the ERAi
and the ERA5 reanalysis forecasts, a SC U10S field is generated for the predefined TW (N) and
based on the selected combination of scatterometers (k).

To e�ectively reduce local NWP biases, a trade-o� between optimal scatterometer sampling
length and the ability to keep the small spatial and temporal ocean induced scales is required.
The scatterometer instruments used in the SC are flown on-board sun-synchronous satellites,
which, as mentioned in section 1.4.2, results in a non-uniform temporal sampling across the globe,
and potentially in sampling characteristics that produce a large impact over the method’s ability
to reduce local NWP biases. On a daily basis, incomplete spatial coverage by these instruments
over the tropical band (from 30¶S to 30¶N), as compared to other latitudes, presents a relevant
limitation to the e�ectiveness of the method. Persistent errors may be captured by accumulation
over time and using data from several scatterometers allows for a significant reduction in revisit
time (Tang et al., 2014). As illustrated in Fig. 2.2, the global scatterometer coverage obtained
for a single day can be improved by the accumulation of data from several scatterometers, e.g.,
compare the daily coverage from ASCAT-A in Fig. 2.2a w.r.t. that obtained by the scatterometer
constellation of ASCAT-A/B/C and ScatSat-1 represented in Fig. 2.2d).

In particular, k goes from one (single scatterometer) to the maximum number of instru-
ments used to build the SC, i.e., it refers to di�erent combinations of scatterometer sampling.
Throughout this thesis several combinations of scatterometer sampling are investigated, amongst
them those described in Trindade et al. (2020) with k = 1 (ASCAT-A), k = 2 (ASCAT-A/B
and ASCAT with OSCAT), and k = 3 (ASCAT-A/B and OSCAT) . In some cases, the opti-
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Figure 2.2: Global scatterometer coverage for a single day (15th February 2019), with every point in blue representing
a di�erent time of the day. In (a) coverage from ASCAT-A (k = 1), in (b) from ASCAT-A/B (k = 2), in (c) from
ASCAT-A/B/C (k = 3) and in (d) from ASCAT-A/B/C and OSCAT-2 (k = 4).

mal scatterometer sampling for the SC includes observations from scatterometers working at
di�erent frequencies, namely ASCAT and OSCAT sensors, respectively at 5.2 GHz (C-band)
and 13.5 GHz (Ku-band). Although the fixed fan beam (ASCAT) and the rotating pencil-beam
(OSCAT) systems have di�erent sampling characteristics that result in higher accuracy and
resolution winds for the former, wind retrievals from the Ku-band system provide good quality
winds (Vogelzang and Sto�elen, 2021), which are largely consistent with ASCAT.

Besides scatterometer sampling, the performance of the corrected NWP field is determined by
the persistence of the NWP local biases and the choice of the accumulation over time denoted by
N. By trying di�erent TW for the SC, i.e., using di�erent accumulation lengths N, it is possible
to check the temporal persistence of the local biases for several configurations. Initially, the
e�cacy of the method for shorter accumulations, i.e., N <= 5, was investigated in Trindade
et al. (2020), but due to sampling limitations for subsequent testing periods, e.g., 2009, 2010,
2011, longer accumulations of N = 10, 15, 30 days were also investigated. That is, sampling
from the available scatterometers was insu�cient to reduce the error variance and outperform
the original NWP U10S, requiring longer temporal accumulation for more optimal scatterometer
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sampling. Note that the performance of the NWPú U10S for di�erent k’s and N ’s is evaluated
in detail in Chapter 4.

Furthermore, the choice of TW used in Eq. 2.1 takes into account that such biases are
relatively persistent over time, but that persistence is also regionally dependent (recall Fig.
1.4), i.e., longer in the trades and higher latitudes (beyond 55¶) as compared to the storm-track
regions (middle-latitudes) or over the ITCZ. As such, the trade-o� between sampling and local
bias persistence is analysed in Chapter 3, also considering this regional dependence.

Finally, to generate the ERAú in Eq. 2.2, the SC (SC(i, j, tf ) in Eq. 2.1) is added to the
NWP U10S forecast (uNW P

10s (i, j, tf )), at time tf as follows:

uERA
ú

10s
(i, j, tf ) = uNW P

10s
(i, j, tf ) + SC(i, j, tf ) (2.2)

Note that throughout the thesis the ERAú will correspond to either corrected ERAi or corrected
ERA5 U10S forecast fields on regularly spaced lat/lon grids, with latitudes (longitudes) in ¶N
(¶E), and available respectively at 3-hourly or hourly time steps. Note also that following the
processing chain introduced next in the diagram of Fig. 2.4, the algorithm is applied such that
the new ocean forcing product is generated on the SC grid , i.e., with the L3 grid resolution of
the ASCAT coastal product (0.125 ¶), the exception being the case study in 5.1 with a coarser
resolution of 0.25 ¶.

The SC was developed to optimise data coverage both in time and space, allowing the ERAú

processor to be flexible and accommodate di�erent TW or varying number of scatterometers,
according to the intended application of the product. Still, due to limited scatterometer sampling
some SC configurations will have gaps that by construction are filled with NWP winds only,
i.e., ERA* winds will be the same as the original NWP winds. The alternative is resorting
to longer temporal accumulations windows, at the cost of e�ciency in error variance reduction
and resulting U10S fields with less small scale variability (particularly, non-persistent or moving
small-scale features are smoothed).

However, the methodology in use cannot correct for transient weather e�ects and additional
filtering may be required to remove those e�ects from the SC (e.g., storm phase shifts in NWP,
location errors in fronts, etc.). The latter appear as outliers when looking at the SC standard
deviation distribution, as can be seen from the example in Fig. 2.3 that holds the distribution
of SC values for a temporal window of 3 days and the combination of 4 sensors (i.e., N3 with
k = 4), specifically from its tails, which exceed by far the expected local systematic e�ects, i.e.,
around ± 2 m.s≠1.

Consequently, later versions of the algorithm include a 3‡ filter applied to the scatterometer-
NWP di�erences, i.e., filtering SC values above 3‡ to remove the aforementioned e�ects. These
outliers are mostly found in moist convection regions (particularly when using Ku-band systems)
and seasonally when doing sea ice screening. The 3‡ filter is calculated separately for each wind
vector components and for both ASCATs-NWP and OSCAT-NWP di�erences, using a test
period in 2019 and an accumulation length of 72 hours (N3). Respectively, the fixed values
‡C(u, v) = (1.67, 1.59) and ‡Ku(u, v) = (1.27, 1.33) are taken from the test period to be used on
the remaining periods, filtering about 1.4% and 1.1% of the wind observations. Moreover, the
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Figure 2.3: Normalized histogram of the zonal (top) and meridional (bottom) SC values obtained for a N3 and K = 4
(ABCO) configuration.

scatterometer observations undergo several quality control screenings, which are integrated in
the winds software, before being used in the SC. The quality verification for the 3‡ ERAú and
the result of disregarding SCs with insu�cient scatterometer samples, i.e., not correcting the
NWP at these grid locations, is discussed in subsection 4.2.2, Chapter 4. The processing stages
where filtering takes place are marked as ú in Fig. 2.4.

Finally, the ERAú algorithm includes the conversion of the higher resolution ERAú U10S
ocean forcing product to wind stress (·). Eq. 2.3 holds the formulation to convert from U10S
to · .

ERAú
·
(i, j, tf ) = CD10 < flair >| U10s(i, j, tf ) | U10s(i, j, tf ) (2.3)

Here, < flair > is the standard average air density taken as 1.225 kg/m3, and CD10 the drag
coe�cient determined from the parameters extracted from a linear fitting between the drag
coe�cient taken from the ECMWF ERAi wave model against the ERAi U10S (converted from
the ECMWF ERAi atmospheric model winds) for a full year of data. The resulting linear fit is
characterized by the following equation:

CD10(U10s) = aU10s + b; with a = 7.94E10 ≠ 5 and b = 6.12E ≠ 4; (2.4)

Note, that the a and b are taken as the default values for the drag fitting equation and follows
De Kloe et al. (2017b) with data from 2012. This generalization is commonly used to produce
the wind stress data available from the EumetSat OSI-SAF L3 scatterometer products, and
very close to the relation used by the COARE3.5 parameterization (Edson et al., 2013). Still,
to generate the ERAú

· forcing for the data set in the case study in section 5.1 (oceanographic
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Figure 2.4: General flow chart of the adopted methodology to generate the L4 ERAú and ERAú wind stress products.

application), these parameters were recalculated for the year 2017. By taking constant values
for the air density and drag coe�cient parameters any dependence of the scatterometer stress
on a particular model is avoided.

The implementation of the ERAú methodology is summarized with a diagram in Fig. 2.4.
The entire processing chain can be divided in two main phases, with an additional/optional step
that generates wind stress files using the above mentioned parameters. Phase one goes from the
SOURCE FILES to the generation of the INPUT FILES. It comprehends the conversion of NWP
U10N available from the ECMARS archive into NWP U10S using Eq. 1.1, therefore making
the two wind sources more compatible before generating scatterometer/NWP collocations by
means of the NWP SAF PenWP and AWDP (Verhoef et al., 2020) wind processors. At this
stage the QC step is taken as marked by ú, i.e., poor-quality retrievals are first flagged. Both the
collocated NWP U10S and the scatterometer (ASCATs and OSCATs) L2 wind data are then
spatially interpolated from swath to a regular 12.5 ◊ 12.5 km grid Level 3 (L3) using the Royal
Netherlands Meteorological Institute (KNMI) genscat tool packages (top left box to bottom
right box in Fig. 2.4). Once the INPUT FILES are generated, the second phase (right side of
the diagram) uses these files to produce the SC, with or without the 3‡ filtering, and generate
the ERAú U10S and the stress files (ERAú

· ), see larger box in Fig. 2.4.
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N:P SAMPLING TRUTH

SCAT SAMPLING TRUTH

:IND TRUTH
*

Figure 2.5: Schematic diagram of the methodology used to generate the simulated NWPú
sim

(see Eq. 2.6) by means of MC
simulations. ECMWF hourly forecast fields are used as WIND TRUTH, SCsim corresponds to the simulated scatterometer-
based correction obtained with Eq. 2.5. The arrow with ú represents the NWPsim collocated to the scatterometer sampling.

2.3 Simulation framework

Under a theoretical scenario, Monte Carlo simulations are used to mimic the algorithm
introduced in section 2.2, in which a scatterometer correction based on temporally-averaged
di�erences between the scatterometer and the NWP winds corrects local NWP wind biases. The
specifics of the simulation framework are detailed within this section, and follow the schematic
diagram presented in Fig. 2.5. This diagram flows in two parallel branches that converge in
the creation of the simulated NWPú (hereafter NWPú

sim
). Note that to simulate realistic wind

distributions, the Monte Carlo scheme is applied to several sets of five consecutive days of
ECMWF NWP hourly surface winds from March 2013. These hourly NWP winds are assumed
as the reference, hereafter wind truth, and used to produce simulated data sets.

Hence, according to the diagram in Fig. 2.5, the NWP ú
sim

is generated when the wind truth
is perturbed with di�erent random and systematic error values, thus creating the scatterom-
eter and the NWP synthetic winds. Note that the scatterometer sampling truth is extracted
from the ASCAT-A/B and the OSCAT-1 actual sampling. Further description on the error
parameterization used to generate the synthetic winds can be found in subsection 2.3.1.

From left to right, in the upper branch of the diagram, after being spatially interpolated to
a regular 12.5 x 12.5 km grid, the three-hourly truth (e.g., to simulate ERAi corrected winds)
on a global sampling, at forecast time tf , is perturbed to generate synthetic model winds
(NWPsim). Whereas, in the lower branch, the hourly truth is collocated to the scatterometer
sampling and then perturbed to generate synthetic scatterometer (SCATsim) wind fields. The
latter, together with the NWPsim from the upper branch collocated to scatterometer sampling,
are used to generate the simulated scatterometer-based correction (SCsim), by means of the
formulation in Eq. 2.5 (adapted from 2.1) , i.e., to produce the temporal averages of the
collocated wind vector di�erence between the simulated scatterometer and model distributions,
for M scatterometer/model collocations at grid point (i, j) and at time sample t. Finally, similar
to 2.3, from the SCsim and the NWPsim the NWP ú

sim
is generated using Eq. 2.6.

SCsim(i, j, tf ) = 1/M
Mÿ

t=1
SCAT sim(i, j, t) ≠ NWPsim(i, j, t) (2.5)
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Figure 2.6: Estimated mean wind component error SDs, i.e., SD =


(SD2
u + SD2

v)/2 for background ECMWF (EB)
in red and ASCAT 12.5 km (EO) in grey, at scatterometer scales, for January 2013 per 10¶ bins. Average number of
scatterometer samples per location per 10¶ bins (N) in blue.

NWP ú
sim

(i, j, tf ) = NWPsim(i, j, tf ) + SCsim(i, j, tf ) (2.6)

2.3.1 Error parameterization

The wind truth is perturbed by Gaussian random noise distributions to generate synthetic
wind fields for NWP and scatterometer (i.e., ASCATs and OSCAT) winds, and the choice of
error parameters to simulate these data sets is taken according to estimated error values from
literature (Vogelzang et al., 2011a) as well as from triple collocation results.

To this end, for each wind component, the total error standard deviation (‘) (obtained from
triple collocation of buoy, scatterometer and ECMWF winds at global scale) was adopted from
Vogelzang et al. (2011a), respectively these values are of 1.5 m.s≠1 and 0.7 m.s≠1 for the NWP
and the ASCAT coastal products (at scatterometer scales).

To verify whether such errors are highly dependent on latitude, the triple collocation method-
ology used in Lin et al. (2015b) is taken to assess the buoy, ASCAT, and ECMWF errors. As seen
in Fig. 2.6, although di�erent wind variability conditions as well as NWP model limitations (e.g.,
lack of moist convection in the tropics and misplacement of storm tracks in the extra-tropics)
are expected as a function of latitude, both ASCAT and ECMWF winds show nearly constant
wind errors, except for latitudes above 40¶ N, where there is a significant degradation of the
wind quality.

Note that, although OSCAT errors are larger than those of ASCAT and furthermore re-
gionally a�ected by rain (Portabella and Sto�elen, 2001b; Stiles and Dunbar, 2010; Lin and
Portabella, 2017; Xu and Sto�elen, 2020b) and SST biases (Wang et al., 2017), the same error
value is used for both the C-band and Ku-band sensors. An alternative would be to attribute
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an average error value for the Ku-band system.

‘ =


‡2 + b2 (2.7)

Hence, to estimate the contribution of the NWP local biases to the total NWP error, the
latter is assumed to be the square root of the sum of random and systematic error variances
globally (see Eq. 2.7). By assuming a fixed local bias (bNW P ) of 1 m.s≠1 and a total NWP wind
component error (‘NW P ) of 1.5 m.s≠1 (see Fig. 2.6), the estimated NWP random error (‡NW P )
for each (zonal and meridional) wind component is 1.1 m.s≠1, as deduced from Eq. 2.7.

Considering the aforementioned error values, the wind truth is therefore perturbed compo-
nent wise by the following Gaussian distributions, NNW P (1, 1.1) for the NWP (NWPsim) and,
assuming that the scatterometers are unbiased, NSCAT (0, 0.7) for the scatterometers (SCATsim).
Note that both transient and persistent model errors are spatially correlated as, e.g., in resp.
Vogelzang and Sto�elen (2018) and Belmonte Rivas and Sto�elen (2019), while for the sake of
simplicity we here assume globally constant biases.

2.4 Validation approach

Once the ERAú U10S/wind stress forcing fields are generated a comprehensive characteriza-
tion of theses fields is required to verify the quality of the L4 forcing product. Thus, in line with
the most common techniques used in scatterometry for wind verification, several validation steps
are applied to the ERAú wind vector components. Those are described in the next subsections
and explained within the context of the ERAú product validation.

To start with, an empirical assessment as to the presence of added variance in the new
forcing fields will be performed, via visual check of the global and regional U10S maps, i.e., by
comparing the ERAú with the ERA reanalysis (sometimes ERAi, others ERA5). Furthermore,
by comparing the latter with the SC, it is possible to qualitatively establish a link between the
additional variance and the location of the systematic biases.

Then, the U10S quality will be assessed against reference observations, namely from inde-
pendent scatterometers (i.e., those not used in the generation of the ERAú product) and buoys.
As mentioned in section 1.4, insitu and remotely sensed wind observations yield di�erent repre-
sentations of the same wind, i.e., while buoy verification is local, HSCAT-A and -B verification
is global. Indeed, the scatterometer measurements are spatially a more coherent wind source for
the validation of the ERAú, as they resolve the spatial oceanic variability aimed for by the new
L4 products, and are therefore the main source of validation used in the thesis. In addition, buoy
U10S resolve all temporal variance which is used for the quality assessments of the products.
As such, statistical analysis by comparison against buoy U10S is also included in the validation
approach of the product. Section 2.4.1 includes the discretization of the metrics used in the
statistical analysis as well as the spatio/temporal interpolations involved.

The next step is meant to check whether the signal present in the U10S maps and metrics
indeed correspond to true variance. To this end, the derived ERAú U10S fields were assessed
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in terms of their geophysical consistency and e�ective resolution, using the spectral analysis
procedure in section 2.4.2. An additional way to validate the new product aside from those
described in this section, e.g., spectral and statistical analysis using independent scatterometer
and buoy data, is to evaluate ocean model responses to ERAú forcing by assessing model outputs.
Hence, the added value of the ERAú in what concerns its implementation as atmospheric forcing
to ocean model simulations is evaluated using a couple of case studies. Further description of
the prescribed wind forcing for these applications and the subsequent model output verification
are detailed according to each case study in Chapter 5.

2.4.1 Statistical analyses

Throughout the thesis, independent scatterometer, either from HSCAT-A, HSCAT-B or
Rapidscat, have been used as wind reference in the statistical analysis. For such purpose, both
L4 U10S products, e.g., the NWP (ERAi or ERA5) and the ERAú forecasts, are collocated to the
independent scatterometer U10S on the swath grid (L2). The Vector Root Mean Square (VRMS)
can then be computed for both L4 model products (NWP and ERAú) w.r.t. the reference
(scatterometers) using Eq. 2.8, where N corresponds to the number of NWP/scatterometer
(model/reference) collocations within the region of interest.

V RMS =
ı̂ıÙ1/N

Nÿ

i=1
(umodeli ≠ urefi)2 + (vmodeli ≠ vrefi)2 (2.8)

Note that Eq. 2.9 links Eq. 2.7 to Eq. 2.8, where the u and v notations are respectively
used in reference to the zonal and meridional U10S components.

V RMS =


‘2
u

+ ‘2
v

(2.9)

Then, Eq. 2.10 can be used to quantify the percentage of error variance (VRMS2) reduction
of ERAú (modelú) w.r.t. NWP (model).

ERRORreduction(%) = [1 ≠ V RMSmodelú
2

V RMSmodel
2 ] ú 100 (2.10)

In fact, VRMS simply refers to the variance of a particular wind vector source, while the
VRMS formulation shown in Eq. 2.8 refers to the VRMS di�erence (VRMSD) between two
noisy sources, i.e., between model (NWP or ERA*) and a reference (scatterometer). Moreover,
Eq. 2.8 can also be used to compute the VRMS error (VRMSE), which is defined as the error of
a (noisy) data source, i.e., model (simulated NWP or NWPsim) or model* (NWPú

sim
), w.r.t. the

reference (simulated) truth. Likewise, the VRMSE variance reduction can be calculated with
Eq. 2.10

In summary, VRMSE is the error with respect to the truth, and is mostly used in the simu-
lation experiments of Chapter 3, while VRMSD is the di�erence between the vector components
of two noisy sources, and is mostly used in the real data analysis of Chapter 4.

35



2.4

Table 2.2: Domain coordinates and regional characteristics of the geographical areas used for product verification.

Region Domain (¶) Characteristics
Global (G) [-55 55] N Open ocean

Tropics (T) [-30 30] N
Trades/ITCZ
(steady winds vs. moist convection induced wind variability)

Middle-latitudes (X) [-55 -30] [30 55] N
Storm track region
(fast evolving weather)

High-latitudes (HL) beyond 55 Abundant sampling vs. sea-ice seasonality/transient weather

Mediterranean Sea (MS) green polygon in Fig. 2.7 ú Semi closed Sea
(high wind variability/coastal)

Adriatic Sea (AD) yellow polygon in Fig. 2.7 ú highly coastal
(Sirocco winds/storm surges)

As baseline, the statistical analysis is initially performed globally, and then extended to other
regions to assess the performance of the product over di�erent weather regimes and scatterometer
sampling. The details for each region are listed in Table 2.2. This table contains the domains
over which metrics are calculated, and their most important characteristics in what concerns
wind variability and sampling. Furthermore, Fig. 2.7 shows the polygon masks applied to select
the data used for verification in the Mediterranean (MS) and Adriatic basins (AS). Also, the
ú denotes that, in these two cases, map limits are in reference to the full U10S domain of the
forcing fields delivered for the storm surge model simulations (addressed in Chapter 5).

Although statistical analysis was initially performed on the L3 regular grid, both L4 U10S
products (NWP reanalysis and ERAú) are first spatially (bilinear interpolation) and temporally
(linear interpolation) collocated to the L2 grid with the NWP SAF PenWP wind software. From
here, an additional spatial interpolation using the nearest neighbour technique is required to go
from the L2 swath grid to the L3 regular grid, using the same genscat tool package as in the
generation of the input files necessary to produce the ERAú (Driesenaar et al., 2022). Such is
the case for the U10S verification described in Trindade et al. (2020).

Alternatively, the use of buoy U10S as reference to assess the VRMSD (see Eq. 2.8) or
the error variance reduction (see Eq. 2.10) of the ERAú product, alike the verification against
scatterometers, requires the collocation of the L4 U10S to the reference wind source, which now
corresponds to single point measurements from the buoy moorings displayed in the global map of
Fig. 2.1b. For this, the nearest L3 grid point in space and time to the buoy observation is taken.
Specifically, the buoy arrays displayed in Fig 2.1b, and used in the verification correspond to:
the NDBC coastal data set of the US, the ODAS buoys in the north-east Atlantic and British
Isles inshore waters, NOAA TAO arrays in the tropical Pacific, JAMSTEC TRITON buoys in
the western Pacific, the PIRATA array in the tropical Atlantic, and the RAMA tropical array
in the Indian Ocean.

The ERAú is then evaluated as to the variance di�erences, i.e., the VRMSD between the
L4 products and the wind reference (U10S buoys). Note though, buoys are not ideal for spatial
analysis because of their sparsity, and indeed scatterometers are more adequate for this analysis.
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Figure 2.7: Selected areas for verification in the Mediterranean (green mask) and the Adriatic (yellow mask) Seas, delimited
by polygon coordinates. Note the latter also includes a part of the Ionian Sea.

2.4.2 Spectra

The use of spectral analysis to evaluate the e�ective resolution of wind data sets has for
long been a common practice within the winds community. In line with that, the spatial power
density spectra of the generated ERAú U10S components are computed to assess the geophysical
consistency of theses fields with collocated scatterometer observations, which are used as an
independent source of validation.

In accordance with Vogelzang et al. (2011b), the U10S spectra are obtained from valid sam-
ples of the U10S components collected over a month in the scatterometer along-track direction
for each across-track wind vector cell (WVC). To comply with the assumption of periodicity
imposed when using Fast Fourier Transform (FFT), a linear transformation detrending method
is applied to the samples. The final power density spectrum is the result of the individual spectra
averaged over all WVC numbers across the swath and over the mentioned time period.

Overall, depending on the version of the ERAú product and the year for which the product
is generated, the power density spectra are obtained from the individual spectra of the HSCAT-
A/B and ASCAT-A, and averaged in the region of interest (globally, in the tropics or the middle
latitudes). A substantially larger number of individual spectra is used for ASCAT-A with respect
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to the HSCATs, this is linked to the much lower QC rejection rate of C-band systems (0.5%)
with respect to that of Ku-band systems (5%) (Lin et al., 2015a; Lin and Portabella, 2017). As
FFTs need long series of input areas with QC, where gaps occur in the data series, these will
not be sampled by the spectra. This implies that ASCAT spectra ,with low QC rejection rates,
are more global in nature than HSCAT spectra, the latter tend to "fair weather" samples, in
which the QC is rather inactive. Instead of using spectra, Vogelzang et al. (2015b) therefore
reverted to spatial covariances, which do not su�er much from sampling gaps. Here we note
this e�ect and still use spectra, where specifics as to the number of individual spectra used in
the analysis are mentioned in the corresponding results section of this manuscript, as well as in
Trindade et al. (2020) analysis, and in the ESA WOC project report (Portabella et al., 2022).
Note furthermore that the SC field contains both ascending and descending passes and hence
many swath edges implied in ERAú cross the HSCAT samples, potentially causing a white noise
(flat) spectrum tail contribution when insu�ciently sampled.
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Monte Carlo

1

The findings reported in this Chapter concern the analysis of the L4 algorithm performance in
a theoretical experiment set-up, using simulated realistic wind distributions generated with the
Monte Carlo scheme described in subsection 2.3. In this framework, to first verify the viability
of the proposed methodology under theoretical conditions, an attempt is made to assess the
di�erent performances of the methodology with the heterogeneous scatterometer sampling over
the globe (data coverage) and the natural weather variability (transient local weather dynamics)
using statistical analysis. For the former, the characterization of the scatterometer sampling for
di�erent configurations of the simulated NWPú (NWPú

sim
), i.e., varying the number of combined

scatterometer sampling over di�erent temporal windows of accumulation in the simulated SC,
is carried out by analysing the performance obtained from the simulated winds, and presented
in section 3.1. As for the natural variability e�ects, considering how the ERAú approach makes
use of a static bias correction to improve NWP winds, section 3.2 focuses on how the lack
of persistence should a�ect the successful removal of the aforementioned systematic biases, as
simulated weather phase-shifts are used to represent the prevailing weather conditions in the
middle latitudes and the tropics. Note though that the high latitudes are excluded from this
analysis.

It is assumed that due to the large wind variability conditions over the middle latitudes
(e.g., high frequency of fast evolving phenomena, like extra-tropical cyclones, in the storm track
regions), the persistence of the observed biases is likely reduced, thus limiting the e�ectiveness
of the SC, despite the increased sampling at such latitudes. Whilst in the tropics, the quasi-
stationary regime of the trades is dominant, hence a SC based on the persistence of local biases
is expected to be more e�ective, except in regions of tropical moist convection, where despite
the presence of NWP persistent biases, increased wind variability that is missed by the model
may be the dominant e�ect (e.g., in the ITCZ).

Persistent biases and random errors are furthermore associated with errors in air-sea interac-
tion, in particular associated with SST gradients. These are acknowledged, but not specifically
accounted for in the simulations. Finally, a discussion on the combined e�ect of sampling and
persistence along with concluding remarks can be found in section 3.3.

1Part of the results presented in this chapter are included in the following proceedings: Trindade,
A., Portabella, M., Lin, W., and Sto�elen, A. (2017). On the development of a scatterometer-based
correction for NWP wind forcing systematic errors: Impact of satellite sampling. In International
Geoscience and Remote Sensing Symposium (IGARSS), volume 2017.
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3.1 Scatterometer sampling

In this section, the e�ectiveness of the simulated SC is evaluated through statistical analysis,
using as metrics the bias, the standard deviation and the VRMS between the simulated wind
fields and the wind truth, i.e., a few sets of 5 days of actual ECMWF wind forecasts which are
taken to be the wind truth (see section 2.3). However, before presenting the metrics obtained
with the simulated wind distributions, the error parameterization adopted for the Monte Carlo
simulations (see subsection 2.3.1) is used to estimate the theoretical skill of this methodology
as a function of the number of scatterometer samples used to generate the SCsim, and speculate
on the e�ectiveness of the simulated products.

In brief, assuming that the goal of SC is to remove the NWP local biases (in this case, a fixed
local bias of 1 m.s≠1 in each wind component), with a single scatterometer sample (M = 1) per
ocean grid point, the total wind component error of the synthetic SC (SCsim) defined in Eq. 2.5,
i.e., ‡SCsimM=1

, can be computed as the square root of the sum of two error variances, i.e., the
NWP random (unbiased) error (‡2

NW Psim
) and the scatterometer error (‡2

SCATsim
) variances, as

shown in Eq. 3.1.

‡SCsimM=1
=

Ò
‡2

NW Psim
+ ‡2

SCATsim
(3.1)

In a more general framework, ‡SCsim
depends on the number of samples (M) as follows:

‡SCsim = ‡SCsimM=1
/
Ô

M (3.2)

That is, the accuracy of SCsim to correct for the local bias improves with the number of
samples.

Recall that according to the error parameterization in subsection 2.3.1, respectively, ‡NW Psim

and ‡SCATsim
correspond to 1.1 m.s≠1 and 0.7 m.s≠1. As such, using Eq. 3.1, ‡SCsimM=1

is
estimated as 1.3 m.s≠1, i.e., ‡SCsim

for M = 1 (see Eq. 3.2).
Then, the accumulated error in NWPú

sim
can be estimated as the square root of the sum of

‡2
NW P

and ‡2
SCsim

,

‡NW P ú
sim

=
Ò

‡2
NW Psim

+ ‡2
SCsim

(3.3)

rising to a total error of 1.7 m.s≠1 for M = 1, clearly surpassing the total error (which
includes random and systematic errors, as shown in Eq. 2.7) assumed for the NWP (1.5 m.s≠1,
as estimated in subsection 2.3.1). The deduction suggests that with this parameterization,
correcting the NWPsim with a single scatterometer sample proves detrimental. Such result is
the consequence of using a noisy source to correct for the local biases.

A more realistic determination for multiple scatterometer configurations, as well as, in longer
temporal windows of accumulation, would account for a SCsim generated with more than one
sample. We quantify the impact of additional samples in Eq. 3.2). Such that by using M = 2,
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Table 3.1: Simulated forecast corrections (NWPú
sim

), according to the simulated scatterometer sampling and temporal
window used to correct the NWPsim forecasts.

Temporal Window
Scatterometer Sampling 1-d (N1) 3-d (N3) 5-d (N5)
ASCAT-A NWP*AN1 NWP*AN3 NWP*AN5
ASCAT-A,ASCAT-B NWP*ABN1 NWP*ABN3 NWP*ABN5
ASCAT-A, OSCAT NWP*AON1 NWP*AON3 NWP*AON5
ASCAT-A, ASCAT-B, OSCAT NWP*ABON1 NWP*ABON3 NWP*ABON5

the new error ‡SCsim becomes 0.92 m.s≠1, and the total error in the new NWPú
sim

becomes
1.43 m.s≠1. Thus, theoretically, with only two scatterometer samples in each ocean grid point,
the resulting NWPú

sim
outperforms the original NWPsim. Also note that, for an infinite number

of samples (M æ Œ), ‡SCsim would go to zero (see Eq. 3.2), and the error of the resulting
NWPú

sim
would equal the NWPsim random error, i.e., 1.1 m.s≠1.

Because in every configuration the NWPú
sim

is intrinsically restricted by the number of
samples used to compute the SCsim, all configurations are expected to eventually converge if
allowed by the number of scatterometers and the length of the temporal window of accumulation.
This assumption is true for the oversimplified conditions of our theoretical set up, in which local
biases are constant and do not change over time, i.e., assuming infinite persistence of the local
biases. Note that the theoretical error characterization is performed component wise, i.e., the
values derived above are shown for one wind component only, and the same conclusions are
valid for the other, whilst the error analysis of the simulated configurations presented next, is
performed using the vector RMS error, i.e., with the VRMSE, which accounts for the errors
in both wind components. Note though that some systematic biases are associated to fast
processes, e.g., moist convection, which are not well resolved by ECMWF, and associated with
enhanced wind speeds (King et al., 2022).

Thus, considering the total vector error (Eq. 2.9), and that the error for each wind component
is the same, one can compute the error variance reduction of the NWP ú

sim
error with respect

to that of the benchmark NWPsim (i.e., a V RMSENW P of 1.5
Ô

2 = 2.1 m.s≠1 using Eq. 2.9),
with the maximum reduction corresponding to the removal of the systematic biases using infinite
number of samples (i.e., a V RMSENW P ú of 1.1

Ô
2 = 1.56 m.s≠1). In this case, the maximum

vector error variance reduction that can be achieved under the current parameterization setting
amounts to about 46.2%, as deduced from Eq. 2.10.

Non-infinite (scatterometer) sampling and/or non-infinite persistence of local biases, i.e.,
the real case, will make the computed SC less e�ective. Consequently, if one extrapolates the
e�ects of poor sampling to real cases, e.g. due to relatively long periods (over a few days) of
instrument failure or other issues that lead to missing data, the orbit cycle of each scatterometer
is particularly relevant, especially if only of a few days length and resulting in non-uniform
sampling patterns, probably further aggravated by interference with short TWs of accumulation
in the SC. As a result, the new L4 will only take the NWP data in swath gaps (no SC), notably
for the OSCATs (with a 2-day repeat cycle), whereas for scatterometers with longer revisit
times, such as the ASCATs (29 days), insu�cient data availability may generate areas that have
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Figure 3.1: Estimated vector root mean square error (VRMSE in m.s
≠1, see Eq. 2.9) for NWPsim (i.e., the benchmark

in solid black line) and the di�erent NWPú
sim

configurations, the latter being a function of the SC temporal window (TW)
size, in the tropics (a) and at the middle latitudes (b). The di�erent colour lines show the VRMSE scores for the following
NWPú

sim
configurations using: only ASCAT-A (orange line), ASCAT-A and B (green line), ASCAT-A and OSCAT

(purple), and ASCAT-A, ASCAT-B and OSCAT (blue).

temporally mixed data with reduced sampling.
Outside the theoretical set up, because the method assumes persistence of local biases, and

the characteristics of theses biases vary regionally (recall Fig. 1.4), it is safe to assume that local
weather patterns must influence the e�ectiveness of this method, with higher instantaneous
VRMS di�erences in the middle latitudes. With the current simulation set up, it should be
possible to dissociate between the expected e�ect caused by local weather and the varying
regional sampling characteristics.

Next, the vector error, i.e., the VRMSE scores obtained from the NWPú
sim

flavours listed
in Table 3.1 are analysed. Note that each configuration addresses di�erent combinations of
scatterometer sampling for several temporal windows of accumulation with a fixed global error
set.

Fig. 3.1 shows these VRMSE scores at a given forecast time, and calculated for the afore-
mentioned NWPú

sim
configurations (colored lines in orange, green, purple and blue) and the

common benchmark NWPsim (solid black). The latter, as previously mentioned, is obtained
from Eq. 2.9, where the total vector error for the benchmark is 2.1 m.s≠1. The error reduction
is verified regionally with respect to the truth, for the tropics in Fig. 3.1a and for the middle
latitudes in Fig.3.1b.

In here, no distinction (besides sampling) is made between the tropics and middle-latitudes,
i.e., the same error is used to produce the NWPsim, therefore, the same benchmark of 2.1 m.s≠1

can be seen in the right and left panels of Fig. 3.1. Consequently, the metrics displayed for both
regions are very similar, and apart from the single-scatterometer SC configuration (ASCAT-A
sampling), all NWPú

sim
configurations lay below the benchmark. Overall, better results are

expected with larger sampling (i.e., in the middle latitudes), instead both regions show very
similar scores, thus suggesting a compensation e�ect must play a role to balance the metrics
scores.
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Figure 3.2: Two-dimensional histogram of two synthetic NWPú
sim

forcing configurations versus the wind truth (truth) for
the zonal wind component, in the tropics (left) and at the mid-latitudes (right), with a TW of ± 12 h (N1): m(y-x) and
s(y-x) are the mean (bias) and the standard deviation of the wind di�erences. NWPú

sim
for a single scatterometer ((a)(b))

is shown in the top panels, while NWPú
sim

using ASCAT-A/B and OSCAT ((c)(d)) is shown in the lower panels.

A very clear dependence on the TW length is observed for single-scatterometer SC simulation
(NWPú

sim
A in orange), in which a neutral e�ect with respect to the benchmark is observed for

the smallest TW (N1). Followed by an abrupt drop of the error going from N1 to N3. The
reduction of the errors with TW size (i.e., as the spatial sampling increases) is more pronounced
for NWPú

sim
A (orange) and NWPú

sim
AB (green). These fixed fan beam scatterometers have a

reduced daily coverage with respect to that of OSCAT (rotating pencil beam), a consequence of
their narrower swaths combined with the non-optimal (for this purpose) overlap (the ASCATs
are on the same orbit but with di�erent phase, leading to substantial swath overlaps). As such,
although the gain in coverage a�orded by a larger accumulation in time reduces the error for
all configurations (as expected), the reduction is sharper for the ASCATs only configurations,
as seen in Fig. 3.1b from N1-N3.

These results are coherent with the implications of the prescribed systematic and random
error parameterizations, from which it is estimated that at least two measurements per grid
point are required for NWPú

sim
to outperform NWPsim (recall Eq. 3.1). Moreover, the current
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parameterization establishes that with infinite scatterometer sampling the minimum vector error
possible would be of 1.56 m.s≠1. The results in Fig.3.1 clearly show which NWPú

sim
configura-

tions have close to optimal scatterometer sampling, in particular those using ASCAT-A/B, and
OSCAT for a TW of 5 days (N5).

Fig. 3.2 illustrates the ability of the simulated SC to correct for persistent NWPsim local
biases, as well as the noise reduction achieved in the tropics (left) and the middle latitudes
(right) for two configurations within a ± 12h temporal window (N1) (i.e., those specified in
the first and fifth rows of Table 3.2, where the percentage of surface ocean corrected with the
SCsim is also provided). While similar scores were obtained for the meridional wind component,
metrics are only presented for the zonal wind component.

In spite of the observed error reduction, the simulated bias is still present in the NWPú
sim

configuration from Fig. 3.2ab (top panels). Other configurations corrected with a 1-day temporal
window (N1), such as the one displayed in Fig. 3.2cd (bottom panels), no longer exhibit this bias
suggesting that the simulated scatterometer sampling (coverage) a�ects the ability to correct
for the biases.

In the same way, though in NWP*simAN1 (Fig. 3.2ab top panels) about the same noise
reduction was obtained for the tropics and the middle latitudes, in NWP*simABON1(Fig. 3.2cd
bottom panels) the noise is further reduced for the latter. As coverage is always larger at
middle latitudes, where for the configurations corrected with SC of N1, the enhanced coverage
provided by additional scatterometers allows not only for more ocean points to be corrected,
but also ensures that the percentage of ocean points corrected with more than 3 overpasses
also increases. This is exposed in Table 3.2, in which the SCsim coverage in the NWPú

sim
is

decomposed by categories, in accordance with the number of scatterometer samples used per
SC, i.e., the e�ective scatterometer sampling.

Note that even if not all the NWPú
sim

configurations in Table 3.1 appear in Table 3.2, an
evaluation of the sampling characteristics for these configurations was also performed. Table 3.2
shows the percentage of ocean coverage obtained in the tropics and the middle latitudes, for a
few selected cases.

As expected, Table 3.2 shows that more ocean surface is covered by the sensors in the middle
latitudes than in the tropics, albeit, in the former 8% more ocean points are covered with only one
scatterometer sample for NWPú

sim
AN1. The compensation e�ect between the overall coverage

and the ratio of ocean points corrected by a single sample may explain the metrics in Fig. 3.1.
On the one hand, this table shows that in NWPú

sim
AN1, the SCsim corrects the NWPsim for

60.4% of the grid points in the tropics, and 76.3% in the middle-latitudes, thus indicating higher
(and in principle more beneficial) coverage in the latter. However, while only 46.5% of the grid
points belong to the category PSCsim=1 in the tropics, 54.4% belong to this category in the
middle latitudes. As already discussed, SC based on one scatterometer sample proves detrimental
for NWPsim quality. As such, for the NWPú

sim
AN1 configuration, there is a compensation e�ect

between ocean coverage and number of scatterometer samples that lead to similar NWPsim

scores in the tropics and the middle latitudes. On the other hand, Fig. 3.1b and Fig. 3.2d,
indicate a better performance of the SCsim with a N1 temporal window for both NWPú

sim
AON1
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Table 3.2: Percentage of the ocean surface corrected with the SCsim in categories according to the number of scatterometer
samples used, both in the tropics and in the middle latitudes, for several NWPú

sim
configurations. PSCsim is the percentage

of corrected ocean grid points in the product; PSCsim = 1 is percentage of corrected grid points with only one scatterometer
sample; PCSsim Ø 3 gives the percentage of grid points corrected with at least three samples. PCSsim =1 and PCSsim Ø
3 are with respect to the PSCsim. A dash is shown when these percentages are not significant.

Coverage % tropics middle-latitudes

PSCsim PSCsim = 1 PSCsim Ø 3 PSCsim PSCsim = 1 PSCsimØ 3

NWPú
sim

AN1 60.4 46.5 - 76.3 54.4 2
NWPú

sim
AN5 98.8 2.2 90.4 99 1.3 96.1

NWPú
sim

ABN1 70.5 18.3 18.9 90.9 19.5 30.2
NWPú

sim
AON1 97.2 23 26.2 99.1 8.3 56

NWPú
sim

ABON1 98 13.8 55.5 99.4 2.5 84
NWPú

sim
ABON3 99.7 0.7 98.1 99.4 0.2 98.8

and NWPú
sim

ABON1 in the middle latitudes, with about 5% error reduction in both when
compared to the benchmark. In these configurations, the SCsim is applied to more than 97%
of the ocean surface, yet, in the middle latitudes slightly more than half of the ocean is always
corrected with more than two samples, whilst in the tropics despite the high percentage of ocean
points covered more than twice, a significant percentage of points is still corrected with less than
three samples.

These results are coherent with the theoretical e�ectiveness of the method as derived at the
beginning of the section, in which at least two samples are needed to reduce the total error in
the simulated products (for the assumed parameterization errors), while the larger the number
of scatterometer samples, the further the error reduction. Evidence for further error reduction
with increased scatterometer sampling is clear from category PSCsim Ø 3 in Table 3.3. In this
table, the total vector error of NWPú

sim
AN1 and NWPú

sim
ABON1 is displayed according to the

aforementioned categories. The configuration with the largest percentage of PSCsim Ø 3, i.e.,
NWPú

sim
ABON1, has the lowest overall errors (see PSCsim column scores). By construction,

all configurations should lead to the same VRMSE for the same PSCsim and region. This is
the case, except for PSCsim=1 in the tropics, where NWPú

sim
AN1 shows larger scores than

NWPú
sim

ABON1. The reason must be statistical (not enough number of occurrences for the
former).

For the ASCAT-only configurations, similar scores are obtained for the single-scatterometer
SC configuration accumulated for its quasi-repeat cycle (NWPú

sim
AN5) and for the 2-ASCAT

configuration over 3 days (NWPú
sim

ABN3), i.e., see Fig. 3.1 orange square over N5 and green
square over N3, showing that increased sampling can be achieved either with larger temporal

Table 3.3: Total vector error for NWPú
sim

with respect to the wind truth and sampling category, for the tropics and middle
latitudes.

VRMS [m.s≠1] tropics middle-latitudes

PSCsim PSCsim = 1 PSCsim Ø 3 PSCsim PSCsim = 1 PSCsim Ø 3

NWPú
sim

AN1 2.10 2.15 0.00 2.09 2.17 1.76
NWPú

sim
ABON1 1.86 2.08 1.78 1.80 2.16 1.77
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windows or more scatterometers.
On other configurations built with more than one scatterometer (NWPú

sim
AO and NWPú

sim
ABO),

the VRMSE reduction almost reaches a plateau by N3, with a substantial error variance reduc-
tion in the NWP*sim with respect to NWPsim, i.e., about 36% reduction). Taking into account
the theoretical implications imposed by the parameter settings, the sampling obtained with these
combinations proves optimal to reduce the local persistent errors with respect to the wind truth.
Furthermore, for temporal windows of ± 1.5 days (N3) and three scatterometers, the simulated
scatterometer correction mostly falls into the category PSCsim Æ 3, thus, every ocean point is
corrected with at least three measurements (Table 3.2).

Up until now, the analysis of the scatterometer sampling impact on the performance of the
method has been focused either on the tropics or the middle latitudes. Over these regions the
majority of points used to compute the simulated scatterometer correction are indeed open ocean
points, therefore it is argued that these points strongly modulate the scores of the simulated
data sets previously analysed.

In comparison with open ocean regions, closer to the coast, the scatterometer sampling is
always poorer and more irregular (see Fig. 3.3). This is mostly due to land contamination
over the scatterometer footprint as the distance to the coast decreases, i.e., the WVCs may
be contaminated by a small fraction of land and consequently flagged. Moreover, the position
of WVCs with respect to the SC fixed grid is variable, resulting in a gradual reduction of the
number of samples as a function of the distance to the coast.

Fig. 3.3 illustrates the irregular sampling produced in the Mediterranean basin by combin-
ing three scatterometers over a 3-day temporal window (one of the configurations previously
evaluated for open ocean areas). In this semi-enclosed basin, although over certain areas, the
combined sampling surpasses the theoretical threshold for an e�ective SCsim, closer to the coast

Figure 3.3: Combined ASCAT-A/B and OSCAT sampling pattern for a 3-day temporal window in the Mediterranean Sea.
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and around small islands the sampling is compromised. Additionally, despite some heavy (very
localised) sampling, the basin is characterized by irregular scatterometer sampling leading to
several swath-edge induced artefacts that are readily evident throughout the entire basin. Hence,
it appears advisable to avoid SC in undersampled coastal grid points.

Finally, assuming overall persistence and constant magnitude of the biases, in the simulation
set up, the irregular scatterometer sampling and proximity to the coast negatively a�ects the
method performance over the Mediterranean basin. The VRMSE values for this region are repre-
sented in Fig. 3.4, for all the configurations. It is clear how a single-scatterometer SC generated
with a 1-day accumulation (N1) is detrimental in this area (see orange curve), and altogether
every configuration analysed in here performs worse than its corresponding configuration over
open ocean areas (see Fig. 3.1).

Considering the results from this oversimplified experimental set-up, improving the NWP
winds over coastal regions in real case scenario is expected to be more challenging, not only
due to sampling issues, but also because in these high wind variability regions, biases may not
persist long enough to be captured by this SC. It is particularly noted that the model winds
near the coast are generally biased due to artificial di�usion, interpolation and variable land-sea
interaction e�ects that are often diurnal. It is clear that model errors will unlikely persist over
a day and will therefore not be well corrected by a SC based on only a few daily scatterometer
overpass times.
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Figure 3.4: Same as Fig. 3.1 but over the Mediterranean Sea.

3.2 Wind variability

The statistical analysis presented in section 3.1 reveals that when comparing the simulated
winds to the wind truth, although the scatterometer coverage is larger in the middle latitudes
than in the tropics, similar metrics are obtained for both regions.

Here, constant and persistent biases are assumed and these are much in line with Bel-
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Figure 3.5: Same as Fig. 3.1, but using a 1-h time lag in the wind truth to generate the di�erent NWPú
sim

(NWPú
simlag1)

configurations.

monte Rivas and Sto�elen (2019) who used monthly and annual periods. It is thought that
these errors are related to air-sea interaction and Marine Atmospheric Boundary Layer (MABL)
parameterization errors, hence a function of both oceanic and atmospheric conditions. Certainly,
a more realistic simulation set up would take into consideration the local biases observed in dif-
ferent regions have di�erent error values and varying temporal behaviour, raising the premise
that in real scenarios the SC should be weather modulated, and expected to perform better
in regions where these local biases are more persistent. With that premise, and taking into
account that by our definition, to correct for local systematic NWP biases, these must persist
for pre-defined temporal windows of at least 1 day, we examined whether in areas of transient
weather, as is the case for the middle latitudes, the presence of fast evolving systems would blur
the SC e�ectiveness (note transient weather is also present in the tropics, but less so than in
the middle latitudes).

Thus, with the purpose of simulating a more realistic wind regime over the globe, a lagged
version of NWPú

sim
is generated to replicate the e�ect of transient weather errors. More precisely,

a phase shift of one or three hours is applied to the wind truth (i.e., the true wind distribution of
either one or three hours later is used instead of the actual one) to generate NWPú

sim
, using the

same error parameterization previously used to assess the scatterometer sampling e�ects (see
section 2.3.1). The resulting NWPú

sim
wind distributions are hereafter referred to as NWPú

simlag1
and NWPú

simlag3, respectively, for the one and the three hour lagged distributions. Note that
ideally, to characterize the transient e�ect of the weather over these latitudes, shorter phase
shifts should be applied in the simulations, albeit, the shortest time interval available between
NWP (ECMWF) forecasts is one hour.

Fig. 3.5 shows the instantaneous VRMSE scores for NWPsim (solid black line) and the
di�erent NWPú

simlag1 configurations (colored lines) for the tropics and the middle latitudes. As
expected, the errors are higher in the middle latitudes than in the tropics. The same benchmark
(NWPsim) as in the sampling analysis in section 3.1 is used. Regional results for the simulated
wind regimes, taken stationary in the tropics and more transient in the middle latitudes, are
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Table 3.4: Error standard deviation (‡) and biases (b) in the tropics and middle latitudes for NW P
ú
sim

ABON3 (first row),
NWPú

simlag1ABON3 (second row) and NWPú
simlag3ABON3 (third row), for the zonal and meridional wind component in

ms
≠1.

tropics mid-latitudes

bu(bv) ‡u(‡v) bu(bv) ‡u(‡v)

NWPú
sim

ABON3 0.004 (0.004) 1.19 (1.19) 0.05 (0.03) 1.19 (1.18)
NWPú

simlag1ABON3 0.01 (0.003) 1.25 (1.28) 0.04 (0.07) 1.41 (1.58)
NWPú

simlag3ABON3 0.30 (0.38) 1.56 (1.66) 0.28 (0.22) 2.18 (2.73)

displayed in Fig. 3.5a for the tropics and Fig. 3.5b for the middle latitudes. Note that moist
convection in the tropics evolves fast too, but since global NWP models (like ECMWF) do not
well resolve rain-induced dynamics (Lin et al., 2015a), the time lags (phase shifts) in this exper-
iment cannot reproduce such transient weather e�ects, leading to rather stationary simulated
wind regimes in the tropics.

Even with a one hour phase shift these simulations are able to realistically reproduce the
e�ect that weather patterns would have over this type of correction, which is meant to correct
persistent model biases within a predefined temporal window. The sampled natural variability
of these regions is readily evident in Fig. 3.5. Notice that in the tropics (Fig. 3.5a), the VRMSE
scores are below the established benchmark and similar to those shown in Fig. 3.1a, whereas
in the middle latitudes (Fig. 3.5b) the imposed increment in wind variability results in a worse
performance of the method, as compared to the performance in Fig. 3.1b.

The simulated phase shifts are applied under the hypothesis that the model biases are not
persistent locally, even for one day temporal windows. The results shown for a 1-hour lag of the
wind truth are indicative that in increased wind variability areas a worse performance of the
method may occur for real wind data sets.

To further understand the role of local bias persistence in the method ability to reduce model
errors, and thus obtain a high quality product, the results from section 3.1 are considered in
this section. Section 3.1 establishes (with the assumption of longer bias persistence) that, in
the simulation environment with multiple scatterometer sampling over N3, the spatial coverage
provided by the scatterometer is optimal. Therefore, by analysing the product configurations
listed in Table 3.4, it should be possible to isolate the e�ect of transient weather. In this Table,
the ability to correct for wind biases, as well as to reduce the total error is presented according
to the simulation conditions in section 3.1 (first row), and the current section for NWPú

simlag1
(second row) and NWPú

simlag3 (third row).
Table 3.4 shows how a phase shift of only one hour induces additional error in both regions.

On top of that, while in the tropics the error variance is reduced by about 27% when compared
with that of the benchmark, in the middle latitudes the variance increases beyond this reference
level. As expected, by increasing the phase shift from one to three hours, the added noise goes
well beyond the benchmark (1.5 m.s≠1) for both wind components, destroying the ability to
correct for local biases. Without the phase shifts, there is no noticeable di�erence in either
region. The analysis suggests that, by using lagged winds to simulate transient storm phase
shifts, lack of local bias persistence is successfully simulated where and when transient weather
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occurs. As such, the static correction of local biases should work on the persistent biases found
at these (middle) latitudes (Belmonte Rivas and Sto�elen, 2019), but may prove less e�ective
correcting more transient ones.

3.3 Discussion

The purpose of the simulations described in this Chapter is to evaluate the viability of
the ERAú methodology using a theoretical framework, prior to its application to real data.
The method (proposed in section 2.2) is intrinsically dependent on both local bias persistence
and scatterometer sampling (recall Eq. 2.1). In the previous sections, an attempt is made to
characterize the impact of increased scatterometer sampling (section 3.1) and transient weather
phenomena (section 3.2) in the development of the new forcing product, by means of Monte
Carlo simulations.

As such, following the simulation framework, several configurations of synthetic L4 products
were tested by varying the number of scatterometers and the size of the accumulation time win-
dow used to construct a scatterometer based-correction, arguably able to correct for systematic
local biases over the tropics and the middle latitudes.

From the theoretical scenarios evaluated in section 3.1, because of sampling, and compensa-
tion e�ects, longer averaging periods are required in both regions for a single-scatterometer SC.
For the ASCATs configurations, those required correspond to at least five days of accumulation
(N5), to achieve a minimum of three samples per ocean point corrected, as well as full ocean
coverage. Additionally, in a real case scenario, it is advisable to apply the SC to every ocean
grid point (i.e., a gap-free SC), so that the end product is not a construction of two data sets
that represent di�erent scales, i.e., NWP and ERAú, and therefore have mixed spatio-temporal
characteristics. An alternative to achieve increased sampling over short time windows is to use
multiple scatterometer combinations, while if this is not possible, larger temporal accumulation
windows are advised.

It is found that where the SCsim is constructed with less than three samples, the impact
on the quality of the generated product may vary from neutral to, in the worst case, detri-
mental, when the majority of ocean points is corrected by a single scatterometer measurement
(sample). This is in line with the estimated theoretical skill of the methodology under this
parameterization. For those grid points, the recommendation is to avoid applying the SC. From
the experiments in section 3.1, optimal sampling is achieved when all the ocean points for a par-
ticular region are corrected with at least three scatterometer measurements, within the shortest
temporal window.

On a separate note, caution is advised if applying the methodology to coastal regions, e.g.,
the Mediterranean Sea, where the very irregular sampling over these regions is expected to create
artifacts in the corrected winds and degrade the e�ectiveness of the method.

Nevertheless, although long persistence of the simulated local biases is assumed in the set
up of the simulations, such condition is more unrealistic and unlikely the case in regions of high
wind variability. Thus the use of a persistence-based correction would prove less e�ective, and
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could generate additional random noise. This was supported by the findings from section 3.2.
Although the simulated phase shifts applied to the reference (truth) wind distribution proved

not to be realistic enough, it is fair to infer that by destroying the persistence of the biases over
time, the e�ectiveness of the static mean correction behind this methodology strongly decays.
Moreover, the results from this section reveal how the temporal characteristics of the NWP biases
may a�ect the ability to correct for them with real data, i.e., the quality of the generated L4 U10S
is expected to be degraded under high wind variability scenarios w.r.t. regions of predominant
stationary signals. As the sampling characteristics of NWP*sim are evened regionally, i.e., either
by enlarging the temporal window or with the use of complementary scatterometers in the SC,
the metrics shown for the middle latitudes in section 3.2 bring forward the intrinsic dependence
of the SC on the persistence of the local NWP bias. Thus, the ability to outperform the NWPsim

in the presence of fast evolving systems compared with that of steadier weather is reduced (but
still possible) although further alternatives to correct for NWP biases may be pursued.

In summary, the limitations of these simulated phase-shift experiments in trying to simulate
variable errors are taken into account in the analysis. Extrapolating these findings to real case
scenarios, and anticipating a degradation of the ERAú product over regions of high wind vari-
ability seem quite reasonable. It is also reasonable to assume that for real wind data the natural
weather variability of a particular region will modulate the e�ectiveness of the methodology
assessed in here. Belmonte Rivas and Sto�elen (2019) provides maps of both real mean errors
and variability errors over monthly periods from which local variability, errors and biases can
all be assessed. In the next chapter, real e�ects will be further assessed and over periods of up
to a month.
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The ERA
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product

1 2

Considering the overall positive outcome of the theoretical assessment of the ERAú method-
ology (discussed in Chapter 3), several configurations of the high resolution ERAú ocean surface
wind forcing are evaluated with real data in this Chapter. Every configuration addressed here
follows the main processing chain explained in the methodology (see diagram in Fig. 2.4), yet
additional QC testing of the input data and 3‡ filtering of the collocated NWP/scatterometer
di�erences, which were not implemented in the early stages of the product generation, are carried
out now.

Furthermore, improvements to the algorithm take into consideration the results from the
theoretical simulations (Chapter 3) together with the ERAú beta configurations using real data
from 2013, which are thoroughly analysed in section 4.1. In the latter, a comprehensive char-
acterization of the new ERAú U10S product, i.e., the corrected ERAi reanalysis, is presented.
At first the ERA and ERAú products are compared in a qualitative way, then the U10S quality
is assessed against independent scatterometer observations, namely from HSCAT-A, and the
geophysical consistency of the derived maps is assessed through spectral analysis by comparison
to HSCAT-A and ASCAT-A observations.

As the ERAi reanalysis became obsolete, an e�ort was made to adapt the ERAú processor
to produce a new ERAú, i.e., by correcting the ERA5 reanalysis. Such e�ort was supported by
the interest of the oceanographic modelling community in the product, in the frame of ESA’s
World Ocean Circulation project (WOC).

Yet, in the generation of the ERAú, to properly transition from one NWP reanalysis (ERAi)
to the next (ERA5), i.e., from an ERAi corrected to an ERA5 corrected product, both products
must be compared. To fulfill this requirement the year 2013 is selected as testbed, and the results
that arise from the analysis are presented in section 4.2. As proven by the latter, the ERAú

algorithm can also successfully reduce local biases in the ERA5 reanalysis. Moreover, since the
same theoretical conclusion apply, considering the increased number of available scatterometers
in orbit providing high quality winds throughout the past decade, the year 2019, with five
sun-synchronous scatterometers in orbit providing global (near) continuous coverage, is used to
further improve the algorithm. Thus, additional QC testing, filtering of transient weather e�ects

1Part of the results presented in this chapter are included in the following paper, proceed-
ings and report: Trindade, A., Portabella, M., Sto�elen, A., Lin, W., and Verhoef, A. (2020).
ERAstar: A High-Resolution Ocean Forcing Product. IEEE Transactions on Geoscience and Remote
Sensing,58(2)

2Portabella, M., Trindade, A., Grieco, ,G., Makarova, E. (2022). A NEW HIGH-RESOLUTION
OCEAN FORCING BASED ON ERA5 AND SCATTEROMETER DATA. International Geoscience
and Remote Sensing Symposium (IGARSS))
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from the SC and a closer look at coastal e�ects on the quality of the ERAú are addressed at this
point. Finally, this methodology is used in the development of a 11-year record of ERAú, from
2010 to 2020, which is discussed in section 4.3.

4.1 ERAú configurations

The ERAú ocean forcing product was first developed using wind retrievals from the available
scatterometer constellation in 2013. To generate and validate the L4 forcing, four U10S products
were derived from di�erent scatterometer systems with global (near) continuous coverage during
the selected year, i.e., two C-band (ASCAT-A/B), and two Ku-band instruments (OSCAT-1
and HSCAT-A). To recap, these scatterometers fly in sun-synchronous orbits with the following
LTAN: 21:30 UTC for ASCAT-A/B, 12:00 UTC for OSCAT-1, and 18:00 UTC for HSCAT-
A (further details on these instruments can be found in section 2.1). The former three are
used in the generation of the ERAú, whilst the latter only for validation purposes. Note that
although, the named instruments do not capture the diurnal cycle due to lack of temporal
coverage (ASCAT and OSCAT retrievals are only 2.5 h apart in the tropics, since OSCAT
descending node is at 00:00 UTC), it is assumed that the time gap between HSCAT LTAN and
the remaining instruments is still a good validation reference. Essentially, it is assumed that the
SC has no diurnal component and that the ECMWF diurnal cycle is perfect. Both conditions
will particularly fail in coastal areas, as the open ocean diurnal cycle is rather weak. Also
note that the configurations generated for 2013 coincide with those explored in the theoretical
scenario presented in the previous Chapter by means of Monte Carlo simulations.

Four configurations of the ocean forcing product are generated for 2013, same as in the
previous Chapter, that result from combining scatterometer measurements from the ASCATs
and the OSCAT. The use of di�erent sensors as the input data (see the right side of the flow
chart diagram in Fig. 2.4), allows the analysis of the e�ects of the instrument sampling errors
on the quality of the generated real wind data sets. Thus, recalling uSCATk

10s
in Eq. 2.1, in 2013

up to 4 di�erent sensor combinations are analysed, k = 1, 2, 3, 4, these include measurements
going from a single scatterometer to multiple sensor combinations. A summary of the analyzed
configurations, i.e., di�erent sensor combination with respect to TW, is provided in Table 4.1.
In here, k = 1 contains ASCAT-A data, k = 2, combines both C-band radars (ASCAT-A and
ASCAT-B), k = 3 combines ASCAT-A and OSCAT, and finally k = 4 uses all three sensors. All
four k configurations are analysed for the same TW. The TWs are noted as N in Table 4.1, and

Table 4.1: ERA* generated products according to the number of sensors and temporal window used in the SC to correct
the ERAi forecasts in 2013.

Temporal Window
Scatterometer Sampling 1-d (N1) 2-d (N2) 3-d (N3) 4-d (N4) 5-d (N5)
ASCAT-A ERA*AN1 ERA*AN2 ERA*AN3 ERA*AN4 ERA*AN5
ASCAT-A,ASCAT-B ERA*ABN1 ERA*ABN2 ERA*ABN3 ERA*ABN4 ERA*ABN5
ASCAT-A, OSCAT ERA*AON1 ERA*AON2 ERA*AON3 ERA*AON4 ERA*AON5
ASCAT-A, ASCAT-B, OSCAT ERA*ABON1 ERA*ABON2 ERA*ABON3 ERA*ABON4 ERA*ABON5
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Figure 4.1: Percentage of gaps in the SC as a function of the TW (in days) and combination of sensors used to correct
the original ERAi U10S, i.e., percentage of original ERAi data in the ERAú configurations listed in Table 4.1. From left
to right, the panels display the percentage of gaps for the entire global ocean (a), the tropics (b), and the middle latitudes
(c).

respectively N= 1, 2, 3, 4 and 5 corresponds to 1, 2, 3, 4 and 5 days of temporal accumulation
centered at forecast time for every 3-h time step. The final ERAú U10S was produced globally
on a grid resolution of 12.5 km ◊ 12.5 km on a 3 h time step, following the highest scatterometer
sampling used. Recall that for this each SC is applied to an ERAi U10S field that is previously
interpolated from its native (much coarser) reduced gausian grid (about 80 km) to the higher
L3 grid resolution of the scatterometer (see section 2.1).

Moreover, prior to the product assessment a couple of notes are required on the ERAú

configurations listed in Table 4.1. Firstly, considering Eq. 2.1 and the simulation experiments,
some SC configurations, specifically those with smaller k and N values, will have gaps due
to poor scatterometer sampling (see Fig. 2.2a). Although it is not ideal, by construction,
these gaps are filled with the ERAi winds only, i.e., ERAú winds will be the same as ERAi
winds. In particular, for a 1-day and ASCAT-A-based correction in the tropics, there is about
37.9% of gaps. In contrast, for a 2-day (or longer) TW and two complementary scatterometers
(e.g., ASCAT-A and OSCAT), there is less than 0.3% of gaps, as shown in Fig. 4.1. This
figure provides information about the regional percentage of gaps, i.e., where poor scatterometer
sampling is expected, according to the combination of sensors and the TW used in the SC.

Secondly, note that the last two k values combine observations from scatterometers working
at di�erent frequencies, i.e., ASCAT- A/B and OSCAT, respectively, at 5.2 GHz (C-band) and
13.5 GHz (Ku-band). As mentioned at the beginning of the Chapter, it is important to take into
consideration that in the study of the configurations first generated with 2013 data, as those
addressed in this section, the input data available came from reprocessed scatterometer data sets
and good inter-calibration between sensors was assumed, despite that, these data sets did not
account for latitude-dependent biases due to SST and wind speed dependent PDF di�erences
(Wang et al., 2017; Wang et al., 2017). Furthermore, the e�ects of Ku-band SST errors are
only about 0.02 m.s≠1 per Kelvin and relevant on a global scale, where SST varies by 30 K,
culminating in a bias range of about 0.6 m.s≠1.

An extended characterization of the ERAú configurations listed in Table 4.1, is presented
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next. Please note that although the ERAú is generated for the entire global ocean, in the
following evaluation of the product the global domain is considered to be between [-55 55]¶, i.e.,
the higher latitudes (beyond 55¶N and 55¶S) are excluded in this section (see Table 2.2).

At high latitudes, the abundant (sun-synchronous) satellite sampling is expected to be opti-
mal for model local bias reduction. However, in the ERAú configuration addressed withing this
section the additional analysis on the e�ects of SST and the seasonality of the sea ice extent
and its impact on the scatterometer wind-retrieval errors, quality control, and sampling, which
becomes more relevant at these latitudes, was not performed. Moreover, the trade o� between
sampling and the more transient nature of the dynamical weather errors here, may result in a
di�erent optimum averaging period as compared to the rest of the globe (discussed in section
4.2).

4.1.1 Systematic local di�erences

As mentioned earlier in the document, local systematic di�erences of the scatterometer/ERAi
U10S component fields are readily evident where the physical processes are misrepresented or
absent in the model (Belmonte Rivas and Sto�elen, 2019), and generally fall within ± 2 m.s≠1

(see Fig.1.4 and Fig.4.2). As such, to do a qualitative comparison between the ERAi and
ERAú products, a first assessment as to the location and magnitude of these di�erences was
performed for the ERAú flavours addressed in 2013. Fig. 4.2 shows the collocated di�erences
between ASCAT-A and ERAi U10S for the zonal 4.2a and the meridional 4.2b wind components,
accumulated over a 5-day temporal window, i.e., the SC for the ERA*AN5 configuration. In fact,
the five-day period agrees with the longest quasi repeat cycle of the scatterometers addressed
in this chapter, thus providing a near global coverage using single scatterometer collocations to
the ERAi U10S.

Due to their stationary character, di�erences are very pronounced over the western bound-
ary ocean current systems (WBCS, i.e., the Agulhas current, the Gulf Stream or the Kuroshio
current), the Antarctic Circumpolar Current (ACC), and in adjacent regions where the eddies
generated by these currents detach. Likewise, in the tropics (see, e.g., the Inter Tropical Conver-
gence Zone or ITCZ), U10S di�erences (particularly in the meridional component in Fig.4.3b)
are notable where the model U10S field is unable to capture both the detailed and large-scale
wind circulation.

Local wind e�ects like see breeze, katabatic flows, corner winds or wind funneling e�ects (gap
winds) are also visible in Fig. 4.2. The latter are readily evident from the meridional component
in Fig. 4.2b, e.g., see the gap wind e�ect in the Gulf of Tehuantepec (Central America, south
of Mexico). Apart from the increase in wind speed, gap winds also strengthen tidal currents,
furthermore a�ecting ocean circulation.

Indeed, as expected these di�erences coincide with those already shown in Fig 1.4 for a 30-d
temporal accumulation correction.

Fig. 4.3 shows an ERAi U10S global map (4.3a) and its corresponding ERAú (4.3b) generated
with a four-scatterometer based correction (i.e., ASCAT-A/B, and OSCAT) over a one-day
TW (ERA*ABON1). By simply comparing ERAi and ERA*ABON1 U10S global maps, it is
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Figure 4.2: Scatterometer Correction (SC) for a given day, i.e., 15th January 2013. Collocated di�erences between
ASCAT-A (12.5 km) and ERAi U10S for the zonal (a) and the meridional (b) components, accumulated over a 5-day TW
centered around 06 UTC. The colors represent the di�erences in m.s

≠1 (see color scale). Figure included in Trindade
et al. (2020).

clear that both contain very similar structures, as expected, since the ERAú does not aim
at correcting transient weather e�ects but local systematic e�ects. ERA*ABON1 (Fig. 4.3b)
contains additional small-scale variance as compared to ERAi (Fig. 4.3a), the latter being
smoother than the former, notably at the same locations where larger local biases emerge in
Fig. 4.3b, although this is di�cult to appreciate in a global map. In this line, Fig. 4.3a
di�ers from Fig. 4.3b in that the increased variability seen in the latter should better capture
the stationary signal from WBCS, the wind shadowing e�ects in the vicinity of islands, and
the coastal e�ects associated to coastal orography, as well as atmospheric model dynamics and
MABL parameterization errors.

To discern the di�erence in small scale variance between the two maps in Fig. 4.3, a zoom over
the tropical Atlantic region is shown in Fig. 4.4 (which corresponds to the red box in Fig. 4.3).
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Additionally, Fig. 4.4c shows the same map for another ERAú product generated with a longer
temporal window of three days (ERA*ABON3). Fig. 4.4b arguably shows moist convection
induced variability south of the West African coast, clearly visible in the ERA*ABON1, but not
in the ERAi (Fig. 4.4a). The ERA*ABON3 map (Fig. 4.4c) shows somewhat lower variability
than the ERA*ABON1 map (Fig. 4.4b). The use of a longer temporal window in ERA*ABON3
than in ERA*ABON1 is responsible for the additional smoothing of the wind fields of the former,
but also for the reduction of scatterometer weather sampling errors. This probably indicates
that the ERA*ABON1 map (Fig. 4.4c) captures small-scale variability associated with relatively
fast evolving atmospheric phenomena, while the ERA*ABON3 (Fig. 4.4b) does less so.

Figure 4.3: U10S meridional component for ERAi in (a) and ERAú in (b) on the 15th January 2013 at 06 UTC. The
ERA* map is based on ASCAT-A, ASCAT-B, and OSCAT-1 corrections over a one-day TW. The red box indicates the
area shown in Fig. 4.4. Figure included in Trindade et al. (2020).

Note also that this increased variability is attributed to moist convection, because it can be
depicted by the scatterometers (due to updrafts and downdraft), in agreement with the findings
of Lin et al. (2015b,a); King et al. (2022) over the tropical band. Although moist convection
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impacts the ocean exchange processes of momentum, heat and moisture and is fundamental to
ocean model forcing, it will only be partly resolved using a static mean correction, since the
SC likely misses the highly variable component in moist convection (wind changes up to 15
m.s≠1 over a 30-minute window). Due to the fast weather evolution during a satellite orbit,
ERA*ABON1 clearly shows some small-amplitude “jumps” or artifacts (see, e.g., several straight
lines in the top-left quadrant of 4.4b), which are not visible in the ERA*ABON3 (Fig. 4.4c),
which smooths weather e�ects over 3 days. Such artifacts are associated with the edges of
the di�erent scatterometer swaths used, indicating that the 1-day corrections (N1) are based
on relatively poor scatterometer weather sampling at these latitudes. Moreover, although such
jumps may be small, they certainly become more evident in wind derivative products, such as
divergence or curl (not shown). Additional spatial variance, as seen in these regional maps of
the ERAú meridional U10S component, manifests alike in all the ERAú configurations in Table
4.1 and in the U10S zonal component (not shown), indicative of persistent mesoscale (ocean)
variability. A more quantitative validation is presented in the next sections in order to verify
and complete the preliminary conclusions drawn from the qualitative comparison presented in
this section.
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Figure 4.4: U10S meridional component over the West African coast for the ERAi in (a) and ERA* in (b) products shown
in Fig. 4.3 (see red box). The ERA* shown in (c) is the same as that of (b) but for a SC over a three-day temporal
window (N3). The winds are truncated beyond [-15 15] m.s

≠1 to better highlight the di�erences between the three maps.
This Figure is included in Trindade et al. (2020).
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4.1.2 U10S verification

In subsection 4.1.1, a qualitative assessment of ERAú wind maps reveals enhanced variability
with respect to the original ERAi wind. In this section, we check whether this additional variance
is dominated by true wind signal rather than noise, by assessing the quality of the di�erent ERAú

gridded ocean forcing products (i.e., using di�erent SCs and temporal window combinations as
shown in Table 4.1) against independent U10S data. The ERAú products are validated against
independent scatterometer data, i.e., the 25-km HSCAT U10S product. HSCAT-A is a good
wind reference since the orbit pass (6 am/6 pm) is very di�erent from that of the instruments
used to correct the ERA fields, i.e., ASCAT-A/B at 9:30 am/9:30 pm and OSCAT-1 at 12:00
am/12:00 pm. The use of ASCAT-A/B and OSCAT-1 together substantially increases the local
sampling but is insu�cient to capture the diurnal cycle as these sensors sample the same location
of the ocean with only a 2:30 h di�erence. However, if the model diurnal cycle is reasonable and
local biases are persistent over longer periods (one to several days), then the scatterometer-based
corrections would lead to a reduction of model errors at HSCAT-A verification times, which are
3:30 h and 6:00 h apart from ASCAT-A/B and OSCAT, respectively. Furthermore, if these local
biases are persistent over several days, then the ERAú product generated with a larger temporal
window (of several days) would be of higher quality than that generated with a 1-day temporal
window, since the former has a better downsampling of the mesoscale weather variability than
the latter.

Fig. 4.5 shows the vector root-mean-square di�erence (VRMSD) between di�erent ERA*
configurations (see legend) and HSCAT-A U10S as a function of the TW size (in days), for
the tropics (left), the middle latitudes (middle), and both the tropics and the middle latitudes
(right). Fig. 4.5abc (Fig. 4.5def) corresponds to collocations with HSCAT-A ascending (de-
scending) passes, thus collocations at 6 pm (6 am) local time. For reference, the VRMSD
between ERA and HSCAT-A is plotted with a thick black solid horizontal line. The latter
is used as benchmark, i.e., only those ERAú configurations below the black line are of higher
quality (with respect to HSCAT-A) than ERAi. At first glance, because the local bias distri-
bution is not the same everywhere (already discussed in the previous subsection), and biases
have di�erent persistence times, which in regions of high wind variability may not be su�ciently
long to be corrected by this method, di�erent VRMSD reduction rates are found for the regions
analysed here as opposed to those previously analysed in Chapter 3. For a single-scatterometer
SC, ERAú (orange curves) is very much dependent on the temporal window size, indicating that
the weather downsampling of a single scatterometer over 1 day is rather poor, and therefore, a
larger temporal window is required to reduce the model weather errors. Note the abrupt drop
in VRMSD that occurs if the ERAú is generated with a correction based on up to 3 days of
accumulated scatterometer information. In particular, a 4–5 day window (N4 or N5) is needed
to outperform ERAi. Interestingly, although the scatterometer sampling is larger in the middle
latitudes than in the tropics, the ERAú quality for N1 and N2 is more degraded in the former.
This is because of the transient weather in the middle latitudes (see e.g., Portabella and Stof-
felen (2009)). As a result, a larger number of observations per grid point is required here to
reduce model weather errors. When only one scatterometer is available, enhanced sampling is
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Figure 4.5: Vector root mean square di�erence (VRMSD in ms
≠1) between di�erent ERAi/ERAú U10S products and

HSCAT-A U10S ascending (top) and descending (bottom) passes as a function of the SC temporal window size, over
an eight day period, for the tropics (a) and (d), the middle latitudes (b) and (e), and both the tropics and the middle
latitudes [-55¶, 55¶] (c)and (f). The di�erent colour lines show the VRMSD scores for ERA (black line in bold), ERA*
configuration using only ASCAT-A (orange line), ERA* using ASCAT-A and B (green line), ERA* using ASCAT-A and
OSCAT (purple), and ERA* using ASCAT-A, ASCAT-B and OSCAT (blue).

Table 4.2: Mean (b) and standard deviation (‘) of the di�erences between di�erent ERAi/ERAú products and HSCAT-A,
in the tropics and the middle latitudes for both the zonal (u) and the meridional (v) U10S components. The number of
valid winds over which the statistics are computed is shown in parenthesis. Table included in Trindade et al. (2020)

mid-lat. (2331603) tropics (2131292)

ASC & DSC bu(ms≠1) ‘u(ms≠1) bv(ms≠1) ‘v(ms≠1) bu(ms≠1) ‘u(ms≠1) bv(ms≠1) ‘v(ms≠1)

ERA*ABON1 0.086 1.589 0.014 1.645 0.031 1.471 -0.041 1.527
ERA*ABON3 0.084 1.611 0.012 1.616 0.023 1.450 -0.051 1.513
ERAi 0.546 1.703 0.161 1.663 -0.035 1.596 -0.032 1.705

achieved by using larger temporal windows. Note that for a single ASCAT scatterometer or for
its predecessor, the ERS scatterometer, with about half the coverage, a sampling period longer
than 5-days would be profitable to further improve the bias estimates.

As expected, when adding more scatterometers, the model weather errors are considerably
reduced at N1. In particular, when complementary scatterometer orbits are used in the correc-
tions, the derived ERA* products (see purple and blue curves in Fig. 4.5a as well as the bias
and standard deviation scores in Table 4.2) outperform ERAi at N1. In this table we decompose
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the VRMSD in the bias and standard deviation of each wind component and present the scores
for HSCAT-A ascending and descending orbits together. In fact, for such ERA* products, the
quality of the data does not significantly depend on the temporal window size, except in the
tropics where a slightly higher quality U10S is achieved at N2 or N3. This is probably due
to a compensation e�ect: on the one hand, the larger the temporal window, the larger is the
sampling; on the other hand, the larger the temporal window, the more sensitive the system is
to local bias changes. Specifically, the mid-latitude local biases seem to be less persistent than
those in the tropics, since no further ERA* quality improvements are discernible at temporal
windows larger than N1. This may be caused by the impact of fast evolving weather not well
captured by ERAi, e.g., mislocation of mid-latitude synoptic variability. Note however that the
improvements brought by ERA* over ERAi remain substantial and significant over the entire
domain.

Most of the features discussed so far imply that this method is regionally dependent, i.e.,
its e�ectiveness is mainly modulated by weather sampling and on the longer term by local bias
persistence. Since the biases persist quite well over time, large sampling is essential to improve
these bias estimates both in the tropics and in the middle latitudes. Overall this is reflected by
the VRMSD between the ERAú configurations and HSCAT-A when compared with the VRMSD
between ERAi and HSCAT-A, displayed in Fig. 4.5.

4.1.3 U10S spectra

The verification against independent scatterometer data presented in the previous section
shows a significant reduction of model errors, in particular when complementary scatterometer
data are used to correct the U10S in the tropics. These findings support that overall most
of the high frequency signal observed in the qualitative assessment of the derived ERAú maps
(discussed in section 4.1.1) is dominated by true ocean-related wind signal rather than by noise.

In this section, the derived ERAú U10S fields are assessed in terms of their geophysical
consistency and e�ective resolution, using spectral analysis. Note that only the results for the
zonal U10S component are shown, but the same conclusions can be drawn for the meridional
component.

In line with Vogelzang et al. (2011a), to obtain the U10S spectra, valid samples of the U10S
components are collected over a month (January 2013) in the HSCAT-A along-track direction
for each across-track wind vector cell (WVC). To comply with the assumption of periodicity
imposed when using FFT, a linear transformation detrending method is applied to the samples.
Figure 4.6 shows the final spectra, i.e., the individual spectra averaged over all WVC numbers
across the swath and over the mentioned time period. Overall, for HSCAT-A, 1374 (7455)
individual spectra were averaged in the tropics (extra-tropics). Likewise, for ASCAT-B we
average 23812 (72807) individual spectra. The substantially larger number of individual spectra
used for ASCAT-B with respect to HSCAT-A is due to the much lower QC rejection rate in
rainy areas of ASCAT-B (see section 2.1). Note that the SC field contains both ascending and
descending passes and hence many swath edges implied in ERA* cross the HSCAT-A samples,
potentially causing a white noise (flat) spectrum tail when insu�ciently sampled.
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In particular, this Figure shows the spectra for the zonal U10S component (u) in the tropics
(Fig. 4.6a) and the middle latitude (Fig. 4.6b) for a fixed combination of scatterometers (i.e.,
ASCAT-A, ASCAT-B, and OSCAT-1) and for various temporal window sizes (see the last row
of Table 4.1).

The solid lines show the model U10S spectra for the same sample length (128) as those
collected for the HSCAT-A data (dashed blue), while for the ASCAT-B 12.5 km (dashed purple)
a sample size of length 256 is used. The red solid line shows the ERAi spectrum, while the
di�erent ERA* configurations (sorted as in the last row of Table 4.1) are shown in green,
magenta, orange, cyan and brown. The black dashed line shows the spectral slope of k≠5/3

for comparison. Note that wave number spectra need periodicity and su�cient samples, which
implies artificial numerical closure (Volgenzang, 2013). As such, data detrending and sampling
can lead to vertical o�sets in the spectra. In Fig. 4.6, the noticeable vertical o�set between
ASCAT-B and the other spectral curves is mainly due to sampling. That is, while HSCAT-A
winds are collocated with both ERAi and ERAú winds, ASCAT-B winds are not (i.e., ASCAT-B
and HSCAT-A orbits are rather complementary). Note that the swath width and QC di�erences
between HSCAT-A and ASCAT-B lead to very di�erent sampling patterns.

Globally, a spectral slope close to k≠5/3 is reported by Nastrom and Gage (1985) for aircraft
wind measurements, and by Vogelzang et al. (2011a) for the ASCAT coastal U10S product at
scales below 500 km, as they follow Kolmogorov 3D turbulent theory of the atmosphere. While a
k≠2 slope is referenced by several authors, among others, Patoux and Brown (2001) and Chelton
et al. (2006), using QuikSCAT winds, i.e., a previously released instrument with a similar design
to that of HSCAT.

The SC will at any instant amend the ERA spectrum to the projected scatterometer U10S
turbulence spectrum. If this spectral correction would be the same and phase independent at
every instant, then the SC would also have this spectrum, but at lower amplitude. In fact,
after an infinite number of instances, the amplitude would converge to zero. However, random
atmospheric 3D turbulence has a life cycle of only a few hours and therefore it’s not likely
captured by the SC and part of the unwanted instantaneous random weather contribution, and
consequently not targeted by ERAú. However, wind features coupled to the ocean mesoscales
will largely remain, as well as systematic ERAi flow errors, e.g., tied to the slower synoptic
weather patterns and large-scale circulation errors (Belmonte Rivas and Sto�elen, 2019). As
shown by Reynolds and Chelton (2010); Hoareau et al. (2018) the spectral slopes for oceanic
turbulence tracers such as Sea Surface Temperature (SST) and Sea Surface Salinity (SSS) are
typically between -1 and -3. Since oceanic turbulence is rather slowly evolving on scatterometer
scales, it is assumed that the oceanic turbulence is well captured by the SC (i.e., oceanic features
persist over a few days) and one expects gentler slopes in ERAú (i.e., more comparable to those
of HSCAT-A or ASCAT-B winds) than in ERAi. This is in line with the spectral slopes shown
in Fig. 4.6 for ASCAT-B (dashed purple) and HSCAT-A (dashed blue). Also, in line with the
ECMWF spectra shown in Vogelzang et al. (2011a), the ERAi spectra present a steep slope at
high frequencies, indicating a lack of spatial scales below 150 km in the model U10S.

The spectral slopes observed for the ERA* in Fig. 4.6 lay between those of ERAi and
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Figure 4.6: Power density spectra for the zonal U10S component (u) of HSCAT-A (dashed blue), ASCAT-B (dashed
purple), and collocated ERAi (red) and ERAú (see colour legend) products, in the tropics (a) and the middle latitudes
(b). The ERA* products based on combined ASCAT-A, ASCAT-B and OSCAT (ABO notation) SC for di�erent temporal
windows are shown. The ERA*ABON notation from N1 to N5 corresponds respectively to SC temporal windows from 1 to
5 days (see Table 4.1). Figure included in Trindade et al. (2020).

the scatterometers, in particular close to that of HSCAT-A, indicating that ERA* is able to
resolve smaller scales than ERAi although the U10S fields are somewhat smoother than those
of HSCAT-A and notably ASCAT-B. Note also that the shorter the temporal window used
in ERA*, the closer the ERA* spectral slope is to that of HSCAT, i.e., a finer scale ERA*
product is obtained showing more sampled 3D turbulence or weather, which is undesirable as
noted above. However, following the verification carried out in section 4.1.2, we note that all SC
substantially reduce the ERAú/HSCAT-A di�erences and hence are associated with persistent
biases and not with random 3D atmospheric turbulence. Moreover, only a slight indication of a
flat spectrum tail is noticeable at N1 (see green curve in Fig. 4.6b), which relates to the swath
edge signatures. Following Fig. 4.5a, we note that part of the N1 SC variance is not justified,
and better ERA* verification is obtained after 2 or 3 days. Seemingly, a small part of the fast
and random k≠5/3 3D turbulence and convection is present as sampling noise.
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Furthermore, the smoothness observed in the derived map of Fig. 4.4c with respect to that of
Fig. 4.4b is in agreement with their corresponding spectral slopes in Fig. 4.6a (i.e., the steeper
orange curve with respect to the green solid curve).

The dependence of the spectral slope on spatial sampling is analysed in Fig. 4.7. The spectra
for the zonal wind component (u) are displayed for a fixed time window with di�erent combina-
tions of scatterometers, as listed in the first column of Table 4.1, alongside HSCAT-A (dashed
blue) and ERAi (solid red) spectra. As the number of scatterometers used in the corrections
increases, the corresponding ERA* spectral slope becomes steeper, i.e., the derived U10S fields
become smoother. Seemingly, the scatterometer wind aggregation procedure improves the bias
estimate, while the shorter scales may also be less persistent than the larger scales. Further-
more, when OSCAT-1 U10S are aggregated to the ASCAT-based corrections, there is a marked
decrease of the spectral slope (see change from the pink to the light-blue curve on Fig. 4.7b),
i.e., the ERA* field becomes significantly smoother. This is due to the fact that the ASCAT-A
and -B winds overlap in space and time on the weather scale and since OSCAT-1 winds are of
lower resolution than ASCAT winds (Vogelzang et al., 2011a). In any case, by comparing Figs.
4.5a, 4.6 and 4.7, it is clear that both the size of the temporal window and the number and
type of scatterometers used can have a pronounced e�ect on the spectral slope and quality of
the ERA* product.

Note also that whether we fix the number of scatterometers (Fig. 4.6) or the time window
(Fig. 4.7), the spectra in the middle latitudes are more energetic at small wave numbers than
those in the tropics. Despite the presence of transient large-scale systems, still the same con-
clusions can be drawn in terms of spectral slopes. The exception is found for the ERA*AN1
product spectra, which at mid-latitudes are slightly less steep than that of HSCAT-A. This is a
very energetic region characterized by the presence of fast evolving systems, in which a product
configuration using a single scatterometer for a one day mean correction is likely to also be
a�ected by the previously mentioned weather sampling artifacts.

In order to correct for persistent model biases at the oceanic mesoscale, the accumulation
time window is strictly dependent on the longevity of such biases. In that sense, from the
geophysical perspective, taking into consideration the spectral analysis presented here, the rel-
atively high VRMSD values for ERA*AN1 or ERA*AN2 shown in Fig. 4.5a indicate that the
high-frequency variance depicted by spectral analysis is dominated by weather sampling artifacts
rather than by ocean-related small-scale wind signal, particularly for the middle latitudes. Ad-
ditionally, the same statistics suggest that for ERA*ABON1 the significant reduction of the local
biases is at odds with the observed shallow spectral slopes (comparable to those of HSCAT-A,
measuring 3D turbulence due to weather), and where a visual inspection of the derived maps
indeed reveals the presence of swath-generated artifacts likely due to relatively poor scatterom-
eter weather averaging. A reasonable trade-o� between the spatial/temporal sampling and the
accuracy/consistency of the derived maps is the ERA* based on a 2-3 days (N2 or N3) time
window for ERA*ABO, while longer windows are necessary for fewer scatterometers.
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Figure 4.7: Power density spectra for the zonal U10S component (u) of HSCAT-A (dashed blue) and collocated ERAi (red)
and ERA* (see colour legend) products, in the tropics (a) and the middle latitudes (b). The di�erent ERA* configurations
shown here use a one-day SC temporal window (see notation in Table 4.1). Figure included in Trindade et al. (2020).

4.2 Transition to ERA5

Considering the ERAú potential for improving ocean forcing established in the previous sec-
tion, with the availability of ECMWF ERA5 reanalysis, which according to Belmonte Rivas and
Sto�elen (2019) contains similar error characteristics as those found in ERAi, it is pertinent
to assess the quality of a new ERAú, generated with the ERA5 reanalysis. Still the authors
make note that those errors show smaller amplitudes for ERA5 than previously seen in ERAi.
The latter is clear from observing Fig. 4.8 that shows the 30-d U10S di�erences for the merid-
ional component between these reanalyses and the ASCAT-A scatterometer, respectively for
ERAi/ASCAT-A in Fig. 4.8a and ERA5/ASCAT-A in Fig. 4.8b.

To this end, the next subsection (4.2.1) compares the two versions of the ERAú product
using the year 2013 as reference, i.e., the quality of the ERAi-corrected and ERA5-corrected
U10S is evaluated with respect to each other, such that it’s possible to understand how smaller
bias amplitudes may a�ect the e�ectiveness of this method. A thorough validation of the ERA5-
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Figure 4.8: Scatterometer Correction (SC) for a given day, i.e., 15th Fenbruary 2013. Collocated di�erences between
ASCAT-A (12.5 km) and ERAi U10S (a) and ERA5 U10S (b) for the meridional wind component, accumulated over a
30-day temporal window centered around 06 UTC. The colors represent the di�erences in m.s

≠1 (see color scale).

69



4.2

corrected ERAú using the same verification methodology as in Trindade et al. (2020) (see Chapter
2) is applied to the new ERAú configurations generated for 2013.

Subsection 4.2.2 evaluates configurations of the ERA5-corrected ERAú for 2019. In 2019,
five complementary sun-synchronous scatterometers were in orbit allowing for the assessment of
the e�ects of a dense global coverage in the ERAú approach, and making this year the ideal test
bed to further improve the algorithm. Moreover, to add to the configurations explored in earlier
sections of this manuscript, during 2019 temporal windows longer than 5 days are also analysed.
This is done to check the temporal persistence of the local biases assumed in ERA5 U10S fields.
While for longer time windows, a better scatterometer sampling is achieved, the performance
of ERAú will rely on the persistence of such systematic errors. As such, the trade-o� between
sampling and local bias persistence is further analyzed with longer temporal windows.

4.2.1 ERA5-corrected ERAú for 2013

Although ERAi presents larger local biases than ERA5 (about 25% larger), as already men-
tioned, those have similar spatial and temporal characteristics. Thus, comparing the optimal
ERAú configuration obtained from correcting the ERAi reanalysis, in 2013, to the new ERA5-
corrected version of the product, helps evaluate the performance of the algorithm with the
change (upgrade) of NWP reanalysis.

Fig. 4.9 shows an ERA5 U10S global map (4.9a) and its corresponding ERAú (4.9b) gen-
erated with a three-scatterometer based correction (i.e., ASCAT-A/B, and OSCAT-1) over a
three-day temporal window (ERAú

ABO
N3). By simply comparing ERA5 and ERA*ABON3 U10S

global maps, it is clear that both fields present similar weather features, not surprising since the
ERAú does not aim at correcting transient weather e�ects but local systematic e�ects. More-
over, the U10S fields presented here correspond to the same snapshots as in Fig. 4.3 (15th

January 2013 at 06 UTC). A quick look at the ERA5 and the ERAi (in 4.3a) already shows the
higher e�ective spatial resolution of the former, the latter showing a smoother U10S. Also, as
for the 1-day product in 4.3b, the ERA5-corrected ERA*ABCN3 contains additional small-scale
variance when compared with ERA5, i.e., Fig. 4.9a is smoother than Fig. 4.9b, notably at the
same locations where larger local biases emerge in Fig. 4.8b, although such biases are not as
evident (strong) for the ERA5-corrected U10s as for the ERAi-corrected ERAú (see Fig 4.8).
Indeed, similar to the ERAi case, the ERA5 in Fig. 4.9a di�ers from the ERA5-corrected in
Fig. 4.9b in that the increased variability seen in the latter should, inter alia, better capture
the stationary signal from WBCS, the wind shadowing e�ects in the vicinity of islands, and the
coastal e�ects associated to coastal orography.

Because it is di�cult to appreciate the small scale added variance for a global map, focus is
put on the tropical Atlantic region delimited by the red boxes in 4.9, and the zoomed area is
shown in Fig. 4.10. In accordance with the ERAi corrected results from the previous chapter, for
the three scatterometer and three-day TW configuration (Fig. 4.10b), the same increased wind
variability (w.r.t. the NWP) is found south of the West African coast, yet not present in the
ERA5 (Fig. 4.10a). The di�erence between the ERA5 and the corrected-ERA5 (ERA*ABON3)
is shown in Fig. 4.10c, where the larger variability is clearly located at the equatorial band. As
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Figure 4.9: U10S meridional component for ERA5 in (a) and its corresponding ERAú
ABO

N3 in (b) on the 15th January
2013 at 06 UTC. The red box indicates the area shown in Fig. 4.10.

previously mentioned, over this region, the increase in variability may arguably be caused by
moist convection, sensed by the scatterometers that well resolve updrafts and downdrafts, despite
that, the ERA*ABON3 is not expected to properly capture the small-scale variability associated
with relatively fast evolving atmospheric phenomena, given the scales of these phenomena (with
local wind changes up to 15 m.s≠1 over a 30 minute window) and the three-day TW used in the
SC (thus aliasing the weather e�ects). Although not shown, when using smaller TWs of 1 day
in the SC to correct the ERA5 U10S, swath-based artifacts as those present in Fig. 4.4b are
also present in the new version of ERAú. Overall, the qualitative assessment of the new ERA5
corrected U10s maps, and alike the previously generated L4 product, i.e., the ERAi corrected
product, suggests that additional small scale variance w.r.t. ERA5 is found in the corrected
U10S fields, which correspond to persistent mesoscale (ocean) variability.

Evidence in Trindade et al. (2020), alongside the increased variance seen in the meridional
U10S maps just discussed, suggests smaller error reduction in ERA5-corrected U10S w.r.t. ERA5
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≠1 to better highlight the di�erences, whilst (c) saturates those di�erences
between ± 2 m.s

≠1.

than previously observed in ERAi-corrected ERAú U10S w.r.t. ERAi, due to the smaller am-
plitude of the observed biases for the ERA5 reanalysis. This assumption is further investigated
by quantifying this reduction using an independent verification source, namely HSCAT-A, in a
likewise manner as for ERAi-corrected ERAú products.

Because the e�ective change in the product is related to the ERA wind source only, the
premise that the HSCAT-A is a good wind reference is also valid now. However, the aim of
this section is to assess the most relevant changes in the performance of the ERAú with the
transition to the new ERA5 reanalysis. As such, only the ERA5-corrected results for what is
considered the optimal ERAi-corrected ERAú configuration in 2013, i.e., three scatterometers
and a three-day TW, are shown here.

Fig. 4.11 shows the time series of the daily vector root-mean-square di�erence (VRMSD)
between the ERA5/ERA5-corrected (ERA*ABON3) and HSCAT-A U10S, for the global ocean
(Fig. 4.11a), the middle latitudes (Fig. 4.11b), and the tropics (Fig. 4.11c). The VRMSD
between ERA5 and HSCAT-A is represented with the black line, and represents the benchmark,
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Figure 4.11: Daily vector root mean square di�erence (VRMSD in m.s
≠1) between di�erent ERA5/ERA*ABON3 U10S

product and HSCAT-A U10S over a month period (January 2013), for the global ocean (a), the middle latitudes (b), and
the tropics (c). Values are plotted in black for ERA5 and in red for ERA

ú.

whilst the ERAú is plotted with a red line. For the analysed ERA* configuration, the generated
product outperforms the ERA5 throughout the selected month, i.e., the red line is always below
the black line thus of higher quality than ERA5 (with respect to HSCAT-A). Recall the limits of
these geographical regions were defined in Table 2.2 as between [-55 55]¶ for the middle latitudes
and [-30 30]¶ for the tropics. Note that, for all regions, the ERA5 reanalysis always shows a
smaller vector error than ERAi (Fig. 4.5) w.r.t to HSCAT-A, indicating the overall higher
quality of the ERA5 w.r.t. ERAi U10S. Note though that there are a few di�erences between
both error assessments, specifically in what concerns the analysed period, and in the separation
of the estimated errors in ascending and descending orbits of the scatterometer reference. Despite
that, the benchmark value in Fig. 4.11 is always smaller than in Fig. 4.5, and the ascending
and descending orbits follow the same trend, thus making the comparison hold.

Although the error reduction of ERA5-corrected w.r.t. ERA5 U10S is not as substantial as
it is for the ERAi-corrected U10S, ERA5 errors are still significantly reduced with the proposed
methodology. Furthermore, larger error variance reduction w.r.t. the benchmark is still observed
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for the tropical band (13%) than for the middle latitudes (about 7%). As shown in Trindade
et al. (2020), the mid-latitude local biases seem to be less persistent than those in the tropics.
Arguably due to the impact of evolving weather patterns, mid-latitude U10S biases evolve too.

In brief, the ERA*ABON3 configuration (i.e., three complementary scatterometers accumu-
lated over a three-day TW) shows promising results whether generated by correcting the ERAi
or ERA5 U10S, i.e., it always outperforms the original NWP U10S. This ERAú configuration
after the transition to the ERA5 still proves optimal for the year addressed in this section,
given that it seems to avoid fast weather corrections, while it still captures the oceanic related
mesoscales (further analysed next). Nevertheless, as reported by Belmonte Rivas and Sto�elen
(2019), and verified by comparison to HSCAT-A, the amplitude of the model biases in ERA5
is smaller than that in ERAi (see benchmark values in Fig. 4.5 and Fig. 4.11), and the ERA5
U10S maps contain more variance (recall Fig. 4.9a) than that observed in the ERAi U10s.
Overall, since the ERA5 local biases are smaller than those in ERAi, the proposed corrections
lead to smaller error reduction rates for the ERA5-corrected ERAú (w.r.t. ERA5) than for the
ERAi-corrected ERAú (w.r.t. ERAi).

So far, the results from this section align with those obtained with the ERAi-corrected
version of the ERAú, suggesting the added variance observed in the qualitative assessment of
the ERA5-corrected ERAú maps is also dominated by true ocean-related wind signal rather than
by random noise. As with the ERAi-corrected ERAú, spectral analysis is again used to evaluate
the geophysical consistency of the new ERAú derived U10S, as well as the e�ective resolution of
the generated U10S in the ERA*ABON3 configuration.

The spectral analysis is performed as explained in 2.4.2, and separately for the tropics
and the middle latitudes, respectively averaging over 1374 and 7455 individual spectra (us-
ing ERA5/ERAú/HSCAT-A collocations), as in subsection 4.1.3. Fig. 4.12 shows the final
spectra, obtained by averaging the individual spectra over all WVC numbers across the swath
for January 2013. For the sake of comparison, the total power density spectra are computed for
both the ERA5 corrected ERA*ABON3 configuration and the ERA5. Notice only spectra for
the zonal U10S component in the tropics (Fig. 4.12a) and the middle latitudes (Fig. 4.12b)) are
shown, although the same conclusions apply to the meridional component. The solid lines show
the ERA5 (red) and the ERA*ABON3 (blue) U10S spectra for the same sample length (128) as
those collected for the HSCAT-A data (dashed pink). The black dashed line shows the spectral
slope of k≠5/3 as energetic scale reference.

The spectral slope observed for the ERA*ABON3 in Fig. 4.12 lies between that of the ERA5
and HSCAT-A, but closer to that of the latter, confirming the analysed ERAú configuration is
able to resolve smaller scales than ERA5, yet the new U10S fields are still smoother than those
of the scatterometer. In comparison to the findings for the ERAi-corrected ERAú assessed in
subsection 4.1.3, it is found that the ERA*ABON3 generated from the ERA5 reanalysis is able
to resolve smaller scales than the same configuration for the former product version. This is in
agreement with the gentler slopes found for the ERA5 w.r.t. those of ERAi (subsection 4.1.3,
which supports that the former contains somewhat more small-scale variance than the latter.
Also, as described in subsection 4.1.3, the spectra in the middle latitudes (Fig. 4.12b) are more
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Figure 4.12: Power density spectra for the zonal U10S component (u) of HSCAT-A (dashed pink) and collocated ERA5
(red), ERAi (purple), ERA5-corrected (blue) and ERAi-corrected (green) for a SC generated with three scatterometers over
a three-day TW (ERA*ABON3), in the tropics (a) and the middle latitudes (b).

energetic at higher wavelengths (i.e., lower frequencies) than those in the tropics, due to the
presence of large-scale systems in the former. The same conclusions can be drawn in terms of
spectral slopes.

In light of the validation results presented in here, using the recommended configuration
for 2013 (section 4.1), it is found that the new ERAú (ERA5-corrected) is still able to reduce
the model errors in this reanalysis in a similar manner it does for ERAi, although to a smaller
extent, due to the smaller amplitude of the local biases. The spectra for ERA5 also reflects
the evolution of the ECMWF model in time (ERA5 is an upgraded version of the ECMWF
deterministic model, w.r.t. that of ERAi), proven to resolve much smaller scale variance than
before. This is clear when comparing the slopes from both reanalyses, where the ERAi slope is
much steeper than that of ERA5.

However, despite the evolution of theses biases (mostly in amplitude) and the change in
variance, both reanalyses are still missing mesoscale variability. Consequently, as long as a
complementary scatterometer constellation and a small enough TW size is used for the SC, the
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Table 4.3: Notation for the di�erent ERAú configurations, according to the combination of sensors and temporal window
(TW) used in the SC.

Temporal Window
Data Source 1-d (N1) 3-d (N3) 5-d (N5) 10-d (N10) 15-d (N15) 30-d (N30)
ASCAT-A ERA*AN1 ERA*AN3 ERA*AN5 ERA*AN10 ERA*AN15 ERA*AN30
ASCAT-A/B ERA*ABN1 ERA*ABN3 ERA*ABN5 ERA*ABN10 ERA*ABN15 ERA*ABN30
ASCAT-A/B/C ERA*ABCN1 ERA*ABCN3 ERA*ABCN5 ERA*ABCN10 ERA*ABCN15 ERA*ABCN30
ASCAT-A, OSCAT ERA*AON1 ERA*AON3 ERA*AON5 ERA*AON10 ERA*AON15 ERA*AON30
ASCAT-A/B, OSCAT ERA*ABON1 ERA*ABON3 ERA*ABON5 ERA*ABON10 ERA*ABON15 ERA*ABON30
ASCAT-A/B/C, OSCAT ERA*ABCON1 ERA*ABCON3 ERA*ABCON5 ERA*ABCON10 ERA*ABCON15 ERA*ABCON30

ERAú is expected to indeed outperform the reanalysis.

4.2.2 Further improvements to the algorithm

In light of the results from the previous subsection (subsection 4.2.1), for simplicity, the
ERAú notation is hereafter used for ERA5-corrected U10S, for the remaining of Chapter 4, with
the exception of section 4.4 that considers the overall findings for generated ERAi-corrected and
ERA5-corrected ERAú configurations.

In this section, several configurations of the ERAú are assessed for the year 2019. As already
mentioned this period contains the largest scatterometer constellation of the decade, therefore
the performance of these scatterometer combinations that result in enhanced spatial sampling
can be checked. The notation for the latter is listed in Table 4.3. Specifically, four complementary
scatterometers are combined in order to evaluate the e�ects of the denser sampling. These are
the ASCAT’s (A/B/C) and OSCAT-2, here briefly noted as OSCAT, given that it does not
overlap in time with the OSCAT-1 (recall Table 1.2).

Next, the performance of these di�erent configurations is analysed in the same way as before,
although the verification against independent U10S sources is carried out using the HSCAT-B
scatterometer, and an additional validation against buoy U10S is also conducted afterwards.

A first qualitative assessment of the local biases for 2019 is illustrated in Fig. 4.13, which
shows the snapshot of a thirty-day accumulation for a few combinations of scatterometer/ERA5
U10S di�erences for a specific forecast time. Contrary to previous analyses, the global domain
under evaluation is extended to [-75 75]¶N , such that high latitudes are included in the product
performance assessment. In this figure, and as previously reported for 2013, the magnitude of
these biases is between ± 2 m.s≠1. Overall, because these model biases are still present in the
ERA5 reanalysis (although of smaller amplitudes), they pop up in the same geographic locations
as previously described in this manuscript, e.g., more noticeable over the major WBCS (high
stationarity) and their surrounding eddies or where the model lacks mesoscale variability (like
in the extra-tropics). Indeed, over longer TWs, looking at snapshots of the collocated di�erences
between some of the scatterometer combinations in Table 4.3 and ERA5 (di�erences shown for
the 06 UTC in Fig. 4.13), these local biases are spotted over the same areas, with similar
amplitude. However, because the C-band retrievals (12.5 km) are of higher spatial resolution
than those from the Ku-band OSCAT-2 (25 km), the SC displayed in Fig. 4.13b and 4.13d
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Figure 4.13: Scatterometer Correction (SC) for the meridional wind component on the 15th February 2019. Collocated
di�erences of various scatterometer combinations and ERA5 U10S are accumulated over a thirty-day TW centered around
06 UTC. The colors represent the di�erences in m.s

≠1 (see color scale). The accumulated di�erences for the following
scatterometer combinations are shown: ASCAT-A only (a), OSCAT-2 only (b), all ASCATs (c) and all ASCATs and
OSCAT-2 (d).
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appear to be slightly more smothered w.r.t the other two.
Since Fig. 4.13 shows that the di�erences between the scatterometers and the ERA5 are still

present after thirty days, the derived U10S maps for ERA5 and the ERA*ABCON3 configuration
are plotted in Fig. 4.14. The additional variance observed in the previous subsection is also evi-
dent for this configuration, as in all the configurations listed in Table 4.3 (not shown), indicative
of persistent mesoscale (ocean) variability. Yet, because a three-day TW was previously found to
best capture small oceanic-induced scales, the derived U10S map for ERA*ABCON3 is chosen to
display the added variability under the improved coverage provided by the four scatterometers.

Considering that a three-day accumulation with su�cient scatterometer sampling has been
proven to add small-scale variance to the corrected U10S, as expected, the meridional U10S
component in Fig. 4.14a is smoother when compared to that of ERA*ABCON3 in Fig. 4.14b
and more so at locations where larger local biases emerge. Recall from the previous analysis
that this increased variability in the ERAú U10S reflects the stationary signal from WBCS, the
wind shadowing e�ects in the vicinity of islands, and the coastal e�ects associated with coastal
orography. Still, a closer look inside the area delimited by the red box for other TWs, helps to
further examine the amount of variance introduced as a function of the accumulation.

Fig. 4.15 shows a zoom of the region inside the red box from Fig. 4.14. The U10S meridional
component for the tropical Atlantic is shown for the ERA5 (Fig. 4.15a) and the SC used in
ERA*ABCON3 (Fig. 4.15c). Additionally the same map is shown for a SC generated with a
shorter temporal window of one day (Fig. 4.15b) and a longer one of fifteen days (Fig. 4.15d).
Even though smoother ERAú U10S wind fields are observed as longer time windows are used to
generate the SC (also seen in section 4.1), such smoothing is accompanied by the reduction of
scatterometer weather sampling error. Furthermore,the SC for ERA*ABCON1 is largely a�ected
by swath edge artifacts which, considering the shorter temporal windows, are a consequence
of poorer sampling. This is in line with previous results, and likely indicates that the SC
of ERA*ABCON1 (Fig. 4.15b) captures small-scale variability associated with relatively fast
evolving atmospheric phenomena, while the others in Fig. 4.15cd do not.

Consequently, these small-amplitude “jumps” or artifacts (see, e.g., several straight lines
in the top-left quadrant of Fig. 4.15b), are hardly visible in the other SC configurations (see
Fig. 4.15cd). Again, these artifacts are associated with the edges of the di�erent scatterometer
swaths used, and show up due to the poorer scatterometer weather sampling at these latitudes,
thus more noticeable for one-day corrections than for longer TW sizes.

Granted that the qualitative assessment of the derived U10S fields continues to show addi-
tional variance with respect to ERA5 which, although smoothed, is also observed in the longer
TWs (N15 and N30) and with more scatterometer coverage (ABCO), the statistical analysis pre-
sented next is meant to check whether the additional variability is dominated by true wind signal
rather than noise. The analysis uses the VRMSD with respect to the HSCAT-B scatterometer
to evaluate model error reduction.

Alike HSCAT-A, HSCAT-B also passes at (6 am/6 pm), a very di�erent equator crossing
time from that of the instruments used to correct the ERA5 fields, thus making it a good
independent verification source. Recall that, for the instruments used for the configurations in

78



Chapter 4

Figure 4.14: U10S meridional component for ERA5 (a) and ERA*ABCON3 (b) on the 15th February 2019 at 09 UTC.
The red box indicates the area shown in Fig. 4.15.

Table 4.3, the respective LTAN is at 9:30 pm for the ASCATs while OSCAT-2 passes are at
8:45 am/8:45 pm. Like wit OSCAT-1, the scatterometer passes for the ASCAT-A/B/C and
OSCAT-2 are too close in time (only 45 min di�erence in this case) to capture the diurnal cycle,

79



4.2

  30oS 

   0o  

   0o  

a)

  30oS 

   0o  

   0o  

b)

  30oS 

   0o  

   0o  

c)

m.s –1   30oS 

   0o  

   0o  

d)

m.s –1

m.s m.s –1  –1

–6 –4 –2 0 2 4 6 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

Figure 4.15: U10S meridional component over the West African coast for the ERA5 U10S (a) and di�erent SC TW sizes
combining all four scatterometers (ABCO): a one-day TW (N1) (b), a three-day TW (N3) (c), and a fifteen-day TW
(N15) in (d). The winds are truncated beyond [-7, 7] m.s

≠1 for the ERA5 and between [-2, 2] m.s
≠1 for the SC. The

zoomed region corresponds to the red box in Fig. 4.14.

in spite of the substantial increase in local sampling when used together. Despite that, assuming
that local biases are persistent over longer periods, at HSCAT-B verification times (3:30 and
2:45 hours apart from, respectively, ASCAT-A/B/C and OSCAT-2), the SC should lead to a
reduction of model errors. Moreover, for local biases that persist for longer periods (a couple of
days), resorting to SC with longer TWs assures better downsampling of the mesoscale weather
variability (as opposed to using a one-day TW).

Fig. 4.16 shows the VRMSD for the ERA5 and several ERAú configurations with enhanced
sampling (see legend) w.r.t. HSCAT-B U10S as a function of the TW size (in days), for the trop-
ics (4.16a), the middle latitudes (4.16b), the high latitudes (4.16c and the global ocean (4.16d).
Considering the ERA5 as the benchmark, only those ERAú configurations below the black line
are of higher quality (with respect to HSCAT-B) than ERA5. The di�erent geographical regions
are defined in Table 2.2 which, as opposed to previous analyses, include the high latitudes.

Except for the high latitudes, all the ERAú configurations show improved performance with
TW sizes larger than one day, with best performance achieved around 3-10 days. The worst
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Figure 4.16: VRMSD (in m.s
≠1) between di�erent ERA5/ERAú U10S products and HSCAT-B U10S as a function of the

SC temporal window size, over a month period (February 2019), for the tropics (a), middle latitudes (b), high latitudes
(c), and the global ocean (d). VRMSD scores for ERA5 are shown with black line in bold, and ERAú configuration for
ASCAT-A/B/C, only OSCAT-2, and combining both ASCAT-A/B/C and OSCAT-2, are respectively shown in orange,
green and blue. Figure included in Portabella et al. (2022).

VRMSD values for N1 are in line with the already assumed poor weather downsampling of
scatterometer data over short periods of time, such that larger temporal windows are required
to reduce the model (transient) weather errors. Note the abrupt drop in VRMSD that occurs
between the ERAú configuration of N1 and that of N3. In fact, to outperform ERA5 a 3-5 days
TW (N3 or N5) is required, assuming enhanced scatterometer coverage is achieved over this
period.

As expected, with the enhanced sampling that comes from combining all four scatterometers
(ABCO), the model weather errors are considerably reduced at short temporal windows. The
use of complementary scatterometer orbits in the corrections (see blue curves in Fig. 4.16)
outperform ERA5 at N3 in all the regions. In fact, for ERA*ABCON3 configurations, the quality
of the data does not significantly depend on the temporal window size when longer than N3,
and only slightly degrades for N5-N30 (see e.g., blue curve on Fig 4.16d). This is probably due
to a compensation e�ect: on the one hand, the larger the TW, the larger is the sampling; on
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the other hand, the larger the TW, the more sensitive the system is to local bias persistence.
Moreover, comparing the ERA5 quality (black solid line) against that of ERA*ABCO (blue

curve) for the tropics (Fig. 4.16a) and the middle latitudes (Fig. 4.16b), the ability of the latter
to outperform the former is much larger in the tropics. In particular, about 10% lower error
variance (VRMSD2 analogous to vector RMS error variance in Eq. 2.9) than ERA5 is found
for ERAú in the tropics, while in the middle latitudes this reduction is only 2.5%. As shown in
section 4.1 and 4.2.1, local biases in the middle latitudes seem to be less persistent than those in
the tropics. This may be due to the slowly evolving (synoptic) weather in the middle latitudes
by the ERA5, which might also evolve the MABL parameterization biases that are di�erent in
relatively warm and cold air masses.

Figure 4.17: Collocations of the OSCAT-2/ERA5 U10S zonal component di�erences for the ascending orbits only during
a 30-day TW.

Additionally, the relatively lower ERA* performance in the middle latitudes can also be
due to the presence of residual biases in the OSCAT-2 U10S as a function of the across-track
location (Wang et al., 2021). Since the OSCAT-2 orbit has a repeat cycle of 2 days (29 orbits),
the mentioned biases have a geographical pattern (see Fig. 4.17), which could directly impact
the e�ectiveness of the proposed ERAú method, which relies on the assumption of well inter-
calibrated scatterometer data sets, i.e., the better the C-band and Ku-band systems are inter-
calibrated, the better the ERAú performance is.

Also relevant, note the lower VRMSD scores for ERA*O than for ERA*ABC , considering
the latter contains substantially larger scatterometer sampling than the former, i.e., ERA*ABC
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Figure 4.18: Combined ASCAT-A/B/C and OSCAT-2 sampling pattern for a 3-day TW in the Mediterranean Sea.

has the coverage of the three ASCAT instruments. This may be due to the fact that both
the OSCAT-2 U10S and the independent HSCAT-B U10S source used for verification are Ku-
band systems. As shown in Vogelzang et al. (2011b), rotating pencil-beam Ku-band systems
are noisier than the fixed fan beam C-band ASCATs. A variational approach is used to reduce
such additional noise, which in turn filters small-scale signal (Portabella and Sto�elen, 2004).
Hence, Ku-band U10S fields are of lower resolution than C-band U10S, thus smoother (see SC
maps in Fig. 4.13b and 4.13c). This may indeed lead to the lower VRMSD scores for ERA*O,
as compared to those for ERA*ABC , since the spatial variability of OSCAT-2 and HSCAT-B
better matches than that of ASCAT and HSCAT-B. Interestingly, the addition of ASCAT-
A/B/C and OSCAT-2 sampling (ERA*ABCO) leads to the lowest scores, which is consistent
with the expected e�ect of the scatterometer sampling on ERAú performance.

While the higher spatial spectral content of ASCAT may imply improved SC, we will not be
able to verify this with HSCAT-B, as it is also a Ku-band scatterometer. Vogelzang and Sto�elen
(2018) shows that employing spatial NWP model error covariance structure functions, learned
from the ASCAT missions, lead to better Ku-band scatterometer winds, as verified with buoys.
However, the wind errors in Ku-band systems remain larger than those in ASCAT (Vogelzang
and Sto�elen, 2021). In fact, Ku-band winds remain smoother than ASCAT winds and the
additional mesoscale variance observed by ASCAT will add to the VRMSD with HSCAT-B.
This is not the case for OSCAT-2 and hence it will seemingly perform better against HSCAT-B
by also not resolving the smaller scales. ERA5 is also not resolving these smaller scales as well
as ASCAT and hence it is di�cult to conclude from the HSCAT-B VRMSD verification, how
good the SCs based on ASCAT really are. Buoy verification would be needed to conclude on
the ASCAT versus OSCAT SC quality. Fig. 4.16 indeed shows the better VRMSD performance
for OSCAT-2 against HSCAT-B.
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Figure 4.19: Same as Fig. 4.16, but for coastal regions only.

Nevertheless, the increased sampling by adding the ASCATs to the SC, everywhere improves
the VRMSD scores against HSCAT-B. Seemingly, averaging out the local and variable weather
e�ects is more relevant than the variability due to the better ASCAT resolution everywhere on
the globe, in particular during the first few days. Three days of averaging appears generally
su�cient to suppress the random weather noise for the ABCO scenario, where after the VRMSD
(very) slowly increases up to accumulation over thirty days in the tropics and high latitudes.
This suggests that the model biases slowly evolve, probably due to variable air-sea interaction
e�ects (in insolation, mixing, etc.). This could be further tested by analyzing the SC variability
over time. e.g., over one or more years.

The region of most abundant (sun-synchronous) satellite sampling, which is expected to
be optimal for model local bias reduction, the high-latitude region, show indeed the strongest
VRMSD reductions for a 1-day TW (N1). It implies a di�erent behaviour than anywhere else on
the globe. Sampling variations due to the changing sea ice, a high longitudinal spatial density of
grid points and a variable temporal mix of scatterometer swaths, suggest that a dedicated study
on how these di�erent conditions (than observed for the rest of the globe) a�ects sampling, should
be performed to further understand the results for this region. The dynamical weather errors
are sampled temporally more irregularly here, which may a�ect the optimum averaging length
for the SC. Fig. 4.16c) indeed shows the best performance at N1 rather than N3, indicating
the relatively larger scatterometer sampling in this ocean region as compared to lower latitude
regions. However, other seasons/years showed the lowest scores at N3 (not shown), which points
to the sea ice seasonality e�ects. Note also that for N1, the time di�erence between the HSCAT-
B overpasses (verification) and the scatterometer overpasses used in the generation of the ERAú

product (ASCATs and OSCAT-2) is reduced at high latitudes, meaning that the verification
at such latitudes is not as independent as the one in the tropics and middle latitudes, which
generally leads to lower VRMSD values (i.e., the SCs for high latitudes are generated with
similar sampled winds than the HSCAT-B used for the verification), thus underestimating the
true ERAú errors.

A similar analysis is performed over coastal regions by verifying ERAú against HSCAT land-
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flagged, collocated WVCs (i.e., over the entire coastal regions of the oceans). Increased wind
variability conditions, including relatively steep wind gradients, are expected near the coast,
which are generally poorly resolved by ERA5. Moreover, as already seen in the theoretical
simulation in Chapter 3, the scatterometer sampling is rather irregular and poor along the
coastline as compared with open ocean grid points (more so in the theoretical scenario which
only accounts for three scatterometers to simulate sampling). Fig. 4.18 shows a snapshot
of the three-day scatterometer sampling pattern in the Mediterranean (taken as a reference
for irregular sampling patterns closer to the coastline), for the combined ASCAT-A/B/C and
OSCAT-2 scatterometers. Note how the sampling drastically drops along closest grid points to
the continent or in the vicinity of islands. For HSCAT-B land-flagged points a worse yet similar
trend in the ERAú performance is found at the coast (Fig. 4.19), as compared to other ocean
regions, in particular the middle latitudes (Fig. 4.16). Once again, the extra sampling provided
by the complementary scatterometer combination over a three-day TW (ERA*ABCON3 in blue)
shows the lowest VRMSD scores and significantly outperforms ERA5 U10S.

An mentioned throughout the manuscript, the quality of the ERAú is achieved by the trade-
o� between scatterometer sampling and the persistence of local biases. Considering this method-
ology is based on a static correction, outperforming the ERA5 becomes more challenging in high
wind variability conditions. Thus, the e�ect of transient weather and the diurnal cycle near
the coast on the ERAú product quality is further examined through the distribution of the SC.
Granted that local systematic biases are generally of the order of ± 2 m.s≠1 (previously shown
for di�erent SC derived maps), the outliers in the SC distribution (recall long tails in Fig. 2.3),
are assumed to be caused by wind variability not properly captured by the ERA5. These are,
as expected, more prominent in shorter temporal windows than in longer windows (the lower
the sampling, the larger the impact of transient weather and diurnal cycle in the SC).

Using the distribution of SC values for a temporal window of three days and the combination
of all ASCATs and OSCAT-2 (i.e., ABCO), these outliers are filtered out with a fixed value that
corresponds to 3‡, i.e., three times the standard deviation of the SC distribution. This value is
found separately for the SC produced with the C-band and the Ku-band sensors, the latter more
a�ected by rain e�ects (Xu and Sto�elen, 2020b), and applied to the individual scatterometer-
ERA5 di�erences before computing the corresponding SC (2.1). Further details on the SC
distributions used to determine cut-o� values for this filter can be found in section 2.2.

Fig. 4.20 shows the VRMSD scores (w.r.t. HSCAT-B U10S) for the ERA5 benchmark (in
black), the ERAú configuration after 3‡ filtering (ERA*ABCO3‡ in orange), and the same config-
uration without the filter (ERA*ABCO in blue). These scores are plotted as a function of the TW
size for the same four regions defined in Fig. 4.16, namely for the tropics (a), middle latitudes
(b), high latitudes (c) and globally (d). Indeed, the outlier removal seems quite e�ective. Notice
how ERA*ABCO3‡ outperforms ERA*ABCO for short TWs. In particular, ERA*ABCO3‡N3 has
the lowest VRMSD scores, showing an error variance (V RMSD2) reduction w.r.t. ERA5 of
about 12.5% in the tropics (4.20a), while the reduction is of about 5% in the middle latitudes
(4.20b) and 9% in the global ocean. Note that large di�erences tend to occur near moist convec-
tion in ASCAT (King et al., 2022), while HY-2B data are mostly rejected near moist convection.

85



4.2

N1 N3 N5 N10 N30
1.5

1.6

1.7

1.8

1.9

V
R

M
S

 [
m

.s
-1

]

a)

ABCO
ABCO3σ
ERA5

N1 N3 N5 N10 N30
1.5

1.6

1.7

1.8

1.9

b)

N1 N3 N5 N10 N30
TW [days]

1.5

1.6

1.7

1.8

1.9

V
R

M
S

 [
m

.s
-1

]

c)

N1 N3 N5 N10 N30
TW [days]

1.5

1.6

1.7

1.8

1.9

d)

Figure 4.20: Same as Fig. 4.16, but for ERA*ABCO3N3 (blue) and ERA*ABCO3‡N3 (orange).

It implies that the relatively large (Lin et al. (2015a)) wind errors in moist convection are ig-
nored in this verification, obviously resulting in better scores. However, given that the N10 and
N30 verifications are largely una�ected, one may conclude that the mean e�ect of the exclusion
of the outliers is negligible after a few days and the computed corrections are representative.
(4.20c).

Furthermore, in line with the findings from the scatterometer sampling analysis in this
Chapter, and also in Chapter 3, the quality of the ERAú generated without correcting (no SC
applied) at those grid point locations considered to have insu�cient sampling is analysed. The
test is performed both in the Mediterranean and globally. The former provides a good test
case because of the substantial drop of scatterometer samples closer to the coastline (i.e., the
Mediterranean has a much higher percentage of coastal points than the global ocean).

Fig. 4.21 shows the VRMSD scores for November 2019 globally, for the ERA5 benchmark,
and the ERA*ABCO configuration for a one-day (N1) and a three-day (N3) TW, as a function
of the filtering. Specifically, the check done for just the 3‡ filtering, the 3‡ filtering but not
correcting for less than 2 scatterometer samples (M2), and the 3‡ filtering but not correcting
for less than 4 samples (M4). Note that, for the former two, the non-corrected grid points will
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Figure 4.21: Global scores of VRMSD (in m.s
≠1) between di�erent ERA5/ERA*ABCON3 U10S products and HSCAT-B

U10S over a month period (November 2019), as a function of the applied filtering: a 3‡ threshold, a 3‡ threshold but
discarding corrections in grid points with less than 2 (M2) or 4 (M4) scatterometer samples. The ERA* SC combines all
ASCATs (A/B/C) and OSCAT-2 (ABCO notation) for one-day (N1) and three-day (N3) TWs.

simply contain ERA5 U10S values.
No significant improvement for the ERA*ABCON3 quality is seen in the global verification by

avoiding SC in grid points with less than two or four scatterometer samples, likely because of the
enhanced sampling characteristics of this configuration. On the contrary, if a one day temporal
window is used (ERA*ABCON1), the ERAú is somewhat improved by excluding M2 and M4
(in line with the expected larger abundance of M2 or M4). Still, the lower VRMSD scores are
obtained for ERA*ABCON3, where the impact of this added filtering is null, although, as already
mentioned, a one-day TW is discarded for the generation of ERAú (e.g., ERA*ABCON1) because
of the already mentioned artifacts visible in the derived maps (see Figs. 4.4b and 4.15b).

The U10S verification shows further reduction of model errors after applying the 3‡ filter, in
particular when complementary scatterometer data are used to correct the U10S in the tropics,
middle latitudes, high latitudes, and coastal regions. As such, it is assumed that most of the
high frequency signal observed comes from ocean-related wind signal rather than from (transient
weather) noise. Thus, the ERAú U10S configurations (after applying the 3‡ filter) are also
verified as to their geophysical consistency and e�ective resolution by means of spectral analysis.
Note that only the results for the zonal U10S component are shown, but similar conclusions can
be drawn for the meridional component.

The spectral analysis focuses on the tropics and the middle latitudes. For the verification
of the ERAú close to coastal zones, such as the Mediterranean Sea, spectral analysis is not
used to validate the consistency of the generated fields. To compute the U10S spectra using
the HSCAT-B scatterometer as the independent source, this technique requires that at least a
3200-km long row covered by scatterometer ocean-only (no land gaps) tracks is present in order
to properly compute the spectra, a requirement which is not met in the Mediterranean basin.

To obtain the U10S spectra for the tropics and the middle latitudes, valid samples of the
U10S components are collected over a month (February 2019) in the HSCAT-B along-track
direction for each across-track WVC. The final spectrum is obtained by averaging the individual
spectra over all WVC numbers across the swath and over the mentioned time period. Overall,
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Figure 4.22: Power density spectra for the zonal U10S component (u) of HSCAT-B (dashed pink), and collocated ERA5
(red) and ERAú (see colour legend) products, in the tropics (a) and the middle latitudes (b). The ERA* products based
on all ASCATs (A/B/C) and OSCAT-2 (ABCO notation) for di�erent TW are shown. The ERA*ABCON notation from
N1 to N30 corresponds respectively to TWs from one to thirty days (see Table 4.3).

for HSCAT-B, 1578 (8458) individual spectra are averaged in the tropics (middle latitudes).
The geophysical consistency of the ERAú is first inspected by varying the TW size used in

the SC, for a fixed combination of scatterometers that has previously shown best performance
over other scatterometer combinations, i.e., ASCAT-A/B/C, and OSCAT-2).

Fig. 4.22 shows the zonal U10S component in the tropics (Fig. 4.22a) and the middle
latitudes (Fig. 4.22b). The solid lines show the model U10S spectra for the same sample length
(128) as those collected for the HSCAT-B data (dashed pink). The red solid line shows the ERA5
spectrum, while the di�erent ERAú configurations are shown in orange, blue, green, purple, and
cyan (sorted as in the last row of Table 4.3). The black dashed line shows the spectral slope of
k≠5/3 for comparison.

Indeed, the spectra in Fig. 4.22 resemble those of Fig. 4.6, as the spectral slopes observed for
the ERAú mostly lay between those of ERA5 and HSCAT-B (except for the one-day TW plotted
in orange). Hence, according to this Figure, the ERAú is able to resolve smaller scales than ERA5
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Figure 4.23: Power density spectra for the zonal U10S component (u) of HSCAT-B (dashed pink), and collocated ERA5
(red) and ERAú (see colour legend) products, in the tropics (a) and the middle latitudes (b). The di�erent ERAú config-
urations shown here use a three-day SC TW (see notation in Table 4.3).

although the U10S fields are somewhat smoother than those of HSCAT-B, due to the implied
averaging in SC. HSCAT-B contains structures related to random 3D turbulence and convection,
while ERA5 is only amended by those structures that are correlated over time. Note that for
the N1 configuration the apparently finest scale ERAú product (spectrally closest to HSCAT-B)
is obtained, showing more sampled 3D turbulence or weather, which is undesirable as noted
earlier. With the exception of N1, the SCs substantially reduce the ERA*/HSCAT-B VRMSD
and are hence associated with persistent model biases and not with random 3D atmospheric
turbulence. Note though that a slight indication of a flat spectrum tail is noticeable at high
frequencies, also noticeable in HSCAT-B (see dashed pink curve), which indicates a small part
of the fast and random 3D turbulence and convection may be present as noise.

The dependence of the spectral slope on spatial sampling is analysed in Fig. 4.23. The
spectra for the zonal wind component are displayed for a fixed TW (N3) with di�erent com-
binations of scatterometers, as listed in the second column of Table 4.3. The HSCAT-B and
ERA5 spectral curves are respectively plotted with a dashed-pink line and a solid red line.
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Note that, in the middle latitudes, while ERA*ON3 and ERA*ABCON3 have similar spectral
slopes, ERA*ABCN3 has a somewhat less steep curve, similar to that of HSCAT- B. Moreover,
ERA*ABCN3 contains somewhat larger variance at intermediate scales than HSCAT-B. This is
expected since the ASCATs are of higher resolution than the Ku-band systems like OSCAT-
2. This can in turn have an impact on the verification of the ERAú products. That is, since
ERA*ABCN3 contains more variance than the other two ERA* configurations (ERA*ABCON3
and ERA*ON3), the verification with the relatively low variance HSCAT-B winds may result in
larger VRMSD values for the former than the latter ERAú configurations. Further verification
with higher-resolution buoy U10S is therefore required to confirm that ERA*ABCON3 is indeed
the optimal configuration. Furthermore, the spectral slopes observed in Fig. 4.22 and 4.23 are
not significantly altered after applying the 3‡ filter to the scatterometer-ERA5 di�erence.

It is clear from Figs. 4.22 and 4.23, that the size of the temporal window has a more
pronounced e�ect on the spectral slope than the number of scatterometers used. As noted in
the spectral analysis performed in this manuscript, the spectra for the middle latitudes, here
displayed in Fig. 4.22b and 4.23b, are more energetic at small wave numbers than those of the
tropics, as expected due to the synoptic scale weather systems. Apart from that, the spectra
for all the configurations behave alike for these two regions.

4.3 11-year ERAú

Starting at the end of the previous decade (2017 onward), the golden Era of scatterometry
(with several scatterometers currently operating in orbit and a few others to be launched in
the near future) provides extended scatterometer sampling that, as previously demonstrated,
further improves the quality of the ERAú L4 wind product. As such, the generation of a longer
ERAú data record that benefits from this enhanced coverage is also explored, and included as
part of the ESA World Ocean Circulation project (WOC). This data record is produced for an
eleven-year period that starts in 2010. Granted that the exceptional coverage is not uniformly
present within this period, a careful assessment of yearly scatterometer constellations is first
performed and explained in subsection 4.3.1. Moreover, this decade contains a few long periods
of unavailable scatterometer retrievals that are expected to a�ect the quality of the ERAú.
This is inspected in subsection 4.3.2. Thorough verification of error variance reduction w.r.t
independent validation sources (both HSCAT and buoy U10S) for the ERAú configurations that
are included in the 11-year data set, as well as the periods of enhanced ERAú configurations,
are discussed in subsection 4.3.3.

4.3.1 Assessment of the varying scatterometer constellation

Throughout this Chapter, the ERAú configuration based on a three-day (N3) SC with maxi-
mized scatterometer sampling, e.g., ABO in 2013 and ABCO in 2019, provided the best quality
product. However, the optimal scatterometer sampling from 2019/2020 is exceptional, and un-
fortunately periods of three or more scatterometers are only available for a few years over the
period of interest (2010-2020). This section is used to assess the performance of the di�erent
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scatterometer combinations present over this period, using as validation reference both collo-
cated buoy and independent scatterometer (HSCAT-B) U10S data sets for the year 2019. Note
that 2019 is chosen as testbed since the scatterometer constellation in 2019 covers all the di�erent
scatterometer combinations present in the period 2010-2020.

Table 4.4: Scatterometer constellation, and corresponding notation, from 2010 to 2020.

Period (years) Sun-synchronous Scatterometer constellation Notation
2010-2012 ASCAT-A, OSCAT-1 AB
2013 ASCAT-A/B, OSCAT-1 ABO
2014-2016 ASCAT-A/B AB
2017-2018 ASCAT-A/B, OSCAT-2 ABO
2019-2020 ASCAT-A/B/C, OSCAT-2 ABCO

Table 4.4 lists the sun-synchronous scatterometers (C- and Ku-band) included in the SC
for the period of interest (2010-2020). In summary, these scatterometer combinations give the
maximum coverage for their corresponding years. In particular, the optimal configuration ABCO
(in terms of complementary sampling) is only available in 2019-2020, while AO is available in
2010-2012, ABO in 2013 and 2017-2018, and AB (i.e., a combination of C-band scatterometers
only) in 2014-2016. Although other scatterometers were available within this period only those
with global and (near) continuous coverage are listed in Table 4.4.

Given the wide range of possible configurations, the performance of the di�erent configu-
rations needs to be verified before a nominal ERA* configuration is set for the entire period
2010-2020. In particular, the non-polar RapidSCAT or the discontinuous HSCAT-A/B are used
as independent scatterometer U10S sources for validation purposes only. On that note, buoy
validation is performed using the moored arrays in Fig. 2.1b which, as specified earlier in the
manuscript, include: the National Data Buoy Center (NDBC) moored buoys o� the coasts of
USA, the Ocean Data Acquisition System (ODAS) buoys in the north-east Atlantic and British
Isles inshore waters, the National Oceanic Atmospheric Administration (NOAA) Tropical Ocean
Atmosphere (TAO) buoy arrays in the tropical Pacific, the Japan Agency for Marine-Earth Sci-
ence and Technology (JAMSTEC) Triangle Trans-Ocean Buoy Network (TRITON) buoys in
the western Pacific, the Prediction and Research Moored Array in the Atlantic (PIRATA), and
the Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction
(RAMA) at the tropical Indian Ocean.

Fig. 4.24 shows the monthly VRMSD for ERA5 (in black) and ERAú against HSCAT-B
(4.24a) and buoy (4.24b) U10S data for 2019. The ERAú configurations for a fixed TW of three
days (N3) are assessed according to di�erent scatterometer constellations: ERA*ABCN3 (green),
ERA*AON3 (blue) and ERA*ABCON3 (red). From the HSCAT-B verification (Fig. 4.24a), only
configurations that combine both the ASCAT and OSCAT scatterometers (ERA*AON3 and
ERA*ABCON3), outperform the ERA5 product. Note a degradation of the quality for the latter
configurations from May to June 2019. This is due to an OSCAT-2 data interruption of about
30 days, which will be further analyzed in subsection 4.3.2. The ASCATs-only configuration
(ERA*ABCN3) generally shows a similar VRMSD than that of ERA5, when estimated against
the smoother HSCAT-B winds.
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Figure 4.24: Estimated monthly VRMSD (in m.s
≠1) between a few ERA5/ERA* U10S products listed in Table 4.4, for

2019. The verification is shown w.r.t. HSCAT-B U10S (a) and w.r.t. buoy U10S in (b). The following ERA* 3-day TW
configurations are shown: all ASCATs (A/B/C) and OSCAT-2 (ABCO notation in red), all ASCATs (ABC in green),
and ASCAT-A and OSCAT-2 (AO in blue). The ERA5 is plotted in black.

According to the buoy verification (see Fig. 4.24b), ERA*ABCON3 generally outperforms
ERA5. However, the ERAú quality improvement with respect to ERA5 is smaller than that ob-
served in Fig 4.24a. Moreover, in contrast to the HSCAT-B verification results, ERA*AON3
(ERA*ABCN3) generally shows a small quality degradation (improvement) with respect to
ERA5.

From the HSCAT-B VRMSD one may infer that ERA*ABCON3 contains the most small-
scale variability, but which is not observed by HSCAT-B. A longer TW would be profitable to
suppress this small-scale variability and improve the HSCAT-B VRMSD, as shown earlier. Also
in line with earlier results, the small-scale suppression appears more e�ective for ERA*AON3
and ERA*ABCON3 generally. ERA5 does not resolve these small scales, but is hampered by
model biases, which enhance the HSCAT-B VRMSD. coincidentally, the amplitude of the biases
in ERA5 and that of the small-scale weather noise in ERA*ABCN3 is similar with respect
to HSCAT-B. Subsequently, the buoy verification shows that the small-scale ocean signal in
ERA*ABCN3 appears generally su�cient to improve ERA5, very similar to ERA*ABCON3, but
unsimilar to ERA*AON3 that is generally worse than ERA5. Sampling noise due to the random
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Figure 4.25: Monthly VRMSD (in m.s
≠1) between ERA5 (black)/ERA*ABN15 (red)/ERA*AN30 (green) U10S and

HSCAT-B U10S, for 2019.

weather at the overpass time of the scatterometers may contribute to the VRMSD and may be
larger than the targeted local model bias signal, hence in total deteriorating the buoy verification
of ERA* with respect to ERA5, which latter is lacking small-scale variability.

Note also that while buoy verification is local, i.e., for a few locations in the tropics and
coastal areas (see Fig. 2.1b), HSCAT-B verification is global. As such, local sampling patterns
of the di�erent ERA* configurations (e.g., higher resolution 12.5-km ASCATs have improved
coastal sampling in comparison to the 25-km OSCATs) likely play a more dominant role in
the buoy than in the HSCAT-B verification. Additionally, as mentioned in 1.4, buoys and
scatterometers measure the surface winds di�erently: while the buoys and ERA5 measure winds
relative to earth-fixed coordinates, scatterometer winds are accurate relative to ocean surface
motion, which better represent the oceanic variability scales that ERA* intends to capture
(Belmonte Rivas and Sto�elen, 2019).

Fig. 4.25 shows the same metrics as Fig. 4.24 but for ERAú with ASCAT-only combinations,
and using longer accumulation windows, namely ERA*ABN15 and ERA*AN30, respectively for
a 15-day and a 30-day TW. Overall, for ASCAT only configurations, longer TWs are better
suited to outperform ERA5. Furthermore, if only one ASCAT (ASCAT-A) is available, the
15-day TW leads to an ERAú quality similar to that of ERA5 (not shown), while the 30-day
TW provides better quality U10S than ERA5 (see green curve below the benchmark). Note also
that although the scatterometer sampling for a TW of 15 days and 2 ASCATs is very similar to
that of a TW of 30 days and 1 ASCAT, the former leads to lower VRMSD scores as shown in
Fig. 4.25, thus confirming that the persistence of local biases is in general shorter than 30 days.
The same verification against buoys U10S as in Fig. 4.24b is performed for the ERA*AN30 and
ERA*ABN15 (not shown), with very similar results as those from the ERA*ABCN3 configuration
shown in Fig. 4.24b.

4.3.2 E�ects of lasting data gaps

In this section, a more detailed analysis of the impact of the OSCAT-2 data gap in May-June
2019 is carried out. In particular, the main data gap is from May 20th to June 19th, 2019.
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Figure 4.26: Daily VRMSD (in m.s
≠1) for ERA5/ERA*ABCO (a) and ERA5/ERA*AO (b) U10S products w.r.t. HSCAT-

B U10S, for N3 (red), N15 (blue) and N30 (green) TWs, from May 1st to June 27th 2019. The ERA5 is plotted in a solid
black line.

Fig. 4.26a shows daily VRMSD estimates of ERA5/ERA*ABCO versus HSCAT-B from May
1st to June 27th 2019, and the following TWs: 3-day (N3 red), 15-day (N15 blue), and 30-day
(N30 green) days. As expected, the shortest TW (N3) provides the lowest VRMSD scores,
except during the OSCAT-2 gap period. In this period, the 3-day configuration generally has
a lower performance (higher VRMSD values) than the ERA5 product. That is, for OSCAT-2
long data gaps (longer than 1-2 days), i.e., the 3-day TW does not provide su�cient sampling
to outperform ERA5 U10S. As such, a longer TW of at least 15 days is needed. Moreover, in
the absence of OSCAT-2 data gaps, a 15-day time window leads to better ERAú performance
than a 30-day time window.

Fig. 4.26b shows the same as Fig. 4.26a but for the ERA*AO configuration. Likewise, the N3
TW is optimal for the data availability period. However, during the gap period, the ERA*AON3
quality substantially drops. Although the N15 configuration is of much higher quality than
the N3 configuration during the gap period, i.e., for an ASCAT-A only configuration (ERA*A,
resulting from the OSCAT-2 gap), a 30-day TW is required for ERAú to outperform ERA5.
In other words, a 30-day TW is required for the ASCAT-A only configuration (ERA*AN30) to
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Figure 4.27: Scatterplot of daily VRMSD (in m.s
≠1), w.r.t. HSCAT-B U10S, of ERA*ABCO versus ERA5 (a) and

ERA*AO versus ERA5 (b), for N3 (blue circle) and N15 (orange circle) TWs, over 2019.
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Figure 4.28: Number of accumulated data gaps (in days) per year, for the di�erent scatterometers (see legend) in the period
2010-2020. The specific scatterometer sampling combination is specified for every year on the x-axis.

obtain better U10S performance than that of ERA5.
Fig. 4.27 shows the daily VRMSD scores of ERAú versus ERA5, both w.r.t. HSCAT-B

U10S, for two TWs (N3 and N15) over the year 2019.
(4.26a) shows the ERA*ABCO configurations, while (4.26b) shows the same for ERA*AO.

Intuitively, the colored bullets lying above the diagonal represent the days in which ERA5
outperforms ERAú, and vice versa. As expected, these days mostly correspond to the OSCAT-2
data gap period (between May and June 2019). Although it is clear that N3 shows the best
performance most of the time (see blue bullets lower position w.r.t. the diagonal), to minimize
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Table 4.5: ERAú baseline configurations for the 10 year period. Three years of Enhanced ERAú configurations listed in
bold.

Periods (years) ERAú configurations
2010 ERA*AON30
2011-2012 ERA*AON15
2013 ERA*ABON15
2014-2016 ERA*ABN15
2017-2018 ERA*ABON15
2019-2020 ERA*ABCON15
2013 ERA*ABON3
2018 ERA*ABON3
2020 ERA*ABCON3

the amount of days in which the bullets lie above the diagonal and e�ectively neutralize the
e�ect of theses gaps, a longer TW of 15 days (N15) is required (see orange bullets almost always
below the diagonal). Also, in line with the results in Fig. 4.26b, the 15-day temporal window
proves ine�ective for the ASCAT-A & OSCAT (AO) configuration during the gap period (see
the excess of orange bullets above the diagonal in 4.26b). As such, the longest TW (N30) is
necessary in these cases, i.e., cases of e�ectively ASCAT-A only sampling.

The gap distribution throughout the data record (shown in Fig. 4.28) combined with the
U10S verification for the scatterometer combinations specified in Table 4.3, leads to a baseline
ERA* configuration in which a TW of 15 days (N15) makes the final data record more consistent
in terms of performance, i,e., ERAú quality. In 2010 though, since the OSCAT data is missing
for over 3 months, a 30-day temporal window (N30) is proposed instead. A summary of the
ERA* baseline configurations is provided in Table 4.5, from 2010 to 2020.

However, the overall U10S verification shows that for selected years without long-lasting
OSCAT data gaps an enhanced-quality ERAú configuration using a 3-day temporal window (N3)
provides a better quality product. This is true for 2013, 2018, and 2020. These configurations
are listed below the baseline configurations in Table 4.5 (bold).

4.3.3 2010-2020 U10S Verification

The percentage of the mean error variance reduction w.r.t. that of ERA5 (see Eq. 2.10),
for most of the ERAúN15 configurations is shown in Fig. 4.29. Due to the lack of independent
scatterometer validation source in 2010, the verification of ERAú

AO
N30 in 2019 is used instead.

During 2019, the latter is shown to outperform ERA5 (see Fig. 4.26b), even when long OSCAT-2
data gaps exist.

Overall, the nominal ERAú 15-day product outperforms ERA5 with an VRMSD reduction
of about 3-9%, showing that the performance is clearly regionally dependent. Those ERA*
configurations using complementary scatterometers, i.e., a combination of C- (ASCATs) and
Ku- (OSCATs) band scatterometers lead to the best performances. Note also that the largest
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Figure 4.29: Mean VRMSD reduction of the ERAúN15 configurations against independent scatterometers globally (G, blue
bar), in the tropics (T, red bar), in the middle latitudes (X, yellow bar), and at high latitudes (H,L purple bar) (see legend).
The corresponding ERAú configuration per year is referenced in the x-axis, alongside the independent scatterometer used
for validation (in parenthesis).

sampling configuration (ERA*ABCON15) shows slightly lower error variance reductions. This
may be due to the fact that di�erent periods of time and independent scatterometers are used
in the verification of the di�erent configurations. [Note also that the OSCAT data gaps shown
in Fig. 4.28 also impact the ERAúN15 configurations, although the impact on the yearly/2-
yearly scores of Fig. 4.29 is actually small (not shown)]. Such finding reinforces that a trade-
o� between sampling and temporal window size occurs, i.e., for su�cient sampling, a smaller
temporal window is preferred since some ERA5 local biases may not persist over 2 weeks, but
over shorter temporal scales. Despite that, for the period of interest, because there are long
OSCAT data gaps, a rather conservative approach (to ensure su�cient sampling over the gap
periods) is followed for the baseline product.

Furthermore, detailed characteristics may be noted from Fig. 4.29. First, the high-latitude
impact of RapidScat is relatively large. This is interesting since all RapidScat winds occur
below 60 degrees latitude. Seemingly, the corrections in the storm track region around 50
degrees latitude are particularly beneficial.

Second, the relative improvement in the tropics is much enhanced when OSCAT is included
in ERAúN15. This may be attributed to the dominance of moist convection processes in the
tropics, which are well depicted by ASCAT (King et al., 2022), but generally QC-ed by Ku-
band winds (Xu and Sto�elen, 2020c). This implies that the Ku-band scatterometer verification
excludes rainy areas, while the ASCAT-based SC include rainy areas. Hence, in fact, the ASCAT-
based SC may in reality be more representative of the temporally mean biases averaged over all
conditions. This may be further tested with buoy verification.

The same verification is done for two of the enhanced 3-day ERAú configurations in Table
4.5 (in bold), namely ERAú

ABO
N3 (in 2013) and ERAú

ABCO
N3 (in 2020). The same regional

dependence is observed, with ERAú proving to be a better quality product than ERA5, with
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Figure 4.30: Percentage of mean VRMSD reduction for two of the ERAúN3 enhanced configurations in Table 4.5(bold),
i.e., ERAú

ABO
N3 and ERAú

ABCO
N3. Same layout as in Fig. 4.29.

variance reductions of about 6-11%. As expected for short TWs, the ERA* configuration with
the largest sampling (ERAú

ABCO
N3) gives the highest quality U10S. Regionally, the latter out-

performs ERA5 with a VRMSD variance reduction larger than 10% in the tropics and high
latitudes, while in the middle latitudes the reduction is only 6%. Thus, globally the VRMSD
variance are about 9% lower than that of ERA5 as verified against Ku-band scatterometers.

4.4 Discussion

The new approach, which uses scatterometer U10S data to correct for persistent local NWP
wind vector biases, is thoroughly analysed in this Chapter. For the configurations that keep
adequate balance between temporal and spatial accumulation of scatterometer data in the SC,
the ERAú product is of higher resolution and accuracy than the original ECMWF ERA5, par-
ticularly so in open ocean regions.

With the novel methodology it is possible to introduce true smaller-scale signal in the cor-
rected reanalysis or ERAú (compared to the original reanalysis, i.e., ERAi or ERA5), that
ultimately represents some of the physical processes absent or misrepresented in the original
reanalysis, such as strong current e�ects (such as WBCS, highly stationary), wind e�ects as-
sociated with the ocean mesoscales (SST), coastal e�ects (land see breezes, katabatic winds),
parameterization errors, and large-scale circulation e�ects, e.g., at the ITCZ.

Several ERAú configurations using di�erent scatterometer combinations and temporal win-
dow sizes (over which the SCs are performed) are explored in this Chapter. The performance and
geophysical consistency of such configurations are verified for U10S against an independent scat-
terometer, e.g., HSCAT-A/B U10S data. Moreover, the qualitative assessment of these ERAú

configurations revealed enhanced mesoscale variability with respect to the original ERA reanal-
ysis. For the ERAú versions with complementary scatterometers, and in the absence of long
scatterometer gaps, a significant reduction in their VRMSD values (against either HSCAT-A or
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HSCAT-B) is shown when compared to those of the original reanalysis. However, the magnitude
of this reduction is always higher for the ERAi-corrected ERAú than for the ERA5-corrected
ERAú. This due to the improvements in the ECMWF model over time, which in turn result
in better quality reanalysis for ERA5, which includes the latest model and data assimilation
scheme update (not included for ERAi). Therefore, the reduction in the magnitude of the local
biases and the increment of intermediate to small scale variance in ERA5, also somewhat reduces
the magnitude of the correction.

Moreover, the ERAú method is regionally dependent, i.e., its e�ectiveness is mainly modu-
lated by scatterometer sampling of the locally variable weather-modulated model wind biases
and on the longer term by local bias persistence. As such, both the ERAi-corrected and ERA5-
corrected ERAú have the same performance trends. Evidence that improvement can be achieved
by increasing the number of scatterometers, while reducing the temporal window of the SC is
consistently shown for di�erent years and scatterometer combinations. Note though that too
short temporal windows (N1) are generally of worst quality even if enough scatterometers are
used, i.e., with over 3 samples per grid point. Using a shorter TW adds small-scale transient
weather noise to the SC, which can be qualitatively identified by the swath-edge artifacts in the
derived U10S maps.

Furthermore, depending on the NWP-corrected ERAú, the ERAú configuration with the
largest scatterometer sampling are ERA*ABO for 2013 (for the ERAi-corrected ) and ERA*ABCO

for 2019/2020 (ERA5-corrected ) with the best performance approximately over a 3-day temporal
window (N3). Additionally, for the latter removing transient weather e�ects by applying 3‡

filtering of the scatterometer-ERA5 di�erences results in further improvement of the ERAú

quality. The ERAúN3 has relatively low VRMSD scores and relatively shallow spectral slopes
(in between those of the independent scatterometer and the reanalysis), thus indicating that
indeed smaller scales are introduced in the new product, i.a., because the signature of oceanic
mesoscale features is imprinted on the atmosphere, as previously shown in Tang et al. (2014)
with SeaWinds data.

Regionally, the ERAú quality in the middle latitudes is in between that in the tropics and high
latitudes. This is likely due to the transient character of weather phenomena at higher latitudes,
i.e., Belmonte Rivas and Sto�elen (2019) point out that ERA reanalysis (both the ERAi and
the ERA5) show deficient zonal and meridional wind variability, over the storm tracks, where
wind variations generate westward baroclinic Rossby flow, which confine upper ocean response
establishing the WBCS.

Furthermore, the performance of these configurations drops in coastal regions. Coastal
e�ects are expected to negatively impact the ERAú, due to diurnal e�ects and sampling issue.
An example of this is seen in the VRMSD verification within the Mediterranean basin. In the
latter, a relevant limitation is the reduced scatterometer sampling near the coast or in the vicinity
of islands that causes irregular (insu�cient) sampling within the basin. Moreover, increased wind
variability conditions are observed in the Mediterranean, more so in the Adriatic region, where
the coastal e�ects are most prominent. The above negatively impacts the methodology proposed
here, due to both insu�cient nonuniform sampling and reduction of local bias persistence.
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Another source of verification is required to understand the behavior of the methodology
in the high-latitude region. The extensive sampling provided by the increase in scatterometer
passes near the poles should indeed lead to improved quality ERAú. However, for short TW sizes,
the near coincidence (in time) between the scatterometers used to generate ERAú and the one
used for verification (HSCAT) may lead to ERAú product quality overestimation. Additionally,
other relevant e�ects, such as the seasonality of the sea ice extent, the SST-dependent biases in
Ku-band systems and their impact on the scatterometer wind-retrieval errors, quality control,
and sampling should also be accounted for in this analysis.

Overall, spectral analysis shows that the new product (for the configurations addressed so far)
contains more small scale variability than the original ERA reanalysis. The observed spectral
slopes consistently lay between those of the scatterometers and the original reanalysis, in most
cases closer to the former, indicating that the ERAú gridded fields keep some of the spatial
scales resolved by scatterometers. However, only the persistent small scales are kept in the SC,
which are due to oceanic features such as wind changes over SST gradients and ocean currents.
A persistence correction cannot bring lacking 3-D atmospheric turbulence and moist convection
as these processes are fast, hence the use of the 3‡ filter to exclude this variance from the SC.

Both qualitative assessment and the spectral analysis show smoothing in the derived ERA*
U10s fields with the use of longer temporal windows, which may also lead to a small decrease
in the quality of the product when verified against HSCAT. This is verified for ERAú

ABCO

on temporal windows larger than five days (N5), arguably because longer time windows will
slowly blur the ocean-related processes captured in the scatterometer winds. This is particularly
noticeable in the tropics. In general, a temporal window larger than N1 is necessary to avoid
the reported sampling artifacts and average out the fast and transient weather e�ects.

Smoothing is also observed when increasing the number of scatterometers in the SC. However,
this e�ect, which does not significantly depend on the temporal window size, is very small, both
in the tropics and the middle latitudes. Moreover, the use of complementary scatterometers in
the configurations show a clear benefit in terms of VRMSD scores, indicating that these are the
most suitable configurations (when available).

Overall, this method shows more potential over regions of persistent local conditions, e.g., in
the tropics over the trade winds region, and performs worse in areas characterized by transient
weather or diurnal variations (middle latitudes and coastal regions). More so, it is demonstrated
that, to e�ectively correct for persistent biases, the optimal trade-o� between sampling and
local bias persistence combines complementary scatterometers over relatively short TWs. In this
manner, transient phenomena and sampling artifacts are minimized with only limited smoothing
of the signature of oceanic mesoscale features and other persistent biases. These considerations
are then used to generate both a consistent ERAú data set over a long (11-year) data period
which contains long-lasting data gaps and an enhanced ERAú over a shorter period (for 3 years)
with reduced data gaps. A large TW size (N15 and N30) is used for the former, while a short
TW (N3) is used for the latter.

The next Chapter investigates the potential of the ERAú methodology in real oceanographic
applications, specifically by comparing the ocean model response to the ERAú with respect to
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other wind forcing prescriptions. Note that the findings for two very distinct case-studies are
presented, thus allowing for a more robust evaluation of the applicability of the novel forcing.
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Oceanographic applications

1 Atmospheric forcing applied as ocean model boundary conditions can have a critical impact
on the quality of ocean forecasts (Lewis et al., 2019). In addition to the inter-comparison between
the performance of ECMWF ERA reanalysis and the novel ERA-corrected higher resolution
U10S product, two separate case-studies were analyzed to verify the usefulness of the latter
for ocean prediction purposes, i.e., to investigate the added value of the new ERAú ocean
forcing products used as wind forcing, by evaluating the dynamical ocean model response. The
General Circulation Model (GCM) used for numerical ocean modeling is a NEMO v3.6 model
for both case-studies. In particular, the results for an open ocean and a coastal application
are presented, respectively in sections 5.1 and 5.2 of this Chapter. Note these studies were
conducted in collaboration with other research groups, and took place at di�erent stages of the
thesis. Consequently, the first case study (open ocean) over the Tropical Atlantic (TA) uses
as ocean forcing conditions the EC-EARTH, the ERAi and the ERAi-corrected ERAú, whilst
the second case study (coastal), within the Adriatic basin, uses the ERA5 and ERA5-corrected
ERAú. Because the main focus is on the ocean response to the given atmospheric forcing, the
following subsections include a description of the ERAú configurations used to force the model,
a brief explanation of the case study, and the outcome from the simulations. A final section
is dedicated to discuss whether the ERAú improves the model response w.r.t. other forcing
solutions, for both regions.

5.1 Open ocean case-study: connection between North tropical and equatorial
Atlantic variability

In 2017, the north Tropical Atlantic (NTA) experienced a profound warming, resembling the
Atlantic Meridional Mode (AMM) pattern, that is associated with a destructive hurricane season
with catastrophic social and economic losses (Nobre and Srukla, 1996; Xie and Carton, 2014;
Klotzbach et al., 2018). While the impact of the 2017 NTA warming on equatorial SST variability
has not been explored so far, recent findings put forward the key role of the AMM-associated
cross-equatorial wind to trigger oceanic waves that impact on equatorial SSTs (Martín-Rey
and Lazar, 2019; Foltz and McPhaden, 2010). As such, an 11-month ERAi-corrected wind
stress (ERAú·), from February 2017 to December 2017, was provided as one of the forcing data
sets in the climate sensitivity experiments, together with ERAi wind stress, to evaluate the
improvement of using realistic forcing to activate the ocean wave mechanisms connecting the
NTA and equatorial Atlantic variability. Version 3.6 of NEMO ocean model was forced with the

1Part of the results presented in this chapter is included in the following paper: Martín-Rey,
M., Trindade, A., Exarchou, E., Ortega, P., Portabella, M., Gómara, I.(2022). Dominant role of
North tropical Atlantic 2017 warm event on equatorial variability. in preparation
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above-mentioned ERAi and ERAi-corrected wind stresses, and also with the EC-EARTH wind
stress products. Notice that the air-sea fluxes in the three experiments are the same, provided
by EC-EARTH. So, only the dynamical ocean mechanisms will be modified as response to the
wind stress forcing. Further information on the experimental set-up is provided in this section
after the characterization of the supplied ERAú.

5.1.1 ERAú adaptations

Unlike the other versions of ERAú, in here the ERAú is generated on a regular 25-km
spatial grid, and computed for the period comprehended between the 1st of February and 31st

of December 2017. In this 11-month period, three sun-synchronous scatterometers, namely the
ASCAT-A/B and OSCAT-2 are used for the ERAú product generation.

At the time of the experiments, and considering the findings in section 4.1 (which assess
ERAi-corrected ERAú performance in 2013, when only ASCAT-A/B, and OSCAT-1 were avail-
able), a three-day TW was chosen as the optimal choice to balance both scatterometer sampling
and capturing oceanic induced mesoscale variability. Note that OSCAT-1 and OSCAT-2 have
di�erent LTAN, which are, respectively, 2:30 h and 1:15 h apart from the ASCAT overpasses,
although the swath width and the revisit period are the same for both instruments. Evidence
that for this ERAú

ABO
N3 configuration the derived U10S fields contain the above-mentioned

signal is shown in Fig. 5.1.
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Figure 5.1: U10S derived maps for the zonal and meridional components of ERAi and ERAú in the NTA, on March 31st

at 03 UTC. The zonal (meridional) component of the ERA5 in (a) ((b)) and ERAú in (c) ((d)).
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Figure 5.1 shows a snapshot of ERAi and ERAú
ABO

N3 U10S within the region of interest
(NTA) for a given day in 2017. It is readily clear that much more variance is present in Figs. 5.1c
and 5.1d than in the corresponding ERAi maps, where this added variability is most noticeable
over the areas where ERAi is unable to solve the physical processes known to occur in this region
(like moist convection induced wind variability).

In the absence of independent scatterometer data to verify whether the signal present in the
ERAú maps of Fig. 5.1 indeed corresponds to true variance and not noise, it was reasonably
assumed that the findings from the statistical analysis in 2013 (in section 4.1) could be extrapo-
lated to 2017. However, from the later analysis on the impact of long lasting scatterometer gaps
(subsection 4.3.2), a decrease in the quality of the data set is expected for ERAú configurations
based on complementary scatterometer data, e.g., ABO, specially when OSCAT-2 data (larger
swath, shorter revisit time) is missing. With hindsight, it turns out that in 2017 all together
about 30 days of OSCAT-2 data are missing during the 11-month period processed. However,
in contrast with the 30-consecutive-day gap period in 2019 for OSCAT-2 (see subsection 4.3.2),
the gaps of 2017 are rather short and well distributed all over the year (not shown). In fact, for
the 11-months there are a few gap periods longer than one day, i.e., the largest corresponding
to two close 3-day gap periods and one 6-day gap period. As such, only a slightly decreased
performance of the ERAú

ABO
N3 configuration is expected during these few relatively long-lasting

gap periods. In fact, additional variance is still present in ERAú, w.r.t. ERAi, as seen in Fig.5.1.
Apart from the visual confirmation in the derived U10S maps (Figs. 5.1c and 5.1d), evidence

of additional variance at smaller scales is clear from the spectral slopes displayed in Fig. 5.2,
i.e., ERAú contains more U10S variance than ERAi in the high-frequency part of the spectrum.
Note that for spatial analysis purposes, buoys are sparse and thus not considered adequate for
this type of verification. For comparison purposes, the spectra derived from collocated ASCAT-
B U10S are also included in this analysis. Fig. 5.2 shows the spectra of ASCAT-B (dashed
blue) and collocated ERAi (red) and two ERA*ABON3 configurations (see colour legend) in
the tropics, for the zonal U10S component (u) in 5.2(a) and the meridional U10S component
(v) 5.2(b). Very similar spectral curves are obtained for both wind components. Note that
both ERAú spectral curves lay between those of ASCAT-B (much more energetic at small
scales following Kolmogorov 3-D turbulent theory of the atmosphere) and ERAi. Despite that,
ERA*ABON3interp (pink curve) shows a steeper slope, that unlike the original ERAú is closer
to that of ERAi in this part of the spectrum.

As already mentioned, in this study ERAú (U10S and ·) are originally generated on a regular
25 km grid for each forecast time (every 3 hours), in spite of that, for forcing purposes a spatial
interpolation to the NEMO circular 1¶ horizontal grid is required. The abrupt drop in the
spectra seen for ERA*ABON3interp is a direct result from interpolation of the original ERAú on
to this coarser grid.

The joint analysis of the qualitative visual assessment and the spectral analysis suggests that
although the ERAú loses some of the the small scale variance introduced by the SC after the
spatial interpolation, the interpolated product contains significantly more small scale variance
than ERAi. Note also that, as common practice by climate modelers, the CDO remap tool
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Figure 5.2: Power density spectra of ASCAT-B (dashed blue) and collocated ERAi (red) and ERA* (see colour legend)
products in the tropics, for the zonal U10S component (u) in (a) and the meridional component (v) in (b). The ERAú prod-
uct is based on combined ASCAT-A, ASCAT-B and OSCAT-2 (ABO notation) SC for N3. Two di�erent spectral curves
are plotted for ERA*ABON3, in which ERA*ABON3 (green) is generated on a regular 25 km grid and ERA*ABON3interp

(pink) is the latter interpolated to the NEMOS 1¶ circular grid.

(Schulzweida, 2019) is used to perform this interpolation.

Note that the same U10S-to-stress conversion (see Eqs. 2.3 and 2.4) is applied to both
ERAi and ERAú products. As such, a verification of the ERAú product in the U10S domain is
indicative of the quality of the product in the wind stress domain (ERAú

· ). Indeed, as it can
be seen from Fig. 5.3, the loss of spatial resolution in the derived wind stress map (ERA*· )
after the interpolation into the coarser grid (see ERAú

· interp
in Fig. 5.3c) is noticeable when

compared to the original 25-km resolution product (Fig. 5.3c). Although the same happens for
the ERAi· interp field after the interpolation (not shown), this qualitative assessment suggests
that some of the small scale variance is in fact lost with the interpolation. However, it is
assumed that such loss in mesoscale variability would (hopefully) not be particularly relevant
for this study, which is focused in climate variability modes and the large scale signal, yet this
should be taken into consideration.
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Figure 5.3: Wind stress magnitude in the Tropical Atlantic for a specific forecast time, e.g., on March 31st at 03 UTC,
for ERAi· (a) and ERAú

· (b) wind stress fields, with the ERAú
· after the spatial interpolation ( ERAú

·interp
) in (c).

A general summary of the set-up of the ocean model is provided next. The focus is on the
details concerning the wind forcing prescribed, such that the performance of the realistic wind
stress, in terms of reproducing the above mentioned wave mechanism, can be properly analysed.

5.1.2 Experimental set-up

The global coupled climate model EC-Earth-3.3 (Döscher et al., 2022) was used to perform
sensitivity experiments using three ocean-forcing simulations. The oceanic and atmospheric
components of the coupled model are respectively obtained from the NEMO-3.6 model (Madec
and the NEMO Team, 2014), using the ORCA1 configuration, which corresponds to about 1¶

horizontal grid and has 75 vertical levels (Wyser et al., 2020), and the Integrated Forecasting
System (IFS) with T255 spectral sampling, which corresponds to a horizontal grid size of about
80 km, and has 91 vertical levels (up to 0.1 hPa).

The set up for the three sensitivity experiments is specified as follows. All the experiments
initialise on February 1st 2017, by ORA-S4 (Balmaseda et al., 2013) in the ocean and by ERAi
in the atmosphere, and run for 11 months with 10 ensemble members (ending on December
31st). These three experiments are inter-annual climate predictions: the first is a free-running
reference prediction i.e., using inter-annual EC-EARTH wind stress (hereinafter, MOD), whilst
the others use original and corrected ERAi wind stress reanalysis (hereinafter INTER-ERAi and
INTER-ERA*, respectively), to force the tropical Atlantic region [35°N-35°S, 70°W-20°E], with
a 4° bu�ering zone to smooth the transition.
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The focus of the study is on the inter-annual variability of the tropical Atlantic. In this region,
di�erent wind stress products are imposed in each time step. Although there is coupling between
the IFS and the ocean, in what concerns the turbulent fluxes, the momentum fluxes that promote
the dynamical wind-driven mechanisms (waves) only respond to the prescribed wind forcing,
which is the changing element in the simulations. So, to first order, the excitation of the Rossby
Wave (RW) reflected mechanism is attributed only to the ERAi/ERAú wind stress forcing.
Note though, in what concerns the turbulent fluxes that contribute to create the SST pattern
(depending on the wind forcing), some interference may arise from the dynamical contribution
via momentum fluxes (forced winds) in the SST pattern that is afterwards translated to the
thermodynamic turbulent fluxes (from the IFS).

Notice that the INTER-EC-Earth (from 2017) is contained within the historical climatol-
ogy run (1980-2013), while in the wind-prescribed experiments (INTER-ERAi and INTER-
ERAú), the model is forced every 3-hours throughout the 11-month period. Moreover, the
wind stress computation di�ers for the ERAi and the ERAú forcing used in INTER-ERAi and
INTER-ERAú, respectively. In particular, the bulk formulation in Eq.2.3 is used to compute
the wind stress magnitude for the ERAú which, as mentioned, takes the average air density
(< flair > = 1.225 [kg/m3]), based on the linear relation for 1 year between the drag coe�-
cient (CD) and U10S (Eq. 2.4). In contrast, for ERAi, the wind stress is computed by the
atmospheric model (IFS CY36R1) through its own bulk formula (http://www.ecmwf.int/en/
publications/ifs-documentation).

In subsection 5.1.3, the dynamical ocean model response to di�erent wind forcings is as-
sessed, with special focus on the interaction between NTA and equatorial variability described
in previous studies (Foltz and McPhaden, 2010; Martín-Rey and Lazar, 2019). For such purpose,
the ocean wave mechanism responsible for this connection is investigated using observational
data sets. Then, the outcome of the sensitivity experiments is evaluated and compared with the
observations.

5.1.3 Ocean model response

The warm event that took place in the north Tropical Atlantic in 2017 and its linkage to
equatorial variability is investigated by the set-up of the three model simulations, i.e., using
di�erent wind stress forcing conditions, as described in the previous section.

The SST observations are displayed in Fig. 5.4 and the wind stress curl over the SSH in Fig.
5.5. The event is clearly marked by a positive Atlantic Meridional Mode (AMM) in the boreal
spring of 2017 (5.4b), leading to equatorial warming conditions during the summer months
(5.4c). The Hömoller diagrams between [-10 50]¶W for the wind stress curl over SSH along the
[2-4]¶N in 5.5(a) and the zonal wind stress over the SSH for the equator in 5.5(b). A downwelling
Rossby wave (dRW) that propagates westwards and reflects back as a downwelling Kelvin wave
(dKW) is evident here.

The first simulation, i.e., the free running reference prediction (MOD), in which the EC-
EARTH model IFS is used only with initialized conditions and SSH from AVISO (https://www.
aviso.altimetry.fr/en/home.html) is shown in Fig. 5.6. Monthly and seasonal anomalies
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Figure 5.4: SST (shaded, in ¶C) and wind stress anomalies (vectors, in N.m
≠2)) from boreal spring (March-May) to late

summer (July-September). Each panel corresponds to 3-month periods, specifically FMA in (a), AMJ in (b), in JJA (c)
and ASO in (d). Notice that observations here are referred to SST and wind stress anomalies from ERAi reanalysis.

for observations are computed by subtracting the ERAi (for SST and wind stress) climatologies
for the period 1980-2013 and 1993-2013, respectively. Fig 5.6 shows these anomalies for the
MOD simulation (5.6(a)(b)(c)) alongside the observed event (5.6(d)(e)(f)), for easy comparison,
seasonally from March to September, i.e., MAM, MJJ, JAS. Notice the 3-month periods from
(5.6(d)(e)(f)) do not correspond to those shown in 5.4, but are illustrative of the observed
conditions in the latter. The MOD experiment is not able to properly capture the observed
2017 event in Fig. 5.4 with these conditions. A too strong meridional mode is detected in boreal
spring and persists until fall.

For the realistic wind stress forcing simulations (INTER-ERAi and INTER-ERAú), the ocean
model response is evaluated by plotting the outputs from these two model runs w.r.t MOD
baseline, for same three month periods as in Fig. 5.6, and applying the added value (AV)
estimator from (Di Luca et al., 2013; Gómara et al., 2018). This technique is based on the
square error and applied for each pair of simulations in the following way:

AVERAi≠MOD = (XMOD ≠ XOBS)2 ≠ (XERAi ≠ XOBS)2 (5.1)

AVERAú≠MOD = (XMOD ≠ XOBS)2 ≠ (XERAú ≠ XOBS)2 (5.2)
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b)a)

Figure 5.5: Time-longitude hövmoller diagram of observed (7-yr Butterworth) anomalies of wind stress curl and SSH along
the equator (a) and [2-4]¶N (b), for boreal spring.

AVERAú≠ERAi = (XERAi ≠ XOBS)2 ≠ (XERAú ≠ XOBS)2 (5.3)

Where XMOD, XERAi, XERAú and XOBS are the SST fields corresponding to, respectively,
MOD, ERAi, ERAú, and observations. Positive (negative) AV values represent positive (nega-
tive) impact of the first forcing term w.r.t. that of the second, e.g., positive AVERAi≠MOD values
in Eq. 5.1 represent positive impact of ERAi forcing w.r.t. MOD forcing, meaning that ERAi
forcing is able to improve the ORA-S4 model SST output quality w.r.t. MOD forcing. Hence, in
Fig. 5.7, the AV for SST and the wind stress di�erence between INTER-ERAi and MOD (Fig.
5.7(a)(d)(g)(j) and Eq. 5.1), between INTER-ERAú and MOD (Fig. 5.7(b)(e)(h)(k) and Eq.
5.2), and between INTER-ERAú and INTER-ERAi (Fig. 5.7(c)(f)(i)(l) and Eq. 5.3) for the
2017 spring, summer, and autumn periods, are shown. The use of realistic winds, both ERAi
and ERAú e�ectively improves the Senegal-Mauritania during boreal spring/summer and in
summer/fall. In particular, the ERAú forcing improves the model response to the SST signal in
the NE tropical Atlantic, which implies a better representation of the AMM in spring time, also
seen in the Western/Central equatorial region during the summer/spring, (see the red-marked
AV region in Fig. 5.7(e))). Whereas the ERAi better resembles the observed conditions near the
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Figure 5.6: SST (shaded, in ¶C) and wind stress anomalies (vectors, in N.m
≠2)) for MOD (a)(b)(c) and for observations

(d)(e)(f), from the boreal spring (March-May) to late summer (July-September) in the tropical Atlantic region, during
2017. Notice that observations here are referred to SST and wind stress anomalies from ERAi reanalysis.

coast (see Fig. 5.7d). Surprisingly, despite the previously mentioned problem of ERA* winds
close to the coast, Fig. 5.7(c) reveals that there is a clear improvement of the coastal SST signal,
which responds to the correct simulation of the northward along-shore winds that reduce the
upwelling.

Remarkably, the ocean wave activity proves highly sensitive to realistic wind stress during
the entire NTA evolution. In Fig. 5.8, the wave propagation is seen both using the ERAi (see
Fig. 5.8(a)(b)) and the ERAú (see Fig. 5.8(c)(d)) wind stress forcing. The downwelling RW
triggered by ERAi and ERAú, with respect to MOD, agrees with a second-like RW baroclinic
mode ( 0.49 m.s≠1) that displaces westward along 2°N-4°N band from mid-April to July (Figs.
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Figure 5.7: Added Value (AV) of simulated SST (in squared ºC) for INTER-ERAi vs. MOD, INTER-ERAú vs. MOD,
alongside INTER-ERAú-INTER-ERAi experiments, from boreal spring (March-May) to fall (September-November) 2017.
Di�erences between associated wind stress forcings are overlaid in purple vectors. Significant values exceeding 95% confi-
dence level according to a t-test applied over all members are presented in black contours.

5.8(a)(c)).Then, it is boundary reflected, becoming a downwelling equatorial Kelvin wave that
crosses the equatorial Atlantic in June-July, resembling the first baroclinic mode ( 2.97 m.s≠1,
see Figs. 5.8(b)(d)).

The comparison between the simulations with ERAú and ERAi shows that, despite the former
contains a stronger wind curl north of the equator (not shown), there are no significant changes
in the generated downwelling RW (Fig. 5.8a). In contrast, an enhancement of the equatorial
Kelvin wave propagation during boreal summer is found in ERAú with respect to ERAi (see
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Fig. 5.8(f)). The large RW signature seen in wind-forced simulations (Figs. 5.8(a)(c)) can be
understood by the spatial pattern of the local realistic winds.

The wind forcing clearly plays a dominant role in establishing the conditions that propel
these waves and link the NTA to the equator SST variability. The importance of using proper
wind forcing conditions is striking from the results above. This is evident from the outcome of the
realistic wind forcing simulations, which properly capture the Rossby wave reflected mechanism
linkage between the NTA and the equatorial regions. Moreover, the ERAú-based simulation is
able to better resolve the dKW propagation over the equatorial Atlantic than the ERAi-based
simulation.
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Figure 5.8: Changes in ocean wave propagation. Time-longitude hövmoller diagrams of the di�erence between daily SSH
anomalies in INTER-ERAi w.r.t. MOD (a)(b), INTER-ERAú w.r.t. MOD (c)(d) and ERAú w.r.t. ERAi (e)(f), along
the [2-4]¶N (left panels) and the equatorial (right panels) bands. Notice that the x-axis has been reversed along the 2°N-4°N
band to better visualize the RW-reflected mechanism. Black-dash lines indicate the propagation of second Rossby (left) and
first Kelvin wave (right) baroclinic modes. Significance has been evaluated according to a t-test applied over the 10 members
of each experiment and those values exceeding 95 % confidence level are shown in black contours.
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5.2 Coastal case-study: Adriatic Storm Surges

Severe storm surges in the Adriatic basin leave the northernmost cities located along the
coast extremely vulnerable to flooding. These are commonly referred to as ’Acqua Alta’ for
floods within the Venice lagoon. These surges are periodic weather events with aggravating con-
sequences to the economy, and a real threat to human lives. Atmospheric conditions favouring
storm-surge development are more frequent during the cold season. They occur when a Mediter-
ranean (atmospheric) low-pressure system moves towards the Adriatic inducing an air-pressure
gradient over the basin resulting in strong south-easterly Sirocco wind blowing along the basin
major axis (Trigo and Davies, 2002). The atmospheric low combined with the persistent Sirocco
wind channels the water towards the northernmost and the shallowest part of the sea usually
with a wind speed between 10 and 15 m.s≠1 (Lionello et al., 2012; Me�ugorac et al., 2018).

Furthermore, the Northern Adriatic sea, is highly a�ected by well-defined seiche periods and
resonant amplification of tides (Tsimplis et al., 1995; Medvedev et al., 2020). Thus, coastal
flooding occurs due to the mutual reinforcement between storm surge, tides, and seiches, and
the alignment on the temporal phase di�erence between peak storm surge, peak tide, and peak
seiche Cavaleri et al. (2010).

Although weather forecast has greatly advanced in recent years, and ECMWF winds are
probably the best boundary conditions for storm surge simulations, local atmospheric models
with high resolution and data assimilation give better forecasts than those from the ECMWF
global model, which are too coarse to resolve small-scale local variability both in time and space,
e.g., the 2019 Venice flood, in which the presence of a very localized low-pressure system went
overlooked by all models (Cavaleri et al., 2020) by all models. Moreover, in comparison to
scatterometers, the ECMWF outputs in the Adriatic generally underestimate the winds due to
low resolution and consequent underestimation of air flow channeling over the Adriatic basin,
(Zecchetto et al., 2015). As such, improving meteorological forecasts is one of the potential
factors that may improve storm surge prediction.

To this end, considering the enhanced small scale variance (introduced with the SC) present
in the ERAú (demonstrated throughout the manuscript), its performance against ERA5 U10S
as NEMO-prescribed surface wind forcing is checked in the Adriatic Basin during storm surge
conditions. For such purpose, a storm surge that took place during the mid-winter season in
2013, and caused a sea level rise of 143 cm at Venice–Punta della Salute on February 11th at
23:05 UTC, is simulated. Furthermore, the rise in sea level during this event is categorized by
Lionello et al. (2021), and percentage wise, 27% is attributed to the astronomical tide, another
27% to the storm surge and a 10% contribution from a seiche. Although a total of three events
were actually analysed, two in 2013 (the latter in February and a small one in March) and a
historical event that happened in November 2019, but for the sake of brevity, only the February
storm surge is analyzed, since the conclusions are similar.
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5.2.1 ERAú in the Mediterranean

As seen in subsection 4.2.2 the performance of the ERAú is less optimal in the Mediterranean
basin as compared to that in the open ocean. Specifically over the Adriatic sea, the proximity to
the coast, the orography, diurnal cycle and large-scale wind evolution over 3 days are expected
to further a�ect the quality of the product.

The ERA5-corrected ERAú U10S products for this study-case are generated globally, using
the 3‡ filter, and on a regular 12.5 km spatial grid for three di�erent periods. Following the
selected storm surge cases, two di�erent ERA configurations with a 3-day TW (N3) are used:
one based on the sampling of three sun-synchronous scatterometers (ASCAT-A/B and OSCAT-
1) for 2013 (ERA*ABON3), and another one based on four scatterometers (ASCAT-A/B/C and
OSCAT-2) for 2019 (ERA*ABCON3). The U10S data products are then cropped for the domain
[11 22]¶E [38 47]¶N and delivered. Note that the data sets are spatially interpolated on to the
NEMO curvi-linear grid, which is of higher resolution than that of the ERAú products, and as
such the resulting interpolated products preserve the additional small variance present in ERAú.

Although the focus is on the February event, the other two ERAú data sets are also tested.
These correspond to a weaker 2013 event (in March), and to a recent stronger historical storm
surge in November 2019. The latter is actually a very interesting study case, due to the (pre-
viously mentioned) specific weather conditions during the storm surge, which aggravated the
surge, and made its accurate prediction more challenging (Cavaleri et al., 2020). Unfortunately,
over this region the ERA5 and the ERA5-corrected U10S are quite alike in all three events. The
February event is shown because there are more discrepancies between ERA5 and ERAú U10S
fields in the 24 hours prior to the peak surge, than for the other two events. However, even
for the selected case, one can see from the qualitative assessment of Fig. 5.9, where the wind
vectors for both ERA5 (red) and ERAú (black) are plotted, that they actually are very similar
during the Sirocco event.

Fig. 5.9 shows the wind vectors for a few hours in the afternoon on the day of the surge, i.e.,
February 11th. For the most part the U10S direction from both ERA5 and ERAú forcings are
quite alike, except in the northernmost part of the basin and along the coast (see Figs. 5.9b to
5.9d). Compared to the second event in 2013 (not shown), the magnitude of the winds is slightly
higher here, whilst very similar to the one observed for 2019 (not shown). On the day of the
peak surge, typical Sirocco wind (10-15 m.s≠1) dominates the channel, intensifying throughout
the afternoon.

Apart from the qualitative characterization of the two wind fields during the hours be-
fore the recorded sea level maximum which, according to the Koper Mareographic Station
(45¶33ÕN, 13¶44ÕE), happened at 21:20 pm (UTC), an independent scatterometer was used for
a more quantitative validation, namely the HSCAT-A.

Table 5.1 shows the values of the metrics used for this evaluation, namely U10S component
biases (bu, bv), and standard deviations (‡u, ‡v), and the VRMSD, for both ERA5 and ERAú,
w.r.t. HSCAT-A. The scores listed in the table are computed for both regions in Fig. 2.7,
and for several periods. Specifically, for a 3-month period (i.e., February-April) for the entire
Mediterranean basin, as well as for the Adriatic Sea, and the storm surge and surge periods.
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Figure 5.9: U10S derived wind vector maps for ERA5 (red arrows) and ERAú (black arrows) in the Adriatic basin (cropped
limits), on March 11th for the 15:00 UTC (a), 17:00 UTC (b), 19:00 UTC (c) and 21:00 UTC (d) forecasts. A reference
arrow corresponding to the median value in m.s

≠1 is given for each UTC time, applicable to both U10S products. The
Koper Tide Gauge location is shown in black.

Table 5.1: Mean (b) and standard deviation (‡) of the di�erences between di�erent ERA5/ERAú products and HSCAT-
A, in the Mediterranean and the Adriatic basins, for both the zonal (meridional) U10S component, over several time
periods. VRMSD scores are also included. The numbers of valid winds over which the statistics are computed are shown
in parenthesis in the first column.

ERAú (m.s≠1) ERA5 (m.s≠1)
Validation bu(bv) ‡u(‡v) VRMSD bu(bv) ‡u(‡v) VRMSD

Mediterranean 3M (300813) 0.0215(0.0268) 1.46(1.41) 2.0291 0.124(0.0906) 1.49(1.41) 2.0517
Adriatic 3M (35162) 0.0256(-0.0967) 1.55(1.53) 2.1851 0.1580(-0.1310) 1.56(1.53) 2.1964

7th-14th of February (3364) 0.316(-0.0357) 1.67(1.63) 2.3497 0.544(-0.2050) 1.74(1.64) 2.4574
11th-12th of February (1021) 0.174(-0.492) 1.29(1.19) 1.8311 0.7470(-0.8010) 1.22(1.15) 2.0055

These periods are defined here as follows: the storm surge period starts a few days before and
ends a few days after the surge (lasting 7 days), i.e., from 7th to 14th of February, and also marks
the beginning of the ocean model simulations; the surge period instead is taken as 24h before
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and after the surge, i.e., from the 11th to the 12th of February.
The metrics for the 3-month period helps evaluate the performance on a larger scale with

average weather conditions in the basin, which also includes the smaller storm surge event on
March 30 2013. As expected, a better quality product is obtained for the Mediterranean basin
as compared to the Adriatic over the 3-month period, with respect to HSCAT-A, for both ERA5
and ERAú data sets. This was previously anticipated due to the close proximity of the coastline
along the Adriatic channel that further aggravates coastal e�ects, and in turn a�ects the quality
of the product. Moreover, periods of higher wind variability increase collocation errors. In
particular, for the Mediterranean, the error variance reduction (see Eq. 2.10) is 2.1%, whilst
for the Adriatic only 1%. However, during the surge period, both ERA5 and ERAú show the
lowest errors w.r.t HSCAT-A. The rather uniform Sirocco wind that blows over the region is
responsible for such low VRMSD scores, with a noticeable error variance reduction of ERAú

with respect to ERA5 of a about 16.6%. Also note that ERAú outperforms ERA5 for all the
analysed periods and regions. This was not found for the other two events, in which ERA5 and
ERAú performances are overall very similar (not shown).

Additionally, the 2d-histogram in Fig. 5.10 shows the similarity between ERA5 and ERAú

U10S from the 11th to 12th of February, for the grid locations previously used to obtain the
metrics in Table 5.1. Note that the same analysis was performed for the other two events, and
it is concluded that the largest ERA/ERAú di�erences are obtained during the February 2013
storm surge event. According to the bias and standard deviation values shown in Fig. 5.10a(b),
the VRMSD between ERAú and ERA5 for the surge period is 0.9754 m.s≠1, substantially
smaller than the VRMSD of either of the products w.r.t to HSCAT-A (see Table 5.1), but still
not a negligible di�erence. Fig. 5.10(c) shows these metrics respectively for the U10S speed
and direction components (the latter excluding U10S speeds below 4 m.s≠1). No relevant wind
direction discrepancies between ERA5 and ERAú are found for this period. Note though that
the ERAú speeds are on average 0.5 m.s≠1 lower than those of ERA5.

Although the information provided with spectral analysis would help understand the true
scales resolved by these forcings, such analysis is not possible due to the size of the Adriatic
basin (see subsection 4.2.2).

5.2.2 Experimental set-up

The impact of di�erent meteorological forecasts for an accurate prediction of the three storm
surge events already described, which resulted in flooding over the Northernmost coast of the
Adriatic basin, is verified by the set-up of two model simulations using the ERAú and the ERA5
U10S data (see previous section) as the NEMO model prescribed ocean wind forcing.

The NEMO v3.6 model (Madec, 2008), configured on a 999x777 regular longitude-latitude
grid with a resolution of 1¶/111 over the Adriatic basin ([12-21]¶E [39-46]¶N), is used for the sim-
ulations. This set-up employs 33 vertical z-coordinate levels with partial steps. The Baroclinic
timestep is set to 120 seconds, while the barotropic timestep is set automatically to satisfy the
Courant-Friedrichs-Lewy (CFL) stability condition. The model is initialized from an operational
Mediterranean Forecasting System (MFS), made available through the Copernicus Marine Envi-
ronment Monitoring Service (CMEMS) product MEDSEA_ANALY SISFORECAST_PHY _006_013
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Figure 5.10: Two-dimensional histogram of ERAú versus ERA5 U10S, collocated to HSCAT-A, from the 11th to the 12th

of February, in the Adriatic Sea (see yellow polygon in Fig. 2.7), for the zonal (a), the meridional (b), the speed (c) and
the direction (only for speeds over 4 m.s

≠1, (d) U10S components. The legend shows the correlation coe�cient (corxy),
the mean (m(y-x)) and the standard deviation (s(y-x)) of the di�erences, as well as the number of points (N) used.

(see Clementi et al. (2021)). The model domain is nested into the Mediterranean basin in the Ionian
sea, south of the Otranto strait. Lateral boundary conditions for temperature, salinity and elevation at
the open boundary are taken from CMEMS MFS.Flather boundary condition is enforced for elevation,
and flow relaxation scheme is enforced for the baroclinic variables and tracers. For surface boundary
conditions, this GCM employs the CORE formulation for bulk fluxes, requiring 10-m winds, shortwave
and longwave fluxes, 2-m air temperature, humidity, precipitation and snowfall (Large and Yeager, 2004).

As pointed out, U10S from ERA5 and ERA5-corrected (ERAú) are used as the atmospheric fields for
these simulations. Note all other atmospheric fields come from the ERA5. Adriatic rivers are included as
described in (Li�er et al., 2016). Lateral di�usion is computed using Laplacian operators over geopotential
surfaces and the k ≠ ‘ scheme is used for vertical di�usion of momentum.

5.2.3 Impact on surge forecast

According to SSH measurements from the Koper Tide Gauge located in the Istria Peninsula, the
first peak of the surge was registered on February 11th at 21:20 UTC (22:20 CET). Fig. 5.11 shows the
SSH time series (m) and the tidal forecast (cm) throughout February 2013, at the Koper TG location.
To highlight the data within the storm surge and the surge periods these are shown shaded in gray and
yellow, respectively (recall that the storm surge period is from the 7th to the 14th February, while the
surge is between 11th-12th February).
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Figure 5.11: SSH (m) time series measured by the Koper Tide Gauge (TG, black line) (Pérez Gómez et al., 2022), and
obtained from the NEMO output at the TG location for the ERAú (cyan dots) and the ERA5 (red dots) based simulations
in 5.11(a). Note that the mean sea level observed by the TG is added to the model outputs to adjust for the geoid. The
shaded grey area corresponds to the storm surge period, while the shaded yellow area corresponds to the surge period. The
tidal forecast (cm) for the same location is shown in green in 5.11(b).

Consider that coastal floods in the Adriatic typically occur due to constructive superposition of tides
and meteorologically-induced storm surges. According to the SSH observed (black line in Fig. 5.11a) and
the tidal prediction (green line in Fig. 5.11b), the recorded peak surge occurs, as previously noted, at
21:20 UTC, and can be identified by the maximum SSH value in phase with the high tide. The tides in
the Adriatic Sea have a mixed semi-diurnal cycle with two high and two low tide levels of di�erent height
every day. Moreover, the diurnal cycle is also important for the total tidal signal in the basin.

The ocean model response to the atmospheric forcing prescribed for these two simulations (i.e., with
ERA5 and with ERAú) is also shown in Fig. 5.11(a). The NEMO SSH output at the tide gauge location
almost always overlaps for the ERA5 (red dots) and the ERAú (cyan dots) forced simulations. Note
that the TG continuously records the sea level every 10 min, whilst the NEMO output for the SSH is
stored on a hourly time step, at 30 min past the hour, i.e., 00:30, 01:30, 02:30 and so on until 23:30. As
such, the maximum SSH is depicted at 21:30 (UTC) and the amplitude of the total sea level signal is
equally underestimated by both simulations (≥3.22 m) w.r.t. to the TG record (≥3.495 m). These results
indicate that unfortunately the ERAú forcing does not improve the storm surge simulation w.r.t. that of
ERA5, despite the fact that model sea level predictions are highly sensitive to the correct meteorological
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Figure 5.12: NEMO SSH output (m) over the Adriatic basin on February 11th 2013 at 21:30 UTC (closest time to the
TG registered surge peak), based on ERA5 ((a)) and ERAú (b) forcing. The di�erence between both model outputs are also
shown ((c)). The black dot marks the Tide Gauge location.

Despite the fact that the simulations fail at predicting the observed surge at the TG location in the
Slovenian coast, presenting almost always the same predicted SSH for both simulations, a wider look at
the model response over the elongated channel is shown in Fig. 5.12. The NEMO SSH response looks
very similar regardless of the wind forcing used, i.e., ERA5 (5.12a) or ERA* (5.12b). Note also that
tide gauge observations in Koper measure the total local water depth at the tide gauge location, while
the NEMO model only outputs sea level anomaly from the geoid, determined in geodesy as a 18.6-year
average over the tide gauge water depth time series. To make quantitative comparisons, we therefore
need to shift model SSH so that it matches the mean value of the observed SSH time series within the
comparison time window. Figs 5.12a and 5.12a depict basin scale sea level surface, closest to the time
of the observed peak surge. Note that the water is pushed along the channel, accumulating all over the
Northernmost Adriatic, with a maximum SSH of about 1 m. This qualitative analysis confirms an equal
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response to the forcing over the entire basin, with model predictions di�ering about 0.03 m at most. The
predicted SSH di�erence from each simulation (ERAú forced - ERA5 forced) is represented in Fig. 5.12c).
In fact, over the TG location, the ERAú predicts higher SSH, as compared to ERA5, however the two
simulations present an SSH di�erence under 0.01 m, thus not significant.

Considering the predicted model SSH for each forcing, i.e., the surge prediction, it is concluded that
over the Adriatic, the use of the ERAú product, is as (un)suitable as the ERA5, to improve the Adriatic
surge predictions.

5.3 Discussion

Two di�erent application scenarios are considered, where the ERAú is used as the ocean surface
forcing prescribed for the GCM NEMO and compared to other atmospheric forcings.

In the open ocean case study presented in section 5.1, the impact of the 2017 NTA warm event on
the equatorial Atlantic variability is investigated through a suite of initialized predictions with the EC-
Earth3.3 model. Amongst them, the model free-run (MOD) and two realistic wind stress forcing data
sets, namely ERAi and ERAi-corrected (ERAú), are prescribed for the tropical Atlantic region.

By using realistic wind stress (both ERAú and ERAi) as NEMO atmospheric forcing, the model is
able to reproduce the SST variability triggered by these winds and promoted by the equatorial Rossby
wave reflected mechanism, thereby confirming the existence of NTA-equatorial linkage in the 2017 event
via wind-induced remote ocean waves, seen in observations and in agreement with previous findings from
Martín-Rey and Lazar (2019). On the contrary, because large di�erences in wind stress can cause distinct
SST anomalies, the MOD simulation is unable to correctly capture the observed NTA 2017 warm pattern
just with initialized conditions. Note that the reduced north-easterly winds in the ERAi and ERAú

reanalysis products (with respect to the modelled wind stress) can activate the latent heat fluxes and
damp the coastal upwelling, giving rise to a more realistic SST pattern in ERAú and ERAi based forecasts
as compared to those in MOD.

Further addressing the AV of the realistic predictions in the reproducibility of the event, specifically
addressing the ERAú forced with respect to ERAi forced simulations, the following findings are listed:
the representation of the o�-shore NTA and equatorial Atlantic SST during boreal spring is considerably
ameliorated in the ERAú forced simulation; also in ERAú, the SW winds and equatorward position of
ITCZ contributes to improve the SSTs; and finally, ERAú enhances the propagation of the equatorial
downwelling Kelvin wave during the boreal summer.

Overall, the weaker equatorial trades from May to September in both realistic wind stress forecasts
with respect to MOD, favor an e�cient propagation of the equatorial waves in the Atlantic.

Note though, currently the results do not account for the model SST drift. It is worth mentioning
that all climate predictions or forecasts initialized, own a drift that is strongly dependent on the mean
state. This drift is large during the first 2-3 months of the forecast and then experiences a smooth
transition to reach the equilibrium Exarchou et al. (2018); Voldoire et al. (2019). To remove the drift
in the sensitivity experiments, two additional 20-year hindcasts are performed with forcing: a normal
prediction from EC-EARTH and another one forced by ERAi wind stress covering the period 1997 to
2017, i.e., a control-hindcast and an ERAi-hindcast. Because it is not possible (yet) to generate a 20-year
hindcast for ERAú (since there is insu�cient scatterometer sampling to produce a viable scatterometer
correction before 2010), and considering the findings presented here using INTER-ERAi and MOD, the
ERAi-hindcast is used to correct for the ERAú drift. The results after the drift correction are disclosed
on the paper in preparation.

In summary, despite the fact that some of the mesoscale variability in the original ERAú (before
being interpolated into the coarser grid) is lost w.r.t. the product used in the INTER-ERAú simulation,
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for this study, which is focused on climate variability modes and the large scale signal, the performance
of ERAú is notable, suggesting that the product may be of an AV for this type of studies.

For the coastal case study presented in section 5.2, which attained at improving the storm surge
predictions in the Adriatic Sea, several factors contributed to the fact that the storm-surge prediction
capabilities are not improved by none of the forcings, i.e., ERA5 or ERA5-corrected (ERAú).

Note that for this section, three storm surge events are analyzed, and although results are only
presented for the February 2013 event, similar outcomes were obtained for the events from March 2013
and November 2019. As such, the same conclusions (as discussed below) can be drawn for all three cases.

Departing from small discrepancies between the ERA5 U10S and the generated ERAú U10S field
during the storm surge period (subsection 5.2.1), all the NEMO simulations yielded very similar SSH
predictions. The storm surge event is inaccurately reproduced by the NEMO simulations, this may be
because neither ERA5 nor ERAú are accurately resolving the sea-surface wind (U10S) prior or during
the event. The peak storm surge in the SSH predictions misses the true amplitude of the surge as well
as its timing, with a delay of about 10 min (although the latter is mainly due to the hourly binning of
the model forecasts). Note that floods occur when the Sirocco wind is in phase with the tide. Hence, the
actual peak in the total sea level recorded at the Koper tide gauge (over the Slovenian coast), in phase
with the high tide from the tidal forecast for this location, gives a total sea level about 20 cm higher than
the NEMO predictions.

It is argued that both the mean magnitude and direction of typical Sirocco wind is well represented in
the prescribed atmospheric forcing during the storm surge period, and as such a storm surge is reproduced
by NEMO. However, the presence of fast evolving weather conditions during the surge, not well captured
by ERA5, cannot be resolved by ERA* (by definition). Indeed, a 3-day based correction in ERAú will
filter out transient weather, while only correcting for persistent local ERA5 biases. As explained by
Cavaleri et al. (2020), for the 2019 floods over the Venice bay, the presence of a very localized cyclonic
activity unresolved in most NWP models was behind the inaccurately predicted floods.

A reason for the resemblance between the ERAú and ERA5 U10S fields in the Adriatic Sea, is the
fact that near the coast the 3‡ filter should be more active than in open ocean regions, since more
wind variability is expected near the coast. This will in turn lead to rather smooth scatterometer-based
corrections. A shorter temporal window of 1-day has been tested in the Adriatic with rather inconclusive
results. Indeed, the proposed methodology does not aim at resolving transient weather. While a 1-day
TW may be able to depict some more transient features (on a daily scale) over the storm surge period,
the relatively poor sampling within such short TW hampers the ability of ERAú to properly correct
for transient local ERA5 biases. Moreover, since the true transient weather is under-sampled, potential
artifacts in the resulting ERAú U10S fields will arise. Future work should focus on looking for other
storm surge events for which ERAú (N3 configurations) and ERA5 U10S fields are more discrepant, in
order to check for potential benefits of this methodology under specific storm surge preconditions.
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Conclusions and Outlook

Throughout this manuscript, all the stages involved in the development of the L4 high resolution ocean
wind forcing product ERAú are carefully disclosed. Considering the high demand for an accurate ocean
surface wind forcing product, particularly in what concerns ocean modelling activities and atmosphere-
ocean coupling, as well as the limitations of the most commonly used atmospheric forcing solutions, this
closing chapter begins by addressing the research question proposed in the thesis.

1. Is it possible to improve the currently available surface wind forcing products by developing a more
accurate, high resolution forcing with the information contained in the scatterometer data?

The requirements for ocean forcing products are evolving as coupled atmosphere-ocean models become
more sophisticated. Where earlier products were monthly, today’s modelling systems may produce hourly
outputs. As opposed to ocean vector wind or stress observations that although ever more abundant,
are not globally available every hour. Many publications in the past decade show however the lack of
mesoscale detail in atmospheric model winds as compared to collocated scatterometer winds. Moreover,
many of these di�erences appear locally bound and persistent in time. This leads to the idea that
model winds may be amended by scatterometer corrections (SC) at every time step, but where the SC is
estimated over a long time period. This idea is verified in this thesis.

Moreover, it is worth noting that the limitations of currently available surface wind forcing products
are still generally associated either with their insu�cient spatio-temporal coverage (as in the case of
observations, e.g., high quality U10S from scatterometers) or with their coarser e�ective resolution and
lower accuracies, as is the case of atmospheric models (NWP or reanalysis) (Saha et al., 2014; Dee et al.,
2011; Hersbach et al., 2020) or hybrid products (Desbiolles et al., 2017; Mears et al., 2019). As for the
particular question above, throughout the thesis it has been verified that the proposed product (ERAú)
is indeed of higher resolution and accuracy than the (uncorrected) ERA product, particularly so in open
ocean regions, due to the introduction of the oceanic mesoscales captured by the scatterometers into the
ERAi/ERA5 NWP reanalysis.

Unlike these other forcing solutions that integrate observations, ERAú is based on a slowly evolving
mean scatterometer correction for local biases in the NWP reanalysis, for which a su�cient amount of
scatterometer winds is available at each location. This largely guarantees that mixed spatio-temporal
interpolation functions are avoided in the proposed product. In periods of long-term (greater than 2 days)
instrument failure or other problems resulting in missing data or under-sampling, longer time windows
(TW) for the SC may be allowed at the expense of a small degradation in quality.

The additional variance is evident in visual assessments of the U10S-derived maps for all configu-
rations presented, and corresponds to physical processes absent or misrepresented by the NWP model,
e.g., strong current e�ects (such as WBCS, highly stationary), wind e�ects associated with the ocean
mesoscales (SST), coastal e�ects (land sea breezes, katabatic winds), parameterization errors, and large-
scale circulation e�ects. As expected, additional variance in the ERAú is localized where model biases
have been accentuated in the SC maps.

Using U10S scatterometer data as an independent validation source (HSCAT) it was verified that
this variance is dominated by true local wind signals rather than by random noise. From the overall
configurations addressed in the manuscript, the optimal ERAú is obtained with the best compromise
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between su�cient scatterometer sampling and capturing the spatial and temporal mesoscales. Thus,
using multiple scatterometers and a TW of about 3 days shows the best potential. Note though, this
conclusion is sustained for the scatterometer constellations available from 2010-2020, while it should
apply to future operational scatterometer constellations that are complementary, as the ASCATs and the
OSCATs were.

Incidentally, the SC is used to correct model biases in the nowadays obsolete ERAi and in today’s
ERA5 reanalysis, and the above conclusions apply to both. Although the two contain similar error
structures, as found here and previously by Belmonte Rivas and Sto�elen (2019), the biases in the
ECMWF model have evolved in recent years (mainly with respect to amplitude) and are smaller for
ERA5 than for ERAi. As a result, for the same ERAú

ABO
N3 configuration, the ERAi-corrected product

achieves a an error variance reduction of 10% w.r.t HSCAT, while the ERA5-corrected product shows a
smaller reduction of 6% (globally) in HSCAT di�erences.

Spatial spectral analysis using HSCAT as an independent validation source shows that, over the open
ocean, ERAú e�ectively adds variance at both longer and smaller (about 50 km) spatial scales, significantly
smaller than those resolved by ERAi (about 150 km), and even smaller than the structures resolved by
ERA5 (Jourdier, 2020; Vogelzang and Sto�elen, 2021). Yet the new U10S fields are still smoother than
those of the scatterometer. Furthermore, at smaller scales, the spectra are less a�ected by the spatial
sampling (number of scatterometers used) than by the size of the temporal window, although a slight
smoothing e�ect is shown when more scatterometers are used in the SC. As a rule, this method shows
improvements for increased number of scatterometers accumulated over reduced TWs, as consistently
seen for di�erent years and scatterometer combinations. Yet, daily TWs are generally of worst quality
even if enough scatterometers are used.

It should be noted that although both the ERAi-corrected and ERA5-corrected ERAú result in a
sea surface wind forcing product containing smaller scales than the original reanalysis (showing the same
performance trends), the latest ERAú is a higher quality product than its predecessor. To summarise,
the ERA5 U10S is better than ERAi U10S, while ERA5-corrected is better than ERAi-corrected, and
overall, the ERA5-corrected ERAú is the best.

In either case, for the optimal ERAú configuration, local model biases due to wind e�ects associated
with ocean mesoscale processes, parameterizations and dynamics are reduced by the SC, particularly over
open ocean regions. Yet, as explained next, there is room for further improvements, notably so in coastal
regions.

2. How does regional scatterometer sampling and weather a�ect the performance of static corrections,
particularly in regions dominated by fast evolving atmospheric phenomena or increased wind vari-
ability?

Indeed, the e�ectiveness of the ERAú method is intrinsically modulated by the regional scatterometer
sampling, wind variability and local bias persistence, as seen in Chapters 3 and 4. Before addressing the
question itself, note that, the static mean correction is not meant to depict random atmospheric 3D
turbulence, which has a life cycle of a few hours and therefore it’s averaged out by the SC (longer time
windows). Still, transient weather a�ects the quality of the ERAú, particularly in case of insu�cient
sampling, in case of high local variability, and/or in case the local variability changes the mean state,
e.g., persistent moist convection or coastal e�ects. Therefore, regional product quality improvement by
ERAú is more limited in the middle latitudes or in coastal regions and larger in the tropics and high
latitudes.

The middle latitude regions are dominated by increased variability, in particular due to transient
weather processes near the storm tracks. Wright et al. (2021) describes the variable conditions as a
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function of latitude, but also longitude, showing di�erent triple collocation statistics of buoys, ERA5
and ASCAT, indicating variable biases and errors across the ocean due to the transient weather and its
interaction with the land masses. On the one hand, it will be interesting to investigate the quality of
ERAú further as a function of season and hemisphere. Nevertheless, it is likely that biases due to transient
weather e�ects are also reduced in the averaging over the TW. On the other hand, errors associated to
the distribution of land masses and the implied local flow regimes, both in the ocean and atmosphere,
will persist and are corrected in the SC. Both the e�ects of the transient errors and the persistent errors,
as further analyzed in (Belmonte Rivas and Sto�elen, 2019), appear in the SC for the middle latitudes.
Hence, despite increased sampling in the middle latitudes, the tropics outperforms the former in reducing
systematic error variance. It is clear that for shorter TWs transient weather errors may be captured as
noise, degrading the product (recall N1 results from subsection 4.2.2).

Note that wind variability is also present in the tropics, particularly through moist convection near
the ITCZ, while systematic errors are well corrected in most areas at these latitudes. Note, however,
that this region is more prone to under-sampling than others due to the sun-synchronous orbit of the
scatterometers, especially for configurations with few complementary scatterometers. As first discussed in
Chapter 3, under-sampling in the SC corresponds to less than 4 scatterometer samples per grid location,
in which case ERAú is either of equal or worse quality than the original ERA. Still, the latter can be
avoided by using longer temporal windows of accumulation, at the cost of somewhat smoothing U10S as
compared to the shorter TWs. For the trades, which is considered a region characterized for the most part
by persistent local conditions, when optimal sampling is achieved the static mean correction improves
the product.

High latitudes are at the same time the region with more transient dynamic weather errors as well as
with the largest scatterometer sampling (provided by the wider range of overpass times, due to the wider
longitudinal coverage of the swaths closer to the poles), hence generally resulting in good performance
to compute the static part of the SC. However conclusions for this region should be taken with caution
as using a verification source with closer over passing times to the SC may positively bias the validation.
Alternatively, this potential e�ect may be tested by carefully choosing scatterometer verification passes
further apart from those of the scatterometers used in the SC.

Increased wind variability conditions, including the diurnal cycle and relatively steep wind gradients,
such as katabatic winds, are expected near the coast culminating in a reduced performance of the ERA
models. On the other hand, reduced and irregular scatterometer sampling is also characteristic of these
regions. Consequently, the performance of the static correction drops in coastal regions. Coastal e�ects
hence degrade the quality of both the ERA and ERAú products near the coast, due to reduced model
performance, insu�cient/non-uniform scatterometer sampling (which leads to mixed spatio-temporal
characteristics a�ecting the accuracy of the U10S), and reduced local bias persistence. In fact, the
method implicitly assumes that the diurnal cycle near the coast is perfectly represented by ERA, since
only long-term biases are corrected, which are measured at the satellite overpass times only.

Overall, the performance of the method is degraded by the presence of transient weather, and this is
further aggravated in under-sampled regions. Moreover, both transient and persistent model errors are
spatially correlated as, e.g., in resp. Vogelzang and Sto�elen (2018) and Belmonte Rivas and Sto�elen
(2019), and transient weather e�ects cannot be fully resolved using a static mean correction of 1-day,
i.e., the smallest TW shown in the analyses is too long to properly capture the synoptic variability. Yet,
a small part of the fast and random k≠5/3 3D turbulence and convection is present as sampling noise.
Essentially, the biases in rapidly evolving atmospheric weather are not intended to be accurately depicted
by the method used, only its mean contribution to ERA biases. To reduce random red noise from the
SC corrections, outliers are filtered out (using a 3‡ filter).
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As a summary, the static correction is relatively straightforward to estimate over regions with the
more persistent local weather, e.g., in the trade winds region (excluding the ITCZ), and is more noisy
in areas characterized by transient weather (middle latitudes and coastal regions). More so, it is demon-
strated that to e�ectively correct for persistent biases, the optimal trade-o� between sampling and local
bias persistence is achieved by combining complementary scatterometers (in terms of sampling) over
a relatively short TW. In this manner, the e�ects of transient phenomena and sampling artifacts are
minimized without smoothing the signature of oceanic mesoscale features and other contributions to the
SC.

3. Does ERAú wind forcing make for more realistic representations of oceanic circulation in numerical
simulations than NWP forcing?

Compared to other forcing solutions (including NWP), there is value in using wind stress fields from
ERAú as atmospheric forcing for large-scale ocean simulations, as presented in a case-study on tropical
Atlantic variability discussed in Chapter 5). The following conclusions are based on the comparison
between the ERAi reanalysis (NWP forcing example) and the ERAi-corrected ERAú. Note that it has
been verified that between ERAi and ERAú, the latter is a higher quality surface wind product (results
in subsection 5.1.1).

Using GCM NEMO as the ocean model in the EC-EARTH climate model, a set of three prescribed
atmospheric forcings, i.e., an EC-EARTH model run and two higher resolution realistic forcings (ERAi
and ERAú), are analysed for their ability to drive the oceans dynamical response to the wind (i.e.,
oceanic waves) and reproduce the 2017 warm event over the tropical Atlantic that led to one of the
most devastating hurricane season over the past decade (Nobre and Srukla, 1996; Xie and Carton, 2014;
Klotzbach et al., 2018). Of the three, only the simulations forced by realistic winds, produced the ocean
wave mechanisms linking NTA and equatorial-Atlantic SST variability.

For these simulations, the ERAú wind stress fields (produced for a 25 km regular grid) are interpolated
into a coarser grid (NEMO grid) losing some of the mesoscale variability introduced in the ERAi-corrected
fields. However, through the ERAú method, intermediate and large scale model biases are also corrected,
which, for the purpose of this study that is focused in climate variability modes and the large scale signal,
are considered more relevant.

Indeed, added value is generally found from using the corrected (ERAú) wind stress fields with respect
to those of ERAi, e.g., improved model response to the SST signal in the NE tropical Atlantic, better
representation of the Atlantic Meridional Mode (AMM) in spring time, also seen in the Western/Central
equatorial during the summer/spring. Most importantly, the stronger wind stress curl resolved by ERAú

(w.r.t. ERAi) leads to an enhancement of the equatorial Kelvin wave propagation during boreal summer.

4. Can the ocean models response to high wind variability conditions, e.g., storm surges, be improved
by static corrections of the NWP forecast winds?

As already mentioned, most biases due to transient weather phenomena, e.g., extra-tropical storms,
moist convection induced wind variability or storm surges, are too fast to be properly captured using
long TW in a static SC, as theoretically demonstrated by simulated phase shift in section 3.2. However,
even in regions where high wind variability usually prevails over more steady weather, systematic errors
are also present, though these are harder to mitigate under such conditions using the static correction.
Therefore, although improvements in performance can still be obtained by excluding the more transient
biases, as can be seen throughout Chapter 4 for the middle latitudes and coastal regions, the signal from
transient weather may be partially captured by the method as noise (shorter TWs).

Nevertheless, for high resolution numerical simulation purposes, small-scale variability associated
with relatively rapidly evolving atmospheric phenomena a�ects ocean-atmosphere exchanges and is of
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fundamental importance for forcing ocean models. Therefore, removing/smoothing this variability from
the product may work for large-scale simulations, but does not improve the ocean model’s response to
very localized transient events.

The latter has been verified in section 5.2 by trying to improve the storm surge prediction capabilities
of the GCM NEMO over the Adriatic using the ERA5 and ERA5-corrected ERAú U10S product. A three-
day TW is used for forcing the ocean model. Note though that for the Adriatic basin the diurnal cycle
is very important and neither ERA5, nor subsequently ERAú, are able to depict it. Accurate storm
surge prediction in the Adriatic bay is at the same time very challenging and very pressing (Giesen et al.,
2021). The combination of a very steady Sirocco wind with the meteorological displacement of a low
pressure system towards the Northern Adriatic requires a wind forcing able to capture the evolution of
the storm locally, while the 3-day ERAú depicts the same (inaccurate) ERA5 transient weather during
the storm, as the SC is static. The three Adriatic storm surge events analyzed in this study give the same
model response to both the ERA5 and the ERA5-corrected ERAú U10S forcing, none of which accurately
capturing the storm surge. Moreover, although U10S discrepancies between ERA5 and ERAú U10S are
seen before and after the storm surge event, these are small in the day prior to the surge, indicating that
very similar Sirocco wind conditions are captured by both forcing products when the relatively strong
wind is in phase with the tidal wave (precondition for surge). As such, the same (and inaccurate) modeled
SSH is obtained from both forcings.

To conclude, a static mean correction will not improve the reanalysis U10S in what concerns capturing
high frequency atmospheric variability, therefore more physically-based corrections, e.g., improved drag
formulations or improved NWP model initialization, are much more likely to improve the ocean model
response in high wind variability conditions.

All combined, the findings emphasized while answering these research questions briefly summarize
some of the main conclusions regarding the development and validation of the ERAú. The potential of this
methodology in the development of high resolution ocean wind forcing products is seen in the extensive
product validation that indicates that indeed smaller scales are introduced by the scatterometers in the
new product because the signature of oceanic mesoscale features is imprinted in the atmosphere. A
further potential is seen in the application section for large-scale ocean circulation studies, where the
larger scale corrections are most relevant (by better capturing the wind curl w.r.t. other tested forcings).
In summary, this work shows the added value in using a static mean scatterometer-based correction for
correcting NWP model output local biases, and also its drawbacks, for two ECMWF reanalyses.

Essentially, the methodology developed during this PhD thesis proves regionally dependent both on
scatterometer sampling and wind bias persistence (local weather regimes). Consequently, in regions of
persistent local conditions, e.g., the trade winds regions, the method is very e�ective. As expected though,
in areas more often a�ected by transient weather phenomena the SC is more noisy, and this is reflected
in the quality of the ERAú. On the other hand, corrections in these more dynamic regions are larger and
associated with the transition of large-scale dynamical modes that models often poorly predict. Hence,
an improved description of the mean forcing in these variable conditions may be relevant.

In particular, coastal e�ects are poorly described in ERA, but have high societal and economic
relevance. Furthermore, ERAú implies a perfect diurnal cycle in ERA, as its corrections are accumulated
over several days and di�erent times of the day. In addition, the higher wind variability conditions,
including diurnal e�ects, combined with the irregular scatterometer sampling very close to the coast (25
km) make it di�cult to develop and test the SC here. More future work will be needed, following current
developments to improve scatterometer wind processing in coastal areas.

Future work is focused on further improving the quality of L4 ocean surface gridded winds. In
particular, besides providing biases in the SC, also di�erences in scatterometer and model wind variances
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over the TW could be provided to capture model deficiencies in dynamical and physical processes.
Considering the results with scatterometer sea surface wind data for correcting NWP model output

local biases, there are planned activities for future improvements of the present ERAú approach (in
particular for better correcting in high wind variability conditions). These would include the use of Ku-
band rotating pencil beam scatterometer-derived U10S fields less a�ected by across-track biases, further
reducing the transient weather e�ects and characterizing low sampling e�ects in the computation of
the SC (e.g., in coastal areas). But mostly, knowing that the NWP wind vector biases are linked to
atmospheric stability e�ects, moist convection, ocean currents, SSTs, etc., it is considered that more
flexible SCs ought to be applied in order to improve the quality of NWP winds.

NWP stability-dependent errors in the boundary layer formulation are quite important. According
to Brown et al. (2005a, 2006) in the ECMWF model formulation, momentum mixing seems too strong in
the stable and neutral boundary layer and too weak under unstable conditions, this leads to too strong
ECMWF winds under stable conditions and too weak under unstable conditions, and this shows up as a
residual wind speed bias when compared to scatterometer winds. Moreover, a lack of NWP cross-isobaric
flow has been reported Hersbach (2010a); Sandu et al. (2013b).

Such biases are problematic in data assimilation, as current data assimilation methods imply unbiased
model and observation fields (Sto�elen and Vogelzang, 2020). Hence, SC would be helpful to achieve this
and provide a better dynamical initialization of NWP models. In operational NWP, however, the SC
can only be based on past scatterometer data and not use centered TW as performed in this thesis.
Such lagged operational L4 product has been developed, tested and implemented in the European Union
Copernicus Marine Service (CMEMS) recently.

ECMWF-based corrections applied to ASCAT U10S are expected to make these observations unbiased
with respect to the ECMWF model, thus guaranteeing locally unbiased data sets. Applying ECMWF-
based corrections to ASCAT (generating a so-called ASCAT*) would make the scatterometer winds less
accurate yet consistent (unbiased) with respect to the NWP model. Consequently, the outcome from
data assimilation should provide better dynamical initialization of weather disturbances. Note that
this correction would be a reversed-ERAú applied operationally, i.e., locally correcting for ASCAT wind
component biases with respect to the NWP, using a SC based on past ASCAT data.

As is, the ERAú method aims at removing NWP local biases but it is not always e�ective in doing
so. The method is intrinsically dependent on scatterometer sampling at each particular grid point,
while stability-dependent biases are not, and SST gradient wind e�ects are dependent on the local flow
(weather). Consequently, it is believed that a more functional relationship between stability, SST, current
and scatterometer versus NWP di�erences can lead to more e�ective SC and therefore improved NWP
bias mitigation. In addition, such model-dependent SC can be applied in forecasts too, e.g., to test the
coupling of atmospheric and ocean models.

Deep learning methods (Sonnewald et al., 2021) are currently being used to generate sea level forecasts,
driven partly with direct sea level observations (éust et al., 2021) or to provide better estimates of relevant
variable fields (Barth et al., 2020, 2022) which can be used to force numerical models. These methods
are fast and numerically cheaper than data assimilation and have already been demonstrated to allow
reliable reconstructions of sparse satellite measurements of SST and SSH anomalies (Barth et al., 2020,
2022).

Taking the previous examples, employing machine learning methods built upon NWP forecast fields
of ocean vector winds and associated ocean surface and atmospheric parameters to predict SC, should
improve NWP surface wind and stress fields for both atmospheric and oceanic applications. This is
considered for the near future. These new SC may be used for data assimilation, seasonal forecasting
and of course in NWP and ocean model parameterization studies.
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