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ABSTRACT
Understanding and managing the influence that either external forces or non-equilibrated environments may have on chemical processes
is essential for the current and future development of theoretical chemistry. One of the central questions to solve is how to generalize the
transition state theory in order to make it applicable in far from equilibrium situations. In this sense, here we propose a way to gener-
alize Eyring’s equation based on the definition of an effective thermal energy (temperature) emerging from the coupling of both fast and
slow dynamic variables analyzed within the generalized Langevin dynamics scheme. This coupling makes the energy distribution of the fast
degrees of freedom not equilibrate because they have been enslaved to the dynamics of the corresponding slow degrees. However, the intro-
duction of the effective thermal energy enables us to restore an effective adiabatic separation of timescales leading to a renormalization of
the generalized fluctuation–dissipation theorem. Hence, this procedure opens the possibility to deal with systems far away from equilib-
rium. A significant consequence of our results is that Eyring’s equation is generalized to treat systems under the influence of strong external
forces.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0032634., s

I. INTRODUCTION

The Arrhenius law and the transition state theory1 constitute
a fundamental theoretical framework for describing and predicting
the kinetic aspects of chemical reactions. The aim of the transition
state theory (TST) formulated by Eyring was to determine the chem-
ical reaction rates and other transport coefficients from the knowl-
edge of the partition functions of the molecules involved, calculated
by using quantum and equilibrium statistical mechanics. The great
achievement of the TST was that it gave enormous elasticity to the-
oretical chemistry in which both quantum mechanics and statisti-
cal thermodynamics became the very solid cornerstones. However,
interest in the influence that external forces and non-equilibrated
environments or heat baths may have on chemical processes has
recently emerged.2–4 An excellent exposition of the general situa-
tion was recently provided by Matyushov5 and studied in the case
of electron transfer reactions by Craven and Nitzan.6

The critical point is that, at the nanoscale, the temperature
(pressure or chemical potential) gradients are enormous even for

small differences of their values, and therefore, the assumptions of
local equilibrium7 or linear regression laws8 seem to be no longer
valid.5 Nonetheless, this drastic situation does not disqualify pre-
vious use of thermodynamics in order to tackle this fundamental
problem.

On the nanoscale level of description, the influence of these
strong forces, or gradients, may introduce non-linear corrections to
the value of the aforementioned intensive parameters.9 The critical
ingredient is associated with the fact that external forces or gradi-
ents are sources of extra energy that is supplied to the system and
dissipated into the heat bath. Thus, the thermal energy giving rise
to spontaneous fluctuations becomes enhanced. This extra energy
introduces a coupling between the dynamics of slow and fast degrees
of freedom, violating the adiabatic separation of their corresponding
dynamics.

The aforementioned coupling introduces theoretical and
methodological complications, as the information about the dynam-
ics of the fast degrees of freedom is not frequently available in prac-
tice. It is thus of interest to renormalize the dynamical description
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so that the forces leading to the coupling of degrees of freedom are
absorbed in an effective intensive variable, such as temperature or
chemical potential.9,10 This renormalization of the intensive thermo-
dynamic parameters enables us to perform a dynamic description in
which the fluctuation–dissipation theorem incorporates the renor-
malized variables. In doing this, the second law of thermodynamics
is still obeyed in a similar form as in a system at thermal equilib-
rium: the (effective) energy of the fluctuations is dissipated into the
heat bath in a precise balance involving the effective temperature
and the corresponding transport coefficient associated with energy
dissipation (typically identified with friction). In the present work,
we analyze these questions using the framework of the generalized
Langevin equation (GLE).

Our involvement with this situation traces back to a series of
papers dealing with the Fokker–Planck dynamics of a system under
strong internal constrains or external forces.9–14 Among other situa-
tions, we have found that in far from equilibrium systems, the reac-
tion constants of diffusion-controlled chemical reactions are mod-
ified by the existence of a “mean-field temperature,” which incor-
porates the non-equilibrium constrains. Although restricted to the
application of Kramer’s transition state theory,9 the proof of the
emergence of a non-equilibrium or effective temperature provides
a sound theoretical approach for the reformulation of the traditional
TST as it is seem to be needed at the nanoscale.5,6 Our approach
to the effective temperature has been tested through the compari-
son with several experiments on tracer diffusion in dense colloidal
media already cited in one of our previous works13 and computer
simulations on active non-linear rheology in glassy systems.14–17

Our results allow us to reformulate the TST to describe sys-
tems in the presence of far from equilibrium heat baths. The results
go in a spirit similar to that of Craven and Nitzan6 but with larger
implications. In particular, this renormalization introduces in a nat-
ural way non-linear effects in the external forces, which are hidden
in the intensive parameters of the corresponding distribution func-
tions. These corrections become therefore included in the expression
of the reaction rates.

This article is organized as follows: In Sec. II, by introducing
a change of variables for the fast degree of freedom, we show how
the effective temperature arises and how it depends on the external
force. Section III is then devoted to calculating the probability distri-
bution function of the fast degree of freedom and to showing how a
generalization of the fluctuation–dissipation theorem of the system
can be rewritten by introducing a scaling relation for the fast degree
of freedom. This scaling relation allows us to rewrite the distribution
function and the Langevin equation in such a form that the adiabatic
separation of time scales can be recovered. In Sec. IV, this recovery
allows us to establish a general formulation of the TST for systems
far away from equilibrium, a result that is summarized by Eyring’s
formula. Section V presents our concluding remarks.

II. EMERGENCE OF AN EFFECTIVE TEMPERATURE
FROM THE GENERALIZED LANGEVIN DYNAMICS

Let us consider a system whose state can be characterized by
two coupled Brownian degrees of freedom α and β in the presence of
a heat bath at temperatureT. The description of the time evolution of
these variables follows the classical generalized Langevin scheme,18

and thus, by assuming that β is the fast variable and α the slow one,

the evolution of α obeys the following equation:

dα
dt
= β(t), (1)

while the dynamics of the fast variable is governed by the Langevin
equation

dβ
dt
= −∫

t

0
κ(t − t′)β(t′)dt′ + Xα(t) + F(t), (2)

where κ(t − t′) is the memory kernel related to the dissipative
forces arising in the interaction between the heat bath and the
Brownian degree of freedom β. The thermal random force F(t) is
assumed Gaussian, thus having zero average ⟨F(t)⟩ = 0 and second
moment19

⟨F(t)F(t′)⟩ = kBTκ(t − t′), (3)
where the brackets indicate an average over the realizations of the
noise. In addition, as usual we assume that

⟨β(0)F(t)⟩ = 0. (4)

Here, α can be understood as a configurational variable in such a way
that Eqs. (1) and (2) combine to give

α̈ = −∫
t

0
κ(t − t′)α̇(t′)dt′ + Xα(t) + F(t), (5)

where dots indicate the time derivative. In Eq. (2), we have intro-
duced the time-dependent force Xα(t), which, in general, may
depend on the state of the slow variable α.13,14 When this force
is large enough, the dynamics of both the fast and slow variables
become coupled in such a way that the adiabatic approximation
is not valid because the variables have overlapping characteris-
tic times.9,18 In contrast to what the long-time dynamics adiabatic
hypothesis would require, this overlapping makes the joint prob-
ability distribution not factorizable as a product of two separated
marginal probability distributions, the one corresponding to α and
the other to β. Because of this, the long-time average of the kinetic
energy, ⟨β2

⟩, is no longer proportional to the heat bath tempera-
ture T. Thereby, in the following, we will derive the expression of
the correction terms for a strong time-dependent force Xα(t).

The standard Laplace transform procedure for solving the
Langevin equation enables one to find the corrections to the long-
time kinetic energy average. Hence, the solution of Eq. (2) is
obtained by using Laplace transforms, giving

β(t) = β(0)R(t) + ∫
t

0
R(t − t′)[Xα(t′) + F(t′)]dt′, (6)

where we have introduced the memory function
R(t) = L−1

{ 1
s+κ̂(s)}, with κ̂(s) being the Laplace transform of κ(t).

Moving now the contribution of the external force term, Xα(t),
to the left-hand side of Eq. (6), we define the new characteristic
variable β̃(t),

β̃(t) ≡ β(t) − ∫
t

0
R(t − τ)Xα(τ)dτ, (7)
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which satisfies the equality

β̃(t) = β̃(0)R(t) + ∫
t

0
R(t − τ)F(τ)dτ, (8)

where by construction, β̃(0) = β(0). From (8) and taking into
account Eq. (4), it follows the equality

R(t) =
⟨β̃(0)β̃(t)⟩
⟨β̃(0)2⟩

, (9)

which expresses the response function R(t) defined above in terms of
the two time correlation of the variable β̃. On the other hand, since
Eqs. (8) and (6) are formally similar, we also infer that as Eq. (6) is
the solution of Eq. (2), Eq. (8) must be the solution of

d
dt
β̃(t) = −∫

t

0
κ(t − τ)β̃(τ)dτ + F(t), (10)

this being an equation formally similar to (2). Moreover, in view of
the properties of F(t), already stated in the context of Eq. (2), we
conclude that Eq. (10) describes a stationary Gaussian process.20

The previous manipulations enables us to calculate the value of
the (“kinetic”) energy by using Eqs. (7) and (8). From (7), it follows
that

⟨β2
⟩ = ⟨β̃2

⟩ + 2∫
t

0
R(t − τ)⟨β̃(t)Xα(τ)⟩dτ,

+∫
t

0
dτ∫

t

0
dτ′R(t − τ)R(t − τ′)⟨Xα(τ)Xα(τ′)⟩. (11)

Substituting Eq. (8) into the second term at the right-hand side of
(11), one finally obtains

⟨β(t)2
⟩ = ⟨β̃2

(t)⟩ + ∫
t

0
∫

t

0
R(t − τ)R(t − τ′)⟨Xα(τ)Xα(τ′)⟩dτdτ′,

(12)

where we have assumed that no correlation exists between both
the initial velocity and thermal noise with the force Xα, that is,
⟨β̃(0)Xα(τ)⟩ = 0 = ⟨F(t)Xα(τ)⟩.

The second moment of the characteristic variable β̃ can be
explicitly evaluated by using Eqs. (3) and (8) and the fact that the
response function and the memory function are connected by

d
dt
R(t) = −∫

t

0
κ(t − τ)R(τ)dτ. (13)

Taking the time derivative of ⟨β̃2
(t)⟩ obtained from Eq. (8) and

using Eqs. (3) and (13), it follows that

d
dt
⟨β̃(t)2

⟩ = 2(kBT − ⟨β̃(0)2
⟩)R(t)∫

t

0
κ(t − τ)R(τ)dτ, (14)

which establishes that if initially the system is in equilibrium,
⟨β̃(0)2

⟩ = kBT, one has d⟨β̃(t)2
⟩/dt = 0 and this system remains

in equilibrium. Thus, under the assumption that

⟨β̃(t)2
⟩ = kBT, (15)

the knowledge of the second moment of the original variable
β enables us to define the effective nonequilibrium temperature
through the equality

kBθ(t) ≡ ⟨β(t)2
⟩

= kBT + ∫
t

0
∫

t

0
R(τ)R(τ′)⟨Xα(t − τ)Xα(t − τ′)⟩dτdτ′,

(16)

obtained from Eq. (12). When the force Xα is sufficiently slow (for
instance, due to the application of a low-frequency field), Eq. (16)
reduces to

kBθ(t) = kBT + γ(t)2X(t)2, (17)

where

γ(t) = ∫
t

0
R(τ)dτ (18)

is a time-dependent friction coefficient and X2
= ⟨X2

α⟩ (see Refs. 9
and 14).

III. ROLE OF THE EFFECTIVE TEMPERATURE
IN THE PROBABILITY DISTRIBUTIONS: RECOVERING
THE ADIABATIC APPROXIMATION

The results obtained in Sec. II show that the dynamics of β̃(t)
constitutes a Gaussian process whose probability distribution may
be written in the following form:

P(β̃) = (
1

2πA(t)
)

1/2
e−[β̃−β(0)R(t)]

2/2A(t), (19)

where A(t) = kBT[1 − R2(t)] [see Eq. (10) and Refs. 14, 21, and 22].
After using Eq. (7), the probability distribution for β(t) is given by

fα(β) = (
1

2πA(t)
)

1/2
e−[β−β(0)R(t)−∫

t
0 R(t−τ)Xα(τ)dτ]2/2A(t). (20)

This is an expression that explicitly depends on the external force
Xα and, therefore, reveals the involvement of the slow variable in
the dynamics of the fast degree of freedom. In fact, the stochas-
tic dynamics of the coupled system of both fast and slow degrees
of freedom can be described by the joint distribution function
F(α, β, t) = ψ(α, t)f α(β, t), with f α(β, t) being the conditional dis-
tribution. Since α and β are coupled, we cannot write the previous
relation as the product of two independent marginal distributions
ψ(α, t)f (β, t) in general.

However, in view of the role played by the mean-square value of
the fast variable for Gaussian processes [see Eq. (19) and the result
(16)], an adiabatic separation of time scales between the slow and
fast degrees of freedom can be established by introducing the scaling
relation,

ρ2
(t)

θ(t)
=
β2
(t)
T

, (21)

which defines the scaled fast variable ρ(t) = β(t)
√

θ(t)
T . Using this

relation in Eq. (20), one obtains
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fα,⟨X2⟩(ρ) = (
1

2πM(t)
)

1/2
e−[ρ−ρ(0)Rρ(t)−∫

t
0 Rρ(t−τ)Xα(τ)dτ]2/2M(t),

(22)

where now the variance is given by M(t) = kBθ(t)[1 − R2
(t)]

= A(t)(θ/T), which introduces the effective temperature θ(t). Since
ρ(0) = β(0), we note that the response function of the new variable,
Rρ, is given by

Rρ(t) =
⟨ρ(0)ρ(t)⟩
⟨ρ2(0)⟩

=

√
θ
T
R(t). (23)

Furthermore, Eq. (22) is concomitant with the stochastic equation

ρ(t) = ρ(0)Rρ(t) + ∫
t

0
Rρ(t − t′)Xα(t′)dt′ + ∫

t

0
R(t − t′)ξ(t′)dt′,

(24)

where now the stochastic force ξ satisfies the fluctuation–dissipation
relation

⟨ξ(t)ξ(t′)⟩ = kB
√
θ(t)θ(t′) κ(t − t′) (25)

and therefore permits us to write the rescaled Langevin equation

dρ
dt
= −∫

t

0
κρ(t − t′)ρ(t′)dt′ + Xα(t) +

√
T
θ
ξ(t), (26)

which is equivalent to write F(t)/T1/2 = ξ(t)/θ1/2, and where
κρ(t) = L−1

{κ̂ρ(s)} with κ̂ρ = 1
R̂ρ(s)

− s. It should be mentioned
that Eq. (25) is fully compatible with previous results obtained from
microscopic models.23–25 It is interesting to express Eq. (25) in terms
of the new time variables,

to =
t + t′

2
and Δ = t − t′, (27)

such that t = to + Δ/2 and t′ = to − Δ/2. Therefore, up to order one
in Δ, Eq. (25) becomes

⟨ξ(t)ξ(t′)⟩ = kBθ(to) κ(t − t′). (28)

This last one constitutes a result that strengthens our previous
assumption given through Eq. (22).

Likewise, the introduction of Eqs. (25) and (26) implies that, as
it is required in the crude adiabatic approximation, the probability
distribution of the fast variable can be separated from that of the slow
variable if we neglect the time derivative of Eq. (26),

F(α, ρ, t) ≃ ψ(α, t)f⟨X2⟩(ρ), (29)

yielding the approximated quasi-equilibrium Maxwellian distribu-
tion for the fast variable

f⟨X2⟩(ρ) = (
1

2πkBθ(t)
)

1/2
e−ρ

2/2kBθ(t). (30)

Therefore, both the generalized Langevin equation (26) and the
modified fluctuation–dissipation theorem (25) or (28) provide a
description of far from equilibrium systems in which the adiabatic
timescale separation between the slow and fast degrees of freedom
remains valid within the present pseudo-equilibrium approxima-
tion. Additionally, both Eqs. (25) and (26) describe a non-stationary
Gaussian process.23–25

The significance of our results can be made more clear by
means of the Laplace transformation of Eq. (28). In this sense, by
defining ⟨ξ(t)ξ(t′)⟩ ≡ Cξ(to, Δ), we introduce

Ĉξ(ω; to) ≡ ∫
∞

0
e−tΔωCξ(to,Δ)dΔ, (31)

obtaining

Ĉξ(ω; to) = kBθ(to)κ̂(ω). (32)

These results have enormous importance, since they open the
possibility to generalize, at least in an approximate form, many
near-equilibrium statistical mechanics results to systems far away
from equilibrium without incorporating complicated mathemati-
cal or numerical computations. The existence of the effective tem-
perature or, at least, of the convenience of introducing it in the
form shown here, was corroborated in a series of results listed in
Refs. 13–17.

IV. EYRING EQUATION IN FAR FROM EQUILIBRIUM
SYSTEMS

One of the most relevant applications of the new approach pro-
posed here concerns the realm of chemical reactions, in particular, to
the calculation of the Eyring formula for the reaction-rate constants
in reactions that take place under strong non-equilibrium condi-
tions.5,6 The effect that external forces might have on the reaction
rates led by diffusion processes, that is, in the Kramers approxima-
tion, was previously studied in Ref. 9. Here, however, we will deal
with the absolute rate theory.

For this purpose, let us assume the existence of the
quasi-equilibrium distribution function f qeq(α; t) for the slow
variable α,

fqeq(α; t) =
1

Z[θ(t)]
e−H(α;t)/kBθ(t), (33)

where Z[θ(t)] = ∫f qeqdα is the partition function. In addition, the
Hamiltonian H(α; t) ≡ Ht , which contains the contribution of the
force Xα(t), enters the Liouvillian

Lt = i(
∂Ht

∂p
∂

∂q
−
∂Ht

∂q
∂

∂p
) (34)

such that

Ltfqeq(α; t) = 0. (35)

Thus, by using the classical scheme of the transition state theory for
a bimolecular reaction,1

A ⋅ B + C
K‡

−−⇀↽−− (A ⋅ B ⋅ C)‡
k
Ð→ A + B ⋅ C, (36)
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we can start our analysis by establishing that, in quasi-equilibrium,
the relation between the chemical potential of the activated complex
(A ⋅ B ⋅ C)‡, denoted by μabc, and that of the reactants is

μabc − μab − μc = 0. (37)

The above condition comes from the fact that, in equilibrium at
constant temperature and pressure, the condition dGθ = 0 must
be satisfied. The chemical potential is related to the partition
function by

μθ = −kBθ ln∣Z(θ)∣. (38)

For a dilute mixture, the total partition function of the reactants
Zr(θ) is given as the product of the corresponding molecular par-
tition functions zi(θ) in the following form:

Zr(θ) =
zNab
ab

Nab!
zNc
c

Nc!
, (39)

whereas for the activated complex, we have

Zabc(θ) =
zNabc
abc

Nabc!
. (40)

Here, Nab, Nc, and Nabc are the numbers of molecules of the reac-
tants and of the activated complex. Using Eqs. (38)–(40) and Stir-
ling’s approximation, one may obtain the relation between the
equilibrium constant and the partition functions,

K‡
(θ) =

Nabc

NabNc
=

zabc
zabzc

, (41)

where K‡(θ) is the equilibrium constant of the reaction. Taking into
account that the energy difference of basal states between the reac-
tants and the activated state is Ea, as shown in the classical Fig. 1,

FIG. 1. Schematic representation of the reaction path (black line) along the reaction
coordinate and of the partition functions associated with the degrees of freedom
orthogonal to the reaction coordinate in the reactants, activated complex, and
product states (red lines).

Eq. (41) can be written in the more convenient way,

K‡
(θ) =

Nabc

NabNc
=

z‡abc
zabzc

e−Ea/kBθ, (42)

where now z‡abc is the partition function of the activated complex
with vanishing basal energy.

In the quasi-equilibrium approximation, we know that the rate
of formation of the products of (36) is

d
dt
[B ⋅ C](t) = νK‡

[A ⋅ B][C]‡, (43)

where ν is the characteristic frequency of the reaction and the symbol
[C] stands for the volumetric concentration of the species C. As is
well known, the observable reaction rate kobs can therefore be written
in the following form:

kobs ∼ ν
z‡abc
zabzc

e−Ea/kBθ, (44)

where we have used Eq. (42). Splitting the partition function of the
activated complex as usually, z‡abc(θ) = zabc,‡zvib, with zvib being the
partition function associated with the loose vibration of the activated
complex along the reaction coordinate (see Fig. 1). In the vanishing
limit for the frequency, one obtains zvib(θ) ∼ kBθ

hν and we recover the
formal expression,

kobs ≃
kBθ
h

zabc,‡
zabzc

e−Ea/kBθ. (45)

Finally, defining the activated-state equilibrium constant for the
stable states,

K‡ ≡
zabc,‡
zabzc

e−Ea/kBθ, (46)

and using the well-known thermodynamic relation
ΔG‡ = −kBθ lnK‡ where ΔG‡(θ) is the Gibbs energy of activation,
Eq. (45) can be rewritten in the following form:

kobs ∼
kBθ
h

e−ΔG
‡/kBθ, (47)

which is a generalization of the Eyring equation for systems far away
from equilibrium. This generalization implies that all the thermody-
namic quantities involved in, for instance, ΔG‡, are functions of the
non-equilibrium temperature θ(t), defined in Eq. (16) or Eq. (17).
Therefore, all thermodynamic quantities become non-linear func-
tions of the applied force X(t). It is interesting to write explicitly the
dependence of Eq. (47) on the external force by using Eq. (17),

kobs ∼
kBT
h
(1 +

γ(t)2X(t)2

kBT
)

× exp
⎡
⎢
⎢
⎢
⎢
⎣

−
ΔG‡

kBT
(1 +

γ(t)2X(t)2

kBT
)

−1⎤
⎥
⎥
⎥
⎥
⎦

, (48)
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which shows that the external field modifies not only the transi-
tion frequency but the energy barrier. At very low temperatures, the
previous equation becomes

kobs ∼
γ(t)2X(t)2

h
exp[−

ΔG‡

γ(t)2X(t)2 ]. (49)

When the standard Arrhenius form is used for the rate con-
stant, the activation energy, Ea, is scaled with the effective tempera-
ture in the following form: Ea/T = ΔG‡/θ, which is consistent with
Eq. (21). Then, it follows

Ea =
T
θ
ΔG‡. (50)

An analogous expression for the activation barrier was written in
Ref. 26.

The practical implications of Eq. (47) are wide. This equation
constitutes the basis for studying many types of reaction and trans-
port processes. In this sense, Ref. 1 is the first and ideal reference to
look at to ascertain how the above-mentioned result is of great signif-
icance. References 13–15 present a recent illustration of the type of
application of the present formalism in condensed matter problems
involving diffusion and viscosity.

V. CONCLUSIONS
The introduction of effective kinetic temperatures in the robust

framework of the generalized Langevin equation in the presence
of strong forces driving the corresponding stochastic system away
from equilibrium enables us to recover adiabatic timescale separa-
tion of near-equilibrium systems. In this quasi-equilibrium level of
description, the fluctuation–dissipation theorem associated with the
generalized Langevin equation that governs the evolution of the fast
degree of freedom becomes modified by substituting the original
heat bath temperature with the effective temperature that explicitly
depends on the external forces.

This effective temperature interpreted as the energy neces-
sary to perform fluctuations in the quasi-equilibrium state modify,
in turn, the canonical probability distribution for the slow vari-
able. This distribution retains the form of the equilibrium statisti-
cal mechanics but incorporates the corrected thermal energy. Given
that this canonical distribution is the basis of the (molecular) tran-
sition state theory, we used it to generalize the Eyring equation
in which all the thermodynamic parameters are functions of the
effective temperature and, therefore, are non-linear functions of
the externally applied force. This generalization is consistent with
and goes far beyond our previous theoretical results on the sub-
ject; it9 can be of huge interest in the study of several fields, ranging
from chemical reactions to transport processes in systems far away
from equilibrium, as suggested recently by Craven and Nitzan6 and
Matyushov.5,26 Here, we want to emphasize that after finishing this
work, we have realized that our results also apply to photochemical
processes [see Eq. (49)].
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