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Abstract
In this paper, we show how to construct excep-
tional orthogonal polynomials (XOP) using isospectral
deformations of classical orthogonal polynomials. The
construction is based on confluent Darboux transfor-
mations, where repeated factorizations at the same
eigenvalue are allowed. These factorizations allow us
to construct Sturm–Liouville problems with polynomial
eigenfunctions that have an arbitrary number of real-
valued parameters. We illustrate this new construction
by exhibiting the class of deformed Gegenbauer poly-
nomials, which are XOP families that are isospectral
deformations of classical Gegenbauer polynomials.
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1 INTRODUCTION

Classical orthogonal polynomials (OPs) have been traditionally characterized as the only OP
bases of an L2 space that are also eigenfunctions of a Sturm–Liouville problem. Since the mid-
19th century until today, classical OPs appear in ubiquitous applications in mathematical physics,
numerical analysis, approximation theory or statistics, among other fields.
As it is well known, classical OPs can be classified into three main families, depending on

whether they are defined on the whole real line (Hermite), the half-line (Laguerre), or a com-
pact interval (Jacobi). These polynomial families are characterized by two free real parameters in
the case of Jacobi, one for Laguerre, and none for Hermite.
This paper tackles the following question: Is it possible to construct an orthogonal basis of an L2

space, which is also formed by polynomial eigenfunctions of a Sturm–Liouville problem, but contains
a higher (possibly arbitrary) number of free real parameters?
The flexibility of deforming classical OPs to contain so many free real parameters and yet man-

tain many of their defining properties would open the way to many potential applications in all
of the fields where classical OPs appear naturally.
In this paper we show how to construct Sturm–Liouville problems with polynomial eigenfunc-

tions that contain an arbitrary number of real parameters, thus providing a positive answer to the
previous question.More specifically, let𝑇 be a classical differential operator, that is, a second-order
differential operator whose eigenfunctions are classical OPs,

𝑇(𝑧, 𝐷𝑧) ∶= 𝑝(𝑧)𝐷
2
𝑧 + 𝑞(𝑧)𝐷𝑧 + 𝑟(𝑧), (1)

and let {𝑃𝑖}∞𝑖=0 be a set of polynomial eigenfunctions of 𝑇

𝑇𝑃𝑖 = 𝜆𝑖𝑃𝑖, 𝑖 = 0, 1, 2, … (2)

We will show how to construct a new operator �̂� and polynomials {�̂�𝑖}∞𝑖=0 such that

�̂�(𝑧, 𝐷𝑧; 𝑡𝑚1 , … , 𝑡𝑚𝑛) ∶= 𝑝(𝑧)𝐷
2
𝑧 + �̂�(𝑧; 𝑡𝑚1 , … , 𝑡𝑚𝑛)𝐷𝑧 + 𝑟(𝑧; 𝑡𝑚1 , … , 𝑡𝑚𝑛), (3)

where 𝑡𝑚1 , … , 𝑡𝑚𝑛 are 𝑛 real parameters, �̂� and 𝑟 are rational functions of 𝑧, and

𝑇𝑃𝑖 = 𝜆𝑖𝑃𝑖, 𝑖 ∈ {0, 1, 2, …}. (4)

The transformed eigenvalue problem has the same spectrum {𝜆𝑖}∞𝑖=0 as the original one and the
leading coefficient 𝑝(𝑧) does not change in the transformation. We speak thus of an isospectral
deformation because we will also see that

𝑇(𝑧, 𝐷𝑧; 0, … , 0) = 𝑇(𝑧, 𝐷𝑧), 𝑃𝑖(𝑧; 0, … , 0) = 𝑃𝑖(𝑧). (5)

So much extra freedom and flexibility comes at a cost. Although the set of new polynomials is
still L2-complete, there is a finite number of exceptional degrees for which no polynomial of that
degree exists in the basis. Indeed, in general, we will have that

𝑖 = deg 𝑃𝑖 ≠ deg 𝑃𝑖, 𝑖 ∈ {0, 1, 2, …}, (6)
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326 GARCÍA-FERRERO et al.

despite the fact that both �̂�𝑖 and 𝑃𝑖 have the same eigenvalue, and both of them have 𝑖 zeros in the
domain of orthogonality. We will refer to operator �̂� as a deformed classical operator, and to the
set of polynomials �̂�𝑖 as deformed classical polynomials, because:

(a) the deformed classical operator has the same spectrum as the associated classical one,
(b) the deformed classical polynomial family contains an arbitrary family of real parameters,
(c) the deformed classical polynomials become classical polynomials when the deformation

parameters are set to zero.

The new polynomial families introduced in this paper fit thus into the definition of exceptional
orthogonal polynomials (XOPs) originally introduced in Ref. 1. In the past 10 years, themathemati-
cal study of XOPs has been concerned with their classification,2,3 the properties of their zeroes,4–6
and their recurrence relations.7–10 The spectral–theoretic aspects of exceptional operators (the
second-order differential operatorswhose eigenfunctions are theXOPs) have been studied in Refs.
11–15. It is known that every exceptional operator can be related to a classical Bochner operator by
a finite number ofDarboux transformations (see Ref. [2, Theorem 1.2)], which can be state-adding,
state-deleting, or isospectral.
In the context of mathematical physics, XOPs appear as exact solutions to Dirac’s equation16

and as bound states of exactly solvable rational extensions.17–19 Additionally, they are connected
to finite-gap potentials20 and super-integrable systems.19,21
The aim of this paper is:

(a) to draw attention to the existence of XOPs whose construction requires confluent Darboux
transformations (CDTs),

(b) to exhibit a different construction of exceptional polynomials based on determinants and
matrices, and

(c) to describe the differences between the class of generic exceptional polynomials and the new
class of exceptional polynomials obtained via CDTs.

As an illustration of this new construction, we show how to define an isospectral deformation
of the classical Gegenbauer operator

𝑇(𝛼) ∶= (1 − 𝑧2)𝐷2𝑧 − (2𝛼 + 1)𝑧𝐷𝑧 (7)

through the application of a finite number of CDTs, also referred to as the “double commutator”
method.22
Nondegenerate exceptional Jacobi polynomials are indexed by discrete parameters23,24 and, as a

result, cannot be continuously deformed into their classical counterparts. By contrast, every CDT
introduces a new deformation parameter. Therefore, by performing a chain of 𝑛 CDTs on the
classical Gegenbauer operator (7) at distinct eigenvalues, we will arrive at an exceptional oper-
ator that depends on 𝑛 discrete parameters and 𝑛 real parameters. The eigenpolynomials of the
resulting exceptional operator may be deformed Gegenbauer polynomials, which also depend on
𝑛 real parameters, and can be continuously deformed to the classical Gegenbauer polynomials by
letting the parameters tend to zero.
The new construction of exceptional polynomials and weights described in this paper can

also be understood from the point of view of the theory of inverse scattering,25-27 and it is
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GARCÍA-FERRERO et al. 327

conceptually related to the construction of Korteweg–de Vries (KdV) multisolitons. While KdV
solitons are obtained by applying a state-adding deformation on the zero potential, the excep-
tional operators in this paper are related to isospectral deformations of particular instances of the
Darboux–Pöschl–Teller (DBT) potential.28 In spectral–theoretic terms, the consequence of our
construction is the continuous modification of the norming constants of a finite number of the
bound states. However, because our focus is on OPs, rather than quantummechanics or evolution
equations, our approach is formulated in the gauge and coordinates of the classical differential
operator rather than working with Schrödinger operators. The resulting procedure can be easily
implemented using a computer algebra system.
For the remainder of the paper, we develop the theory of CDTs in the algebraic gauge and apply

it for the construction of deformedGegenbauer polynomials. The paper is organized as follows: in
Section 2 we describe the formal theory of rational multistep Darboux–Crum transformations in
the algebraic gauge. In Section 3 we describe CDTs as a two-step Darboux transformation whose
seed functions are an eigenfunction and a generalized eigenfunction at the same eigenvalue. In
Section 4, we describe the class of exceptional Gegenbauer operators and their factorizations and
we provide a recursive construction for the operators and eigenfunctions connected by CDTs.
In Section 5 we provide matrix formulas for deformed Gegenbauer polynomials, we prove the
equivalence of the matrix and recursive definitions and thereby establish the proofs of our main
results concerning the Sturm–Liouville properties and L2-completeness of the deformed Gegen-
bauer polynomials. Finally, in Section 6, we provide explicit examples of families of deformed
Gegenbauer polynomials, for both one and two deformation parameters.
Exceptional polynomials obtained by CDTs were introduced by Grandati and Quesne,29 who

exhibited one-step examples with one deformation parameter. In this paper, we aim to generalize
these results and to provide a detailed construction of deformed classical OPs via CDTs. The class
of deformed Legendre polynomials was recently introduced by some of the present authors,30
showing, for the first time, that isospectral deformations of classical polynomials with an arbitrary
number of real parameters exist.
Shortly after that, Durán has shown that there is an alternative way to construct deformed OPs,

by first perturbing the measure of the discrete Hahn polynomials, dualizing and taking a suitable
limit.31 Durán’s work implies that themost general class of XOPs contains not just deformations of
classical OPs, but deformations of other XOPs. He did this by exhibiting constructions and exam-
ples where setting the deformation parameters to zero recovers exceptional, rather than classical
OPs. In other words, there are “mixed” cases that combine the usual Wronskian and the novel
deformation constructions where isospectrality with the classical families no longer holds.
Another significant feature of Durán’s construction is that the deformation parameters are

introduced via degenerate Darboux transformations (DDTs) rather than CDTs. In this regard,
his construction generalizes the one presented in Ref. 32, which exhibited some examples with
one deformation parameter. The DDT construction relies on the spectral degeneracy of certain
classical operators (the so-called para-Jacobi class33) that, for certain eigenvalues, possess a two-
dimensional polynomial eigenspace. Finally, Ref. 31 is significant because of explicit examples
of alternative constructions of deformable Legendre polynomials via DDTs of classical Jacobi
operators with negative integer parameters.
Summarizing, there are three rather different constructions leading to the same mathematical

objects:

(i) one based in iterating the action of differential operators, leading toWronskian determinants
whose seed functions are generalized eigenfunctions;

(ii) one based in matrix and integral formulas, coming from the inverse scattering method; and
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328 GARCÍA-FERRERO et al.

(iii) one based in Durán’s DDT construction, where the base of the construction is a para-Jacobi
operator and the deformation parameters appear as linear combinations of polynomial seed
functions at the same eigenvalue.

In this paperwe demonstrate the equivalence of the first two approaches. In a subsequent publi-
cationwewill classify the class of all XOP that admit real deformation parameters, and in doing so,
establish the equivalence of the DDT and the CDT approaches. We will demonstrate that all these
phenomena arise precisely because of the spectral degeneracy of classical para-Jacobi operators
with integer parameters.

1.1 Notation

Throughout the paper we useℕ = {1, 2, …} to denote the set of natural numbers andℕ0 = {0, 1, … }
to denote the set of nonnegative integers. We use “half-integer” to refer to an odd integer divided
by 2. The set of positive half-integers will be denoted by ℕ0 +

1

2
.

We let 𝐷𝑧 denote the derivative with respect to 𝑧. For the sake of notational convenience, we
will often drop the explicit dependence on the indeterminate 𝑧 andwrite 𝜙 = 𝜙(𝑧), 𝜙′ = 𝐷𝑧𝜙, and
𝐷 = 𝐷𝑧.
We call a differential expression of the form

∑𝑛
𝑘=0
𝑝𝑘(𝑧)𝐷

𝑘
𝑧 , where 𝑝0(𝑧), … , 𝑝𝑛(𝑧) are rational

functions and 𝑝𝑛 ≠ 0, an 𝑛th-order rational operator. We will call a function 𝜙(𝑧) quasi-rational if
its log-derivative𝑤(𝑧) = 𝜙

′(𝑧)

𝜙(𝑧)
is rational. We denote byWr[𝑦1, … , 𝑦𝑘] theWronskian determinant

of the functions 𝑦1, … , 𝑦𝑘.
We denote matrices by calligraphic symbols, such as , whereas one-dimensional tuples will

be given bold symbols such as𝒎, 𝒕, or 𝑸. To access the components of a vector or tensor we will
employ square brackets, that is, []𝑘𝓁 denotes the (𝑘, 𝓁) entry of.
We denote an 𝑛-tuple of integers by 𝒎 = (𝑚1,… ,𝑚𝑛) ∈ ℕ𝑛0 , and associate to it the 𝑛-tuple of

real parameters 𝒕𝒎 = (𝑡𝑚1 , … , 𝑡𝑚𝑛) ∈ ℝ
𝑛. Wewill separate objects of different natures, such as real

parameters and tuples, by semicolons. The concatenation of tuples will be shown using commas,
for example, if 𝑖1, … , 𝑖𝑘 ∈ ℕ0, then (𝒎, 𝑖1, … , 𝑖𝑘) denotes the (𝑛 + 𝑘)-tuple (𝑚1, … ,𝑚𝑛, 𝑖1, … , 𝑖𝑘).
We will frequently omit parentheses when denoting 1-tuples, opting to write 𝑚1 instead of (𝑚1).
Occasionally, we will omit the dependence on the parameter 𝛼, so as not to conflict with other
superscript notations.

2 DARBOUX TRANSFORMATIONS AND FACTORIZATION CHAINS

The formal theory of Darboux transformations for Schödinger operators in mathematical physics
(also known as supersymmetric quantum mechanics) has been developed in numerous works,
mostly with the aim of generating new solvable problems from known ones,26,34,35 but also in
the construction of solutions to Painlevé-type equations.36–38 It was recently shown that every
exceptional polynomial family must be related to a classical family by a sequence of Darboux
transformations.2 We first describe here Darboux transformations with seed functions that have
no repeated eigenvalues. This is the class of transformations that leads to the generic XOPs, when
applied on the classical polynomial families.3,7,17,23,24
In this section we revise some of these well known results, albeit with a little twist: We

describe Darboux transformations for the class of general second-order differential operators,
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GARCÍA-FERRERO et al. 329

which include Schrödinger operators as a particular case. For the purpose of this paper, we focus
on second-order differential operators with rational coefficients that have an infinite number of
polynomial eigenfunctions, and we restrict to rational Darboux transformations of these opera-
tors that preserve this property by construction. However, the results derived in this section can
be trivially extended to general second-order operators. All of this section is written at a purely
formal level, so in an abuse of notation we speak of differential operators without specifying their
domain, or we speak of eigenfunctions as solutions of an eigenvalue problem, without defining a
proper spectral–theoretic setting.

Definition 1. For 𝑛 ∈ ℕ0, let 𝑇0, 𝑇1, … , 𝑇𝑛 be second-order rational operators. We say that
𝑇0 → 𝑇1 → ⋯ → 𝑇𝑛 is an 𝑛-step rational Darboux transformation if there exist first-order rational
operators 𝐴1,𝐴2, … ,𝐴𝑛 such that

𝐴𝑘𝑇𝑘−1 = 𝑇𝑘𝐴𝑘, 𝑘 = 1,…, 𝑛. (8)

The next Proposition states that if 𝐴𝑘 is a first-order intertwiner operator between 𝑇𝑘−1 and 𝑇𝑘
as in (8), then its kernel must be spanned by a formal eigenfunction of 𝑇𝑘−1.

Proposition 1. For 𝑛 ∈ ℕ0, let𝑇0 → 𝑇1 → ⋯ → 𝑇𝑛 be an 𝑛-step rational Darboux transformation,
and 𝐴1,… ,𝐴𝑛 be the first-order rational operators satisfying the intertwining relation (8). Let 𝑏𝑘(𝑧)
and 𝑤𝑘(𝑧) be rational functions such that

𝐴𝑘 = 𝑏𝑘(𝐷 − 𝑤𝑘), (9)

and define (up to a constant factor) the quasi-rational functions

𝜓𝑘(𝑧) ∶= exp

(
∫
𝑧

𝑤𝑘(𝑢)𝑑𝑢

)
. (10)

We then have that

𝑇𝑘−1𝜓𝑘 = 𝜆𝑘𝜓𝑘, 𝑘 = 1,… , 𝑛, (11)

where 𝜆1, 𝜆2, … , 𝜆𝑛 are constants.

Proof. By (9) and (10) we have that 𝐴𝑘𝜓𝑘 = 0, so (8) implies that 𝐴𝑘𝑇𝑘−1𝜓𝑘 = 0. Because 𝐴𝑘 is a
first-order operator, its kernel is one-dimensional and it is therefore spanned by 𝜓𝑘. This implies
that there exists a constant 𝜆𝑘 such that (11) holds. ■

Remark 1. Assume that 𝑇𝑘 has the form

𝑇𝑘 = 𝑝𝐷
2 + 𝑞𝑘𝐷 + 𝑟𝑘, 𝑘 = 0, 1, … , 𝑛. (12)

Observe that its coefficients 𝑝, 𝑞𝑘, and 𝑟𝑘 are related to the rational functions 𝑤1,… ,𝑤𝑛 defined
in (9) by the following Ricatti-type equations

𝑝(𝑤′
𝑘
+ 𝑤2

𝑘
) + 𝑞𝑘−1𝑤𝑘 + 𝑟𝑘−1 = 𝜆𝑘, 𝑘 = 1,… , 𝑛. (13)
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330 GARCÍA-FERRERO et al.

For a given 𝑛-step Darboux transformation, the corresponding 𝜓1, … , 𝜓𝑛 are unique, up to
a choice of multiplicative constant. In light of this remark and future ones, we introduce the
following defintions:

Definition 2. We call the quasi-rational functions 𝜓1, … , 𝜓𝑛 factorization eigenfunctions, the set
of numbers 𝜆1, … , 𝜆𝑛 factorization eigenvalues, and the rational functions 𝑏1, … , 𝑏𝑛 factorization
gauges.

A chain of Darboux transformations is more often defined as a factorization of each second-
order operator 𝑇𝑘 for 𝑘 = 0,… , 𝑛, followed by a permutation of the two factors to yield the next
operator 𝑇𝑘+1. We make precise the notion of a factorization chain in the next definition and
establish later that both approaches (intertwining of operators and factorization) coincide.

Definition 3. Let 𝑇0, 𝑇1, … , 𝑇𝑛 be second-order rational operators. We say that 𝑇0 → 𝑇1 → ⋯ →
𝑇𝑛 is a factorization chain if there exist first-order rational operators 𝐴𝑘, 𝐵𝑘, 𝑘 = 1,… , 𝑛 and
constants 𝜆1, … , 𝜆𝑛 such that

𝑇𝑘−1 = 𝐵𝑘𝐴𝑘 + 𝜆𝑘, 𝑇𝑘 = 𝐴𝑘𝐵𝑘 + 𝜆𝑘, 𝑘 = 1,… , 𝑛, (14)

We now show that these two formulations of Darboux transformations are equivalent.

Proposition 2. A multistep rational Darboux transformation is necessarily a factorization chain,
and vice versa.

Proof. Suppose that (14) holds. Then, the intertwining relations (8) follow by the associativity of
operator composition.
Conversely, suppose that (8) holds. Let 𝐴𝑘 be as in (9) and set

𝐵𝑘 ∶= �̂�𝑘(𝐷 − �̂�𝑘), (15)

where

𝑤𝑘 ∶= −𝑤𝑘 −
𝑞𝑘−1
𝑝
+ 𝛽𝑘, 𝛽𝑘 ∶=

𝑏′
𝑘

𝑏𝑘
, 𝑏𝑘 ∶=

𝑝

𝑏𝑘
. (16)

Let 𝜆1, … , 𝜆𝑛 denote the eigenvalues as per (11). By (13) and a direct calculation, we have

𝐵𝑘𝐴𝑘 = �̂�𝑘(𝐷 − �̂�𝑘)𝑏𝑘(𝐷 − 𝑤𝑘)

= 𝑝(𝐷 − �̂�𝑘 + 𝛽𝑘)(𝐷 − 𝑤𝑘)

= 𝑝(𝐷 + 𝑤𝑘)(𝐷 − 𝑤𝑘) + 𝑞𝑘−1(𝐷 − 𝑤𝑘)

= 𝑝𝐷2 + 𝑞𝑘−1𝐷 − 𝑝(𝑤
′
𝑘
+ 𝑤2

𝑘
) − 𝑞𝑘−1𝑤𝑘

= 𝑇𝑘−1 − 𝜆𝑘.

(17)
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GARCÍA-FERRERO et al. 331

Hence, it follows that

(𝑇𝑘 − 𝐴𝑘𝐵𝑘 − 𝜆𝑘)𝐴𝑘 = 𝐴𝑘(𝑇𝑘−1 − 𝐵𝑘𝐴𝑘 − 𝜆𝑘) = 0. (18)

The ring of differential operators does not have zero divisors, so relations (14) follow
immediately. ■

Remark 2. As a direct consequence we may observe that Darboux transformations are invertible.
Indeed, by (14), we have that

𝐵𝑘𝑇𝑘 = 𝑇𝑘−1𝐵𝑘, 𝑘 = 1,…, 𝑛, (19)

where 𝐵1, … , 𝐵𝑛 are the rational operators defined by (15) and (16). Thus, the chain 𝑇𝑛 → 𝑇𝑛−1 →
⋯ → 𝑇0 also satisfies the definition of an 𝑛-step rational Darboux transformation.

2.1 Seed eigenfunctions and generalized Crum formula

So far we have defined 𝑛-step Darboux transformations referring to the intertwining or factor-
ization of operators 𝑇0, 𝑇1, … , 𝑇𝑛 at each step of the chain, which requires an eigenfunction 𝜓𝑘
for each operator 𝑇𝑘−1 in the chain. In this section we show how to define an 𝑛-step Darboux
transformation using only eigenfunctions of the first operator 𝑇0, which we will call seed func-
tions. In the case of Darboux chains for Schrödinger operators, this construction leads to the
well-known Darboux–Crum Wronskian formula.39 Theorem 1 in this section can thus be seen
as a generalization of the Crum formula.
Let 𝑇0 be a second-order rational operator and let 𝜙1, 𝜙2, … , 𝜙𝑛 be quasi-rational eigenfunctions

of 𝑇0. Explicitly, we have

𝑇0𝜙𝑘 = 𝜆𝑘𝜙𝑘, 𝑘 = 1,…, 𝑛, (20)

where 𝜆1, 𝜆2, … , 𝜆𝑛 are constants. We refer to 𝜙1, … , 𝜙𝑛 as seed eigenfunctions, because, as we
show below, a Darboux transformation is determined by a choice of seed eigenfunctions and
factorization gauges.
Going forward, for a set of indices {𝑖1, … , 𝑖𝑘} ⊆ {1, … , 𝑛}, we write

𝜙(𝑖1,𝑖2,…,𝑖𝑘) ∶= Wr[𝜙𝑖1 , 𝜙𝑖2 , … , 𝜙𝑖𝑘 ]. (21)

We now arrive at the key result of this section: explicit formulas for the coefficients of an operator
obtained by a multistep Darboux transformation.

Theorem 1. Let 𝑇0 be a second-order rational operator as in (12), {𝜙1, … , 𝜙𝑛} be quasi-rational
eigenfunctions of𝑇0 with distinct eigenvalues 𝜆1, … , 𝜆𝑛 and let {𝑏1, … , 𝑏𝑛} be a set of nonzero rational
functions. Define the operators

𝑇𝑘 ∶= 𝑝𝐷
2 + 𝑞𝑘𝐷 + 𝑟𝑘, 𝐴𝑘 ∶= 𝑏𝑘(𝐷 − 𝑤𝑘). (22)
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332 GARCÍA-FERRERO et al.

where

𝜎𝑘 ∶=

𝑘∑
𝑗=1

(log 𝑏𝑗)
′, 𝜐𝑘 ∶=

𝜑′
(1,2,…,𝑘)

𝜑(1,2,…,𝑘)
, 𝑘 = 1,… , 𝑛; (23)

and

𝑞𝑘 ∶= 𝑞0 + 𝑘𝑝
′ − 2𝑝𝜎𝑘,

𝑟𝑘 ∶= 𝑟0 + 𝑘𝑞
′
0 +
1

2
𝑘(𝑘 − 1)𝑝′′ + 𝜐𝑘𝑝

′ − 𝜎𝑘(𝑞0 + 𝑘𝑝
′) + (𝜎2

𝑘
− 𝜎′

𝑘
+ 2𝜐′

𝑘
)𝑝,

(24)

𝑤1 ∶= 𝜐1, 𝑤𝑘 ∶= 𝜎𝑘−1 + 𝜐𝑘 − 𝜐𝑘−1, 𝑘 = 2,… , 𝑛. (25)

Then, the sequence of operators 𝑇0 → 𝑇1 → ⋯ → 𝑇𝑛 is an 𝑛-step rational Darboux transformation
in the sense of Definition 1, that is, (8) holds with the operators 𝐴𝑘 defined above.

Because we assume that the eigenvalues 𝜆1, … , 𝜆𝑛 are distinct, 𝜙1, … , 𝜙𝑛 are linearly indepen-
dent. Hence, the Wronskians in the denominator of (23) are nonzero, and the functions 𝜐𝑘 are
well defined.

Remark 3. The well-knownCrum formula for an 𝑛-step Darboux transformation of a Schrödinger
operator

𝑇𝑛 = 𝑇0 − 2(log 𝜙(1,2,…,𝑛))
′′ (26)

is a special case of Theorem 1 that corresponds to starting from a Schrödinger operator (𝑝 = −1
and 𝑞0 = 0) and choosing the gauge 𝑏1 = ⋯ = 𝑏𝑛 = 1. Thus, this result can be regarded as an
extension of the Darboux–Crum formula from Schrödinger operators to general second-order
operators. Although for the purpose of the paper we restrict to second-order operators with ratio-
nal coefficients and polynomial eigenfunctions, the generalized Crum formula in Theorem 1 is
valid on a general setting.

The rest of this section is devoted to the proof of Theorem 1. The strategy is to first establish the
result for the particular gauge 𝑏1 = ⋯ = 𝑏𝑛 = 1 and then show the transformation rules under a
different gauge. Most of the proofs proceed by induction and make use of differential algebra and
properties of Wronskian determinants. We will first need to state and prove a number of auxiliary
lemmas, where operators with tilde denote the restriction of the same objects in Theorem 1 to the
special case 𝑏1 = ⋯ = 𝑏𝑛 = 1.

Lemma 1. Under the same setting as in Theorem 1, let �̃�𝑘 = 𝐷 − �̃�𝑘 for 𝑘 ∈ {1, … , 𝑛} with �̃�𝑘 =
𝜐𝑘 − 𝜐𝑘−1. Then,

(�̃�𝑘−1�̃�𝑘−2 ⋯ �̃�1)𝜙𝑗 =
𝜙(1,2,…,𝑘−1,𝑗)

𝜙(1,2,…,𝑘−1)
, 2 ≤ 𝑘 ≤ 𝑗 ≤ 𝑛. (27)
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GARCÍA-FERRERO et al. 333

Proof. For convenience, set

𝜑𝑘,𝑗 ∶= (�̃�𝑘−1�̃�𝑘−2 ⋯ �̃�1)𝜙𝑗. (28)

We argue by induction. The case of 𝑘 = 2 follows directly from the definition. Indeed,

𝜑2,𝑗 = �̃�1𝜙𝑗 =
1

𝜙1
Wr[𝜙1, 𝜙𝑗] =

𝜙1,𝑗

𝜙1
. (29)

Now, we suppose that (27) holds for a particular 𝑘 < 𝑛. By the inductive hypothesis, in particular
we have

𝜑𝑘,𝑘 =
𝜙(1,2,…,𝑘)

𝜙(1,2,…,𝑘−1)
, so �̃�𝑘 =

𝜑′
𝑘,𝑘

𝜑𝑘,𝑘
and �̃�𝑘 = 𝐷 −

𝜑′
𝑘,𝑘

𝜑𝑘,𝑘
. (30)

Hence,

𝜑𝑘+1,𝑗 = (�̃�𝑘 ⋯ �̃�1)𝜙𝑗 = �̃�𝑘𝜑𝑘,𝑗

=
1

𝜑𝑘,𝑘
Wr

[
𝜑𝑘,𝑘, 𝜑𝑘,𝑗

]
=
1

𝜑𝑘,𝑘
Wr

[
𝜙(1,2,…,𝑘−1,𝑘)

𝜙(1,2,…,𝑘−1)
,
𝜙(1,2,…,𝑘−1,𝑗)

𝜙(1,2,…,𝑘−1)

]
. (31)

By well-known properties of the Wronskian operator, we finally have

𝜑𝑘+1,𝑗 =
1

𝜑𝑘,𝑘

Wr[𝜙1,2,…,𝑘−1,𝑘, 𝜙(1,2,…,𝑘−1,𝑗)](
𝜙(1,2,…,𝑘−1)

)2 =
𝜙(1,2,…,𝑘−1)𝜙(1,2,…,𝑘,𝑗)

𝜑𝑘,𝑘
(
𝜙(1,2,…,𝑘−1)

)2 = 𝜙(1,2,…,𝑘,𝑗)𝜙(1,2,…,𝑘)
. (32)

■

The following lemma establishes the desired result in the restricted gauge 𝑏1 = ⋯ = 𝑏𝑛 = 1.

Lemma 2. Under the same setting as in Theorem 1, let �̃�0 = 𝑇0 and �̃�𝑘 ∶= 𝑝𝐷2 + 𝑞𝑘𝐷 + 𝑟𝑘 for
𝑘 ∈ {1, …𝑛}, where

𝑞𝑘 ∶= 𝑞0 + 𝑘𝑝
′ (33)

𝑟𝑘 ∶= 𝑟0 + 𝑘𝑞
′
0 +
1

2
𝑘(𝑘 − 1)𝑝′′ + 𝜐𝑘𝑝

′ + 2𝜐′
𝑘
𝑝. (34)

Let �̃�𝑘 be as in Lemma 1. Then

�̃�𝑘�̃�𝑘−1 = �̃�𝑘�̃�𝑘, 𝑘 = 1,… , 𝑛. (35)

Proof. By direct calculation, we find that

�̃�𝑘�̃�𝑘 = (𝑝𝐷
2 + 𝑞𝑘𝐷 + 𝑟𝑘)(𝐷 − �̃�𝑘)

= 𝑝𝐷3 + (𝑞𝑘 − 𝑝�̃�𝑘)𝐷
2 + (𝑟𝑘 − 𝑞𝑘�̃�𝑘 − 2𝑝�̃�

′
𝑘
)𝐷 − (𝑟𝑘�̃�𝑘 + 𝑞𝑘�̃�

′
𝑘
+ 𝑝�̃�′′

𝑘
), (36)

 14679590, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12510 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



334 GARCÍA-FERRERO et al.

�̃�𝑘�̃�𝑘−1 = (𝐷 − �̃�𝑘)(𝑝𝐷
2 + 𝑞𝑘−1𝐷 + 𝑟𝑘−1)

= 𝑝𝐷3 + (𝑞𝑘−1 − 𝑝�̃�𝑘 + 𝑝
′)𝐷2 +

(
𝑟𝑘−1 − 𝑞𝑘−1�̃�𝑘 + 𝑞

′
𝑘−1

)
𝐷 + 𝑟′

𝑘−1
− �̃�𝑘𝑟𝑘−1. (37)

Hence, by inspection of the coefficients, the desired intertwining relation is equivalent to the
following three relations:

𝑞𝑘 = 𝑞𝑘−1 + 𝑝
′, (38)

𝑟𝑘 = 𝑟𝑘−1 + 𝑞
′
𝑘−1
+ �̃�𝑘𝑝

′ + 2𝑝�̃�′
𝑘
, (39)

𝑟𝑘�̃�𝑘 + 𝑞𝑘�̃�
′
𝑘
+ 𝑝�̃�′′

𝑘
= 𝑟𝑘−1�̃�𝑘 − 𝑟

′
𝑘−1
. (40)

By inspection, (33) entails (38). Then, using (33), (34), and �̃�𝑘 = 𝜐𝑘 − 𝜐𝑘−1, we find that

𝑟𝑘 − 𝑟𝑘−1 − 𝑞
′
𝑘−1
= 𝑞′0 + (𝑘 − 1)𝑝

′′ + (𝜐𝑘 − 𝜐𝑘−1)𝑝
′ + 2(𝜐′

𝑘
− 𝜐′

𝑘−1
)𝑝 − (𝑞′0 + (𝑘 − 1)𝑝

′′)

= �̃�𝑘𝑝
′ + 2�̃�′

𝑘
𝑝, (41)

which establishes (39). Using (38) and (39), we can rewrite (40) as

0 = (𝑟𝑘 − 𝑟𝑘−1)�̃�𝑘 + 𝑞𝑘�̃�
′
𝑘
+ 𝑝�̃�′′

𝑘
+ 𝑟′
𝑘−1

= (𝑞′
𝑘−1
+ 𝑝′�̃�𝑘 + 2𝑝�̃�

′
𝑘
)�̃�𝑘 + (𝑞𝑘−1 + 𝑝

′)�̃�′
𝑘
+ 𝑝�̃�′′

𝑘
+ 𝑟′
𝑘−1

=
(
𝑝(�̃�′

𝑘
+ �̃�2

𝑘
) + 𝑞𝑘−1�̃�𝑘 + 𝑟𝑘−1

)′
. (42)

Let �̃�𝑘 denote

�̃�𝑘 = 𝜑𝑘,𝑘 =
𝜙(1,…,𝑘)

𝜙(1,…,𝑘−1)
, so �̃�𝑘 = (log �̃�𝑘)

′, (43)

and observe that

𝑝(�̃�′
𝑘
+ �̃�2

𝑘
) + 𝑞𝑘−1�̃�𝑘 + 𝑟𝑘−1 =

�̃�𝑘−1�̃�𝑘

�̃�𝑘
. (44)

Then (40) is equivalent to establishing

�̃�𝑘−1�̃�𝑘 = 𝜆𝑘�̃�𝑘, 𝑘 ∈ {1, … , 𝑛}. (45)

The rest of the proof follows by induction. The base case holds because �̃�1 = 𝜙1 and by assump-
tion,𝑇0𝜙1 = 𝜆1𝜙1. Now, suppose thatwe have established (35) for 𝑗 = 1,… , 𝑘 − 1. By Lemma 1 and
the inductive hypothesis,

�̃�𝑘−1�̃�𝑘 = �̃�𝑘−1�̃�𝑘−1 ⋯ �̃�1𝜙𝑘 = �̃�𝑘−1�̃�𝑘−2�̃�𝑘−2 ⋯ �̃�1𝜙𝑘

= �̃�𝑘−1 ⋯ �̃�1𝑇0𝜙𝑘 = 𝜆𝑘�̃�𝑘−1 ⋯ �̃�1𝜙𝑘 = 𝜆𝑘�̃�𝑘. (46)

■
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GARCÍA-FERRERO et al. 335

The next lemma shows the gauge transformation that connects 𝑇𝑘 with �̃�𝑘.

Lemma 3. Let 𝑇𝑘 be as in Theorem 1 and �̃�𝑘 be as in Lemma 2. Setting 𝑠𝑘 ∶= 𝑏1 …𝑏𝑘 , we have

𝑇𝑘 = 𝑠𝑘�̃�𝑘𝑠
−1
𝑘
, 𝑘 = 1,… , 𝑛. (47)

Proof. Observe that 𝜎𝑘 = (log 𝑠𝑘)′. By direct calculation,

𝑠𝑘𝐷𝑠
−1
𝑘
= 𝐷 − 𝜎𝑘, (48)

𝑠𝑘𝐷
2𝑠−1
𝑘
= (𝑠𝑘𝐷𝑠

−1
𝑘
)2 = (𝐷 − 𝜎𝑘)

2 = 𝐷2 − 2𝜎𝑘𝐷 + 𝜎
2
𝑘
− 𝜎′

𝑘
. (49)

Hence,

𝑞𝑘 = 𝑞𝑘 − 2𝜎𝑘𝑝, (50)

𝑟𝑘 = 𝑟𝑘 + (𝜎
2
𝑘
− 𝜎′

𝑘
)𝑝 − 𝜎𝑘𝑞𝑘, (51)

as was to be shown. ■

With all the previous elements, proving Theorem 1 for general factorization gauges becomes a
straightforward computation

Proof of Theorem 1. We observe that 𝐴𝑘 is related with �̃�𝑘 in Lemma 1 by 𝑠𝑘 = 𝑏1 …𝑏𝑘 as follows:

𝑠𝑘�̃�𝑘𝑠
−1
𝑘
= 𝐷 − �̃�𝑘 − 𝜎𝑘 = 𝐴𝑘. (52)

Hence, by Lemma 3,

𝑇𝑘𝐴𝑘 = 𝑠𝑘�̃�𝑘�̃�𝑘𝑠
−1
𝑘
= 𝑠𝑘�̃�𝑘�̃�𝑘−1𝑠

−1
𝑘
= 𝐴𝑘𝑇𝑘−1, (53)

as was to be shown. ■

Remark 4. In light of Lemma 3, a different choice of 𝑏1, … , 𝑏𝑛 results in a gauge transformation
of the operators 𝑇1, … , 𝑇𝑛. It is for this reason that we refer to 𝑏1, … , 𝑏𝑛 as factorization gauges.
Moreover, by (24), the coefficients of 𝑇𝑛 are defined directly in terms of 𝜎𝑛 = (log 𝑠𝑛)′ and 𝜐𝑛. The
Wronskian 𝜙(1,2,…,𝑛) is alternating in its indices and its log-derivative 𝜐𝑛 is invariant with respect
to permutations of the set {1, 2, … , 𝑛}. Thus, we see that 𝑇𝑛 depends only on the choice of the seed
eigenfunctions 𝜙1, … , 𝜙𝑛 — irrespective of their order—and on the product of the factorization
gauges 𝑠𝑛 = 𝑏1⋯𝑏𝑛. Fixing the seed eigenfunctions, but choosing a different 𝑠𝑛 amounts to a
gauge transformation of 𝑇𝑛.

3 CDTs

In this section we generalize the concept of Darboux transformations to allow for repeated eigen-
values. Notice that the construction in Section 2 fails if the eigenvalues of the factorization
eigenfunctions are not all distinct, because then some of the seed functions may not be linearly
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336 GARCÍA-FERRERO et al.

independent, which leads to the vanishing of theWronskians in the denominator of (23). To allow
for repeated eigenvalues, we will allow some of our seed eigenfunctions to become generalized
eigenfunctions.

Definition 4. We say that two second-order rational operators 𝑇0 and 𝑇2 are connected by a CDT
if there exists a second-order rational operator 𝑇1 such that 𝑇0 → 𝑇1 → 𝑇2 is a two-step Darboux
transformation and the corresponding eigenvalues, as defined in Proposition 1, satisfy 𝜆1 = 𝜆2.

As we shall see, the factorization eigenfunction for the second step 𝑇1 → 𝑇2 will not be related
to an eigenfunction of 𝑇0 but to a generalized eigenfunction, which motivates the following
definition.

Definition 5. Let 𝑇 be a linear differential operator. We say that 𝜙 is an 𝑛th-order generalized
eigenfunction of 𝑇 if (𝑇 − 𝜆)𝑛𝜙 = 0, but (𝑇 − 𝜆)𝑛−1𝜙 ≠ 0.
For our purposes it will be sufficient to use only second-order generalized eigenfunctions; how-

ever, the more general construction can be found in Ref. 26. We now show that a CDT can be
generated by a seed eigenfunction and a corresponding second-order generalized eigenfunction.
To build a CDT, we start with a second-order rational operator 𝑇0 = 𝑝𝐷2 + 𝑞0𝐷 + 𝑟0, a quasi-

rational seed eigenfunction 𝜙 with eigenvalue 𝜆 and rational factorization gauges 𝑏1 and 𝑏2. Let
𝑇0 → 𝑇1 be a one-step Darboux transformation with factorization function 𝜙 at factorization
eigenvalue 𝜆. We nowwish to perform a second Darboux transformation on 𝑇1 using the repeated
eigenvalue 𝜆 and factorization gauge 𝑏2. As shown below, this requires that the second seed func-
tion be a generalized eigenfunction of 𝑇0. We therefore seek to construct a function 𝜙(1) such that
(𝑇0 − 𝜆)𝜙

(1) = 𝜙. The following lemma shows how to achieve this.

Lemma 4. Let 𝑇0 = 𝑝𝐷2 + 𝑞0𝐷 + 𝑟0 and let 𝜙 be an eigenfunction of 𝑇0 with eigenvalue 𝜆, that is,
𝑇0𝜙 = 𝜆𝜙. Then the particular solution of the inhomogeneous equation (𝑇0 − 𝜆)𝑦 = 𝜙 is given by

𝜙(1)(𝑧) = 𝜙(𝑧)∫
𝑧 (
𝜇(𝑢)

𝜙(𝑢)2 ∫
𝑢
𝜙2(𝑠)

𝑝(𝑠)𝜇(𝑠)
𝑑𝑠

)
𝑑𝑢, (54)

where

𝜇(𝑧) ∶= exp

(
−∫

𝑧
𝑞0(𝑢)

𝑝(𝑢)
𝑑𝑢

)
. (55)

Also, a linearly independent solution of the homogenous equation (𝑇0 − 𝜆)𝑦 = 0 is given by

𝜙⟂(𝑧) ∶= 𝜙(𝑧)∫
𝑧
𝜇(𝑢)

𝜙(𝑢)2
𝑑𝑢. (56)

Remark 5. Having fixed 𝜇 as in (55), the above definition of 𝜙(1) incorporates two additional con-
stants of integrationwhich correspond to linear combination of the solutions of the homogeneous
equation, 𝜙 and 𝜙⟂. We will fix one of these constants once we consider an explicit form for 𝑝, by
imposing an appropriate lower bound for the integral. The other constant of integration serves as
a natural deformation parameter in the CDT construction. This will be explained in more detail
later on.
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GARCÍA-FERRERO et al. 337

Proof of Lemma 4. We first consider a complementary solution 𝜙⟂ to the eigenvalue equa-
tion 𝑇0𝑦 = 𝜆𝑦. We can obtain an explicit formula for 𝜙⟂ via reduction of order. Substituting the
form 𝜙⟂ ∶= 𝑓𝜙 into the equation 𝑇0𝜙⟂ = 𝜆𝜙⟂ yields the equation

𝑓′′

𝑓′
= −
𝑞0
𝑝
− 2𝑤, with 𝑤 =

𝜙′

𝜙
. (57)

Noticing that 𝜇
′

𝜇
= −

𝑞0

𝑝
, it follows that

𝑓(𝑧) = ∫
𝑧
𝜇(𝑢)

𝜙(𝑢)2
𝑑𝑢. (58)

The above definitions are purely formal in that we have not specified the lower bound of the
integrals. This means that 𝜙⟂ is defined up to a constant multiple of 𝜙, and that 𝜇 is defined up to
a choice of positive multiplicative constant.
We now construct 𝜙(1) using variation of parameters. We set

𝜙(1) ∶= �̂�𝜙 + 𝜌𝜙⟂, (59)

where �̂� and 𝜌 are unknown functions satisfying

�̂�′𝜙 + 𝜌′𝜙⟂ = 0. (60)

Because (𝑇0 − 𝜆)𝜙(1) = 𝜙, then they also satisfy

𝑝
(
�̂�′′𝜙 + 2�̂�′𝜙′ + 𝜌′′𝜙⟂ + 2𝜌′(𝜙⟂)′

)
= �̂�𝜙 + 𝜌𝜙⟂. (61)

Solving for the functions �̂� and 𝜌 satisfying the above system of equations, we find that

�̂�(𝑧) = −∫
𝑧

𝜙(𝑢)𝜙⟂(𝑢)𝑊(𝑢)𝑑𝑢, (62)

𝜌(𝑧) = ∫
𝑧

𝜙2(𝑢)𝑊(𝑢)𝑑𝑢, (63)

where

𝑊(𝑧) ∶= (𝑝(𝑧)𝜇(𝑧))
−1
=
1

𝑝(𝑧)
exp

(
∫
𝑧
𝑞0(𝑢)

𝑝(𝑢)
𝑑𝑢

)
. (64)

Now integrating by parts it follows that we can express 𝜙(1) as

𝜙(1)(𝑧) = 𝜙(𝑧)(𝑓(𝑧)𝜌(𝑧) + �̂�(𝑧)) = 𝜙(𝑧)

(
𝑓(𝑧)𝜌(𝑧) − ∫

𝑧

𝑓(𝑢)𝜌′(𝑢)𝑑𝑢

)
= 𝜙(𝑧)∫

𝑧

𝜌(𝑢)𝑓′(𝑢)𝑑𝑢 = 𝜙(𝑧)∫
𝑧
𝜌(𝑢)𝜇(𝑢)

𝜙(𝑢)2
𝑑𝑢.

(65)

■

 14679590, 2022, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12510 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [06/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



338 GARCÍA-FERRERO et al.

After the first Darboux transformation 𝑇0 → 𝑇1 at factorization eigenvalue 𝜆, we define the
intertwiner 𝐴1 = 𝑏1(𝐷 − 𝑤1), with 𝑤1 = (log 𝜙)′. The first candidate for factorization function
for the second Darboux transformation 𝑇1 → 𝑇2 would be the image of 𝜙⟂ under 𝐴1:

𝜓⟂ ∶= 𝐴1𝜙
⟂ = 𝑏1

𝜇

𝜙
. (66)

Indeed, because 𝑇1𝜓⟂ = 𝜆𝜓⟂, we could employ 𝜓⟂ as a factorization eigenfunction for a one-
step Darboux transformation on 𝑇1. However, this choice of eigenfunction produces the inverse
Darboux transformation 𝑇1 → 𝑇0.
To construct an operator 𝑇2 distinct from 𝑇0, we need to consider another candidate: the image

of the generalized eigenfunction 𝜙(1) under𝐴1. Indeed, we define the factorization eigenfunction
for 𝑇1 to be

𝜓2 ∶= 𝐴1𝜙
(1) = 𝜌𝜓⟂, (67)

with 𝜌 as in (63). The second equality is true because

Wr[𝜙, 𝜙(1)] = Wr

[
𝜙, 𝜙 ∫

𝑧
𝜌𝜇

𝜙2

]
= 𝜌𝜇 (68)

and therefore

𝜓2 =
𝑏1
𝜙
Wr[𝜙, 𝜙(1)] =

𝑏1
𝜙
𝜌𝜇 = 𝜌𝜓⟂. (69)

The key observation is that although 𝜙(1) is only a generalized eigenfunction of 𝑇0, its image 𝜓2 is
a true eigenfunction of 𝑇1 at eigenvalue 𝜆:

(𝑇1 − 𝜆)𝜓2 = (𝑇1 − 𝜆)𝐴1𝜙
(1) = 𝐴1(𝑇0 − 𝜆)𝜙

(1) = 𝐴1𝜙1 = 0, (70)

and thus it can be employed for the second Darboux transformation 𝑇1 → 𝑇2. We summarize the
construction of a CDT 𝑇0 → 𝑇2 with a generalized eigenfunction in the following proposition.

Proposition 3. Let 𝑇0 = 𝑝𝐷2 + 𝑞0𝐷 + 𝑟0 be a second-order rational operator, 𝜙 a quasi-rational
eigenfunction of 𝑇0 with eigenvalue 𝜆, and 𝑏1, 𝑏2 a choice of nonzero rational functions. Let 𝜇, 𝜌
be defined as per (55) and (63), respectively, and assume that 𝜌 is a quasi-rational function. Let
𝑇2 = 𝑝𝐷

2 + 𝑞2𝐷 + 𝑟2, where 𝑝2 and 𝑟2 are defined in (24) with

𝜐1 ∶= (log 𝜙)
′, 𝜐2 ∶= (log(𝜌𝜇))

′
. (71)

Then 𝑇0 and 𝑇2 are connected by a CDT

Proof. First, we observe that𝑇2 is a second-order rational operator because of the assumption on𝜇.
Then, it remains to show there is 𝑇1 such that 𝑇0 → 𝑇1 → 𝑇2 is a two-step Darboux transforation
with 𝜆1 = 𝜆2. Defining 𝑇1, 𝐴1, 𝐴2 as per (22)–(25), with 𝑏𝑗, 𝜐𝑗 , 𝑗 ∈ {1, 2} as in the statement, the
result then follows. ■
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GARCÍA-FERRERO et al. 339

Remark 6. Observe that the construction of a CDT amounts to applying the extended CrumWron-
skian formula derived in Theorem 1 for 𝑘 = 2 with the only modification that one of the seed
functions of 𝑇0 is a true eigenfunction, but the second one is a generalized eigenfunction, that is,
apply the formulas in Theorem 1 with

𝜙1 = 𝜙, 𝜙2 = 𝜙
(1), 𝜆1 = 𝜆2 = 𝜆. (72)

Remark 7. The definition (54) of the second seed function 𝜙(1) involves two indefinite integrals.
The outer integral provides no extra freedom, because it means that 𝜙(1) is defined up to an addi-
tive term 𝐶𝜙 but this term will vanish in the Wronskian 𝜙(1,2). The lower bound of the inner
integral (which is also shown in (63)) however, gives rise to a term 𝐶𝜙⟂, which introduces a
free real parameter, a characteristic feature of the CDT. We will see below, that this coefficient
of 𝜙⟂ is—roughly speaking—the reciprocal of a deformation parameter 𝑡. Thus sending 𝐶 → ∞
(equivalently, setting 𝑡 → 0) recovers the starting operator.

Remark 8. The assumption that 𝜌
′

𝜌
is rational ensures that 𝜐2, as defined above, is rational. This

assumptionmay be restated as the condition that 𝜙2𝑊, the integrand of (63), is a rational function
with vanishing residues. Verifying the rationality of the CDT is key to ensure that the transformed
operator has polynomial eigenfunctions.

Remark 9. The confluent aspect of a CDT comes from a conceptual formula for the generalized
eigenvalue equation (𝑇0 − 𝜆)𝜙(1) = 𝜙. We note that, despite not being made explicit, the seed
eigenfunction 𝜙 depends on the eigenvalue 𝜆. This dependence can be recovered by imposing
initial conditions on 𝜙 and 𝜙′. Thus, starting from the eigenvalue equation (𝑇0 − 𝜆)𝜙 = 0, we can
differentiate with respect to 𝜆 to find that

(𝑇0 − 𝜆)

[
𝜕𝜙

𝜕𝜆

]
= 𝜙. (73)

This equation implies a rather simple formula for defining 𝜙(1), which is

𝜙(1) =
𝜕𝜙

𝜕𝜆
. (74)

This formula is not of much practical use, because the functional dependence on 𝜆 is typically
impossible to express explicitly. However, this expression is of conceptual importance and the
derivative can be seen as a limiting case of the ordinary Darboux transformation, where the
eigenvalues converge as 𝜆2 → 𝜆1. Hence the name CDT.

In this section we have seen how to build a CDT as a two-step Darboux transformation with a
generalized eigenfunction, introducing in the process a free real parameter. This construction can
be iterated at different eigenvalues to create chains of CDTs: Perform a CDT on the first operator
𝑇0 at eigenvalue 𝜆1, which is followed by a CDT on 𝑇2 at eigenvalue 𝜆2 ≠ 𝜆1, which yields the
operator 𝑇4, etc.
Chains of operators may be constructed through an arbitrary finite number of CDTs in this

fashion, thereby leading to an operator with an arbitrary number of free real parameters, which
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340 GARCÍA-FERRERO et al.

is Darboux connected to the original 𝑇0. In the following section we show how to construct
a CDT chain starting on the classical Gegenbauer polynomials, and leading to the deformed
Gegenbauer polynomials.

4 EXCEPTIONAL GEGENBAUER OPERATORS AND
POLYNOMIALS

In this section we apply the theory developed in Sections 2 and 3 to construct a chain of CDTs on
the classical Gegenbauer operator.

4.1 Definition of exceptional Gegenbauer operators and polynomials

In Ref. 2 it was shown that an exceptional operator in the Hermite, Laguerre, or Jacobi class
must have a very specific form. We define in this section exceptional Gegenbauer polynomials
and operators attending to this particular form (as a particular class of exceptional Jacobi opera-
tors), postponing for later sections the discussion on how the construction of specific families is
achieved.

Definition 6. Let 𝜏 = 𝜏(𝑧) be a nonzero polynomial and 𝛼 ∈ ℝ. We say that the differential
expression

𝑇
(𝛼)
𝜏 (𝑧, 𝐷) ∶= (1 − 𝑧

2)

(
𝐷2 − 2

𝜏′

𝜏
𝐷 +

𝜏′′

𝜏

)
− (2𝛼 + 1)𝑧𝐷 + (2𝛼 − 1)𝑧

𝜏′

𝜏
(75)

is an exceptional Gegenbauer operator if 𝑇(𝛼)𝜏 admits eigenpolynomials {𝜋𝑖(𝑧)}𝑖∈ℕ0 such that the
degree sequence {deg 𝜋𝑖}𝑖∈ℕ0 is missing finitely many “exceptional” degrees.

In the above definition, it should be stressed that only very specific polynomials 𝜏(𝑧) in (75)
will lead to 𝑇(𝛼)𝜏 being an exceptional Gegenbauer operator, that is, having an infinite number of
polynomial eigenfunctions. The following sections are devoted to describing a class of polynomi-
als 𝜏 obtained by applying a multistep CDT on 𝜏 = 1, which ensures that this is indeed the case.
Note that there is no restriction on the parameter 𝛼 at this stage. In the following section we will
see that 𝛼 must be a half-integer for the CDTs to be rational. This means that for standard Dar-
boux transformations (see Section 2) the parameter 𝛼 can be real, leading to generic exceptional
Gegenbauer polynomials, but for CDTs (see Section 3) the parameter 𝛼 ∈ ℕ0 +

1

2
, which leads to

deformed Gegenbauer polynomials.
Observe also, by contrast to classical OPs, that we are not assuming that deg𝜋𝑖 = 𝑖.

Furthermore, without loss of generality, it will be convenient to assume that

deg𝜋𝑖 ≠ deg𝜋𝑗 if 𝑖 ≠ 𝑗. (76)

As usual, we speak of exceptional Gegenbauer polynomials when the eigenpolynomials
{𝜋𝑖(𝑧)}𝑖∈ℕ0 define a complete OP system.
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GARCÍA-FERRERO et al. 341

Definition 7. Let 𝜏(𝑧) be a polynomial and 𝛼 ∈ ℝ . We say that the set {𝜋𝑖(𝑧)}𝑖∈ℕ0 is a family of
exceptional Gegenbauer polynomials with weight

𝑊
(𝛼)
𝜏 (𝑧) ∶=

(1 − 𝑧2)
𝛼−
1

2

𝜏(𝑧)2
, (77)

if the following conditions hold:

(a) 𝜏(𝑧) does not vanish on 𝐼 = [−1, 1];
(b) {𝜋𝑖(𝑧)}𝑖∈ℕ0 are eigenpolynomials of an 𝑋-Gegenbauer operator (75);
(c) The polynomials {𝜋𝑖(𝑧)}𝑖∈ℕ0 form a complete set in the Hilbert space L2(𝐼,𝑊(𝛼)𝜏 ).

Note that there is no need to include an explicit orthogonality assumption in the above def-
inition, because orthogonality of the eigenpolynomials follows from assumptions (a) and (b).
Also note that there is no need for supplementary assumptions regarding the corresponding
eigenvalues as these are necessarily quadratic functions of the degree sequence. More specifically,
we establish these results in the next two lemmas.

Lemma 5. Let 𝑇(𝛼)𝜏 be an exceptional Gegenbauer operator and let {𝜋𝑖}𝑖∈ℕ0 be its associated
eigenpolynomials, that is,

𝑇
(𝛼)
𝜏 𝜋𝑖 = 𝜆𝑖𝜋𝑖. (78)

Then, necessarily
𝜆𝑖 = −𝑑𝑖(2𝛼 + 𝑑𝑖), where 𝑑𝑖 = deg𝜋𝑖 − deg 𝜏. (79)

Proof. Let 𝜏(𝑧) be a polynomial and𝜋𝑖(𝑧) an eigenpolynomial of𝑇
(𝛼)
𝜏 with eigenvalue 𝜆𝑖 . Explicitly,

by (75), we have

(1 − 𝑧2)
(
𝜏𝜋′′
𝑖
− 2𝜏′𝜋′

𝑖
+ 𝜏′′𝜋𝑖

)
− (2𝛼 + 1)𝑧𝜏𝜋′

𝑖
+ (2𝛼 − 1)𝑧𝜏′𝜋𝑖 = 𝜆𝑖𝜏𝜋𝑖. (80)

Let 𝑛 = deg𝜋𝑖 and 𝑚 = deg 𝜏 and without loss of generality suppose that both 𝜏(𝑧), 𝜋𝑖(𝑧) are
monic; that is, 𝜏(𝑧) = 𝑧𝑚 +⋯ and 𝜋(𝑧) = 𝑧𝑛 +⋯. Notice that the highest power of 𝑧 on either
side of (80) is𝑚 + 𝑛. Hence, for the above equation to hold, the two coefficients on 𝑧𝑚+𝑛 must be
equal. Considering only the highest power of 𝑧 in each term, yields the equation

𝜆𝑖𝑧
𝑚+𝑛 = (−𝑛(𝑛 − 1) + 2𝑚𝑛 −𝑚(𝑚 − 1) − (2𝛼 + 1)𝑛 + (2𝛼 − 1)𝑚)𝑧𝑚+𝑛. (81)

Hence
𝜆𝑖 = −𝑛(𝑛 − 1) + 2𝑚𝑛 −𝑚(𝑚 − 1) − (2𝛼 + 1)𝑛 + (2𝛼 − 1)𝑚

= −𝑛2 + 2𝑚𝑛 −𝑚2 − 2𝛼𝑛 + 2𝛼𝑚

= −(𝑛 − 𝑚)2 − 2𝛼(𝑛 − 𝑚)

= −(𝑛 − 𝑚)(2𝛼 + 𝑛 −𝑚), (82)

as was to be shown. ■
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342 GARCÍA-FERRERO et al.

Lemma 6. A family of exceptional Gegenbauer polynomials {𝜋𝑖}𝑖∈ℕ0 is necessarily orthogonal with
respect to the corresponding weight (77):

∫
𝐼

𝜋𝑖(𝑧)𝜋𝑗(𝑧)𝑊
(𝛼)
𝜏 (𝑧)𝑑𝑧 = 0 if 𝑖 ≠ 𝑗. (83)

Proof. Multiplying the eigenvalue equation 𝑇(𝛼)𝜏 𝑦 = 𝜆𝑦 by 𝑊(𝛼)𝜏 yields a Sturm–Liouville
eigenvalue equation

(𝑃
(𝛼)
𝜏 𝑦

′)′ + 𝑅
(𝛼)
𝜏 𝑦 = 𝑊

(𝛼)
𝜏 𝜆𝑦, (84)

where

𝑃
(𝛼)
𝜏 ∶= (1 − 𝑧

2)
𝛼+
1

2 𝜏−2,

𝑅
(𝛼)
𝜏 ∶= (1 − 𝑧

2)
𝛼+
1

2 𝜏′′𝜏−3 + (2𝛼 − 1)𝑧(1 − 𝑧2)
𝛼−
1

2 𝜏′𝜏−3.

(85)

Lagrange’s identity now gives

∫
𝑧

−1

(
𝑦1𝑇

(𝛼)
𝜏 𝑦2 − 𝑦2𝑇

(𝛼)
𝜏 𝑦1

)
𝑊
(𝛼)
𝜏 𝑑𝑢 = 𝑃

(𝛼)
𝜏 Wr[𝑦1, 𝑦2]. (86)

Because the eigenvalues 𝜆𝑖 are distinct, assumption (a) and (86) imply that the eigenpolynomials
satisfy orthogonality relations. ■

The base case of the class of exceptional Gegenbauer operators is the classical Gegenbauer
operator 𝑇(𝛼) = 𝑇(𝛼)𝜏0 , where 𝜏0(𝑧) = 1. In this case the general form (75) simplifies to (7) and the
eigenpolynomials are the classical Gegenbauer polynomials40

𝐶
(𝛼)
𝑖
∶=

⌊𝑖∕2⌋∑
𝑘=0

(−1)𝑘
Γ(𝑖 − 𝑘 + 𝛼)

Γ(𝛼)𝑘!(𝑖 − 2𝑘)!
(2𝑧)𝑖−2𝑘. (87)

These classical OPs do have deg𝐶(𝛼)
𝑖
= 𝑖, and they satisfy the eigenvalue relation

𝑇(𝛼)𝐶
(𝛼)
𝑖
= 𝜆𝑖𝐶

(𝛼)
𝑖
, 𝑖 ∈ ℕ0, (88)

with 𝜆𝑖 = −𝑖(2𝛼 + 𝑖). If 𝛼 > −
1

2
the polynomials {𝐶(𝛼)

𝑖
}𝑖∈ℕ0 form a complete set in L2(𝐼,𝑊(𝛼)) and

they satisfy the orthogonality relation

∫
𝐼

𝐶
(𝛼)
𝑖
(𝑢)𝐶

(𝛼)
𝑗
(𝑢)𝑊(𝛼)(𝑢)𝑑𝑢 = 𝜈

(𝛼)
𝑖
𝛿𝑖𝑗, 𝑖, 𝑗 ∈ ℕ0, (89)

where

𝑊(𝛼)(𝑧) ∶= 𝑊
(𝛼)
𝜏0
(𝑧) = (1 − 𝑧2)

𝛼−
1

2 ; (90)

𝜈
(𝛼)
𝑖
∶=
𝜋21−2𝛼Γ(𝑖 + 2𝛼)

𝑖!(𝑖 + 𝛼)Γ(𝛼)2
, 𝑖 ∈ ℕ0. (91)
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GARCÍA-FERRERO et al. 343

Once the class of exceptional Gegenbauer operators and polynomials has been defined, we will
describe in the next sections the construction of deformedGegenbauer polynomials via a sequence
of CDTs.

4.2 Factorizations of exceptional Gegenbauer operators

Let us start by describing the factorization of an exceptional Gegenbauer operator (75) to define
a one-step Darboux transformation. After that, we will combine two Darboux transformations to
define a CDT.
Given rational functions 𝜏(𝑧) and 𝜋(𝑧), and a real constant 𝛼, we define the following two

first-order rational operators:

𝐴𝜏𝜋(𝑧, 𝐷) ∶= 𝜏(𝑧)
−1
(
𝜋(𝑧)𝐷 − 𝜋′(𝑧)

)
,

𝐵
(𝛼)
𝜋𝜏 (𝑧, 𝐷) ∶= (1 − 𝑧

2)𝐴𝜋𝜏(𝑧, 𝐷) − (2𝛼 + 1)𝑧𝜏(𝑧)𝜋(𝑧)
−1.

(92)

It will be useful to express the above operators in terms of Wronskian determinants by setting

�̂�(𝑧) ∶= (1 − 𝑧2)
−𝛼−

3

2 𝜋(𝑧),

�̂�(𝑧) ∶= (1 − 𝑧2)
−𝛼−

1

2 𝜏(𝑧),

(93)

so that

𝐴𝜏𝜋𝑦 = 𝜏
−1 Wr[𝜋, 𝑦], (94)

𝐵
(𝛼)
𝜋𝜏 𝑦 = �̂�

−1 Wr[�̂�, 𝑦]. (95)

Observe that it would be sufficient to define only 𝐴𝜏𝜋 because the two operators are related by

𝐵
(𝛼)
𝜋𝜏 = 𝐴�̂��̂�. (96)

However, defining both operators separately will make for simpler notation going forward. With
these first order operators, we can now describe the factorization of an exceptional Gegenabuer
operator (75) in the following proposition.

Proposition 4. Let 𝛼 ∈ ℝ, 𝜏(𝑧) be a polynomial, and 𝑇(𝛼)𝜏 be an exceptional Gegenabuer operator
as in (75). Assume that 𝜋(𝑧) is an eigenpolynomial of 𝑇(𝛼)𝜏 with eigenvalue 𝜆, that is, 𝑇(𝛼)𝜏 𝜋 = 𝜆𝜋. We
then have the following factorizations:

𝐵
(𝛼)
𝜋𝜏 𝐴𝜏𝜋 = 𝑇

(𝛼)
𝜏 − 𝜆,

𝐴𝜏𝜋𝐵
(𝛼)
𝜋𝜏 = 𝑇

(𝛼+1)
𝜋 − �̂�,

(97)
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344 GARCÍA-FERRERO et al.

where

�̂� = 𝜆 + 2𝛼 + 1. (98)

Proof. The proof follows by a straightforward computation. ■

We say that the transformation 𝑇(𝛼)𝜏 → 𝑇
(𝛼+1)
𝜋 − (2𝛼 + 1) is a formally state-deleting Darboux

transformation, because the second operator no longer has an eigenpolynomial at the eigenvalue
𝜆. Likewise, we refer to the transformation 𝑇(𝛼+1)𝜋 → 𝑇

(𝛼)
𝜏 + (2𝛼 + 1) as a formally state-adding

Darboux transformation, because the operator 𝑇(𝛼)𝜏 gains an extra polynomial eigenfunction 𝜋
at eigenvalue 𝜆. The following proposition describes the factorization eigenfunction for this dual
factorization.

Proposition 5. Let 𝛼 ∈ ℝ, 𝜏(𝑧) and 𝜋(𝑧) be nonzero polynomials and let �̂� be as in (93). Suppose
that the following eigenvalue equation holds: 𝑇(𝛼+1)𝜋 �̂� = �̂��̂�. Then the factorizations (97) also hold.

Proof. By direct calculation, we obtain that

𝜋𝑇
(𝛼+1)
𝜋 �̂� = �̂�𝑇

(𝛼)
𝜏 𝜋 + (2𝛼 + 1)𝜋�̂�. (99)

Hence, 𝑇(𝛼)𝜏 𝜋 = 𝜆𝜋 is equivalent to 𝑇
(𝛼+1)
𝜋 �̂� = �̂��̂�. This, together with (96), implies the result.

4.3 CDTs of exceptional Gegenbauer operators

In this section, we apply the theory of CDTs developed in Section 3 to exceptional Gegenbauer
operators. With the factorizations introduced in the previous section, we will realize a CDT of
an exceptional Gegenbauer operator 𝑇0 by a state-deleting transformation 𝑇0 → 𝑇1 followed by
a one-parameter family of state-adding transformations 𝑇1 → 𝑇2 at the same eigenvalue. Next
we derive certain recursive formulas that connect the 𝜏-functions and eigenpolynomials of two
exceptional Gegenbauer operators connected by a CDT.
Starting from the classical Gegenbauer operator we will construct a chain of CDTs and a

recursive construction of deformed Gegenbauer operators. This recursive construction will be
discussed in more detail in the following section.

Remark 10. While the definitions of exceptional Gegenbauer operators and their factorizations in
the previous section hold for any 𝛼 ∈ ℝ, we need to assume that certain integrals like (100) define
rational functions, which requires that 𝛼 ∈ ℕ0 +

1

2
from here on.

Suppose moreover that 𝜏(𝑧) is a polynomial and 𝑇(𝛼)𝜏 is an exceptional Gegenbauer operator, as
per (75), with eigenpolynomials {𝜋𝑖}𝑖∈ℕ0 . We define the functions

𝜌𝑖𝑗(𝑧) ∶= ∫
𝑧

−1

𝜋𝑖(𝑢)𝜋𝑗(𝑢)𝑊
(𝛼)
𝜏 (𝑢)𝑑𝑢, 𝑖, 𝑗 ∈ ℕ0; (100)

𝜏𝑚(𝑧, 𝑡) ∶= 𝜏(𝑧)(1 + 𝑡𝜌𝑚𝑚(𝑧)), 𝑚 ∈ ℕ0; (101)
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GARCÍA-FERRERO et al. 345

𝜋𝑚;𝑖(𝑧, 𝑡) ∶= (1 + 𝑡𝜌𝑚𝑚(𝑧))𝜋𝑖(𝑧) − 𝑡𝜌𝑖𝑚(𝑧)𝜋𝑚(𝑧), 𝑖, 𝑚 ∈ ℕ0, (102)

where the integral in (100) denotes a formal antiderivative that vanishes at 𝑧 = −1.

Remark 11. Throughout this section, we assume that 𝜏𝑚(𝑧) and 𝜋𝑚;𝑖(𝑧, 𝑡) are polynomials in 𝑧
and 𝜌𝑖𝑗(𝑧) is a rational function of 𝑧. In principle, this assumption seems a strong requirement
when looking at (100) and (77). However, we will see in Section 5 that whenever these quantities
are connected recursively to the classicalGegenbauer operator and polynomials, there existmatrix
formulas that establish the polynomial character of 𝜏𝑚(𝑧) and𝜋𝑚;𝑖(𝑧, 𝑡) and the rational character
of 𝜌𝑖𝑗(𝑧) by construction.

Proposition 6. For a given𝑚 ∈ ℕ0, the operators 𝑇
(𝛼)
𝜏 , 𝑇

(𝛼)
𝜏𝑚

are related by a CDT generated by the
seed functions {𝜋𝑚, 𝜋

(1)
𝑚 }.

Proof. Set 𝑇0 = 𝑇
(𝛼)
𝜏 and recall that, by assumption, 𝑇0𝜋𝑚 = 𝜆𝑚𝜋𝑚. We set

𝑇1 ∶= 𝑇
(𝛼+1)
𝜋𝑚

− (2𝛼 + 1), 𝑇2 ∶= 𝑇
(𝛼)
𝜏𝑚
, (103)

𝐴1 ∶= 𝐴𝜏,𝜋𝑚 , 𝐴2 ∶= 𝐵
(𝛼)
𝜋𝑚,𝜏𝑚

. (104)

By Proposition 4, 𝑇0 → 𝑇1 is a state-deleting Darboux transformation. Consequently,

𝐴1𝑇0 = 𝑇1𝐴1. (105)

We now claim that the transformation 𝑇1 → 𝑇2 is a one-parameter family of state-adding Dar-
boux transformations. By inspection of (75), we find that the relevant coefficient functions of 𝑇0
are

𝑝 ∶= 1 − 𝑧2, 𝑞0 ∶= −2(1 − 𝑧
2)
𝜏′

𝜏
− (2𝛼 + 1)𝑧. (106)

Then the function 𝜇(𝑧) in (55) satisfies

𝜇′

𝜇
= −
𝑞0
𝑝
= 2
𝜏′

𝜏
+
(2𝛼 + 1)𝑧

1 − 𝑧2
, (107)

and hence

𝜇(𝑧) ∶= (1 − 𝑧2)
−𝛼−

1

2 𝜏(𝑧)2. (108)

Following (65), we construct a generalized eigenfunction of 𝑇0 as shown in Section 3.We define

𝜋
(1)
𝑚 (𝑧; 𝑡) ∶= 𝜋𝑚(𝑧)∫

𝑧

−1

(1 + 𝑡𝜌𝑚𝑚(𝑠))�̂�(𝑠)
2𝑊

(𝛼+1)
𝜋𝑚

(𝑠)𝑑𝑠, (109)
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346 GARCÍA-FERRERO et al.

where

�̂�(𝑧) ∶= (1 − 𝑧2)
−𝛼−

1

2 𝜏(𝑧), (110)

and𝑊(𝛼+1)𝜋𝑚
is given in (77). Observe that𝑊(𝛼)𝜏 = (𝑝𝜇)−1, in agreement with (64). The definitions

of 𝜌𝑚𝑚, 𝜋
(1)
𝑚 , �̂� agree with the definitions of 𝜌, 𝜙(1), 𝜓⟂1 in (63), (65), and (66), respectively. Con-

sequently, as shown in Section 3, 𝜋(1)𝑚 is a first-order generalized eigenfunction of 𝑇0, because it
satisfies the equation

(𝑇0 − 𝜆𝑚)𝜋
(1)
𝑚 = 𝑡𝜋𝑚. (111)

A direct calculation shows that

𝐴1𝜋
(1)
𝑚 = �̂�𝑚, (112)

where

�̂�𝑚(𝑧, 𝑡) ∶= (1 − 𝑧
2)
−𝛼−

1

2 𝜏𝑚(𝑧, 𝑡) = �̂�(𝑧)(1 + 𝑡𝜌𝑚𝑚(𝑧)). (113)

Hence, by (105),

𝑇1�̂�𝑚 = 𝑇1𝐴1𝜋
(1)
𝑚 = 𝐴1𝑇0𝜋

(1)
𝑚 = 𝜆𝑚�̂�𝑚, (114)

which means that �̂�𝑚 is a factorization eigenfunction of 𝑇1 at 𝜆𝑚. By Proposition 5, we have thus

𝐵
(𝛼)
𝜏𝑚,𝜋
𝐴𝜋,𝜏𝑚 = 𝑇

(𝛼)
𝜏𝑚
− 𝜆,

𝐴𝜋,𝜏𝑚𝐵
(𝛼)
𝜏𝑚,𝜋

= 𝑇
(𝛼+1)
𝜋 − 2𝛼 − 1 − 𝜆.

(115)

We conclude therefore that 𝑇2𝐴2 = 𝐴2𝑇1, as was to be shown. ■

Proposition 7. The polynomials 𝜋𝑚,𝑖(𝑧; 𝑡) as defined in (102) are eigenfunctions of 𝑇
(𝛼)
𝜏𝑚
.

Proof. Combining the intertwining relations in the preceding proof, we have the second-order
intertwining relation

𝐴21𝑇0 = 𝑇2𝐴21, where 𝐴21 ∶= 𝐴2𝐴1. (116)

Our first claim is that

𝐴21𝜋𝑖 = (𝜆𝑖 − 𝜆𝑚)𝜋𝑚;𝑖, 𝑖 ≠ 𝑚. (117)

Let 𝑖 ∈ ℕ0 be given. To establish the previous equation, we consider𝐴1 and𝐴2 in terms of their
Wronskian formulations:

𝐴1𝑦 = 𝐴𝜏𝜋𝑚𝑦 = 𝜏
−1 Wr[𝜋𝑚, 𝑦], (118)
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GARCÍA-FERRERO et al. 347

𝐴2𝑦 = 𝐵
(𝛼)
𝜋𝑚𝜏𝑚

𝑦 = �̂�−1𝑚 Wr[�̂�𝑚, 𝑦], (119)

where

�̂�𝑚(𝑧) = (1 − 𝑧
2)
−𝛼−

3

2 𝜋𝑚(𝑧). (120)

Lagrange’s identity (86) implies that

Wr[𝜋𝑚, 𝜋𝑖] = (𝜆𝑖 − 𝜆𝑚)𝜇 𝜌𝑚𝑖. (121)

Hence,

𝐴1𝜋𝑖 = 𝜏
−1 Wr[𝜋𝑚, 𝜋𝑖] = (𝜆𝑖 − 𝜆𝑚)�̂�𝜌𝑚𝑖. (122)

We define 𝐵1 ∶= 𝐵
(𝛼)
𝜋𝑚,𝜏

and note that by Proposition 4 we have the factorization 𝑇0 = 𝐵1𝐴1 + 𝜆𝑚.
By the linearity of the Wronskian, we also have

𝐴2𝑦 = �̂�
−1
𝑚 Wr[�̂�𝑚, 𝑦] = �̂�

−1
𝑚 Wr[�̂�(1 + 𝑡𝜌𝑚𝑚), 𝑦]

= �̂�−1𝑚 Wr[�̂�, 𝑦] + �̂�
−1
𝑚 Wr[𝑡�̂�𝜌𝑚𝑚, 𝑦]

= 𝐵1𝑦 + 𝑡�̂�
−1
𝑚 Wr[�̂�𝜌𝑚𝑚, 𝑦]. (123)

Finally, we have that

𝐴21𝜋𝑖 = 𝐵1𝐴1𝜋𝑖 + 𝑡(𝜆𝑖 − 𝜆𝑚)�̂�
−1
𝑚 Wr[�̂�𝜌𝑚𝑚, �̂�𝜌𝑚𝑖]

= (𝑇0 − 𝜆𝑚)𝜋𝑖 + (𝜆𝑖 − 𝜆𝑚)𝑡�̂�
2�̂�−1𝑚 Wr[𝜌𝑚𝑚, 𝜌𝑚𝑖]

= (𝜆𝑖 − 𝜆𝑚)(𝜋𝑖 + 𝑡�̂�
2�̂�−1𝑚 (𝜌𝑚𝑚𝜋𝑚𝜋𝑖𝑊

(𝛼)
𝜏 − 𝜌𝑚𝑖𝜋

2
𝑚𝑊

(𝛼)
𝜏 )

= (𝜆𝑖 − 𝜆𝑚)(𝜋𝑖 + 𝑡(𝜌𝑚𝑚𝜋𝑖 − 𝜌𝑚𝑖𝜋𝑚)), (124)

which establishes (117). Next suppose that 𝑖 ≠ 𝑚. Then, by (116), it follows that
𝑇2𝜋𝑚;𝑖 = (𝜆𝑖 − 𝜆𝑚)

−1𝑇2𝐴21𝜋𝑖 = (𝜆𝑖 − 𝜆𝑚)
−1𝐴21𝑇0𝜋𝑖𝜆𝑖𝜋𝑚;𝑖. (125)

Finally, observe that 𝜋𝑚;𝑚 = 𝜋𝑚 and recall that

𝑇2 = 𝐵
(𝛼)
𝜋𝑚,𝜏𝑚

𝐴𝜏𝑚,𝜋𝑚 + 𝜆𝑚. (126)

Hence, 𝑇2𝜋𝑚 = 𝜆𝑚𝜋𝑚, as was to be shown. ■

The last proposition of this section shows that the CDT of an exceptional Gegenbauer family
falls into the same class provided we impose suitable bounds on the introduced parameter 𝑡. The
form of the norming constants of the new eigenpolynomials relative to the weight𝑊(𝛼)𝜏𝑚 follow as
a direct corollary to this proposition. We denote the norm of 𝜋𝑖 by 𝜈𝑖 , and similarly the norm of
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348 GARCÍA-FERRERO et al.

𝜋𝑚;𝑖 is 𝜈𝑚;𝑖 . Explicitly, we have

𝜈𝑖 ∶= ∫
1

−1

𝜋𝑖(𝑠)
2𝑊

(𝛼)
𝜏 (𝑠)𝑑𝑠 = 𝜌𝑖𝑖(1), 𝑖 ∈ ℕ0; (127)

𝜈𝑚;𝑖 ∶= ∫
1

−1

𝜋𝑚;𝑖(𝑠)
2𝑊

(𝛼)
𝜏𝑚
(𝑠)𝑑𝑠 = 𝜌𝑚;𝑖𝑖(1), 𝑚, 𝑖 ∈ ℕ0; (128)

where

𝜌𝑚;𝑖𝑗(𝑧) ∶= ∫
𝑧

−1

𝜋𝑚;𝑖(𝑢; 𝑡)𝜋𝑚;𝑗(𝑢; 𝑡)𝑊
(𝛼)
𝜏𝑚
(𝑢)𝑑𝑢, 𝑚, 𝑖, 𝑗 ∈ ℕ0. (129)

The following proposition exhibits a recursive formulation for the functions 𝜌𝑚;𝑖𝑗 . As a con-
sequence, if the 𝜌𝑖𝑗(𝑧) are rational, then so are 𝜌𝑚;𝑖𝑗(𝑧), that is, rationality is preserved by a
CDT.

Proposition 8. Let 𝜌𝑖𝑗, 𝜏𝑚, 𝜋𝑚;𝑖, 𝜌𝑚;𝑖𝑗 be defined by (100)–(102) and (129). Then,

𝜌𝑚;𝑖𝑗(𝑧, 𝑡) = 𝜌𝑖𝑗(𝑧) −
𝑡𝜌𝑚𝑖(𝑧)𝜌𝑚𝑗(𝑧)

1 + 𝑡𝜌𝑚𝑚(𝑧)
, 𝑚, 𝑖, 𝑗 ∈ ℕ0. (130)

Proof. Observe that

(
𝜌𝑖𝑗 −

𝑡𝜌𝑚𝑖𝜌𝑚𝑗

1 + 𝑡𝜌𝑚𝑚

)′
= 𝜌′

𝑖𝑗
−
𝑡𝜌′
𝑚𝑖
𝜌𝑚𝑗

1 + 𝑡𝜌𝑚𝑚
−
𝑡𝜌𝑚𝑖𝜌

′
𝑚𝑗

1 + 𝑡𝜌𝑚𝑚
+
𝑡2𝜌𝑚𝑖𝜌𝑚𝑗

(1 + 𝑡𝜌𝑚𝑚)2
𝜌′𝑚𝑚

=
(
(1 + 𝑡𝜌𝑚𝑚)

2𝜋𝑖𝜋𝑗 − 𝑡𝜋𝑚(1 + 𝑡𝜌𝑚𝑚)(𝜋𝑖𝜌𝑚𝑗 + 𝜋𝑗𝜌𝑚𝑖) + 𝑡
2𝜌𝑚𝑖𝜌𝑚𝑗𝜋

2
𝑚

) 𝑊
(𝛼)
𝜏

(1 + 𝑡𝜌𝑚𝑚)2

= ((1 + 𝑡𝜌𝑚𝑚)𝜋𝑖 − 𝑡𝜌𝑚𝑖𝜋𝑚)
(
(1 + 𝑡𝜌𝑚𝑚)𝜋𝑗 − 𝑡𝜌𝑚𝑗𝜋𝑚

)
𝑊
(𝛼)
𝜏𝑚

= 𝜋𝑚;𝑖𝜋𝑚;𝑗𝑊
(𝛼)
𝜏𝑚
. (131)

The desired result follows then by integration because 𝜌𝑖𝑗(−1) = 0 by definition, and 𝜌𝑖𝑗(𝑧) is
rational by assumption. ■

To demonstrate that the 𝜋𝑚;𝑖(𝑧) are exceptional Gegenbauer polynomials in the sense of Def-
inition 7, we must first establish the positivity of 𝜏𝑚 on [−1, 1] conditioned on the positivity
of 𝜏.

Proposition 9. Suppose that 𝜏(𝑧) > 0 for all 𝑧 ∈ 𝐼 = [−1, 1]. Then, 𝜏𝑚 is positive on 𝐼 if and only
if 1 + 𝑡𝜈𝑚 > 0.

Proof. By (101), 𝜏𝑚 is positive on 𝐼 if and only if the same is true for 1 + 𝑡𝜌𝑚𝑚(𝑧). We know that
𝜌𝑚𝑚(𝑧) is an increasing function, because

𝜌′𝑚𝑚(𝑧) = 𝜋
2
𝑚(𝑧)

(1 − 𝑧2)
𝛼−
1

2

𝜏2(𝑧)
> 0. (132)
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GARCÍA-FERRERO et al. 349

Additionally, we notice that 𝜌𝑚𝑚 is differentiable, and hence continuous, on the interval 𝐼. Fix 𝑡
and define 𝑔(𝑧) ∶= 1 + 𝑡𝜌𝑚𝑚(𝑧), so that 𝑔′(𝑧) = 𝑡𝜌′𝑚𝑚(𝑧). If 𝑡 ≥ 0, then 𝑔 is positive on 𝐼, because
𝜌𝑚𝑚 is an increasing function and 𝑔(−1) = 1. However, if 𝑡 < 0, then 𝑔 is a decreasing function
on 𝐼. Importantly, 𝑔 cannot have any local extrema on the interval. Hence, if 𝑔(1) = 1 + 𝑡𝜈𝑚 > 0,
then 𝑔must be positive on all of 𝐼. As a consequence, 1 + 𝑡𝜌𝑚𝑚(𝑧) is positive on 𝑧 ∈ 𝐼 if and only
if 1 + 𝑡𝜈𝑚 > 0. ■

Proposition 10. Let𝜋𝑚;𝑖(𝑧, 𝑡) be defined as in (102), and assume that 1 + 𝑡𝜈𝑚 > 0. Then, the norms
(127) and (128) are related by

𝜈−1
𝑚;𝑖
= 𝜈−1𝑚 + 𝛿𝑖𝑚𝑡. (133)

Proof. By Proposition 8, we have that

𝜈𝑚;𝑖 = 𝜈𝑖 −
𝑡𝜌𝑚𝑖(1)

2

1 + 𝑡𝜌𝑚𝑚(1)
= 𝜈𝑖, 𝑖 ≠ 𝑚, (134)

Suppose that 𝑖 ≠ 𝑚. Then, 𝜋𝑖 and 𝜋𝑚 for 𝑖 ≠ 𝑚 are orthogonal relative to𝑊(𝛼)𝜏 . Hence, 𝜌𝑚𝑖(1) = 0
and 𝜈𝑚;𝑚 = 𝜈𝑚. By definition, 𝜈𝑚 = 𝜌𝑚𝑚(1). Hence, if 𝑖 = 𝑚, we have

𝜈𝑚;𝑚 = 𝜈𝑚 −
𝑡𝜈2𝑚
1 + 𝑡𝜈𝑚

=
𝜈𝑚

1 + 𝑡𝜈𝑚
= (𝑡 + 𝜈−1𝑚 )

−1. (135)

■

Remark 12. As a consequence of (128), we can recover the deformation parameter as the difference
of the following norm reciprocals:

𝑡 = 𝜈−1𝑚;𝑚 − 𝜈
−1
𝑚 . (136)

Consequently,

𝜈−1𝑚;𝑚 = 𝜈
−1
𝑚 (1 + 𝑡𝜈𝑚). (137)

Hence, by Proposition 9, the positivity of 𝜏𝑚 is equivalent to the condition that
𝜈𝑚;𝑚 > 0.

Proposition 11. Let 𝛼 ∈ ℕ0 +
1

2
and suppose that {𝜋𝑖(𝑧)}𝑖∈ℕ0 are exceptional Gegenbauer

polynomials with respect to the weight 𝑊(𝛼)𝜏 (𝑧). Let 𝑚 ∈ ℕ0 and suppose that 1 + 𝑡𝜈𝑚 > 0.
Then, the family {𝜋𝑚;𝑖(𝑧)}𝑖∈ℕ0 are also exceptional Gegenbauer polynomials with respect to the
weight𝑊(𝛼)𝜏𝑚 (𝑧).
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350 GARCÍA-FERRERO et al.

Proof. Proposition 9 establishes condition (a) of Definition 7. Proposition 6 establishes (b). It
remains to prove that the completeness condition (c) also holds. Set

�̃�𝑖(𝑧) ∶=
(
𝑊
(𝛼)
𝜏 (𝑧)

) 1
2
𝜋𝑖(𝑧) = (1 − 𝑧

2)
𝛼

2
−
1

4
𝜋(𝑧)

𝜏(𝑧)
,

�̃�𝑚;𝑖(𝑧) ∶=
(
𝑊
(𝛼)
𝜏𝑚
(𝑧)

) 1
2
𝜋𝑚;𝑖(𝑧) = (1 − 𝑧

2)
𝛼

2
−
1

4
𝜋𝑚;𝑖(𝑧)

𝜏𝑚(𝑧)
.

(138)

By assumption, the eigenpolynomials {𝜋𝑖(𝑧)}𝑖∈ℕ0 form a complete basis of L2(𝐼,𝑊(𝛼)𝜏 (𝑧)𝑑𝑧).
Equivalently, {�̃�𝑖(𝑧)}𝑖∈ℕ0 are complete inL

2(𝐼, 𝑑𝑧).We seek to show that {�̃�𝑚;𝑖(𝑧)}𝑖∈ℕ0 are complete
in L2(𝐼, 𝑑𝑧) also.
Following an argument adapted from the appendix of Ref. 25, we observe that the completeness

of {�̃�𝑖}𝑖∈ℕ0 in L
2(𝐼, 𝑑𝑧) is equivalent to∑

𝑖∈ℕ0

𝜈−1
𝑖
�̃�𝑖(𝑧)�̃�𝑖(𝑤) = 𝛿(𝑧 − 𝑤), (139)

where the equality must be understood in distributional sense on 𝐼 × 𝐼. Let 𝑓 be piece-wise
continuous function in 𝐼 and set

[𝑓]𝑖 = 𝜈
−1
𝑖 ∫

𝐼

�̃�𝑖(𝑢)𝑓(𝑢)𝑑𝑢. (140)

Relation (139) then entails ∑
𝑖∈ℕ0

[𝑓]𝑖 �̃�𝑖(𝑧) = 𝑓(𝑧), a.e. 𝑧 ∈ 𝐼. (141)

Moreover, if 𝑔 is another piece-wise continuous in 𝐼 function, then

∫
𝐼

𝑓(𝑢)𝑔(𝑢)𝑑𝑢 =
∑
𝑖∈ℕ0

𝜈𝑖[𝑓]𝑖[𝑔]𝑖. (142)

For a given 𝑤 ∈ 𝐼, and a function 𝑓(𝑧), 𝑧 ∈ 𝐼, define the truncation operator

(𝑤𝑓)(𝑧) ∶= 𝜃(𝑤 − 𝑧)𝑓(𝑧), 𝑧 ∈ 𝐼, (143)

where

𝜃(𝑢) ∶=

⎧⎪⎨⎪⎩
1 if 𝑢 > 0,
1

2
if 𝑢 = 0,

0 if 𝑢 < 0;

(144)
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GARCÍA-FERRERO et al. 351

denotes the Heaviside step function. We may now rewrite (100) as

𝜌𝑖𝑗(𝑤) = ∫
𝐼

(𝑤�̃�𝑗)(𝑢) �̃�𝑖(𝑢) 𝑑𝑢 = 𝜈𝑖[𝑤�̃�𝑗]𝑖, 𝑖, 𝑗 ∈ ℕ0, 𝑤 ∈ 𝐼. (145)

Applying (141) then gives

𝜃(𝑤 − 𝑧)�̃�𝑗(𝑧) = (𝑤�̃�𝑗)(𝑧) = ∑
𝑖∈ℕ0

𝜈−1
𝑖
𝜌𝑖𝑗(𝑤)�̃�𝑖(𝑧), 𝑧, 𝑤 ∈ 𝐼. (146)

Moreover, (142) implies that

∑
𝑖∈ℕ0

𝜈−1
𝑖
𝜌𝑖𝑗(𝑧)𝜌𝑖𝑗(𝑤) = ∫

𝐼

(𝑤�̃�𝑗)(𝑢)(𝑧�̃�𝑗)(𝑢)𝑑𝑢, 𝑧, 𝑤 ∈ 𝐼, 𝑗 ∈ ℕ0. (147)

Observe that

𝜃(𝑧)𝜃(𝑤) = 𝜃(min(𝑧, 𝑤)), 𝑧, 𝑤 ∈ 𝐼. (148)

Hence,

∫
𝐼

(𝑤�̃�𝑗)(𝑢)(𝑧�̃�𝑗)(𝑢)𝑑𝑢 = ∫
𝐼

𝜃(𝑤 − 𝑢)𝜃(𝑧 − 𝑢)�̃�𝑗(𝑢)�̃�𝑗(𝑢) 𝑑𝑢 = 𝜌𝑗𝑗(min(𝑧, 𝑤)). (149)

Therefore, ∑
𝑖∈ℕ0

𝜈−1
𝑖
𝜌𝑖𝑗(𝑧)𝜌𝑖𝑗(𝑤) = 𝜃(𝑤 − 𝑧)𝜌𝑗𝑗(𝑧) + 𝜃(𝑧 − 𝑤)𝜌𝑗𝑗(𝑤). (150)

By (101), (102), and (138),

1 + 𝑡𝜌𝑚𝑚 =
𝜏𝑚
𝜏
; (151)

�̃�𝑚;𝑖 = (1 − 𝑧
2)
𝛼

2
−
1

4
1

𝜏𝑚

(𝜏𝑚
𝜏
𝜋𝑖 − 𝑡𝜌𝑖𝑚𝜋𝑚

)
= �̃�𝑖 − 𝑡𝜌𝑖𝑚�̃�𝑚;𝑚; (152)

�̃�𝑚 = (1 + 𝑡𝜌𝑚𝑚)�̃�𝑚;𝑚. (153)

By (128), (152), (139), (146), (150), and (153), we have∑
𝑖∈ℕ0

𝜈−1
𝑚;𝑖
�̃�𝑚;𝑖(𝑧)�̃�𝑚;𝑖(𝑤)

= 𝑡�̃�𝑚;𝑚(𝑧)�̃�𝑚;𝑚(𝑤) +
∑
𝑖

𝜈−1
𝑖
�̃�𝑚;𝑖(𝑧)�̃�𝑚;𝑖(𝑤)

= 𝑡�̃�𝑚;𝑚(𝑧)�̃�𝑚;𝑚(𝑤) +
∑
𝑖

𝜈−1
𝑖

(
�̃�𝑖(𝑧) − 𝑡𝜌𝑖𝑚(𝑧)�̃�𝑚;𝑚(𝑧)

)(
�̃�𝑖(𝑤) − 𝑡𝜌𝑖𝑚(𝑤)�̃�𝑚;𝑚(𝑤)

)
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352 GARCÍA-FERRERO et al.

=
∑
𝑖

𝜈−1
𝑖
�̃�𝑖(𝑧)�̃�𝑖(𝑤) + 𝑡�̃�𝑚;𝑚(𝑧)�̃�𝑚;𝑚(𝑤)

(
1 + 𝑡

∑
𝑖

𝜈−1
𝑖
𝜌𝑖𝑚(𝑧)𝜌𝑖𝑚(𝑤)

)
− 𝑡 �̃�𝑚;𝑚(𝑧)

∑
𝑖

𝜈−1
𝑖
𝜌𝑖𝑚(𝑧)�̃�𝑖(𝑤) − 𝑡 �̃�𝑚;𝑚(𝑤)

∑
𝑖

𝜈−1
𝑖
𝜌𝑖𝑚(𝑤)�̃�𝑖(𝑧)

= 𝛿(𝑧 − 𝑤) + 𝑡�̃�𝑚;𝑚(𝑧)�̃�𝑚;𝑚(𝑤)(1 + 𝜃(𝑤 − 𝑧)𝑡𝜌𝑚𝑚(𝑧) + 𝜃(𝑧 − 𝑤)𝑡𝜌𝑚𝑚(𝑤))

− 𝑡 𝜃(𝑧 − 𝑤)�̃�𝑚;𝑚(𝑧)�̃�𝑚(𝑤) − 𝑡 𝜃(𝑤 − 𝑧)�̃�𝑚(𝑧)�̃�𝑚;𝑚(𝑤)

= 𝛿(𝑧 − 𝑤) + 𝑡�̃�𝑚;𝑚(𝑧)�̃�𝑚;𝑚(𝑤)(1 + 𝜃(𝑤 − 𝑧)𝑡𝜌𝑚𝑚(𝑧) + 𝜃(𝑧 − 𝑤)𝑡𝜌𝑚𝑚(𝑤)

−𝜃(𝑧 − 𝑤)(1 + 𝑡𝜌𝑚𝑚(𝑤)) − 𝜃(𝑤 − 𝑧)(1 + 𝑡𝜌𝑚𝑚(𝑧)))

= 𝛿(𝑧 − 𝑤) + 𝑡�̃�𝑚;𝑚(𝑧)�̃�𝑚;𝑚(𝑤)(1 − 𝜃(𝑤 − 𝑧) − 𝜃(𝑧 − 𝑤))

= 𝛿(𝑧 − 𝑤). (154)

We conclude that the set {�̃�𝑚;𝑖}𝑖∈ℕ0 is complete in L
2(𝐼, 𝑑𝑧), and by virtue of the previously stated

equivalence, the set {𝜋𝑚;𝑖}𝑖∈ℕ0 is complete in L
2(𝐼,𝑊

(𝛼)
𝜏𝑚
(𝑧)𝑑𝑧). ■

Note that in Proposition 11 and in fact, all throughout the current section, we have assumed
that 𝜋𝑚;𝑖 are polynomials, which is not guaranteed by their defining expressions (100)–(102) and
(77), even if 𝜋𝑖 are polynomials and 𝛼 ∈ ℕ0 +

1

2
(but they are certainly not polynomials if 𝛼 is

not half-integer). In the following section we will show that when these objects are connected to
the classical Gegenbauer polynomials by a chain of CDTs, the assumptions on polynomiality are
guaranteed at each step of the chain.

5 DEFORMED GEGENBAUER POLYNOMIALS

In this section we provide explicit formulas for the construction of deformed Gegenbauer poly-
nomials and their associated operators in terms of a matrix whose entries involve classical
Gegenbauer polynomials. Throughout this section, we also assume that 𝛼 ∈ ℕ0 +

1

2
is a posi-

tive half-integer. Note that, with this assumption in place, the weight 𝑊(𝛼)(𝑧) in (90) becomes
a polynomial.
We next define several objects that allow us to describe the exceptional Gegenbauer

polynomials and operators below. Set

𝜌
(𝛼)
𝑖𝑗
(𝑧) ∶= ∫

𝑧

−1

𝐶
(𝛼)
𝑖
(𝑢)𝐶

(𝛼)
𝑗
(𝑢)𝑊(𝛼)(𝑢) 𝑑𝑢, 𝑖, 𝑗 ∈ ℕ0 (155)

and observe that the above functions are polynomials precisely because𝛼 is a positive half-integer.
Given an 𝑛-tuple 𝒎 ∈ ℕ𝑛0 and the associated 𝒕𝒎 ∈ ℝ

𝑛, we then define (𝛼)𝒎 = (𝛼)𝒎 (𝑧; 𝒕𝒎) as the
𝑛 × 𝑛matrix with polynomial entries given by

[(𝛼)𝒎 ]𝑘𝓁 = 𝛿𝑘𝓁 + 𝑡𝑚𝓁𝜌(𝛼)𝑚𝑘𝑚𝓁(𝑧), 𝑘, 𝓁 ∈ {1, … , 𝑛}. (156)
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GARCÍA-FERRERO et al. 353

We denote its determinant by

𝜏
(𝛼)
𝒎 ∶= det(𝛼)𝒎 . (157)

Next, define the 𝑛-tuple of polynomials

(
𝑸
(𝛼)
𝒎

)𝑇
∶= 𝜏

(𝛼)
𝒎

((𝛼)𝒎 )−1(
𝐶
(𝛼)
𝑚1
, … , 𝐶

(𝛼)
𝑚𝑛

)𝑇
. (158)

We are now ready to define the fundamental objects of this section.

Definition 8. Let𝒎 = (𝑚1,… ,𝑚𝑛) ∈ ℕ𝑛0 be a tuple of distinct integers, 𝒕𝒎 ∈ ℝ
𝑛 and 𝑸(𝛼)𝒎 be the

𝑛-tuple of polynomials defined by (155)–(158). We define the deformed Gegenbauer polynomials
associated to𝒎 as

𝐶
(𝛼)
𝒎;𝑖
∶=

[
𝑸
(𝛼)

(𝒎,𝑖)

]
𝑛+1
, 𝑖 ∈ ℕ0. (159)

Remark 13. Note that, by construction, 𝜏(𝛼)𝒎 = 𝜏
(𝛼)
𝒎 (𝑧; 𝒕𝒎) is invariant with respect to permuta-

tions of the indices 𝒎 = (𝑚1,… ,𝑚𝑛) and that 𝑸
(𝛼)
𝒎 = 𝑸

(𝛼)
𝒎 (𝑧; 𝒕𝒎) is equivariant with respect to

such permutations. In addition, 𝐶(𝛼)
𝒎;𝑖
= 𝐶

(𝛼)
𝒎;𝑖
(𝑧; 𝒕𝒎) is symmetric in 𝒎 and does not depend on

𝑡𝑖 because 𝜏
(𝛼)

(𝒎,𝑖)
[((𝛼)

(𝒎,𝑖)
)−1]𝑛+1,𝑗 correspond to the minors of the last column of (𝛼)(𝒎,𝑖), the only

column where 𝑡𝑖 appears.

The main result of this section states that the polynomials {𝐶(𝛼)
𝒎;𝑖
(𝑧; 𝒕𝒎)}𝑖∈ℕ0 defined above

are indeed exceptional Gegenbauer polynomials (in the sense of Definition 7), provided the real
parameters 𝒕𝒎 satisfy certain constraints to ensure that 𝜏(𝛼)𝒎 (𝑧; 𝑡𝒎) is positive on 𝑧 ∈ [−1, 1]. We
first state that inserting the polynomial 𝜏(𝛼)𝒎 in (75) leads to an exceptional Gegenbauer operator
in the sense of Definition 6.

Theorem 2. Let 𝛼 ∈ ℕ0 +
1

2
, 𝒎 ∈ ℕ𝑛0 and 𝒕𝒎 ∈ ℝ

𝑛. Consider the 𝑛-parameter family of opera-

tors 𝑇(𝛼)𝒎 ∶= 𝑇
(𝛼)

𝜏
(𝛼)
𝒎

given by (75) and (157). For each value of the parameters 𝒕𝒎, this operator is an

exceptional Gegenbauer operator that satisfies

𝑇
(𝛼)
𝒎 𝐶

(𝛼)
𝒎;𝑖
= 𝜆𝑖𝐶

(𝛼)
𝒎;𝑖
, 𝑖 ∈ ℕ0, (160)

with 𝜆𝑖 = −𝑖(2𝛼 + 𝑖).

The following theorem provides necessary and sufficient conditions for the polynomials
{𝐶
(𝛼)
𝒎;𝑖
(𝑧; 𝒕𝒎)}𝑖∈ℕ0 to be a family of exceptional Gegenbauer polynomials according to Definition 7.

If these conditions hold the family {𝐶(𝛼)
𝒎;𝑖
(𝑧; 𝒕𝒎)}𝑖∈ℕ0 is orthogonal and complete, like their classical

counterparts.
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354 GARCÍA-FERRERO et al.

Theorem 3. Let 𝛼 ∈ ℕ0 +
1

2
,𝒎 ∈ ℕ𝑛0 with𝑚1,… ,𝑚𝑛 distinct and 𝒕𝒎 ∈ ℝ

𝑛. Then the polynomial

𝜏
(𝛼)
𝒎 (𝑧; 𝒕𝒎) in (157) has no zeros on 𝑧 ∈ [−1, 1] if and only if

𝑡𝑚𝑗 > −
(
𝜈
(𝛼)
𝑚𝑗

)−1
, 𝑗 = 1,… , 𝑛, (161)

with 𝜈(𝛼)𝑚𝑗 as in (91). If the above conditions hold, then {𝐶
(𝛼)
𝒎;𝑖
(𝑧; 𝒕𝒎)}𝑖∈ℕ0 are exceptional Gegenbauer

polynomials with weight𝑊(𝛼)𝜏𝑚 and norms given by

∫
𝐼

(
𝐶
(𝛼)
𝒎;𝑖
(𝑢)

)2
𝑊
(𝛼)
𝜏𝑚
(𝑢)𝑑𝑢 =

𝜈
(𝛼)
𝑖

1 + 𝛿𝑖,𝒎𝑡𝑖𝜈
(𝛼)
𝑖

, (162)

where

𝛿𝑖,𝒎 ∶=

{
1 if 𝑖 ∈ {𝑚1, … ,𝑚𝑛};
0 otherwise.

(163)

As mentioned above, the degree of the 𝑖th exceptional Gegenbauer polynomial 𝐶(𝛼)
𝒎;𝑖

is not nec-
essarily 𝑖. The next proposition provides this result. It is also worth noting that, as opposed to the
generic exceptional families, the degree sequence of the deformed Gegenbauer polynomials is not
an increasing sequence, which is further evidence of the different nature of this new construction.

Proposition 12. Let 𝛼 ∈ ℕ0 +
1

2
,𝒎 ∈ ℕ𝑛0 with𝑚1,… ,𝑚𝑛 distinct and 𝒕𝒎 ∈ ℝ

𝑛. Let 𝜏(𝛼)𝒎 , 𝐶
(𝛼)
𝒎;𝑖

be as
defined in (157) and (159). Then,

deg𝑧 𝜏
(𝛼)
𝒎 = 2(𝑚1 +⋯+𝑚𝑛 + 𝛼𝑛), (164)

deg𝑧 𝐶
(𝛼)
𝒎;𝑖
= 2(𝑚1 +⋯+𝑚𝑛 + 𝛼𝑛) + 𝑖 − 2𝛿𝑖,𝒎(𝑖 + 𝛼), 𝑖 ∈ ℕ0. (165)

Moreover,

𝐶
(𝛼)
𝒎;𝑚𝑘

= 𝐶
(𝛼)

𝑚1,…,𝑚𝑘,…,𝑚𝑛;𝑚𝑘
, 𝑘 = 1,… , 𝑛, (166)

where the hat symbol denotes the omission of the 𝑘th entry of𝒎.

Remark 14. From Proposition 12, we see that the codimension (number of missing degrees) of
the exceptional Gegenbauer family indexed by 𝒎 = (𝑚1,… ,𝑚𝑛) is 2(𝑚1 +⋯+𝑚𝑛 + 𝛼𝑛). As it
happens for all exceptional polynomials,2 this coincides with the degree of 𝜏(𝛼)𝒎 .

Remark 15. Belowwewill show that the 𝑛-parameter family {𝐶(𝛼)
𝒎;𝑖
(𝑧; 𝑡𝒎)}𝑖∈ℕ0 is the result of apply-

ing 𝑛 CDTs to the classical family {𝐶(𝛼)
𝑖
(𝑧)}𝑖∈ℕ0 . Identity (162) then tells us that a single CDT leaves

invariant all but one of the norming constants. By contrast, identity (166) tells us that after a single
CDT there is exactly one polynomial that remains the same but whose norm undergoes a change.
It is this phenomenon that accounts for the Kronecker delta term in (165).
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GARCÍA-FERRERO et al. 355

Remark 16. The degree formulas (164), (165) allow us to relate the eigenvalue formula (79) with the
value 𝜆𝑖 = −𝑖(2𝛼 + 𝑖) given in Theorem 2. Indeed if 𝑖 ∉ {𝑚1, … ,𝑚𝑛} then deg𝐶

(𝛼)
𝒎,𝑖
− deg 𝜏

(𝛼)
𝒎 = 𝑖

in full agreement with (79). By contrast, if 𝑖 = 𝑚𝑘 for some 𝑘 ∈ {1, … , 𝑛} then

𝑑𝑖 ∶= deg𝐶
(𝛼)
𝒎,𝑖
− deg 𝜏

(𝛼)
𝒎 = −𝑖 − 2𝛼 (167)

and therefore

𝑑𝑖(2𝛼 + 𝑑𝑖) = (𝑖 + 2𝛼)𝑖. (168)

Hence, (79) is correct in this case also.

In Theorem 3 and Proposition 5 we have considered the case when 𝒎 = (𝑚1,… ,𝑚𝑛) con-
tains distinct indices. Let us now show that this choice entails no loss of generality. Indeed, the
repeated application of a CDT at the same eigenvalue only serves to modify the deformation
parameter.

Proposition 13. Let 𝛼 ∈ ℕ0 +
1

2
,𝒎 ∈ ℕ𝑛0 and let 𝜏

(𝛼)
𝒎 , 𝐶

(𝛼)
𝒎;𝑖

be as defined in (157) and (159). Then,
for any 𝑗 ∈ ℕ0, we have

𝜏
(𝛼)

(𝒎,𝑗,𝑗)
(𝑧; (𝒕𝒎, 𝑡𝑗, 𝑡

′
𝑗
)) = 𝜏

(𝛼)

(𝒎,𝑗)
(𝑧; (𝒕𝒎, 𝑡𝑗 + 𝑡

′
𝑗
)), (169)

𝐶
(𝛼)

(𝒎,𝑗,𝑗);𝑖
(𝑧; (𝒕𝒎, 𝑡𝑗, 𝑡

′
𝑗
)) = 𝐶

(𝛼)

(𝒎,𝑗);𝑖
(𝑧; ((𝒕𝒎, 𝑡𝑗 + 𝑡

′
𝑗
)). (170)

5.1 Proof of the results

In this section we provide proofs for all of the theorems and propositions in this section. The
general strategy is the following:

1. We define polynomials �̃�𝑗 , �̃�0;𝑖 and rational functions �̃�𝑗;𝑖1𝑖2 recursively, starting the recursion
at the objects corresponding to the classical Gegenbauer Sturm–Liouville problem.

2. We show that these recursion formulas describe a multistep CDT.
3. We show in Proposition 15 that the recursively defined objects coincide with those obtained

via the matrix-based definitions (155)–(159).
4. Because the objects defined by the matrix formulas are polynomial by construction, we

can dispense with the rationality and polynomiality assumptions made at the beginning of
Section 4.3.

5. Propositions 6–11 then ensure that at each step of the recursion we have an exceptional
Gegenbauer Sturm–Liouville problem, provided the parameters are chosen in the right range.

Fix 𝒎 = 𝒎𝑛 = (𝑚1,… ,𝑚𝑛) ∈ ℕ𝑛0 and a positive half-integer 𝛼 ∈ ℕ0 +
1

2
. For 𝑗 = 0, 1, … , 𝑛 let

𝒎𝑗 ∈ ℕ
𝑛
0 denote the initial segment of 𝒎; that is, 𝒎𝑗 = (𝑚1,… ,𝑚𝑗). Note that, throughout this

section, we are going to omit the explicit dependence on 𝑧 and 𝒕𝒎 of the objects, which must
be understood from the dependence on 𝒎, that is, we will write (𝛼)𝒎 instead of (𝛼)𝒎 (𝑧; 𝒕𝒎). To
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356 GARCÍA-FERRERO et al.

simplify the notation, wewill sometimesmake the dependence of the various objects on𝛼 implicit
rather than explicit.
We start the recursion at 𝑗 = 0 by setting

�̃�0;𝑖1𝑖2 ∶= 𝜌
(𝛼)
𝑖1𝑖2
, �̃�0 ∶= 1, �̃�0;𝑖 ∶= 𝐶

(𝛼)
𝑖
, (171)

where 𝜌(𝛼)
𝑖1𝑖2
(𝑧) is given by (155) and 𝐶(𝛼)

𝑖
(𝑧) are the classical Gegenbauer polynomials (97). For

𝑗 = 1,… , 𝑛 we then define

�̃�𝑗 =
(
1 + 𝑡𝑚𝑗 �̃�𝑗−1;𝑚𝑗𝑚𝑗

)
�̃�𝑗−1, (172)

�̃�𝑗;𝑖 =
(
1 + 𝑡𝑚𝑗 �̃�𝑗−1;𝑚𝑗𝑚𝑗

)
�̃�𝑗−1;𝑖 − 𝑡𝑚𝑗 �̃�𝑗−1;𝑖𝑚𝑗 �̃�𝑗−1;𝑚𝑗 , 𝑖 ∈ ℕ0; (173)

�̃�𝑗;𝑖1𝑖2 = �̃�𝑗−1;𝑖1𝑖2 −
𝑡𝑚𝑗 �̃�𝑗−1;𝑖1𝑚𝑗 �̃�𝑗−1;𝑖2𝑚𝑗

1 + 𝑡𝑚𝑗 �̃�𝑗−1;𝑚𝑗𝑚𝑗
, 𝑖1, 𝑖2 ∈ ℕ0. (174)

These recursive definitions match the formulas (101), (102), and (130). Thus, in effect we are
defining the objects associated with an 𝑛-step CDT applied to classical Gegenbauer operators.

Proposition 14. Let 𝑖1, 𝑖2, 𝑗 ∈ ℕ0 and �̃�𝑗;𝑖1𝑖2 , �̃�𝑗,𝑖 be as in (173), (174). We have that

�̃�𝑗;𝑖1𝑖2 (𝑧) ∶= ∫
𝑧

−1

�̃�𝑗,𝑖1 (𝑢)�̃�𝑗,𝑖2 (𝑢)�̃�𝑗(𝑢)𝑑𝑢, (175)

where

�̃�𝑗(𝑧) ∶= (1 − 𝑧
2)
𝛼−
1

2 �̃�𝑗(𝑧)
−2, (176)

where the integral denotes an antiderivative that vanishes at 𝑧 = −1.

Proof. The proof follows directly from (129) and Proposition 8. ■

Proposition 15. Let 𝜏(𝛼)𝒎 and 𝐶(𝛼)
𝒎;𝑖

be as in (157), (159) and let �̃�𝑛, �̃�𝑛;𝑖 be as in (172), (173) Then,

𝜏
(𝛼)
𝒎 = �̃�𝑛, (177)

𝐶
(𝛼)
𝒎;𝑖
= �̃�𝑛;𝑖, 𝑖 ∈ ℕ0. (178)

Proof. The proof follows the same argument as the analogous result for exceptional Legendre
polynomials, see Ref. [30, Proposition 5]. ■

As a direct consequence of (176) and (177) we see that the recursively defined �̃�𝑗, �̃�𝑗;𝑖 are poly-
nomials for each 𝑗 = 1,… , 𝑛. We have also established that the antiderivative in the RHS of (175)
describes a rational function. This allows us to dispense with the polynomiality and rationality
assumptions used in Section 4.3.
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GARCÍA-FERRERO et al. 357

Proof of Theorem 2. Starting form the classical Gegenbauer operator, the application of a rational
CDT indexed by an integer 𝑚𝑖 introduces an extra real parameter 𝑡𝑚𝑖 . Proposition 15 establishes
the equivalence of the objects defined by the CDT recursion (172), (173) and the matrix-based
definitions (157), (159). This allows us to apply Proposition 7. The eigenvalue relation (160) follows
immediately. ■

Proof of Theorem 3. First of all, it is clear by construction that the objects 𝐶(𝛼)
𝒎;𝑖

are polynomials. In
virtue of Proposition 15, the results of Section 4 can be exploited. We recursively define for 𝑖 ∈ ℕ0

�̃�0;𝑖 = 𝜈
(𝛼)
𝑖
,

(
�̃�𝑗;𝑖

)−1
=
(
�̃�𝑗−1;𝑖

)−1
+ 𝛿𝑖𝑚𝑗 𝑡𝑚𝑗 , 𝑗 = 1,… , 𝑛. (179)

By Propositions 9 and 10, condition (a) is satisfied, that is, �̃�𝑗(𝑧) > 0 for 𝑧 ∈ 𝐼, if and only if �̃�𝑗;𝑚𝑗 >
0. By the above definition,

�̃�𝑗;𝑚𝑗 =
𝜈
(𝛼)
𝑚𝑗

1 + 𝑡𝑚𝑗𝜈
(𝛼)
𝑚𝑗

. (180)

Therefore, �̃�𝑗;𝑚𝑗 > 0 for 𝑗 = 1,… , 𝑛 if and only if (161) holds. Relation (162) also follows by Propo-
sition 10 and a similar induction argument. Finally, the completeness condition (c) follows by
induction with Proposition 11 serving as the inductive step. ■

We conclude this section by proving the remaining results on the degrees of the polynomials
and the case of repeated indices.

Proof of Proposition 12. By (173), we have

�̃�𝑗;𝑚𝑗 = �̃�𝑗−1;𝑚𝑗 , 𝑗 = 1,… , 𝑛. (181)

Identity (166) then follows by (177). Thanks to (166) no generality is lost by assuming that 𝑖 ∉
{𝑚1, … ,𝑚𝑛}. We use induction to show that

deg �̃�𝑗 = 2(𝑚1 +⋯+𝑚𝑗 + 𝛼𝑗), 𝑗 = 0, 1, … , 𝑛, (182)

deg �̃�𝑗;𝑖 = deg �̃�𝑗 + 𝑖. (183)

The desired relations (164), (165) then follow by (176) and (177).
By inspection, (181) and (182) hold for 𝑗 = 0. Assume that these relations hold for a given 𝑗 < 𝑛.

By (175),

�̃�𝑗,𝑚𝑗+1𝑚𝑗+1(𝑧) = ∫
𝑧

−1

(
�̃�𝑚𝑗+1(𝑢)

�̃�𝑗(𝑢)

)2
�̃�0(𝑢)𝑑𝑢. (184)

Because𝑚𝑗+1 ∉ {𝑚1, … ,𝑚𝑗}, by the inductive hypothesis,

deg𝑧 �̃�𝑗,𝑚𝑗+1𝑚𝑗+1 = 2𝑚𝑗+1 + 2𝛼, (185)
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358 GARCÍA-FERRERO et al.

where the degree of a rational function is understood as the difference between the degrees of the
numerator and the denominator. Hence,

deg𝑧 �̃�𝑗+1 = 2𝑚𝑗+1 + 2𝛼 + deg𝑧 �̃�𝑗, (186)

which agrees with (181) for the 𝑗 + 1 case.
By (173) and (175), we have

�̃�𝑗+1;𝑖 = �̃�𝑗;𝑖 + 𝑡𝑚𝑗+1Π, (187)

where

Π(𝑧) = �̃�𝑗;𝑖(𝑧)∫
𝑧

−1

�̃�𝑗;𝑚𝑗+1(𝑢)

�̃�𝑗(𝑢)

�̃�𝑗;𝑚𝑗+1(𝑢)

�̃�𝑗(𝑢)
�̃�0(𝑢)𝑑𝑢 − �̃�𝑗;𝑚𝑗+1(𝑧)∫

𝑧

−1

�̃�𝑗;𝑖(𝑢)

�̃�𝑗(𝑢)

�̃�𝑗;𝑚𝑗+1(𝑢)

�̃�𝑗(𝑢)
�̃�0(𝑢)𝑑𝑢.

(188)
Because 𝑖 ≠ 𝑚𝑗+1, the leading degree terms in the above difference do not cancel and therefore

deg𝑧 �̃�𝑗+1;𝑖 = deg𝑧 Π = 2𝑚𝑗+1 + 2𝛼 + deg �̃�𝑗;𝑖 . (189)

Hence (182) also holds for 𝑗 + 1. ■

Proof of Proposition 13. We apply Proposition 15 and the definitions (172), (173) twice to obtain

𝜏
(𝛼)

(𝒎,𝑗,𝑗)
(𝑧; (𝒕𝒎, 𝑡𝑗, 𝑡

′
𝑗
)) =

(
1 + 𝑡′

𝑗
𝜌
(𝛼)

(𝒎,𝑗);𝑗𝑗

)
𝜏
(𝛼)

(𝒎,𝑗)

=

⎛⎜⎜⎜⎝1 + 𝑡
′
𝑗
𝜌
(𝛼)
𝒎;𝑗𝑗
−
(𝑡′
𝑗
)2
(
𝜌
(𝛼)
𝒎;𝑗𝑗

)2
1 + 𝑡′

𝑗
𝜌
(𝛼)
𝒎;𝑗𝑗

⎞⎟⎟⎟⎠
(
1 + 𝑡𝑗𝜌

(𝛼)
𝒎;𝑗𝑗

)
𝜏
(𝛼)
𝒎

=
(
1 + (𝑡𝑗 + 𝑡

′
𝑗
)𝜌
(𝛼)
𝒎;𝑗𝑗

)
𝜏
(𝛼)
𝒎

= 𝜏
(𝛼)

(𝒎,𝑗)
(𝑧; (𝒕𝒎, 𝑡𝑗 + 𝑡

′
𝑗
)), (190)

𝐶
(𝛼)

(𝒎,𝑗,𝑗);𝑖
(𝑧; (𝒕𝒎, 𝑡𝑗, 𝑡

′
𝑗
)) =

(
1 + 𝑡′

𝑗
𝜌
(𝛼)

(𝒎,𝑗);𝑗𝑗

)
𝐶
(𝛼)

(𝒎,𝑗);𝑖
− 𝑡′
𝑗
𝜌
(𝛼)

(𝒎,𝑗);𝑖𝑗
𝐶
(𝛼)

(𝒎,𝑗);𝑗

=
(
1 + 𝑡′

𝑗
𝜌
(𝛼)

(𝒎,𝑗);𝑗𝑗

)((
1 + 𝑡𝑗𝜌

(𝛼)
𝒎;𝑗𝑗

)
𝐶
(𝛼)
𝒎;𝑖
− 𝑡𝑗𝜌

(𝛼)
𝒎;𝑖𝑗
𝐶
(𝛼)
𝒎;𝑖

)
− 𝑡′
𝑗

⎛⎜⎜⎝𝜌(𝛼)𝒎;𝑖𝑗 −
𝑡𝑗𝜌
(𝛼)
𝒎;𝑗𝑗
𝜌
(𝛼)
𝒎;𝑖𝑗

1 + 𝑡𝑗𝜌
(𝛼)
𝒎;𝑗𝑗

⎞⎟⎟⎠𝐶(𝛼)𝒎;𝑗
=

(
1 + (𝑡𝑗 + 𝑡

′
𝑗
)𝜌
(𝛼)
𝒎;𝑗𝑗

)
𝐶
(𝛼)
𝒎;𝑖
− (𝑡𝑗 + 𝑡

′
𝑗
)𝜌
(𝛼)
𝒎;𝑖𝑗
𝐶
(𝛼)
𝒎;𝑗

= 𝐶
(𝛼)

(𝒎,𝑗);𝑖
(𝑧; (𝒕𝒎, 𝑡𝑗 + 𝑡

′
𝑗
)). (191)

■
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GARCÍA-FERRERO et al. 359

6 EXAMPLES

We conclude by showing some explicit examples of deformed Gegenbauer polynomials, together
with their properties. It can be readily checked that these families are an isospectral deformation
of the classical Gegenbauer polynomials.

6.1 One-parameter deformed Gegenbauer polynomials

The one-parameter exceptional Gegenbauer polynomials arise after a single CDT on the classical
operator. For𝑚 ∈ ℕ0, we follow definitions (101)–(102) to write

𝜏
(𝛼)
𝑚 (𝑧, 𝑡𝑚) = 1 + 𝑡𝑚𝜌

(𝛼)
𝑚𝑚(𝑧), (192)

𝐶
(𝛼)
𝑚;𝑖
(𝑧, 𝑡𝑚) =

(
1 + 𝑡𝑚𝜌

(𝛼)
𝑚𝑚(𝑧)

)
𝐶
(𝛼)
𝑖
(𝑧) − 𝑡𝑚𝜌

(𝛼)
𝑖𝑚
(𝑧)𝐶

(𝛼)
𝑚 (𝑧), (193)

with 𝜌(𝛼)
𝑖𝑗

as per (55) and 𝐶(𝛼)
𝑖

the classical Gegenbauer polynomials. Notice that by construc-

tion, we have𝐶(𝛼)𝑚;𝑚 = 𝐶
(𝛼)
𝑚 . The {𝐶(𝛼)

𝑚;𝑖
}𝑖∈ℕ0 is a family of exceptional Gegenbauer polynomials with

weight

𝑊
(𝛼)
𝑚 (𝑧) =

(1 − 𝑧2)
𝛼−
1

2(
𝜏
(𝛼)
𝑚 (𝑧)

)2 , (194)

as long as 𝑡𝑚 satisfies the inequality

𝑡𝑚 > −
(
𝜈
(𝛼)
𝑚

)−1
= −
22𝛼−1𝑚!(𝑚 + 𝛼)Γ(𝛼)2

𝜋Γ(𝑚 + 2𝛼)
. (195)

The orthogonality relations are

∫
1

−1

𝐶
(𝛼)
𝑚;𝑖
(𝑧, 𝑡𝑚)𝐶

(𝛼)
𝑚;𝑗
(𝑧, 𝑡𝑚)𝑊

(𝛼)
𝑚 (𝑧)𝑑𝑧 = 𝛿𝑖𝑗𝜈

(𝛼)
𝑖
= 𝛿𝑖𝑗

𝜋21−2𝛼Γ(𝑖 + 2𝛼)

𝑖!(𝑖 + 𝛼)Γ(𝛼)2
, 𝑖, 𝑗 ∈ ℕ0∖{𝑚}, (196)

∫
1

−1

𝐶
(𝛼)
𝑚;𝑚(𝑧, 𝑡𝑚)

2𝑊
(𝛼)
𝑚 (𝑧, 𝑡𝑚)𝑑𝑧 =

𝜈
(𝛼)
𝑚

1 + 𝑡𝜈
(𝛼)
𝑚

=
𝜋21−2𝛼Γ(𝑚 + 2𝛼)

𝑚!(𝑚 + 𝛼)Γ(𝛼)2 + 𝑡𝑚𝜋21−2𝛼Γ(𝑚 + 2𝛼)
.(197)

The function 𝜏(𝛼)𝑚 is shown below in Figure 1, for a particular choice of the parameters 𝛼,𝑚, 𝑡𝑚.
Clearly, there are no zeroes. Figure 2 shows the polynomial families for 𝛼 = 3∕2, 𝑚 = 2, and
different values of 𝑡𝑚.
The first few polynomials for𝑚 = 4 and 𝛼 = 3∕2 are explicitly given by

𝐶
(3∕2)

4;0 (𝑧, 𝑡4) = 𝐶
(3∕2)

0 (𝑧) +
15

176
𝑡4
(
945𝑧11 − 3080𝑧9 + 3630𝑧7 − 1848𝑧5 + 385𝑧3 + 32

)
,

𝐶
(3∕2)

4;1 (𝑧, 𝑡4) = 𝐶
(3∕2)

1 (𝑧) +
45

5632
𝑡4
(
19845𝑧12 − 59290𝑧10 + 59455𝑧8

− 20636𝑧6 + 275𝑧4 + 1430𝑧2 + 1024𝑧 − 55
)
, (198)
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360 GARCÍA-FERRERO et al.

F IGURE 1 The function 𝜏(𝛼)𝑚 (𝑧, 𝑡𝑚)
for𝑚 = 4 and 𝑡𝑚 = 0.5

F IGURE 2 First few deformed Gegenbauer polynomials 𝐶(𝛼)
𝑚;𝑖
(𝑧; 𝑡𝑚) for𝑚 = 4, with 𝑡𝑚 = 0 (left) and

𝑡𝑚 = 0.5 (right)

𝐶
(3∕2)

4;2 (𝑧, 𝑡4) = 𝐶
(3∕2)

2 (𝑧) +
45

704
𝑡4
(
3675𝑧13 − 11515𝑧11 + 13310𝑧9 − 7590𝑧7

+ 2871𝑧5 − 495𝑧3 + 320𝑧2 − 64
)
, (199)

𝐶
(3∕2)

4;3 (𝑧, 𝑡4) = 𝐶
(3∕2)

3 (𝑧) +
75

2816
𝑡4
(
9261𝑧14 − 30919𝑧12 + 39501𝑧10 − 24783𝑧8

+ 7007𝑧6 + 2739𝑧4 + 1792𝑧3 − 1881𝑧2 − 768𝑧 + 99
)
, (200)

𝐶
(3∕2)

4;4 (𝑧, 𝑡4) = 𝐶
(3∕2)

4 (𝑧). (201)

For larger values of the index, we have, For larger values of the index, we have,

𝐶
(3∕2)

4;𝑖
(𝑧, 𝑡4) = 𝐶

(3∕2)

4
(𝑧) + 𝑡4

(
𝜌
(3∕2)

44
(𝑧)𝐶

(3∕2)

𝑖
(𝑧) − 𝜌

(3∕2)

4𝑖
(𝑧)𝐶

(3∕2)

4
(𝑧)

)
, 𝑖 ≥ 5, (202)

where, by (63),

deg 𝜌
(3∕2)

4𝑖
= 4 + 𝑖 + 2 + 1 = 7 + 𝑖,
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GARCÍA-FERRERO et al. 361

and consequently,

deg𝐶
(3∕2)

4;𝑖
= 𝑖 + 11, 𝑖 ≥ 5.

Notice that, as illustrated by Figure 2, the exceptional polynomials are continuous deformations
of the corresponding classical polynomials, aside from 𝐶(3∕2)4;4 . It is worth observing also that each

polynomial 𝐶(3∕2)
4,𝑖
(𝑧) has precisely 𝑖 zeros in the domain of orthogonality (−1, 1) (which evidently

follows from the Sturm–Liouville character of the family). Thus, for all polynomials except for
𝑖 = 4, we see that polynomial 𝐶(3∕2)

4,𝑖
(𝑧) has 11 exceptional zeros that lie outside the support of

the measure. Finally, notice one more difference with respect to generic XOPs: When ordered by
eigenvalue (or equivalently, when ordered by their number of zeros in the interval of orthogo-
nality), the sequence of degrees is not an increasing sequence. This is a consequence of the fact
that not all polynomials in the family have the same number of exceptional zeros, in this example
𝐶
(3∕2)

4;4 has no exceptional zeros.

6.2 Two-parameter deformed Gegenbauer polynomials

We construct the two-parameter exceptional polynomials by applying the recursive construction
to the one-parameter formulas. We start with𝒎 = (𝑚1,𝑚2) ∈ ℕ20 and the associated tuple 𝒕𝒎 =
(𝑡𝑚1 , 𝑡𝑚2). Following Equations (100)–(102), and using (130), we find that

𝜏
(𝛼)
𝒎 (𝑧; 𝒕𝒎) = 𝜏

(𝛼)
𝑚1
(𝑧, 𝑡𝑚1)𝜏

(𝛼)
𝑚2
(𝑧, 𝑡𝑚2) − 𝑡𝑚1𝑡𝑚2𝜌

(𝛼)
𝑚1𝑚2

(𝑧)2, (203)

𝐶
(𝛼)
𝒎;𝑖
(𝑧; 𝒕𝒎) = 𝐶

(𝛼)
𝑖
(𝑧)𝜏

(𝛼)
𝒎 (𝑧; 𝒕𝒎) − 𝑡𝑚1𝐶

(𝛼)
𝑚1
(𝑧)𝜏

(𝛼)
𝑚2
(𝑧; 𝑡𝑚2)𝜌

(𝛼)
𝑚2;𝑚1𝑖

(𝑧, 𝑡𝑚2)

− 𝑡𝑚2𝐶
(𝛼)
𝑚2
(𝑧)𝜏

(𝛼)
𝑚1
(𝑧; 𝑡𝑚2)𝜌

(𝛼)
𝑚1;𝑚2𝑖

(𝑧, 𝑡𝑚1), (204)

where

𝜌
(𝛼)
𝑚;𝑖𝑗
(𝑧, 𝑡𝑚) = ∫

𝑧

−1

𝐶
(𝛼)
𝑚;𝑖
(𝑢, 𝑡𝑚)𝐶

(𝛼)
𝑚;𝑗
(𝑢, 𝑡𝑚)𝑊

(𝛼)
𝑚 (𝑢)𝑑𝑢

= 𝜌
(𝛼)
𝑖𝑗
(𝑧) −

𝑡𝑚𝜌
(𝛼)
𝑚𝑖
(𝑧)𝜌

(𝛼)
𝑚𝑗
(𝑧)

1 + 𝑡𝑚𝜌
(𝛼)
𝑚𝑚(𝑧)

, 𝑚, 𝑖, 𝑗 ∈ ℕ0. (205)

Once again, the polynomials form a complete orthogonal basis relative to the weight

𝑊
(𝛼)
𝒎 (𝑧) = (1 − 𝑧

2)
𝛼−
1

2 𝜏
(𝛼)
𝑚1𝑚2

(𝑧; 𝑡𝑚1 , 𝑡𝑚2)
−2, (206)

provided

𝑡𝑚𝑖 > −
22𝛼−1𝑚𝑖!(𝑚𝑖 + 𝛼)Γ(𝛼)

2

𝜋Γ(𝑚𝑖 + 2𝛼)
, 𝑖 = 1, 2. (207)
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362 GARCÍA-FERRERO et al.

The orthogonality relations are

∫
1

−1

𝐶
(𝛼)
𝒎;𝑖
(𝑧, 𝒕𝒎)𝐶

(𝛼)
𝒎;𝑗
(𝑧, 𝒕𝒎)𝑊

(𝛼)
𝒎 (𝑧, 𝒕𝒎)𝑑𝑧 = 𝛿𝑖𝑗

𝜋21−2𝛼Γ(𝑖 + 2𝛼)

𝑖!(𝑖 + 𝛼)Γ(𝛼)2
, 𝑖, 𝑗 ∈ ℕ0∖{𝑚1,𝑚2}, (208)

∫
1

−1

𝐶
(𝛼)
𝒎;𝑚𝑖
(𝑧, 𝒕𝒎)

2𝑊
(𝛼)
𝒎 (𝑧, 𝒕𝒎)𝑑𝑧 =

𝜋21−2𝛼Γ(𝑚𝑖 + 2𝛼)

𝑚𝑖!(𝑚𝑖 + 𝛼)Γ(𝛼)2 + 𝑡𝑚𝑖𝜋2
1−2𝛼Γ(𝑚𝑖 + 2𝛼)

, 𝑖 = 1, 2. (209)
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