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Abstract: Ageing is accompanied by a progressive impairment of cellular function and a systemic
deterioration of tissues and organs, resulting in increased vulnerability to multiple diseases. Here,
we review the interplay between two hallmarks of ageing, namely, mitochondrial dysfunction and
cellular senescence. The targeting of specific mitochondrial features in senescent cells has the potential
of delaying or even reverting the ageing process. A deeper and more comprehensive understanding
of mitochondrial biology in senescent cells is necessary to effectively face this challenge. Here, we
discuss the main alterations in mitochondrial functions and structure in both ageing and cellular
senescence, highlighting the differences and similarities between the two processes. Moreover, we
describe the treatments available to target these pathways and speculate on possible future directions
of anti-ageing and anti-senescence therapies targeting mitochondria.
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1. Introduction

Cellular senescence is recognized as a hallmark of ageing [1] and cancer [2]. Cellu-
lar senescence is a response to severe damage or stress characterised by the inability to
proliferate and by a robust secretion of high amounts of inflammatory, fibrogenic and
mitogenic factors, collectively known as the senescence-associated secretory phenotype
(SASP) [3,4]. Cellular senescence serves important physiological functions, most notably
to initiate tissue repair and to prevent the outgrowth of potentially oncogenic cells. After
exerting their beneficial functions, senescent cells are normally cleared by the immune
system. However, with ageing, senescent cells are not efficiently cleared and accumulate
contributing to many diseases. Indeed, the accumulation of senescent cells can lead to
disruption of tissue functionality, and limit the regenerative potential of adult stem cells by
damaging the stem cell niches within the affected tissue [5]. Although still speculative, the
SASP, rather than the physical presence of senescent cells, could be the main pathological
agent of cellular senescence.

For the purposes of this review, we will use the terms “cellular senescence” and
“cellular ageing” to describe two different cellular processes. We will use “cellular ageing”
when referring to what happens to cells when the organism ages, and we will use “cellular
senescence” when referring to what happens to cells when they reach a threshold of severe
damage and undergo adaptations that profoundly change cellular biology. “Cellular ageing”
involves progressive changes that deteriorate cell functions, often over the span of years,
but without drastically changing their main biological properties. In contrast, “cellular
senescence” involves a dramatic transformation of the cell biology in a process that typically
takes about 7–10 days (summarised in Figure 1). While “aged cells” are suboptimal versions
of their younger counterparts, “senescent cells” are very different versions with multiple
aspects of their biology altered, including major chromatin reconfiguration, remarkable
expansion of the lysosomal compartment, and increased autophagy [4]. In the following
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sections, we will try to summarise and compare how mitochondrial biology changes during
“cellular ageing” and upon “cellular senescence”.
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Figure 1. Cellular senescence is a terminal state of proliferation arrest in response to stressors or
damages. Classic markers of cellular senescence are increased cell size, development of a senescence-
associated secretory phenotype (SASP), chromatin remodelling, increase (↑) in the lysosomal com-
partment and autophagy, and mitochondrial alterations. Created with BioRender.com.

There is a growing interest in therapeutically targeting both “aged cells” and “senes-
cent cells”. The goals are different: in the case of “cellular ageing”, it would be ideal to
find interventions that (1) slow down the pace of deterioration of cells, or (2) reverse the
accumulated damage. In the case of “cellular senescence”, the goals are (1) to eliminate
senescent cells either by driving them into apoptosis (senolytic strategies) or by stimu-
lating their immuneclearance, or (2) to reduce the production of their main pathological
mediator, namely, the SASP. It is important to emphasise that the senescence-targeting
therapies do not prevent or interfere with the de novo implementation of senescence (which
is an important anti-oncogenic barrier), but act on pre-existing senescent cells that have
not been naturally cleared by the immune system. In this review, we will discuss strate-
gies particularly targeted to the mitochondrial biology of “cellular ageing” and “cellular
senescence”.

Mitochondria are ubiquitous intracellular organelles essential for multiple cellular
functions. Indeed, these organelles are central in the metabolic processes involved in ATP
and energy production but are also implicated in calcium homeostasis, ROS signalling,
apoptosis, haem and iron-sulphur clusters synthesis, inflammation, and epigenetics reg-
ulation. Numerous studies have shown how mitochondria in aged and senescent cells
undergo heavy structural changes and general functional decline (summarised in Figure 2),
suggesting that this organelle might be a favourable target to tackle ageing-associated
diseases. However, the understanding of these modifications is still limited and additional
and improved experimental and clinical data is required before applying this knowledge to
the healthcare practice.
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Figure 2. Mitochondrial dysfunctions are a hallmark of both ageing and cellular senescence and
represent crucial targets in treating ageing-associated diseases. (A) Both aged and senescent cells are
characterised by modifications in the mitochondrial network, dynamics, and interactions between the
organelle and the rest of the cell. However, differences can be observed between the two conditions.
In particular, modifications in the mitochondria-to-nucleus retrograde responses can induce different
epigenetic changes in senescent versus old cells and modulate signal transcription pathways, such as the
mitochondrial unfolded protein response (UPRmt), differently. Mitochondrial DNA (mtDNA) release,
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moreover, can be detected and cause inflammation in both conditions, but its role is particularly
relevant as part of the senescence-associated secretory phenotype (SASP). (B) Most mitochondrial
functions are similarly defective or altered in aged and senescent cells. Inefficient mitochondrial
respiration results in impaired metabolism, a drop in NAD+ levels, and ROS production. Calcium
and ROS accumulation might cause increased susceptibility to the mitochondria permeability tran-
sition pore (mPTP) opening and apoptosis. Arrows indicate increase (↑) and decrease (↓) of the
correspondent feature. Created with BioRender.com.

2. Mitochondria as Inflammation Triggers

Ageing is associated with increased inflammation and activation of the innate immune
system. This condition is known as “inflamm-ageing” and is characterised by chronic
activation of JAK-STAT signalling in the circulating immune cells of elderly patients [6],
activation of the NLRP3 inflammasome [7–9], and higher circulating levels of inflammatory
mediators such as C-reactive protein, IL-6, and fibrinogen [10]. A leading hypothesis
for the origin of “inflamm-ageing” is the build-up of senescent cells with ageing. An
important support for this hypothesis comes from experiments in which aged mouse
blood is transferred to young animals, which results in features of accelerated ageing.
Interestingly, previous treatment of the old donors with senolytic agents reduced “inflamm-
ageing” after blood exchange, and the old blood lost its pro-ageing activity [11]. In humans,
senolytic treatments also reduce the “inflamm-ageing” of patients suffering from lung
fibrosis [12] or chronic kidney disease [13].

Importantly, mitochondria of senescent cells are known to play a key role in triggering
the SASP. In particular, depriving senescent cells of mitochondrial DNA [14] or mitochon-
dria altogether [15] seriously compromises the SASP. The detailed mechanisms connecting
the mitochondria of senescent cells with the SASP are still unknown. We speculate that they
could be similar to the mechanisms connecting dysfunctional mitochondria with inflamma-
tion [16]. These may include the release of cytosolic and/or extracellular mitochondrial
DNA (mtDNA), mitochondrial double-stranded RNA, N-formyl peptides (a sub-product
of mitochondrial protein translation), and phospholipid species such as cardiolipin, en-
riched in the inner mitochondrial membrane (IMM) [17–19]. The most studied of these
components is mtDNA which will be analysed in depth in the next section. Apart from
mtDNA, it is worth mentioning that formyl peptides can be released extracellularly by dam-
aged mitochondria and activate neutrophils by engaging their formyl peptide receptor-1
(FPR1) [18]. Specific FPR1 antagonists have been generated and used to treat brain tumours
and neurodegeneration [20,21], suggesting a potential use to fight age-driven inflammation.

3. Mitochondrial DNA

As a reflection of their bacterial origin, mitochondria contain their own genetic material,
mtDNA. This circular double-stranded molecule only counts 16,569 base pairs [22], but it
is present in hundreds of copies in each cell and its contribution to organismal ageing has
been extensively discussed. The initial hypothesis was that the accumulation of mtDNA
mutations with age might directly contribute to the decline of mitochondrial functions. In-
deed, compared to nuclear DNA, mtDNA is in close contact with the electron transport
chain, the principal producer of reactive oxygen species (ROS) that can induce oxidative
DNA damage, is less protected, and its repair mechanisms are far less sophisticated [23]. Sup-
porting this hypothesis, mtDNA deletions and mutations are detected in tissues from aged
animals and humans [24–27]. Moreover, the generation of an mtDNA mutator mouse model,
which expresses a proof-reading-deficient version of the mitochondrial DNA polymerase
G and accumulates mtDNA mutations at vastly increased rates, showed reduced lifespan
and premature onset of ageing when the mutation is in homozygosity [27,28]. However,
heterozygous DNA polymerase G mutant mice show normal ageing despite huge levels of
mtDNA mutations and the amount of mtDNA mutations that accumulate during natural
ageing is far lower than in these mutant mice [29]. As is true for oncogenic nuclear DNA
mutations, it has been shown that mtDNA mutations accumulate in several human tumours,
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particularly in genes encoding for complex I subunits. These mutations favour oncogenesis
by inducing metabolic remodelling, accelerating cell proliferation, and reducing apoptosis at
least in certain tissues [30,31]. In this case, cellular senescence could be initiated as a defence
mechanism to suppress the development of a tumour [23].

Less controversial, instead, is the role of mtDNA on organismal ageing when released
outside of the mitochondrial matrix, both into the cytosol or extracellularly. This process
increases in senescent cells [32] and is now a hot topic of research because of its impact
on inflammation and immune responses due to the mitochondrial genome’s bacterial-like
nature. Cytosolic escape of mtDNA triggers the cGAS-STING-NLRP3 axis, a key process in
response to cellular stress [33,34], and consequently activates the interferon regulatory factor
3 (IRF3) or the transcription factor family nuclear factor kB (NF-κB) pathway, major players
in inflammation and antiviral response [35–37]. The mechanisms involved in mtDNA
escape are still debated, which makes finding direct inhibitors complicated. An indirect
strategy has been to reduce mtDNA release as a downstream effect of other treatments
including reducing oxidative stress with melatonin supplementations [38], or reducing
the opening of the mitochondria permeability transition pore (mPTP), a possible exit way
for mtDNA outside of the matrix, with cyclosporin A [39]. These studies, however, have
not yet offered a clear mechanistic explanation of how these compounds inhibit mtDNA
release. Another approach is to act directly on the cGAS pathway. A variety of small
molecules able to inhibit cGAS activation have been successfully identified and developed
in treating autoimmune diseases, such as RU.521, which competitively binds to cGAS
catalytic pocket with cGAS substrates ATP/GTP [40], Cu-32 and Cu-76, that prevent cGAS
dimerisation and subsequence activation [41], and additional small molecules identified
through screenings: G140/G150 [42] and PF-06928215 [43]. When mtDNA is released
in the extracellular environment and reaches the bloodstream, instead, it can be taken
up by immune cells, such as neutrophils and macrophages, by endocytosis, and activate
the Toll-like receptor 9 (TLR9), a pillar of antibacterial and antiviral responses [44,45].
The downstream effect is the activation of NF-κB, the secretion of tumour necrosis factor-
α (TNF-α), and the expression of the pro-interleukin-1β and -18 in both tissue-resident
macrophages and circulating leukocytes [46,47], leading to the recruitment of other immune
factors. Circulating mtDNA appears to increase gradually with age after the fifth decade of
life and to be strictly associated with inflammatory status [48]. Indeed, levels of circulating
mtDNA correlate with serum inflammatory markers [48]. For this reason, designing new
therapeutic strategies against circulating mtDNA, or the receptors it binds, could be relevant
in the future treatment of ageing-associated diseases.

4. Mitochondrial Life: Biogenesis, Dynamics and Mitophagy

Mitochondria are very dynamic organelles. They undergo constant fusion and fission
events to create a specific network able to accommodate the cellular energy demands and
metabolic state, allow transport, and favour the selective removal of damaged mitochondria
through a process known as “mitophagy” [49]. While elongated mitochondria permit the
sharing of metabolites, proteins, and mtDNA and enhance cell survival, mitochondrial
fragmentation is often associated with motility or mitophagy, and, in more extreme cases,
is a sign of mitochondrial dysfunction and cell death [50].

Mitochondrial dynamics change with organismal ageing and cellular senescence. Ageing
in flies and mammalians is characterised by enlarged mitochondria, irregular cristae shape
and size, and a decrease in mitochondrial number [51,52]. In addition, senescent cells, are
characterised by a very elongated and branched mitochondrial network [53,54]. A possible
cause for this fusion-oriented phenotype is the reduced expression of FIS1 and DRP1, two
of the proteins involved in promoting mitochondrial fission, during senescence [55]. This
downregulation might reflect an attempt to dilute and re-arrange matrix content between
healthy and damaged organelles or to resist apoptosis [56]. Indeed, there is a tight inter-
connection between apoptosis and mitochondrial dynamics since DRP1 relocates from the
cytosol to mitochondria during cell death, resulting in mitochondrial fragmentation, loss of
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membrane potential, and cytochrome c release [57,58]. When this protein’s activity is inhibited,
the development of a senescent phenotype is favoured [59], while the induction of Drp1p
expression in Drosophila midlife prolongs both life- and health-span via improved mitochon-
drial respiration and autophagy [60]. Similarly, the induction of mitochondrial fission in the
intestine of both C. elegans and flies increases longevity [61]. Upregulation of mitochondrial
fission could therefore ameliorate senescence-related phenotypes.

Another common hallmark of organismal ageing and cellular senescence is impaired
mitophagy [62,63], which leads to the accumulation of dysfunctional organelles, as ob-
served in both old rats and humans cells [64,65], and also in senescent cells in vitro and
in vivo [66,67]. Mitophagy decline might result from several molecular mechanisms. Firstly,
defects in lysosomal function or lysosomal overload might prevent lysosomal enzymes
from targeting autophagosomes, leading to defective removal of dysfunctional mitochon-
dria [61,68]. In aged cells from old tissues as well as in senescent cells, lysosomes show
reduced activity and accumulation of undegraded material [69]. Secondly, an overall
defect in cellular autophagic capacities could explain the deficiencies in mitochondrial
clearance. The mTOR-autophagy axis is affected during ageing, and senescent cells show
elevated mTORC1 activity [15,66,70], becoming unresponsive to starvation signals [71].
This hypothesis is supported by studies where autophagic flux was restored and age-related
conditions were prevented in rodents, dogs, non-human primates, and humans after treat-
ment with two mTOR inhibitors: rapamycin [72–74] and AZD80055 [75]. In addition,
impaired mitophagy might derive from the mitochondrial dynamics defects previously
described. Indeed, the efficiency of this process relies on the ability of the organelle to
undergo fission and segregate the segment of the network that needs to be eliminated [76].
Moreover, both fission and mitophagy efficiency can be worsened with ageing because of
a reduced expression of PINK1 [77], which, together with Parkin, is the main actor of the
mitochondrial clearance pathway [78].

While mitochondrial turnover decreases in both aged and senescent cells, mitochon-
drial biogenesis slows down during ageing [79] but appears to increase during senescence,
leading to a rise in respiration and ROS production [80]. The underlying reasons still have
to be completely elucidated, but a possible explanation for this difference is the expression
level of a key regulator of biogenesis, PGC-1α, which is higher in senescent cells [80] and
reduced in aged animals [81]. However, despite different screenings to identify compounds
able to modulate PGC-1α transcription, results are still elusive [82,83] and alternative
approaches are needed. Another proposed way to pharmacologically modulate mitochon-
drial biogenesis is targeting the AMP-activated protein kinase (AMPK) pathway. In aged
animals, chronic AMPK inactivation is associated with a marked decrease in mitochon-
drial biogenesis [84], while reduced AMPK activity correlates with ageing-related insulin
resistance and insufficient intracellular fat oxidation [85]. On the other hand, when aak-2,
the worm equivalent of AMPK, is overexpressed in C. elegans, it results in an increased
lifespan [86]. Thus, chronic activation of AMPK via metformin treatment, a compound
already used in the clinic for the treatment of type 2 diabetes, has been proposed as a
strategy for slowing ageing [87]. However, while preliminary studies showed promising
results, it is unclear if the benefits come from its direct action on AMPK or indirect ef-
fects on cellular metabolism and glycaemia, reduction of oxidative stress, or protective
effects on the endothelium and vascular function [88]. The molecular mechanism of met-
formin is also debated, since metformin can activate AMPK as a downstream effect of its
interaction with various proteins and pathways, including mitochondrial complex I, the
nuclear receptor NR4A1, and the endosomal/lysosomal v-ATPase [89,90]. Moreover, the
effects of metformin on mice longevity are not robust across different laboratories. While
certain studies showed increased lifespan [91], others reported no changes [92] or even
decreased longevity [93], highlighting the importance of comprehensive testing before the
introduction of metformin-based anti-ageing therapies.

Interestingly, the role of AMPK activity and its function in the regulation of mito-
chondrial biogenesis in cellular senescence is less clear. A study in immortalised human
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fibroblasts expressing SV40 large T antigen showed that inactivation of large T resulted
in an increase in AMPK activity that directly contributed to the implementation of senes-
cence [94]. In contrast, a study in H2O2-induced senescent murine fibroblasts found AMPK
inactivated [95]. Since AMPK is central in multiple cellular pathways, additional research
could clarify the observed differences between models, and unravel additional molecular
mechanisms involved in the establishment and/or maintenance of senescence.

5. Mitochondrial Unfolded Protein Response

Mild mitochondrial stress can be beneficial for longevity [96,97] and a reason for this
hormetic effect could be the activation of the mitochondrial unfolded protein response (UP-
Rmt) [98]. The UPRmt, similarly to the endoplasmic reticulum unfolded protein response
(UPRER) and the cytoplasmic heat shock response (HSR), is capable of initiating a broad-
range transcriptional response that not only is involved in the refolding of mitochondrial
matrix proteins, but also in ROS defences, metabolic changes, regulation of iron-sulphur
cluster assembly, and modulation of the innate immune response [99–101]. Lead UPR
factors include the heat shock protein 60 and 10 (HSP60 and HSP10), mitochondrial heat
shock protein 70 (mtHSP70), Lon peptidase 1 (LONP1) and caseinolytic protease (ClpP).

While it has not been clearly described if, when, and how a decline in UPRmt func-
tionality takes place during the ageing of the organism, it is largely accepted that UPRmt
activation has a beneficial effect on longevity since it promotes cell survival and the recov-
ery of the mitochondrial network and cellular function. However, the beneficial activation
of UPRmt might not be a viable route in tackling ageing therapeutically. Indeed, UPRmt
triggering after exposure to mitochondrial stress shows strong responses only during
development [102,103], while it appears less active in later stages of life when there is no re-
ported increased lifespan as a response to stressors [96,104,105]. This timing limitation has
been justified by the fact that mitochondrial perturbations early in life induce widespread
changes in chromatin structure through histone H3K9 di-methylation and long-lasting
effects on gene expression [106]. The transcription of target UPRmt genes is subject to
epigenetic regulation by histone3-specific methylation and is therefore influenced by those
stresses that occurred during development [106,107] while being less sensitive to treatments
in aged organisms.

Similarly, limited experimental data are available about the UPRmt and senescence. In
senescent hepatocytes, most of the UPRmt factors levels were found significantly reduced
and the pathway compromised [108], suggesting that UPRmt targeting could have a role in
preventing senescence. Similarly, experiments in senescent human lung fibroblasts showed
a reduced ability to cope with the accumulation of mitochondrial unfolded proteins [109].
Additional research is needed to investigate this hypothesis.

6. Metabolism and Electron Transport Chain

Mitochondria’s primary function is to be the “powerhouse of the cell”. Thanks to
the activity of the electron transport chain (ETC, composed of four enzymatic complexes
embedded in the IMM), ATP is formed from adenosine diphosphate and inorganic phos-
phate and becomes available for the cell to be used as “energy currency” [110]. Analyses
of mitochondrial function in skeletal muscle samples from older subjects showed a strong
decline in mitochondrial respiratory capacity and a reduction in ATP amount [111,112]. At
the same time, ROS produced by the ETC enzymes increase in aged animals [24]. Similarly,
while experiments on senescent fibroblasts showed an increase in mitochondrial mass and
abundance of tricarboxylic acid (TCA) cycle metabolites [113,114], the efficiency of the ETC
and ATP production appeared reduced, leading to decreased mitochondrial membrane
potential, increased proton leak and generation of ROS [115,116]. Because of this defect,
senescent cells appear to undergo a metabolic switch, increasing dependence on glycol-
ysis [117], and fatty acid oxidation [118]. As discussed previously, the cause of the ETC
damage during both ageing and the establishment of cellular senescence is probably the
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combination of increased ETC machinery malfunction due to progressive damage and a
decline in the removal of dysfunctional mitochondria.

For all these reasons, a direct or indirect amelioration of the energetic capacity and
functionality of mitochondria in ageing and senescent cells could improve patients’ symp-
tomatology. This result could be achieved by reducing stressful or damaging conditions,
such as ROS and calcium accumulation, impaired mitophagy or altered dynamics. How-
ever, the ETC itself can be directly targeted. For example, both aged tissue and senescent
cell exhibit low levels of Coenzyme Q10 (CoQ10), the ETC carrier that collects electrons
from complexes I and II and delivers them to complex III [119,120]. This deficiency can
lead to electron leakage, loss of membrane potential, ROS production, and reduced ETC
efficiency [121]. In mice with accelerated ageing, CoQ10 supplementation improves com-
plexes I and IV activity and OXPHOS efficiency and decreases ROS generation, slowing
down the progression of ageing-related symptoms and preventing ageing [122]. CoQ10
supplementation could have beneficial effects also against the development of cellular
senescence, as demonstrated in mesenchymal stem cells [123] and H2O2-induced senescent
HUVECs [124].

Furthermore, favouring alternative energy-producing pathways such as β-oxidation
can show beneficial effects on lifespan and metabolism [125]. Direct administration of fatty
acids, including α-linolenic or omega-3 fatty acid, indeed, promotes higher mitochondrial
energy production, mitochondrial biogenesis, and oxidative stress reduction [126]. This
hypothesis was tested also in the clinic, where humans aged 65 to 85 showed increased
mitochondrial protein synthesis and significantly reduced mitochondrial oxidative stress
after being treated withω-3 polyunsaturated fatty acids [127]. Another proposed treatment
able to increase β-oxidation is the supplementation of 17α-estradiol, a weak endogenous
steroidal oestrogen. 17α-estradiol improved metabolic parameters and slowed ageing
in male mice, but did not show significant effects in females [128]. However, conclusive
clinical trials about the impact of these treatments on human health and longevity are still
missing.

7. NAD+ Levels

Nicotinamide adenine dinucleotide (NAD+) is one of the most common metabolites
in the human body and an indispensable cofactor involved in several redox reactions.
Most NAD+ functions as a redox carrier, receiving electrons from metabolic processes such
as glycolysis, Krebs cycle and β-oxidation, and forming NADH. NADH is then used to
transfer electrons to complex I in the ETC [129]. Approximately 10% of cellular NAD+,
instead, can be phosphorylated by NAD+ kinases into NADP+ and used for anabolic
reactions, such as lipid and nucleic acid syntheses, which require NADPH as an electron
donor [130,131].

NAD+ levels decline with age in various tissues, and this reduction correlates with the
development of ageing-associated diseases such as muscle loss and diabetes [132–134]. A
drop in NAD+ levels, indeed, associates with mitochondrial dysfunction in both calorie-rich
diets and ageing, whereas NAD+ repletion with precursors such as nicotinamide riboside
and nicotinamide mononucleotide can reverse this process, improving mitochondrial res-
piration and increasing ETC subunits expression [132,133,135]. Nonetheless, decreased
NAD+/NADH ratios or total NAD+ levels can drive senescence and cell cycle arrest, but
also influence the SASP phenotype [14,136]. For example, cells that underwent mitochon-
drial dysfunction-associated senescence are characterised by lower NAD+/NADH ratios,
AMPK-mediated p53 activation, and reduced IL-1-associated SASP [14]. The complexity
of the role of NAD+ in the establishment of senescence is linked to its activity as a cofac-
tor of two important protein families: poly-ADP-ribose polymerase (PARP) and sirtuin
family proteins (SIRTs). PARP has a double and contradictory role in the establishment
of senescence, making it difficult to use this protein as an anti-ageing target. On one side,
indeed, PARP inhibition or depletion leads to single-strand breaks, cell cycle arrest, and
cellular senescence [137–139]. On the other side, its activity promotes NF-kB activation and
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secretory phenotypes in senescent cells [140]. Consistently, a decrease in NAD+ amount by
inhibition of Nicotinamide phosphoribosyltransferase, responsible for the NAD salvage
pathway, promotes both cell cycle arrest and suppresses SASP [14,136]. While all the
mentioned studies have been conducted on human cells, the use of different cell models
(keratinocytes, ovarian cancer, colorectal cancer, melanoma and breast cancer cells) and
the use of different senescence triggers might explain these disparities. Likewise, SIRTs
play a role in senescence and SASP generation. The mitochondrial sirtuin SIRT3 is critical
in the elimination of intracellular ROS and the maintenance of oxygen metabolism bal-
ance [141]. Interestingly, the increased oxidative stress that results from its depletion can
induce different senescence markers but suppresses SASP secretion. Finally, it has been
recently discovered that NAD+ levels can be restored in stressed or damaged cells by a
cytosolic complex of enzymes that transfers electrons from NADH to NADP+, and this
reaction can prevent cellular senescence [142].

For all these reasons, the modulation of NAD+ levels and the downstream molecular
pathways have been largely studied as a potential target for anti-ageing therapies. The
most direct proposed intervention was to increase NAD+ levels by dietary, via supplemen-
tation of NAD+ precursors, such as nicotinic acid, nicotinamide riboside, nicotinamide
mononucleotide, and tryptophan, or improving NAD+ bioavailability through exercise
and caloric restriction. However, while these therapies have already shown promising
results in clinical trials, it is necessary to remember that NAD+-depleting drugs have an
anti-tumoural effect, and the long-term boosting of NAD+ might increase the risk of devel-
oping cancer. Consistent with this observation, nicotinamide mononucleotide treatment
accelerates pancreatic cancer progression inducing an inflammatory environment [136].
Another strategy could be the reduction of PARP1 and CD38 activity, which consume
NAD+ [143,144]. US-FDA-approved PARP inhibitors, such as niraparib, rucaparib and
olaparib, are already available and used to treat cancers, including prostate, breast and
ovarian, through disrupting DNA repair and replication pathways [145–147]. Similarly,
CD38 inhibitors have been proposed, such as apigenin, quercetin, luteolin, kuromanin, lute-
olinidin, and 78c [148]. 78c, for example, is a highly specific CD38 inhibitor which showed
promising results in reversing NAD+ decline during ageing and improving age-associated
cardiac and muscle function and glucose tolerance [143]. The opposite tactic, instead, could
be stabilising NAD+ levels by increasing NAD+-biosynthesis enzymes activity [149] or
preventing the escape of intermediates [150].

Finally, SIRTs themselves could represent a powerful tool in anti-ageing therapies. Over-
expression of SIRT3 showed beneficial effects on ageing and senescence hallmarks [151] and
significantly activates mitophagy [152]. Increased SIRT3 activity can be reached through calo-
rie restriction [153] or compounds such as adjudin, a derivative of lonidamine [154], which
was described attenuating cellular senescence markers in hydroxyurea-treated MEFs [155].
However, the potential of this pharmacological approach remains to be validated in clinical
conditions.

8. Matrix Calcium

Calcium (Ca+2) is an ion that participates in a wide variety of cellular functions, being
an intracellular regulator of many physiological processes. Mitochondria and Ca+2 are
strictly interconnected. On one hand, the cell benefits from the mitochondrial ability to
buffer Ca2+, shaping the cytosolic Ca2+ signal [156,157]. On the other, Ca2+ is fundamental
for normal mitochondrial functions since it activates pyruvate, isocitrate, and 2-oxoglutarate
dehydrogenases, involved in the TCA cycle, stimulating mitochondrial respiration and
ATP production [158]. Excessive and prolonged accumulation of mitochondrial Ca2+,
often in combination with increased production of ROS [159], however, can be toxic and
regulate cell death through the stable opening of the mPTP [160]. This phenomenon
leads to mitochondrial swelling, metabolism impairment, alterations in the matrix content,
membrane potential drop, and apoptosis [161–163]. Because of this, calcium movements
within organelles are dynamic but strictly controlled. Its route starts in the endoplasmic
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reticulum (ER), which releases calcium through ryanodine receptors and inositol 1,4,5-
triphosphate receptors (Ins(1,4,5)P3Rs). In particular, Ins(1,4,5)P3Rs are enriched at the
ER-mitochondria contact sites, areas of proximity but not fusion, between the membranes
of the two organelles [164], and are activated by IP3 binding. On the receiving side,
mitochondria express VDAC1 in the outer mitochondrial membrane (OMM) and the
mitochondrial calcium uniporter complex (MCUC) in the IMM that uptakes Ca2+ into the
matrix.

Recent observations pointed out that a rise in intracellular Ca2+ contents could be a
new hallmark of ageing and cellular senescence, both at a cytosolic level and in the intra-
cellular organelles [165,166], leading to chronic mitochondrial stress and cellular toxicity.
Evidence shows increased activation of Ins(1,4,5)P3Rs in the ER membrane of senescent
cells and consequent amplified uptake of Ca2+ through MCU channels, possibly due to a
decreased expression of the transient receptor potential cation channel subfamily C member
3 (TRPC3) [167], a controller of mitochondrial Ca2+ load. Re-expression of TRPC3, indeed,
diminished mitochondrial Ca2+ load of these cells and promoted escape from oncogene-
induced senescence. Nonetheless, additional alterations in the mitochondrial calcium
machinery structure or activity cannot be excluded and should be further investigated.

Mitochondrial calcium concentrations could be, therefore, an attractive target in both
anti-ageing and anti-senescence therapies. While calcium modulation in senescent cells is
still poorly studied, it has been proposed to use specific MCU inhibitors, such as Ru360 or
Ru265, to reduce the entry of Ca2+ in the matrix of ageing cells, and consequentially mito-
chondrial stress. These compounds have been largely characterised in vitro and in vivo,
and have shown promising protective activity in reperfusion [168] and hypoxic/ischemic
brain injury [169] animal models. Recent work in C. elegans started testing this hypothesis
in the context of ageing and reported that pharmacological or genetic inhibition of MCU
was sufficient to improve muscle ageing and dystrophy, corroborating this hypothesis [170].
In addition, future studies should investigate other possible therapeutic targets, including
the modulation of ER-mitochondria tethering and Ins(1,4,5)P3Rs activity, the role of other
subunits of the MCU complex, and other mechanisms of mitochondrial calcium influx and
efflux in ageing and senescence.

9. Reactive Oxygen Species

Mitochondria are a major source of ROS, which are primarily the result of the ineffi-
cient transfer of electrons through the ETC. According to the mitochondrial free radical
theory of ageing, ROS are both a central cause and a consequence of ageing. Indeed, report-
edly they increase with age because of a decline in ETC capacity, respiratory complexes
dysfunctions, and a decrease in ROS scavenging enzymes, whereas, on the other side, ROS
accumulation increases levels of oxidized lipids and proteins, induces mtDNA mutations,
and further deteriorates the ETC [171–173]. In cellular senescence, a similar pattern can be
observed: ROS contribute to cellular senescence onset inducing oxidative damages [174]
and inhibiting autophagy [175], while the chronic accumulation of these species establishes
a vicious cycle of mitochondrial and cellular stress.

Thereby, it would be easy to believe that the elimination or drastic reduction of ROS
would be an effective anti-age therapy. While this reasoning is not intrinsically wrong,
the situation is more complicated. Mitochondria-targeted antioxidant drugs such as plas-
toquinone derivatives [176,177] or MitoTEMPO [178,179], and endogenous indoleamine
melatonin [180], validate this theory, showing increased lifespans in mice and flies and gen-
erally improved mitochondrial functions. Likewise, genetically modified mice with reduced
ROS production show delayed ageing [181,182]. On the contrary, however, additional re-
ports raised doubts about the free radical theory of ageing and the use of antioxidant
therapies. In mice, the overexpression of major antioxidant enzymes such as copper-zinc
superoxide dismutase (CuZnSOD or SOD1), catalase, or manganese superoxide dismutase
(MnSOD) did not increase longevity [183], while deletion of mitochondrial matrix SOD
increased mtDNA damage and cancer incidence but did not accelerate ageing [184,185]. In
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C. elegans, instead, loss of superoxide dismutase enzymes could even extend lifespan [186].
Finally, the use of certain antioxidants on proliferating cells can favour cellular senescence,
by inducing proliferation arrest, DNA damage and chromosomal abnormalities [187].

These controversies highlight that cellular ROS are not only a damaging “waste prod-
uct” of mitochondrial activity but have critical functions in cellular life. Emerging evidence,
indeed, show the importance of ROS in cellular signalling. For example, H2O2 generated
from superoxide produced by mitochondria and NADPH oxidases [188,189] mediates the
oxidation of cysteine residues [190], causing allosteric changes within important signalling
proteins and modifying their behaviour. Also, H2O2- can promote tyrosine phosphoryla-
tion by activating protein tyrosine kinases. Other evidence suggests that ROS signalling
is required for the maintenance of tissues since it can activate cellular stress pathways to
diminish tissue degeneration and promote healthy ageing [191]. Besides, ROS are also
essential for stem cell differentiation, as observed in different in vivo models: murine
hematopoietic stem cells in a mouse model with reduced ROS levels because lacking AKT1
and AKT2 showed compromised differentiation [192], while in Drosophila hematopoietic
progenitors, increasing ROS triggers differentiation while decreasing ROS impairs it [193].
Experiments in humans also reported the importance of mitochondrial ROS in muscle
differentiation and the differentiation into adipocytes of bone marrow mesenchymal stem
cells [194,195]. Accordingly, reduced ROS levels decrease the regenerative capacity of
neural stem cells and spermatogonial stem cells [196,197]. However, a few conflicting
studies claimed that a rise in ROS might harm stem cell function [198,199], suggesting that
there might be exceptions to the rule.

The ROS situation, therefore, is not black or white, but the type of ROS, their localisa-
tion, and their concentration collectively determine whether redox signalling or oxidative
stress-induced damage occurs. Therefore, the problem in ageing and senescence is not
ROS on its own, but a dysregulated and atypically high production of them, paired with
redox dyshomeostasis. In conclusion, while aberrant ROS generation likely plays a role in
age-related pathologies, antioxidant therapies will need to be carefully modulated to be
both effective and not toxic.

10. Mitochondrial Permeability Transition Pore

The mPTP is a transmembrane protein or complex that controls mitochondrial perme-
ability and can induce cell death after various stresses, including oxidative stress, adenine
nucleotide depletion, increased phosphate concentration, and high mitochondrial cal-
cium [200]. The opening of the pore leads to mitochondrial swelling, uncontrolled diffusion
of molecules under 1500 Da across the IMM, and sustained loss of mitochondrial membrane
potential [162]. The permeability of the mitochondrial membranes is central in the decision
between cell survival or death, and what type of cell death, since the activation of the pore
has been associated with both apoptosis and necrosis [201]. While many potential structural
components of the mPTP have been proposed, including ATP synthase, adenine nucleotide
translocase (ANT), the outer membrane voltage-dependent anion channel (VDAC), and the
phosphate carrier (PiC), the exact subunit composition of the pore is still debated [201]. Its
regulatory pathways are also unclear. Cyclophilin D (CypD) is the only clearly described
mPTP regulator: it controls mPTP opening by sensitising it to calcium, inorganic phos-
phate, and ROS, while other stimuli can activate mPTP opening via CypD-independent
pathways [200,202].

A common feature of old tissues and senescent cells is an increased concentration of
mitochondrial Ca2+ and ROS, two conditions that can directly stimulate the opening of
the mPTP [203,204], and decreased levels of NAD+ [132–134], which results in low levels
of SIRT3 activity and thereby high levels of the active, acetylated, form of CypD [205].
Together, these alterations (high Ca2+, high ROS and low NAD+) make the mitochondria
of old and senescent cells highly prone to mPTP opening. Studies in muscles from aged
humans and rats reported reduced mitochondrial calcium retention capacity and sensitisa-
tion of the mPTP opening, leading to apoptosis [64,206]. Similarly, enhanced susceptibility
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to mPTP opening during ageing was found in the brain [207,208], the liver [208,209], and
lymphocytes [210]. The consequences of increased mPTP are the collapse of mitochondrial
membrane potential, reduced mitochondrial respiratory function, the release of mitochon-
drial Ca2+ and cytochrome c, and enhanced ROS generation [202,211], all events that have
been linked to ageing. On the contrary, our knowledge about mPTP opening in senes-
cent cells remains speculative and its potential use as a therapeutic target needs to be
investigated.

In different degenerative diseases, typically associated with ageing, the inhibition
of the mPTP has been tested as a protective strategy to preserve cell survival, showing
encouraging results. In mouse models of Parkinson’s disease and amyloid lateral sclerosis,
for example, the prevention of the pore opening by CypD depletion or pharmacological
inhibitors of the mPTP showed delayed onset of disease and extended lifespan [212–214].
The same happened in ageing-related bone loss, where CypD knock-out mice showed
enhanced resistance to osteoporosis [215].

In most diseases associated with cellular senescence, instead, the goal is the opposite,
namely, to eliminate senescent cells. While an increase in mPTP activation could lead
to extensive toxicity and damage also proliferative cells, a deeper understanding of the
mPTP activity and regulation could offer new opportunities for intervention. Indeed, while
pore activation has traditionally been considered a death sentence for the cell, additional
evidence proved that the mPTP can open in two different ways: permanently or transiently.
While the sustained opening leads to cell death, the temporary activation or “flicker” of the
pore [216] can have beneficial effects or induce protective pathways. It can allow calcium,
ROS or other molecules release or exchange between the mitochondrial matrix and the
cytosol, activate rescue pathways, or act as a signalling event. Since Ca2+ and ROS levels are
elevated in aged and senescent cells, a transient variation of the mitochondrial permeability
could represent a weapon against overload and toxicity, while its inhibition could target
a specific vulnerability of these cells and have a senolytic effect. Transient opening and
moderate loss of mitochondrial membrane potential could also correlate with activation of
the UPRmt, which contributes to health and longevity, as previously discussed [102,107],
favouring cell survival. The mPTP has, therefore, two highly different functions, one that
rescues the organelle and the cell in cases of moderate stress and one that condemns it
when its condition is beyond repair. Future research on mPTP targeting strategies should
keep this important difference in mind and, ideally, identify ways to discriminate between
the two pathways.

11. Apoptosis

Apoptosis is the process that leads to a controlled and programmed cell death, which
can occur as a response to various damages or stresses, such as DNA damage, oxidative
stress, immune reactions and absence of certain growth factors, hormones and cytokines,
or as a natural part of embryonic development and ageing [217]. The apoptotic program
can be initiated by different triggers and follow different signalling pathways, which
generally share the activation of initiator caspases (as caspase 8 and 9) and culminate in the
activation of executioner caspases (as caspase 3 or 7) to finally induce DNA fragmentation,
degradation of cytoskeletal and nuclear proteins, cross-linking of proteins, and formation of
apoptotic bodies. Mitochondria are responsible for the initiation of a key apoptotic pathway,
as a result of internal stress or damage signals, which consists of the mitochondrial outer
membrane permeabilisation (MOMP), regulated by the Bcl-2 family of proteins. The Bcl-2
family includes both pro- and anti-apoptotic proteins, which balance their activity in cells
as needed. Upon elevated stresses, the pro-apoptotic proteins BAX and BAK oligomerise at
the OMM [218,219], where they induce the release of cytochrome c and other proteins from
the intermembrane space into the cytosol [220]. Once in the cytosol, cytochrome c induces
the downstream activation of apoptotic protease activating factor-1 (Apaf-1), caspase 9, and
finally, caspase 3, starting the execution pathway [221,222]. To avoid the undue activation
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of this suicide pathway, another group of proteins, including Bcl-xL, Bcl-2, and Bcl-W,
prevent the oligomerisation of BAX/BAK [223,224].

The positive influence of the anti-apoptotic side of this family on healthy ageing was
confirmed by the fact that Bcl-xL was found overexpressed in centenarian subjects [223].
Moreover, in “old” fibroblasts with high passage number, the level of anti-apoptotic proteins
increases dramatically after UV stress and favours the development of a senescent phe-
notype, while in UV-damaged “young” cells with low passage number, the pro-apoptotic
pathway is preferred [225]. These results suggest that activation or upregulation of the
Bcl-xL pathway could be a valid anti-ageing strategy, but it can also help preserve damaged
cells in older tissue, which are more prone to develop a senescent phenotype. Since senes-
cent cells’ survival depends more than their proliferative counterparts on the anti-apoptotic
activity of these members of the Bcl-2 family, their downregulation or inhibition has been
exploited for their senolytic effect. One of the few and most used senolytic agents available
to date is, indeed, Navitoclax (ABT-263), which induces apoptosis of senescent cells by
inhibition of Bcl-W and Bcl-xL [226,227]. Preliminary data from clinical trials using Nav-
itoclax in combination with Ruxolitinib in patients with myelofibrosis [228,229] showed
encouraging outcomes, but further studies are necessary to fully evaluate the potential
of this novel combination. Finding additional senolytic targets or strategies to make the
already existing ones more specific is, therefore, one of the most active areas in ageing
research.

12. Epigenetic Regulation

Although the DNA code in our cells carries the genetic information, the epigenome
is responsible for the accessibility, stability and regulation of that valuable information,
connecting the genotype with the phenotype [230,231]. Epigenetic changes are reversible,
can be driven by external or internal influences, and represent a key mechanism behind
cellular alterations during ageing. In mammals, older individuals tend to present with CpG
hypomethylation, especially at repetitive DNA sequences [232–234], histone modification,
chromatin remodelling, and disruption of non-coding RNA [235]. Interestingly, while the
majority of expressed miRNAs decline in the brain of aged animal models and humans, a
small subset of non-coding RNAs was found selectively upregulated [236,237]. Epigenetic
changes are also crucial for the induction, progression, and maintenance of senescence.
In senescent human fibroblasts, the accumulation of a distinct heterochromatic structure
(senescence-associated heterochromatic foci or SAHF) has been reported, possibly as a
consequence of persistent DNA damage, decreased histone chaperone protein production,
and decreased histone biosynthesis [238,239]. Moreover, histone acetylation seems to
influence this phenotype. Indeed, Histone deacetylase 4 (HDAC4) is downregulated
in oncogene-induced senescence, leading to the upregulation of senescence-associated
genes [240]. Chromatin remodelling events and histones modifications, moreover, can
influence the expression of SASP components [241]. Thus, the manipulation of these
mechanisms is a prime target in age- and senescence-delaying interventions.

Even if mitochondria have their own genome, most of their proteins are nuclear-
encoded and they need to communicate with the surrounding cellular environment. For
this reason, the bi-directional communication between these organelles and the nucleus
is constant and can lead to epigenetic modifications. In fact, mitochondrial dysfunctions
invoke a process known as mitochondria-to-nucleus retrograde response, able to regulate
nuclear-encoded gene expression and cellular metabolism [242]. Mitochondria provide
numerous co-substrates produced in the Krebs cycle that are required for epigenetic and
transcriptional processes, such as histone modifications and chromatin remodelling [243].
Changes in metabolism and metabolites level during ageing and senescence can therefore
contribute to epigenetic modifications. In addition, mitochondria act as redox sensors able
to identify stressful conditions and react by shaping the chromatin to promote survival or
trigger senescence [244]. As a consequence, amelioration of mitochondrial functions would
have positive effects also on the epigenetic state of the cell. Promising results have already
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been shown in in vivo models such as C. elegans [107], where elevated levels of the Krebs
cycle intermediate α-ketoglutarate induced DNA and histone demethylation via activation
of two histone demethylases, JMJD3 and PHF8, resulting in the removal of repressive marks,
the induction of UPRmt gene expression, and extended lifespan. Similarly, mitochondrial
ROS activate the DNA-damage-sensing kinases, Tel1p and Rad35p, resulting in enhanced
subtelomeric silencing via inactivation of Rph1p, a histone H3K36 demethylase of the
jumonji family of enzymes [245]. This represents another process through which the
maintenance of mitochondrial homeostasis and ROS production under a certain threshold
can promote longevity.

13. Transplant of Younger Mitochondria: Another Weapon against Ageing

So far, we have focused on identifying alterations happening in mitochondria in aged
and senescent cells and how they can be exploited as potential targets for therapies. In
aged cells, these strategies aim to reduce the damages that progressively accumulated in
the “old” organelles over the years and improve their functions and structure. The majority
of these alterations are shared by senescent cells and the targeting of these pathways
can help eliminate them, reduce the SASP, or prevent the development of a senescent
phenotype in the first place, when it is driven by mitochondrial dysfunctions. Recently, a
less canonical idea to improve aged cells’ condition and reduce senescent cells accumulation
in ageing-associated diseases has emerged: obtain cells with “younger” mitochondria
through mitochondrial transplantation.

Mitochondrial transplant (mtTP) consists in extracting “young” and healthy mitochon-
dria, injecting them into a patient, and allowing them to be absorbed into the cells. While
the development of this technique in a laboratory setting is still at its initial stage, mtTP
between cells is not an alien concept and has even been observed naturally in vitro and
in vivo. For example, astrocytes close to the site of a focally induced cerebral ischaemia
can transfer mitochondria to neurons [246]. Additionally, mitochondria can be transferred
between cells through tunnelling nanotubes, thin plasma membrane structures connecting
cells and allowing intercellular transfers of organelles, various plasma membrane compo-
nents, and cytoplasmic molecules [247,248], or packed in extracellular vesicles [249]. In
a laboratory setting, mitochondrial transfer has been attempted in numerous ways: via
cytosol transfer, mitochondrial injection in cells, or injection in the bloodstream of animal
models [250]. Intra-arterial injection of viable and respiration-competent autologous mito-
chondria isolated from pigs’ skeletal muscle was successfully used in the treatment of acute
kidney injury and cardiac ischemia/reperfusion [251,252]. Similar results were shown
in the lungs, where mitochondria were delivered either intra-arterially in the pulmonary
artery or by a nebulizer [253]. Pre-labelled mitochondria were found up to 4 weeks after
injection in the studied tissues, but their maintained functionality was unclear [251]. More
recent studies demonstrated that mitochondrial transplant significantly up-regulates the
expression of the mitochondrial complex II subunit SDHB in the hippocampus of aged
mice [254] and improves basal respiration and ATP production 48 h post-transplantation in
rats’ cardiomyocytes [255]. The observed benefits on respiration, however, appeared lost a
month after the treatment, suggesting a potential for this technique in the treatment of acute
injuries more than chronic conditions. Further research, optimisation, and technological
advances are therefore necessary to determine if mtTP will be applicable in the treatment
of diseases in the future, including age-associated pathologies.

14. Conclusions

Taken together, the evidence presented in this review shows that mitochondria dys-
functions have a close relationship with ageing and cellular senescence. Several mito-
chondrial pathways have already been taken into consideration as potential therapeutic
targets for ageing-associated diseases, and promising compounds have been developed.
Future research will have to answer numerous open questions including: is it possible
to completely restore mitochondrial function in senescent and aged cells? Which age- or
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senescence-associated aspects are the primary drivers of mitochondrial dysfunction and
vice-versa? Which ones are targetable therapeutically? Answering some of these questions
could get us closer to healthy ageing, with countless medical, social and economic benefits.
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