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A B S T R A C T   

Vascular tortuosity of supra-aortic vessels is widely considered one of the main reasons for failure and delays in 
endovascular treatment of large vessel occlusion in patients with acute ischemic stroke. Characterization of 
tortuosity is a challenging task due to the lack of objective, robust and effective analysis tools. We present a fully 
automatic method for arterial segmentation, vessel labelling and tortuosity feature extraction applied to the 
supra-aortic region. A sample of 566 computed tomography angiography scans from acute ischemic stroke pa
tients (aged 74.8 ± 12.9, 51.0% females) were used for training, validation and testing of a segmentation module 
based on a U-Net architecture (162 cases) and a vessel labelling module powered by a graph U-Net (566 cases). 
Successively, 30 cases were processed for testing of a tortuosity feature extraction module. Measurements ob
tained through automatic processing were compared to manual annotations from two observers for a thorough 
validation of the method. The proposed feature extraction method presented similar performance to the inter- 
rater variability observed in the measurement of 33 geometrical and morphological features of the arterial 
anatomy in the supra-aortic region. This system will contribute to the development of more complex models to 
advance the treatment of stroke by adding immediate automation, objectivity, repeatability and robustness to the 
vascular tortuosity characterization of patients.   

1. Introduction 

In the last years, mechanical thrombectomy (MT) has become the 
standard treatment for patients suffering from an acute ischemic stroke 
(AIS) caused by a large vessel occlusion (LVO) (Campbell et al., 2015; 
Turk et al., 2019). MT achieves rates of significant recanalization 
(mTICI1 ≥ 2B: reperfusion in greater than 50% of the target cerebral 
ischemic territory) in 70–80% of treated patients (Flottmann et al., 
2018; Yoo and Andersson, 2017). However, there is still a significant gap 
between angiographic results and the observed clinical outcome, where 
more than 50% of treated patients will not regain functional indepen
dence at 3 months (Goyal et al., 2016; Albers et al., 2018; Berkhemer 
et al., 2015; Jovin et al., 2015; Nogueira et al., 2018). In order to 
improve outcomes, it is essential to reduce interval times in all steps of 

the AIS treatment protocols, including not only pre- and in-hospital 
phases but also intraprocedural steps. 

Vascular tortuosity and difficult catheter access (DCA) are two main 
drivers of intra-procedural time delays (Yoo and Andersson, 2017; 
Mont`Alverne et al., 2020; Yeo et al., 2019; Kaesmacher et al., 2018). 
The presence of pronounced vascular tortuosity in the aortic arch (AA) 
and cervical arteries can lead to failure in reaching the LVO causing the 
stroke with endovascular MT devices. Impossibility to reach the LVO 
may account for up to one third of reperfusion failures (Kaesmacher 
et al., 2018). Nonetheless, the overall rate of failed MTs due to 
unreachability of the LVO remains low, at around 4.4% (Penide et al., 
2021). Time delays related to DCA during MT procedures to reach the 
target LVO are far more prevalent. A carotid catheterization time ≥ 30 
min or a procedural time ≥ 60 min are often considered as DCA in MT 
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procedures (Mokin et al., 2020; Alawieh et al., 2019; Ribo et al., 2013; 
Holswilder et al., 2022), although this threshold can be even lower as 
suggested in (Mont`Alverne et al., 2020). About 25–30% of MTs present 
a difficult femoral access (Mokin et al., 2020; Ribo et al., 2013; 
Gomez-Paz et al., 2021), which is associated with a lower rate of 
recanalization and a lower rate of functional independence at 90 days 
(Albers et al., 2018; Ribo et al., 2013; Alawieh et al., 2019). As a result, 
in daily practice, the absence of solid models able to predict DCA, can 
lead to sequential attempts and delays through alternate access sites (i. 
e., femoral, radial, carotid) until the LVO is finally reached. 

1.1. Recent works 

The growing number of publications aiming to unravel correlation 
between DCA indicators and tortuosity features indicates that identi
fying patients with challenging anatomies pre-operatively represents an 
unmet need. For example, Mokin et al. (Mokin et al., 2020) (n = 100) 
found that angulation of the CCA and the extracranial ICA, as well as the 
tortuosity index of the CCA-brachiocephalic segment were significant 
indicators for difficult thrombectomy cases. Kaymaz et al. (Kaymaz 
et al., 2017) analyzed geometrical features of the supra-aortic vessels 
(take-off angles and tortuosity) and sought correlations with ICA access 
time. They found that ICA access time was significantly influenced by 
the left CCA (LCCA) take-off angle, brachiocephalic trunk (BT) take-off 
angle, and tortuosity of the CCA (n = 76). Other studies found significant 
correlation between MT difficulties and presence of kinks (Benson et al., 
2020) or vessel curvature in 2D projections of fluoroscopic images 
(Schwaiger et al., 2015). An extensive comparison between tortuosity 
features and difficult MT indicators among these studies can be found in 
the supplementary material (Table S1). 

Other papers focus on developing classification criteria for difficult 
patients with risk scores. Snelling et al. (Snelling et al., 2018) presented 
the B.A.D. score, an index based on the presence of a series of 
tortuosity-related features (AA type, presence of bovine AA, kinks, tor
tuosity or coiling) to determine, pre-operatively and based on visual 
inspection, whether a patient’s vasculature is difficult or not. Ribó et al. 
(Ribo et al., 2013) proposed another risk score of difficult supra-aortic 
access based on patient’s clinical data. 

These studies have in common that the measurement of tortuosity- 
related features is at best semi-automatic (Mokin et al., 2020), while 
some rely on completely manual processes (Kaymaz et al., 2017; Benson 
et al., 2020; Schwaiger et al., 2015; Snelling et al., 2018; Rosa et al., 
2021). This makes them unsuitable as acute decision-making tools in the 
selection of the ideal access site. 

Few studies have presented automatic or semi-automatic quantita
tive analysis methods to address vascular segmentation and tortuosity. 
This is the case for Deshpande et al. (Deshpande et al., 2021), who 
recently presented an automated method for segmentation and feature 
extraction to find relevant differences regarding cerebral vasculature 
between stroke and healthy subjects. However, no method for vessel 
labeling is included, heavily limiting the characterization power of the 
method over individual vessels or determined vascular pathways. 
Moreover, the validation of the extracted feature measurements is only 
inferred from a thorough validation of the segmentation algorithm. 
Chen et al. (Chen et al., 2018) present a semi-automatic method for 
artery tracing, labelling and feature extraction for the cerebral arteries, 
validated through comparing the bifurcation placement by the algo
rithm against a human observer, lacking full automation of the artery 
tracing and labelling processes. An automatic method for labelling of the 
main aortic branches and landmark detection is described in (Tahoces 
et al., 2020), missing automatic segmentation. 

Despite the remarkable achievements of these studies, there is still a 
lack of an automatic algorithm that includes vessel segmentation, vessel 
labelling and feature extraction capable of measuring vessel-specific 
anatomical features. All these characteristics may be necessary for 
effective use in clinical setting, with an emphasis on full automation of 

the process. This research presents a comprehensive solution to the 
described drawbacks while delivering comparable or better perfor
mance to the existing methods. 

1.2. Contributions 

This paper presents a robust, fully automated system capable of 
characterizing and measuring anatomical supra-aortic vascular tortu
osity features using baseline computed tomography angiography (CTA). 
The methodologies used in each stage of the analysis pipeline are not 
novel individually, but the combination of such blocks in an efficient 
way and its clinical validation is completely innovative, and that pro
vides a novel tool not available yet in the literature. The main contri
butions of this research are:  

• A fully automated pipeline for the analysis of vascular tortuosity in 
the supra-aortic region from CTA imaging, making it possible to 
perform a comprehensive analysis of the vascular tortuosity within 
the stroke context.  

• Inclusion of an integrated automatic vessel labelling method, 
allowing for an analysis based around the extraction of vessel- 
specific tortuosity features.  

• Extensive validation of 33 measured features against two human 
observers. 

The current study is part of Arterial©,2 a vascular analysis frame
work created with the goal of delivering an immediate, fully automated 
analysis of the vascular anatomy for each stroke patient, in order to offer 
pre-procedural decision support for the clinician ahead of MT. 

2. Methods 

The proposed framework includes four modules designed to perform 
different tasks, implemented to analyze 3D CTA images and return a 
series of geometrical and morphological features automatically. These 
modules are, in order of sequence: vessel segmentation, vascular 
centerline extraction, vessel labeling and tortuosity feature extraction. A 
flowchart of the present study, including a simplified layout of the 
implemented method, is depicted in Fig. 1. 

3. Dataset 

We performed a retrospective analysis of a prospectively maintained 
database that includes all patients who underwent MT and whose basal 
pre-operatory imaging was acquired at Hospital Vall d′Hebron (Barce
lona, Spain) between 2018 and 2021 (n = 715). Anonymized pre- 
procedural CTA scans from 566 patients were collected (aged 74.8 
± 12.9,3 51.0% females). Ethics approval was obtained from the local 
institutional review board [project reference: PR(AG)484/2021]. 

All subjects were imaged with a standard CTA image acquisition 
protocol using a CT system (SOMATOM Definition AS+ 128-slice, 
Siemens, Erlangen, Germany). Radiation dose was set to 200 mAs with 
a tube potential of 100 kV. Collimation was configured at 128 slices of 
0.625 mm of thickness, with an increment of 0.4 mm, a rotation time of 
0.5 s and a pitch of 1. A median H20s kernel from Siemens was used for 
the image reconstruction. Each frame was recorded in a 512 × 512 
matrix with a FOV of 350 mm. Iodinated IV contrast was given in a 
single bolus to the patient at a rate between 4 and 5 ml/s with an overall 
volume of 40–80 ml of contrast solution depending on the patient. Full 
resolution images presented a median voxel size of 
0.430 × 0.430 × 0.400 mm3 and a median shape of 512 × 512 × 816. 

2 ©2021, copyright by VHIR and UB. All rights reserved.  
3 Standard deviation. Same convention used throughout the article unless 

specified otherwise. 
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DICOM images were converted to NIfTI and a preprocessing in the form 
of intensity and spatial normalization of the volumes of interest was 
applied prior to segmentation (Isensee et al., 2021). 

From each CTA scan, a series of annotated data was generated to 
train, validate and test the models involved in the proposed framework. 
Among all available patients, 165 cases with an acute ischemic stroke 
secondary to a LVO, were randomly selected to form a labelled dataset 
for segmentation. Three cases were finally discarded due to the presence 
of significant imaging artifacts, leaving the final sample at 162 patients. 
This set was segmented once by either two engineers with + 2 years of 
experience (40 by engineer I and 50 cases by engineer II out of 162) or a 
neurologist with + 5 year of experience (72 cases out of 162) using 3D 
Slicer software (version 4.11) (Fedorov et al., 2012). Centerline models 
for the whole database (n = 569) were automatically extracted and put 
into graph form. Graph nodes, representing the different centerline 
segments, were manually annotated with the corresponding artery 
names by one observer (engineer I). 

Table 1 displays the dataset organization for each of the modules that 
require testing. For segmentation, 132 cases were used for training and 
validation, while the remaining 30 cases (18.5% of the available images) 
were reserved for testing. In the 30 cases from the segmentation testing 
set, manual measurements were also performed by two expert observers 
(engineer I and the neurologist) for geometrical and morphological 
feature extraction assessment of the automatic and semi-automatic 
methods analyzed in this study, resulting in two annotation sets of 45 
measurements per case. For vessel labelling, 132 manual segmentations 
from the segmentation training set and 377 inferred segmentations 
resulting from the segmentation module were used to generate center
line graphs, which following manual annotation were used for training 
and validation (n = 509), while 57 cases (including the 30 cases from 
the segmentation and feature extraction testing set) were used for 
testing, resulting in 10% of the overall dataset. 

An analysis of the Bayes Error Rate (BER) was made for both the 
segmentation and the labelling modules to approximate the asymptot
ical performance of the model with a growing dataset. This can be used 
to estimate the dataset size needed to reach very close (>99%) to the 

asymptotical performance of the model without having to generate an 
infinite amount of data — a very costly process. Results for the BER that 
suggest the adequacy of the dataset sizes used for both modules can be 
found in the supplementary material (Figs. S1 and S3). 

3.1. Segmentation 

The first step towards automated tortuosity feature extraction for the 
vasculature relevant to stroke is the automatic segmentation of the ar
teries in the supra-aortic region from CTA volumes. nnU-Net (Isensee 
et al., 2021) was used as the base framework for the automatic seg
mentation of the volumes of interest. nnU-Net performs a thorough 
preprocessing of the training dataset, including spatial and intensity 
normalization, to automatically infer several relevant hyperparameters 
of the resulting 3D U-Net (Çiçek et al., 2016; Ronneberger et al., 2015). 
Semi-random image patching was used for data augmentation during 
training. The patch size as well as the batch size were automatically 
determined by nnU-Net, depending on the median image shape in the 
dataset and graphics processing unit (GPU) memory limitations. Sto
chastic gradient descent (SGD) with Nesterov momentum (μ = 0.99) 
was used as the optimizer for the network, and the loss function was 
computed as the sum of binary cross entropy and Dice loss. Differently to 
the default configuration of the nnU-Net, the learning rate schedule was 
modified to PyTorch’s ReduceLROnPlateau,4 with an initial learning 
rate of 0.01, following an optimization study performed with a reduced 
dataset. nnU-Net applies a series of randomized operations over the 
selected patches for each training step for data augmentation (Isensee 
et al., 2021). 

A five-fold cross-validation strategy was employed to assess the 
performance of the trained nnU-Net model, with the dataset distribution 
described in Table 1. The Dice coefficient (Dice, 1945), recall and the 
volume correlation coefficient were used as quantitative segmentation 

Fig. 1. Flowchart of the validation of the automatic tortuosity feature extraction method. The presented method is displayed enclosed in the grey box, with each of 
the four upper blocks representing the different modules of the image processing pipeline. The main output of reach of these modules is shown in the lower blocks. 
Results from the automatic analysis are assessed by comparing them to the ground truth obtained from averaging manual measurements from two observers. 

4 ReduceLROnPlateau I parameters: factor = 0.2, patience = 10, threshold 
= 0.01, mode = “min”, threshold_mode = “rel”. 
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quality indicators. These evaluation metrics were found to be the 
strongest indicators for segmentation quality following an internal study 
involving 11 different metrics that were compared to Likert scale qual
itative scores attributed to a sample of 20 cases by four different inde
pendent experts. UNETR (Hatamizadeh et al., 2022) and SwinUNETR 
(Tang et al., 2021) models were also implemented for our task. The most 
recent benchmarks show an incremental improvement of transformer 
models over fully convolutional networks for medical segmentation 
tasks (Tang et al., 2021). However, for 3D vascular segmentation tasks 
like hepatic vessel segmentation, nnU-Net has delivered the best results 
in benchmarks (Tang et al., 2021), and our experiments have also 
showed the superior performance of nnU-Net for our targets. 

Robustness to noise was also tested by adding artificial random 
Gaussian noise to images increasingly to see how performance is 
maintained compared to baseline images. A detailed analysis can be 
found in the supplementary material (Fig. S2). 

3.2. Centerline extraction 

Fig. 2 displays the different steps of the analysis process from the 
input CTA up the graph generation. From the binary map obtained by 
segmentation (Fig. 2A-B), automatic surface model extraction is trivially 
performed by thresholding (Fig. 2 C), followed by smoothing and 
removal of small islands. Intracranial arteries are ignored for the rest of 
the analysis. 

Centerline models are then extracted via shortest path tracing be
tween automatically detected extremal points (startpoint and end
points), placed at the end of vascular structures. Paths are defined over 
the Voronoi diagram corresponding to the closed surfaces resulting from 
the binary map segmentation. Shortest paths between the startpoint and 
the endpoints are determined by minimization of a wave propagation 
integral described by the Eikonal equation (Antiga et al., 2003) 
(Fig. 2D). For centerline and surface model branching, tubes are con
formed for each centerline segment by joining the maximal inscribed 
spheres associated to each centerline point. Tube containment re
lationships between centerlines and tubes are defined following refer
ence point placement (intersections between centerlines and tubes), 
which enable branch splitting for both the centerline and surface models 
(Antiga and David, 2004) (Fig. 2E). The described methods for center
line extraction and branch splitting are implemented in the Vascular 
Modelling Toolkit (VMTK, version 1.4) (Antiga et al., 2008), used here 
for these computations. Custom modules were designed and added to 
the VMTK methods for a robust endpoint auto-detection and for circular 
centerline tracing. 

The resulting branched centerline model is used to generate a graph, 
where nodes correspond to centerlines of individual vascular segments, 
which are connected by edges to the immediately proximal and distal 
segments in contact (Fig. 2 F). 

3.3. Vessel labeling 

A graph U-Net (gU-Net) (Gao and Ji, 2019) model was used for vessel 
labelling of the centerline models. Graph nodes were characterized with 
node attributes obtained from the centerline models. A total of 24 node 
attributes were computed, including the mean, proximal, distal, 
maximum and minimum radius, proximal/distal radius ratio, Euclidean 
distance between proximal and distal bifurcation points, relative length 

(RL) of the segment, overall direction, departure direction (given by the 
vector joining the first two points of the segment), number of points of 
the centerline segment, proximal and distal bifurcation positions and 
center of mass. Data augmentation is applied in the form of increased 
connectivity of the nodes by edge linking to all those nodes within 
10 mm (found empirically) of the node’s center of mass, and normali
zation of all attribute to their mean value averaged across the training 
set. Proximal/distal radius ratio and RL are not normalized since these 
are already relative measurements, and direction 3D vectors are 
normalized to unitary vectors. 

An optimization study, including 288 different variations for the gU- 
Net architecture and training configuration, was performed to identify 
the best combination of hyperparameters for the model. The model with 
the best testing accuracy was selected. The network’s architecture is 
characterized by four pooling steps (depth = 3), with pooling ratios of 
0.5 each, and with graph convolution network (GCN) layers at each 
level. Skip connections connect the equivalent levels from the encoder 
and decoder blocks. The number of hidden channels for the node em
beddings was set to 64, while the batch size was set to 20. 

SGD with high momentum (μ = 0.99) and a weight decay of 10− 3 for 
regularization was used as optimizer, with an initial learning rate of 
10− 2, scheduled with ReduceLROnPlateau.5 The cross entropy was used 
as the loss criterion for node classification. Early stopping was employed 
to prevent overfitting, with validation loss serving as the early stopping 
criteria. The data organization for training, validation and testing is 
described in Table 1. Five-fold cross-validation was used to ensure the 
validity of results. Edge accuracy per case, computed as the percentage 
of correct predictions over the total sample, overall accuracy (pooling all 
predictions), overall Dice coefficient, recall, precision, class-wise Dice 
coefficient and error occurrences per case were used to assess the gU- 
Net’s performance. 

3.4. Tortuosity feature extraction 

3.4.1. Manual feature extraction 
To validate the automatically extracted tortuosity features, the 

feature extraction testing set (n = 30) was manually processed by two 
different expert observers where a total of 45 different geometric and 
morphological features were extracted directly from raw CTAs. 
Morphological features include presence of a bovine AA (Layton et al., 
2006), presence of aberrant right subclavian artery (ARSA) (Chaoui, 
Rake, and Heling, 2008) and AA type (Bajzer, 2004). Geometrical fea
tures include proximal diameter, RL (Klís et al., 2019), and absolute and 
relative polar and azimuth departure angles. Geometrical features are 
extracted for the brachiocephalic trunk (BT), right common carotid ar
tery (RCCA), right subclavian artery (RSA), right vertebral artery (RVA), 
left common carotid artery (LCCA), left subclavian artery (LSA) and left 
vertebral artery (LVA). In addition, the diameter at the apex was also 
measured for the AA. The presence of ARSA was finally excluded as none 
of the patients from the testing set presented it. 

3.4.2. Automatic feature extraction 
The same fundamental criteria (landmark localization) were adopted 

Table 1 
Organization of the data for vessel segmentation, vessel labelling and tortuosity feature extraction modules. Same 30 cases from the testing set of the segmentation 
module are kept for within the vessel labelling testing set and used for the feature extraction module to avoid overfitting.   

Number of annotations Annotation type Training Validation Testing 

Segmentation 162 Binary map 110 22 30 
Vessel labelling 566 Labeled graph 433 76 57 
Feature extraction 30 (×2) Manual measurements - - 30 (×2)  

5 ReduceLROnPlateau II parameters: factor = 0.5, patience = 20, threshold 
= 0.01, mode = “min”, threshold\_mode = “rel”. 
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for the automatic feature extraction method. All centerline branches 
with the same predicted type (i.e., vessel name) following automatic 
labelling were joint as a single vascular segment. VMTK variables from 
the branched centerline model and the clipped surface model were used 
to locate relevant landmarks (e.g., vessel origin, proximal and distal 
ends, absolute angle point, AA type landmarks). The centerline model 
was used to compute the diameter at any point, using the maximal 
inscribed sphere radius. A priori knowledge (mainly, known connection 
relationships between arteries) was used to locate the relative angle 
point and recognize bovine AA and ARSA presence. Fig. 3 shows a series 
of example sketches for most of the measurements performed for the 
automatic feature extraction process. 

Vertebral artery (VA) tortuosity features were discarded from the 
analysis due to a high number of cases with missed automatic segmen
tations at the base of the VAs from the corresponding subclavian artery 
(SA) bifurcation, which resulted in a high percentage of missed mea
surements. Imaging artifacts were often found to be responsible for a 
sub-optimal imaging at the VA origin in a large fraction of cases, 
resulting in underperforming segmentation at these locations. This left a 
final group of 33 tortuosity features left for analysis. 

3.5. Statistical analysis 

Inter-observer variability was assessed and used as a reference 
measure. Averaged measurements between observers were used as 
ground truth values. The performance of the automatic method was 
assessed differently for morphological and geometrical tortuosity fea
tures. As categorical variables, morphological features were evaluated 
using the Cohen’s kappa (κ) (Cohen, 1960) in the case of the bovine AA 
presence, and the linearly weighted Cohen’s kappa (κL) for the AA type. 
For geometrical tortuosity features, the two-way mixed effects, single 
rater intra-class correlation coefficient (ICC) for absolute agreement 
(Koo and Mae, 2016) was used to assess the reliability across human 
observers and the automatic method. ICC thresholds of 0.5, 0.75 and 0.9 
were used to assess the agreement across methods as poor (ICC < 0.5), 
moderate (0.5 < ICC < 0.75), good (0.75 < ICC < 0.9) or excellent (ICC 
> 0.9). 

Bland-Altman plots (Martin Bland and Altman, 1986) were also 
drawn for all features and are available in the supplementary material 
(Figs. S5-S10). Bias and 95% CI values of the error distribution were 
computed for both methods as a complementary performance measure, 
and box plots for the absolute error (and relative error in the case of 
diameter measurements) were drawn for error distribution 
visualization. 

For inter-observer reliability assessment, values from both observers 
were compared to each other to avoid influence of co-dependency with 

ground truth values. For the automatic method, values were compared 
to the ground truth. 

Landmark placement was also quantitatively evaluated. Precision, 
recall and mean distance error were used to compare the presented 
method for landmark localization to other state-of-the-art algorithms 
proposed in the literature. For precision and recall computation, true 
positives (TPs) were recorded as landmarks placed at a distance error 
smaller than a given threshold, while false positives (FPs) were land
marks placed outside of the local region defined by this cut-off. This 
threshold was taken as the proximal diameter of the vessel associated to 
each tortuosity feature, averaged across all cases (e.g., for the BT origin, 
the average BT proximal diameter was used as threshold). False nega
tives (FNs) are defined as measurements that were manually recorded, 
but were missed by the algorithms. 

4. Results 

4.1. Segmentation 

The nnU-Net was the best performing model out of those tested. A 
mean Dice coefficient of 0.93 ± 0.02 and a recall of 0.93 ± 0.03 were 
obtained in testing over the five folds. The mean volume correlation 
coefficient was 0.998 ± 0.003. Table 2 shows a comparison between the 
present and other state-of-the-art 3D vessel segmentation algorithms 
applied on similar segmentation targets. 

Qualitatively, satisfactory performance of the segmentation process 
for the AA region, common carotid arteries (CCAs) and subclavian ar
teries (SAs) (Fig. 4 A) was observed. However, VAs tended to present 
segmentation errors at the origin, as well as discontinuities along the 
vessel (Fig. 4B). Cerebral arteries were accurately segmented up to the 
circle of Willis (Fig. 4 C). Distal SAs and external carotid arteries (ECAs) 
were generally not entirely segmented, as training data did not include 
these in most manual annotations. 

Regarding architectural details of the model, the number of down
sampling operations was determined upon choice of the patch size for 
forward processing. For the used dataset, a patch size of 
112 × 112 × 192 was selected after dataset preprocessing following 
limitations of both GPU memory and mathematical restrictions due to 
needed downsampling operations, as per nnU-Net design rules (Isensee 
et al., 2021). Thus, the network had 6 spatial resolution levels derived 
from 4 downsampling steps for the coronal and sagittal directions and an 
additional one for the axial direction. Encoder steps were constructed 
with a 3D convolutional kernel of size 3 × 3 × 3, followed by instance 
normalization (IN) and a leaky ReLU activation function. Downsampling 
was applied by strided 3D convolution (stride = 2), with kernel size of 
2 × 2 × 2, doubling the number of channels at each step. In the decoder 

Fig. 2. Data processing from the CTA images, through centerline extraction and branching, up to graph generation. (A) Original CTA volume. (B) Binary map output 
by the segmentation module. (C) Volume model from binary map. (D) Volume model with extracted centerline model. (E) Branched centerline model over clipped 
surface model output by the centerline extraction module. (F) Graph corresponding to the centerline mesh. 
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block, 3D transpose convolution kernels of shape 2 × 2 × 2 were 
employed for upsampling, and two convolutional kernels of 3 × 3 × 3 
(with IN and leaky ReLU) are applied, halving the number of channels at 
each level. Skip connections were used to concatenate feature maps from 
encoder and decoder blocks. Convolutions of 1 × 1 × 1 followed by 
softmax layers were used to determine final activation of the decoder 
block at each of the resolution levels (except the two lowest resolutions), 
and deep supervision was used for loss computation during training. For 
inference, segmentation prediction was derived from the softmax acti
vation of the final decoder step. 

An experiment to test robustness to noise was also performed. Results 
shows how the implemented segmentation model is able to maintain 
performance with noise levels up to 5 times higher than the typical noise 
levels on CT (Fig. S2). 

4.2. Vessel labeling 

Table 3 compares the performance of the presented method to other 

state-of-the-art studies with similar labelling objectives. An edge pre
diction accuracy per case of 0.95 ± 0.06 resulted from the gU-Net 
trainings across folds. Table 4 shows the class-wise Dice coefficient for 
each of the edge classes available for vessel labelling by the gU-Net. 
Frequent errors (mistakes repeated four or more times within the 
testing set, n = 57 cases) include wrong prediction of right external 
carotid artery (RECA) for right internal carotid artery (RICA) (5 times) 
and AA for BT segments (4). Regarding error occurrences, 1.1 labelling 
errors per graph were made on average over the testing set, with 16.8 
nodes per case, 42.1% of cases presented perfect labelling (70.2% pre
sented one error or less). 

4.3. Tortuosity feature extraction 

Table 5 shows a comprehensive evaluation of the acquisition 
methods performance for each tortuosity feature. 

Fig. 3. Sample of automatically extracted features. (A) Oriented vascular segment for the LCCA. (B) Bifurcation between the LCCA and BT in a bovine AA. (C) Points 
A and B, and LCCA diameter D used for the AA type computation. (D) Proximal diameter measured at the LSA origin. The white circle represents the maximal 
inscribed sphere radius, projected in 2D. (E) Scheme of the RL computation for a LCCA. (F) Scheme of the absolute angle point placement for a RSA. (G) Scheme of the 
relative angle point placement for an LSA, with the preceding vessel being the AA. 

Table 2 
Comparison between the segmentation performance (Dice coefficient) of the used method (nnU-Net) and other state-of-the-art methods with similar segmentation 
targets. Black font highlights best metric (same convention used in other tables within the present study).   

Model Image modality Imaged anatomy N Dice 

Ours (2022) nnU-Net CTA Head + neck + AA 162 0.93 ± 0.02 
Ours (2022) SwinUNETR CTA Head + neck + AA 162 0.88 ± 0.05 
Ours (2022) UNETR CTA Head + neck + AA 162 0.74 ± 0.10 
Fu et al. (2020)(Fu et al., 2020) ResU-Net CTA Head + neck + AA 18,259 0.95 
Fantazzini et al. (2020)(Fantazzini et al., 2020) 2D U-Nets CTA Aorta 80 0.92 ± 0.01 
Fan et al. (2020)(Fan et al., 2020) HMRF + U-Net TOF MRA Cerebral arteries 100 0.79 ± 0.05 
ElHadji et al. (2019)(Hadji et al., 2019) ResU-Net CE-CBCT Cerebral arteries 25 0.79 ± 0.13 
Livne et al. (2019)(Livne et al., 2019) Half U-Net TOF MRA Cerebral arteries 66 0.92 
Phellan et al. (2017)(Phellan et al., 2017) Deep CNN TOF MRA Cerebral arteries 4 0.77 ± 0.01 
Isensee et al. (2021)(Isensee et al., 2021) nnU-Net CTA Hepatic vessels 443 0.69  
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4.3.1. Manual feature extraction 
Inter-observer variability is assessed in this section as a reference 

measure. Only three geometrical features presented poor reliability 
across both human observers. Fourteen features presented excellent 
agreement while 12 presented good agreement, leaving 2 with moderate 
reliability. Regarding morphological features, there was perfect agree
ment on bovine AA presence, and moderate agreement was found for the 
AA type measurement across observers. 

Reliability across observers was weaker for diameter measurements 
(4 out of 6 features presented weak to moderate agreement), good to 
excellent for angle measurements and excellent for all RL measurements. 

4.3.2. Automatic feature extraction 
The automatic method presented comparable performance to the 

manual feature acquisition. Only three features presented poor reli
ability compared to the ground truth values. Ten features presented 
excellent agreement, while 9 showed good reliability. The remaining 9 
features had moderate agreement with reference values. For morpho
logical features, performance of the automatic method was equivalent to 
human performance. 

Missed segmentations and inaccurate vessel labelling can make some 
measurements impossible to perform in automatic feature extraction, as 
some landmarks are not located. However, the number of missed land
marks was low, only a 2.6% of the total number of landmarks across all 
cases, yielding a total of 3.3% missed measurements across the complete 
sample. These values were omitted for the computation of the ICC and 
error distributions. 

Fig. 5 shows a visual representation of the error distribution for each 
geometrical feature and method. The proposed method presented very 
similar error distributions compared to the inter-observer variability 
found for most features, with a slightly higher median value and broader 
interquartile ranges across the feature set. 

Table 6 shows precision, recall and mean error for the landmark 
placement, comparing the manual and proposed methods against other 
state-of-the-art algorithms with similar landmark localization targets in 
vascular anatomies. The error distribution across methods for the 
landmark placement can be found in the supplementary material 
(Fig. S4). 

5. Discussion 

To our knowledge, this is the first research introducing a fully 
automatic pipeline for the characterization of vascular tortuosity in the 
supra-aortic region. We implemented, adapted and combined several 

Fig. 4. error distance maps between the predicted segmentations obtained from the automatic segmentation through the nnU-Net, and the manual segmentations. 
(A) Distance maps for the whole segmentation target, showing good behavior in the supra-aortic region. (B) Missed segmentations at the base of the VAs. (C) Distal 
cerebral arteries are not accurately segmented in a significant number of cases. Positive distances represent over-segmented regions, while negative distances 
highlight under-segmentations. 

Table 3 
Overall vessel prediction accuracy, precision, recall and Dice coefficient for the presented gU-Net and other state-of-the-art methodologies proposed for similar 
labelling tasks. *Method from (Chen et al., 2020) was implemented and tested with our data.   

Method Target Accuracy Precision Recall Dice 

Ours (2022) Graph U-Net Head + neck + AA 0.94 0.94 0.94 0.94 
Yao et al. (2020) (Yao et al., 2020) GCN-point cloud Head + neck + AA 0.93 - - 0.92 
Chen et al. (2020)(Chen et al., 2020) GNN Cerebral arteries 0.92 - - - 
Chen et al. (2020) * GNN Head + neck + AA 0.82 0.84 0.83 0.83 
Dunås et al. (2016)(Dunås et al., 2016) ATLAS Cerebral arteries 0.93 - - - 
Tahoces et al. (2020)(Tahoces et al., 2020) A priori knowledge Aorta branches - 0.99 0.92 -  

Table 4 
Number of vessels (N), TPs, FPs, FNs and Dice coefficient for each of the possible 
vessel types present in the node classification by the gU-Net, over predictions 
with the testing set. BA: basilar artery.  

Vessel type N TP FP FN Dice 

Other  30  23  5  7  0.79 
AA  226  225  9  1  0.98 
BT  57  52  1  5  0.95 
RCCA  56  54  0  2  0.98 
LCCA  60  56  1  4  0.96 
RSA  95  91  4  4  0.96 
LSA  100  94  6  6  0.94 
RVA  50  44  8  6  0.86 
LVA  57  51  9  6  0.87 
RICA  51  44  3  6  0.91 
LICA  50  44  3  6  0.91 
RECA  53  51  8  2  0.91 
LECA  56  52  4  4  0.93 
BA  15  13  2  2  0.87 
Total  956  894  62  62  0.94  
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state-of-the-art solutions to develop a robust method for the character
ization of vascular tortuosity. Compared to similar previously published 
studies, this research includes several key aspects such as full automa
tion of the entire analysis pipeline, inclusion of multiple human ob
servers for the manual acquisition of feature measurements or the 
inclusion of vessel-specific features. 

As an objective and fast feature extraction method, automatic tor
tuosity characterization of patients can provide a basis for the devel
opment of predictive AI models that could confer valuable information 
to the clinician pre-operatively about the difficulties they might expe
rience when navigating through the AA and the supra-aortic region. This 
immediate characterization system is the necessary first step in the 
development of a decision support tool able to guide neuro
interventionalists in their procedural planning. As a result, the initial 
approaches in MT procedures could be efficiently programmed, 
reducing access failures and workflow times, and ultimately improving 
clinical outcomes. 

Full automation has several key advantages over semi-automatic and 
manual methods. Firstly, it allows the measurements process to be 
rapidly performed in a small amount of time. We performed the full 
analysis with the automatic method with all cases from the feature 
extraction testing set (n = 30), and measured an average computation 
time of 4 min 49 s ± 0 min 53 s6 across cases. Several factors may in
fluence the computation time such as the input image size, the number 

of separate segments after segmentation or the thermal throttling of the 
hardware components. Manual segmentation in CTA volumes of the 
arteries relevant for MT can typically take between 20 and 60 min per 
case depending on the patient, the observer’s experience and the 
required segmentation quality. Manual vessel labelling, in comparison, 
is a relatively quick process, taking approximately 1–5 min per case if 
made by an experienced user. The manual feature extraction process is 
also quite intricate, taking between 45 and 60 min per case. A com
parison between the time needed for each step of the process across 
methods is found in Table 7. The advantage of the automatic method in 
this regard is clear and represents the main argument for the use of the 
presented method, as the manual alternative is simply not feasible in the 
stroke treatment context due to the time needed to perform the analysis. 

Secondly, bypassing any human interaction provides objectivity, 
repeatability and robustness to the measurement acquisition, all of 
which are considered key aspects for ensuring a valid characterization 
for each patient, independently of the rater. The third main advantage is 
that no specialized or trained personnel is needed to perform the anal
ysis, which is a crucial factor for its applicability in clinical practice over 
any semi-automatic method. 

The error distribution for most features is very similar between the 
manual and the automatic methods, with the addition of a few occa
sional outliers in the automatic case (Fig. 5, Figs. S5-S10). Generally, the 
automatic analysis yields accurate results for most cases in the testing set 
but, on occasion, some landmarks are placed far from the ground truth 
values causing the presence of outliers. These outliers are non-existent in 
manual acquisition across different observers, as virtually all landmarks 
were located by both observers within a reasonable distance. This makes 
the analysis very demanding for the automatic methodology, as the 

Table 5 
Performance of the acquisition methods for all analyzed features. ICC, bias and 95\% CI of the error distribution for the inter-observer variability (manual) and the 
automatic method are displayed for geometrical features. Those features with poor agreement are highlighted in red. Below, κ and κL values for the bovine AA presence 
and the AA type are exhibited, respectively.  

Geometrical feature ICC Bias (error 95% CI) 

Manual Automatic Manual Automatic Units 

AA diameter 0.89  0.78  -1.04 (2.57)  1.00 (3.41) mm 
BT proximal diameter 0.70  0.67  -0.73 (3.57)  -0.44 (5.31) mm 
RCCA proximal diameter 0.37  0.59  -0.21 (3.13)  -0.32 (2.03) mm 
RSA proximal diameter 0.40  0.62  -0.28 (3.67)  1.00 (2.47) mm 
LCCA proximal diameter 0.53  0.27  -1.31 (3.11)  -0.25 (5.60) mm 
LSA proximal diameter 0.48  0.76  -1.85 (3.38)  -0.03 (1.96) mm 
BT relative length 0.99  0.89  < 0.01 (0.03)  0.01 (0.07) - 
RCCA relative length > 0.99  0.58  < 0.01 (0.01)  0.08 (0.32) - 
RSA relative length > 0.99  0.51  < 0.01 (0.02)  0.02 (0.23) - 
LCCA relative length > 0.99  0.98  < 0.01 (0.01)  < 0.01 (0.04) - 
LSA relative length > 0.99  0.54  0.01 (0.02)  0.02 (0.28) - 
BT abs polar angle 0.81  0.87  -0.07 (0.31)  -0.06 (0.42) rad 
BT abs azimuth angle 0.91  0.83  0.05 (0.58)  -0.35 (1.61) rad 
BT rel polar angle 0.86  0.87  0.16 (0.24)  0.15 (0.37) rad 
BT rel azimuth angle 0.85  0.83  -0.04 (0.15)  -0.06 (0.28) rad 
RCCA abs polar angle 0.83  0.53  -0.02 (0.39)  -0.03 (0.61) rad 
RCCA abs azimuth angle 0.85  0.71  -0.04 (0.32)  -0.01 (1.00) rad 
RCCA rel polar angle 0.96  0.92  0.05 (0.22)  0.01 (0.33) rad 
RCCA rel azimuth angle 0.88  0.94  0.05 (0.34)  0.04 (0.61) rad 
RSA abs polar angle 0.79  0.82  0.07 (0.58)  0.02 (0.51) rad 
RSA abs azimuth angle 0.98  0.43  -0.04 (0.31)  -0.14 (1.12) rad 
RSA rel polar angle 0.93  0.96  -0.04 (0.32)  -0.10 (0.21) rad 
RSA rel azimuth angle 0.87  0.84  -0.09 (0.30)  -0.10 (0.96) rad 
LCCA abs polar angle 0.91  0.76  < 0.01 (0.19)  -0.08 (0.31) rad 
LCCA abs azimuth angle 0.99  0.94  0.03 (0.23)  0.10 (1.40) rad 
LCCA rel polar angle 0.84  0.15  0.11 (0.26)  0.09 (0.66) rad 
LCCA rel azimuth angle 0.97  0.94  0.01 (0.10)  -0.08 (0.32) rad 
LSA abs polar angle 0.94  0.93 

333  
< 0.01 (0.15)  -0.08 (0.15) rad 

LSA abs azimuth angle 0.98  0.98  -0.01 (0.35)  0.07 (0.69) rad 
LSA rel polar angle 0.87  0.94  0.14 (0.20)  0.03 (0.13) rad 
LSA rel azimuth angle 0.83  0.90  < 0.01 (0.12)  -0.03 (0.18) rad 
Morphological feature Automatic 
Bovine AA presence (κL) 1.00 
AA type (κ) 0.52  

6 Time measurements for image processing with the automatic method were 
performed in a Linux server with an Intel® Xeon™ W-2275 CPU, 128 GB of 
RAM, and Nvidia RTX A5000 GPU (24 GB). 
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presence of only a small number of outliers heavily influences ICC 
measurement and the error distribution values. 

Table 2, Table 3 and Table 6 compare the obtained results for each of 
the presented modules with other published methods applied on similar 
tasks. In all three cases, state-of-the-art results are achieved with our 
methods, demonstrating the performance of each of the modules 
individually. 

The error sources in the measurement of tortuosity features are 
diverse, due to the high number of automated operations present in the 
pipeline. These were identified and classified into the following cate
gories (ordered by decreasing relevance): incorrect vessel labelling, sub- 
optimal segmentation, incorrect centerline extraction, incorrect data 
processing, unreliable azimuth angle due to steep polar component, 

imaging artifacts and reasonable landmark displacements. 
Future work within the Arterial© framework will explore predictive 

tasks relative to stroke patients and MT procedures, that will rely on the 
measurements obtained with the presented tortuosity feature extraction 
method. The accuracy delivered by these predictive models will ulti
mately determine if the performance of the tool in vessel anatomy 
characterization is sufficient to design efficient predictive algorithms. 

One important limitation of this study is the inclusion of features that 
could be validated against human measurements. That significantly 
limits the number and the type of features that could be included in this 
validation assessment compared to the true potential of the presented 
method. Features such as mean diameter, waviness of the vessel 
(Hathout and Huy, 2012) or vessel volume are some examples of fea
tures that could be easily extracted by the algorithm in its current 
version but could not be directly validated against human measure
ments. In addition, tortuosity descriptors can be gathered in different 
scales. In this research, we have mainly looked at segment-scale features 
(e.g., RL, departure angles, or proximal diameters) and global features 
(e.g., presence of bovine AA, AA type). Features at a more local scale (e. 
g., curvature at any point of the centerline, diameter at any point) may 
also be relevant and contain valuable information to describe vascular 
tortuosity. Our framework offers the flexibility needed to encode all this 
information. 

Another limitation for the current methodology is that it is limited to 
CTA imaging. However, since the only point of contact of the analysis 

Fig. 5. Box plots of the relative error for diameter measurements and absolute error for RLs, absolute angles and relative angles, for error comparison for 
both methods. 

Table 6 
Precision, recall and mean error for the landmark placement of the analyzed methods compared to other state-of-the-art methodologies. Italic font indicates non- 
algorithmic acquisition methods.   

Target Precision Recall Mean error (mm) 

Manual Head + neck + AA landmarks 0.98 1.00 2.9 ± 2.1 
Ours (2022) Head + neck + AA landmarks 0.81 0.97 2.7 ± 2.2 
Chen et al. (2018) (Chen et al., 2018) Intra-cranial arteries bifurcations 0.94 0.85 0.3 ± 0.4 
Tahoces et al. (2020) (Tahoces et al., 2020) Aorta landmarks - - 5.7 ± 7.3  

Table 7 
time comparison between manual and automatic acquisition for the time needed 
to perform each stage of the image processing. *Sensitive to the chosen 
resolution.  

Process Manual (approximation) Automatic 

Segmentation (nnU-Net inference) 40 min 2 min 3 s 
Centerline extraction 5 min 1 min 17 s 
Branch and clipped model computation - 1 min 18 s* 
Graph generation - < 1 s 
Vessel labelling (gU-Net inference) 1 min < 1 s 
Feature extraction 45 min 9 s 
Total 91 min 4 min 49 s  
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process with the input imaging is the segmentation model, this limita
tion could be resolved by adapting the segmentation module to other 
imaging sources. Such segmentation model could be trained using other 
kinds of imaging modalities (e.g., MRA, 3DRA, etc.) so that the analysis 
could be performed regardless of the input data form. The use of data 
originated from a single medical center and CT manufacturer are other 
limitations of this study. 

6. Conclusion 

We present a thorough validation study of a fully automatic method 
for segmentation, vessel labelling and feature extraction for vascular 
tortuosity analysis. Thirty-three geometric and morphological charac
teristics of the arteries in the supra-aortic region that are relevant to MT 
procedures were extracted by an automatic model, and results were 
compared to manual measurements acquired by two independent expert 
observers. Performance of the proposed methodology was comparable 
to human performance, with the advantage of a significant time 
reduction needed for the analysis, making it compatible with the stroke 
setting for pre-operatory patient assessment. 
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